PLACE: North Carolina Utilities Commission
DATE: Wednesday, September 14, 2022
TIME: $\quad 1: 51$ p.m. - 5:03 p.m.
DOCKET NO.: E-100, Sub 179
BEFORE: Chair Charlotte A. Mitchell, Presiding Commissioner ToNola D. Brown-Bland Commissioner Kimberly W. Duffley

Commissioner Daniel G. Clodfelter Commissioner Jeffrey A. Hughes Commissioner Floyd B. McKissick, Jr. Commissioner Karen M. Kemerait IN THE MATTER OF:

Duke Energy Progress, LLC, and Duke Energy Carolinas, LLC, 2022 Biennial Integrated Resource Plans and Carbon Plan

VOLUME 10

A P P EARANCES:
FOR DUKE ENERGY CAROLINAS, LLC and DUKE ENERGY
PROGRESS, LLC:
Jack E. Jirak, Esq., Deputy General Counsel
Kendrick C. Fentress, Esq., Associate General Counsel
Jason A. Higginbotham, Esq., Associate General Counsel
Kathleen Hunter-Richard, Esq.
Duke Energy Corporation
Post Office Box 1551
Raleigh, North Carolina, 27602

Andrea Kells, Esq.
E. Brett Breitschwerdt, Esq., Partner

Nicholas A. Dantonio, Esq
McGuireWoods LLP
501 Fayetteville Street, Suite 500
Raleigh, North Carolina 27601

Vishwa B. Link, Esq., Partner
McGuireWoods LLP
Gateway Plaza
800, East Canal Street
Richmond, Virginia 23219-3916

A P P E A R A N C E S Cont'd:
Lara S. Nichols, Vice President,
State \& Federal Regulatory Legal
Duke Energy Corporation
4720 Piedmont Row Drive
Charlotte, North Carolina 28210

FOR NORTH CAROLINA SUSTAINABLE ENERGY ASSOCIATION:
Taylor Jones, Esq., Regulatory Counsel
4800 Six Forks Road, Suite 300
Raleigh, North Carolina 27609

FOR SOUTHERN ALLIANCE FOR CLEAN ENERGY, NATURAL
RESOURCES DEFENSE COUNCIL, and THE SIERRA CLUB:
Gudrun Thompson, Esq., Senior Attorney
David L. Neal, Esq., Senior Attorney
Nicholas Jimenez, Esquire, Senior Attorney
Southern Environmental Law Center
200 West Rosemary Street, Suite 220
Chapel Hill, North Carolina 27516

A P P E A R A N C E S Cont'd:
CAROLINA INDUSTRIAL GROUP FOR FAIR UTILITY RATES II
AND III:
Christine D. Cress, Esq., Partner
Douglas E. Conant, Esq., Associates
Bailey \& Dixon, LLP
434 Fayetteville Street, Suite 2500
Raleigh, North Carolina 27601

FOR CAROLINA UTILITY CUSTOMER ASSOCIATION and
FOR TECH CUSTOMERS:
Matthew B. Tynan, Esq.
Brooks Pierce
Post Office 26000
Greensboro, North Carolina 27420

Craig Schauer, Esq.
Brooks Pierce
1700 Wells Fargo Capitol Center
150 Fayetteville Street
Raleigh, North Carolina 27601

A P P E A R A N C E S Cont'd:
FOR CAROLINAS CLEAN ENERGY BUSINESS ASSOCIATION
John D. Burns, Esq., General Counsel
811 Ninth Street, Suite 120-158
Durham, North Carolina 27705

FOR BRAD ROUSE:
Brad Rouse, Pro se
Brad Rouse Consulting
3 Stegall Lane
Asheville, North Carolina 28805

FOR CLEAN POWER SUPPLIERS ASSOCIATION:
Ben Snowden, Esq., Partner
Erin Catlett, Esq., Associate
Jack Taggart, Esq., Associate
Fox Rothschild LLP
434 Fayetteville Street, Suite 2800
Raleigh, North Carolina 27601

A P P E A R A N C E S Cont'd:
FOR THE ENVIRONMENTAL WORKING GROUP:
Andrea C. Bonvecchio, Esq.
The Law Offices of F. Bryan Brice, Jr.
127 West Hargett Street, Suite 600
Raleigh, North Carolina 27601

Carolina Leary, Esquire
1250 I Street Northwest, Suite 1000
Washington, DC 20005

FOR WALMART INC.:
Carrie H. Grundmann, Esq., Member:
Spilman Thomas \& Battle, PLLC
110 Oakwood Drive, Suite 500
Winston-Salem, North Carolina 27103

FOR CITY OF CHARLOTTE:
Karen Weatherly, Esq., Senior Assistant City Attorney
600 East Fourth Street
Charlotte, North Carolina 28202

A P P E A R A N C E S Cont'd:
FOR APPALACHIAN VOICES:
Catherine Cralle Jones, Esq.
The Law Offices of F. Bryan Brice, Jr.
127 West Hargett Street, Suite 600
Raleigh, North Carolina 27601

FOR REDTAILED HAWK COLLECTIVE, ROBESON COUNTY
COOPERATIVE FOR SUSTAINABLE DEVELOPMENT, ENVIRONMENTAL
JUSTICE COMMUNITY ACTION NETWORK, and DOWN EAST ASH
ENVIRONMENTAL AND SOCIAL JUSTICE COALITION:
Ethan Blumenthal, Esq.
ECB Holdings LLC
1624 Nandina Comers Alley
Charlotte, North Carolina 28205

FOR NC WARN and
FOR CHARLOTTE-MECKLENBURG NAACP:
Matthew D. Quinn, Esq.
Lewis \& Roberts, PLLC
3700 Glenwood Avenue, Suite 410
Raleigh, North Carolina 27612

A P P E A R A N C E S Cont'd:
FOR BROAD RIVER ENERGY, LLC:
Patrick Buffkin, Esq.
Buffkin Law Office
3520 Apache Drive
Raleigh, North Carolina 27609

FOR KINGFISHER ENERGY HOLDINGS, LLC, and
FOR PERSON COUNTY, NORTH CAROLINA:
Patrick Buffkin, Esq.
Buffkin Law Office
3520 Apache Drive
Raleigh, North Carolina 27609

Kurt Olson, Esq.
The Law Office of Kurt J. Olson, PLLC
Post Office Box 10031
Raleigh, North Carolina 27605

FOR NORTH CAROLINA ELECTRIC MEMBERSHIP CORPORATION:
Tim Dodge, Esq., Regulatory Counsel
3400 Sumner Boulevard
Raleigh, North Carolina 27616

A P P E A R A N C E S Cont'd:
FOR THE CITY OF ASHEVILLE and COUNTY OF BUNCOMBE:
Jannice Ashley, Esq., Senior Assistant City Attorney
City Attorney's Office
70 Court Plaza
Asheville, North Carolina 28801

Curt Euler, Esq., Senior Attorney II
Buncombe County
200 College Street, Suite 100
Asheville, North Carolina 28801

FOR MAREC ACTION:
Bruce Burcat, Esq, Executive Director
MAREC Action
Post Office Box 385
Camden, Delaware 19934

Kurt J. Olson, Esq.
Law Office of Kurt J. Olson, PLLC
Post Office Box 10031
Raleigh, North Carolina 27605

A P P E A R A N C E S Cont'd:
FOR TOTALENERGIES RENEWABLES USA, LLC, and
FOR CLEAN ENERGY BUYERS ASSOCIATION:
Joseph W. Eason, Esq.
Nelson, Mullins, Riley \& Scarborough LLP
4140 Parklake Avenue, Suite 200
Raleigh, North Carolina 27612

Weston Adams, Esquire
Nelson, Mullins, Riley \& Scarborough LLP
1320 Main Street, Suite 1700
Columbia, South Carolina 29201

FOR PORK COUNCIL
Kurt J. Olson, Esq.
Law Office of Kurt J. Olson, PLLC
Post Office Box 10031
Raleigh, North Carolina 27605

FOR COUNCIL OF CHURCHES:
James P. Longest, Jr., Esq.
Duke University School of Law
Box 90360
Durham, North Carolina 27708

A P P E A R A N C E S Cont'd:
FOR AVANGRID RENEWABLES, LLC:
Benjamin Smith, Esq.
Todd S. Roessler, Esq.
Joseph S. Dowdy, Esq.
Kilpatrick Townsend \& Stockton LLP
4208 Six Forks Road, Suite 1400
Raleigh, North Carolina 27609

FOR SEAN LEWIS:
Sean Lewis, Pro se
640 Firebrick Drive
Cary, North Carolina 27519

FOR THE USING AND CONSUMING PUBLIC, THE STATE, AND ITS CITIZENS:

Margaret Force, Esq., Special Deputy Attorney General
Tirrill Moore, Esq., Assistant Attorney General
North Carolina Department of Justice
Post Office Box 629
Raleigh, North Carolina 27602

A P P E A R A N C E S Cont'd:
FOR THE USING AND CONSUMING PUBLIC:
Lucy Edmondson, Esq., Chief Counsel
Robert Josey, Esq.
Nadia L. Luhr, Esq.
Anne Keyworth, Esq.
William E.H. Creech, Esq.
William Freeman, Esq.
Public Staff - North Carolina Utilities Commission
4326 Mail Service Center
Raleigh, North Carolina 27699-4300

MATTHEW KALEMBA, BOBBY MCMURRY,
GLEN SNIDER, MICHAEL QUINTO
Cross Examination By Mr. Rouse......................... 18
Cross Examination By Ms. Thompson..................... 56
Cross Examination By Mr. Schauer................... 101
Cross Examination By Ms. Grundmann.................. 138
E X H I B I T S

IDENTIFIED/ADMITTED
NC WARN Modeling Panel Cross-Examination 16/Exhibits 1 through 10

Tech Customers Modeling Panel Direct 115/-
Examination Exhibit-1
Tech Customers Modeling Panel Direct 115/-
Examination Exhibit-2
Tech Customers Modeling Panel Direct 118/-
Examination Exhibit-3

CHAIR MITCHELL: Mr. Rouse, still with you Mr. Rouse.

MR. QUINN: Mr. Rouse, excuse me. Madam Chair, I have one quick housekeeping matter. If I ask Mr. Rouse's permission if it's okay if I interrupt. I hope it's okay. I have been informed that I inadvertently failed to move my exhibits into the record at the conclusion of my cross-examination. If the Commission believes that this is a good time. I could do it later, but I didn't want to miss my opportunity.

CHAIR MITCHELL: Absolutely. Are you making a motion?

MR. QUINN: I am making a motion to move NC WARN Modeling Panel Cross-Examination exhibits one through 10 into the record.

MR. BREITSCHWERDT: No objection.
CHAIR MITCHELL: There being no objection to your motion, it will be allowed. And just for clarification, you can move the evidence in until we adjourn. Typically we'll wait to move in exhibits until the conclusion of the panel. So we did it a little bit differently with the
previous two parties, so no harm. To the extent anyone else forgets, I'll call for motions at the conclusion of the examination period for this panel.

MR. BREITSCHWERDT: Thank you.
(NC WARN Modeling Panel
Cross-Examination Exhibits one through 10 were moved into the record.)

MR. BREITSCHWERDT: Just logistical housekeeping matter, we have our next panel, the Carolina Utility operations panel here. From a logistical standpoint just for -- we've got a number of folks waiting in the wings trying to figure out when to be here. Just curious how much additional time Mr. Rouse estimates he might have and then just planning for the rest of the day.

MR. ROUSE: I'm about half through.
CHAIR MITCHELL: All right. So we've got Mr. Rouse and then we've got SACE.

MS. THOMPSON: And I believe I have estimated about 30 minutes.

CHAIR MITCHELL: And 30 is a fair
estimate?

MS. THOMPSON: I will endeavor to get through, but of course it depends upon how fulsome the witnesses' answers are.

CHAIR MITCHELL: Okay. All right. Tech Customers, you're indicated for 60, is that accurate?

MS. THOMPSON: We're going to aim for 45.

CHAIR MITCHELL: Okay. Walmart?
MS. GRUNDMANN: Chair, I still
anticipate 15. I would like to be the W in this list, so just a couple questions at the end.

CHAIR MITCHELL: And then we've got -you will not be cleaning up. Person County will be clean-up. Person County, you have how much time?

MR. BUFFKIN: For this panel, less than 10 minutes.

CHAIR MITCHELL: And then we have got Public Staff for 30.

MS. LUHR: It will be about 30.
CHAIR MITCHELL: That will take us to
5:00, I assume, if not beyond, right? And then there's some Commission questions.

MR. BREITSCHWERDT: I understand.

CHAIR MITCHELL: Tomorrow we will be on the record at 9:00 a.m.

MR. BREITSCHWERDT: Thank you.
MR. JIRAK: Just given that there's a small potential we need to flip one of our panels due to availability, we'll need to evaluate that at the end of the day, where we're at and then --

CHAIR MITCHELL: Keep us posted.
MR. SNOWDEN: And, Mr. Jirak, would you mind, for notice purposes, tell us which panels you might be flipping?

MR. JIRAK: The only one we -- one that got flipped is Grid Edge earlier in the sequence due to witness availability. Not saying that's happening. We'll maybe revisit that at the end of the day, if that's okay with you Chair Mitchell.

CHAIR MITCHELL: All right. With that we will resume. Mr. Rouse, go ahead.

MR. ROUSE: Thank you. I didn't think I was going to have to deal with unit commitment discussions today.

CROSS EXAMINATION BY MR. ROUSE:
Q. I just want to follow up on our discussion right at the end. And is it fair to say -- let me try
to summarize the issue with -- the whole issue of unit commitment, constraining what thermal generators do. Is it fair to say that it leads to curtailment of renewables as a problem?
A. (Glen Snider) I could maybe answer and then let Mr. McMurry fill in. Unit commitment it's not just thermal, it's how you commit a battery, whether you choose to charge or discharge. You're looking at forward, do I turn a unit on, do I turn it off, what are its capabilities for ramp and ancillary. It's beyond just ramp. It's ancillaries, your ability to move up and down to follow intermittent load. But yes. So your question is does unit commitment lead to curtailable of renewables?
Q. Yes.
A. And I think it potentially could, but I wouldn't know if it systemically does that.
A. (Bobby McMurry) I mean, I think it would depend on where throughout the planning the rising would be, but it could. But early in the ' 20 s generally we don't see curtailment of much of any resource.
Q. Right. But what is it then about unit commitment -- and bear with me -- if I have a renewable
resource and it's offsetting fossil fuels or some other dispatchable resource and lowering cost, what is it about the unit commitment setting that causes the renewable to look less advantageous if it's not resulting in curtailment?
A. This was not about renewables. The reason to get a portfolio that you can, I think, use for planning purpose, for regulatory purposes -- I mean, the commitment is system wide. I mean, it's -- you're pulling out one resource, exactly what happens to solar of a no commit. You know, it can start up a 1200 megawatt call unit in an instant with no commitment. It can shut it down instantly with no commit. I mean -- it's really not just solar. It's all units, you know, that's applicable to that and it impacts expansion plan that is selected by EnCompass. Whether it does more or less solar, I'm not going to speculate on what that might do. But I just know that the plans that we got out, you know, resources would appear when they were not needed. We would take them out, make no other change to the overall plan and it would be less expensive. And so when that's happening -- in every jurisdiction this was happening in a RTO, it was happening in Florida, it was happening in the

Carolinas. We went back to Anchor and said, you know, we need some, you know, suggestions of what to try, and he says I would try partial commit where partial units could meet the operability requirements of the system when units are selected. And when we did that the resource plans -- you were not over building, you were not selected resources when they were not needed and it was -- it was just a plan that we thought we could use to take to the next step to production cost to see what the best solution is.
Q. So is what you're saying then that if you have more accurate unit commitment --
A. Have any unit commitment.
Q. Have any, which is more accurate than none, then it is a more accurate modeling of the system?
A. That's correct.
Q. Okay. But you're not saying that it penalizes renewables per se in terms of forcing them to be curtailed, correct?
A. I'm not going to answer yes or no to that because I don't know the answer right now. I would have to defer to some of the, you know, experts, some of the -- of my group of what happens with that.
Q. Okay. Well, let me just ask you another
hypothetical. As a vision, imagine in the future where we have hundreds of gigawatts or tens of gigawatts on the Duke system of battery storage, is unit commitment -- I mean, obviously batteries have to be committed, but my understanding of -- let me ask you this. Is it your understanding that batteries are more easily committed and more easily engaged than thermal generators?
A. (Glen Snider) I would say they can be ramped faster, brought on much faster and turned off. The issue we're going to have to deal with as an industry with batteries is they are energy limited, right? So these models today have what we call perfect foresight. You'll hear more of that in years to come, I'm sure. But it means you know what's happening in the next six hours. If you have a battery that can run two hours the model is going to put it exactly where it needs to go, that battery. In real life, if that front moves through a little more, a little less slower, clouds come in a little before or after, you don't have the -that battery is now out, right? And so running it another hour, if you had a two-hour battery, it doesn't go to three. So dealing with this perfect foresight is one of the issues where when we look at batteries and
the need to enhance our modeling, the industry as a whole with energy-limited resources are saying we need to enhance our modeling techniques around this perfect foresight where that limited energy resource if you're wrong by just a little bit, once you're out, you're out and you need to recharge it. And so that's one of the things, that unit commitment will commit it, but it commits it assuming you know that that's going to happen with actuality. The industry is evolving. These modeling techniques are improving -- again, I think battery is going to play an important role in the Carolinas. Don't disagree with me, Mr. Rouse. But the modeling techniques that were employed by the Synapse team you recommended did not have unit commit on at all, and that is a less accurate as Mr. McMurry stated or less accurate modeling method than -- does not optimize well on the resources.
Q. Okay. Okay. So let's turn to the gas again and talk about its role as we get towards 2050. From your -- and you don't need to look at the exhibit, but chapter three, portfolios, page eight and the other portfolio documents show a 2050 situation where -- and I had to read off the chart but-- I didn't have the numbers, but it looked to me like four or five percent
gas by the time we get to 2050 , that that's -- hydrogen is four or five percent of energy production at that point in time, is that correct?
A. Yeah. I think depending on the scenario or the portfolio.
A. (Michael Quinto) We're looking at figure three-six from chapter three of the Carbon Plan. It appears that about five percent of the energy mix in 2050 is from hydrogen.
Q. Okay. And the reason you have this much hydrogen, as we've said, is a reliability question. The system has to be reliable with resources that are like the CTs or gas units that we have today, is that correct?
A. I'll let Mr. McMurry also add in here, but the Carbon Plan has identified that a limited number of dispatchable resources in 2050 can significantly reduce the cost of the system. These resources are not just for reliability, they'll also lower cost options that can be used for reliability to maintain the reliability of the system long run through compliance through 2050.
Q. And if -- and just a hypothetical. If we had unlimited storage, infinite storage, then we can build a system that didn't use any of the gas or nuclear, we
could just build solar and wind out and it would just become an energy problem and assuming if we had -- it would be lovely I suppose, wouldn't it?
A. (Glen Snider) Again, hypotheticals, hydrogen in and of itself, most people refer to it as a storage technology. If that storage technology or another storage technology comes in at the right cost, can be cited, utilized on the grid, yes, storage of all forms pumped hydro, chemical, battery, hydrogen will have a significant role in the future to move renewable energy into the hour it's most needed.
Q. Okay. And you're mentioning hydrogen, but other forms of storage as well?
A. Hydrogen, pumped, compressed air, chemical batteries, new chemistries that are on the horizon, they all could potentially have a role.
Q. And you -- would you say you're viewing in the modeling -- because you're talking about a market for hydrogen. So you're talking about spending a certain amount of money to buy hydrogen to run -- and I assume you're talking about grain hydrogen, is that correct?
A. That's correct.
Q. Okay. And grain hydrogen is one that uses
the process of electrolysis, converting water into its constituent elements of hydrogen and oxygen?
A. (Michael Quinto) Clean hydrogen is hydrogen that's produced -- a carbon-free resource. So that could be nuclear, that could be renewables, that could be wind. Most typically it's through electrolysis, which uses electricity. So it needs these other sources to produce the electricity to run the electrolysis to create the clean hydrogen.
Q. So looking forward to this hydrogen economy, from what you understand about hydrogen, do you think that this is going to be a resource that's produced in the Carolinas or produced elsewhere and imported?
A. (Glen Snider) That's something for the market to figure out going forward. I mean, I think there's a lot of discussion now at the federal level of in the IIJA as to where are we going to establish these hydrogen hubs. And I know the Carolinas there's a consortium of end users and producers and I think Duke participates in it. I'm not personally on that team. But it's working on a consortium to say potentially maybe the Carolinas region should be that hydrogen hub and potentially get some of the IIJA funds to kick start that. But it may be piped. It may be developed
locally. It may be a combination of both. It's my understanding that that is all potential options as we move over the next few decades.
Q. So it's one or the other? It's one or the other or a mix?
A. It could be both.
Q. Or a combination. So if it's from somewhere else like outside of the state, how is it going to get here?
A. (Bobby McMurry) I mean, I'll ask Mr. Quinto. He pulled it up and has the exact site, but in appendix E we addressed some of the very questions that you're asking. You know, we don't -- you know, the pipeline, it really does not exist now to transfer hydrogen long distances. We thought it was pretty interesting when we were developing our plan that we had excess energy, either from nuclear or from renewables near certain parts of the month, every month. More in more months more than others. So we did a calculation using that excess energy to say what if we can make hydrogen with that through electrolysis and when we did that -- I mean, that was kind of part of the rational for why we said in 2035 or 2040 we could start to having small percentage of our hydrogen, you know, blended with
natural gas, and then by $' 47$ we could convert to hydrogen is we had enough excess energy with the resource plan that we brought forth. We don't know what really the plan will be in 2040. This is a plan with known technologies today. It looks like there was enough hydrogen that could be produced to meet the generation requirements of what we had.
Q. So I'll address this to you, Mr. McMurry. You envisioned the use of that excess energy from nuclear and from renewables. And there's no excess energy from fossil fuels because it costs to run the plants, right? The excess energy comes from carbon-free, zero -- or low marginal cost resources?
A. I mean, fossil plants they can cycle up and down -- the renewables, unless you cut it off -- you can ramp it too, but that's carbon-free energy. That's not being used to get to a zero carbon.
Q. But you -- so I guess a corollary question is when you ran your -- well, you didn't include that in your EnCompass modeling. So I assume you didn't give a value to that energy that was curtailed, even though it might possibly be used for hydrogen?
A. This would be energy to meet the system needs. So this was as a system needs -- I mean, the
system -- it's a much different system in the '40s and we have a lot of nuclear and we have a lot of renewables versus -- and so -- they would curtail -- we saw -- we kind of did an either/or. Either let the nuclear curtail or let the renewables curtail and then you could determine how many megawatt hours of curtailment you had or how much energy would be available to make hydrogen. And there's periods of time where you had more energy being produced than what the system needs.
A. (Glen Snider) Bobby, if I could just --
Q. (Bobby McMurry) Just compared to today, we have more gas generation. They can turn off, they can turn on. You can have a fuel save associated. Go ahead.
Q. If you could store it, that would be great, but you could produce hydrogen that's a form of storage?
A. Well, when you said an infinite amount of storage, if you could store -- I don't know how many batteries that would require, but that would be -- I assure you, that would not be cost effective.

MR. BREITSCHWERDT: Chair Mitchell, if I may, we're getting pretty far afield from the
modeling panel. Pretty extensive testimony. I just want to make sure that we're progressing through the line of questioning and to the extent we can continue to move this forward efficiently, that would be helpful.

MR. ROUSE: Your Honor, the role of hydrogen in the future energy system is very fundamental to some of the inputs for the value of the gas. And so I think it's very germane that we understand the role of hydrogen and some of the issues that might occur from the use of hydrogen.

CHAIR MITCHELL: All right, Mr. Rouse, let's do your best to limit your testimony to the -- to limit your questions to the testimony the gentlemen have provided in this proceeding and remember to stick to questions, please.

MR. ROUSE: Okay.
CROSS EXAMINATION BY MR. ROUSE:
Q. Did you consider in your modeling treating hydrogen the way that you treat batteries given that hydrogen is a form of storage? In other words, where you calculate and you generate the energy required to power the electrolyzers that then provide the hydrogen that then can be burned back into those same combustion
turbines that had been converted to gas or you treated it differently? Is that how I understand it?
A. (Michael Quinto) We treated hydrogen in the Carbon Plan as a fuel available as a market fuel. We did not do a -- it's called power to gas where you model the production of hydrogen as a storage. You have to specify all sorts of inputs that, you know, weren't within the scope at this time to look at how much does the electrolyzers cost, what's the storage. For the simplicity of the modeling we modeled a hydrogen market that was produced and cost at the cost to produce green hydrogen.
Q. Correct. But -- okay. But the fact of the matter is, is it not, that that hydrogen has to use -have some electricity to power the electrolyzers in order to provide the hydrogen and that power, where will it come from if the hydrogen is shipped into the state of North Carolina from somewhere else?
A. (Glen Snider) So this is, I think, what Mr. McMurry said. You're economically selecting to meet your carbon reduction a lot of renewables, a lot of nuclear. When you're in that world view you have a lot of hours. You have excess green energy that get curtailed. There is enough of -- calculation Mr.

McMurry was talking about was that -- those resources that were already paid for to produce the carbon that you need when they're not curtailed have excess curtailment. There's enough excess curtailed energy that's already economically justified from the periods when they're not to produce enough carbon to get you to your five percent, right? Your hydrogen. Excuse me, to get to the five percent hydrogen that we had in the plan. And so you point out the five percent. I think we have been over this a few times. It's five percent hydrogen. It could be in our ultimate portfolios with Public Staff and other interveners. It could be offset markets. And if neither of those come to fruition, offsets or hydrogen, that five percent would need to be served by something else. I think we can all stipulate to that.
Q. Correct. But nevertheless, it is true that if the hydrogen is produced in North Carolina that much likely the power is going to come from the Duke system?
A. It would come from the Duke renewables and small modular reactors and nuclear that were added that would otherwise have just been curtailed. So it is no-cost energy because those resources were economically justified knowing that there was a
curtailment and for the non-curtailed portion you still built it. Now you have an ability -- rather than a chemical battery you can put that energy into production of hydrogen, which can be stored for much longer periods than a chemical battery.
Q. So can I just ask the assumption that you're making here or ask if you have thought about this assumption, which is that electrolyzers -- your assumption seems to be that electrolyzers are inexpensive enough that they can be allowed to cycle and that they don't need to run $24 / 7,365$ days of the year to be economically viable. Is that your assumption that you're making here?
A. (Michael Quinto) The price of clean hydrogen that we assumed does account for the capital price of the electrolyzers. So for that aspect of the cost of the hydrogen that's assumed in the selection of the CCs and CTs on a long-run basis is factored into the modeling.
Q. Following up on that. Did you, in that calculation, use a capacity factor for the electrolyzer?
A. I don't know what capacity factor was used.
A. (Bobby McMurry) The electrolyzer ran when
you had excess energy. I mean, the beauty behind -- I thought the beauty. The reason I thought this was pretty interesting is that the electrolyzers could be cited at the generation source. So you could -- it's just a way to say that, you know, if trans -- if transporting hydrogen is 30 years away or 28 years away, transporting hydrogen is not viable, we can produce that fuel for RCTs or CCs and, you know, with excess energy produced on the system. I don't know -that was what we documented in appendix E.
Q. It sounds almost like perfect storage. Would you agree?
A. No. No, I wouldn't.
Q. Okay. Strike that question. Is it not true that there's an efficiency loss when electricity is used to produce the hydrogen?
A. You know, as we discussed yesterday when this issue was brought up with hydrogen, I think the efficiency gains for the electrolyzer is currently like 70 percent and they're projecting over the next 10 years for it to get to 90 percent efficient. That was part of the basis for the, you know, 1.5 dollars per kilogram that we used as a basis for our hydrogen price.
Q. And with the -- once it's in the form of hydrogen and there's also an efficiency lost when it's converted back into electricity. So is it not true that you go and you lose -- you have an efficiency loss in converting it into hydrogen and an efficiency loss when you go from hydrogen back to electricity?
A. Yes. Every generator has --
A. (Glen Snider) Every storage technology, I think, has an efficiency -- chemical, air, pumped, none of them are a hundred percent efficient. We'll agree with you.
Q. Compared to battery technology is that less or more efficient roundtrip?
A. Batteries are 85 to 90. If you get to 90 it's about equivalent.
Q. That's just for the electrolyzer it sounds like, not for the production.
A. (Bobby McMurry) The CTs are -- and it's combine cycles -- in the 2047 time frame serve a very different role than what a four-hour, eight-hour battery is serving. These generators when you look at their generation on an hourly basis, they might run for several days, especially the combined cycles. Right now there's not another technology that you can store
that can meet that operability to the system that a gas turbine can do. There may -- like I said, there's a lot of things that can be developed over the next few years but -- but it's a unique -- and it serves about five percent. When we model it in a carbon -- to a zero -- about five percent of our energy is -- you know, is always -- is, you know -- when we model it through our production cost it will run these units about five percent of the year -- five percent of our total generation is about what it equates to.
Q. Okay. So do you consider the possibility -and again, I think it does depend on how much excess energy you can have in the system and the things you're mentioning, that -- or do you think it's likely that in some circumstances a better solution than CTs would be with the roundtrip efficiency loss of using hydrogen would be to simply produce the electricity for the grid and -- produce excess electricity for the grid and store some or all of it in batteries which would be more efficient?

MR. BREITSCHWERDT: Objection. Chair
Mitchell, I would ask for him to restate the question so it's more clear.

CHAIR MITCHELL: Mr. Rouse, I'm going to
sustain the objection. Restate it. Please restate your question so these gentlemen know what you're asking.

CROSS EXAMINATION BY MR. ROUSE:
Q. Have you examined the alternative versus using a CT powered by hydrogen of simply producing more electricity instead of producing electricity to put it into hydrogen to use that same electricity to serve the load and then to use some of that in battery format?
A. (Bobby McMurry) I would answer yes. I mean, this was economically selected. I mean, we went into how -- you know, we made a case for how hydrogen could be produced with our excess energy. What I kind of cited a couple times. And then we developed a price of what hydrogen would be. And, you know, expansion plan economically selected a hydrogen CT versus additional storage. And it starts really earlier in the '40s. It's just kind of -- we observed -- I have looked at a lot of model runs. You observe it. You get to about 2040, 2045, it really starts selecting -- it's these turbine that has hydrogen and it will take the cost and it's really what I think is -- you know, it's making sure that -- the model is selecting resources that can meet our load, the system demand in the most cost
effective manner. Like I said, the infinite storage, we found that number of batteries, certainly, but that was not selected economically.
A. (Michael Quinto) I will just mention the capacity expansion model had the option to select more storage and more renewables to offset the cost of this. It opted to select, especially in that last time frame of 2040 , to continue to select $C T$ on hydrogen fuel. So to that point, the system -- or the capacity expansion model had the option to select more storage and more solar to meet that need, but instead selected the hydrogen fuel CTs.
A. (Glen Snider) Above and beyond the 7500 megawatts the batteries already selected. So it just becomes -- if you need batteries to run, they're currently four-hour batteries. I need them to run two days. I don't get one battery. I have got to do six per day times two or three days. So the amount of batteries becomes -- it's not one-to-one. You have got to have a tremendous amount of batteries and we already have, you know, a significant amount selected. So you're saying that the answer should be do more batteries above the -- and that's what we're just here -- you know, we fundamentally say the model has
selected a lot of batteries, but you need to diversify that. You can't rely totally on batteries. You diversify with hydrogen capable CCs.
Q. Would it be fair to say that this whole discussion and your position on this depends upon the assertion that you'll have enough excess energy available in some in those shoulder months to economically produce hydrogen? That's what gives you the price that the energy is -- that you're not bringing on new capacity in order to create the hydrogen?
A. (Glen Snider) It's a by-product of going through this energy transition. You have so much renewables, so much nuclear that you will have periods of curtailment even with the storage you have on the system. It falls out of all the model runs we have done.
Q. Right. Okay. Trying to see if I can't skip some. So let's turn to the Inflation Reduction Act and your -- and I apologize, if I need to point to a specific page. So let's just go to your general understanding of this. But it's your testimony that you can't be sure what the exact impacts of the Inflation Reduction Act are because of underlying
capacity constraints and that sort of thing, underlying economic -- other inflation that's going on in the system at the current time?

CHAIR MITCHELL: Mr. Rouse, let me hear from Duke's counsel.

MR. BREITSCHWERDT: Chair Mitchell, I'd object. To the extent he's going to represent it's the Panel's testimony, he should be pointing to a specific page, line reference. The testimony, if you're asking for -- if counsel is asking for their general position or perspective beyond their testimony, that's a different question.

CHAIR MITCHELL: I'll sustain your objection. Mr. Rouse, can you point these gentlemen to a specific page in their testimony to which you're referring?

MR. ROUSE: That's not going to be possible for me to do it right here, right now. I certainly could. So we can just skip over that.

CHAIR MITCHELL: Okay.
CROSS EXAMINATION BY MR. ROUSE:
Q. Let me ask you about a couple of the provisions of the Act and what your thought is. There are -- there is a methane fee in the Act. Do you
believe that that will increase the price of natural gas?
A. (Glen Snider) I cannot say whether it would or not. I know a lot of the gas we're procuring now we seek to procure working through the industry on a methane reduction. So how much methane is upstream and how this would impact it depends on, you know, several factors. But it potentially could, but there's a big push in that industry to reduce methane emissions and if those -- if those are successful it may be a very de minimis fee.
Q. Do you understand that those increases -those efforts by the industry will in fact increase the cost of producing natural gas which could lead to price increases?
A. I would assume those are baked into the forward curve. Everybody knows those efforts are underway and the market is a pretty sophisticated market. If you look at the price of the $2026 / 2027$ gas you're buying, if there was a systemic underlying reason to believe it was going to be more expensive there would be a free trading arbitrage there and you could get really rich just buying gas today and then counting on it being more expensive in the future.
Q. And what's your perspective on the impact of the Inflation Reduction Act on the cost of solar and wind in terms of what you would be facing?
A. It's definitely favorable. We've said that. We think it's going to be really good for customers. Those savings would go directly through to customers. Move the ITC from 10 back to 30 percent for a 10-year window, is my understanding. As witness Bowman pointed out it's a several-hundred page act. It's going to have to have private letter rulings. There's lots of nuances still to be determined. There's lots of caveats to where you place it, wages, et cetera. Domestic content. But it's going to be beneficial. And it's a 10-year window right now. Generally, as I understand it, for projects that begin construction pre-2032 we'll be able to bump up their ITC, or in the case of batteries that weren't eligible now are eligible for an ITC and for solar they have added a PTC option. They have also eliminated normalization for utility for solar. So there's several aspects to it for this next decade right now. It's a decade-long piece of legislation that we think are going to be beneficial to -- but it is called the Inflation Reduction Act and there is also inflation, which is
what you were alluding to earlier, page reference, that has occurred since we filed the Carbon Plan. So you have inflationary pressures that have increased the cost of batteries, the cost of solar panels, the cost of wind, the cost of gas turbines. Everything has gone up with inflation. That's 101. And this will help to offset that. So my only point was that it's not -- not that it's not beneficial. It's the net impact. Again, taking that holistic view. You can't look at the Inflation Reduction Act in isolation and apply it to the model inputs. You have to say where is the market now for everything subject to inflation, supply constraints, tariffs, international tariffs that are still in existence and how does that increase prices, and then how much will this Inflation Reduction Act help to bring them back down over the next decade. And so the big mistake would to say you simply plug in the IRA into the model without also accounting for the impacts that inflation have had over the last year and may have going into the future. You know, it used to be transitory and then it's somewhat persistent, is it systemic for the next few years. All of that is going to work itself out over time, but that's all I was saying, Mr. Rouse, is you have to net those two against
each other. And we'll cover that in rebuttal. I think we have alluded the fact we have done sensitivity analysis on that. We'll have a robust discussion on that, I'm sure, inn rebuttal so I'll try to limit my comments to that for right now.
Q. The IRA though it won't improve the -- won't reduce the inflation related to natural gas, is that correct?
A. No, it will not provide a CAPEX benefit to the capital-installed capital cost. A couple points though. It does have a lot of investment dollars for hydrogen, which we just had this big debate over that being real or not. And so clearly when we model P5 and six we took hydrogen 100 percent out. And again, it's not an all or nothing, but to say zero hydrogen was a pretty big stretch to say zero hydrogen when you have an IRA that's very pro-hydrogen. And so no, it doesn't impact the CAPEX, the capital costs. But also the capital costs are not as dependent upon foreign import of lithium ion, for example. So I don't have CT, you know, supply chain constraints from the mining of lithium ion in eastern Asia. So they all have to be -again, this has to be looked at holistically, not one by one. But yes, I will agree with you, that the IRA
does not give a tax benefit for the capital
construction of a gas plant.
Q. And with -- little bit off script here, so excuse me. When you were speaking about the inflation as related to gas in the earlier testimony with Mr. Quinn, you talked about -- I think you just mentioned it now. You talked about the forward curve related to a futures market where actually the market is telling us that the current inflation in gas is fleeting, is not a permanent thing, is that correct?
A. Yeah, that is correct. I think Public Staff acknowledges that as well.
Q. All right. There's not a forward market, is there, to tell you whether the current inflation in batteries or solar equipment or wind equipment is fleeting or not, is there?
A. No, there's actually quite a bit of divergence in that. I think we point out in our testimony that certain interveners, actually people developing solar plants in this say that it may be more persistent. Their solar costs are higher than ours in the plant. Not to say that we still wouldn't select solar they selected in theirs. But their solar costs are higher and they're higher longer and they point to
a potential risk that they could go up. The study you're referencing starts with a much lower solar cost. It's a study, so it's not sort of supported by people that actually develop projects. It's based on a study and it's lower and it projects it to go down. We're in the middle, right? So we're lower than CPSA. We're higher than Synapse and we're sort of Goldie Locks on the solar, let's say. So there's uncertainty in the industry and participants in the industry certainly do see that there's a range of potential inflationary impact.
Q. But you would agree that overall that the IRA helps the comparison of renewables relative to gas in the forecast?
A. Yes, on a CAPEX-to-CAPEX basis it will -- the IRA itself does. If inflation for the two resources are equivalent then it would net-net. But if batteries went up 40 percent and CTs went up 20 and I gave a 20 percent benefit to the IRA for batteries but not for CTs, net-net I might be in the same place.
Q. Right. So I'd like to -- one last question on the IRA. What do you think the IRA will do for electrification?
A. I think, you know, there is lots of
incentives for EVs, for -- there's a lot of benefits in the IRA that will provide benefits for electrification. You know, the effect it will have, I'm sure we're going to get a lot of economists that have varying opinions on that. Part of it is going to be the industry's ability to supply. As we all know, electric vehicles have a long lead time. I currently got on the waiting list for a Lightening and was told it could be three years before I could get an electric truck and that's before the IRA. So now more people want electric trucks, and so how long is it going to take everyone to get it and what's that going to do -- what's that demand going to do to the price of batteries. So the IRA will help from the incentive side, but it's also going to push on the demand side of the equation. When you have a huge demand and limited supply, Economics 101 says prices will go up on that and then they will get offset through the tax rebate. But you have a big demand push for electrification.
Q. And are you familiar with the impact on electrification that a full decarbonization of the U.S. economy would have? Have you looked at that in your 2050 scenario?
A. There's a lot of discussion on -- or in the
industry on the pace that that will happen and how that might impact the load forecast. So yes, we understand that there is electrification. It will -- as it becomes more known and apparent we bake electric vehicles in now. As I said, you get -- appliance saturation is changing from gas to electric, particularly in industrial processes and heating and cooling. There are a variety of opinions as to the pace at which that total sector will be able to be electrified. But it will have an upward pressure on demand.
Q. An upward pressure on demand is what you're saying?
A. Electric demand.
Q. So I'm going to return just to end my testimony to -- or my cross to this whole issue of -- I think it related to gas and we talked about what the future system would look like and what options there are for ensuring reliability. And as I recall -- is it true basically in the modeling that you ensure reliability through three mechanisms, combustion turbines using gas or hydrogen, batteries, and pumped hydro?
A. No, that's not correct.
Q. What other options are there?
A. Wind has some positive ELCC benefits as well. So we give the equivalent capacity value of wind. We give -- there's a small amount. It's single digit percentage, but we give a small amount of equivalent capacity value to solar in that. You have SMRs that -and existing nuclear plus new SMRs that will provide reliability. You have battery storage, pump storage that will provide. And you have gas units that can be converted to hydrogen or, as we said, if the marketplace 20 or 30 years from now is not evolved enough in hydrogen or other storage technologies you may have an offset market develop where you're -again, we showed that graph many times, declining -you have that limited, limited amount of fossil burn that's really de minimus in the grand scheme of things that is just there as a reliability. And then you have an active offset market that could evolve if other technologies are deemed too expensive relative to the ability to offset the carbon through future offset markets. And that's going to evolve over the next couple of decades. Nobody knows which path the industry may go two to three decades from now, but we have shown the impacts of both.
Q. Would you say that you're modeling and that one of the options -- let's just say one of the options to resolving the reliability issue is in fact to build more wind and solar?
A. Again, that would be dependent upon -there's a lot of wind and solar in our plan, right? And so the more you add -- as I'm sure you're aware, the more you add of a given resource, the less it's worth, right? So the first tranche of solar helped us avoid summer capacity. It had more value than that next tranche from a capacity. Now future solar is a carbon-free energy but has virtually no reliability assistance without storage, right, because we -- our peak demand needs are no longer when the sun is shining. It's in other hours. And then there's going to be energy deficiency needs as well. So we have a lot of wind and solar in our plan. They have a declining value like any other resource. CTs, CCs have declining value. And so that's the beauty of having a diversified resource mix. As one starts to decline and get to a point of very diminished returns, you have other resources to fill in. So can you keep going after diminishing returns to infinity? Yes, Mr. Rouse, you could.
Q. And -- I'm sorry.
A. (Michael Quinto) I'll add to that. The

Commission may want to look at page -- chapter three, page 23. The question of continuing to add renewable resources to the system, you can see here, this is a figure -- and I'll allow the Commission to turn to that page. But what's being represented here is a net load shape net solar. So as we continue to add renewable resources that typically show up during the same time of the day -- sorry, chapter three, page 23, figure 3-14. As you continue to add these resources you're going to need flexible resources, which I think Mr. Rouse was pointing to in batteries, pump storage or potentially CTs. Now, CTs have the unique ability to be able to run for short durations of time to help you with higher penetrations of renewables to meet these steep ramps as we get to higher penetrations of renewables. But they also have the capability of running those long durations as needed in extreme weather events. So that's one of the many benefits on a reliability side to a dispatchable resource, to a energy-limited resource. And I think this figure here presents the challenge that we're going to see with more and more renewables on the system and moving
energy throughout time.
Q. Although, just a corollary to that, if you had enough renewables on the system, your problem is really simply how much to curtail to serve the load, is that correct, for many of those hours?
A. Certainly. You're paying the same capital price for less utilization of those resources.
Q. But if it's cheap enough then that still might be an alternative that would be selected, is that correct?
A. And the model has the option to do that. It can continue to select resources and choose to curtail them, but as cost effectiveness goes down, as Mr. Snider said, the more you add to the system, the less valuable they are to the system. And that's why solar isn't selected every year throughout the planning and more and more is added to the system. It's less cost effective.
Q. In your testimony earlier you were talking about the wind energy -- I mean, the fact that you might have an energy deficit in some years and that that was a problem -- or in some months and that that was a problem. An energy deficit as opposed to a capacity deficit. And particularly would building more
wind, especially in the winter, which I think is where we see those energy deficits, would that be something that you could do, add more wind to the mix versus solar?
A. (Bobby McMurry) Could you refer to the page?
Q. I don't have that.
A. I think it's addressed in rebuttal. Because of some of the energy deficits that we saw in the late '40s we continued to investigate that, and in P5 and in P6 we found that there was some outage-related issues, a bug in the model that we worked on and we fixed that. That's addressed in rebuttal. I just want to make sure that we -- we didn't like to have periods of when energy wasn't served.
Q. In terms of addressing this reliability though, isn't one of the big problems not so much the reliability -- as you get further on, not so much the reliability of the units themselves, but the intermittency of the load that they're having to serve?
A. (Glen Snider) Intermittency of the resource, right?
Q. The intermittency of the resource and the variability of the load. Yes, the intermittency of the resource.
A. And, you know, theoretically you could add an infinite amount of renewables and yes, you would be reliable. The question is how much -- is that even closer or reasonably economic and we're saying it's not. You need storage and then even with storage you need long-duration storage and then even with long-duration storage you need multi-day storage. Storage has diminishing returns, wind has diminishing returns, solar. If there was an infinite amount for free, at night when the moon is out I get a half a percent or something out of my solar, I mean I could build infinite solar and serve my nighttime hours. I mean, I'm not trying to be too ludicrous here, but where do you stop, right? You're balancing economics and reliability and affordability and yes, I will agree with you, Mr. Rouse, at an infinite level you could have a reliable worth. We have done the modeling to say what we believe the appropriate mix is.
Q. Okay. Another option --

CHAIR MITCHELL: All right. Mr. Rouse, we are about an hour beyond your projected 30 minutes of cross-examination time for the panel. MR. ROUSE: And I'm almost finished. CHAIR MITCHELL: All right. I'll extend
you a few more questions to wrap up your cross-examination of this panel so that we can keep moving today. Thank you.

CROSS EXAMINATION BY MR. ROUSE:
Q. Okay. So I found one thing interesting in your testimony on page 73 of your testimony. You were talking about a scenario that you did --
A. (Bobby McMurry) Wait just a second. Get to the page. Okay. I'm there.
Q. Sensitivity that you did where you looked at lower amounts of energy efficiency programs. Is that _-
A. (Glen Snider) Yes.
Q. Okay. And that that affected the results more in the summer than in the winter or -- let's see. That the lower efficiency is -- okay. I'm going to skip that question because I'm not making sense of it myself.

MR. ROUSE: I think that ends my
testimony -- or my cross-examination.
CHAIR MITCHELL: All right. Next up,
SACE.
MS. THOMPSON: Thank you, Chair
Mitchell.

CROSS EXAMINATION BY MS. THOMPSON:
Q. Good afternoon, gentlemen. Gudrun Thompson, representing Natural Resources Defense Council, Southern Alliance for Clean Energy and the Sierra Club, collectively known as SACE, et al.

I'm going to pick up with -- see if you
remember just before the lunch recess some questions from Mr. Rouse about the SERVM analysis of intervener portfolios. Do you all recall that?
A. (Glen Snider) Yes.
Q. And you recall -- well, from your testimony. And you recall that the Synapse optimized portfolio showed a capacity shortfall in 2035 when you ran it through your SERVM model, did it not?
A. Correct.
Q. And you'll recall yesterday -- I believe y'all were here in the hearing room yesterday when Ms. Bowman was testifying, were you not?
A. We were.
Q. And you'll recall that Ms. Bowman testified yesterday that Duke's focus in this proceeding is really on the near-term action plan and that Duke is not asking the Commission to approve any of its proposed portfolios that it has put forward at this
time, correct?
A. I do.
Q. Okay. And you've also mentioned several times, I believe, the check and the adjust concept that Duke is taking. Do you recall that?
A. I do.
Q. Would you agree that the Carbon Plan is an iterative -- or the Carbon Planning process is an iterative process. So there will be a new plan in 2024, correct?
A. Correct.
Q. And I believe you have even alluded to or implied that the Company will be doing some IRA-related modeling in 2023 for purposes of Carbon Planning, is that right?
A. Yes.
Q. So here we are in 2022, and if there's a projected capacity shortfall in any portfolio that is before the Commission at this time, there will be time to check and adjust in one of these future Carbon Plan proceedings, will there not?
A. Yes, I think there will be time to check and adjust. You may be adding -- what you invest in today contributes to reliability in the future, right? And
so if there's more optimal reliability mixed today, you would have to add additional resources beyond maybe what was optimal in that check and adjust. So I believe, you know, you have to consider what your investments in your near-term action plan does to fundamentally support reliability and then whether you believe those are adequate or, you know, will you have to check and adjust. But if you find yourself in short reliability yes, you would check and adjust and build more resources.
Q. Okay. That's right. We'll talk a little bit about that whole process and what goes into selecting the resource mix. I'm going to shift gears and ask you some questions, Mr. Quinto. You provided direction and support for IRP and Carbon Plan modeling in your current position, is that right?
A. (Michael Quinto) That's correct.
Q. And you did not actually perform the modeling for Duke's proposed portfolios in this docket, but you were involved in overseeing it?
A. Yes. With the direction of Glen, the director of the group. I also previously ran production cost and capacity expansion models in a previous role.
Q. So you have experience running production cost and capacity expansion models prior to Duke starting to use EnCompass?
A. Yes, that's correct.
Q. Okay. Now, the proposal filed on May 16 th was the first time -- or the first plan that Duke has filed with this Commission that it used EnCompass to develop, correct?
A. (Glen Snider) That's correct. This is our first filing using EnCompass.
Q. That's what I was trying to say. Thank you. We went over this just a minute ago, but just to clarify or confirm, Duke is requesting that the Commission approve its proposed portfolios as reasonable for planning purposes, and also to approve a set of near-term actions based on those portfolios, right?
A. Correct.
Q. Now, you mentioned some technical issues in your testimony that interveners encountered in working with the EnCompass files that Duke produced to interveners. Do you recall that?
A. (Michael Quinto) That is in our testimony, yes.
Q. And you mentioned that an update to a different version of EnCompass that you used for modeling the supplemental portfolios addressed some of those issues?
A. That's correct.
Q. Modeling of the supplemental portfolios was done after the parties -- the interveners and other parties filed their initial comments and reports in mid-July, right?
A. I believe that's the correct timeline, yes.
Q. So it was done between mid-July and August 19th when you all filed your direct testimony?
A. That sounds correct.
Q. Now, going back to the May/June time frame, no intervening party with an EnCompass license was able to take the EnCompass input files that Duke provided to interveners on May 16 th and produce the same outputs that Duke's modeling produced, isn't that right?
A. That's correct. And I'll defer to Mr. McMurry, I think, if you're coming down a line of questioning dealing with the passing of the model inputs and assumptions.
Q. That's fine. So, Mr. McMurry, I'll direct my next question to you. So when the parties, interveners
and other non-Duke parties first attempted to run the input files provided by Duke, the EnCompass software would not complete the model runs at all and produced an error message, isn't that right?
A. (Bobby McMurry) I don't know that it produced an error message. It might not have matched the model outputs that was also provided that supported P1 through four. When this was brought to our attention we scheduled a meeting and we shared with all of the -- everybody that's -- had a technical 30-minute meeting or an hour meeting with everyone that showed what you would need to do to the inputs provided to match our outputs of P1 through four -- to provide just a little bit of context of this is running up to the filing of the IRP, we found a bug in the model of which it underestimated the cost of wind, solar, and batteries. Only in the selection of those resources. All of our economics after that was deemed correct. When this was found we found a workaround to shift some of the cost -- working in conjunction with Anchor Power. And we found we made -- this is not unparalleled. We sometimes find minor issues in a lot of our filings. We'll make the corrections. We will run the model to see if it has measurable impact to our
plans. We did that. It did not have a measurable impact. I know we responded to a data request. We showed the exact change in -- on P1 through four of when we included the right capital cost for those technologies. So when we filed our plan, we filed our model with that correction already in it. And within -- you know, brought to us -- so that if they ran their model -- you know, when the intervene -- or the people that wanted to use our input data, when they ran it, it would be the correct -- it would have the correct data in there and provide you results that you could -- that would -- you know, with the right -- that plan was developed with the right cost. I'll just pause too, we have been very forthcoming through this whole process, the stakeholder process, multiple technical meetings with -- you know, with inputs that we were providing in our model. We had a premeeting to show the people it was going to -- had the ability to run our models, how to have access to the data mark, I think it was called, and how to log onto -- to select that data. After we filed we had another meeting with everybody that was going to run these models and showed them exactly how to get into the site and run the model. After that, like you brought up, people were
not able to match our outputs and we responded by having another meeting with the folks and we showed them how to take -- it was pretty easy change. It was one change in the model and then they would have the exact data set that they could match P1 through four. Subsequent models you needed to add that data. Might have been more words than I meant, but there's the story.
Q. And you have anticipated -- with your narrative you have anticipated a few of my questions. Let me back up just a little bit. So before Duke produced the EnCompass modeling files to interveners around -- I think it was May 16th, you didn't conduct any kind of test runs on those input files running them through the model before producing them to Public Staff and interveners to make sure the input files were going to produce the same outputs that your own modeling produced?
A. What was provided -- no, we did not take that step.
Q. Okay. And then even after you addressed some of the technical issues with the EnCompass files through the meetings that you just described and other communications back and forth, you're aware that
parties using EnCompass still were not able to use the inputs provided by Duke to produce -- to replicate the same outputs as Duke. You're aware of that, correct?
A. I was not aware that they could not take our inputs with the correction and make the model runs to have -- I know that a couple of runs -- I mean, there was a whole lot of runs that was made to produce, you know, P1 through four. There was one or two runs that was made that was brought to our attention, the data point request that we have looked at and it's pretty close, but it did not match exactly our outputs. But I have not heard that everyone -- that was only like two data requests we received responses.
Q. I guess I'll ask the -- if anybody else on the panel is aware that the technical issues that NCSEA and SACE's consultants Synapse also encountered by other consultants, including consultants Tech Customers, are you aware of that? Not aware of that? Are you aware that some of these same problems were encountered by the Public Staff as described in some of their filings?
A. I mean, he were forthcoming. We produced these files. We set up a developmental server so that we could use the exact files that was put on the -- you
know, that we put on the data mark and we've reproduced our results. With the exception of the couple that we received daily requests.
Q. Okay. It sounds like the panel --
A. You know, there might have been technical issues with the model that you could work with the vendor. Duke did everything they could to provide the parties so that they could take our model, perform their own model and with the subsequent minimum reproduce our results.
Q. Well, I understood that the whole modeling team worked very hard and has been very forthcoming with information, but it sounds like you were not aware that no party using EnCompass to perform alternative modeling was able to replicate the modeling that Duke used to developed its proposed portfolios that you're asking the Commission to approve as reasonable and that formed the basis of your short-term action plan?
A. (Glen Snider) If I could add, you know, it's not like an Excel spreadsheet. This is a very complex model with thousands of input. Thousands and thousands. We have a lot of that discussion -- we did our very best -- I mean, I have been doing this a long time. We posted every model input at the time of the
filing. We didn't make them ask for it in discovery. We volunteered to say we'll have all of these modelings -- it had to go up to a special server. You couldn't just put it on the web. It was very data intensive. We put it out there. We held technical conferences on how to use it. There were some small differences, but there was also a lot of learning curves from the interveners. These are interveners that have not done EnCompass molding themselves a lot. They did not have the number of servers we had. So to replicate that we had a team working tirelessly using multiple servers and have dozens of years of experience. And so when you get new modelers that don't have the same resources, you can work with them tremendously to get them close and maybe they couldn't exactly replicate our model, but part of that is they didn't have the same resources. It's not plug-in play like hit go or $F 9$. You have to be -- you know, these are complex program models that -- and I'm not saying -- there's some really good people and they tried really hard, but they didn't have the same resources, they didn't have the same server bases. So to say it was the Companies', you know, lack of transparency or our -- you know, if they were unable to do it, we made
every effort to help train them up. I know they worked -- they told us in some of -- that they were working with the vendor to try and understand this model better and set up the model correctly so they could repeat them. But this is not a simple task of replicating these results the way it might sound if you thought you were just giving them an Excel spreadsheet. So Mr. McMurry stated we had several meetings. We answered 1500 data requests on this. We had a 110-page technical appendices to help explain our approach. And so I think we went above and beyond. If they didn't get exactly there to the last jot and tittle, I think many of them were able to get pretty close to our results.
Q. Now, wouldn't you agree though that it's important to be able to validate modeling results, you know, produced by any party? And I think you all did some of that in sort of reanalyzing some of the intervener portfolios as well, correct?
A. Yeah, I think you need to have ability and I thought -- as I just stated, I think -- well, maybe not the exact, exact. It got very close to our results and then they changed inputs to run their own models. That's what we desired. We really wanted to make this
not about the model, but here's the model, here's our inputs. Where do you disagree with our inputs. Let's bring that before the Commission. You know, some are saying the lower load forecast. Some higher. I think cost should be lower for renewables, higher for gas. Let's focus on that and not have it on a complex program modeling. So we did everything in our power to make that not an issue and I think they got close. They may not have got exact, but you can ask Public Staff whether or not they felt they were reasonably close to replicating our results. And also recognizing that replicating those results meaning you need the same resources, the same number of servers, the same number of modelers to QA it, to check it. And so it may not all be on the Companies' end that they weren't able to replicate it. Some of it may be they did not have adequate resources. And again, no slam at anybody. Everybody was working hard in this case. But this isn't a one way street to replicating results. It takes both sides.
Q. I think you anticipated where I'm going with talking a little bit about some of the disagreements about inputs. I think we would spend another, you know, six hours here if we got into every single one.

But in addition to updating the version of EnCompass that you had used to develop the original portfolios filed with the Commission on May $16 t h$, for the supplemental portfolios you mentioned in the testimony some other changes that you made in developing those supplemental portfolios, right?
A. (Michael Quinto) That's correct.
Q. Did you or did you not separately apply those changes to portfolios one through four without the other changed inputs that went into supplemental portfolios five and six?
A. I had some trouble following that question. Can you rephrase?
Q. You didn't go back and redo portfolios one through four with some of those additional changes other than the ones that you put into the new five and six?
A. No. And this is a very important distinction for the Commission. So the supplemental portfolios that we conducted as part of the -- included with our testimony, the supplemental portfolio analysis at the request of Public Staff, there were a number of input modeling changes, approaches to different techniques that the companies didn't necessarily agree with. We
thought that the inputs and assumptions that we used were reasonable and appropriate for the development of this plan. We underwent this supplemental portfolio analysis to further validate if you changed some of these inputs that interveners thought could be impactful or key to the long-term planning of the system and impactful to the near-term actions, would those changes still result in similar near-term actions as proposed by the companies. And I believe that's really what the supplemental portfolio analysis was endeavoring. Not saying the portfolios that we presented in the original Carbon Plan were inappropriate or not accurate in some way, but this further validates the near-term actions that we presented in the Carbon Plan.
Q. Are you saying the purpose of performing the supplemental modeling analysis for portfolios five and six, the purpose of that was to validate your near-term action plan or was the purpose to work with Public Staff to make some changes that they recommended and then see what the results were?
A. (Glen Snider) If I could take a shot. I think even Public Staff -- it was to test the robustness. We have a request for relief for a
near-term action plan that's outlined in Ms. Bowman's testimony. It's outlined in the executive summary. And the stresses on things like no hydrogen, on changing and gas supply were done and even the Public Staff, as we have discussed it, the desire for this was to test the robustness of the need for those resources. They're in that near-term action plan that we're asking this Commission relief for. If I change these assumptions, take hydrogen out, change your source of gas supply, do a couple other things within the model and then tell me, do I get substantially different results so I can know how robust your near-term action plan is. It wasn't to say that that is our preferred plan or five or six, you know, like, we don't believe that zero hydrogen is something we should use as a core planning assumption, but as a reasonable test to test the robustness of your near-term action plan we agreed to take all hydrogen out. We don't agree that relying on some access to Appalachian gas is a good core planning assumption at this moment in time, but if you wanted to test the robustness of our near-term action plan, we'll pull it out and test a different source of gas supply. And we -- in our endeavors with Public Staff and other interveners we did supplemental
modeling to test that robustness and what we discovered was at the outcome of that model is it did not have a material impact even with some of these changes on our near-term action plan. So the intent of those portfolio runs were to test those assumptions and the impact that they may have and that is the purpose of P 5 and P6.
Q. All right. We'll come back to the schedule of capacity additions produced by supplemental portfolios five and six in a bit. Just continuing a little bit on the supplemental portfolio results, in the higher connection sensitivity, the capacity expansion model selected solar up to the limit for five of the first six years solar was made available to the model, did it not?
A. (Matthew Kalemba) It did.
Q. I believe there was some testimony to this effect yesterday, that that shows that solar was an economic resource, the fact that the model selected it, right?
A. Well, it was an economic resource if you could achieve those interconnection constraints. Yes, we discussed that yesterday.
Q. And if those interconnection constraints were
eased, the model would likely select more solar if that limit were raised further, would it not?
A. If that single limit was raised further it would have selected. We also didn't increase the interconnection costs to be able to achieve that even if we could figure out what that cost would be to be able to connect 1500 in 2026 and 2027. I'm not sure we would actually be able to know that today.
Q. Fair enough. Now, Mr. Snider, following up on a response you gave to Mr. Snowden in some questions yesterday, you said something to the effect that you don't know where independent power producer solar projects are going to be sited, where they're going to be sited on the grid. Do you recall something to that effect?
A. (Glen Snider) Yeah, something to that effect.
Q. Now, Duke could provide solar developers with more information and greater transparency to help them decide where to locate whether on the transmission or distribution grid to avoid congestion and provide maximum benefits?
A. Yeah, within limits. I think there's all sorts of issues, but I think we have endeavored and Mr .

Roberts -- maybe a good question for Mr. Roberts. We provided sort of red zones, green zones in the past giving indications of where congestion is higher or less and there's a balance on how much specificity you can give in a moment's time. But we have given general guidance on that, it's my understanding. I'm not the expert so I would maybe differ a little bit of that to Mr. Roberts. But I know we have produced some of that guidance historically.
Q. All right. I'll follow up with Mr. Roberts or perhaps my colleague will. Again, following up on another exchange from yesterday. You, in answering some questions from Mr. Burns about the way that solar plus storage was modelled, and the fact that Duke had done some modeling with a fixed dispatch curve, essentially that was done to simplify the modeling process and shorten the run times, correct?
A. Fair characterization at that point in time, P1 through four.
Q. Okay. Let me ask, how much longer does it take the model to solve, if that's the right word, when you're modeling a dynamic dispatch versus the fix dispatch curve?
A. (Bobby McMurry) It increased. I think I
mentioned three hours before is when we included the partial commit. But it increased to an average runtime of about nine hours. We did have several runs that went 24 and one finally stopped at 48. We just let it keep on running to see if it ever was going to solve, but it finally did. But we -- like any modeling exercise you go through, you do it more than once and that was pretty much replicated. We had a couple runs that went extremely long and the runtimes increased by approximately a factor of three.
Q. Now, moving on to what you all called, I think, the portfolio verification step. After the capacity expansion modeling the companies performed additional modeling, production cost modeling and some other steps that you referred to as portfolio verification, isn't that right?
A. (Michael Quinto) That's correct.
Q. And then there's a step that you all referred to as the battery CT optimization step. Do you recall that?
A. Yes.
Q. And that step was done before the loss of load expectation or LOLE validation step where you used SERVM, is that correct?
A. (Glen Snider) That's correct.
Q. Okay. Now, in that battery CT optimization step you reran the production cost model, and then based on those results replaced 35 percent of the battery storage that had been economically selected by EnCompass with gas combustion turbines?
A. (Michael Quinto) Generally correct, yes.
Q. Now, recognizing that the exact numbers are confidential, so I'm not going to ask you to say any confidential numbers, how would you characterize the difference in the present value of review requirements for supplemental portfolios five and six before and after the battery $C T$ replacement step, if you know?
A. (Bobby McMurry) I mean, I don't have the information in front of me at this point.
A. (Michael Quinto) The CTs that -- the CT battery optimization step -- let me take a step back and set the ground a little bit. The initial selection of resources is determined in the capacity expansion model. This is a screening model that uses simplified load shape system operations to quickly assess a wide range. We'll go into this in more depth in our rebuttal testimony.
Q. I'm sorry, may I stop you for a moment, Mr .

Quinto?
A. Sure.

MS. THOMPSON: And I'll address this to counsel or Chair Mitchell, whoever would prefer to address this. I don't believe that the extensive background narrative is necessary to answer the question. This information has been filed in advance and I think everybody is familiar with the steps that were taken. So I had a pretty specific question and I don't think the extensive background is necessary to answer the question.

BOBBY MCMURRY: Do you have access to the table you're referring to? Oh, I'm sorry.

CHAIR MITCHELL: Let me address counsel's question. Mr. Quinto, if you can, just respond to the question efficiently, but provide the response that you need to answer the question. MR. QUINTO: Sure.

MS. THOMPSON: And if you don't know the answer off the top of your head, that is fine. We can move on.

MR. BREITSCHWERDT: Chair Mitchell, if she can repeat the question, please. Just to make sure the record is clear.

CROSS EXAMINATION BY MS. CAMPBELL:
Q. Recognizing that the exact numbers are confidential, how would you characterize the difference in the present value of revenue requirements for supplemental portfolios five and six before and after that battery CT replacement step?
A. The PVRs of those portfolios after the CT battery optimization are less expensive when the CTs are replaced with the batteries.
Q. I have asked my -- my question was inartful. I guess what I meant to ask was what was in the delta? How would you characterize the delta and the PVR?
A. Yeah, I don't have those figures.
Q. Fair enough. Do you recall that there was a delta?
A. (Bobby McMurry) There was. I mean -- and whatever the delta is, you needed to do the production cost step to determine what the value was. It showed that CTs were, you know, more cost effective to the customers from a total revenue requirement than a battery. I mean, I pause if it would have been slightly more. It wouldn't have been an automatic if it was very, very close. It wouldn't have been an automatic selection of one technology versus the other.

I mean, this is just part of planning. I mean, I was thinking last night, I said I bet you -- I know I have been -- I have either supported or I have been responsible for about 30 IRPs, eight CPCNs. In the normal course of planning any time you have similar resources, especially for one that you're looking at a specific need, you always do a comparative analysis against the two technologies in an hourly production cost model. I know we call it the CT battery change out as a special step. That's a normal step. I mean, if this was CTs versus CCs, if this was nuclear versus combined cycle, whatever comparative technologies, if you're having to make a decision on that today, you would take that additional step in production cost modeling. So you have -- take the example if the PVRs were close. You could observe. And so that's just information for the Commission to use and determine if the resources -- you know, it should be approved. And you can look at it from the next step or a process is rate analysis. So now you have got a 1.3 or four billion dollar battery project versus a five or 600 dollar -- million dollar combustion turbine project. All right. PVRs are very similar. What is the rate impact to our customers. What is the reliability to
the system between the two resources. It's just a normal portion of planning to go to the extra step of hourly production cost just to inform your decision to make sure you're making the best decision for our customers.

CHAIR MITCHELL: All right. With that, Ms. Thompson, we're going to pause for our afternoon break. We'll come back into the hearing room and go on the record at 3:30. So let's go off the record, please.
(A break was taken.)
CHAIR MITCHELL: Ms. Thompson.
MS. THOMPSON: Thank you, Chair
Mitchell. And I understand that I was not being loud enough, which is not normally a problem for me. Please let me know if I start to fade out. Before we get started -- before I get started with my questions, I would like to revisit the issue of lengthy answers. I understand that the witnesses are interested in providing a fulsome explanation of their answers, but I am doing my best -- given how long this panel has already been testifying and the many, many witnesses to come in this hearing, I'm doing my best to craft questions to elicit a
yes or no answer. To the extent the witnesses need to elaborate or clarify in response to my questions, they will have the opportunity to do that on redirect. I would just ask -- well, I guess I'm not going to prevail upon you, Chair Mitchell, to instruct the witnesses in any certain way, but I would ask that they try to keep their answers a bit briefer.

MR. BREITSCHWERDT: No response. I think our witnesses are doing fine and we'll take that into consideration. Thank you.

CHAIR MITCHELL: Well, I would just prevail upon everyone, witnesses and counsel, just to be as efficient as you can with your time. Let's make every minute that we spend in this hearing room count for something. So get your questions ready to go. Tighten them up. Witnesses, hang in there. You have been on the stand for a long time and we recognize that. So just do your best to answer counsels' questions and we'll go from there. Thanks.

MS. THOMPSON: Thank you, Chair
Mitchell. And thank you, counsel. And thank you panelists. I know it's a long time sitting up
there.
CROSS EXAMINATION BY MS. THOMPSON:
Q. All right. One more question just to -- this was actually where I was trying to go with the battery CT optimization question. I think you read a lot more into my question than was actually in there.

If gas prices turn out to be higher than you assumed or battery storage capital costs turn out to be lower that could erase the difference, the delta that your modeling produced or could make the portfolio with the CTs more expensive, could it not?
A. (Michael Quinto) That's true.
Q. Okay. Now, I'm going to skip some questions that I had. Just a few questions around coal requirements. And again, by asking a question I'm not critiquing -- not implying any critique of your position. Another set of out-of-model adjustments or a set of out-of-model adjustments that the Company has made was to the coal retirement schedule that was endogenously produced by EnCompass, correct?
A. (Glen Snider) Correct. We did not take the results straight out of EnCompass.
Q. Right. Now you critique Synapse's estimate that changes made to the retirement dates of the Lewis

Creek, cliff site five and marsh one and two would cost ratepayers an additional 1.4 billion. And Synapse's estimate was based on a report prepared by Sargent \& Lundy for the U.S. Energy Information Administration. Do you recall that critique?
A. (Michael Quinto) Yes.
Q. And I recognize -- recognizing that that number does not factor in the cost of replacement resources, you say that based on the Companies' estimates, the ongoing capital expenses and fixed O\&M costs associated with delaying retirement of those units are more like 0.4 billion. Does that sound right?
A. That sounds correct, subject to check.
Q. Does that estimate factor in the cost of any replacement resources?
A. No, it does not.
Q. Okay. So we're apples to apples. So 0.4 billion is still 400 million dollars, correct? I hope that's right.
A. That's correct.
Q. And that's 400 million dollars that would be borne by ratepayers, correct?
A. (Glen Snider) No, because -- you've quickly
glossed over -- you have to replace the generation. So if it cost me two billion to replace a generation and accelerated cost and four hundred million, then it's 1.6 better. I just don't want to lose the glossing over.
Q. Fair enough. So it's a gross number?
A. It's one side of the ledger. So the 400 million is -- yes, you -- about 400 million of save costs by acceleration. Not recognizing the fact that you would have to accelerate the replacement generation.
Q. Fair enough. Moving on -- and I believe this was mostly Mr. Snider, but you touched -- I would like to touch on some of the critiques of -- some of the assumptions made by consultants for interveners as outcome oriented. Do you recall that?
A. Yes.
Q. Now yesterday in his conversation with Mr. Burns -- sorry. Mr. Burns in a conversation with Ms. Bowman talked about the Companies' obligation to create value for shareholders. Do you recall that?
A. I do recall.
Q. And you would agree that that Duke Energy parent Company of the utilities has an obligation to
create value for shareholders?
A. Capital has a cost to -- yes. So when you go to the capital markets they want a return.
Q. And to the extent that a portfolio included relatively more non-solar capacity than not subject to the $45 / 55$ percent ownership split and is instead utility owned and in Duke's rate base that would inure to the benefit of shareholders, would it not?
A. So are you saying -- I'm sorry, I got lost in the double negative. Say it one more time for me. I'm sorry.
Q. Setting aside -- so solar is subject to ownership split under --
A. Correct.
Q. Otherwise resources selected to meet the carbon reduction requirements are to be utility owned, correct?
A. Yes.
Q. So to the extent you have more of those utility-owned resources, that inures to the benefit of shareholders?
A. Not necessarily. The solar has a transmission cost that we would have to build to earn out. And so I could add a CT, for example, and make a
lot more money maybe building the transmission for the solar. So we're not -- there's no thumb on the scale for capital investment. There's more than capital in an energy transition than, you know, one bite of an elephant at a time. But it is a lot of investment for everybody, all parties involved. So no, there was no potential look at that. And I'm not trying to read into your question, but even what you just mentioned there, more solar, even if it's owned, we have to build the transmission to accommodate that. And so I wouldn't say that necessarily I wouldn't make more -put more in rate base in that transmission than I would, you know, a CT.
Q. All right. Now, $H 951$ requires that the Carbon Plan be developed with stakeholder input, does it not?
A. Yes, it does.
Q. And in critiquing, you're not suggesting that the information and input provided by stakeholders is not valuable and that the companies didn't take it into account?
A. No, not saying that stakeholder engagement is not valuable. We think it is valuable.
Q. And you're not suggesting that the
consultants retained by the various interveners lack expertise in the field of energy economics?
A. No, I'm not.
Q. And Mr. Kalemba, this is for you. Based on some testimony yesterday you heard Mr. Snider say that it is necessary to snap a chalk line with respect to price inputs in order to begin any planning exercise?
A. (Matthew Kalemba) Yes.
Q. And yesterday in response to a question from Mr. Snowden, you testified that the companies basically snapped a chalk with regard to some offshore wind assumptions in the fall of last year. Do you recall that?
A. I remember saying that and I think that was in regards to offshore wind.
Q. Now, you're aware that the companies held the series of stakeholder meetings for the Carbon Plan in the first three months or so of this year, correct?
A. That's correct.
Q. I believe you participated in that.
A. Yes, I did. That's correct.
Q. To the extent that stakeholders provided feedback during that stakeholder process on the sources -- you know, what should be the appropriate
sources for price inputs or any other inputs and assumptions, was that after the Company had already snapped a chalk line on inputs and assumptions in the fall of 2021?
A. (Glen Snider) We moved that assumption. I mean, in the fall of ' 21 we would not have had 2029. That was after the stakeholder meetings in response to stakeholders. We presented a later date. I think you'll remember, if I'm correct, and maybe correct me if it's not your recollection, that we actually had a later date in the stakeholder meeting and based on feedback from stakeholders we moved to a more aggressive date for offshore wind. So when we snapped our chalk line for all technology costs and some of our -- when we got feedback throughout that stakeholder process that was one of the feedback that we received where we adjusted our chalk line, erased part of the chalk line and redrew it two years earlier following stakeholder feedback that we could do offshore wind earlier.
Q. Just to make sure -- just to, I guess, clarify and kind of fill out the record. When did the companies finalize the assumptions that we're going to go into your Carbon Plan modeling and you were ready
to press go on EnCompass or whatever you pressed to get it started?
A. In general, probably 80 percent of our inputs, 90 percent, whatever, you know, we had our production database, we have a series of database of inputs that we try and keep up to date. We say snap the chalk line. It's let's make sure we have the best data available at that point in time. Then you begin the modeling process and you say that's my set of inputs. If you get stakeholder feedback that questions one of those particular inputs that are germane to it that you said okay, you know, based on stakeholder feedback, we will reevaluate, put into the model that update, we did put in an updated wind assumption after all of our initial data had been determined. And so that was just an example and we also -- there were examples of other things that stakeholders gave us feedback on that we thought were reasonable enough and was not going to interrupt the process so much that we couldn't accommodate the request.
Q. What I was asking about was when did you have your assumptions and inputs finalized? When was that?
A. Following the stakeholder meetings.
Q. April'ish of this year?
A. Bobby, I'll turn to you if you made any adjustments after April. I'm not sure.
A. (Bobby McMurry) I know after each stakeholder meeting, I mean, and other studies we were doing, we had our updates in the fall and -- I mean, we were modeling from January through May 16 th or May -probably a week before that. But I can't state what the final date was where the chalk --
A. (Glen Snider) Where no input was ever updated.
A. (Bobby McMurry) Yes. No input was ever updated. I would say after the last stakeholder meeting we did have to make a new set of runs through everything, make sure everything was clean. Start from the very beginning. The overall process. And I would think we did that, I mean, subject to check, please, but it would probably be in early April where we started making clean runs through all portfolios and all the sensitivities.
Q. All right.
A. If that didn't match up to the last stakeholder meeting, like I said, subject to check, of when that happened.
Q. That's fair. Sounds about right. I'm
skipping a few questions in the interest of time. Moving to gas prices and -- all right. So you state -and actually, I'm sorry, sometimes in your testimony it was hard to keep track of who was saying what.

Sometimes there were names in the questions and sometimes there were not. One of you all said in the testimony that -- and this is on page 176 -- that the current natural gas market conditions largely have nearer term price implications, which is well before any new natural gas generation would come into service in the late 2020 s. Does that sound right?
A. (Glen Snider) Yeah. Subject to check, that sounds correct.
Q. Do you recall also that appendix E on page 94 refers to the ever-present uncertainty in natural gas prices?
A. (Michael Quinto) Subject to check, yes.
Q. Now, yesterday I believe there was some discussion that most of the Companies' natural gas is purchased as futures. Do you recall that?
A. (Glen Snider) I don't think I said most. I just said we have a robust hedging program where we buy a little bit forward and the closer in time you get, the bigger the volumes.
Q. Apologize for the inaccuracy there. In any event, the Companies' hedging -- or each Company's hedging strategy has not been sufficient to insolate ratepayers entirely from the recent spikes in gas prices, correct?
A. No, it has not.
Q. So hedging can mitigate but it -- mitigate ratepayers' exposure to the risk of fuel price spikes, but it cannot eliminate their exposure entirely, right?
A. That's correct.
Q. Shifting gears to hydrogen. You discussed the possibility of blending hydrogen with fossil or natural gas, correct?
A. Correct.
Q. Isn't it true that existing gas pipelines would need to be retrofitted in order to be able to transport gas blended with some percentage of hydrogen?
A. (Michael Quinto) I believe the volumes that we have assumed in our Carbon Plan are consistent with the limits of the natural gas pipeline's ability to accommodate hydrogen blending.
Q. Consistent with the current pipeline infrastructure's ability to accommodate hydrogen blending --
A. (Bobby McMurry) It was one percent in 2035, three percent I think in 2038, and five percent in 2042. Based on the -- that was just the feedback we got from gas buyers.
Q. And you used an embedded transportation cost assumption in the hydrogen commodity cost assumptions, correct?
A. (Michael Quinto) That's correct.
Q. Did that take into account any cost to retrofit hydrogen -- pipelines in the future to be able to transport larger percentages of hydrogen blended with gas?
A. Not to my knowledge did it include additional cost to retrofit gas pipelines to accommodate hydrogen blending.
Q. And you would agree that the future supply of green hydrogen carries significant uncertainty, would you not?
A. I think there's a lot of different ways that hydrogen could develop in the future.
Q. And given that uncertainty in the supply of hydrogen and the potential need to upgrade existing pipelines to transport hydrogen or some blend with hydrogen, that could impact fixed and variable
operating costs for gas plants in the future, could it not?
A. I'm not aware if that would impact the cost to operate our plants.
Q. Could it impact the fuel cost?
A. (Glen Snider) I mean, If you're saying blending one percent and paying for that one percent hydrogen, could it have a slight impact on your total cost of fuel? I would say that's a fair assumption.
A. (Michael Quinto) And it's included in our gas price cost.
Q. Now -- let's see. Let me talk a little bit about gas capital costs. I also just want to clarify that when I say gas, I'm talking about what the Company has referred to as natural gas.
A. (Glen Snider) I'm with you.
Q. Now -- actually, bear with me just a moment. I might be able to eliminate some of these questions.

You claim that there's a 40 percent discount in the cost of a gas combustion turbine if you assume a four unit site versus a single unit. Do you recall that?
A. (Michael Quinto) I mean -- I'm sorry, can you point to a --
Q. Page 193 of your testimony. This is in regard to -- discount may be the wrong word. But if you assume four unit CT -- let's just turn together.
A. I see that.
A. (Glen Snider) Lines one, two and three.
Q. Just let me know when you're ready.
A. (Michael Quinto) We're there.
Q. Okay. So CT cost for single unit rather than the four unit site are 40 percent higher based on Duke Energy estimates. Do you recall that?
A. Yes, I see that.
Q. And you imply that that is a more realistic assumption because Duke would build a multi-unit CT?
A. Yes.
Q. And how many megawatts at a time per plant?
A. For a --
A. (Glen Snider) You can have two units that are big, that would be 800 megawatts. You could have four, 200 megawatt units depending on, you know, what was more appropriate when you got to the site specific. But roughly -- I mean, we have ranges. We don't just have 800 megawatt sites. We have some that are 800. We have some that are 12. We have some that are bigger. We have a range of $C T$ sites, four, five, six.
Q. But the generic four-unit CT they're referring to in this testimony, there's not a certain amount of capacity associated with that?
A. I think this testimony was referring to F-frame sites, which would be 800. If it was for H-frames it would be more like 1600.
Q. So 800 to 1600. So you testified, Mr. Snider, in response to a question from Mr. Quinn yesterday that capacity additions can sometimes be lumpy so that you have -- you're adding more capacity at one time than is needed to serve load at that time.
A. For just peak demand. So if you added a combined cycle, for example, to meet carbon reductions, which is a big part of your carbon reduction, you might have for a few years excess capacity.
Q. And you implied, I believe, that's not a problem because you can sell some of that extra capacity or energy produced to neighbors. I recall something to that effect. Is that not -- am I not recalling that correctly?
A. No, I don't recall that line where I'm saying we're going to sell that to neighbors. I will say in the optimization -- we have had this discussion in past IRPs -- I think that overbuild is taken into account
when you optimize it. So if you are just meeting peak capacity and you're building something bigger and smaller units could have fit better, that's taken into account in the optimization process. And so the lumpiness. And if you're overbuilt for a few years and you weren't looking at carbon reductions, which up until this IRP was predominantly capacity, that your optimization takes that lumpiness into account and it would pick something else if non-lumpy was cheaper. Now you have the other benefit of carbon. So you're optimizing both for peak demand, but also to meet your carbon reductions and your total energy needs. So yes, the economics are fully accounted for when you build a bigger unit.
Q. Okay. So accepting that lumpiness is not necessarily a bad thing when you're talking about capacity additions, yesterday in response to a question from Mr. Snowden you testified to the effect that it is easier to adjust solar procurement downward if you over procure than the reverse. Do you recall that?
A. Yeah. If you ignore -- I think there's an important caveat. That over procurement has an attendant number of risks and I won't repeat the 15 minutes that we talked about a risk of over
procurement, but subject to ignoring all of those risks, yes, adjusting future procurements down is easier.
Q. Now, that is not true -- that would not be true if you overbuild gas capacity. It's not as easy to adjust that downward, correct?
A. I think we're talking past each other, Ms. Thompson. If I build two gas plants today and I project two more 10 years from now, I don't have to build those two 10 years from now. But if you're saying if I built too many today, would it be harder to back away from them then yes, I suppose it would. Why we have a very limited amount of gas at this point in our near term action plan.
Q. That is what I was asking. Thank you. Let's see. Now, you also made an assumption with regard to the cost of converting a gas plant to burn hydrogen. That number is confidential so I'm not going to ask you about it. I'm not going to ask you about the number. But where did that number come from?
A. (Michael Quinto) It's based on engineering estimates from our combustion turbine generator team.
Q. So those are internal numbers produced internally from Duke Energy?
A. They rely on OEM estimates on what it would take to add extra equipment to change piping manifolds, that sort of thing.
Q. So let's take a hypothetical. Say you apply for a CPCN for a new gas plant in 2023 and the Commission grants that CPCN and you build a gas-combined cycle plant. That would come into service when, roughly?
A. '28 or '29, depending on the timeline.
Q. Okay. And if conversion -- this is still with me on this hypothetical. If conversion to green hydrogen turns out to be more expensive than you planned then running that plant on hydrogen may turn out not to be economic in the future, correct?
A. (Glen Snider) Yeah, it could go either way. I agree. I mean, the OEMs are telling us their goals -- the three major OEMS -- we talk to them all on a regular basis. When I talk to that team they say most of the OEMs are shooting -- have 2030 as their date where out of the box your new gas turbines would be a hundred percent hydrogen capable. So if they can exceed those goals and get them in earlier in the year, great. Earlier in the decade. So maybe there won't be a conversion cost. If there is a conversion cost, I
will agree with you. If there is a conversion cost and if it's more expensive, it would impact your total cost estimate.
Q. And if green hydrogen turns out not to be available and sufficient quantity or at all, you might have to retire that gas plant in order to achieve carbon neutrality by 2050?
A. Again, I think -- go round and round -- if no offset market comes and hydrogen doesn't come, if both of those come to fruition then -- and we still feel -and there's not a -- I guess I missed the third one, which is reliability. There's -- if no other technology comes, hydrogen doesn't come, offset market doesn't come, and no other storage technology is capable of meeting your reliability needs, then I think there's a reliability out that says we're not going to retire plants and leave the system deficient, its ability to serve customers. If all of that happened, yes, other technology would have to come into play that don't exist today. Hydrogen would have to not come into fruition and an offset market would have to not develop. And if all three of those lined up in 2050, 28 years from now, a portion of that investment would have to be retired.
Q. And that was essentially my hypothetical that you captured, so thank you for continuing to --
A. Like I said, turn enough knobs and you'll get your answer.
Q. So in that event North Carolina does not have a law that authorizes securitization for the underpreciated balance of the gas plan, do we, to your knowledge?
A. 28 years from now I don't know what laws will be in place, but one is not in place today.

MS. THOMPSON: I believe that's all the
questions I have. Thank you to the Panel. Thank you, Chair Mitchell. CHAIR MITCHELL: All right. Tech Customers.

MR. SCHAUER: Thank you, Chair Mitchell.
Craig Schauer on behalf of the Tech Customers. CROSS EXAMINATION BY MR. SCHAUER:
Q. I would like to start with testimony that was just elicited previously by Ms. Thompson. I believe the panel testified that it is not aware that interveners could not replicate the portfolios based on the data provided, is that correct?
A. (Glen Snider) we weren't aware that they
weren't able to substantially -- to my knowledge Public Staff got pretty close. Others may have struggled. As we pointed out, we went to extraordinary efforts to help them, but we can only do so much training.
Q. Right. But was the panel aware previous to this afternoon that the other interveners were not able to replicate the results that Duke reached with its modeling?
A. I think we said we thought they got pretty close. I think we were aware that no one had the -every dot and T the same, which in a modeling exercise of this magnitude, the gigabytes of data and the complexity of the model is not surprising.
Q. And the panel also testified, and I believe I'm using the term correctly, that it did its very best regarding the modeling efforts. But I just want to clarify that its efforts did not include taking the inputs that were provided to the interveners, running them again, Duke running them again to make sure that they produced the outputs that were also provided to interveners, is that correct?
A. (Bobby McMurry) Not prior to posting the files. We have a developmental server which we loaded our input files, we made the runs and we replicated --
we didn't make every run. And it was brought to our attention on a couple of times that they didn't quite match. But we did replicate the base portfolios with the files that was -- we took the files off the data mark, put them into the developmental server, made the runs and could repeat that.
Q. Were you able to identify why the interveners were not able to replicate the model runs?
A. (Glen Snider) No, I think -- you know, as I said, it's an extraordinarily complex modeling exercise and we did the best we could to train the interveners. I think they reached out to the vendor to get more information themselves to try and get some of their modeling techniques in line to maybe help replicate or understand nuances of the model. There are a fair amount of complexities in modeling the system. And so they worked with the vendor. We gave them as much training as we had time to do with technical conferences. And like I said, I think some interveners were pretty darn close and others may not have. But to the degree to which they did or didn't, we did not have the time to go in and further investigate the issues that they may have been having.
Q. Is it your understanding that the public
staff was able to substantially replicate the modeling based on the input and output files provide by Duke? A. (Bobby McMurry) I would probably ask the Public Staff.
A. (Glen Snider) Yeah, I'll leave it to them. What we might say is close. I'll let the Public Staff represent for themself whether they got pretty close or not.
Q. But as far as you know, nobody has been able to replicate the modeling Duke performed based on the input and output files?

MR. BREITSCHWERDT: Chair Mitchell, I'd object. One, I think this question has been asked and answered already. Two, I think we're continuing to circle round and round what happened four or five months ago, and Stratagem, on behalf of Tech Customers, as well as numerous other parties, already filed their alternative plans based on presumably developing EnCompass modeling based on the files Duke provided. So we keep going round and round challenging whether Duke made their very best efforts to provide this information, and it seems like we're well beyond that. One, I think the panel has answered the question sufficiently,
fully; and two, I think this is very well and dated information.

CHAIR MITCHELL: Mr. Schauer, a response.

MR. SCHAUER: Well, Chair Mitchell, it's a simple yes or no question. If he can answer it, I can ask one more follow-up and be done with this line of inquiry.

CHAIR MITCHELL: Okay. I'll overrule the objection. Allow one question and follow-up and then we'll move on.

MR. SCHAUER: Thank you.
CROSS EXAMINATION BY MR. SCHAUER:
Q. As far as you know, no intervener plus the Public Staff has been able to replicate the modeling Duke performed based on the inputs and the outputs?
A. (Glen Snider) I think, as I said, they did not exactly replicate them and much of that may be on their side. It's not as easy as just hitting go. You have to know how to configure your models, you have to know how to have the model set up and run appropriately, you have to have the right resources to the number of servers to make it run efficiency. If you don't it can bog down. So there's numerous reasons
beyond just the Companies' best efforts where they may have not been able to replicate results. There are different versions, I think even at some point, some of the interveners. So having the exact same version is important to get the exact same result.

MR. SCHAUER: Sorry, Chair Mitchell, two questions in light of that response. I apologize. CROSS EXAMINATION BY MR. SCHAUER:
Q. So it's your testimony that the interveners don't know how to use the EnCompass model?
A. It's my testimony that two different sets of people that have the EnCompass model may not get the same results if they don't use the exact same version, the exact same set up, the exact same number of servers that can process it. You might have had one little input different. We tried to give all our inputs exactly how to use them. So there's a number of reasons that they may have in addition to -- and I would say the interveners are -- I mean, they tried their best to replicate them. It's not a knock on the interveners. It's just they didn't have the same resources, the same -- in some cases the exact same software and you may get different results. So we tried our very best to -- like I said, we have been
doing this more than a dozen years, and if you had asked me just a few years ago we're going to train interveners on how to use the model, we're going to give every input -- as part of the process it was unthinkable. We have gone to extraordinary measures based on history to try and give the interveners ready access to every input into our model, to hold technical conferences to help answer questions and to get them as close as they can. If they didn't get there all the way I think I just I want to make it clear, it's my opinion, that it is not a hundred percent the Companies' responsibility to get them to be able to replicate it.
Q. So, Mr. Snider, how does the Commission know that portfolio one, two, three and four are valid if not one but -- and not two, but three interveners were not able to replicate those model numbers?

MR. BREITSCHWERDT: Objection. I think -- sorry. Ma'am.

CHAIR MITCHELL: Go ahead.
MR. BREITSCHWERDT: That assumes facts that are not in evidence. He's asked if the Company was aware and it's not been established that other parties -- each of whom filed an alternative plan using EnCompass were able to
assess, validate and replicate the modeling.
CHAIR MITCHELL: I'm going to overrule the objection -- sort of a sustain, sort of an overrule. I'm going to allow you to ask the question as a hypothetical so that we can move on. MR. SCHAUER: Sure.

CROSS EXAMINATION BY MR. SCHAUER:
Q. So restate it as a hypothetical. How would the Commission know that if not one or two but three interveners could not replicate Duke's EnCompass modeling that the portfolios of one, two, three, and four percent of the Carbon Plan are valid?
A. (Glen Snider) I think the Commission in its discretion understands that none of the interveners replicated each others' results, right? So how can you trust -- if you don't get the exact same result, then how do you -- you can't be expected to get the exact, exact same result. What you're verifying is that modeling was done correctly within reason, that your inputs are reasonable. And the fact that you can't exactly replicate when you have a complex model of this size and none of the interveners could replicate each others' results, you would never come to a conclusion. So if your standard is I need multiple people with
different resources taking slightly different approaches to get the exact, exact same result, you will never have any ability to approve anything because I don't see anybody replicating each others' results.
Q. All right. Moving on. On page eight of the modeling panel testimony Duke states that interveners used modeling assumptions that, quote, introduced bias against firm dispatchable resource sites. Do you recall that testimony?
A. What line, please? Sorry.
Q. Sorry, I don't have the specific line. But it's page 185 and I will get the line for you in one second.

MR. BREITSCHWERDT: Sorry, page eight or page 185?

MR. SCHAUER: Page 185.
CROSS EXAMINATION BY MR. SCHAUER:
Q. Line 18 and 19.
A. Yes.
Q. Did you read the direct testimony of Maria Roumpani submitted by the Tech Customers?
A. I read a summary of it awhile back, but if you want to put a specific line in front of me I'm happy to respond to it.
Q. Well, on page five do you recall that she talked about how the Tech Customers preferred portfolios selected the construction of a combustion turbine by the end of 2029?
A. I see that -- I was looking at the summary now and I would agree that you did select a combustion turbine by the end of '29.
Q. And then on page 194 of your testimony you also acknowledge that the preferred portfolio also selected natural gas PPAs?
A. Yes.
Q. So the Gabel report's recommendation is that the Commission should, quote, reject the Companies' request to pursue development and procurement activities for new gas in this proceeding, isn't that correct?
A. Yes.
Q. In other words, it's not a contention that Duke should never build no gas, it's just that Duke should wait until -- or the Commission should wait until the 2024 Carbon Plan proceeding before making that decision?
A. Yeah. Kick the can.
Q. Duke acknowledges that there is a risk of
inadequate firm fuel supply for any new natural gas plants built by Duke?
A. Yes.
Q. And on page 185 of your testimony you discuss how Duke's plan to supply gas to a new gas plant is based on the assumption of the completion of the Mountain Valley pipeline, isn't that right?
A. In our primary portfolios that was our gas supply region and an alternate -- in P5 and six we looked at an alternate trans code down to the Henry L. Gulf basin.
Q. Now, the Mountain Valley pipeline is expected to be completed in the second half of 2023, according to your testimony?
A. I believe that's their current public position.
Q. So one way the Commission could mitigate the fuel supply risk is to wait and see if the Mountain Valley pipeline is completed in 2023, and then decide as part of the 2024 Carbon Plan whether to select a new natural gas plan?
A. I think if we move forward with a Q3 Q4 CPCN, which would be second half of 2023, we're going to have a pretty good indication as to whether or not at the
time we come forward with a CPCN that NVP is moving forward or not.
Q. Right. But if the Commission were to wait until the 2024 Carbon Plan it would have greater visibility before even selecting that resource as part of the plan?
A. I'm saying by the time we ask them to select it, the time that docket concludes and they issue an order yes or no on a CPCN they would have that information.
Q. Right. But as part of the Carbon Plan request in 2022 you're asking them to make that decision without that information?
A. We've told them as well that we would adhere to normal CPCN as we move to the execution phase and we would do updated analysis that would include new gas prices, the actual cost of the project, the impact on fuel supply. All of that you get into a lot more detail than you do at the planning phase, you get into a lot of detailed project specific analytics, as you all are aware on the commission in a CPCN proceeding, and that would be one of the factors that would be discussed in that latter half of '23 that would influence -- you would have that full information,
along with much more detailed cost information and modeling. And so we're saying that subject to the CPCN, they could -- they can make that decision at the CPCN phase.
Q. Right. But my question was Duke is asking the Commission to select that gas as part of the 2022 Carbon Plan proceeding?
A. Subject to a CPCN being filed in '23.
Q. Thank you. Duke stated in chapter four of the Carbon Plan that the quickest it could construct a new natural gas plant was five to six years?
A. I believe -- what page?
Q. Page 14. It sets forth a table. Page 14 of chapter four.
A. And I'm just looking to verify.
Q. Yeah. Sure. And -- I'll wait for you to get there.
A. Okay. I am there. I'm looking at table four-five.
Q. That's right.
A. Okay.
Q. You would agree it says -- I mean, granted it's talking about two different units, a CC and a CT. But the range of time is from CPCN being granted to
completion five to six years.
A. I'm sort of doing the math. If the CPCN was issued the end of '23. So I have got ' 24 , '25, '26.
'27 would be four years, three if it was in the beginning of the year. Four if it was in the end. Three to four years for a CT and then four to five for a CC.
Q. Exactly. You're familiar with the U.S. Energy Information Administration? And the EIA publishes information related to the energy industry, doesn't it?
A. Yes. It's a broad generalized publication.
Q. You've read the testimony of Adrian Kimbrough submitted on behalf of the Tech Customers?
A. Awhile back.
Q. Do you recall that Mr. Kimbrough -- in his testimony cited the EIA's annual energy outlook 2022 report on page four?
A. Sorry.
Q. Subject to check?
A. Yeah. I'll subject to check and trust that you're reading me the correct quotes from those testimonies.
Q. Do you also by chance, subject to check,
recall that Mr . Kimbrough's testimony cited a report by PJM called PJM/Cone 2026/2027 report?
A. Subject to check, yes.

MR. SCHAUER: Madam Chair, I'd like to distribute some exhibits.

CHAIR MITCHELL: Go ahead.
MR. SCHAUER: Madam Chair, while these are being distributed, I believe they would be marked as -- I'm going to try to get this right -Tech Customers Modeling Panel Direct Cross Exhibit-1 for the EIA exhibit and then Tech Customers Modeling Panel Direct Cross Exhibit-2 for the PJM exhibit.

CHAIR MITCHELL: All right. Good work, Mr. Schauer. For purposes of the record, the EIA document will be marked for identification as Tech Customers Modeling Panel Direct Cross-Examination number one. And then the PJM Cone 2026, '27 report will be marked as Tech Customers Modeling Panel Direct Cross-Examination Exhibit-2.
(Tech Customers Modeling Panel
Direct Cross-Examination Exhibit-1 and Tech Customers Modeling Panel

Direct Cross-Examination Exhibit-2

CROSS EXAMINATION BY MR. SCHAUER:
Q. If I could direct the Panel's attention to Exhibit-1. This is called the Cost and Performance Characteristics of New Generating Technologies from the Annual Energy Outlook '22 by the EIA. Do you see that?
A. Yes.
Q. And if you turn to the table on the second page, the EIA report shows the construction lead times for combustion cycle and combustion turbines. If you can see for the three cc options it shows a construction lead time, and I believe it's highlighted in the copies you have of three years and for the combustion turbine it says a construction time of two years. Is that correct?
A. (Glen Snider) Yes, I see those.
Q. If you can take a look at Exhibit-2, which is the PJM Cone report. I'll have to navigate you through this. These are excerpts from a 94 -page report that I felt like nobody needed 94 pages of.
A. Thank you.
Q. If you would turn to the front of page five, which is page 32 of the report, fifth page, the front of it. Under the heading B3 you should see a
highlighted sentence that says $S \& L$ developed monthly capital drawdown schedules over the project development period of 32 months for CCs.
A. I see that.
Q. In other words PJM estimated that the time to construct a CC would be 32 months for purposes of this study?
A. That is their estimate for a construction period only. There's a lot more than getting a CC --
Q. Correct. And if you turn to the last page of Exhibit-2. At the very top under the section 4B1 it says $S \& L$ developed monthly capital drawdown schedules over the project development period of 20 months for CTs. Do you see that?
A. Yes.
Q. Okay. And so based on the estimates of EIA and PJM the construction of a CT should take 20 to 24 months, the construction time. And the construction of a CC should take 32 to 36 months, is that correct?
A. That's what they're saying the construction period is.
Q. Okay. I want to show you, sorry, one more exhibit that I prepared. If I may hand this one out. MR. SCHAUER: Madam Chair, these were
inadvertently handed out to all of the participants before they were handed out to the commissioners. So if we can have a moment where I can collect some and make sure the commissioners and the witnesses have them. We collected some, but not enough. So I apologize for the confusion.

CHAIR MITCHELL: All right. No problem.
MR. SCHAUER: Madam Chair, I believe this will be marked as Tech Customers Modeling Panel Direct Cross Exhibit-3.

CHAIR MITCHELL: The document will be marked for identification as Tech Customers Modeling Panel Direct Cross-Examination Exhibit-3. (Tech Customers Modeling Panel Direct Cross-Examination Exhibit-3 marked for identification.)

CROSS EXAMINATION BY MR. SCHAUER:
Q. Mr. Snider, this exhibit is a visualization of Duke's timeline for building a CT and a CT -- a CC and CT as set forth in table 4-5, compared with the timeline for the EIA and the PJM. And just to orient you to --
A. Is this -- I'm sorry to interrupt. Is this something we provided or is this something --
Q. No. This is a visualization I created.
A. You created.
Q. A demonstrative exhibit.
A. Okay. Thank you. I didn't know if you were saying we provided this because I wouldn't agree with that.
Q. You did not provide this. On the left I have recreated the construction timeline Duke presents in chapter four of the Carbon Plan for the construction of a CT by the end of 2027 and the construction of the CC by the end of 2028 , which was what was discussed in table 4-5. And then on the right I created the construction timeline of a CT and a CC based on the construction estimates provided by EIA and PJM for the construction of a CT by the end of 2027 and a CC by the end of 2028.

Based on the visualization, if Duke were able to construct $a C T$ and $a C C$ in the amount of time that the EIA and PJM estimate it should take, then Duke could wait to file a CPN until 2025 and still construct a CT and a CC before the dates Duke claims it needs them, is that correct?
A. No. I'm sort of lost. Maybe you can help me.
Q. Sure.
A. You're showing me three years on an exhibit -- which exhibit was the EIA? And it says lead time three years for a combined cycle -- three years of construction, right?
Q. Sure.
A. So in your EIA you show -- on your new CC, the column on the right, one year of construction. So how do I get a CPCN --
Q. Sure.
A. -- and construct in a year?
Q. Let me better explain my exhibit. So starting with Duke's timeline based on table five, it said that a CPCN application would be granted in 2023 and then according to table 4-5 -- I'm sorry, an application would be filed in 2023 -- this is for the CT -- a CPCN would be granted in 2024 and construction would begin sometime during 2024. And then in order to have the CT completed in time by the end of 2027, construction would take place at some point in 2024, 2025, 2026 and then through the end of 2027. Which would be a timeline of either 36 to 48 months, correct?
A. For a CC.
Q. Correct. For a CT. Sorry, I misspoke. I
was looking at the green column.
A. Yeah. So I see 36 months for the CT.
Q. Yes.
A. Yes.
Q. Or 48, depending on whether or not the CPCN was granted at the beginning of the year and Duke needed all four years.
A. It would not be granted the beginning of the year.
Q. Sure.
A. Of '23.
Q. Now, if a new -- for a new CC -- this again, based on table four-five, a CPCN application would be filed in 2023. The application according to the table, in theory, assuming it's granted in 2024, in order for the CC to be complete by the end of 2028, construction would take place in '24, '25, '26, '27, and potentially through 2028, which would be a range of 48 to 60 months, correct?
A. I don't see 60, but I guess you're going back to if we had the CPCN on January 1 --
Q. To the end of 2028 that would in theory be almost 60 --
A. Yeah. Which -- and we're sitting here in

September so -- without anything filed.
Q. Understood.
A. But yes.
Q. So the PJM timeline -- if I could explain that.
A. Yeah.
Q. So using the assumption that a CPCN application could be filed in 2025 after the 2024 Carbon Plan proceedings, and it would be granted at some point in 2026 and using the numbers provided by EIA and PJM giving Duke 20 to 24 months, the CT should be able to be completed by the end of 2027, correct?
A. If you had a -- that's using their construction -- I think where -- he's comparing construction timeline, not total project. So you have got permitting work to do before you turn dirt. You've got to get your air permits, your water permits. You've got transmission that may be your long lead time to get interconnection work done. As we have seen it can be the long lead time with solar. It may be pipeline infrastructure that's your long lead time. So if you're just focusing on turning dirt and turning wrenches for the plant itself, that's a shorter timeline than the total project timeline that has
associated infrastructure, permitting. And as we have said earlier going into this proceeding, any infrastructure build is taking longer these days due to the protracted nature sometimes of achieving receipt of all your permits, right of ways, transmission right of ways, you know, to make this happen. So this accelerated timeline that only looks at construction and doesn't look at the associated full project timeline is not really a realistic and I think, you know, for point of reference for the Commission, we built a number of combine cycles, a number of turbines from the date the CPCN to the date -- you know, and we see that expanding given the contentious nature of getting all the infrastructure you need. So I would not agree that you can simply say CPCN, now go start building a plant. So when you adjust for that, I'm more aligned with the Duke timeline as a total project timeline and not taking a general industry report on construction that assumes you magically get all your permits and all your infrastructure on day one and just start constructing. That's the difference and I stand behind the Duke timeline.
Q. So the Commission can take judicial notice of docket E-2, Sub 1006, which was the CPN application for

Sutton CT. And the application was filed on April 2015. The CPCN was granted in August of 2015 and the CT was commercially operational in July of 2017. So in other words Duke managed to do it in 23 months, despite all of the additional challenges you just referenced.
A. Yeah. You just -- you have an apples and oranges comparison there. That was a brownfield site with existing infrastructure that also was a one small CT being added to -- so not only did you get the economies of scale for that $C T$, that $C T$ was a -- I believe that was our -- Bobby, the black start was in '16 at Sutton for the support of the nuclear plant, is that correct? I don't want to say something on the record wrong.
A. (Bobby McMurry) Subject to check.
A. (Glen Snider) That's all right. So if memory recalls, that was not a large, you know, four turbine site that you're developing. That was adding to an existing CT CC site, a small CC at a brownfield that had all the infrastructure already in place. So that's a great example if I was just adding a little CC at a brownfield site and took all the advantages of the brownfield I could do it much quicker than adding a new combine cycle and needing all the infrastructure to --
you know, to get it to -- a lot of our estimates are generic -- are based on a much bigger site than what he's referring to in the Sutton case.
Q. So the construction of a CT or a CC at a brownfield site can expedite the construction process?
A. Yes. The brownfield site -- and, you know, we hope to put our new CCs and CTs at brownfield sites. But you still have infrastructure. You still have to do interconnection work. For example, the CT you referenced was at a gas site. If I'm doing gas at a coal site, there's supporting infrastructure that's needed. You may or may not need additional interconnection work if your existing switch yard is sufficient or not is yet to be determined. You may have to build out an entirely new switch yard for a new combined cycle. You may need time for the intrastate pipeline construction to come into that coal site. And, you know, you may have to do some preliminary land work to make lay down area of what your operating the coal site and operating. So there's a lot -- you still have to get -- you know, go through the permitting process. So there's a fair amount of work other than just turning the crank. Again, that Sutton CT was a small CT at an existing gas site that didn't require
any of that larger -- what would be needed for a much larger project.
Q. But just to clarify, according to your testimony and table four-five of chapter four of the Carbon Plan, the CT and the CC that Duke wants to build by 2027, 2028 would be constructed at brownfield sites, according to these construction estimates?
A. We are striving to put them at brownfield sites, yes.
Q. So the advantages of a brownfield site would apply to the construction of these CTs and CCs?
A. Not in the same way it did to that Sutton site. As I explained, it was a much smaller. It didn't need a new switch yard. It didn't need a new pipeline. It was relatively easy to permit because it was such a small turbine for -- I think it was voltage support for the nuclear plant and black start support. It was not even of the same scope and scale as these types of projects. These are much, much bigger projects than the docket that you asked the Commission to take judicial notice of.
Q. But also I asked them to be mindful of the EIA and PJM estimates that they applied and published, correct?
A. And I reminded them to take note that it was just the construction period and not the total project.
Q. Moving on to page 194 of your testimony. You point out that the preferred portfolio selects 900 megawatts of CC and CT capacity from third-party gas plants. Do you recall that?
A. I'm looking at it now.
A. (Michael Quinto) Do you have a line for the numbers you quoted?
Q. 19 and 20 , as well as 17.
A. (Glen Snider) I'm there.
Q. Do you see that you say that the Gabel portfolio, the preferred portfolio selects 900 megawatts of PPAs for CT and CC power?
A. Yeah, additional.
Q. Right. And then Duke has the criticism starting on line 19 of that same page that Gabel presents -- or Gabel, quote, presents no justification for assuming that an additional 900 megawatts of firm CC and CT capacity will be available for purchase by the companies on the timeline required. Do you see that testimony?
A. I do.
Q. In the Gabel report at pages 30 and 31, Gabel

Associates identified three third-party natural gas plants with which Duke currently contracts for firm capacity, correct?
A. They did.
Q. And it was Cleveland CT, Rowan CT and Rowan CC, correct?
A. Right.
Q. And Gabel pointed out that Duke already has existing contractual relationships for capacity from these three plants, is that correct?
A. Yes, I think they suggest we get 900 more.
Q. Gabel also looked at the termination dates of the various PPAs for each of those plants and use the upcoming termination dates to see when Duke might be able to acquire additional power from those three plants.
A. Additional 900 above what we're currently contracting for.
Q. But it looked at the PPAs, found the available capacity and the time it was available and ran that into its model, correct?
A. I don't know. That's what they -- when you say existing PPAs, I'm sorry, I'm trying to remember in their report. Are you talking about the existing PPAs
that Duke has with that -- I'm trying to figure out whether we're talking about incremental capacity above what we're already contracting for, which is already built into our plan. We assume we're going to extend those contracts. The contracts -- I'm going to try and say this without having to go into a confidential section. Let's just say we're assuming we're going to extend our existing contracts already in -- the ones we think we can extend, we have built that into the carbon plan. So what we're pointing out here is the assumption that we can get 900 additional megawatts is unsubstantiated.
Q. In other words, you don't believe the Gabel report looked at the other capacity, the additional capacity beyond what Duke already acquires from those plants, looked when it would become available according to the PPAs that are currently in existence, and said we're going to assume that Duke can buy that additional capacity as it becomes available?
A. Yeah. I know that's what they did do and assume that. I'm saying I don't think that's a reasonable assumption.
Q. Now, to be conservative though, Gabel Associates also decided to add a five-percent premium
above the current contract price with each of those resources?
A. Yeah. Again, I think you're talking about resources -- you mentioned three resources, Cleveland, Rowan CT, Rowan CC. Those are by and large Southern Company-owned resources. Our ability to get the remainder of those -- if you see that Southern Company is retiring all of its coal and relying on merchant generation to retire their coal. We don't believe it's substantiated to believe that Duke is going to have easy access to procure more than what we're already procuring, and I'm not even getting into the 951 ownership of taking on incremental gas under PPA versus ownership. That's a separate and distinct issue. But the fact of the matter is is the market in the Carolinas and in the southeast for merchant generation is very, very tight and getting tighter. All of these assets are being subscribed back to retail load obligations or wholesale load obligations and there is not a large amount of excess capacity in the region perhaps that there was a decade ago, and I don't believe it's reasonable -- two prongs. We can have the ownership discussion. That's not where I want to go. We filed comments on that. It's a little bit outside
my testimony. But even if we were to go past that, that market is extraordinarily constrained at the moment.

MR. BREITSCHWERDT: Chair Mitchell, just very briefly to make sure the record is clear, when Mr. Schauer said that Gabel reviewed the PPAs, can we just ensure we're clear on which PPAs you're referring to? Duke wouldn't have access to PPAs that are not with Duke Energy. I just want to be clear about which PPAs you're referring to when you say your consultant reviewed the PPAs.

MR. SCHAUER: I have to admit that we would have to refer that question to Gabel Associates. But that is my understanding of the research they conducted.

MR. BREITSCHWERDT: Okay.
MR. SCHAUER: And they'll be available later.

CHAIR MITCHELL: Bring that up on cross-examination.

MR. BREITSCHWERDT: Thank you. CROSS EXAMINATION BY MR. SCHAUER:
Q. Mr. Snider, returning to you. Is it Duke's position, is it your position that Duke will not be
able to purchase that additional capacity as it becomes available even if Duke is willing to pay a premium for that additional capacity?
A. I am saying there are many market participants that may have already been thinking they can't assume just because an existing contract is rolling off that it will not be or maybe has already been, I don't have access to, right? I don't know -I'm not the market expert. I say it's unreasonable, it's not reasonable to assume that there is 900 megawatts -- as a core planning assumption today, 900 megawatts above what we already contract for -- just to be clear, we do contract for a certain amount of gas capacity that we did extend and assume we are going to have access to in the Carbon Plan. But to find another 900 megawatts in this region we do not believe is going to be reasonably accessible, notwithstanding and sort of not making judgement on the filing on the ownership issue.
Q. Thank you. Moving on to page 68 of your testimony. You discuss the supplemental portfolios.
A. Page 68?
Q. Yes.
A. I am there.
Q. And I'll give you a line in one second. You start your discussion of the supplemental portfolios and you say that the adjustments of the supplemental portfolio would not have resulted in material differences in the selection of resources in the carbon plan. Do you recall that testimony?
A. I do.
Q. You acknowledge that the supplemental portfolios did not select offshore wind until the 2040s, correct?
A. Yes, I agree with you.
Q. Then the testimony goes on to state at page 74, quote -- I'm sorry, it goes on to state that the supplemental modeling results, quote, support Duke's request for approval of near-term development activities -- then I'll insert an ellipsis, for offshore wind. In other words your position is that the supplemental portfolios support Duke's request for --
A. Yes. They're going to be needed and the -you know, the relative benefits -- you can't pursue it if you're not developing it. And we said whether they're needed in the early ' 30 or the early ' 40 s and whether those economics change and as we said, P5 and
six were done primarily as robustness tests for our near-term action plan. Not to say that everything in that portfolio that we exactly agreed with. And if offshore wind was not -- maybe it gets select and it's only a small margin of difference, that diversification benefit, resource diversification benefit, may be something that the Commission may want to consider. That yes, it's a hundred million more than the P5 would suggest. But it provides diversification. It provides a different profile of resource of coming into the system geography wise. So there's lots of reasons that the Commission might want us to continue to keep offshore wind as an option, whether it's '29, '30, '31 or later in the 30s. Those economics, unless they're -- unless -- you know, if the Commission determines that the economic selection is so out of the money that they don't want any development work, that's at their discretion as well. But I would say there's a lot of good reasons other than not being, you know, in that one particular portfolio being selected to say it's still worth pursuing early development work. And I will, you know, probably let you question our long lead time panel that has more of those facts and figures.
Q. It takes approximately a decade to construct
an offshore wind facility, correct?
A. It certainly does if you don't have any development work done.
Q. Right. So from start to finish, approximately a decade?
A. So to keep the option more viable, you want to have some development work done, yes.
Q. And if the supplemental model showed that it's not economic for the offshore wind to be operational into the 2040 s that means Duke can start construction or development activities in the 2030 s and still have it operational in time?
A. If your sole decision was if this was not economically selected as the least cost then don't begin any development work. You know, you have to determine in that is that economic so egregious that we should just stop everything or is that economics, you know, slightly out of the money, it's not least cost in this current world view but it's worth because the economics were not tremendously disadvantageous to offshore wind. We need to keep that option alive and the -- overall when you look at the development cost as a total project cost is a reasonable expenditure to make to preserve the option to bring offshore wind in
earlier. If you never start development work then you're always 10 years away, and maybe that's fine if you just say it's so far under no circumstance will we do it. But if it's hey, that's pretty close to being least cost in the grand scheme of everything and these development costs are such a small part of total project cost that I'm not putting too much consumer money at risk here, then that's a decision for the Commission. But I think we believe it's still knowing that offshore wind is a resource that over the planning horizon is likely going to be needed and it could move up, it could back, and that the relative economics, you know, in one portfolio it's picked, in one it may not, then, you know, the Commission has the discretion to determine whether early development work is prudent at this time.
Q. Mr. Snider, the statute requires least cost planning, not pretty close to being least cost planning, correct?
A. We're not asking for approval to build the offshore wind. Just to be clear, we're asking for approval to pursue near-term development activities. A limited amount. Not asking for a CPCN or even for the Commission to select that offshore wind at this time.

And again, I don't want to step on the testimony of our long lead time panel. So I'm trying -- in the interest of time trying to keep it brief.

MR. SCHAUER: Madam Chair, no further questions.

CHAIR MITCHELL: All right. Let's see. Next up --

MR. BREITSCHWERDT: Madam Chair, I know you said that exhibits would be entered into the record at the end of the panel, but just while this is fresh for the Commission I want to identify that Mr. Schauer's Exhibit-3, which was the demonstrative exhibit that he presented, this one. So he was intending to demonstrate something which our panel fundamentally disagreed with and disputed the accuracy of the exhibit that Mr . Schauer created. This is not a third-party developed document. It's not been independently verified. So at the appropriate time we do plan to object to entering this demonstrative exhibit into the record.

CHAIR MITCHELL: All right. Noted.
MS. GRUNDMANN: Chair Mitchell, I will
do my best to -- I will try to be done by the 5:00
time frame.
CROSS EXAMINATION BY MS. GRUNDMANN:
Q. Good afternoon, gentlemen. How are you?
A. (Glen Snider) Good afternoon.
Q. I want to sort of touch base on the topic that we were just addressing, this demonstrative exhibit from the Tech Customers. And bear with me while I try to find my notes. I'm Carrie Grundmann on behalf of Walmart, Inc.

Mr. Kalemba, were you a witness in
docket number E-7, Sub 1134, which was the Company
CPCN application for the 402 megawatt combustion turbine addition in Lincoln?
A. (Matthew Kalemba) I was.
Q. And are you familiar or would the Commission accept and take judicial notice that the CPCN was filed for that June 17, 2017? Does that timeline sound right to you?
A. That sounds right.
Q. And are you aware and familiar from a press release on Duke's Website that that was connected to the grid and went online in May 2020?
A. That sounds correct. If I can --
Q. Yes.
A. There are multiple steps within that CT where it's not actually officially -- its official online date is not -- I'm quite not sure what it is now. At the time and it probably still holds, I think was 2024 as the -- that's not to say it's not putting out power today.
A. (Glen Snider) It's test power. It's not commercially operational under the care, custody and control of Duke at this point in time.
Q. But that's because you're using an experimental technology with Siemens Energy, correct?
A. At an existing site. And so it was synched to the grid of a conditional resource, but it is not in the care, custody and control of Duke.
Q. But did the experimental nature of that resource somehow affect and make the construction easier or quicker than other types of technology would?
A. It made it -- to some extent we put it at again an existing site and it was picked very carefully because it had the infrastructure where transmission upgrades were not needed, and it had adequate fuel supply already there. So there was no -- it's not like putting gas at a coal site where you don't have fuel supply. So it had the adequate gas supply. It had the
adequate transmission. And then all you were left with was the construction period without the need for additional transmission work or additional gas infrastructure -- or significant additional gas infrastructure.
Q. Mr. Snider, let me repeat my question so I can make sure that you and I -- you're answering the actual question that I'm asking you.
A. Got it.
Q. So the question had nothing to do with the location or the existing transmission. It purely related to the experimental nature of the Sieman's Energy technology and whether or not that specific technology somehow enabled you to construct more or less quickly than you would with some other type of technology.
A. And the technology being gas at a gas site is all I was saying. Whether it was experimental or not, you were putting gas at gas with an existing transmission and existing gas. So that made it easier.
Q. I want to go -- I'm going to kind of jump around a little bit to try and touch a number of the subjects that you've touched on today. With respect to offshore wind, it is the Companies' position that one of
the near-term development items is to acquire the lease for 155 million dollars from a Duke Energy affiliate, is that correct?
A. I'm going to leave that for the long lead time.
Q. But you were previously making arguments to the Commission in favor of the early development work just a few minutes ago in response to questions from the Tech Customers, correct?
A. I think the Commission has a decision to make to whether developing offshore wind and starting development makes sense, and they can factor in many factors as we're not asking for approval to construct but just to begin some preliminary development.
Q. And my question to you is do one of those preliminary development steps include acquiring a lease for offshore wind?
A. That is my understanding, but I'm going to save that, subject to check, to the long lead time panel that will more fulsomely answer that question.
Q. Mr. Snider, I think earlier -- and I apologize if I misunderstood, but I think in response to some questions from Ms. Thompson you made a comment with respect to gas plants about optimization and about
how the optimization process during modeling will help select the right type of unit, is that a correct -have I summarized correctly --
A. It's not just the optimization. At a specific site you have real world conditions, right? How much land do I have? What's my interconnection look like? If it's a combined site, what's my water availability? What's my switch yard? You have bids coming in from actual EPC contractors, major equipment at that point in time. So you're not using generic estimates that you do in an optimization. You have very specific -- and this is my point earlier about dozens of different vendors and slight differences. You go through a much more detailed equipment selection configuration and costs at that siting and development process than you do at the planning fades. And all I was talking to Ms. Thompson about is that's when you say can say maybe this turbine size or this turbine vendor fits better at this particular site based on the real-world bids we got and the real-world situation at that particular site. And so we've optimized our site, sometimes adding an additional turbine to take advantage of the remaining transmission or water or shrinking the size to fit that infrastructure that was
available. That will happen at that siting.
Q. I'm sorry, Mr. Snider, I think the record will clarify obviously, it's been a little while since Ms. Thompson was asking you questions, but I thought the discussion was with respect to the modeling space. Are you just saying you don't agree that that was the context for the question?
A. I'm saying you'll have more discrete information that you can run through the model, but that the optimization I'm talking about right now and I'm trying to remember if it's the same context as Ms. Thompson --
Q. My only question is do you believe that that was the context? If you don't, I'll try to reask my question so that we can be talking about the same thing.
A. I think we will be able to take real-world cost and relook at it from an optimization --
Q. I want to talk about optimization, which is a concept in the modeling space as well, correct?
A. Yes.
Q. And the optimization is -- that is something that occurs to ensure that you all are developing --
A. Yes. And we will be able to do that based on
say here it is, does it still make sense in our portfolios.
Q. Have you had a chance to look at the Tech Customers's testimony from Dr. Roumpani?
A. It's been a while, but please refer me and I will endeavor to agree.
Q. Page 19 of Dr. Roumpani's testimony, lines one through 12 discusses the step that the Company took where it changed 35 percent of the batteries and replaced it with natural gas resources. You made that out-of-modeling step. You recall that, correct?
A. It certainly isn't an out-of-modeling.

That's one of the things we'd never agree with. We did more detailed modeling. So you move from a screening model and we did more detailed modeling to verify that step. It's not out of model. It's actually in model. It's in more detail model. We did make the step. I disagree with the characterization it's out of modeling. Mr. McMurry went through a fair amount of detail to say it's standard practice, and actually if you don't do that step when you go down, it's probably insufficient.
Q. Did you go back through within the model once you made that change whether or not you concede that
it's in or out of model and conduct a reoptimization step?
A. The point is the optimization step is a simplified screening model. You then verify that in a more detailed production cost model where you have much better -- so to take it back out and put it back into -- that's not how the modeling works. That selection process -- you don't put something in at the first step, at the CAPEX screening step. That's what selects it. Then you take that -- it moves you into the ballpark. Gets you into a much closer zip code. And so then you take things from there and you say you know what, I need to look at this much more detailed, especially with storage because the optimization model was never built to optimize storage. That's a new development in the last couple of years. It was never in the architecture for these things up to this point in time. That's where the industry is evolving. And you say I need an 87 , 60, meaning every hour of every year detailed production cost model to look at the true value of that storage so I can move it in realtime, not on a hypothetical load shape that's not 87,60 compared to a turbine and say which one is more economic. It would make no sense -- it actually -- I can't quite
understand how you could even then go back and say put it in the optimization. You're moving down the stream. You don't go back upstream.
Q. Let me have you take a look at Dr. Roumpani's testimony at page 19, lines one through 12.
A. Could you hand that to me?
Q. I can hand you the page from it if you'd like it.
A. Please. I just don't have enough room on the table for the several thousand pages --
Q. Unfortunately my dad retired from a paper Company two years ago so you're not making him any money.
A. We've made him plenty, I promise.
Q. That's why he got a pension when he retired so we'll be thankful for that. Page 19, lines one through 12. All I want to talk about is your response to this criticism and if it's purely that you don't think that this criticism is appropriate, I'm happy to have your response to that. But the testimony says is that another concern is the replacement of batteries with combustion turbines, which is again done outside of the model. I understand you already disagreed with that. We don't have to go back through that. Because
this step is done outside of the capacity expansion step it encompassed it essentially bypasses the selection of resources based on both their cost and their potential carbon footprint as weighted by the optimization under a carbon emissions reduction target. Furthermore, after forcing in a high number of thermal resources the composition of the remaining portfolio is not again tested and might no longer be optimal.

The focus of my question is on that should you retest to determine if it remains optimal. And is your answer the same, that that's an unnecessary step?
A. Yeah. I don't think you need to do that step.
Q. Thank you. I want to touch base on a topic that I covered yesterday with Ms. Bowman and it relates to all-in cost of the plan. Looking at the direct testimony, page --

CHAIR MITCHELL: I'm going to pause
here. It's 5:00. How much longer do you anticipate?

MS. GRUNDMANN: I would love to tell you
that I would be done in 10 or 15 minutes.
CHAIR MITCHELL: Let's break for today.
We'll come back. We'll start with you tomorrow
morning. We will be back on the record 9:00. Let's go off the record.
(The hearing was adjourned at 5:03 p.m. and set to reconvene at 9:00 a.m. on Thursday, September 15, 2022.)

CERTIFICATE OF REPORTER

STATE OF NORTH CAROLINA)
COUNTY OF ALAMANCE)

I, Susan A. Hurrey, RPR, the officer before whom the foregoing hearing was taken, do hereby certify that the witnesses whose testimony appears in the foregoing hearing were duly affirmed; that the testimony of said witness were taken by me to the best of my ability and thereafter reduced to typewriting under my direction; that I am neither counsel for, related to, nor employed by any of the parties to the action in which this hearing was taken; and further, that I am not a relative or employee of any attorney or counsel employed by the parties thereto, nor financially or otherwise interested in the outcome of the action.

This the 20 th day of September,

(919) 556-3961

