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Are coupled renewable-battery power plants more valuable than independently 
sited installations? 
 
Will Gorman1*, Cristina Crespo Montañés1, Andrew Mills1, James Hyungkwan 
Kim1, Dev Millstein1, Ryan Wiser1 
 
ABSTRACT. Coupled renewable-battery powerplants differ from the traditional concept of 
independent siting of electricity resources within transmission networks. Prior research on the 
value proposition and cost savings from coupling did not consider the geographic constraint of co-
location. This paper fills the gap by assessing how pricing volatility differences between nodes 
within electricity markets impact the system value of coupled renewable-battery projects as 
compared to independent VRE and battery installations. We use wholesale power market prices 
from 2012–2019 across the seven main U.S. independent system operators (ISOs) with a linear 
optimization program to compare the electricity market value of coupled projects to the value of 
the same underlying sub-components, deployed separately. We find that additional value from 
adding a 4-hour battery sized to 50% of renewable-plant nameplate capacity is $10/MWh across 
ISOs on average. The highest boost occurs in California ($15/MWh), where the value of adding 
storage to solar rises over time in tandem with increased solar penetration in the region. If 
renewables and batteries are deployed independently, we estimate that $12.5/MWh of additional 
value could be achieved because of more flexibility on battery siting and operation. The 
$12.5/MWh coupling penalty is reduced to $1.6/MWh when considering alternative approaches 
to integrating battery storage. This result implies that renewable-battery power plants will play an 
increasing role in electricity systems if they can be built for $2–$13/MWh less than independent 
projects of comparable size. However, the wide regional variation in coupling penalties, along with 
the importance of conditions captured in our sensitivity cases, suggests the tradeoff between 
coupling penalties and savings will vary by situation. Therefore, roles exist for independent and 
coupled projects from a system optimization perspective. 
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Interconnection, PTC = production tax credit, PV = photovoltaic(s), RE = renewable energy, RTO 
= regional transmission organization, SAM = System Advisor Model, SPP = Southwest Power Pool, 
VRE = variable renewable energy 

1. Introduction  
Technology improvements, cost reductions, and policy support have driven rapid growth of 
variable renewable energy (VRE) technologies, such as wind and solar [1]. To meet Paris 
Agreement climate targets, deployment of these resources must increase substantially [2]. Many 
researchers have studied the impact of high VRE levels on electricity grids [3,4]. These studies 
identify challenges with high-VRE grids including, but not limited to, increased flexibility 
requirements and long-term VRE value deflation [5–10]. 
 
Energy storage technologies could mitigate these concerns, and a large literature addresses the 
synergies between high VRE penetrations and storage development. Much of this literature focuses 
on deploying storage as a system asset, modeling storage capabilities at an aggregated level (e.g., by 
state, independent system operator [ISO], balancing authority) without considering variation due 
to transmission constraints [11–16]. This focus aligns with the conventional wisdom regarding 
operation of networked electricity grids: site facilities independently, at high system-value 
locations, and control them at a regional level using cost-optimized dispatch via system operators 
(ISOs and regional transmission organizations [RTOs]) leveraging transmission networks (Figure 
1-1, left) [17]. This approach focuses on balancing geographically dispersed electricity loads and 
generation assets. Aligned with this thinking, many researchers and industry participants 
emphasize that market footprints enabling balancing over larger geographic territories would lead 
to more efficient VRE integration [18–20]. 
 
Less attention, however, has been given to the recent commercial interest in coupled (or “hybrid”) 
configurations, which involve pairing battery storage technologies directly with VRE technologies 
at the same geographic location (Figure 1-1, right). At the end of 2020, 34% of solar and 6% of 
wind projects by capacity were being developed with a co-located battery storage unit, according 
to the largest U.S. interconnection queues (Table 1-1).2 Proposed development is highest in the 
West, where 70%–90% of proposed solar is paired with storage (compared to 5%–20% in the East), 
suggesting a regional driver of co-location. In California Independent System Operator (CAISO) 
territory, 64% of all proposed battery storage is paired with a generator [21]. 

2 These interconnection queues cover roughly 85% of load in the United States.  
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Figure 1-1: Depiction of VRE operational paradigms in electricity networks 
 

Region 
Percentage of Proposed Technology Coupling in 

Each Region (by capacity) 
Solar Wind Battery3 

CAISO 89% 37% 64% 
ERCOT 21% 6% 37% 
SPP 22% 4% 38% 
MISO 18% 5% N/A 
PJM 19% 1% N/A 
NYISO 5% 0% 2% 
ISO-NE 12% 0% N/A 
West (non-ISO) 69% 14% N/A 
Southeast (non-ISO) 13% 0% N/A 
TOTAL 34% 6% N/A 

Table 1-1: Coupling percentage by technology in interconnection queues as of the end of 2020 
 
This paper aims to illuminate the coupling constraints resulting from renewable-battery project 
development and to identify the importance of the various drivers of coupled projects. In 
particular, we analyze the drivers of the regional concentration of proposed coupled development, 
and we explore the extent to which the traditional concept of independently siting resources may 
not fully apply to VRE resources and storage technologies. 
 
We focus on the system value battery storage provides within electricity markets. Storage value 
tends to be higher where there is more pricing volatility [22]. We explore how pricing volatility 
differences between nodes within electricity markets may impact coupling and battery 
development decisions. We estimate the opportunity cost associated with siting storage at a VRE 
location, rather than siting storage at a different, potentially higher-value location [23]. In a 
coupled configuration, storage operation may be further restricted by shared interconnection 

3 N/A values signify that region does not provide enough information to calculate this statistic. 
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capacity or requirements to charge from the VRE rather than the grid. We aim to quantify the 
coupling constraints associated with such co-location and operational restrictions. 
 
Previous research identified several drivers of increased co-location including policy incentives, 
construction cost synergies, mitigation of slow interconnection processes, and operational 
synergies through co-optimization [24,25]. However, this research did not systematically compare 
these benefits to all of the following aspects of coupling constraints: (1) reduced options in the 
geographic siting of storage, (2) increased operational constraints of sharing an inverter or grid 
interconnection capacity, which can reduce a coupled project’s ability to schedule services during 
the highest-value times, and (3) restrictions on grid charging. 
 
We use recent wholesale power market prices to calculate the energy, capacity, and ancillary 
service revenue of coupled projects that are physically co-located, compared with the revenue of 
the same underlying sub-components (VRE generator and battery storage) deployed separately. 
We then put these system value estimates in the context of sparse estimates of cost savings from 
coupling described in previous research, and we show conditions under which the project-
development cost savings can outweigh constraints that limit coupling value. 
 
Although many different configurations and technology combinations can be coupled [26], this 
article focuses on battery storage projects physically sited with utility-scale wind and photovoltaics 
(PV) owing to the recent commercial interest in this particular use case [21]. We do not study 
technologies that are virtual or based on distributed energy resources, nor do we evaluate potential 
participation models that are being developed to integrate coupled technologies into wholesale 
markets [27].  
 
Instead, we focus on the physical combination of VRE and batteries and create a self-scheduled 
dispatch profile based on historical prices. This framing allows us to investigate how both coupling 
and pricing volatility via transmission constraints affect the market value of storage at different 
locations within wholesale electricity markets. The geographic and temporal variance of this 
market value drives location-specific battery project development, so it is most relevant for 
answering our research questions. 
 
The remainder of the article proceeds as follows. Section 2 discusses the prior literature related to 
VRE system value estimation and grid planning and then identifies the specific research gaps we 
fill with our work. Section 3 describes the key conceptual framework comparing coupled projects 
to independent systems while outlining the optimization model developed. Section 4 summarizes 
our quantification of the system values and penalties of coupling. Section 5 contextualizes our 
results within current market development activities, comparing system value to system costs; this 
section raises important issues related to future VRE and coupled project development. Section 6 
concludes and identifies open research questions. 
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2. Background 
This paper contributes to two major strands of literature related to integrating VRE technologies 
onto electrical grids: (1) estimating utility-scale VRE and storage electricity market value (“system 
value” studies), and (2) optimal siting of and planning for utility-scale generation assets (“grid 
planning” studies). Within both these literatures, prior work focused either on coupled projects or 
independent technologies separately without applying a consistent framework to compare their 
value relative to each other across wide market regions. Our implementation of a consistent 
valuation framework combined with our wide geographic scope allows us to provide new 
information on the constraints involved with co-locating VRE and battery systems. 
 
Much of the system value literature focuses on analyzing wholesale market prices while 
considering the inherent variability of wind speeds and solar irradiance [9,28]. In most regions, 
wholesale electricity market prices are split between energy, capacity, and ancillary service 
products, thus incentivizing resources to contribute toward meeting various electricity system 
needs [29]. These prices reflect competitive wholesale procurement and therefore the underlying 
value of instantaneously balancing supply and demand in electricity markets [17]. For standalone 
VRE technologies, the system value literature focuses on how weather dependence affects the 
system value of renewables compared to the average power prices at various VRE penetration 
levels [30]. Hirth finds that wind power system value drops from 110% of the average power price 
to 50% as wind penetration increases to 30% of total electricity consumption in Europe [8]. Mills 
and Wiser find that the system value of PV drops from 127% of the average power price to 36% as 
solar penetration reaches 30% in California [6]. Millstein finds that the 2019 energy value of wind 
or PV was 30% to 40% below the regional average price in regions that exceeded 20% penetration. 
Solar value reductions are primarily driven by the output profile, while wind value reductions are 
driven by both profile and within-market congestion, depending on the region [31].  
 
Given the ability of storage to mitigate wind and solar variability and value deflation, more recent 
research has examined the system value of grid-scale battery storage [32–34]. Byrne et al. find 
significant revenue potential for storage market arbitrage assuming perfect foresight [35], and 
McPherson et al. show that storage can be profitable even using more realistic day-ahead 
scheduling algorithms [36]. This literature rarely evaluates coupled technologies, focusing instead 
on standalone battery system value. A few recent studies have begun to explore the value of 
coupled projects but do not correspondingly evaluate how these emerging configurations compare 
to the independent system value of standalone configurations, especially considering the broad 
geographic context of current market-based generator investments [37–40]. Denholm finds that 
PV-storage coupled projects can be more or less profitable than independent configurations 
depending on constraints considered, but analyzes only a single location in California  [41].  
 
The grid planning literature takes a broader market context to evaluate siting and planning 
decisions, considering a variety of electric system technologies [42,43]. Most of these studies use 
capacity-expansion methods and focus on the important role of transmission and balancing 
authorities to manage the variability of VRE technologies [44,45]. Generally, these studies show 
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that a portfolio of resources including VRE, storage, and transmission is needed to transition to a 
low-carbon energy system [46,47]. In contrast to system value studies, grid planning studies 
develop a cost-benefit framework to compare multiple generation types given a number of electric 
system constraints. 
 
However, the grid planning studies have not yet incorporated coupled technologies into their 
frameworks, partly owing to the many possible configurations available, which make design of an 
internally consistent optimization program challenging [48]. A recent grid planning study by the 
Midcontinent Independent System Operator (MISO) compares the effectiveness of storage for 
increasing delivery of renewables to loads in scenarios targeting 40% renewables. The study finds 
that storage co-located with renewables enables greater delivery of renewables than storage 
located near loads. In addition, an algorithm designed to minimize transmission, storage, and 
production costs sited storage near renewables [49]. The scope of this study is limited in that the 
potential to deliver more renewable energy to loads is only one aspect of overall co-location 
impacts, and the study only covers one of seven U.S. market regions. 
 
Because of model complexity, grid planning studies tend to limit the spatiotemporal granularity 
analyzed [50]. Though the internally consistent methods of capacity-expansion models allow 
comparisons across multiple generation resources, the limited spatiotemporal resolution limits the 
ability of these models to assess siting decisions involved with co-locating VRE and battery storage 
technologies. Furthermore, owing to the limited temporal resolution of these models, they struggle 
to realistically reflect volatility of energy prices and ancillary service prices. 
 
We fill the research gaps by expanding on the system value studies, employing a broader market 
context that compares coupled renewable-battery projects to independent VRE and battery 
systems using historical wholesale market prices. Prior researchers have identified the key 
locational investment signals in modern electricity systems across the world. These signals include 
locational marginal prices (LMPs), grid connection and use fees, and capacity payments. We focus 
on LMPs and capacity payments, because they are the most significant geographic signals in many 
regions [51]. To understand the relative system value of VRE, battery, and coupled technologies, 
we rely on these geographically resolved market signals to generate system value metrics. Our 
research is possible because wholesale electricity markets in the United States (and in Australia 
and New Zealand) reflect the impact of transmission constraints and losses through LMPs defined 
at the nodal level. In contrast, only zonal prices are available in European markets, making it 
difficult to answer our research questions in those countries without detailed grid modeling [52]. 
Overall, our approach and geographic context allow us to incorporate detailed spatiotemporal 
variation in estimates of system value while comparing coupled and independent technologies in 
one consistent framework. 
 
Because our analysis covers all seven U.S. organized wholesale markets, our findings are not limited 
to specific market conditions. The seven markets are diverse in their resource mixes and market 
characteristics (Figure 2-1). All seven markets operate a day-ahead and real-time energy market 
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with nodal LMPs that reflect transmission congestion. All markets similarly operate markets for 
ancillary services. In 2019, CAISO had the highest solar penetration at 18.7%; the New England 
Independent System Operator (ISO-NE) had the second highest at less than 5% [10]. Wind 
penetrations in 2019 were 27.5% in the Southwest Power Pool (SPP) and 19.9% in the Electric 
Reliability Council of Texas (ERCOT) [53]. CAISO is connected to the broader Western 
Interconnection and imports significant amounts of power. SPP, MISO, PJM Interconnection 
(PJM), the New York ISO (NYISO), and ISO-NE are all part of the Eastern Interconnection. 
ERCOT forms its own interconnection and has limited interconnection capability with 
neighboring markets. Load-serving entities in all the organized market regions except for ERCOT 
are subject to a mandatory resource adequacy requirement. CAISO and SPP rely on utility 
procurement or bilateral contracting to meet the resource adequacy requirement, while MISO, 
PJM, NYISO, and ISO-NE all operate forward capacity markets. Instead of a mandatory 
requirement, ERCOT’s “energy-only” market relies on the potential for high scarcity prices in the 
energy market to incentivize new capacity. As a result, prices have been most volatile in ERCOT, 
though constraints in the natural gas system have at times led to high volatility in CAISO, PJM, 
NYISO, and ISO-NE [10,54]. 
 

 
RE = renewable energy 

Figure 2-1: 2019 Generation sources for ISOs in this study (Source: EIA [55,56] ) 
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3. Methods 
Our methods section is split into four parts. First, we introduce the system value comparison 
framework developed to compare coupled projects to independent VRE and battery powerplants. 
This framework relies on two metrics that are used extensively in the results section. Next, we 
discuss how we calculate the corresponding system values for each technology, with a focus on 
our optimization formulation. The third section discusses the source of our main data inputs, and 
the last section outlines the scenarios we develop to check the robustness of our results.  
 

3.1. COMPARISON FRAMEWORK 
We apply a consistent approach to compare VRE generators, independent batteries, and coupled 
projects so we can investigate the drivers of regional differences in coupling development and 
identify the penalty associated with coupling. To do so, we develop two new metrics that evaluate 
the additional system value and additional constraints of coupled projects (i.e., reduced geographic 
options for battery siting, increased operational constraints due to infrastructure sharing, and 
restrictions on grid charging). 
 
Our first metric, the “storage value adder,” aims to estimate the additional value of adding a battery 
to a renewable generator. This metric is calculated by subtracting the energy and capacity market 
value of the independent VRE generator from the energy and capacity market value of the coupled 
generator sited at the same geographic location as the VRE generator (Eq. 1).4 When estimating 
the storage value adder, developers will consider not only the value of coupled projects across 
markets, but also how coupled project value compares to alternative VRE investments. The storage 
value adder represents the additional revenue potential for a developer adding a battery project to 
a VRE generator.  
 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑣𝑣𝑆𝑆𝑣𝑣𝑣𝑣𝑆𝑆 𝑆𝑆𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆 = (𝐸𝐸𝐶𝐶𝐶𝐶 + 𝐶𝐶𝐶𝐶𝐶𝐶)−  (𝐸𝐸𝑉𝑉𝑉𝑉𝑉𝑉 + 𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉)              (Eq. 1) 
 
Where, 
E = energy value of coupled project (CP) or wind/solar (VRE) systems in $/MWh 
C = capacity value of coupled project (CP) or wind/solar (VRE) systems in $/MWh 
 
This metric serves two purposes. First, by comparing this metric across different markets and years, 
we can evaluate how the value of adding batteries to VRE projects in certain regions changes over 
time, and how that value varies across regions. This result clarifies the potential for added storage 
to mitigate value deflation that occurs for a VRE generator in regions with high VRE penetrations. 
Second, we can directly compare this metric to the costs of storage and thereby assess the relative 
investment value of adding storage onto a VRE asset as discussed for a subset of markets in [24].   
 
However, the storage value adder does not inform the coupling constraint of co-locating batteries 
at the same VRE location. We develop a second metric, the “coupling penalty,” to assess the relative 

4 Ancillary service value is calculated in a sensitivity analysis discussed in Section 3.4. 
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value of independently siting storage technology. This metric is calculated by subtracting the 
market value of a coupled generator from the market value of an independent VRE generator and 
storage plant, sited at different locations (Eq. 2). Importantly, the coupled generator in this example 
uses the same VRE generator resource as the standalone VRE plant. There is only one key 
difference between the coupling penalty and the storage value adder. The coupling penalty 
includes new terms for the value of independently sited storage, and most importantly, the 
valuation of the storage system in this equation is not constrained by operational restrictions or 
co-location with the VRE generator. Instead, we choose a storage location based on identification 
of the most valuable storage nodes within a given market region, and we allow the storage to 
charge and discharge from the grid at its nameplate capacity. Therefore, this metric aims to 
quantify the coupling penalty associated with co-locating a battery and VRE resource at the same 
location and potentially introducing further operational constraints.  
 
𝐶𝐶𝑆𝑆𝑣𝑣𝐶𝐶𝑣𝑣𝐶𝐶𝐶𝐶𝑆𝑆 𝐶𝐶𝑆𝑆𝐶𝐶𝑆𝑆𝑣𝑣𝑆𝑆𝑝𝑝 =  ([𝐸𝐸𝑉𝑉𝑉𝑉𝑉𝑉 + 𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉] + [𝐸𝐸𝑆𝑆 + 𝐶𝐶𝑆𝑆] )−  (𝐸𝐸𝐶𝐶𝐶𝐶 + 𝐶𝐶𝐶𝐶𝐶𝐶)              (Eq. 2) 
 
Where, 
E = energy value of coupled project (CP), wind/solar (VRE), or storage (S) systems in $/MWh 
C = capacity value of coupled project (CP), wind/solar (VRE), or storage (S) systems in $/MWh 
 
Identifying valuable nodes is critical to our analysis, because it represents the key opportunity cost 
from siting a storage unit at a potentially less valuable nodal market location, to be near a VRE 
asset. Because we assume highly volatile nodes are the most valuable for storage as per the 
literature, we select the 30 most volatile nodes per market based on energy prices over the 2012–
2019 period.5 For all energy pricing nodes in a particular year and market, we measure volatility 
as the standard deviation of prices.6 We focus on the top 30 nodes rather than the single most 
volatile node to test the sensitivity of our results to any individual high-value node. We then use 
the prices from those particular nodes to calculate the maximum standalone storage value using 
the optimization model discussed in the next section (in which the VRE resource,Wk, is 0 for all 
hours). Ultimately, we are interested in understanding whether the geographic constraint 
penalizes coupled projects, and that constraint will be driven by the potential revenue options 
available for batteries at these high nodal value locations. 
 

5 Specifically, we calculate the volatility percentile for each of those nodes for each year, and we take the 
average percentile across all years. This averaging allows us to understand and limit our selection to nodes 
that are consistently volatile year-over-year rather than those that might be volatile for a limited period. 
This ensures a more stable storage value over typical storage asset lifetimes. 
6 We select a set of nodes to study further based on standard deviation because it is cheaper to calculate than 
calculating the value of specific storage configurations. 
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3.2. SYSTEM VALUE ESTIMATION 
We calculate two main system values for this research: (1) energy value, and (2) capacity value. A 
sensitivity analysis including the addition of ancillary services system value is discussed in Section 
3.4.  
 
The energy value is calculated by multiplying an hourly power generation profile by 
corresponding historical hourly real-time market prices (Eq. 3). The use of historical prices allows 
us to explore spatiotemporal variability not typically available in large-scale grid planning studies, 
as discussed in Section 2. 
 
We use a simple and uniform approach for calculating the capacity value of independent and 
coupled resources, except in ERCOT. We do not calculate a capacity value in ERCOT because it is 
the only region where loads are not required to procure resources to maintain a planning reserve 
margin. In the other regions, we do not use region-specific capacity accreditation rules for coupled 
projects, because such rules are still under development [57]. Previous research indicates that 
average production during the peak net load hours can be a reasonable approximation of the 
reliability contribution of variable resources and coupled projects [39,58]. Hence, in this study, the 
capacity value is calculated by multiplying the same hourly power generation profile by a capacity 
price as well as an indicator variable for whether that particular hour of the year is within the top 
100 net load hours for each specific market (Eq. 4). The capacity price is the annual average 
capacity price for each ISO, accounting for the capacity zone in all markets except SPP. Capacity 
prices from organized forward-capacity markets are used in MISO, PJM, NYISO, and ISO-NE. In 
CAISO, we use bilateral capacity prices for local resource adequacy as reported by the California 
Public Utilities Commission [59]. In SPP, we use the price of average short-term capacity 
transactions reported in Federal Energy Regulatory Commission (FERC) Electronic Quarterly 
Reports, which, relative to other sources of data, is more speculative [60].7 The use of an annual 
capacity price is a simplification, because capacity prices can vary by season, or even by month, 
depending on the market. 
 
Eq. 3 and Eq. 4 correspond to variables in our framework equations from Section 3.1. Each of these 
values is estimated for independent VRE projects, independent battery projects, and coupled 
projects, and the underlying assumption is that operating these projects will not change wholesale 
prices (i.e., it is a “price taker” analysis). We normalize these values by the corresponding 
standalone VRE generation (GVRE) in each case studied, including the standalone storage. We 
normalize the value calculations by generation to report metrics that are comparable to often-used 
cost metrics such as power-purchase agreement prices, bid prices in procurement, or levelized costs 
of electricity (LCOEs). 
 
𝐸𝐸𝑖𝑖 =  ∑ 𝐺𝐺𝑖𝑖∗ 𝐶𝐶𝑟𝑟𝑟𝑟8760

1
𝐺𝐺𝑉𝑉𝑉𝑉𝑉𝑉

                                   (Eq. 3) 

7 We end up with high prices that might not be realizable in the actual market. 
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𝐶𝐶𝑖𝑖 =  𝐶𝐶𝑐𝑐/𝑁𝑁∑ 𝐺𝐺𝑖𝑖∗8760

1  𝑁𝑁𝑁𝑁𝑚𝑚 
𝐺𝐺𝑉𝑉𝑉𝑉𝑉𝑉

                                   (Eq. 4) 

  
Where, 
Ei = annual energy value of coupled project, VRE, or storage system in ($/MWh) 
Gi = hourly net electricity profile of coupled project, VRE, or storage system (MWh) 
Prt = hourly real time electricity price ($/MWh) 
GVRE = annual alternating-current (AC) generation output from the VRE generator (MWh) 
Ci = annual capacity value of coupled project, VRE, or storage system ($/MWh) 
Pc = capacity price ($/MW-yr) 
NLm = hourly indicator (0 or 1) for top N net-load hour for given market  
N = number of top net-load hours, set to 100 in this analysis (h) 
 
The electricity profile (Gi) for the standalone VRE asset is estimated via simulation (detailed in 
Section 3.3). In summary, we take latitude and longitude information for utility-scale solar and 
wind projects and simulate their hourly generation using weather data. These locations are then 
matched to the nearest nodal electricity market price (Prt). When prices are negative, we allow for 
curtailment of the standalone VRE electricity profile. 
 
To estimate the electricity profile for the standalone storage asset, we develop a linear optimization 
model that maximizes wholesale market revenue by incorporating energy and capacity market 
prices. The full optimization model is described in Eqs. 5–11. The objective is to maximize net 
revenue, accounting for cycling-induced degradation (Eq. 5). The linear penalty on cycling the 
battery (Dp) aims to mirror the operational reality of deploying batteries in electricity markets.8 
We take estimates of this parameter from the literature and run sensitivity analyses on its effect 
over the optimization results [61]. Constraints on battery operation are described by Eqs. 6–11.  
 
The electricity profile for the coupled project relies on the same optimization algorithm as the 
standalone storage system, with three additional constraints (Eqs. 12–14). Eqs. 12 and 13 account 
for AC grid balancing when considering the addition of VRE generation. This constraint ensures 
that VRE production and battery charging/discharging match the energy output to the electric 
grid. Eq. 14 allows for curtailment when prices are negative and energy generation at the point of 
interconnection (POI) is unprofitable. The same renewable profile for the standalone VRE 
resource is used as an input to the coupled project optimization problem (GVRE), and the creation 
of renewable profiles is discussed in greater detail in Section 3.3. The coupled project constraints 
below represent AC-coupled systems. Additional models that consider direct current (DC) coupled 
systems and ancillary service market products are described in Section 3.4 and the Supplementary 
Information.  

8 In effect, this penalty sets the arbitrage value required to cycle the battery profitably. Our default 
assumptions limit cycling to arbitrage price differences greater than $10/MWh, based on estimates from the 
literature. 
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We use the open-source optimization solver COIN-OR Linear Programming Interface [62]. The 
optimization model is implemented using the Julia programming language and the package JuMP 
[63].9 
 
 
Objective function:  
 
  𝑀𝑀𝑆𝑆𝑀𝑀∑ [(𝑃𝑃𝑟𝑟𝑟𝑟 + 𝑃𝑃𝑐𝑐/𝑁𝑁 ∗  𝑁𝑁𝑁𝑁𝑚𝑚) ∗ 𝐺𝐺𝑖𝑖]8760

1 −  �𝐷𝐷𝑝𝑝 ∗ (𝐵𝐵𝑑𝑑 +  𝐵𝐵𝑐𝑐)�             (Eq. 5) 
 
 
Subject to: 
 
Beginning state of charge:      𝑆𝑆0 = 0                              (Eq. 6)  
 
State of charge range:       0 ≤ 𝑆𝑆𝑘𝑘 ≤  𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚                  (Eq. 7)  
 
Power in rate:        0 ≤ 𝐵𝐵𝐶𝐶(𝑘𝑘)  ≤  𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚                                                         (Eq. 8) 
 
Power out rate:                             0 ≤ 𝐵𝐵𝑑𝑑(𝑘𝑘)  ≤  𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚                                                         (Eq. 9) 
 
Non-simultaneity rule:                 𝐵𝐵𝑑𝑑(𝑘𝑘) + 𝐵𝐵𝐶𝐶(𝑘𝑘)  ≤  𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚                                                 (Eq. 10) 
 
Battery state of charge:       𝑆𝑆𝑘𝑘+1 =  𝑆𝑆𝑘𝑘 + �𝜂𝜂𝐵𝐵𝐶𝐶(𝑘𝑘)− 𝐵𝐵𝑑𝑑(𝑘𝑘)

𝜂𝜂
�                                       (Eq. 11) 

 
AC-grid limits:                   −𝐼𝐼𝑔𝑔𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝐺𝐺𝑖𝑖(𝑘𝑘)  ≤  𝑃𝑃𝑃𝑃𝐼𝐼                         (Eq. 12) 
 
AC-grid balance:                    𝐺𝐺𝑖𝑖(𝑘𝑘) = 𝑊𝑊(𝑘𝑘) + 𝐵𝐵𝑑𝑑(𝑘𝑘)− 𝐵𝐵𝐶𝐶(𝑘𝑘)                                   (Eq. 13) 
 
Curtailment allowance:                𝑊𝑊(𝑘𝑘) ≤ 𝐺𝐺𝑉𝑉𝑉𝑉𝑉𝑉(𝑘𝑘)                                                            (Eq. 14) 
 
Where the decision variables are,  
Gi = hourly net electricity profile of coupled or storage system (MWh)10 
Bd = battery discharging (MWh) 
Bc = battery charging (MWh) 
Sk = battery state of charge at time step k (MWh) 
Wk = power generated from renewable resource at time step k 

9 Owing to the wide parameter space, which encompasses more than 500,000 unique optimization runs, we 
also implement an embarrassingly parallel program on Lawrence Berkeley National Laboratory’s 
Lawrencium high-performance computer to speed up the development of results. 
10 For battery systems, this is more explicitly written as Bd - Bc. 
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Where the input parameters are, 
Prt = hourly real time electricity ($/MWh) 
Pc = capacity price ($/MW) 
NLm = hourly indicator (0 or 1) for top N net-load hour for given market 
N = number of top net-load hours, set to 100 in this analysis (h) 
Dp = degradation penalty ($/MWh) 
Bmax = battery max power capacity (MW) 
Smax = total energy capacity of battery (MWh) 
η = battery one-way efficiency (%) 
Ig = binary indicator to allow grid charging (1 allows grid charging, 0 restricts charging to available VRE) 
POI = point of interconnection limit 
GVRE = standalone VRE generation profile 
 
We apply the optimization program using two distinct algorithms to develop an optimistic and 
pessimistic market value estimate for both independent storage projects and coupled projects. Our 
optimistic algorithm assumes perfect foresight of real-time electricity prices and VRE generation 
profiles when determining optimal dispatch (perfect foresight method). Conversely, our 
pessimistic algorithm generates an optimal dispatch schedule based on day-ahead prices and the 
prior day’s VRE profile as a forecast of today’s profile. The realized revenue is then calculated by 
applying this “day-ahead” dispatch schedule to real-time market prices (day-ahead schedule 
method). In the day-ahead schedule method, the realized battery charge and discharge schedule is 
adjusted by constraining the optimized schedule with the operating day’s actual VRE generation 
profile as well as limits on the coupled battery in a post-process calculation detailed in the 
Supplementary Information. 
 

3.3. DATA COLLECTION 
Our analysis has three key hourly data inputs: (1) VRE generation profiles, (2) location-based 
market prices, and (3) net-load profiles. Each of these data inputs is collected for the 2012–2019 
period and for the seven main U.S. ISOs (CAISO, ERCOT, MISO, SPP, PJM, NYISO, and ISO-NE).  
 
To produce generation profiles, we first collect weather data at the main U.S. utility-scale PV and 
wind locations identified by U.S. Energy Information Administration (EIA) Form 860 for the ISOs 
indicated above [64]. This process results in 2,117 unique PV and 617 unique wind locations. We 
consider only existing locations rather than all potential locations to ensure that our analysis only 
considers sites with a proven resource and ability to site a utility-scale plant.  
 
We download solar irradiance data from the National Renewable Energy Laboratory’s (NREL’s) 
National Solar Radiation Data Base using the corresponding latitude and longitude information 
from EIA [65]. To create the solar generation profiles for a single-axis tracking plant, we use 
NREL’s System Advisor Model (SAM), which outputs both AC—which passes PV panel production 
through an inverter—and DC solar production profiles [66]. For these simulations, we use default 
system losses of 14% and an inverter efficiency of 96%.  
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We develop wind power estimates at existing wind plants using the average 2018 power curve for 
installed U.S. wind plants [67]. We rely on weather data from the reanalysis product ERA5 [68]. 
ERA5 is produced by the European Centre for Medium-Range Weather Forecasts. ERA5 currently 
provides data for 1979 to the present and has a horizontal resolution of roughly 30 km. To use the 
ERA5 data, we first remove long-term bias in the ERA5 wind speeds for individual plants. To 
debias wind speeds, we use generation records from the first 2–5 years of existing wind plants to 
find the implied average wind speed from the recorded generation, and then we scale ERA5 wind 
speeds to match this implied average wind speed. We then apply these scaled ERA5 wind speed 
time series to our common power curve. Further details on the scaling process can be found in the 
Supplementary Information. 

We collect hourly real-time and day-ahead LMPs and regulation market prices for all seven U.S. 
ISOs from ABB’s Velocity Suite data product (covering 52,307 nodal prices) [69]. Most wind or 
solar plants are assigned to a corresponding LMP node within the ABB product. For plants not 
assigned to a node, we use a nearest-neighbor algorithm to identify the closest match for a specific 
year. 

Table 3-1 displays the count of locations run through our optimization program by ISO and 
location type. A number of the wind and solar plants collected by EIA are small and thus not likely 
applicable to utility-scale coupled projects. In our results, we only consider solar and wind plant 
locations with powerplant sizes greater than 5 MW-AC, to avoid concerns that some smaller 
generators would not be suitable locations for utility-scale plants. The high-volatility nodes are 
selected with three filters: (1) must exist for all years in sample (2012–2019), (2) are in the top 20th 
percentile of volatility for a given market, and (3) are at least 10 km away from each other. From 
this filtered list, we select the most volatile node and 30th most volatile node for analysis as 
discussed in Section 3.1. 
 

ISO Solar Wind High Volatility 
CAISO 226 48 43 
ERCOT 51 97 84 
ISO-NE 75 19 38 

PJM 212 58 132 
MISO 120 156 35 
SPP 19 116 175 

NYISO 21 21 17 
Total 724 515 524 

Table 3-1: Count of locations modeled by market and generation type after filtering for solar and 
wind sites larger than 5 MW-AC 

Finally, we collect hourly net load data for each market. Net load is the ISO/RTO-reported load 
less the system-wide aggregate solar and wind generation profile, which is also from the ABB 
Velocity Suite. Our capacity cost is then evenly allocated across the top 100 net load hours of the 
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year. After collecting these three different data types, we combine them into hourly time series to 
be used as the main inputs to the optimization formulation discussed above. 
 

3.4. ROBUSTNESS AND SENSITIVITIES  
Our key modeling parameters and their corresponding default and sensitivity assumptions are 
summarized in Table 3-2. The first three assumptions represent the three key coupling constraints 
we model: (1) increased operational constraints due to infrastructure sharing, (2) restrictions on 
grid charging,11 and (3) reduced geographic options for battery siting. Our default assumptions are 
set to explore the uppermost end for the coupling penalty. We individually adjust these default 
assumptions to understand how each contributes to limitations on coupling value. Assumptions 4–
7 represent the subset of input parameters we adjust to test the robustness of our results.  
 
We maintain a wide sweep of geographic locations (1,763 nodes) and historical years (5 total). To 
reduce the scale of the parameter space, we do not adjust the storage size and duration. Rather, we 
base the assumptions for those two parameters on coupled projects currently in the commercial 
development pipeline, as described in prior work [21,24,70]. We ensure the relative AC-based 
generator and battery sizes match between our coupled and standalone VRE/battery 
configurations. 
 

Parameter Default value Sensitivity analysis values 

1. Interconnection limit 
(MW)12 

 VRE capacity VRE + battery capacity 

2. Grid charging  Disallow grid charging Allow grid charging 

3. Independent battery node   Most volatile in given market over 
8-yr period 

30th most volatile in given market over 
8-yr period 

4. Dispatch algorithm Perfect foresight Day-ahead schedule 

5. Degradation penalty  $5/MWh $25/MWh 

11 This assumption affects the ability of a wind or solar plant to qualify for the investment tax credit (ITC), 
which requires 75% of a battery’s energy to come from renewable energy for the first 5 years of operation. 
The production tax credit (PTC), typically used by wind plants (in lieu of an ITC), cannot be applied to 
storage. Coupled wind-battery plants that take the PTC would, as a result, not be constrained to charge from 
the wind plant. However, wind plants can and sometimes have taken the ITC, in which case such plants 
would seek to charge solely or primarily from the wind facility.   
12 The limit is driven by the capacity at the POI requested by the developer from a transmission operator. 
This is a developer choice, rather than a fixed constraint, which is why we perform a sensitivity analysis 
where we increase the POI limit to the maximum capacity of the VRE plus the battery device.  
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6. Ancillary services Exclude regulation value Include regulation value 

7. Solar ILR and coupling 1.3 AC-coupled 1.7 DC-coupled 

8. Wind coupling  AC-coupled N/A 

9. VRE size (MWAC)  100  N/A 

10.  Storage size (%) 50% of generator capacity N/A 

11. Storage duration (hr) 4 N/A 

12. Geographic 1,763 pricing nodes N/A 

13. Years 2012, 2014, 2015, 2017, 2019 N/A 

Table 3-2: Modeling parameter choices 
 
In addition to testing the sensitivity of our results across these parameters, we develop two 
alternative models to further gauge the robustness of our results. The first alternative model 
considers ancillary service markets. We restrict this modeling to only consider the system value in 
regulation reserve markets, rather than other ancillary service markets, owing to their relatively 
high prices [71]. The regulation reserve system value is calculated by multiplying a regulation 
reserve schedule by hourly regulation reserve prices (Eq. 15). Regulation reserve prices are often 
aggregated at the market level with limited geographic differentiation. CAISO is an exception. 
Therefore, we assign each non-CAISO plant in our sample to its corresponding market regulation 
price, while CAISO plants get assigned to their closest ancillary service zone. This system value is 
then added to the corresponding energy and capacity values estimated via Eqs. 1 and 2 (Section 
3.1) for coupled projects and independently sited storage.  
 
We assume independent VRE projects cannot provide ancillary service value, because they 
typically do not participate in those markets in the United States [71]. To generate the regulation 
reserve profile (Ri), we use the same basic optimization algorithms discussed above but add 
additional constraints and terms to the objective function. These additions are detailed in the 
Supplementary Information.  
 
𝐴𝐴𝑆𝑆𝑖𝑖 =  ∑ 𝑉𝑉𝑖𝑖∗ 𝐶𝐶𝑎𝑎𝑎𝑎8760

1
𝐺𝐺𝑉𝑉𝑉𝑉𝑉𝑉

                                   (Eq. 15) 
 
Where, 
ASi = annual ancillary service value of coupled or storage system ($) 
Ri = hourly regulation reserve profile of coupled or storage system (MWh) 
Pas = hourly regulation reserve price ($/MWh) 
GVRE = annual AC generation output from VRE generator (MWh) 
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The second alternative model we implement is a DC-coupled solar-battery plant with an inverter 
loading ratio (ILR) of 1.7. Though AC-coupled systems remain the most popular configuration, 
there is interest in DC-coupled systems owing to their ability to capture energy typically clipped 
by solar inverters [72]. To model these systems, we simulate the DC output for our solar nodes 
using NREL’s SAM without incorporating AC inverter losses. We pass this augmented generation 
profile into an updated optimization algorithm that explicitly models the DC-to-AC conversions 
between the PV system, battery, and grid. The equations used for the DC optimization model are 
detailed in the Supplementary Information. System value results from the DC-coupled model are 
used to determine whether our geographic trends across time are robust. Comparisons on an 
absolute basis to the default case and other sensitivities must be done cautiously, because the full 
comparison would need to consider construction costs, given the larger panels and energy 
production in the DC case. 

4. Results 
We present our results in two sections, each focused on the different evaluation metrics discussed 
in Section 3.1. The first section focuses on the storage value adder, a key indicator of the market 
drivers towards coupling. The second section concentrates on the coupling constraints, a potential 
limitation of these project types. 
 

4.1. ESTIMATES OF THE STORAGE VALUE ADDER  
The value boost of adding storage to a VRE plant ranges from $3–$22/MWh depending on the year 
and region, with an average value of $10/MWh. In 2019, the benefit of adding storage to a wind 
or solar plant in CAISO or ERCOT, as measured by the storage value adder, is $13–$21/MWh. This 
figure is 50%–340% higher than the benefit of adding storage to wind or solar in the other ISOs 
(Figure 4-1). ERCOT’s high storage value adder, however, is limited to 2019, a year with frequent  
scarcity prices topping $9,000/MWh during summer peak periods [73]. The relatively high value 
adder in CAISO after 2015 aligns with changes in that region’s pricing patterns. Increased solar 
penetration made prices low when the sun is out and high when it sets, enabling valuable storage 
arbitrage. CAISO’s higher adder for solar, in particular, shows how coupled batteries partially 
offset the solar value decline resulting from these pricing changes. This result accords with the 
popularity of coupled solar projects over coupled wind projects (Table 1-1). In addition, the grid 
charging and POI constraint become less binding as higher solar penetration levels push high 
electricity prices outside of solar hours. 
 
As context, past research estimated that adding 4-hour batteries sized to 50% of the nameplate 
capacity of a PV plant, comparable to the PV configuration studied here, increases cost by 
$10/MWh [24]. This cost increase is lower than the storage value adder calculated in our default 
case in many regions and notably lower for each year modeled in CAISO. Future battery cost 
reductions are expected [74], which would make coupled-system economics more attractive. 
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In most cases, the relative difference of the storage value adder across ISOs does not strongly 
depend on whether storage is coupled with solar or wind. Though the magnitude of the storage 
value adder for solar averages $2.4/MWh higher than for wind, these differences are partially 
driven by the larger capacity factors for wind, which result in lower levelized energy values rather 
than storage values in particular. This divergence, however, is more pronounced in CAISO, where 
the storage value adder for solar exceeds the adder for wind by $6–$8/MWh in 2017 and 2019, 
surpassing differences resulting from capacity factor effects alone. The steady increase in storage 
value for solar in CAISO correlates with a rise in solar penetration from 2% in 2012 to 19% in 2019 
[10]. Over the same period, the storage value adder for wind in CAISO remains relatively constant. 
Restrictions on POI can particularly affect solar coupling owing to greater alignment of solar 
production and peak periods with high prices. 
 

 

Figure 4-1: Average storage value adder for solar and wind coupled projects by market assuming 
perfect foresight, showing high value for CAISO region 

 
Figure 4-2 breaks out the two components of the storage value adder: (1) coupled project value, 
and (2) VRE generation value. The benefit of adding storage to solar makes up for the decline in 
solar market value in CAISO between 2012 and 2019 (Figure 4-2, top left). Conversely, the value 
of wind in CAISO increases between 2012 and 2019 (Figure 4-2, top right). Thus, adding storage 
further increases, rather than just maintains, the value of the wind coupled projects from 2012 to 
2019 in CAISO, but there is not a corresponding increase in the storage value adder. For ERCOT, 
there is no value decline for wind or solar in the same period, and both types of coupled projects 
see value increases in 2019 with the rise in scarcity prices. This increase in coupled value outpaces 
the rise of the VRE asset value, leading to increases in the storage value adder.  
 

CCEBA COMMENTS EX L 
E-100 Sub 179



CA
IS

O
 

 

 

ER
CO

T 

 

Figure 4-2: Average VRE and coupled values in CAISO and ERCOT, showing different storage value 
adders between 2012 and 2019 (black text) 

 
We find some divergence from these aggregated market results when assessing this metric at 
individual node locations. Figure 4-3 plots the difference between the storage value adder and the 
average storage value adder within a given market at all the wind and solar nodes in our sample. 
For instance, California solar along the Mexican border has a storage value adder about $4/MWh 
above average (i.e., a $26/MWh storage value adder in 2019). These plots suggest that our results 
have limited variation at the nodal level within a market. This result highlights the fact that 
regional wholesale pricing trends across markets are more important than differences brought 
about by historical transmission constraints within the markets. ERCOT is a notable exception, 
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where a few nodes in the western portion of Texas see substantially higher values than the ERCOT 
market average, suggesting extreme nodal variation.  
 

 

Figure 4-3: Geographic variation in storage value adder relative to the market average storage 
value adder for solar and wind coupled projects in 2019. Extreme values in ERCOT range to 

$52/MWh for solar and $91/MWh for wind but are reduced to limit the color scale.  
 
The relatively high storage value adders in CAISO and ERCOT and the similar magnitude of the 
storage value adder for wind and solar in most ISOs are found across a wide range of sensitivity 
cases (see the Supplementary Information). Increasing the assumed degradation penalty from 
$5/MWh to $25/MWh consistently reduces all storage value adders by $1–$3/MWh. Across most 
years and ISOs, allowing grid charging and increasing the POI limit increases the storage value 
adders by $2–$18/MWh for solar and $1–$6/MWh for wind, with the biggest changes in ERCOT 
as described below. Changing the solar coupling to a 1.7-ILR DC-coupled system maintains the 
same trends across ISOs and years, except the storage value adder is $6/MWh lower in ERCOT in 
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2019 owing to the revenue from generation during scarcity hours being spread over a larger annual 
generation level.13 The day-ahead schedule algorithm, which schedules the battery using day-
ahead rather than real-time prices, decreases the storage adder for wind and solar coupled projects 
by $2–$11/MWh, with negligible changes in the relative magnitude of solar’s storage value adder 
over wind’s. 
 
Only one sensitivity case significantly changes the finding that storage adders are highest for 
CAISO relative to other regions. When the coupled project provides regulation reserve services, 
the storage value adder increases by $5–$55/MWh above the default case. This boost is particularly 
high for PJM in 2014, and the storage value adder in ISO-NE surpasses the adder in CAISO for 
2015–2017, suggesting particularly lucrative ancillary service markets in those regions.  
 
However, regulating reserve requirements are relatively small. The requirement in ISO-NE in 
particular (60 MW) is too small to benefit large penetrations of coupled renewable-battery projects 
and storage technologies [71]. Across all seven ISOs, the demand for regulating reserves is 2–6 GW. 
The battery storage proposed in those markets is an order of magnitude greater, potentially leading 
to a situation in which the regulating reserves supply will swamp demand and thus depress prices 
for these services [24]. In such a scenario, we would expect the large effect of this sensitivity case 
on our results to drop significantly.  
 
Allowing grid charging and relaxing the shared POI constraint have interesting effects in CAISO 
and ERCOT. In CAISO, the storage value adder increases by $10/MWh in 2012 compared to a 
smaller increase of $3/MWh in 2019 when removing the constraints (see the Supplemental 
Information). The effect is even more noticeable in ERCOT, where relaxing these constraints 
increases the 2019 storage value adder for solar in ERCOT by $20/MWh compared to only 
$5/MWh on average for the other years studied. 
 
Prior research has shown that in CAISO in 2012, solar generation aligned with periods of high 
prices, and by 2019 high-price periods shifted to early evening after sunset while low prices shifted 
to the middle of the day [10]. Under these pricing conditions, there is less opportunity cost 
associated with charging from solar in the middle of the day in 2019 as compared to 2012. Limiting 
the POI capacity to the VRE AC capacity is less binding in 2019, because storage can fully discharge 
during high net-load periods after sunset. A similar result occurs in ERCOT in 2019, where the 
POI and grid charging constraints limit the coupled project’s opportunity to discharge during 
scarcity events. Both these results indicate that storage and solar would ideally both provide power 
to the grid during the afternoon scarcity price events, though this constraint is less important if 
high prices are not aligned with solar or wind production. 

13 This effect is unique to ERCOT because of the very high scarcity prices concentrated in a limited set of hours 
that happen to align with peak solar hours, where the maximum capacity of the coupled system is limited by the 
POI constraint rather than energy limitation.  
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4.2. QUANTIFYING THE COUPLING PENALTY 

Section 4.1 focuses on the additional value from adding storage to VRE. This section quantifies a 
potential drawback by considering the three coupling constraints of co-location: (1) geographic 
restrictions on battery siting, (2) limitations on shared infrastructure capacity, and (3) restrictions 
on grid charging. To do so, we compare the value of a coupled project with the value of the same 
equipment (VRE and batteries) sited independently.  
 
We find that the coupling constraint is significant using our default assumptions. The value of 
independently sited VRE and storage exceeds the value of coupled projects in all markets and years, 
except for wind in ERCOT in 2012 (Figure 4-4). Across most markets and years, the coupling 
penalty is $2–$50/MWh, averaging $12.5/MWh. These results are sensitive to the POI and grid 
charging assumptions, which are distinct from the geographic siting constraint. When relaxing 
these two constraints, this penalty drops by $5/MWh on average (see the Supplementary 
Information). 
 
There is a particularly high coupling penalty ($30–$50/MWh) for NYISO between 2012 and 2015 
owing to the particularly high value for independently sited storage in NYISO’s Long Island region 
during these years. Aligned with this finding, 98% of proposed batteries are to be sited 
independently from VRE in NYISO’s interconnection queues [21]. In SPP and ERCOT, 62% and 
63% of proposed batteries, respectively, are to be sited independently from VRE, compared with 
only 36% in CAISO. 
 

 

Figure 4-4: Average coupling penalty for solar and wind projects by market assuming perfect 
foresight, showing consistently positive penalty values 
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The positive coupling penalty across markets and years suggests that storage value at our selected 
high-volatility node is higher than the value of storage at solar and wind nodes (Figure 4-5). On 
the other hand, regions with similar value between node types do not have a significant coupling 
penalty from co-location. ISO-NE in particular shows very little deviation between solar, wind, 
and high-volatility node storage values. This result corresponds to the relatively negligible 
coupling penalty in Figure 4-4 for ISO-NE. ERCOT has the most storage value spread among these 
market regions, but the differentiation between node types is still limited, especially at the extreme 
end of the distribution. Though we could not calculate storage value across all 50,000-plus nodes 
in our seven market regions owing to computational limitations, we calculate the corresponding 
standard deviations for all nodes (see the Supplementary Information). 
 

 

Figure 4-5: Annual standalone storage value across different node types and by market for each 
year between 2012 and 2019 

 
While the median storage value at high-volatility nodes is higher than the corresponding median 
value at wind and solar nodes, there is significant overlap in the distributions. As a result, the high-
value nodes do not always result in higher storage value compared to individual wind and solar 
nodes in specific years (Figure 4-5). In some cases, deploying storage at a VRE location in a coupled 
configuration could be more valuable than independently sited VRE and storage. Still, only 1.5% 
of utility-scale wind and solar locations in our sample have negative values for the coupling penalty 
in our default case. 
 
Figure 4-6 plots the coupled project value on the x-axis and the sum of the independently sited 
VRE and storage value on the y-axis. The dashed gray line represents a coupling penalty of 
$0/MWh. Symbols to the left of the line represent a positive coupling penalty (independent system 
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more valuable), and symbols on the right represent a negative coupling penalty (coupled system 
more valuable). The negative coupling penalties are most common in ERCOT. 

 
Figure 4-6: Comparison of coupled project value to standalone value for all wind and solar nodes 

 
The predominantly positive value for the coupling penalty is robust to the sensitivity cases (see the 
Supplementary Information), but the magnitude of the penalty is substantially reduced in a 
number of them. Applying the lower-volatility, day-ahead schedule, or relaxed grid charging and 
POI constraint cases reduces the magnitude of the average penalty by $4/MWh, $4/MWh, and 
$5/MWh, respectively (Figure 4-7). A combined case incorporating each sensitivity case into one 
case results in a coupling penalty of only $1.6/MWh on average. The ancillary service case, on the 
other hand, increases the coupling penalty by an additional $11/MWh. 

CCEBA COMMENTS EX L 
E-100 Sub 179



 
DAH = day-ahead 

Figure 4-7: Average coupling penalty across all nodes and years. Ranges represent 80th to 20th 
percentiles of coupling penalty.  

5.  Discussion  
The results above quantify the potential value of coupling wind or solar with storage, and they 
show the potential loss in value due to coupling the VRE and storage together rather than seeking 
to maximize value by siting each resource independently. However, they do not show the 
difference in cost between coupled and independently sited resources. The economic 
attractiveness of coupling depends on whether the cost savings from coupling outweigh the value 
penalties. 
 
Figure 5-1 compares our detailed coupling penalty estimates with a rough estimate of potential 
cost savings from coupling. It shows the average default coupling penalty, $12.5/MWh, as well as 
penalty reductions due to conditions in our sensitivity cases, which together reduce the penalty to 
$1.6/MWh. In contrast, the potential cost savings from coupling are around $15/MWh—
outweighing our estimated coupling penalties, even in the default case, and making coupled project 
development more attractive than independent siting of battery and VRE technologies on average. 
 
There are reasons to believe that real-world penalties will tend to be lower than the default-case 
penalty as depicted in Figure 5-1. On average, about $5/MWh of the default penalty results from 
the grid charging and POI constraints. Though these constraints appear to be common today [24], 
they are developer decisions. Siting independent battery systems at less-volatile (lower-value) 
nodes offers around $4/MWh in penalty reduction. For our default case, we identify and site 
batteries at high-volatility nodes using historical data. However, predicting future high-volatility 
locations is challenging; the highest-volatility nodes could become saturated with storage, and the 
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prevalence of less-volatile nodes in a region likely make them a more realistic, long-term target 
for battery siting. Finally, assuming a dispatch algorithm with a day-ahead schedule rather than 
perfect foresight is also more realistic and could reduce the coupling penalty by another $3/MWh. 
 
The potential cost savings from coupling in Figure 5-1 entail more uncertainty. Researchers have 
indicated that construction cost synergies for coupled PV-battery projects could reduce total costs 
by 7%–8% compared with the costs of independent PV and battery projects [75]. These studies 
rely on bottom-up engineering estimates, and these modeled savings may be higher or lower in 
reality. Assuming these percentage reductions hold, the savings from coupling could be equivalent 
to roughly $5/MWh, of the same order of magnitude as the coupling penalties we calculate in our 
default and sensitivity cases.14 The ITC could add another roughly $10/MWh to the cost savings 
from coupling, if the battery charges exclusively from the VRE.15 The ITC will step down from 
30% (for projects that began construction by 2019) to 10% (for projects beginning construction in 
2022). Though ITC project cost savings are solely a financial transfer to developers rather than a 
way to minimize system costs, they still incentivize coupling. Even if the ITC were to be 
eliminated, commercial interest in coupled projects would likely remain due to construction cost 
synergies exceeding the magnitude of coupling penalties in many regions. 
 

14 We calculate LCOE ($/MWh) cost savings using benchmark coupled PV-storage power-purchase 
agreement data reported in [70]. The resulting assumptions are: (1) 100-MW, 1.3-ILR PV system with a 30-
year lifetime and 26% capacity factor at $1,414/kW-AC, (2) 50-MW, 4-hour storage system with a 15-year 
lifetime at $400/kWh. The coupling benefit is calculated by multiplying 7% by the LCOE of the combined 
PV-storage system. 
15 The ITC benefit is calculated by multiplying the storage-only LCOE by 30%.  
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Figure 5-1: Comparison of the coupling penalty across the combination of sensitivity cases with 
the potential cost incentives resulting from coupling 

6. Conclusions and Open Research Questions 
We draw several conclusions from this study. First, the recent commercial interest in coupled 
renewable-battery projects broadly accords with our regional estimates of storage value adders. 
This is most apparent for CAISO, which averaged the highest default-case storage value adders 
between 2012 and 2019 as well as the highest percentage of proposed renewable-battery coupling 
at the end of 2020. CAISO’s higher adder for solar, in particular, shows how coupled batteries 
partially offset the solar value decline resulting from the region’s electricity pricing changes driven 
by increasing solar penetrations. As other regions increasingly install solar, they may demonstrate 
greater interest in solar-battery projects as well. 
 
At the same time, the default-case coupling penalty is significant across most markets and years, 
averaging $12.5/MWh or a 21% reduction in the value of independently sited VRE and storage. 
This penalty is, in part, due to geographic restrictions on battery siting. Past considerations for 
solar and wind siting decisions were often limited to resource potential, transmission access, 
market value, and land availability [76,77]. The coupling penalty suggests that adding nodal 
volatility to the list of considerations may become increasingly important in a future with higher 
development of battery and coupled technologies. 
 
However, the default-case case penalties were also driven by limitations on shared infrastructure 
capacity and restrictions on grid charging, and there are reasons to believe that real-world coupling 
penalties will tend to be lower than these default-case penalties. Based on our sensitivity cases, 
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easing the grid charging and POI constraints, which are developer decisions, reduces the default-
case coupling penalty by about $5/MWh. Developers will continue to learn from deployment 
experience, and they will optimize system design and operation decisions to mitigate the impact 
of these constraints. Combining the developer-driven reductions with a day-ahead (rather than 
perfect foresight) dispatch algorithm and lower-volatility (lower-value) siting of independent 
battery systems brings the average penalty to only $1.6/MWh (3% reduction in the value of 
independently sited VRE and storage). This result implies limited divergence in storage arbitrage 
value across pricing nodes within a given market, resulting in little opportunity cost to geographic 
co-location.  
 
Finally, we roughly estimate potential costs savings from coupling at around $15/MWh, including 
construction costs savings and use of the ITC—outweighing our estimated coupling penalties, even 
in the default case, and making coupled project development more attractive than independent 
siting of battery and VRE technologies on average. However, the wide regional variation in 
coupling penalties, along with the importance of conditions captured in our sensitivity cases, 
suggests the tradeoff between coupling penalties and savings will vary by situation. Therefore, 
roles exist for independent and coupled projects from a system optimization perspective, which is 
also consistent with the commercial interest in coupled renewable-battery projects. Furthermore, 
we do not address other system values not currently priced in wholesale markets, such as the 
benefits of mitigating dynamic stability issues in weak grids, but, as shown in a detailed grid-
modeling assessment, these can be another important reason to site storage near renewables [49]. 
 
As storage technologies continue to develop, there remain many open research questions. First, 
there is a need to understand how our results might change under high VRE and storage 
penetrations [78]. For instance, ancillary service markets are small today but could become 
increasingly important as VRE growth increases the need for ancillary service products. 
Furthermore, there is interaction among VRE and storage penetration and the ultimate size of the 
energy arbitrage potential, which is a challenge we did not address with our price-taker 
formulation. Estimating the depth of arbitrage opportunity remains an important open question 
for both independent and coupled battery development. Beyond ancillary service markets, coupled 
projects may have other hard-to-quantify option values associated with being able to adapt the 
operating strategy to fit evolving grid needs. 
 
Second, researchers should investigate the most cost-effective coupled configurations. When 
developers make coupling design decisions—decisions that depend on absolute rather than relative 
system value—they will choose between configurations beyond those we model here, considering 
market prices and construction costs. We focus on today’s most popular commercial 
configurations, but many options might be better suited to different system needs. 
 
Lastly, more research is needed on the ultimate operational benefits and costs of coupled systems. 
Our system value metrics are based on an optimistic case assuming perfect foresight and a 
pessimistic case from an implementable day-ahead scheduling algorithm. More sophisticated 
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methods that incorporate prediction algorithms will be needed to clarify any operational synergies 
between co-located VRE and battery storage systems compared with independently sited 
configurations. 
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11. Supplementary Information 
 

11.1. ADDITIONAL MODEL DETAILS 
 
More details on the day-ahead schedule algorithm 
 
The day-ahead schedule algorithm differs from the perfect foresight algorithm in three ways: 1) 
the renewable resource and energy pricing inputs of the optimization program, 2) the operation of 
renewable generation curtailment, and 3) the energy revenue calculation. First, we take as inputs 
an hourly time series of day-ahead energy market prices (instead of the real-time prices used in 
the perfect foresight case) and an hourly time series of renewable capacity factors shifted forward 
24 hours, such that each hour in the modeling year is assigned the capacity factor corresponding 
to the day before, hence using the renewable resource of a given day as an estimate for the day 
after. We use these inputs in the optimization program described in Section 3.2 to generate the 
coupled project and standalone storage plants’ optimal schedules.  
 
We post-process the results to assess the optimal schedules’ operational feasibility using the actual 
renewable capacity factor time series. When real-time prices are negative, the renewable resource 
is curtailed to zero, regardless of whether there is enough storage capacity to charge the battery 
further. When the charging and discharging of the battery in the optimal schedule are unfeasible 
under the actual renewable resource, it is revised to account for the actual renewable generation, 
resulting in a corrected dispatch. When grid charging is allowed, grid imports and exports will be 
modified to satisfy the optimal schedule. We calculate the revenue for the coupled project and 
standalone storage plant by multiplying the real-time energy market prices by the corrected 
dispatch of the plants. 
 
Debiasing of wind speeds 
 
The first step in the wind debiasing process was to take raw ERA5 wind speeds at model levels 
ranging up to roughly 140 meters above ground and interpolate these wind speeds to the hub 
height of each plant. We then estimated wind energy at hub height so as to best match recorded 
generation. We used a power curve that was selected to match the technology found at each wind 
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plant (power curves were compiles from thewindpower.net database). Average losses were applied 
to the output of the power curve, including a 2% loss for availability, and a 15% loss for electrical, 
wake, and other losses. These losses were based on estimates in Clifton et al. [79]. Additionally, a 
small (<10%) adjustment was made to account for lower air density associated with elevation. A 
simplification here is that these losses were specified as constant across hours, though some of the 
losses would, in actuality, vary by hour. 
 
An iterative process was then used to find the implied long-term average wind speed at each site, 
and develop a debiasing scaler for ERA5 wind time series at each site. The plant-specific modeled 
generation was compared to recorded generation from months 13-60 of each plant. Wind speeds 
were then iteratively scaled and run through the plant-specific power curve until the average 
generation matched the recorded average generation over the selected period. This process created 
one scaler per plant in our sample. For newer plants, we allowed the generation matching to occur 
over fewer months, requiring at least 1 year of data to match on, or at least 2 years then of project 
life. The first year of each project was not included in this debiasing process to account for teething 
issues and phased deployment of turbines.  
 
After a scaler was found for each plant, it was applied to all hours and years of wind speed. This 
scaling allows long-term model bias from ERA5 to be removed. Finally, these debiased wind speeds 
were combined with a common turbine curve using a 2018 average turbine (2.43 MW, 115.6 m 
rotor) built from SAM [66]. The power curve fit is based on a third-order polynomial curve with 
data between the cut-in and cut-out wind speed. This output is the wind power estimates at 
existing wind plants using a common power curve that we seek. 
 
Expanded optimization model with ancillary service value 
 
Terms bolded in blue below represent the additional terms added to the original optimization 
formulation to take into account regulation reserve values. 
 
Objective function:  
 
  𝑀𝑀𝑆𝑆𝑀𝑀∑ [(𝑃𝑃𝑟𝑟𝑟𝑟 + 𝑃𝑃𝑐𝑐/𝑁𝑁 ∗  𝑁𝑁𝑁𝑁𝑚𝑚) ∗ (𝐺𝐺𝑖𝑖 +  𝜸𝜸𝜸𝜸𝒊𝒊)]8760

1 + [𝜸𝜸𝒊𝒊 ∗  𝑷𝑷𝒂𝒂𝒂𝒂] −  �𝐷𝐷𝑝𝑝 ∗ (𝐵𝐵𝑑𝑑 + 𝐵𝐵𝑐𝑐 + 𝜸𝜸𝜸𝜸𝒊𝒊)�  (Eq. 1) 
 
 
Subject to: 
 
Beginning state of charge:      𝑆𝑆0 = 0                                  (Eq. 2)  
 
State of charge range:       0 ≤ 𝑆𝑆𝑘𝑘 ≤  𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚                       (Eq. 3)  
 
Power in rate:        0 ≤ 𝐵𝐵𝐶𝐶(𝑘𝑘)  ≤  𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚                                                             (Eq. 4) 
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Power out rate:                             0 ≤ 𝐵𝐵𝑑𝑑(𝑘𝑘)  ≤  𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚                                                             (Eq. 5) 
 
Non-simultaneity rule:                 𝐵𝐵𝑑𝑑(𝑘𝑘) + 𝐵𝐵𝐶𝐶(𝑘𝑘)  ≤  𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚                                                     (Eq. 6) 
 
Battery state of charge:       𝑆𝑆𝑘𝑘+1 =  𝑆𝑆𝑘𝑘 + �𝜂𝜂𝐵𝐵𝐶𝐶(𝑘𝑘)− 𝐵𝐵𝑑𝑑(𝑘𝑘)

𝜂𝜂
�                                            (Eq. 7) 

 
AC-grid limits:                   −𝐼𝐼𝑔𝑔𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝐺𝐺𝑖𝑖(𝑘𝑘)  ≤  𝑃𝑃𝑃𝑃𝐼𝐼                             (Eq. 8) 
 
AC-grid balance:                    𝐺𝐺𝑖𝑖(𝑘𝑘) = 𝑊𝑊(𝑘𝑘) + 𝐵𝐵𝑑𝑑(𝑘𝑘)− 𝐵𝐵𝐶𝐶(𝑘𝑘)                                       (Eq. 9) 
 
Regulation constraint:       𝜸𝜸𝒊𝒊 +𝑩𝑩𝑪𝑪(𝒌𝒌)  ≤  𝑩𝑩𝒎𝒎𝒂𝒂𝒎𝒎                                         (Eq. 10) 
 
Regulation constraint:       𝜸𝜸𝒊𝒊 +𝑩𝑩𝒅𝒅(𝒌𝒌)  ≤  𝑩𝑩𝒎𝒎𝒂𝒂𝒎𝒎                                                          (Eq. 11) 
 
Regulation AC constraint:       𝜸𝜸𝒊𝒊 + |𝑮𝑮𝒊𝒊(𝒌𝒌)|  ≤    POI                                                         (Eq. 12) 
 
Where, 
Prt = hourly real time electricity ($/MWh) 
Pc = capacity price ($/MW) 
NLm = hourly indicator ( 0 or 1) for top 100 net-load hour for given market  
N = number of top net-load hours, set to 100 in this analysis (h) 
Gi = hourly net electricity profile of coupled or storage system (MWh)16 
γ  = regulation energy served fraction (%) 
Ri = hourly regulation reserve profile of coupled or storage system (MWh) 
Pas = hourly regulation reserve price ($/MWh) 
Dp = degradation penalty ($/MWh) 
Bd = battery discharging (MWh) 
Bc = battery charging (MWh) 
Bmax = battery max power capacity (MW) 
Sk = battery state of charge at time step k (MWh) 
Smax = total energy capacity of battery (MWh) 
η = battery one-way efficiency (%) 
Ig = binary indicator to allow grid charging (1 allows grid charging, 0 restricts charging to available VRE) 
POI = point of interconnection limit 
Wk = power generated from renewable resource at time step k 
 
 
Expanded optimization model for DC-coupled projects 
 
Terms bolded in blue below represent the additional/changed terms added to the original 
optimization formulation to take into account DC-coupling. 
 

16 For battery systems, this is more explicitly written as Bd - Bc. 
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Objective function:  
 
  𝑀𝑀𝑆𝑆𝑀𝑀∑ [(𝑃𝑃𝑟𝑟𝑟𝑟 + 𝑃𝑃𝑐𝑐/𝑁𝑁 ∗  𝑁𝑁𝑁𝑁𝑚𝑚) ∗ 𝐺𝐺𝑚𝑚𝑐𝑐]8760

1 −  �𝐷𝐷𝑝𝑝 ∗ (𝐵𝐵𝑑𝑑 + 𝐵𝐵𝑐𝑐)�                                               (Eq. 13) 
 
 
Subject to: 
 
Beginning state of charge:      𝑆𝑆0 = 0                              (Eq. 14)  
 
State of charge range:       0 ≤ 𝑆𝑆𝑘𝑘 ≤  𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚                    (Eq. 15)  
 
Power in rate:        0 ≤ 𝐵𝐵𝐶𝐶(𝑘𝑘)  ≤  𝐵𝐵𝑚𝑚𝑎𝑎𝑚𝑚

∝
                                                          (Eq. 16) 

 
Power out rate:                             0 ≤ 𝐵𝐵𝑑𝑑(𝑘𝑘)  ≤  𝐵𝐵𝑚𝑚𝑎𝑎𝑚𝑚

∝
                                                          (Eq. 17) 

 
Non-simultaneity rule:                 𝐵𝐵𝑑𝑑(𝑘𝑘) + 𝐵𝐵𝐶𝐶(𝑘𝑘)  ≤  𝐵𝐵𝑚𝑚𝑎𝑎𝑚𝑚

∝
                                                   (Eq. 18) 

 
Battery state of charge:       𝑆𝑆𝑘𝑘+1 =  𝑆𝑆𝑘𝑘 + �𝝁𝝁𝐵𝐵𝐶𝐶(𝑘𝑘)− 𝐵𝐵𝑑𝑑(𝑘𝑘)

𝝁𝝁
�                                       (Eq. 19) 

 
AC-grid limits:                   −𝐼𝐼𝑔𝑔𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝐺𝐺𝑚𝑚𝑐𝑐(𝑘𝑘)  ≤  𝑃𝑃𝑃𝑃𝐼𝐼                         (Eq. 20) 
 
Inverter-out:   𝑮𝑮𝒐𝒐𝒐𝒐𝒐𝒐−𝒂𝒂𝒂𝒂(𝒌𝒌) = 𝑮𝑮𝒐𝒐𝒐𝒐𝒐𝒐−𝒅𝒅𝒂𝒂(𝒌𝒌) ∗ ∝                                              (Eq. 21) 
 
Inverter-in:   𝑮𝑮𝒊𝒊𝒊𝒊−𝒂𝒂𝒂𝒂(𝒌𝒌) = 𝑮𝑮𝒊𝒊𝒊𝒊−𝒅𝒅𝒂𝒂(𝒌𝒌) ∗ ∝                                                 (Eq. 22) 
 
DC-grid balance:   𝑮𝑮𝒊𝒊𝒊𝒊−𝒅𝒅𝒂𝒂(𝒌𝒌) = 𝑮𝑮𝒐𝒐𝒐𝒐𝒐𝒐−𝒅𝒅𝒂𝒂(𝒌𝒌) + 𝑩𝑩𝑪𝑪(𝒌𝒌) −𝑾𝑾(𝒌𝒌)−𝑩𝑩𝒅𝒅(𝒌𝒌)        (Eq. 23) 
 
AC-grid balance:               𝑮𝑮𝒂𝒂𝒂𝒂(𝒌𝒌) = 𝑮𝑮𝒐𝒐𝒐𝒐𝒐𝒐−𝒂𝒂𝒂𝒂(𝒌𝒌) −  𝑮𝑮𝒊𝒊𝒊𝒊−𝒂𝒂𝒂𝒂(𝒌𝒌)                                    (Eq. 24) 
 
Where, 
Prt = hourly real time electricity ($/MWh) 
Pc = capacity price ($/MW) 
NLm = hourly indicator (0 or 1) for top 100 net-load hour for given market  
N = number of top net-load hours, set to 100 in this analysis (h) 
Gac = hourly AC net electricity profile of DC-coupled system (MWh) 
Dp = degradation penalty ($/MWh) 
Bd = battery discharging (MWh) 
Bc = battery charging (MWh) 
Bmax = battery max power capacity (MW) 
α = inverter efficiency (%) 
Sk = battery state of charge at time step k (MWh) 
Smax = total energy capacity of battery (MWh) 
µ = battery efficiency without inverter losses (%) 
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Ig = binary indicator to allow grid charging (1 allows grid charging, 0 restricts charging to available VRE) 
POI = point of interconnection limit 
Gout-ac = energy out from the AC inverter (MWh) 
Gout-dc = energy out from the battery and/or PV system (MWh) 
Gin-ac = energy in from the AC inverter, that is the grid (MWh) 
Gin-dc = energy into the battery from the AC inverter and/or PV system (MWh) 
Wk = DC power generated from solar resource at time step k 
 
 
 

11.2. STORAGE VALUE ADDER SENSITIVITIES  
 

 
Figure A-11-1: Storage value adder difference using day-ahead schedule algorithm 
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Figure A-11-2: Storage value adder difference using $25/MWh degradation penalty  
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Figure A-11-3: Storage value adder difference while allowing grid charging and increasing POI 

limit  
 

 
Figure A-11-4: Storage value adder difference with regulation value included  
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Figure A-11-5: Storage value adder difference with 1.7-DC coupled  
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Figure A-11-6: Absolute storage value adder for all wind and solar nodes in 2019 
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11.3. COUPLING PENALTY SENSITIVITIES  

 
Figure A-11-7: Coupling penalty with low end high volatile node  

 

 

Figure A-11-8: Coupling penalty assuming day-ahead schedule algorithm 
 

 
Figure A-11-9: Coupling penalty with $25/MWh degradation penalty  
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Figure A-11-10: Coupling penalty while allowing grid charging and increasing the POI limit  
 

 
 

Figure A-11-11: Coupling penalty with regulation value included  
 

 

Figure A-11-12: Coupling penalty with 1.7 DC-coupled system 
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11.4. NODAL METRICS 

The figure below plots the correlation between a node’s annual standard deviation, the metric we 
use to select high-value nodes, and the corresponding standalone storage value from our 
optimization calculation. These figures show high correlations between these two variables across 
all node types, confirming the appropriateness of our high-value node identification strategy. The 
nodes we did not consider showed similar standard deviation distributions to the wind and solar 
nodes (following figure). 

 
Figure A-11-13: Comparison of storage revenue to pricing standard deviation 

 

 

Figure A-11-14: Standard deviation of all nodes in 7 U.S. electricity markets from 2012-2019, with 
total unique node-year count 
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Figure A-11-15: Locations of highest-volatility nodes selected in sample 

 

Figure A-11-16: Locations of 30th most volatile node selected in sample 
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