Evaluation, Measurement, and Verification Report for Virginia Electric and Power Company (Dominion Energy)

CASE NO. PUR-2021-00247 (VIRGINIA)
DOCKET NO. E-22, SUB 645 (NORTH CAROLINA)

PUBLIC VERSION VOLUME 3 of 6

June 15, 2023 Prepared by DNV Energy Insights USA Inc. (DNV)

Appendix F Technical Reference Manual (TRM) for Residential Programs

Dominion Energy Virginia and North Carolina

Protocols to Track Demand-Side Management Programs (DSM) Resource Savings

Version 2022

Prepared by DNV Energy Insights USA, Inc. June 15, 2023

Table of Contents

1	INTRODUCTION	1
1.1	Purpose	1
1.2	Algorithms	2
1.3	Measure life	3
1.4	Data and input values	6
1.5	Peak definition	6
1.6	Participant definitions	8
1.7	Program-specific impacts protocols	10
2	RESIDENTIAL SMART COOLING REWARD PROGRAM, DSM PHASE I	12
2.1 2.1.1	Heating, ventilation, and air conditioning (HVAC) end use Residential AC cycling	12 12
3	RESIDENTIAL APPLIANCE RECYCLING PROGRAM, DSM PHASE VII	15
3.1	Plug Load/Appliance end use	15
3.1.1	Refrigerator and freezer recycling	15
4	RESIDENTIAL HOME ENERGY ASSESSMENT PROGRAM, DSM PHASE VII	29
4.1	Building envelope end use	29
4.1.1	Cool roof	29
4.2	Domestic hot water end use	32
4.2.1 4.2.2	Domestic hot water pipe insulation Heat pump domestic water heater	32 36
4.2.3	Faucet aerator	44
4.2.4	Low-flow showerhead	51
4.2.5	Water heater temperature setback/turndown	56
4.3	Heating, ventilation, and air conditioning (HVAC) end use	60
4.3.1	HVAC upgrade	60
4.3.2	HVAC tune-up	65
4.3.3	ECM fan motor	69
4.3.4	Duct insulation	73
4.3.5	Duct sealing	78
4.4 4.4.1	Lighting end use LED lighting	85 85
5	RESIDENTIAL EFFICIENT PRODUCTS MARKETPLACE PROGRAM, DSM PHASE V	/II92
5.1	Lighting end use	92
5.1.1	Lighting lamps & fixtures	92
5.2	Appliance or Plug Load end use	99
5.2.1	Air purifier	99
5.2.2	Clothes washer	103
5.2.3	Clothes dryer	111
5.2.4	Dehumidifier	115
5.2.5	Dishwasher	118
5.2.6 5.2.7	Freezer Refrigerator	121 124
6	RESIDENTIAL THERMOSTAT PURCHASE AND WEATHER SMART PROGRAM, DS	SM
-	PHASE VIII	
6.2	Heating, ventilation, and air conditioning (HVAC) end use	128
6.2.1	Thermostat purchase and upgrade	128

6.2.2 6.2.3	Smart thermostat behavior- system optimization Behavior- HVAC O&M reports	132 135
7 7.1 7.1.1	RESIDENTIAL SMART THERMOSTAT REWARDS PROGRAM, DSM PHASE VIII Heating, Ventilation, and Air Conditioning (HVAC) End Use Thermostat demand response	136 136 136
8 8.1 8.1.1	RESIDENTIAL CUSTOMER ENGAGEMENT PROGRAM, DSM PHASE VIII	140 140 140
9 9.1 9.1.1 9.2 9.2.1 9.2.2	RESIDENTIAL ENERGY EFFICIENCY KITS PROGRAM, DSM PHASE VIII	142 142 146 146 147
9.2.3 9.3 9.3.1 9.4 9.4.1	Low-flow showerhead Lighting LED lamps Appliance or Plug Load end use Smart strip	147 147 147 147 147
10 10.1 10.1.1 10.1.2 10.1.3 10.1.4	RESIDENTIAL MANUFACTURED HOUSING PROGRAM, DSM PHASE VIII	
10.2 10.2.1 10.2.2 10.2.3 10.2.4 10.2.5 10.2.6	Domestic hot water end use Domestic hot water tank wrap Domestic hot water pipe insulation Heat pump domestic water heater Faucet aerator Low-flow showerhead Water heater temperature setback/turndown	165 165 168 168 169 169
10.3 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 10.3.6 10.3.7 10.3.8	Heating, Ventilation, Air-Conditioning (HVAC) end use AC Cover for wall/window unit Digital switch plate wall thermometer Duct testing & sealing Filter replacement HVAC tune-up HVAC upgrade Smart thermostat installation ECM fan motor	169 169 171 171 172 172 172
10.4 10.4.1 10.5 10.5.1	Lighting LED lamps Plug Load/Appliance end use ENERGY STAR refrigerator	175 175 175 175
11 11.1 11.1.1 11.1.2 11.2	RESIDENTIAL HOME RETROFIT PROGRAM, DSM PHASE VIII Building envelope end use Air sealing Building insulation Domestic hot water end use	

11.2.1	Domestic hot water pipe insulation	177
11.2.2 11.2.3	Faucet aerator Heat pump domestic water heater	177 177
11.2.3	Low-flow showerhead	177
11.2.5	Water Heater temperature setback/turndown	177
11.3	Appliance or Plug Load end use	177
11.3.1	Clothes washer	177
11.3.2 11.3.3	Clothes dryer	177 177
11.3.3	ENERGY STAR refrigerator	177
11. 4 11.4.1	Heating, Ventilation, Air-Conditioning (HVAC) End Use HVAC upgrade	178
11.4.2	HVAC tune-up	178
11.4.3	Duct sealing .	178
11.4.4	ECM fan motor	178
11.4.5	Duct insulation	178
11.4.6	Smart thermostat installation	178
11.5 11.5.1	Lighting end use LED lamps	178 178
12	RESIDENTIAL MULTIFAMILY PROGRAM, DSM PHASE VIII	
12.1	Building envelope end use	180
12.1.1 12.1.2	Air sealing Building insulation	180 180
12.2	Domestic hot water end use	180
12.2.1	Domestic hot water pipe insulation	180
12.2.2	Faucet aerator	180
12.2.3	Low-flow showerhead	180
12.2.4	Water heater temperature setback/turndown	180
12.3	Heating, ventilation, air-conditioning (HVAC) end use	181
12.3.1 12.3.2	HVAC upgrade HVAC tune-up	181 181
12.3.2	Duct testing and sealing	181
12.3.4	Smart thermostat installation	181
12.4	Lighting	181
12.4.1	LED lamps	181
12.5	Appliance or Plug Load end use	181
12.5.1	ENERGY STAR refrigerator	181
12.5.2 12.5.3	Refrigerator coil cleaning	181 181
12.5.3	Refrigerator thermometers Clothes dryer	181
12.5.5	Clothes washer	182
13	RESIDENTIAL ELECTRIC VEHICLE ENERGY EFFICIENCY PROGRAM, DSM PHAS	SE VIII 183
13.1	Appliance or Plug Load end use	183
13.1.1	L2 electric vehicle charger	183
14	RESIDENTIAL ELECTRIC VEHICLE REWARDS PROGRAM, DSM PHASE VIII	189
14.1	Appliance or Plug Load end use	189
14.1.1	L2 Electric vehicle charger-DR	189
15	RESIDENTIAL HVAC HEALTH AND SAFETY PROGRAM, DSM PHASE VIII	191
15.1	Building envelope	191 191
15.1.1	Air sealing	191
15.1.2	Building insulation	191
15.2	Health & safety	192

15.3 15.3.1 15.3.2 15.3.3 15.3.4 15.3.5 15.3.6	Heating, ventilation, air-conditioning end use Heat pump upgrade Duct testing & sealing Duct insulation Heat pump tune-up Programmable thermostat Home ventilation improvement	192 192 192 192 192 192
16	RESIDENTIAL NEW CONSTRUCTION PROGRAM, DSM VIII	196
16.1 16.1.1	Cross cutting end use ENERGY STAR new home	196 196
17	INCOME AND AGE QUALIFYING SOLAR PROGRAM, DSM PHASE IX	200
17.1 17.1.1	Generation Solar PV system	200 200
18	RESIDENTIAL INCOME AND AGE QUALIFYING ENERGY EFFICIENCY PROGRAM, PHASE IX	
18.1 18.1.1 18.1.2	Building envelope end use Air sealing Building insulation	202 202 202
18.2 18.2.1 18.2.2 18.2.3 18.2.4	Domestic hot water end use Domestic hot water pipe insulation Domestic hot water tank wrap Faucet aerator Low-flow showerhead	203 203 203 203 203
18.3 18.3.1	Heating, ventilation, air-conditioning (HVAC) end use HVAC tune-up	203 203
18.4 18.4.1 18.4.2	Lighting end use Duct testing & sealing LED lighting	203 203 203
18.5 18.5.1	Appliance or Plug Load end use Refrigerator	203 203
19	RESIDENTIAL SMART HOME PROGRAM, DSM PHASE IX	204
19.1 19.1.1	Cross-cutting end uses Central Home Energy Management System	204 204
19.2 19.2.1	Heating, ventilation, and air conditioning (HVAC) end use Smart thermostat	211 211
20	RESIDENTIAL VIRTUAL AUDIT PROGRAM, DSM PHASE IX	212
20.1 20.1.1	Building envelope end use Weatherization	212 212
20.2 20.2.1 20.2.2 20.2.3	Domestic hot water end use Domestic hot water pipe insulation Low-flow showerhead Faucet aerator	213 213 213 213
20.3 20.3.1	Lighting end use LED lighting	213 213
20.4 20.4.1	Appliance or Plug Load end use Smart strip	213 213
21 21.1	RESIDENTIAL WATER SAVINGS DEMAND RESPONSE PROGRAM, DSM PHASE IX Domestic hot water end use	214 214

21.1.1	Heat pump domestic water heater (Demand Response)	214	
21.2	Recreation end use	215	
21.2.1	Variable-speed pool pump (Demand Response)	215	
22	RESIDENTIAL WATER SAVINGS ENERGY EFFICIENCY PROGRAM, DSM PHASE	IX216	
22.1	Domestic hot water end use	216	
22.1.1	Heat pump domestic water heater	216	
22.2 22.2.1	Recreation end use Variable-speed pool pump	216 216	
23	REFERENCES	217	
24	SUB-APPENDICES	221	
24.1	Sub-Appendix F1-I: Definition of terms	221	
	• •	222	
24.2	Sub-Appendix F1-II: General equations		
24.3	Sub-Appendix F1-III: Cooling and heating degree days and hours	224	
24.4	Sub-Appendix F1-IV: Residential equivalent full-load hours for HVAC equipment	229	
24.5	Sub-Appendix F1-V: Residential HVAC Equipment Efficiency Ratings	235	
24.6	Sub-Appendix F1-VI: Residential Refrigeration Factors	239	
24.7	Sub-Appendix F1-VII: Residential Lighting Factors	241	
24.8 24.8.1	Sub-Appendix F1-VIII: Residential Account Normalized Annual Consumption Update Summary	260 262	
24.9	Sub-Appendix F1-IX: Billing Analysis	262	
	 -1. Technical Reference Manual DSM Development, Measurement, and Update Cycle 4-1. Regression-based Billing Analysis Method for Single/Group Household Account(s) 		
	1. Measure life assumptions by program		
	2. Definition of peak demand in Reference TRMs		
	Program definitions of participants Regression parameters for the residential AC cycling event season		
	2. Effective Useful Life for lifecycle savings calculations		
Table 2-	3. Summary of update(s)	1	4
	 Input values for refrigerator and freezer recycling input values for refrigerator and freez Model coefficients used for refrigerator-recycling energy savings 		
Table 3-	3. Model coefficients used for freezer-recycling energy savings	1	ξ
	4. Primary adjustment factor unit		
	5. Effective Useful Life for lifecycle savings calculations		
	Summary of update(s) Home Energy Assessment Program measure list		
	2. Programs that offer cool roof		
	3. Input parameters for BEopt models of cool roof		
	4. Effective Useful Life for lifecycle savings calculations		
	5. Summary of update(s)		
	Programs that offer domestic hot water pipe insulation		
	8. Effective Useful Life for lifecycle savings calculations		
Table 4-	9. Summary of update(s)	3	6
Table 4-	10. Programs that offer heat pump domestic water heater	3	7
	11. Input values for the heat pump domestic hot water heater savings calculations		
	12. Consumer electric storage water heater efficiency criteria by storage volume		
I abit 4	TO. ETIGORIVE COGINI FIIC TOLITICOVOIC SAVITIYO CAICUIANOLIO	4	•

Table 4-15. Programs that offer faucet aerator	44
Table 4-16. Input values for faucet aerators savings calculations	46
Table 4-17. Effective Useful Life for lifecycle savings calculations	50
Table 4-18. Summary of update(s)	
Table 4-19. Programs that offer low-flow showerhead	51
Table 4-20. Input values for low-flow shower head savings calculations	52
Table 4-21. Effective Useful Life for lifecycle savings calculations	
Table 4-22. Summary of update(s)	
Table 4-23. Programs that offer water heater temperature setback/turndown	57
Table 4-24. Input values for the water heater temperature setback savings calculations	58
Table 4-25. Effective Useful Life for lifecycle savings calculations	
Table 4-26. Summary of update(s)	
Table 4-27. Programs that offer HVAC upgrade	61
Table 4-28. Input values for heat pump upgrade savings calculations	
Table 4-29. Effective Useful Life for lifecycle savings calculations	65
Table 4-30. Summary of update(s)	
Table 4-31. Programs that offer HVAC tune-up	00
Table 4-32. Input values for HVAC tune-up savings calculations	67
Table 4-33. Effective Useful Life for lifecycle savings calculations	68
Table 4-34. Summary of update(s)	
Table 4-35. Programs that Offer ECM fan motor	
Table 4-36. Input values for ECM fan motors savings calculations	
Table 4-37. Effective Useful Life for lifecycle savings calculations	
Table 4-38. Summary of update(s)	73
Table 4-39. Programs that offer duct insulation	
Table 4-40. Input values for duct insulation savings calculations	
Table 4-41. Effective Useful Life for lifecycle savings calculations	77
Table 4-42. Summary of update(s)	77
Table 4-43. Programs that offer duct sealing	78
Table 4-44. Input values for duct sealing savings calculations	81
Table 4-45. Correction table for blower door subtraction	83
Table 4-46. Effective Useful Life for lifecycle savings calculations	84
Table 4-47. Summary of update(s)	
Table 4-48. Programs that offer LED lighting	85
Table 4-49. Input values for LED lighting savings	
Table 4-50. LED Lighting savings for eligible measures	
Table 4-51. Effective Useful Life for lifecycle savings calculations	
Table 4-52. Summary of update(s)	90
Table 5-1. Residential Efficient Products Marketplace Program measure list	
Table 5-2. Input parameters for lighting lamps and fixtures	93
Table 5-3. Baseline wattage determination	
Table 5-4. Effective Useful Life for lifecycle savings calculations	90
Table 5-5. Summary of update(s)	
Table 5-6. ENERGY STAR minimum smoke CADR/W requirements	
Table 5-7. Input values for air purifier savings calculations	
Table 5-8. Annual electric energy usage by clear air delivery rate (CADR)	
Table 5-9. Effective Useful Life for lifecycle savings calculations	
Table 5-9. Effective Oserul Effector inecycle savings calculations	
Table 5-10. Suffilliary of update(s)	
Table 5-12. Input variables for clothes washer savings calculation	
Table 5-13. IMEF based on efficiency level and loading type	100
Table 5-14. Proportion of total energy consumption based on efficiency level	
Table 5-15. Proportion of savings assumed based on DHW fuel	
Table 5-16. Proportion of savings assumed based on dryer fuel	107
Table 5-17. Integrated water factor (IWF) based on efficiency level and loading type	
Table 5-18. Effective Useful Life for lifecycle savings calculations	
Table 5-19. Summary of update(s)	
Table 5-20. Programs that offer clothes dryer	
Table 5-21. Input variables for clothes dryer savings calculation	112

Table 5-22. Load based on dryer size	113
Table 5-23. CEF _{base} and CEF _{ee} based on product class	113
Table 5-24. Proportion of overall savings from dryer based on fuel type	
Table 5-25. Effective Useful Life for lifecycle savings calculations	115
Table 5-26. Summary of update(s)	
Table 5-27. Input variables for dehumidifier savings calculation	116
Table 5-28. L/kWh _{base} and L/kWh _{ee} for portable dehumidifier based on dehumidifier capacity	116
Table 5-29. Effective Useful Life for lifecycle savings calculations	117
Table 5-30. Summary of update(s)	
Table 5-31. Input variables for dishwasher savings calculations	119
Table 5-32. Effective Useful Life for lifecycle savings calculations	
Table 5-33. Summary of update(s)	
Table 5-34. Input variables for freezer savings calculations	
Table 5-35. Savings based on product category defaults	
Table 5-36. Effective Useful Life for lifecycle savings calculations	123
Table 5-37. Summary of update(s)	
Table 5-38. Programs that offer refrigerator	
Table 5-39. Input variables for refrigerator savings calculation	
Table 5-40. Energy savings factor based on efficiency tier	
Table 5-41. Effective Useful Life for lifecycle savings calculations	126
Table 5-42. Summary of update(s)	
Table 6-1. Programs that offer/involve thermostat upgrades	
Table 6-1. Flograms that offer/involve thermostat upgrades	
Table 6-3. Input variables for thermostat	
Table 6-4. Electric heating and cooling ESF	
Table 6-5. Effective Useful Life for lifecycle savings calculations	
Table 6-6. Summary of update(s)	131
Table 6-7. Input variables for measure smart thermostat-optimization	
Table 6-8. Effective Useful Life for lifecycle savings calculations	
Table 6-9. Summary of update(s)	
Table 6-10. Summary of update(s)	
Table 7-1. Regression parameters for the 2022 thermostat DR event season	
Table 7-2. Effective Useful Life for lifecycle savings calculations	
Table 7-3. Summary of update(s)	139
Table 8-1. Input variables for measure smart thermostat-behavioral	
Table 8-2. Effective Useful Life for lifecycle savings calculations	141
Table 8-3. Summary of update(s)	141
Table 9-1. Residential Energy Efficiency Kits program measure list	142
Table 9-2. Programs that Offer Weatherization	142
Table 9-3. Input variables for weatherization	144
Table 9-4. Cooling and heating kWh/DD values for weatherization types	
Table 9-5. Cool _{Adj} values for each location	
Table 9-6. Effective Useful Life for lifecycle savings calculations	
Table 9-7. Summary of update(s)	
Table 9-8. Programs that offer smart strip	
Table 9-9. Input variables for smart strip	148
Table 9-10. Input values based on install location	149
Table 9-11. Effective Useful Life for lifecycle savings calculations	150
Table 9-12. Summary of update(s)	
Table 10-1. Residential manufactured housing program measure list	151
Table 10-2. Programs that offer air sealing	
Table 10-3. Input variables for air sealing	
Table 10-4. Latent multiplier (LM) values	
Table 10-5. N _{cool} Values	
Table 10-6. N _{heat} Values	
Table 10-7. Effective Useful Life for Lifecycle Savings Calculations	158
Table 10-8. Summary of update(s)	
Table 10-9. Programs that offer building insulation measure	
Table 10-10. Input variables for building insulation	
Table 10 10 mpat valiables for balleting interaction	

Table 10-11. R _{base} values by component type	163
Table 10-12. Framing factor values	
Table 10-13. Effective Useful Life for lifecycle savings calculations	
Table 10-14. Summary of update(s)	
Table 10-15. Programs that offer domestic hot water tank wrap	
Table 10-16. Input variables for domestic hot water tank wrap	166
Table 10-17. Effective Useful Life for lifecycle savings calculations	168
Table 10-18. Summary of update(s)	168
Table 10-19. Input values for AC cover savings calculations	170
Table 10-20. Effective Useful Life for lifecycle savings calculations	170
Table 10-21. Summary of update(s)	171
Table 10-22. Input values for AC cover savings calculations	172
Table 10-23. Effective Useful Life for lifecycle savings calculations	
Table 10-24. Summary of update(s)	
Table 11-1. Home Retrofit Program measure list	176
Table 12-1. Residential / Non-residential Multifamily Program measure list	179
Table 13-1. Input variables for level 2 EV charger	
Table 13-2. ENERGY STAR standby power ratings	187
Table 13-3. Effective Useful Life for lifecycle savings calculations	
Table 13-4. Summary of update(s)	
Table 14-1. Effective Useful Life for lifecycle savings calculations	
Table 14-2 Summary of update	
Table 15-1. Residential HVAC Health and Safety Program measure list	
Table 15-2. Input values for home ventilation improvement savings calculations	193
Table 15-3. Ventilation default cfm and fan efficacy based on application	
Table 15-4. Effective Useful Life for lifecycle savings calculations	
Table 15-5. Summary of update(s)	195
Table 16-1. Input variables for ENERGY STAR new homes	
Table 16-2. Effective Useful Life for lifecycle savings calculations	
Table 16-3. Summary of update(s)	
Table 17-1. Input values for solar PV system savings calculations	
Table 17-2. Effective Useful Life for lifecycle savings calculations	
Table 17-3. Summary of update(s)	
Table 18-1. Residential Income and Age Qualifying Energy Efficiency Program measure list	202
Table 19-1. Residential Smart Home Program measure list	
Table 19-2. Input variables for Central Home Energy Management System	
Table 19-3. Effective Useful Life for lifecycle savings calculations	
Table 19-4. Summary of update(s)	
Table 20-1. Residential Virtual Audit Program measure list	
Table 21-1. Residential Water Savings Demand Response Program measure list	
Table 21-2. Effective Useful Life for lifecycle savings calculations	
Table 21-3. Summary of update	
Table 21-4. Effective Useful Life for lifecycle savings calculations	
Table 21-5. Summary of update	
Table 22-1. Residential Water Savings Energy Efficiency program measure list	
Table 24-1. Summary of update(s)	
Table 24-1. Summary of update(s)	
Table 24-3. Base temperatures by sector and end use	
Table 24-4. Reference cooling and heating degree days	
Table 24-5. Reference cooling and heating degree days	
Table 24-6. Summary of update(s)	
Table 24-7. Cooling and heating equivalent full load hours (EFLH) for residential buildings	230
Table 24-8. Summary of update(s)	
Table 24-9. Residential Baseline and Efficient HVAC Equipment Efficiency Ratings	234 225
Table 24-10. Room Air Conditioner Federal Standard and ENERGY STAR® Minimum Efficiency	233 227
Table 24-11. Summary of Update(s)	
Table 24-12. Default kWh _{base} Based on Category	
Table 24-13. Summary of Update(s)	
Table 24-14. Input Values by Room Type for LED Lighting Savings	

Table 24-15. DCP Values for In-Store Lighting Purchases	243
Table 24-16. Summary of Update(s)	
Table 24-17. 2021 Default Residential Normalized Consumption by Region and Premise Type	
Table 24-18. 2022 Default Residential Normalized Consumption by Region and Premise Type	261
Table 24-19. Summary of Update(s)	262
Table 24-20. Summary of Update(s)	

1 INTRODUCTION

This manual is the Technical Reference Manual (TRM) for demand-side management (DSM) programs approved by State Corporation Commission of Virginia (SCC) Order and the North Carolina Utilities Commission's (NCUC) Orders. These protocols assess gross program impacts and resource savings, including annual electric energy and peak capacity savings, for technologies and measures supported by Virginia Electric and Power Company (Dominion, or the Company) in Virginia and North Carolina. Protocols to determine resource savings for each program are presented for each eligible measure and technology.

1.1 Purpose

This manual was developed to estimate resource savings from installed DSM technologies and measures and provide the primary estimates of annual energy savings and peak demand reductions for tracking, monitoring, and reporting. The consulting firm DNV, under contract with Dominion Energy, developed this manual using industrystandard approaches for estimating annual energy savings and peak demand reductions. This document references authoritative studies in Technical Reference Manuals (TRMs) issued by regulatory agencies in other states, primarily the Maryland/Mid-Atlantic TRM Version 10 (v10) and Mid-Atlantic TRM Versions 9 (v9) and earlier—all facilitated and managed by the Northeast Energy Efficiency Partnerships (NEEP) for its Mid-Atlantic partners of Maryland, Delaware, and the District of Columbia, with significant involvement by the respective states' Public Service Commissions (PSCs). Other reference sources include TRMs and impact study results from California, Connecticut, Maine, Massachusetts, New Jersey, New York, Michigan, North Carolina, Ohio, Pennsylvania, the Tennessee Valley Authority (TVA), and Vermont, as well as other engineering resources such as the American Society of Heating, Refrigeration & Air Conditioner Engineers (ASHRAE), the 2012 International Energy Conservation Code, the National Electrical Manufacturers Association (NEMA) Standards Publication Condensed MG 1-2007, ENERGY STAR®, the US Energy Information Administration Residential Energy Consumption Survey and Commercial Building Energy Consumption Survey, and the Energy Conservatory, Additionally, Dominion's Residential and Non-Residential Energy Use Survey 2019 – 2020, is leveraged for calculation inputs and assumptions.

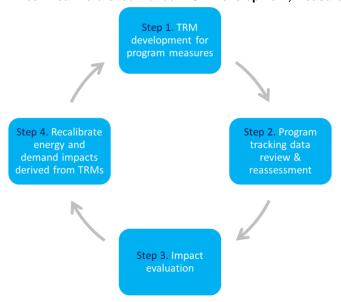

This manual is not intended to be the final word on gross annual electric energy and peak demand reduction estimates. Rather, this manual serves as the foundation for ongoing program operations and as the basis for further refinement through evaluation, measurement & verification (EM&V). Savings estimates from this manual will be coupled with the results of actual EM&V activities to calibrate the annual energy and peak demand reductions estimates derived from to report population-level estimates.

Figure 1-1 shows how these protocols shall be updated regularly to reflect the addition of new programs, modifications to existing programs, updates based on measured data, regulatory requirements, and the results of future program evaluations. Some examples of key drivers to updating and revising this manual include the following:

- Updates of input factors based on primary research
- Updates of input approaches or input factors in source documents of secondary data or revised modeled outputs
- Added efficiency measures
- Corrections of errors in prior versions of the manual

Figure 1-1. Technical Reference Manual DSM Development, Measurement, and Update Cycle

This version of the manual (for the June 15, 2023, Virginia and North Carolina EM&V report filing) applies to the period from January 1 through December 31, 2022, in both states.

1.2 Algorithms

The algorithms calculate gross customer electric savings without counting line losses (from the generator to the customer), spillover, or persistence. A free-ridership assumption is specified for each program. For energy efficiency programs, the algorithms are driven by a change in efficiency level for the installed, energy-efficient (EE) measure compared to a baseline (base) level of efficiency. This change is reflected in both energy savings and demand reductions. The basic algorithms are presented below.

Electric demand savings
$$= \Delta kW = kW_{base} - kW_{ee}$$

Annual electric energy savings
$$= \Delta kWh = \Delta kW \times EFLH$$

Electric summer coincident demand reduction =
$$\Delta kW_{summer} = \Delta kW \times CF_{summer}$$

Electric winter coincident demand reduction =
$$\Delta kW_{winter} = \Delta kW \times CF_{winter}$$

Where:

kW_{base} = baseline connected load

kWee = energy-efficient connected load

EFLH = annual equivalent full load hours of operation for the installed measure

CF_{summer} = summer peak coincidence factor CF_{winter} = winter peak coincidence factor

Algorithms for each of the program measures may incorporate additional factors to reflect specific conditions associated with a program or measure such as accounting for coincidence of multiple installations, or interaction between different measures.¹ In some cases, a savings factor is provided in place of the expanded algorithm if the factor is properly documented and applicable.

1.3 Measure life

Measure lives are provided at the end of each section of this manual devoted to the measures offered as shown in Table 1-1. These are used for estimating lifetime savings for planning or in benefit/cost studies spanning more than one year. Measure lives are included in the initial planning assumptions as filed with the SCC and NCUC state regulatory commissions when each program was considered for approval. Program-level measure lives are a composite estimate of the associated measures that comprise the program. Programs no longer active are still included in this table if their measures are still delivering annual energy savings that are captured in the appendices within the annual report.

Table 1-1. Measure life assumptions by program

DSM Phase	Program	Initial participant month	Final participant month	Final savings month	Effective Useful Measure Life ² (Years)
Residentia	l energy efficiency programs				
1	Residential Lighting Program, DSM Phase I	May 2010	December 2011	April 2021	9.40, all measures
1	Residential Low Income Program, DSM Phase I	April 2010	December 2015	May 2029	13.60, all measures
2	Residential Duct Testing and Sealing Program, DSM Phase II	October 2012	March 2017	February 2035	18.00
2	Residential Heat Pump Tune-Up Program, DSM Phase II	October 2012	March 2017	February 2022	5.00
2	Residential Heat Pump Upgrade Program, DMS Phase II	October 2012	March 2017	February 2032	15.00
2	Residential Home Energy Check- up Program, DSM Phase II	October 2012	March 2017	March 2027	10.00, all measures
4	Residential Appliance Recycling Program, DSM Phase IV	September 2015	July 2017	June 2025	8.00, all measures
4	Residential Income and Age Qualifying Home Improvement Program, DSM Phase IV	October 2015	June 2021	June 2036	14.00 (2015-2017) 15.00 (after 2018), all measures
5	Residential Retail LED Lighting Program, DSM Phase V	August 2017	December 2018	November 2038	20.00, all measures
7	Residential Appliance Recycling Program, DSM Phase VII	September 2019	N/A	N/A	8.00, all measures
7	Residential Efficient Products Marketplace Program, DSM Phase VII	August 2019	N/A	N/A	16.50, all measures

¹ Interactive effects include those from the installation of multiple measures at a single participant site. Where those interactive effects are accounted for in referenced technical reference manuals, they will also be documented in this manual.

² Pre-DSM Phase VIII programs use program-wide, measure-savings-weighted effective useful life (EUL) values for calculating lifetime savings that are based upon program design assumptions; DSM Phase VIII programs and beyond use measure-specific EUL values, instead.

Page 4

DSM Phase	Program	Initial participant month	Final participant month	Final savings month	Effective Useful Measure Life ² (Years)
7	Residential Home Energy Assessment Program, DSM Phase VII	January 2020	N/A	N/A	12.41, all measures
8	Residential Thermostat Purchase and Weather Smart Program, DSM Phase VIII	January 2021	N/A	N/A	1.00 – 7.50
8	Residential Customer Engagement Program, DSM Phase VIII	February 2021	N/A	N/A	1.00
8	Residential Energy Efficiency Kits Program, DSM Phase VIII	July 2021	N/A	N/A	1.71 – 25.00
8	Residential Manufactured Housing Program, DSM Phase VIII	December 2021	N/A	N/A	1.71 – 25.00
8	Residential Home Retrofit Program, DSM Phase VIII	July 2021	N/A	N/A	1.71 – 25.00
8	Residential Multifamily Program, DSM VIII	December 2021	N/A	N/A	1.71 – 25.00
8	Residential Electric Vehicle Energy Efficiency Program, DSM Phase VIII	July 2021	N/A	N/A	10.00
8	Residential HVAC Health and Safety Program, DSM Phase VIII	May 2021	N/A	N//A	5.00 – 25.00
8	Residential New Construction Program, DSM VIII	May 2021	N/A	N/A	25.00
9	Income and Age Qualifying Solar Program, DSM Phase IX	November 2022	N/A	N/A	25.00
9	Residential Income and Age Qualifying Energy Efficiency Program, DSM Phase IX	May 2022	N/A	N/A	1.71 – 25.00
9	Residential Smart Home Program, DSM Phase IX	August 2022	N/A	N/A	5.00 – 15.00
9	Residential Virtual Audit Program, DSM Phase IX	July 2022	N/A	N/A	1.71 – 20.00
9	Residential Water Savings Energy Efficiency Program, DSM Phase IX	September 2022	N/A	N/A	10.00 – 13.00
Non-Resid	lential energy efficiency programs				
1	Commercial HVAC Upgrade Program, DSM Phase I	July 2010	October 2012	September 2027	15.00, all measures
1	Commercial Lighting Program, DSM Phase I	June 2010	December 2014	January 2024	10.10, all measures
2	Non-Residential Duct Testing and Sealing Program, DSM Phase II	November 2012	March 2017	February 2042	25.00
2	Non-Residential Energy Audit Program, DSM Phase II	December 2012	March 2017	February 2024	7.00, all measures
3	Non-Residential Heating and Cooling Efficiency Program, DSM Phase III	November 2014	March 2019	February 2034	15.00, all measures
3	Non-Residential Lighting & Controls Program, DSM Phase III	October 2014	March 2020	April 2030	10.10, all measures

DNV – www.dnv.com

DSM Phase	Program	Initial participant month	Final participant month	Final savings month	Effective Useful Measure Life ² (Years)
3	Non-Residential Window Film Program, DSM Phase III	October 2014	February 2019	January 2029	10.00, all measures
5	Non-Residential Small Business Improvement Program, DSM Phase V	October 2016	February 2021	November 2033	14.00, all measures
6	Non-Residential Prescriptive Program, DSM Phase VI	December 2017	March 2022	June 2028	6.30, all measures
7	Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII	May 2020	N/A	N/A	15.00, all measures
7	Non-Residential Lighting Systems & Controls Program, DSM Phase VII	March 2020	N/A	N/A	10.10, all measures
7	Non-Residential Office Program, DSM Phase VII	November 2020	N/A	N/A	7.00, all measures
7	Non-Residential Small Manufacturing Program, DSM Phase VII	October 2021	N/A	N/A	12.24, all measures
7	Non-Residential Window Film Program, DSM Phase VII	April 2020	N/A	N/A	10.00
8	Non-Residential Midstream Energy Efficient Products Program, DSM Phase VIII	October 2021	N/A	N/A	12.00 – 23.00
8	Non-Residential New Construction Program, DSM Phase VIII	N/A	N/A	N/A	8.00 – 25.00
8	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	May 2021	N/A	N/A	4.00 – 18.00
8	Non-Residential Multifamily Program, DSM Phase VIII	November 2022	N/A	N/A	5.00 - 18.00
9	Non-Residential Agricultural Energy Efficiency Program, DSM Phase IX	August 2022	N/A	N/A	5.00 – 20.00
9	Non-Residential Building Automation System Program, DSM Phase IX	N/A	N/A	N/A	5.00
9	Non-Residential Building Optimization Program, DSM Phase IX	December 2022	N/A	N/A	5.00 – 10.00
9	Non-Residential Engagement Program, DSM Phase IX	N/A	N/A	N/A	5.00
9	Non-Residential Prescriptive Enhanced Program, DSM Phase IX	June 2022	N/A	N/A	4.00 – 20.00
Residentia	l and non-residential peak-shaving	g programs			
1	Residential AC Cycling Program, DSM Phase I	June 2010	N/A	N/A	1.00
2	Non-Residential Distributed Generation Program, DSM Phase II	June 2012	N/A	N/A	1.00

Page 6

DSM Phase	Program	Initial participant month	Final participant month	Final savings month	Effective Useful Measure Life ² (Years)
8	Residential Smart Thermostat Rewards Program, DSM Phase VIII	March 2021	N/A	N/A	1.00
8	Residential Electric Vehicle Rewards Program, DSM Phase VIII	April 2022	N/A	N/A	1.00
9	Residential Water Savings Demand Response Program, DSM Phase IX	N/A	N/A	N/A	1.00

1.4 Data and input values

Input values and algorithms in the protocols and on the program application forms are based primarily on the best available and applicable data for Dominion's programs. In more detail, the input values are taken primarily from two sources: program application forms completed during enrolment, or from standard values based on measured or industry data. As stated earlier, this manual leverages the Maryland/Mid-Atlantic TRM v10 whenever possible.

Many input values, including site-specific data, are taken directly from program application forms, worksheets, and field tools. Site-specific data on the application forms are used for measures with important variations in one or more input values (e.g., delta watts, efficiency rating, capacity, etc.).

Standard input values are based on the best available measured or industry data, including metered data, measured data from prior evaluations (applied prospectively), field data and program results, and standards from industry associations. Many input values are based on evaluations of programs in other similar regions.

For the standard input assumptions for which metered or measured data were not available, the input values (e.g., delta watts, delta efficiency, equipment capacity, operating hours, and coincidence factors) were based on the best available industry data or standards. These input values were developed from a review of literature from industry organizations, equipment manufacturers, and suppliers.

Program evaluation will be used to assess key data and input values to either confirm that current values should continue to be used or update the values going forward.

1.5 Peak definition

Gross coincident peak demand reduction or potential represents the average expected connected load over a peak period defined by the power system operators. In most cases, demand reductions are calculated using a CF, which represents the fraction of the annual average connected load expected to be coincident with the defined peak period.

Peak demand reduction calculations for individual measures in this document are based on the respective source TRM's demand reduction calculations, as referenced in each section. Depending on the TRM referenced and the jurisdiction that it applies to, peak demand reduction can be defined differently per TRM and thus per-measure in this Manual. Table 1-2 lists the peak period definitions for TRMs referenced in this Manual.

DNV – www.dnv.com

The Maryland/Mid-Atlantic TRM v10 uses data and assumptions specific to the Mid-Atlantic region, wherever possible. For this reason, DNV leverages energy and demand calculations from the Maryland/Mid-Atlantic TRM v10 to the fullest extent possible. However, several assumptions and peak coincidence factors (CFs) originate in other regions because they are the most transferable resources available. These other TRMs have some variation in peak performance period definition, geography, climate, and customer characteristics.

Table 1-2. Definition of peak demand in Reference TRMs

Peak period definition source	Dates ³	Hours ⁴	TRMs using this period
Dominion summer peak demand	July	3:00 p.m. – 4:00 p.m.	Applied in this manual
Dominion winter peak demand	January	7:00 a.m. – 8:00 a.m.	Applied in this manual
PJM summer peak performance hours	June 1 – August 31	2 p.m. – 6 p.m.	All versions of the Mid- Atlantic and Maryland/Mid-Atlantic TRM (non-cooling measures); Pennsylvania TRM
Peak performance hours	June 1 – August 31	3 p.m. – 6 p.m. Summer: 3 p.m. – 6 p.m.	Pennsylvania TRM; 2017 Arkansas TRM
ISO New England seasonal peak demand savings	Summer: June 1 – August 31 Winter: December 1 – January 31	Summer: 1 p.m. – 5 p.m. Winter: 5 p.m. – 7 p.m.	2016 Maine Commercial TRM; 2014 Massachusetts TRM
2015 Avoided energy supply costs in New England report	Summer: June – September Winter: October – May	7 a.m. – 11 p.m.	2015 Vermont TRM
Peak performance hours	Summer: June 1 – September 30 Winter: December 1 – March 31	Summer: 2 p.m. – 5 p.m. Winter: 6 a.m. – 8 a.m.	2016 TVA TRM
Summer peak period	Summer: June – August	Summer: 1 p.m. – 4 p.m.	2019 Wisconsin TRM
Peak period	Summer: June – August (Non-weather sensitive) Summer: July 30 (Weather sensitive) Winter: October – May	Summer: 3 p.m. – 6 p.m. (non-weather sensitive) Summer: 6 p.m. (Weather sensitive)	2019 Iowa TRM
Summer system peak	Mid-Atlantic TRM: Summer System Peak days (hottest summer weekdays)	5 p.m.	2014 Mid-Atlantic TRM (cooling measures)
peak	TVA TRM: Summer and Winter System Peak hours	Summer: 10 hottest hours Winter: 10 coldest hours	2013 TVA TRM (weather- sensitive measures)

 $^{^{3}}$ Excluding weekends and federal holidays

⁴ Local time zone

Peak period definition source	Dates ³	Hours⁴	TRMs using this period
	New York TRM: hottest summer day in June through August	5 p.m.	2019 New York TRM
	June 1 – September 30	2 p.m. – 6 p.m.	2018 Michigan Energy Measure Database
Coincident peak	June 1 – August 31	12 p.m. – 8 p.m.	2019 New Jersey Clean Energy Program Protocols to Measure Resource Savings
Coincident summer peak	June 1 – August 31	1 p.m. – 5 p.m.	2019 Illinois TRM

As this Manual provides deemed energy savings and peak demand, impact evaluations conducted on a regular basis can be used to adjust them for Dominion's needs. Dominion's summer peak demand period is defined as the hour ending at 1700 hour on Dominion's July summer peak day for that year. The winter peak demand period is Mondays in January at the hour ending at 0800 hour. Coincidence factor is defined as the ratio of this coincident peak load to annual (non-coincident) peak for that measure's load shape.

Gross coincident demand reduction results are used for comparison against Dominion's program goals for this same metric. They are also used for bidding energy efficiency resources in wholesale electric capacity markets operated by regional bulk power system operators, such as the PJM Reliability Pricing Model and the ISO New England Forward Capacity Market.

1.6 Participant definitions

Participants may be counted differently as shown in Table 1-3, depending upon the program and/or application.

Table 1-3. Program definitions of participants

DSM Phase	Program	DNV definition	IRP definition	
	Residential programs			
7	Residential Home Energy Assessment Program, DSM Phase VII			
7	Residential Efficient Products Marketplace Program, DSM Phase VII	Only the first instance of a		
7	Residential Appliance Recycling Program, DSM Phase VII	Dominion-approved rebate associated with a given electric		
8	Residential Thermostat Purchase and Weather Smart Program, DSM Phase VIII	account ID is counted as a unique participant. It is counted as a		
8	Residential Customer Engagement Program, DSM Phase VIII	participant in the month that their first rebate is approved.		
8	Residential Energy Efficiency Kits Program, DSM Phase VIII	The savings associated with subsequent measure(s) for a	Single instance of electric account ID	
8	Residential Manufactured Housing Program, DSM Phase VIII	repeated electric account ID will be attributed to the month of their		
8	Residential Home Retrofit Program, DSM Phase VIII	Dominion-approved rebate but will not increase the participant tally for		
8	Residential Multifamily Program, DSM Phase VIII	the program.		
8	Residential HVAC Health and Safety Program, DSM Phase VIII			
8	Residential New Construction Program, DSM VIII			
8	Residential Electric Vehicle Energy Efficiency Program, DSM Phase VIII	Account ID, by charger		
9	Income and Age Qualifying Solar Program, DSM Phase IX	Only the first instance of a Dominion-approved rebate		
9	Residential Income and Age Qualifying Energy Efficiency Program, DSM Phase IX	associated with a given electric account ID is counted as a unique		
9	Residential Smart Home Program, DSM Phase IX	participant. It is counted as a participant in the month that their		
9	Residential Virtual Audit Program, DSM Phase IX	first rebate is approved.		
9	Residential Water Savings Energy Efficiency Program, DSM Phase IX	The savings associated with subsequent measure(s) for a repeated electric account ID will be attributed to the month of their Dominion-approved rebate but will not increase the participant tally for the program.		

DSM Phase	Program	DNV definition	IRP definition
	Non-residential programs		
7	Non-Residential Prescriptive Program		
7	Non-Residential Lighting Systems & Controls Program		
7	Non-Residential Heating and Cooling Efficiency Program	Only the first instance of a	
7	Non-Residential Window Film Program	Only the first instance of a Dominion-approved rebate associated with a given electric	
7	Non-Residential Small Manufacturing	account ID is counted as a unique	
7	Non-Residential Office Program	participant. It is counted as a participant in the month that their	
8	Non-Residential Midstream Energy Efficient Products Program	first rebate is approved.	
8	Non-Residential New Construction Program	The savings associated with subsequent measure(s) for a	
8	Non-Residential Small Business Improvement Enhanced Program	repeated electric account ID will be attributed to the month of their	
8	Non-Residential Multifamily Program	Dominion-approved rebate but will	
9	Non-Residential Agricultural Energy Efficiency Program	not increase the participant tally for the program.	
9	Non-Residential Building Automation System Program		
9	Non-Residential Building Optimization Program		
9	Non-Residential Prescriptive Enhanced Program		
9	Non-Residential Engagement Program	A unique electric account ID	
	Peak-shaving programs		
1	Residential AC Cycling Program	A unique electric account ID	Single AC or HP unit
2	Non-Residential Distributed Generation Program	1 MW available to Dominion for dispatch	1 MW of generated energy
8	Residential Electric Vehicle Rewards Program	A unique electric account ID	Single charger
8	Residential Smart Thermostat Rewards Program	A unique electric account ID, by thermostat	Single thermostat
9	Residential Water Savings Demand Response Program	A unique electric account ID, by pool pump or heat pump	Single heat pump or pool pump

1.7 Program-specific impacts protocols

Sections 2 through 23 of this appendix provide descriptions of each program and the protocol for calculating energy savings and demand reductions for the measures under each residential program offered by Dominion. Measure information for Non-Residential programs is provided in Appendix F2.

For each measure, its section gives the energy savings and demand reduction algorithms, input values, default savings calculations, and sources for the protocols. Unless the states in which they are implemented are specifically listed below, the programs are implemented in both Virginia and North Carolina.

For program-specific measure descriptions and savings protocols, click on one of the section links that follow:

- Section 2: Residential Smart Cooling Reward Program, DSM Phase I
- Section 3: Residential Appliance Recycling Program, DSM Phase VII
- Section 4: Residential Home Energy Assessment Program, DSM Phase VII
- Section 5: Residential Efficient Products Marketplace Program, DSM Phase VII
- Section 6: Residential Thermostat Purchase and Weather Smart Program, DSM Phase VIII
- Section 7: Residential Smart Thermostat Rewards Program, DSM Phase VIII
- Section 8: Residential Customer Engagement Program, DSM Phase VIII, Virginia
- Section 9: Residential Energy Efficiency Kits Program, DSM Phase VIII
- Section 10: Residential Manufactured Housing Program, DSM Phase VIII
- Section 11: Residential Home Retrofit Program, DSM Phase VIII
- Section 12: Residential Multifamily Program, DSM Phase VIII
- Section 13: Residential Electric Vehicle Energy Efficiency Program, DSM Phase VIII
- Section 14: Residential Electric Vehicle Rewards Program, DSM Phase VIII, Virginia
- Section 15: Residential HVAC Health and Safety Program, DSM Phase VIII, Virginia
- Section 16: Residential New Construction Program, DSM VIII, Virginia
- Section 17: Income and Age Qualifying Solar Program, DSM Phase IX
- Section 18: Residential Income and Age Qualifying Energy Efficiency Program, DSM Phase IX
- Section 19: Residential Smart Home Program, DSM Phase IX
- Section 20: Residential Virtual Audit Program, DSM Phase IX
- Section 21: Residential Water Savings Demand Response Program, DSM Phase IX
- Section 22: Residential Water Savings Energy Efficiency Program, DSM Phase IX
- Section 23: References
- Section 24: Sub-Appendices

2 RESIDENTIAL SMART COOLING REWARD PROGRAM, DSM PHASE I

2.1 Heating, ventilation, and air conditioning (HVAC) end use

2.1.1 Residential AC cycling

2.1.1.1 Measure description

When AC cycling events are called by the program, a radiofrequency (RF) paging signal is broadcast throughout the Company's service area. The signal is received by load curtailment switches installed on central air conditioners and heat pumps of participating residential customers. The dispatch of the RF signal to the load curtailment switch reduces the duty cycle of the registered AC units up to 50% during an event. The objective of the program is to reduce kW demand during AC cycling events.

2.1.1.2 Evaluation history

At the conclusion of the 2014 program event season, DNV conducted an ex ante regression analysis to predict kW impacts per dispatched AC Cycling participant specific to hour of day and weather conditions. This ex ante value was derived by averaging historical ex-ante impacts over the 2011–2014 event seasons. In 2015, due to the elapsed time between 2011 and 2014, the decline in average connected load per participant and other longitudinal factors, the 2015 ex ante model was based solely on 2015 ex post impacts. Since 2015, ex ante models are built on current year ex post impacts only.

2.1.1.3 Impacts Estimation Approach

The regression equation that DNV used to estimate the ex post kW impacts per participant in 2022 is derived by fitting a linear regression model for each event hour ending 16–18 with the temperature humidity index (THI) as a predictor variable. The event hours included in the ex post analysis is determined by the start and end of each event.⁵

Ex ante event day demand reduction is calculated according to the following equations:

$$Predicted \ Ex \ Ante \ kW \ Impact_{16:00,day} = \hat{\beta}_{0,16:00} + \hat{\beta}_{1,16:00} * (THI_{16:00})$$

$$Predicted \ Ex \ Ante \ kW \ Impact_{17:00,day} = \hat{\beta}_{0,17:00} + \hat{\beta}_{1,17:00} * (THI_{17:00})$$

Predicted Ex Ante kW Impact_{18:00,day} =
$$\hat{\beta}_{0,18:00} + \hat{\beta}_{1,18:00} * (THI_{18:00})$$

Where:

 $Predicted\ Ex\ Ante\ kW\ Impact_{hour}$ = estimated ex ante load impact estimate for hour

 $\hat{\beta}_{0,hour}$ = fixed estimate for the ex-ante kW impact

 $\hat{eta}_{1,hour}$ = increase to the ex ante kW impact estimate when THI increases by one

 THI_{hour} = THI value for a specific hour.

⁵ The impact analysis follows protocols outlined in Miriam L. Goldberg & G. Kennedy Agnew. Measurement and Verification for Demand Response, National Forum on the National Action Plan on Demand Response, https://www.ferc.gov/industries/electric/indus-act/demand-response/dr-potential/napdr-mv.pdf.

The Dominion peak condition for planning purposes is assumed to be 95°F, 43% relative humidity at hour ending 17:00. This corresponds with a THI of 83.4. Therefore, the gross coincident summer peak demand savings are calculated according to the following equations:

Predicted Ex Ante kW Impact_{17:00,day} =
$$\hat{\beta}_{0.17:00} + \hat{\beta}_{1.17:00} * (83.4 THI)$$

$$Predicted Ex Ante kW Impact_{17:00.day} = -1.27324 + 0.02119 * (83.4)$$

2.1.1.4 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 2-1. Regression parameters for the residential AC cycling event season

Component	Туре	Value	Unit	Source
$\widehat{oldsymbol{eta}}_{0,16:00}$	Fixed	-0.95222	kW	Dominion, 2022 AC Cycling Impact Analysis
$\widehat{oldsymbol{eta}}_{0,17:00}$	Fixed	-1.27324	kW	Dominion, 2022 AC Cycling Impact Analysis
$\widehat{oldsymbol{eta}}_{0,18:00}$	Fixed	-1.43379	kW	Dominion, 2022 AC Cycling Impact Analysis
$\widehat{m{eta}}_{1,16:00}$	Fixed	0.01707	kW	Dominion, 2022 AC Cycling Impact Analysis
$\widehat{m{eta}}_{1,17:00}$	Fixed	0.02119	kW	Dominion, 2022 AC Cycling Impact Analysis
$\widehat{m{eta}}_{1,18:00}$	Fixed	0.02341	kW	Dominion, 2022 AC Cycling Impact Analysis
THI _{16:00}	Variable	-	THI	NOAA weather data
THI _{17:00}	Variable	-	THI	NOAA weather data
THI _{18:00}	Variable	-	THI	NOAA weather data

2.1.1.5 Demand reduction

The kW impact per AC Cycling Program participant during Dominion's peak conditions for 2022 is 0.49 kW. DNV conducts a yearly impact analysis to support an ex ante model specification that is based on the ex post impacts for the same period.

Demand reduction is not deemed. All savings are taken from annual impact evaluations.

2.1.1.6 Effective Useful Life

The effective useful life of this measure is provided in Table 2-2.

Table 2-2. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
I	Residential AC cycling program	ential AC cycling program 1.00 years Program design assu		Program design assumption

2.1.1.7 Source

Local weather data gathered from NOAA, National Centers for Environmental Information⁶.

2.1.1.8 Update summary

Updates to this section are described in Table 2-3.

Table 2-3. Summary of update(s)

Version with updates	Update type	Description	
2022 Regression model specification		Regression coefficients for 2022 taken from the 2022 AC Cycling Impact Analysis, DNV	
	New table	Effective Useful Life (EUL) by program	
2021	Regression model specification	Regression coefficients for 2021 taken from the 2021 AC Cycling Impact Analysis, DNV	
2020 Regression model specification		Regression coefficients for 2020 taken from the 2020 AC Cycling Impact Analysis, DNV	
2019	Regression model specification	Regression coefficients for 2019 taken from the 2020 AC Cycling Impact Analysis, DNV	

⁶ https://www.ncei.noaa.gov/

3 RESIDENTIAL APPLIANCE RECYCLING PROGRAM, DSM PHASE VII

The Residential Appliance Recycling Program provides a financial incentive to residential customers to recycle aged refrigerators and/or freezers. Customers are limited to two units per electric account and eligible units must be at least 10 years old and operational.

3.1 Plug Load/Appliance end use

3.1.1 Refrigerator and freezer recycling

3.1.1.1 Measure description

Under this measure, Dominion will remove older, less efficient refrigerators and/or freezers directly from customers' homes. Savings are realized through the decommissioning of secondary refrigerators or replacing older primary refrigerators with new units.

Baseline kWh is from a linear regression model and energy efficient kWh is a weighted average of the federal baseline maximum energy usage for the measure multiplied by a dummy variable equal to 1 if the unit will be replaced and 0 if not. The coefficients can be found in Table 3-2 and Table 3-3.

3.1.1.2 Impacts Estimation Approach

Per-measure, gross energy savings for refrigerators and freezers are defined in the equations below.

Refrigerators:

$$\begin{split} kWh_{ee} &= \left((0.018333 \times Size + 0.5211) + (0.021573 \times Size + 0.6075) \right. \\ &+ (4.619268 \times Size + 133.76988) \\ &+ (0.11914 \times Size + 4.1692) + (1.455825 \times Size + 52.1465) \\ &+ (0.02268 \times Size + 1.04058) \\ &+ (2.05814 \times Size + 104.3048) \right) \times Replacement \end{split}$$

$$\begin{aligned} kWh_{base} &= \left[0.80460 + (Age \times 0.02107) + (Pre1990 \times 1.03605) + (Size \times 0.05930) \right. \\ &+ (SingleDoor \times -1.75138) + (SideBySide \times 1.11963) \\ &+ (Primary \times 0.55990) \\ &+ \left(\frac{HDD}{365} \times Unconditioned \times -0.04013 \right) \\ &+ \left(\frac{CDD}{365} \times Unconditioned \times 0.02622 \right) \right] \times 365 \times PUF \end{split}$$

Freezers:

$$\Delta kWh = kWh_{base} - kWh_{ee}$$

$$kWh_{ee} = (3.166988 \times Size + 83.87742) + (4.611654 \times Size + 68.19428) \times Replacement$$

$$\begin{split} kWh_{base} &= \left[-0.95470 + (Age \times 0.04536) + (Pre1990 \times 0.54341) \right. \\ &+ \left. (Size \times 0.12023) + (ChestFreezer \times 0.29816) \right. \\ &+ \left. \left(\frac{HDD}{365} \times Unconditioned \times -0.03148 \right) \right. \\ &+ \left. \left(\frac{CDD}{365} \times Unconditioned \times 0.08217 \right) \right] \times 365 \times PUF \end{split}$$

Per-measure gross summer peak coincident peak demand reduction for both refrigerators and freezers are calculated according to the following equation:

$$\Delta kW_{summer} = \frac{\Delta kWh}{8,760} \times TAF_{summer} \times LSAF_{summer}$$

Per-measure gross winter peak coincident peak demand reduction for both refrigerators and freezers are calculated according to the following equation:

$$\Delta kW_{winter} = \frac{\Delta kWh}{8,760} \times CF_{winter}$$

Where:

 ΔkW_{summer} = per-measure gross summer coincident peak demand savings ΔkW_{winter} = per-measure gross winter coincident peak demand savings

kWh_{base} = baseline annual electric energy consumption kWh_{ee} = annual electric energy consumption of efficient unit

Age = age of refrigerator or freezer

Pre1990 = adjustment variables for refrigerators and freezers manufactured before 1990

Size = size of refrigerator or freezer

Replacement = dummy variable for if the recycled freezer or refrigerator will be replaced

SingleDoor = adjustment factor for single-door refrigerators

SideBySide = adjustment factor for side-by-side refrigerators

ChestFreezer = adjustment factor for chest freezers

Primary = adjustment factor for refrigerators or freezers that were primary units

HDD = heating degree days for location of appliance removal CDD = cooling degree days for location of appliance removal

Unconditioned = adjustment factor for refrigerators or freezers in unconditioned space PUF = part-use factor to account for units that do not run throughout the year

TAF_{summer} = temperature adjustment factor LSAF_{summer} = load-shape adjustment factor

3.1.1.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 3-1. Input values for refrigerator and freezer recycling input values for refrigerator and freezer recycling

Component	Туре	Value	Unit	Source(s)
Age	Variable	See customer application Default = 18.61, for refrigerators 23.79, for freezers	years	Customer application Maryland/Mid-Atlantic TRM v10, pp. 67 - 68
Pre1990	Variable	See customer application Default = 0.20 for refrigerators, 0.46 for freezers	_	Customer application Maryland/Mid-Atlantic TRM v10, pp. 67 - 68
Size	Variable	See customer application Default = 19.43, for refrigerators 15.86, for freezers	cubic feet	Customer application Maryland/Mid-Atlantic TRM v10, pp. 67 - 68
SingleDoor	Variable	See customer application Default = 0.02	_	Customer application Maryland/Mid-Atlantic TRM v10, p. 67
SideBySide	Variable	See customer application Default = 0.34	_	Customer application Maryland/Mid-Atlantic TRM v10, p. 67
ChestFreezer	Variable	See customer application Default = 0.21	-	Customer application Maryland/Mid-Atlantic TRM v10, p. 67
Primary	Variable	See Table 3-4	_	Table 3-4
HDD	Variable	Location-dependent value using a base temperature of 65°F	Heating Degree Days (HDD)	Table 24-4 in Sub- Appendix F1-IV: Residential equivalent full-load hours for HVAC
CDD	Variable	Location-dependent value using a base temperature of 65°F	Cooling Degree Days (CDD)	Table 24-4 in Sub- Appendix F1-IV: Residential equivalent full-load hours for HVAC
Unconditioned	Variable	See customer application Default = 0.22 for refrigerators, 0.55 for freezers	_	Customer application Maryland/Mid-Atlantic TRM v10, pp. 67 - 68
PUF	Variable	See customer application	_	Customer application

Component	Туре	Value	Unit	Source(s)
		Default = 0.95, for refrigerators 0.86, for freezers		Maryland/Mid-Atlantic TRM v10, pp. 67 - 68
TAF _{summer}	Fixed	1.23	_	Maryland/Mid-Atlantic TRM v10, p. 68
LSAF _{summer}	Fixed	1.066	_	Maryland/Mid-Atlantic TRM v10, p. 68
CF _{winter}	Fixed	0.418	_	California DEER2011 load profile for residential high efficiency refrigerator and freezer
Replacement	Variable	See customer application	_	Customer application

Table 3-2. Model coefficients used for refrigerator-recycling energy savings

Independent variable description	Estimate coefficient
Intercept	0.80460
Age (years)	0.02107
Pre-1990 (=1 if manufactured pre-1990)	1.03605
Size (cubic feet)	0.05930
Dummy: Single Door (=1 if single door)	-1.75138
Dummy: Side-by-Side (=1 side-by-side)	1.11963
Dummy: Primary Usage Type (=1 if primary unit)	0.55990
Interaction: Located in Unconditioned Space x HDD/365	-0.04013
Interaction: Located in Unconditioned Space x CDD/365	0.02622

Table 3-3. Model coefficients used for freezer-recycling energy savings

Independent variable description	Estimate coefficient
Intercept	-0.95470
Age (years)	0.04530
Pre-1990 (=1 if manufactured pre-1990)	0.54341
Size (cubic feet)	0.12023
Dummy: Chest Freezer Configuration (=1 if chest freezer)	0.29816
Interaction: Located in Unconditioned Space x HDD/365	-0.03148
Interaction: Located in Unconditioned Space x CDD/365	0.08217

Table 3-4. Primary adjustment factor unit

Primary adjustment factor	Value	Sources
Primary	1.00	Customer application
Secondary	0.00	Customer application
Unknown (Default)	0.64	Maryland/Mid-Atlantic TRM v10, p. 67 ⁷

3.1.1.4 Default savings

Savings is calculated in the following manner if variable values are not provided in the data. These are established using default values provided in The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 3-1.

Refrigerators that are not replaced, in Virginia:

$$\Delta kWh = [0.80460 + (Age \times 0.02107) + (Pre1990 \times 1.03605 \\ + (Size \times 0.05930) + (SingleDoor \times -1.75138) \\ + (SideBySide \times 1.11963) + (Primary \times 0.55990) \\ + (HDD/365 \times Unconditioned \times -0.04013) \\ + (CDD/365 \times Unconditioned \times 0.02622)] \times 365 \times PUF$$

Vsing participation population mean values from BGE EY4

$$= \left[0.80460 + (18.61 \, years \times 0.02107) + (0.20 \times 1.03605) + (19.43 \, cu. \, ft. \times 0.05930) + (0.02 \times -1.75138) + (0.34 \times 1.11963) + (0.64 \times 0.55990) + \left(3,863 \frac{HDD}{365} \times 0.22 \times -0.04013\right) + \left(1,436 \frac{CDD}{365} \times 0.22 \times 0.02622\right)\right] \times 365 \times 0.95$$

= 1,105.9 kWh

Refrigerators that are replaced, in Virginia:

$$\Delta kWh = [0.80460 + (Age \times 0.02107) + (Pre1990 \times 1.03605 \\ + (Size \times 0.05930) + (SingleDoor \times -1.75138) \\ + (SideBySide \times 1.11963) + (Primary \times 0.55990) \\ + (HDD/365 \times Unconditioned \times -0.04013) \\ + (CDD/365 \times Unconditioned \times 0.02622)] \times 365 \times PUF \\ - [(0.018333 \times Size + 0.5211) \\ + (0.021573 \times Size + 0.6075) \\ + (4.619268 \times Size + 133.76988) \\ + (0.11914 \times Size + 4.1692) \\ + (1.455825 \times Size + 52.1465) \\ + (0.02268 \times Size + 1.04058) \\ + (2.05814 \times Size + 104.3048)] \times Replacement$$

$$= \left[\left[0.80460 + (18.61 \ years \times 0.02107) + (0.20 \times 1.03605) \right. \right. \\ + (19.43 \ cu. \ ft. \times 0.05930) + (0.02 \times -1.75138) \\ + (0.34 \times 1.11963) + (0.64 \times 0.55990) \\ + \left(3.863 \frac{HDD}{365} \times 0.22 \times -0.04013 \right) \\ + \left(1.436 \frac{CDD}{365} \times 0.22 \times 0.02622 \right) \right] \times 365 \right] \\ - \left[\left[(0.018333 \times 19.43 \ cu. \ ft. + 0.5211) \right. \\ + (0.021573 \times 19.43 \ cu. \ ft. + 0.6075) \right. \\ + (4.619268 \times 19.43 \ cu. \ ft. + 133.76988) \\ + (0.11914 \times 19.43 \ cu. \ ft. + 4.1692) \\ + (1.455825 \times 19.43 \ cu. \ ft. + 52.1465) \\ + (0.02268 \times 19.43 \ cu. \ ft. + 1.04058) \\ + (2.05814 \times 19.43 \ cu. \ ft. + 104.3048) \right] \times 1 \right] \\ = 1,105.9 - 458.1$$

Refrigerators that are not replaced, in North Carolina:

 $= 647.8 \, kWh$

= 1,117.3 kWh

$$\Delta kWh = \left[0.80460 + (18.61 \times 0.02107) + (0.20 \times 1.03605) + (19.43 \times 0.05930) + (0.02 \times -1.75138) + (0.34 \times 1.11963) + (0.64 \times 0.55990) + \left(\frac{2,712}{365} \times 0.22 \times -0.04013 \right) + \left(\frac{1,748}{365} \times 0.22 \times 0.02622 \right) \right] \times 365 \times 0.95$$

DNV - www.dnv.com

Page 22

Refrigerators that are replaced, in North Carolina:

$$\Delta kWh = \left[\left[0.80460 + (18.61 \times 0.02107) + (0.20 \times 1.03605) \right. \right. \\ + (19.43 \times 0.05930) + (0.02 \times -1.75138) \\ + (0.34 \times 1.11963) + (0.64 \times 0.55990) \\ + \left(\frac{2,712}{365} \times 0.22 \times -0.04013 \right) \\ + \left(\frac{1,748}{365} \times 0.22 \times 0.02622 \right) \right] \times 365 \times 0.95 \right] \\ - \left[\left[(0.018333 \times 19.43 \ cu. \ ft. + 0.5211) \right. \\ + (0.021573 \times 19.43 \ cu. \ ft. + 0.6075) \right. \\ + \left. (4.619268 \times 19.43 \ cu. \ ft. + 133.76988) \right. \\ + \left. (0.11914 \times 19.43 \ cu. \ ft. + 4.1692) \right. \\ + \left. (1.455825 \times 19.43 \ cu. \ ft. + 52.1465) \right. \\ + \left. (0.02268 \times 19.43 \ cu. \ ft. + 1.04058) \right. \\ + \left. (2.05814 \times 19.43 \ cu. \ ft. + 104.3048) \right] \times 1 \right] \\ = 1,117.3 - 458.1 \\ = 659.2 \ kWh$$

Freezers that are not replaced, in Virginia:

$$\Delta kWh = \left[-0.95470 + (23.79 \times 0.04536) + (0.46 \times 0.54341) + (15.86 \times 0.12023) + (0.21 \times 0.29816) + \left(\frac{3,863}{365} \times 0.55 \times -0.03148 \right) + \left(\frac{1,436}{365} \times 0.55 \times 0.08217 \right) \right]$$

$$\times 365 \times 0.86$$

$$= 734.0 kWh$$

DNV – www.dnv.com

Freezers that are replaced, in Virginia:

$$\Delta kWh = \left[\left[-0.95470 + (23.79 \times 0.04536) + (0.46 \times 0.54341) \right. \right.$$

$$+ (15.86 \times 0.12023) + (0.21 \times 0.29816)$$

$$+ \left(\frac{3,863}{365} \times 0.55 \times -0.03148 \right) + \left(\frac{1,436}{365} \times 0.55 \times 0.08217 \right) \right]$$

$$\times 365 \times 0.86 \right]$$

$$- \left[\left[(3.166988 \times 15.86 + 83.87742) \right. \right.$$

$$+ (4.611654 \times 15.86 + 68.19428) \right] \times 1 \right]$$

$$= 734.0 - 275.4$$

$$= 458.6 \, kWh$$

Freezers that are not replaced, in North Carolina:

 $= 763.3 \, kWh$

$$\Delta kWh = \left[-0.95470 + (23.79 \times 0.04536) + (0.46 \times 0.54341) + (15.86 \times 0.12023) + (0.21 \times 0.29816) + \left(\frac{2,712}{365} \times 0.55 \times -0.03148\right) + \left(\frac{1,748}{365} \times 0.55 \times 0.08217\right) \right]$$

$$\times 365 \times 0.86$$

Freezers that are replaced, in North Carolina:

$$\Delta kWh = \left[\left[-0.95470 + (23.79 \times 0.04536) + (0.46 \times 0.54341) \right. \right.$$

$$+ (15.86 \times 0.12023) + (0.21 \times 0.29816)$$

$$+ \left(\frac{2,712}{365} \times 0.55 \times -0.03148 \right) + \left(\frac{1,748}{365} \times 0.55 \times 0.08217 \right) \right]$$

$$\times 365 \times 0.86 \right]$$

$$- \left[\left[(3.166988 \times 15.86 + 83.87742) \right. \right.$$

$$+ (4.611654 \times 15.86 + 68.19428) \right] \times 1 \right]$$

$$= 763.3 - 275.4$$

$$= 487.9 \, kWh$$

Summer per-measure gross coincident peak demand savings for both refrigerators and freezers are calculated according to the following equations:

Refrigerators that are not replaced, in Virginia:

$$\Delta kW_{summer} = \frac{\Delta kWh}{8,760} \times TAF_{summer} \times LSAF_{summer}$$
$$= \frac{1,105.94}{8,760} \times 1.23 \times 1.066$$
$$= 0.166 \ kW$$

Refrigerators that are replaced, in Virginia:

$$\Delta kW_{summer} = \frac{647.82}{8,760} \times 1.23 \times 1.066$$

= 0.097 kW

Refrigerators that are not replaced, in North Carolina:

$$\Delta kW_{summer} = \frac{1,117.27}{8,760} \times 1.23 \times 1.066$$

$$= 0.167 \, kW$$

Refrigerators that are replaced, in North Carolina:

$$\Delta kW_{summer} = \frac{659.16}{8,760} \times 1.23 \times 1.066$$
$$= 0.099 \ kW$$

Freezers that are not replaced, in Virginia:

$$\Delta kW_{summer} = \frac{734.03}{8,760} \times 1.23 \times 1.066$$

$$= 0.110 \ kW$$

Freezers that are replaced, in Virginia:

$$\Delta kW_{summer} = \frac{458.58}{8,760} \times 1.23 \times 1.066$$

$$= 0.069 \ kW$$

Freezers that are not replaced, in North Carolina:

$$\Delta kW_{summer} = \frac{763.29}{8,760} \times 1.23 \times 1.066$$

$$= 0.114 \, kW$$

Freezers that are replaced, in North Carolina:

$$\Delta kW_{summer} = \frac{487.85}{8,760} \times 1.23 \times 1.066$$

$$= 0.073 \ kW$$

Winter per-measure gross coincident peak demand savings for both refrigerators and freezers are calculated according to the following equations:

Refrigerators that are not replaced, in Virginia:

$$\Delta kW_{winter} = \frac{\Delta kWh}{8,760} \times CF_{winter}$$
$$= \frac{1,105.94}{8,760} \times 0.418$$
$$= 0.053 \ kW$$

Refrigerators that are replaced, in Virginia:

$$\Delta kW_{winter} = \frac{647.82}{8,760} \times 0.418$$

$$= 0.031 \, kW$$

Refrigerators that are not replaced, in North Carolina:

Units that are not replaced:

$$\Delta kW_{winter} = \frac{1,117.27}{8,760} \times 0.418$$

$$= 0.053 \ kW$$

Refrigerators that are replaced, in North Carolina:

$$\Delta kW_{winter} = \frac{659.16}{8,760} \times 0.418$$

$$= 0.031 \, kW$$

Freezers that are not replaced, in Virginia:

$$\Delta kW_{winter} = \frac{734.03}{8,760} \times 0.418$$

$$= 0.035 \, kW$$

Freezers that are replaced, in Virginia:

$$\Delta kW_{winter} = \frac{458.58}{8,760} \times 0.418$$

$$= 0.022 \, kW$$

Freezers that are not replaced, in North Carolina:

$$\Delta kW_{winter} = \frac{763.29}{8,760} \times 0.418$$

$$= 0.036 \, kW$$

Freezers that are replaced, in North Carolina:

$$\Delta kW_{winter} = \frac{487.8}{8,760} \times 0.418$$

$$= 0.023 \ kW$$

3.1.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 3-5.

Table 3-5. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VII	Residential Appliance and Freezer Recycling Program	8.00	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

3.1.1.6 Sources

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 57-61 and 65-69.

3.1.1.7 Update summary

Updates to this section are described in Table 3-6.

Table 3-6. Summary of update(s)

Version with updates	Update type	Description
2022	None	No change
2021	Source	Updated page numbers / version of the Mid-Atlantic TRM
2021	Equation	Added gross winter peak demand reduction equation

Page 28

Version with updates	Update type	Description	
	New table	Effective Useful Life (EUL) by program	
2020	None	No change	
v10		Initial release	

DNV – www.dnv.com

4 RESIDENTIAL HOME ENERGY ASSESSMENT PROGRAM, DSM PHASE VII

The Residential Home Energy Assessment Program provides energy efficiency measures to homeowners in order to reduce electric use. The measures offered through the program and the sections that contain the savings algorithms for each measure are presented in Table 4-1.

Table 4-1. Home Energy Assessment Program measure list

End use	Measure	Manual section
Building envelope	Cool roof	Section 4.1.1
	Domestic hot water pipe insulation	Section 4.2.1
	Heat pump domestic hot water heater	Section 4.2.2
Domestic hot water	Low-flow aerator	Section 4.2.3
, maio.	Low-flow showerhead	Section 4.2.4
	Water heater temperature setback	Section 4.2.5
	HVAC upgrades	Section 4.3.1
	HVAC tune-up	Section 4.3.2
HVAC	ECM fan motors	Section 4.3.3
	Duct insulation	Section 4.3.4
	Duct sealing	Section 4.3.5
Lighting	LED lighting	Section 4.4.1

The program has been offered in Virginia since 2019.

4.1 Building envelope end use

4.1.1 Cool roof

4.1.1.1 Measure description

The cool roof measure involves the replacement of an existing roof with a roofing material that is designed to reduce the amount of heat absorbed through a home's roof. Cool roof materials have a higher solar reflectance and thermal emittance compared to typical residential roofing products. This reduces the overall heat gain within a home and thereby reduces the cooling load during warm seasons. On the other hand, the decrease in the amount of heat absorbed by the roof also increased the heating load during the cold seasons. Therefore, this measure yields significant energy savings during the warm seasons that are somewhat offset by increased energy usage during the cold season. As such, cool roofs are most beneficial in warm climates.

The baseline condition is the existing home's roofing material whereas the efficient condition is a material that has been rated by the Cool Roof Rating Council and meets ENERGY STAR® roof product performance specifications. Annual electric energy and demand savings are presented for cool roofs according to the rated 3-year reflectance of the installed cool roof product and the type of roof (low-slope, high-slope) on which it is installed.

This measure is offered through different programs listed in Table 4-2 and uses the Impacts Estimation Approach described in this section.

Table 4-2. Programs that offer cool roof

Program name	Section
Residential Home Energy Assessment Program, DSM Phase VII	Section 4.1.1
Residential Manufactured Housing Program, DSM Phase VIII	Section 10.1.3

4.1.1.2 Impacts Estimation Approach

Deemed savings estimates for this measure are developed using BEopt™ 2.8, a program developed and maintained by the U.S. Department of Energy for modeling residential energy-efficiency measures using the EnergyPlus simulation engine. Savings will be calculated based on approved customer applications. The BEopt model uses the collected variables as provided in Table 4-3 and as well as some default assumptions about the home's construction⁸ to calculate the energy saved by installing a cool roof. The default assumptions will be informed by the applicant's house attributes (e.g., number of stories) and HVAC system(s) (e.g., heat pump system), but industry standards are assumed for those characteristics not gathered. The kWh term in the equations below is calculated from the results generated from the baseline- and efficient-case BEopt models. TMY3 weather station data will be assigned based upon the home's location.

Per roof gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = kWh_{base} - kWh_{ee}$$

Per roof gross summer coincident peak demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = kW_{base,summer} - kW_{ee,summer}$$

Per roof gross winter coincident peak demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = kW_{base,winter} - kW_{ee,winter}$$

Where:

 ΔkWh = per-measure gross annual electric energy savings = per-measure gross coincident summer peak demand reduction ΔkW_{summer} ΔkW_{winter} = per-measure gross coincident winter peak demand reduction = gross annual energy consumption of the baseline case kWh_{base} = gross annual energy consumption of the efficient case kWhee kW_{base,summer} = gross coincident summer peak demand of baseline case = gross coincident summer peak demand of efficient case kW_{ee,summer} = gross coincident winter peak demand of baseline case kW_{base,winter} = gross coincident winter peak demand of efficient case kW_{ee,winter}

Wilson, E., C. Engebrecht Metzger, S. Horowitz, and R. Hendron. "2014 Building America House Simulation Protocols," for National Renewable Energy Laboratory, NREL/TP-5500-60988, March 2014

4.1.1.3 Input variable

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

The model inputs are based on the following customer application parameters:

Table 4-3. Input parameters for BEopt models of cool roof

Component	Туре	Value	Units	Source(s)
Total roof area	Variable	See customer application	sq.ft.	Customer application
Cool roof area	Variable	See customer application	sq.ft.	Customer application
Conditioned area	Variable	See customer application	sq.ft.	Customer application
Number of floors	Variable	See customer application	floors	Customer application
Roof type, base	Variable	See customer application	_	Customer application
Roof type, efficient	Variable	See customer application	_	Customer application
Roof color, base	Variable	See customer application	_	Customer application
Roof color, efficient	Variable	See customer application	_	Customer application
Home age	Variable	See customer application	years	Customer application
Ceiling insulation r-value	Variable	See customer application	_	Customer application
Thermal emittance, base	Variable	Based on roof type, base	_	Customer application
Thermal emittance, efficient	Variable	Based on roof type, efficient	_	Customer application
Solar reflectance, base	Variable	Based of roof type, base	_	Customer application
Solar reflectance, efficient	Variable	Based of roof type, efficient	_	Customer application
Above sheathing ventilation	Variable	See customer application	_	Customer application
Roof pitch, average	Variable	See customer application	_	Customer application
Radiant barrier	Variable	See customer application	_	Customer application
Duct in conditioned space	Variable	See customer application	_	Customer application
Duct leakage tested and sealed	Variable	See customer application	_	Customer application

4.1.1.4 Default savings

If the proper values are not available, zero savings will be given for both the gross annual electric energy savings and the gross coincident peak demand reduction.

4.1.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-4.

Table 4-4. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VIII	Residential Manufactured Housing Program, DSM Phase VIII	15.00	years	Texas TRM Residential Measures 2021, p. 235

DSM Phase	Program name	Value	Units	Source(s)
VII	Residential Home Energy Assessment Program, DSM Phase VII	12.41	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

4.1.1.6 Source(s)

The primary source for this deemed savings approach and EUL is the Texas TRM Residential Measures 2021, pp. 209-284. The savings values are derived in BEopt software.

4.1.1.7 Update summary

Updates to this section are described in Table 4-5. Summary of update(s)

Table 4-5. Summary of update(s)

Updates in version	Update type	Description	
2022	None	No change	
2021 New table Effective Useful Life (EUL) by program Equation Added winter peak coincident demand reduction equation		Effective Useful Life (EUL) by program	
		Added winter peak coincident demand reduction equation	
2020		Initial release	

4.2 Domestic hot water end use

4.2.1 Domestic hot water pipe insulation

4.2.1.1 Measure description

This measure realizes energy savings by adding insulation to uninsulated domestic hot water piping. The measure assumes the pipe wrap is installed to the first elbow of the hot water carrying pipe. The baseline condition is uninsulated hot water copper piping.

This measure is offered through different programs listed in Table 4-6 and uses the Impacts Estimation Approach described in this section.

Table 4-6. Programs that offer domestic hot water pipe insulation

Program name	Section
Residential Home Energy Assessment Program, DSM Phase VII	Section 4.2.1
Residential Energy Efficiency Kits Program, DSM Phase VIII	Section 9.2.1
Residential Manufactured Housing Program, DSM Phase VIII	Section 10.2.3
Residential Home Retrofit Program, DSM Phase VIII	Section 11.2.1
Residential/Non-Residential Multifamily Program, DSM Phase VIII	Section 12.2.1
Residential Income and Age Qualifying Energy Efficiency Program, DSM Phase IX	Section 18.2.1
Residential Virtual Audit Program, DSM Phase IX	Section 20.2.1

4.2.1.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \frac{\left(\frac{1}{R_{base}} - \frac{1}{R_{ee}}\right) \times L \times C \times \Delta T \times HOU \times ISR}{3,412 \frac{Btu/h}{kW} \times \eta_{DHW}}$$

Per-measure, gross summer peak coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \frac{\Delta kWh}{HOU} \times CF_{summer}$$

Per-measure, gross winter peak coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \frac{\Delta kWh}{HOU} \times CF_{winter}$$

Where:

ΔkWh = per-measure gross annual electric energy savings

 ΔkW_{Summer} = per-measure gross summer peak coincident demand reduction ΔkW_{Winter} = per-measure gross winter peak coincident demand reduction

R_{base} = assumed R-value of existing uninsulated piping R_{ee} = R-value of existing pipe plus installed insulation

ISR = installation rate

L = length of piping insulated C = circumference of piping

 ΔT = temperature difference between water at the inlet pipe and ambient air

HOU = annual hours of use

 η_{DHW} = recovery efficiency of electric, domestic water heater with storage tank

CF_{summer} = summer peak coincident factor CF_{winter} = winter peak coincident factor

4.2.1.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 4-7. Input values for domestic water heater pipe insulation savings calculations

Component	Туре	Value	Unit	Source(s)
R _{base}	Fixed	1.0	hour·°F· feet²/Btu	Mid-Atlantic TRM v9, p. 1869
Ree	Fixed	4.5	hour·°F· feet²/Btu	Program design
L	Variable	See customer application	feet	Customer application

⁹ Mid-Atlantic TRM v9, p.186. Navigant Consulting Inc., April 2009; "Measures and Assumptions for Demand Side Management (DSM) Planning; Appendix C Substantiation Sheets," p. 77, presented to the Ontario Energy Board. http://www.ontarioenergyboard.ca/oeb/ Documents/EB-2008-0346/Navigant Appendix C substantiation sheet 20090429.pdf. Accessed 3/13/2023.

Page 34

Component	Туре	Value	Unit	Source(s)
		Default = 1		Mid-Atlantic TRM v9, p. 187
С	Variable	See customer application	feet	Customer application
	Variable	Default = 0.13	1001	Mid-Atlantic TRM v9, p. 187
ISR	Variable	Assigned by program: 10 Residential Income and Age Qualifying energy efficiency Program, Residential Home Energy Assessment Program, Residential Manufactured Housing Program, Residential Home Retrofit Program, Residential/ Non- Residential Multifamily Program ISR = 1.0 For the Residential Energy	-	Mid-Atlantic TRM v9, p. 187
		Efficiency Kits Program ISR = 0.56 For the Residential Virtual Audit Program ISR = 0.78		2022 Illinois Statewide Technical Reference Manual for Energy Efficiency v10, p.205
ΔΤ	Fixed	65	°F	Mid-Atlantic TRM v9, p. 187 ¹¹
η рнw	Fixed	0.98	-	Mid-Atlantic TRM v9, p. 187 ¹²
HOU	Fixed	8,760	hour	Mid-Atlantic TRM v9, p. 187
CF _{summer}	Fixed	1.0	_	Mid-Atlantic TRM v9, p. 187 ¹³
CFwinter	Fixed	1.0	_	Mid-Atlantic TRM v9, p. 187 ¹³

4.2.1.4 Default savings

If the proper values are not supplied, a default savings may be applied using conservative input values. The default per-measure gross annual electric energy savings will be assigned according to the following calculation for direct install program.

$$\Delta kWh = \frac{\left(\frac{1}{R_{base}} - \frac{1}{R_{ee}}\right) \times L \times C \times \Delta T \times HOU \times ISR}{3,412 \frac{Btu/h}{kW} \times \eta_{DHW}}$$

DNV – www.dnv.com

 $^{^{\}rm 10}$ The ISR is assigned by the implementation channel.

¹¹ Mid-Atlantic TRM v9, p. 187. Assumes 130°F water leaving the hot water tank and an average basement temperature of 65°F.

¹² Mid-Atlantic TRM v9, p. 187. Electric water heaters have a recovery efficiency of 98%.

 $^{^{\}rm 13}$ Mid-Atlantic TRM v9 does not provide a CF, therefore a CF of 1.0 is implied.

$$=\frac{\left(\frac{1}{1.0}-\frac{1}{4.5}\right)\frac{Btu}{hr\cdot {}^{\circ}\!F\cdot ft^{2}}\times\ 1\,ft\ \times\ 0.13\,ft\ \times\ 65\,{}^{\circ}\!F\ \times\ 8,760\,hours\times 1.0}{3,412\frac{Btu/h}{kW}\times\ 0.98}$$

$$= 17.2 \, kWh$$

The default per-measure gross summer peak coincident demand reductions will be assigned according to the following calculation:

$$\Delta kW_{summer} = \frac{\Delta kWh}{HOU} \times CF_{summer}$$
$$= \frac{17.2 \ kWh}{8,760 \ hours} \times 1.0$$
$$= 0.002 \ kW$$

The default per-measure gross winter peak coincident demand reductions will be assigned according to the following calculation:

$$\Delta kW_{winter} = \frac{\Delta kWh}{HOU} \times CF_{winter}$$
$$= \frac{17.2 \ kWh}{8,760 \ hours} \times 1.0$$
$$= 0.002 \ kW$$

4.2.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-8.

Table 4-8. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
IX	Residential Income and Age Qualifying Energy Efficiency Program, DSM Phase IX			
	Residential Virtual Audit Program, DSM Phase IX	45.00	years	Mid-Atlantic TRM v9,
\/!!!	Residential/Non-Residential Multifamily Program, DSM Phase VIII	15.00	p. 188	
VIII	Residential Energy Efficiency Kits Program, DSM Phase VIII			
	Residential Manufactured Housing Program, DSM Phase VIII			

DSM Phase	Program name	Value	Units	Source(s)
	Residential Home Retrofit Program, DSM Phase VIII			
VII	Residential Home Energy Assessment Program	12.41	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

4.2.1.6 Source(s)

The primary source for this deemed savings approach is the Mid-Atlantic TRM v9, pp. 186-188. The Mid-Atlantic TRM v9 does not include an installation rate which applies to program channels other than direct install. Therefore, the ISR from 2022 Illinois Statewide Technical Reference Manual for Energy Efficiency v10 is referenced.

4.2.1.7 Update summary

Updates to this section are described in Table 4-9.

Table 4-9. Summary of update(s)

Version with updates	Update type	Description	
		Added an installation rate to account for program channels other than direct install and revised the R_{ee} to align with program design assumptions	
2021	New table	Effective Useful Life (EUL) by program	
2021	Equations	Added gross winter peak demand reduction equation	
2020	None	No change	
v10	Source	Updated page numbers / version of the Mid-Atlantic TRM	
VIO	Input variable	Clarified default assumption value	

4.2.2 Heat pump domestic water heater

4.2.2.1 Measure description

This measure involves replacing a electric storage water heater with a heat-pump water heater (HPWH) having an input power rating of less than or equal to 12 kW.¹⁴ The baseline condition is a new electric storage water heater

 $^{^{14}\}underline{\text{CFR 10} \rightarrow \text{Chapter II} \rightarrow \text{Subchapter D} \rightarrow \text{Part 430} \rightarrow \underline{\text{Subpart C}} \rightarrow \S \ 430.2.} \ \text{Maryland/Mid-Atlantic TRM v10, p. 149.}$

satisfying the minimum efficiency standards in effect since December 29, 2016 as provided in Table 4-12. 15,16 For this measure, the ENERGY STAR-qualified heat-pump water heater 17 is considered to be the efficient condition.

This measure is offered through different programs listed in Table 4-10 and uses the Impacts Estimation Approach described in this section.

Table 4-10. Programs that offer heat pump domestic water heater

Program Name	Section
Residential Home Energy Assessment Program, DSM Phase VII	Section 4.2.2
Residential Manufactured Housing Program, DSM Phase VIII	Section 10.2.3
Residential Home Retrofit Program, DSM Phase VIII	Section 11.2.3
Residential Water Savings Energy Efficiency Program, DSM Phase IX	Section 22.1.1

4.2.2.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\begin{split} \Delta kWh &= \left[Gallon_{day} \times 0.195 \frac{MMBtu\; day}{gallon} \times 293.1 \; \frac{kWh}{MMBtu} \times \left(\frac{1}{UEF_{base}} - \frac{1}{UEF_{ee}} \right) \right] \\ &+ kWh_{cooling} - kWh_{heating} \end{split}$$

The equation for calculating UEF_{base uses} the storage volume (V_s) as shown in Table 4-12.

The cooling savings are calculated for the reduction in cooling load—if the water heater is installed in conditioned space—using the equation that follows:¹⁸

$$\begin{split} & = Gallon_{day} \times 365 \; days \times \gamma_{water} \\ & \times \frac{(T_{out} - T_{in}) \times 1.0 \frac{Btu}{lb \cdot {}^{\circ}F} \times WMF_{cool} \times LF_{cool} \times Year_{cool}}{UEF_{ee} \times 1,000 \times EER} \end{split}$$

¹⁵ Docket No. EERE-2015-BT-TP-0007. Maryland/Mid-Atlantic TRM v10, p. 149.

¹⁶ The federal minimum standard for water heaters >55 gallon was increased to EF≥2.0, compared to an EF≥0.907 for water heaters ≤55 gallons. Since the standard went into effect, sales of the larger units have declined dramatically. Evaluators in Maryland hypothesize that customers are using a variety of strategies to avoid the higher efficiency standard including combining multiple smaller water heaters, increasing set points on smaller heaters, etc. To address this concern, some TRM stakeholders recommended that a common practice baseline be used for this measure rather than the minimum federal standard. To maintain consistency with other measures in the Maryland/Mid-Atlantic TRM, however, the decision was made to use the federal minimum efficiency for the standard baseline, recognizing that individual jurisdictions may depart from the federal standard baseline and use a common practice baseline instead (per Maryland/Mid-Atlantic TRM v10, p. 149).

¹⁷ ENERGY STAR® v3.2 Program Requirements for Residential Water Heaters. Maryland/ Maryland/Mid-Atlantic TRM v10, p. 149.

¹⁸ This algorithm calculates the heat removed from the air by subtracting the HPWH electric consumption from the total water heating energy delivered. This is then adjusted to account for the location of the HP unit and the coincidence of the waste with cooling requirements, the efficiency of the central cooling and latent cooling demands.

The heating penalty is calculated for the space heating if the water heater is installed in a conditioned space and the heating fuel type is electric. For non-electric heating fuels there is no kWh penalty. The heating penalty is calculated using the following equation:

$$= Gallon_{day} \times 365 \; days \; \times \gamma_{water}$$

$$\times \frac{(T_{out} - T_{in}) \times 1.0 \frac{Btu}{lb \cdot {}^{\circ}F} \times WMF_{heat} \times LF_{heat} \times Year_{heat}}{UEF_{ee} \times 3,412 \; \frac{Btu}{kWh} \times COP}$$

Per-measure, gross coincident summer peak demand reduction is fixed as follows:

For water heaters with a rated storage volume of 55 gallons or less:19

$$\Delta kW_{summer} = 0.09 \times UEF_{ee} / 3.41$$

For water heaters with a rated storage volume of greater than 55 gallons:²⁰

$$\Delta kW_{summer} = 0.11 \times UEF_{ee} / 3.34$$

Per-measure, gross coincident winter peak demand reduction is fixed as follows:

For water heaters with a rated storage volume of 55 gallons or less:²¹

$$\Delta kW_{winter} = CF_{winter} \times UEF_{ee} / 3.41$$

For water heaters with a rated storage volume of greater than 55 gallons:²²

$$\Delta kW_{winter} = CF_{winter} \times UEF_{ee} / 3.34$$

Where:

ΔkWh = per-measure gross annual electric energy savings

 ΔkW_{summer} = per-measure gross coincident summer peak demand savings ΔkW_{winter} = per-measure gross coincident winter peak demand savings

Gallon_{day} = gallons per day of hot water use per person

UEF_{base} = uniform energy factor (UEF) of electric storage water heater based on minimum federal

standards

UEF_{ee} = uniform energy factor of efficient heat pump water heater

kWh_{cooling} = space cooling savings from conversion of heat in home to water heat

DNV - www.dnv.com

Analysis of special study. Cadmus, "EmPOWER Maryland Heat Pump Water Heater Baseline and Market Analysis", February 2020. The study leveraged HPWH load shapes from "Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters" (https://www.energy.gov/sites/prod/files/2014/01/f7/heat_pump_water_heater_testing.pdf). Maryland/Mid-Atlantic TRM v10, p. 152

²⁰ Ibid.

²¹ Analysis of special study. Cadmus, "EmPOWER Maryland Heat Pump Water Heater Baseline and Market Analysis", February 2020. The study leveraged HPWH load shapes from "Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters" (https://www.energy.gov/sites/prod/files/2014/01/f7/heat_pump_water_heater_testing.pdf). Maryland/Mid-Atlantic TRM v10, p. 152

²² Ibid.

kWh_{heating} = space heating penalty from conversion of heat in home to water heat

Year_{cool} = proportion of year typically requiring space cooling Year_{hot} = proportion of year typically requiring space heating

 γ_{water} = specific weight of water

T_{out} = tank temperature

T_{in} = incoming temperature from well or municipal system

LF_{cool} = equipment installation location – is space conditioned or unconditioned for space cooling LF_{heat} = equipment installation location – is space conditioned or unconditioned for space heating

EER = energy efficiency ratio (EER) of the cooling system

COP = coefficient of performance (COP) of electric heating system

WMF_{cool} = water main factor to account for reduced DHW heating load during summer WMF_{heat} = water main factor to account for reduced DHW heating load during winter

V_s = storage volume

CF_{winter} = winter peak coincidence factor

4.2.2.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 4-11. Input values for the heat pump domestic hot water heater savings calculations

Component	Туре	Value	Unit	Source(s)
Gallon _{day}	Variable	Based on tank capacity: ≤ 55 gallons = 42.6 > 55 gallons = 52.5	gallon/day	Maryland/Mid-Atlantic TRM v10, p. 150 ²³
		Calculated by customer application draw type and tank capacity, see Table 4-12		Maryland/Mid-Atlantic TRM v10, p. 153
UEF _{base}	Variable	Default draw types: Tank capacity ≤50 gallons = Medium draw pattern, Tank capacity >50 gallons = high draw pattern		Maryland/Mid-Atlantic TRM v10, p. 154
	Variable	See customer application	-	Customer application
UEFee		For default see Table 4-12		Maryland/Mid-Atlantic TRM v10, p. 149 ²⁴
		See customer application		Customer application
Vs	Variable	48.3	gallons	Dominion Residential Home Energy Use Survey 2019 - 2020 Appendix B, p. 37 ²⁵
Ywater	Fixed	8.33	lb/gallon	Maryland/Mid-Atlantic TRM v10, p. 150
Tout	Fixed	125.0	°F	Maryland/Mid-Atlantic TRM v10, p. 150
Tin	Fixed	60.9	°F	Maryland/Mid-Atlantic TRM v10, p. 150 ²⁶

 $^{^{23}}$ EmPOWER heat pump water heater program participation in 2018-2019 and participant survey data. Mid-Atlantic TRM v10, p. 150

²⁴ ENERGY STAR minimum qualifying requirements are used as the default value.

²⁵ The weighted average tank volumes is used

²⁶ Navigant Consulting "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 – May 31, 2013) Residential Retrofit Programs." April 4, 2014, Appendix E, p. 66. Mid-Atlantic TRM v10, p. 150.

Component	Туре	Value	Unit	Source(s)
Yearcool	Fixed	0.35	_	Maryland/Mid-Atlantic TRM v10, p. 151
		For Residential Home Energy Assessment Program, See customer application, Use SEER values and convert to EER using Equation 3 and Equation 7.		Customer application
EER	Variable	For Residential Manufactured Housing Program, Residential Home Retrofit Program and Residential Water Savings (EE) Program, see Sub-Appendix F1- V: Residential HVAC Equipment Efficiency Ratings for default apply heat pumps	kBtu/kW- hour	Customer application for cooling system type and the Federal Standard Efficiency Rating
		Default see table appendix, split air conditioning >45 kBtu		Assumed equipment type and the Federal Standard Efficiency Rating
Year _{heat}	Fixed	0.47	_	Maryland/Mid-Atlantic TRM v10, p. 151
	Variable	For Residential Home Energy Assessment Program, See customer application		Customer application
СОР		For Residential Manufactured Housing Program, Residential Home Retrofit Program and Residential Water Savings (EE) Program, see Sub-Appendix F1- V: Residential HVAC Equipment Efficiency Ratings	_	Customer application for cooling system type and the Federal Standard Efficiency Rating
		Default assumes non-electric heating equipment type		Assumed equipment type
LF _{cool}	Variable	See customer application, Conditioned space = 1.0, unconditioned =0.0, unknown = 0.65	_	Maryland/Mid-Atlantic TRM v10, p. 151
LF _{heat}	Variable	See customer application, Conditioned space = 1.0, unconditioned =0.0, unknown = 0.8	_	Maryland/Mid-Atlantic TRM v10, p. 151
WMFcool	Fixed	0.82	_	Maryland/Mid-Atlantic TRM v10, p. 151
WMF _{heat}	Fixed	1.14	_	Maryland/Mid-Atlantic TRM v10, p. 151
CFwinter	variable	If $V_s \le 55$ gallons = 0.167 If $V_s > 55$ gallons = 0.172	_	CA 2021 DEER load profile for 50-gallon and 65-gallon heat pump water heater ²⁷

²⁷ the CF_{winter} values are weighted for single family, multifamily and mobile homes. CA DEER building stock weights are applied.

Table 4-12. Consumer electric storage water heater efficiency criteria by storage volume

Standard	Baseline		Efficient			
Statiualu	≥20 and ≤55 gallons	>55 gallons	≤55 gallons	>55 gallons		
		Very small o (first-hour rating <18 g	Iraw pattern gal.; nom. 10 gal./day)			
	0.8808 -(0.00080 x V _s)	1.9236 -(0.00110 x V _s)	N/A	N/A		
	Low draw pattern (first-hour rating ≥18 and <51 gal.; nom. 38 gal./day)					
2017 Uniform	0.9254 -(0.00030 x V _s)	2.0440 -(0.00110 x V _s)	N/A	N/A		
Energy Factor (UEF) Standard	Medium draw pattern (first-hour rating ≥51 and <75 gal.; nom. 55 gal./day)					
	0.9307 -(0.00020 x V _s)	2.1171 -(0.00110 x V _s)	2.0	2.2		
	High draw pattern (first-hour rating ≥75 gal.; nom. 84 gal./day)					
	0.9349 -(0.00010 x V _s)	2.2418 -(0.00110 x V _s)	2.0	2.3		

If first hour rating is unknown, assume medium draw pattern for electric storage water heaters having ≤ 50-gallon capacity and high draw pattern for those having > 50-gallon capacity.

4.2.2.4 Default savings

If the proper values are not supplied, a default savings may be applied using conservative input values. The default gross annual electric energy savings will be assigned according to the sequence of equations that follow. The values used assume a water heater storage volume of 48.3 gallons and a medium draw pattern.

$$UEF_{base}$$
 = $[0.9307 - (0.0002 \times V_s)]$
= $[0.9307 - (0.0002 \times 48.3)]$
= 0.921

The cooling savings due to using the heat in the house to heat the water is calculated according to the following equation:

$$\begin{aligned} & = Gallon_{day} \times 365 \; days \; \times \gamma_{water} \\ & kWh_{cooling} & \times \frac{(T_{out} - T_{in}) \times 1.0 \frac{Btu}{lb \cdot {}^{\circ}F} \times WMF_{cool} \times LF_{cool} \times Year_{cool}}{UEF_{ee} \times 1,000 \times EER} \end{aligned}$$

DNV - www.dnv.com

$$= 46.2 \frac{gallon}{day} \times 365 \ day \times 8.33 \ lb/gallon$$
$$\times \frac{(125 - 60.9)^{\circ}F \times 1.0 \frac{Btu}{lb \cdot {}^{\circ}F} \times 0.82 \times 0.65 \times 0.35}{2 \times 1,000 \times 11.8 \ kBtu/kW - hour}$$

 $= 71.2 \, kWh$

The heating savings due to using the heat in the house to heat the water is calculated according to the following equation:

$$= Gallon_{day} \times 365 \; days \; \times \gamma_{water}$$

 $kWh_{heating}$

$$\times \frac{(T_{out} - T_{in}) \times 1.0 \frac{Btu}{lb \cdot {}^{\circ}F} \times WMF_{heat} \times LF_{heat} \times Year_{heat}}{UEF_{ee} \times 3,412 \frac{Btu}{kWh} \times COP}$$

$$= 46.2 \frac{gallon}{day} \times 365 \ days \times 8.33 \ lb/gallon$$
$$\times \frac{(125 - 60.9)^{\circ}F \times 1.0 \frac{Btu}{lb \cdot {}^{\circ}F} \times 1.14 \times 0.80 \times 0.47}{2 \times 3,412 \frac{Btu}{kWh} \times 2.04}$$

 $= 277.2 \, kWh$

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \left[Gallon_{day} \times 0.195 \frac{MMBtu}{gallon} \times 293.1 \frac{kWh}{MMBtu} \times \left(\frac{1}{UEF_{base}} - \frac{1}{UEF_{ee}} \right) \right]$$

$$+ kWh_{cooling} - kWh_{heating}$$

$$= \left[46.2 \frac{gallon}{day} \times 0.195 \frac{MMBtu}{gallon} \times 293.1 \frac{kWh}{MMBtu} \times \left(\frac{1}{0.921} - \frac{1}{2.00} \right) \right] + 71.17$$

$$- 277.2$$

$$= 1,340.7 \, kWh$$

The default per-measure gross summer peak coincident demand reductions will be assigned according to the following calculation. The values used assume a water heater with a tank capacity of 55 gallons or less.

$$\Delta kW_{summer} = 0.09 \times UEFee / 3.41$$

= 0.09× 2.00/3.41
= 0.053 kW

The default per-measure gross winter peak coincident demand reductions will be assigned according to the following calculation. The values used assume a water heater with a tank capacity of 55 gallons or less.

$$\Delta kW_{winter} = CF_{winter} \times UEFee / 3.41$$
$$= 0.162 \times 2.00 / 3.41$$
$$= 0.095 \text{ kW}$$

The effective useful life of this measure is provided in Table 4-13.

Table 4-13. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)	
VIII	Residential Home Energy Assessment Program, DSM Phase VII	42.00	years	Maryland/Mid-Atlantic TRM v10, p.	
	Residential Manufactured Housing Program, DSM Phase VIII	13.00		153	
VII	Residential Home Energy Assessment Program, DSM Phase VII	12.41	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)	

4.2.2.5 Source(s)

The primary sources for this deemed savings approach are the Maryland/Mid-Atlantic TRM v10, pp. 149-154 and Mid-Atlantic TRM v9, p. 196. The kWh_{cooling} and kWh_{heating} equations are missing the 365 days/yr in the Maryland/Mid-Atlantic TRM v10. Therefore, the equations used in this section are from the Maryland/Mid-Atlantic TRM v9. The other inputs and assumptions are from the Maryland/Mid-Atlantic v10.

4.2.2.6 Update summary

Updates to this section are described in Table 4-14.

Table 4-14. Summary of update(s)

Updates in version	Update type	Description	
2022	None	No change	
	Equations	Updated the energy savings, demand reduction equation and added winter demand equation	
2021	Input table	Updated default values of UEF $_{ extsf{base}}$ and $V_{\scriptscriptstyle \mathcal{S}}$	
	Default savings	Updated default energy savings and demand reduction values	
	New table	Effective Useful Life (EUL) by program	
2020		Initial release	

4.2.3 Faucet aerator

4.2.3.1 Measure description

This measure realizes energy savings by installing a low-flow faucet aerator in a home's kitchen and/or bathroom. Doing so reduces overall water usage and, in particular, the need to heat water. Faucet aerators are changed from those that deliver an estimated 2.2 gallons per minute (gpm) to low-flow, ≤1.5-gpm aerators.

This measure is offered through various programs as listed in Table 4-15 and uses the Impacts Estimation Approach described in this section.

Table 4-15. Programs that offer faucet aerator

Program name	Section
Residential Home Energy Assessment Program, DSM Phase VI	Section 4.2.3
Residential Energy Efficiency Kits Program, DSM Phase VIII	Section 9.2.2
Residential Manufactured Housing Program, DSM Phase VIII	Section 10.2.4
Residential Home Retrofit Program, DSM Phase VIII	Section 11.2.2
Residential/Non-Residential Multifamily Program, DSM Phase VIII	Section 12.2.2
Residential Income and Age Qualifying Energy Efficiency Program, DSM Phase IX	Section 18.2.3
Residential Virtual Audit Program, DSM Phase IX	Section 20.2.3

4.2.3.2 Impacts Estimation Approach

Per-measure, gross annual water savings are calculated according to the following equation:

$$\Delta Water = [(Flow_{base} \times Throttle_{base}) - (Flow_{ee} \times Throttle_{ee})] \times Minutes_{faucet} \times \\ Qty_{people} \times Flow_{drain} \times 365 \ days$$

DNV - www.dnv.com

Per-measure, gross annual electric energy savings²⁸ are calculated according to the following equation:

$$_{\Delta kWh} \ = \frac{\Delta Water \ \times 8.3 \ lb/gal \cdot Btu/lb/^{\circ} F \times \Delta T \ \times ISR}{\eta_{DHW} \ \times 3,412 \frac{Btu/h}{kW}}$$

Per-measure, gross summer peak coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{Summer} = \frac{\Delta kWh \times CF_{Summer}}{Minutes_{faucet} \times Qty_{people} \times \frac{1 \ hour}{60 \ min.} \times 365 \ days}$$

Per-measure, gross winter peak coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{Winter} = \frac{\Delta kWh \times CF_{Winter}}{Minutes_{faucet} \times Qty_{people} \times \frac{1 \; hour}{60 \; min.} \times 365 \; days}$$

Where:

ΔWater = per-measure gross annual water savings per faucet

 Δ kWh = per-measure gross annual electric energy savings per faucet

 ΔkW_{Summer} = gross summer peak coincident demand reductions ΔkW_{Winter} = gross winter peak coincident demand reductions

Flowbase = baseline faucet flow rate

Flow_{ee} = energy efficient (low-flow) faucet flow rate

Qty_{people} = number of people per household Flow_{drain} = percentage of water flowing down drain

Throttlebase = baseline faucet throttling factor

Throttleee = energy efficient (low-flow) faucet throttling factor

 ΔT = change in temperature of the water used for kitchen and bathroom faucets and

temperature entering the house ($\Delta T = T_{faucet} - T_{in-house}$)

η_{DHW} = recovery efficiency of electric, storage-tank water heater

CF = peak coincidence factor

ISR = installation rate

Delivery_{type} = measure delivery type Room_{type} = location of faucet aerator CF_{summer} = summer peak coincident factor CF_{winter} = winter peak coincident factor

4.2.3.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

²⁸ Maryland/Mid-Atlantic TRM v10, p. 133. Note, the algorithm and variables are provided as documentation for the deemed savings result provided which should be claimed for all faucet aerator installations.

Page 46

Table 4-16. Input values for faucet aerators savings calculations

Component	Туре	Value	Unit	Source(s)
Flow _{base}	Fixed	2.2	gallon/ minute	Maryland/Mid-Atlantic TRM v10, p. 133 ²⁹
Flowee	Fixed	Kitchen: 1.5 Bathroom: 1.0	gallon/ minute	Program design ³⁰
		See customer application		Customer application
Qtypeople	Variable	Default = 2.0	_	Dominion Residential Home Energy Use Survey 2019 - 2020 Appendix B, p. 100
Flowdrain	Variable	Kitchen: 0.5 Bathroom: 0.7	_	Maryland/Mid-Atlantic TRM v10, p. 134 ³¹
Throttlebase	Fixed	0.83	_	Maryland/Mid-Atlantic TRM v10, p. 134
Throttleee	Fixed	0.95	_	Maryland/Mid-Atlantic TRM v10, p. 134 ³²
Minutesfaucet	Variable	Kitchen: 4.5 Bathroom: 1.6	minute/ person/ day	Maryland/Mid-Atlantic TRM v10, p. 134 ³³
ΔΤ	Variable	Kitchen: 32.1 Bathroom: 25.1	°F	Maryland/Mid-Atlantic TRM v10, p. 134 ³⁴
ηрнw	Fixed	0.98	_	Maryland/Mid-Atlantic TRM v10, p. 134 ³⁵
CF _{Summer}	Fixed	0.00262	_	Maryland/Mid-Atlantic TRM v10, p. 135 ³⁶
CFwinter	Fixed	0.00262	_	Maryland/Mid-Atlantic TRM v10, p. 135 ³⁷

DNV - www.dnv.com

²⁹ Maryland/Mid-Atlantic TRM v.10, p. 133. In 1998, the Department of Energy adopted a maximum flow rate standard of 2.2 gpm at 60 psi for all faucets: 63 Fed. Reg. 13307; March 18, 1998.

³⁰ Based on program eligibility requirements.

³¹ Maryland/Mid-Atlantic TRM v10 p. 133. Estimate consistent with Ontario Energy Board, "Measures and Assumptions for Demand Side Management Planning."

³² Maryland/Mid-Atlantic TRM v10, p. 134. Schultdt, Marc, and Debra Tachibana, "Energy Related Water Fixture Measurements: Securing the Baseline for Northwest Single Family Homes. 2008 ACEE Summer Study on Energy Efficiency in Buildings," 2008, page 1-265.

³³ Maryland/Mid-Atlantic TRM v10, p. 134. Cadmus and Opinion Dynamics Evaluation Team. Showerhead and Faucet Aerator Meter Study. For Michigan Évaluation Working Group. June 2013. If aerator location is known, use the corresponding kitchen/bathroom value. If unknown, use 3 min/person/day as the average length of use value, which is the total for the household: kitchen (4.5 min/person/day) + bathroom (1.6 min/person/day) = 6.1 min/person/day/2. Via Pennsylvania TRM.

³⁴ Maryland/Mid-Atlantic TRM v10, p. 134. Navigant Consulting "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 – May 31, 2013) Residential Retrofit Programs." April 4, 2014, Appendix E, page 66.
35 Maryland/Mid-Atlantic TRM v10, p. 134. Electric water heater has recovery efficiency of 98%..

³⁶ Maryland/Mid-Atlantic TRM v10, p. 134. "Calculated as follows: Assume 13% faucet use takes place during peak hours

^{13% * 3.6} minutes per day (10.9 * 2.56 / 3.5 / 2.2 = 3.6) = 0.47 minutes = 0.47 / 180 (minutes in peak period) = 0.00262." Website was provided in Mid-Atlantic TRM and could not be accessed when DNV attempted on 8/4/2016.

³⁷ The source TRM for this measure does not include a winter CF. We apply the summer CF for the coincident winter peak period as it is the best information available.

Component	Туре	Value	Unit	Source(s)
ISR	Variable	Assigned by program: ³⁸ Residential Income and Age Qualifying Energy Efficiency Program, Residential Home Energy Assessment Program, Residential Manufactured Housing Program, Residential Home Retrofit Program, Residential/ Non-Residential Multifamily Program ISR = 1.0	_	Pennsylvania Vol. 2 Res 2019, p. 84
		For the Residential Energy Efficiency Kits Program ISR = 0.60 For the Residential Virtual Audit Program ISR = 0.77		2022 Illinois Statewide Technical Reference Manual for Energy Efficiency v10, p. 227 ³⁹

4.2.3.4 **Default savings**

If the proper values are not supplied, a default savings may be applied using conservative input values. The default per-measure gross annual water savings will be assigned according to the following calculations.

Kitchen:

$$\Delta Water = [(Flow_{base} \times Throttle_{base}) - (Flow_{ee} \times Throttle_{ee})] \times Minutes_{faucet}$$

$$\times Qty_{people} \times Flow_{drain} \times 365 \ days$$

$$= [(2.2 \ gpm \times 0.83) - (1.5 \ gpm \times 0.95)] \times \frac{4.5 \ min./person}{day} \times 2.0 \ people$$

$$\times 0.5 \times 365 \ days$$

$$= 659 \ gallons$$

Bathroom:

³⁸ The ISR is assigned by the implementation channel.
39 The average of kitchen and bathroom aerators are applied.

$$\Delta Water = [(Flow_{base} \times Throttle_{base}) - (Flow_{ee} \times Throttle_{ee})] \times Minutes_{faucet}$$

$$\times Qty_{people} \times Flow_{drain} \times 365 \ days$$

$$= [(2.2 \ gpm \times 0.83) - (1.0 \ gpm \times 0.95)] \times \frac{1.6 \ min./person}{day} \times 2.0 \ people$$

$$\times 0.7 \times 365 \ days$$

$$= 716 \ gallons$$

The default per-measure gross annual electric energy savings for a direst install program will be assigned according to the following calculations:

Kitchen:

$$\Delta kWh = \frac{\Delta Water \times 8.3 \ lb/gal \cdot Btu/lb/^\circ F \times \Delta T \times ISR}{\eta_{DHW} \times 3,412 \frac{Btu/h}{kW}}$$

$$= \frac{658 \ gallons \times 8.3 \ lb/gal \cdot Btu/lb/^\circ F \times 32.1 \ ^\circ F \times 1.0}{0.98 \times 3,412 \frac{Btu/h}{kW}}$$

$$= 52.5 \ kWh$$

Bathroom:

$$\Delta kWh = \frac{\Delta Water \times 8.3 \, lb/gal \cdot Btu/lb/^{\circ}F \times \Delta T \times ISR}{\eta_{DHW} \times 3,412 \frac{Btu/h}{kW}}$$

$$= \frac{716 \, gallons \times 8.3 \, lb/gal \cdot Btu/lb/^{\circ}F \times 25.1 \,^{\circ}F \times 1.0}{0.98 \times 3,412 \frac{Btu/h}{kW}}$$

$$= 44.6 \, kWh$$

The default per-measure gross summer peak coincident demand reductions in a direct install program will be assigned according to the following calculation:

Kitchen:

$$\Delta kW_{summer} = \frac{\Delta kWh \times CF_{summer}}{Minutes_{faucet} \times Qty_{people} \times \frac{1 \ hour}{60 \ min.} \times 365 \ days}$$

$$= \frac{52.48 \ kWh \times 0.00262}{4.5 \ minutes \times 2.0 \ people \times \frac{1 \ hour}{60 \ min.} \times 365 \ days}$$

$$= 0.003 \ kW$$

Bathroom:

$$\Delta kW_{summer} = \frac{\Delta kWh \times CF_{summer}}{Minutes_{faucet} \times Qty_{people} \times \frac{1 \ hour}{60 \ min.} \times 365 \ days}$$

$$= \frac{44.6 \ kWh \times 0.00262}{1.6 \ minutes \times 2.0 \ people \times \frac{1 \ hour}{60 \ min.} \times 365 \ days}$$

$$= 0.006 \ kW$$

The default per-measure gross winter peak coincident demand reductions will be assigned according to the following calculation:

Kitchen:

$$\Delta kW_{winter} = \frac{\Delta kWh \times CF_{winter}}{Minutes_{faucet} \times Qty_{people} \times \frac{1 \ hour}{60 \ min.} \times 365 \ days}$$

$$= \frac{52.48 \ kWh \times 0.00262}{4.5 \ minutes \times 2.0 \ people \times \frac{1 \ hour}{60 \ min.} \times 365 \ days}$$

$$= 0.003 \ kW$$

Bathroom:

$$\Delta kW_{winter} = \frac{\Delta kWh \times CF_{winter}}{Minutes_{faucet} \times Qty_{people} \times \frac{1 \ hour}{60 \ min.} \times 365 \ days}$$

$$= \frac{44.6 \text{ kWh} \times 0.00262}{1.6 \text{ minutes} \times 2.0 \text{ people} \times \frac{1 \text{ hour}}{60 \text{ min.}} \times 365 \text{ days}}$$
$$= 0.006 \text{ kW}$$

4.2.3.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-17.

Table 4-17. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)	
	Residential Multifamily Program, DSM Phase VIII		years		
IX	Residential Income and Age Qualifying Energy Efficiency Program, DSM Phase IX	10.00			
	Residential Virtual Audit Program, DSM Phase IX			Mid-Atlantic TRM 2018, p. 174	
	Residential Energy Efficiency Kits Program, DSM Phase VIII				
VIII	Residential Manufactured Housing Program, DSM Phase VIII				
	Residential Home Retrofit Program, DSM Phase VIII				
VII	Residential Home Energy Assessment Program, DSM Phase VII	12.41	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake) Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)	

4.2.3.6 Source(s)

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp.133-136. The inservice rate for the self-install programs is from the 2022 Illinois Statewide Technical Reference Manual for Energy Efficiency v10, p. 227.

4.2.3.7 Update summary

Updates to this section are described in Table 4-18.

Table 4-18. Summary of update(s)

Version	Update type	Description	
2022	Inputs	Revised the efficiency case bathroom flow rate to better align with program design assumptions and ISRs for non-direct install programs.	

Version	Update type	Description		
2021	Equation	Added in-service rate to account for self-install program Removed electric water heater variable as this measure is only eligible for electric water heaters Added winter peak coincident demand reduction equation		
2021	Inputs	Replaced the Mid-Atlantic TRM with the Dominion Residential Home Energy Use Survey 2019 – 2020 as the source of the number of people		
	New table	Effective Useful Life (EUL) by program		
2020	020 None No change			
	Source	Updated page numbers / version of the Mid-Atlantic TRM		
v10	Input variable	Updated kitchen values for ΔT and Flow _{drain}		
	Equation	Updated equation for water savings		

4.2.4 Low-flow showerhead

4.2.4.1 Measure description

This measure realizes energy savings by replacing an existing showerhead with a low-flow showerhead. Doing so reduces overall water usage and, in particular, the need to heat water. Showerheads are changed from those that deliver an estimated 2.5 gpm to low-flow, ≤2.0-gpm aerators. The baseline condition is a showerhead with a flow rate of 2.5 gpm.

This measure is offered through different programs listed in Table 4-19 and uses the Impacts Estimation Approach described in this section.

Table 4-19. Programs that offer low-flow showerhead

Program name	Section
Residential Home Energy Assessment Program, DSM Phase VII	Section 4.2.4
Residential Energy Efficiency Kits Program, DSM Phase VIII	Section 9.2.3
Residential Manufactured Housing Program, DSM Phase VIII	Section 10.2.5
Residential Home Retrofit Program, DSM Phase VIII	Section 11.2.4
Residential Multifamily Program, DSM Phase VIII	Section 12.2.3
Residential Income and Age Qualifying Energy Efficiency Program, DSM Phase IX	Section 18.2.4
Residential Virtual Audit Program, DSM Phase IX	Section 20.2.2

4.2.4.2 Impacts Estimation Approach

Gross annual water savings per showerhead are calculated according to the following equation:

$$\Delta Water = \left[(Flow_{base} - Flow_{ee}) \times Qty_{people} \times Minutes_{shower} \times Showers_{daily} \right.$$
$$\left. \times ISR \times days \right] \div Qty_{showerheads}$$

DNV - www.dnv.com

Gross annual electric energy savings per showerhead are calculated according to the following equation:

$$\Delta kWh = \frac{\Delta Water \times 8.3 \ lb/gal \times 1 \ Btu/lb/^{\circ}F \times \Delta T}{\eta_{DHW} \times 3.412 \ Btu/kWh}$$

Per-measure, gross summer peak coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \frac{\Delta kWh \times CF_{summer}}{Minutes_{shower} \times Qty_{people} \times Showers_{daily} \times \frac{1 \ hour}{60 \ min.} \times days}$$

Per-measure, gross winter peak coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} \ = \frac{\Delta kWh \times CF_{winter}}{Minutes_{shower} \times Qty_{people} \times Showers_{daily} \times \frac{1 \; hour}{60 \; min.} \times days}$$

Where:

ΔWater = per-measure gross annual water savings per showerhead

ΔkWh = per-measure gross annual electric energy savings per showerhead

 ΔkW_{summer} = per-measure gross summer peak coincident demand reduction per showerhead ΔkW_{winter} = per-measure gross summer peak coincident demand reduction per showerhead

Flow_{base} = baseline showerhead flow rate

Flow_{ee} = energy efficient (low-flow) showerhead flow rate

Qty_{people} = number of people per household

Minutes_{shower} = average shower duration

Showers_{daily} = average showers per person per day

 Qty_{shower} = number of showers in home

 ΔT = change in temperature of the water used for shower and temperature entering the house

 $(\Delta T = T_{\text{shower}} - T_{\text{in house}})$

 η_{DHW} = recovery efficiency of electric, storage-tank water heater

CF = peak coincidence factor
ISR =installation rate/ in service rate
CF_{summer} = summer peak coincident factor
CF_{winter} = winter peak coincident factor

4.2.4.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 4-20. Input values for low-flow shower head savings calculations

Component	Туре	Value	Unit	Source(s)
Flowbase	Fixed	2.5	gpm	Maryland/Mid-Atlantic TRM v10, p. 137 ⁴⁰
Flowee	Fixed	1.5	gpm	Program design

⁴⁰ The Energy Policy Act of 1992 (EPAct) established the maximum flow rate for showerheads at 2.5 gallons per minute (gpm).

Component	Туре	Value	Unit	Source(s)
		See customer application		Customer application
Qty _{people}	Variable	Default = 2.0	_	Dominion Residential Home Energy Use Survey 2019 - 2020 Appendix B, p. 100
Minutes _{shower}	Fixed	7.8	minute/ shower	Maryland/Mid-Atlantic TRM v10, p. 137 ⁴¹
Showers _{daily}	Fixed	0.6	shower/ person/day	Maryland/Mid-Atlantic TRM v10, p. 138 ⁴²
Qtyshowerheads	Variable	See customer application ⁴³	showers/ home	Customer application
ΔΤ	Fixed	44.1	°F	Maryland/Mid-Atlantic TRM v10, p. 173:
η рнw	Fixed	0.98	_	Maryland/Mid-Atlantic TRM v10, p. 138 ⁴⁴
CF _{summer}	Fixed	0.00371	_	Maryland/Mid-Atlantic TRM v10, p. 139 ⁴⁵
CF _{winter}	Fixed	0.00371	_	Maryland/Mid-Atlantic TRM v10, p. 139 ⁴⁶
Days	Fixed	365	days, annual	Maryland/Mid-Atlantic TRM v10, p.138 ⁴⁷
ISR	Variable	Assigned by program: ⁴⁸ Residential Income and Age Qualifying Home Improvement Program, Residential Home Energy Assessment Program, Residential Manufactured Housing Program, Residential Home Retrofit Program, Residential/ Non- Residential Multifamily Program ISR = 1.0	_	Maryland/Mid-Atlantic TRM v10, p.138

⁴¹ Maryland/Mid-Atlantic TRM v10, p. 137. Table 6. Cadmus and Opinion Dynamics Evaluation Team. Showerhead and Faucet Aerator Meter Study. For Michigan Evaluation Working Group. June 2013. The study compared shower length by single-family and multifamily populations, finding no statistical difference in showering times. For the energy-saving analysis, the study used the combined single-family and multifamily average shower length of 7.8 minutes. Per Pennsylvania TRM-2016.

⁴² Maryland/Mid-Atlantic TRM v10, p. 138. Table 8. Cadmus and Opinion Dynamics Evaluation Team. Showerhead and Faucet Aerator Meter Study. For Michigan Evaluation Working Group. June 2013. For each shower fixture metered, the evaluation team knew the total number of showers taken, duration of time meters remained in each home, and total occupants reported to live in the home. From these values, average showers taken per day, per person was calculated. The study compared showers per day, per person by single-family and multifamily populations, finding no statistically significant difference between the values. For the energy-saving analysis, the study used the combined single-family and multifamily average showers per day, per person of 0.6. Per Pennsylvania TRM-2016.

⁴³ The number of showerheads in the household are assumed to be the same as the number of low-flow showerheads installed through the program.

 $^{^{44}}$ Maryland/Mid-Atlantic TRM v10, p. 138. Electric water heater has recovery efficiency of 98%..

⁴⁵ Maryland/Mid-Atlantic TRM v10, p. 139. Calculated as follows: Assume 9% showers take place during peak hours. Nine percent x 7.8 minutes per day = 0.702 minutes; 0.702 / 180 (minutes in peak period) = 0.0039." Website that was provided in Mid-Atlantic TRM, however, could not be accessed when DNV attempted on the same date.

⁴⁶ Maryland/Mid-Atlantic TRM v10, p. 139. Calculated as follows: Assume 9% showers take place during peak hours. Accessed 9/18/2019. Nine percent x 7.8 minutes per day = 0.702 minutes; 0.702 / 180 (minutes in peak period) = 0.0039." Website that was provided in Mid-Atlantic TRM, however, could not be accessed when DNV attempted on the same date.

⁴⁷ The source TRM for this measure does not include a winter CF. We apply the summer CF for the coincident winter peak period as it is the best information available.

⁴⁸ The ISR is assigned by the implementation channel.

Page 54

Component	Туре	Value	Unit	Source(s)
		Residential Energy Efficient Kits Program = 0.62 Residential Virtual Audits = 0.80		2022 Illinois Statewide Technical Reference Manual for Energy Efficiency v10, p. 232 ⁴⁹

4.2.4.4 Default savings

If the proper values are not supplied, a default savings may be applied using conservative input values.

Assuming the quantity of showers is 1.0, the default per-measure gross annual water savings will be assigned according to the following calculation:

$$\Delta Water = \left[(Flow_{base} - Flow_{ee}) \times Qty_{people} \times Minutes_{shower} \times Showers_{daily} \right. \\ \left. \times ISR \times 365 \ days \right] \div Qty_{shower}$$

$$= \left[(2.5 \ gpm - 1.5 \ gpm) \times 2.0 \ people \times 7.8 \ \frac{min.}{shower} \times 0.6 \ \frac{showers}{day} \right. \\ \left. \times 1.0 \times 365 \ days \right] \div 1.0 \ showers$$

$$= 3,416 \ gallons$$

The default per-measure gross annual electric energy savings will be assigned according to the following calculation:

$$\Delta kWh = \frac{\Delta Water \times 8.3 \, lb/gal \cdot Btu/lb/^{\circ}F \times \Delta T}{\eta_{DHW} \times 3,412 \frac{Btu/h}{kW}}$$

$$= \frac{1,708 \, gal \times 8.3 \, lb/gal \cdot Btu/lb/^{\circ}F \times 44.1 \,^{\circ}F}{0.98 \, \times 3,412 \frac{Btu/h}{kW}}$$

$$= 373.9 \, kWh$$

The default per-measure summer peak gross coincident demand reductions will be assigned according to the following calculation:

DNV – www.dnv.com

⁴⁹ Residential Virtual Audit Program applies the SF Virtual Assessment followed by Unverified Self-Install One Showerhead value. The Residential Energy Efficient Kits Program applies the Requested Efficiency Kits—One showerhead kit value

$$\Delta kW_{summer} = \frac{\Delta kWh \times CF_{summer}}{Qty_{people} \times Minutes_{shower} \times Showers_{daily} \times \frac{1 \ hour}{60 \ min.} \times 365 \ days}$$

$$= \frac{373.9 \ kWh \times 0.0039}{2.0 \ people \times 7.8 \ \frac{min}{shower} \times 0.6 \ \frac{shower}{day} \times \frac{1 \ hour}{60 \ min.} \times 365 \ days}$$

$$= 0.026 \ kW$$

The default per-measure winter peak gross coincident demand reductions will be assigned according to the following calculation:

$$\Delta kW_{winter} = \frac{\Delta kWh \times CF_{winter}}{Qty_{people} \times Minutes_{shower} \times Showers_{daily} \times \frac{1 \ hour}{60 \ min.} \times 365 \ days }$$

$$= \frac{373.9 \ kWh \times 0.0039}{2.0 \ people \times 7.8 \ \frac{min}{shower} \times 0.6 \ \frac{shower}{day} \times \frac{1 \ hour}{60 \ min.} \times 365 \ days }$$

$$= 0.026 \ kW$$

4.2.4.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-21.

Table 4-21. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)	
	Residential Manufactured Housing Program, DSM Phase VIII		years		
IX	Residential Income and Age Qualifying Energy Efficiency Program, DSM Phase IX	10.00		Maryland/Mid-Atlantic TRM v10, p.	
	Residential Virtual Audit Program, DSM Phase IX				
	Residential/Non-Residential Multifamily				
VIII	Residential Home Retrofit Program				
	Residential Energy Efficient Kits Program				

DSM Phase	Program name	Value	Units	Source(s)
VII	Residential Home Energy Assessment Program	12.41	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

4.2.4.6 Source(s)

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp.137-140 and 2022 Illinois Statewide Technical Reference Manual for Energy Efficiency v10, p. 232.

4.2.4.7 Update summary

Updates to this section are described in Table 4-22.

Table 4-22. Summary of update(s)

Version with updates	Update type	Description		
2022	Inputs	Revised the efficiency case flow rate to better align with program design assumptions		
	Equation	Added In-Service Rate (ISR) to account for self-installed programs Added winter peak coincident demand reduction equation		
2021	Inputs	Replaced the Mid-Atlantic TRM with the Dominion Residential Home Energy Use Survey 2019 – 2020 as the source of the number of occupants in household		
	New table	Effective Useful Life (EUL) by program		
2020	None	No change		
v40	Source	Updated page numbers / version of the Mid-Atlantic TRM		
v10	Input variable	Updated Qty _{shower} to use customer application data when available		

4.2.5 Water heater temperature setback/turndown

4.2.5.1 Measure description

This measure relates to turning down an existing hot water tank thermostat setting that is at 130 degrees or higher. Savings are provided to account for the resulting reduction in standby losses. This is a retrofit measure.

The baseline condition is a hot water tank with a thermostat setting that is 130 degrees or higher. Note if there are more than one DHW tanks in the home at or higher than 130 degrees and they are all turned down, then the savings per tank can be multiplied by the number of tanks. The efficient condition is a hot water tank with the thermostat reduced to no lower than 120 degrees.

This measure is offered through different programs listed in Table 4-23 and uses the Impacts Estimation Approach described in this section.

Table 4-23. Programs that offer water heater temperature setback/turndown

Program name	Section
Residential Home Energy Assessment Program, DSM Phase VII	Section 4.2.5
Residential Manufactured Housing Program, DSM Phase VIII	Section 10.2.6
Residential Home Retrofit Program, DSM Phase VIII	Section 11.2.5
Residential Multifamily Program, DSM Phase VIII	Section 12.2.4

4.2.5.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \frac{U \times A \times (T_{base} - T_{ee}) \times HOU}{3,412 \ Btu/kWh \times \eta_{DHW}}$$

The Area is calculated according to the following equation⁵⁰:

Area =
$$-0.0017 \times capacity^2 + 0.437 \times capacity + 7.831$$

Per-measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \frac{\Delta kWh}{HOU} \times CF_{summer}$$

Per-measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \frac{\Delta kWh}{HOU} \times CF_{winter}$$

Where:

 Δ kWh = per-measure gross annual electric energy savings

 ΔkW_{summer} = per-measure gross coincident summer peak demand savings ΔkW_{winter} = per-measure gross coincident winter peak demand savings

U = overall heat transfer coefficient of storage tank

Capacity = tank storage volume

A = surface area of storage tank

 T_{base} = temperature setting of storage water heater prior to measure T_{ee} = temperature setting of storage water heater subsequent to measure

HOU = annual hours of use

η_{DHW} = recovery efficiency of electric, domestic hot water heater with storage tank

CF_{summer} = summer peak coincident factor CF_{winter} = winter peak coincident factor

⁵⁰ Mid-Atlantic TRM v10, p.141 provides areas for specific tank volume sizes. This equation is based on areas and tank volumes provided.

4.2.5.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 4-24. Input values for the water heater temperature setback savings calculations

Component	Туре	Value	Unit	Source(s)
		See customer application		Customer application
Capacity	Variable	Default = 48.3	gallons	Dominion Residential Home Energy Use Survey 2019 - 2020 Appendix B, p. 37 ⁵¹
U	Fixed	0.083	Btu/hr· °F· ft²	Maryland/Mid-Atlantic TRM v10, p. 161 ⁵²
T _{base}	Fixed	135	°F	Maryland/Mid-Atlantic TRM v10, p. 161
Tee	Fixed	120	°F	Maryland/Mid-Atlantic TRM v10, p. 161
нои	Fixed	8,760	hours, annual	Maryland/Mid-Atlantic TRM v10, p. 161
ባ DHW	Fixed	0.98	_	Maryland/Mid-Atlantic TRM v10, p. 160 ⁵³
CF _{summer}	Fixed	1.0	_	Maryland/Mid-Atlantic TRM v10, p. 161 ⁵⁴
CFwinter	Fixed	1.0	_	Maryland/Mid-Atlantic TRM v10, p. 161 ⁵⁴

4.2.5.4 Default savings

If the proper values are not supplied, a default savings may be applied using conservative input values. The default per-measure gross annual electric energy savings will be assigned according to the following calculation:

Area =
$$-0.0017 \times capacity^2 + 0.437 \times capacity + 7.831$$

= $-0.0017 \times 48.3^2 + 0.437 \times 48.3 + 7.831$
= $24.97 \ ft^2$

$$\Delta kWh = \frac{U \times A \times (T_{base} - T_{ee}) \times HOU}{3,412 \ \frac{Btu/h}{kW} \times \eta_{DHW}}$$

⁵¹ The weighted average tank volume is used

⁵² Assumed R-12

 $^{^{53}}$ Electric storage water heaters have a minimum recovery efficiency of 98%: Mid-Atlantic TRM v10, p. 161.

⁵⁴ Mid-Atlantic TRM v10 does not provide a CF, therefore a CF is 1.0 is implied.

$$= \frac{0.083 \times 24.97 \, ft^2 \times (135^{\circ}F - 120^{\circ}F) \times 8,760 \, hr}{3,412 \, Btu/kWh \times 0.98}$$

$$= 81.4 kWh$$

The default per-measure gross coincident summer peak demand reductions will be assigned according to the following calculation:

$$\Delta kW_{summer} = \frac{\Delta kWh}{8,760 \ hr} \times CF_{summer}$$
$$= \frac{81.44 \ kWh}{8,760 \ hr} \times 1.0$$
$$= 0.009 \ kW$$

The default per-measure gross coincident winter peak demand reductions will be assigned according to the following calculation:

$$\Delta kW_{winter} = \frac{\Delta kWh}{8,760 \ hr} \times CF_{winter}$$
$$= \frac{81.44 \ kWh}{8,760 \ hr} \times 1.0$$
$$= 0.009 \ kW$$

4.2.5.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-25.

Table 4-25. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VIII	Residential Manufactured Housing Program, DSM Phase VIII		years	Maryland/Mid-Atlantic TRM v10, p. 162
	Residential Home Retrofit Program, DSM Phase VIII	2.00		
	Residential Multifamily Program, DSM Phase VIII	2.00		
	Residential Manufactured Housing Program, DSM Phase VIII			

DNV - www.dnv.com

DSM Phase	Program name	Value	Units	Source(s)
VII	Residential Home Energy Assessment Program	12.41	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

4.2.5.6 Source(s)

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 160 – 162.

4.2.5.7 Update summary

Updates to this section are described in Table 4-26.

Table 4-26. Summary of update(s)

Updates in version	Update type	Description	
2022	None	No change	
	Source	Updated page numbers / version of the Maryland/Mid-Atlantic TRM	
2021	Equation	Added equation for calculating area instead of using look-up table to allow for more tank capacities Added gross winter peak demand reduction equation	
	Inputs	Used Dominion Residential Home Energy Survey as source for default tank storage capacity	
	New table	Effective Useful Life (EUL) by program	
2020	None	No change	
v10		Initial release	

4.3 Heating, ventilation, and air conditioning (HVAC) end use

4.3.1 HVAC upgrade

4.3.1.1 Measure description

This measure is for the installation of high-efficiency HVAC equipment. Equipment types include air-source heat pump, ductless mini-split heat pump, package terminal units (air conditioner and heat pump), and room air conditioners. High-efficiency HVAC equipment deliver cooling and heating with better performance than standard efficiency equipment.

The baseline condition for the measure is a typical HVAC equipment that meets the minimum Federal standards. For most programs, the baseline equipment type is the same as the high-efficiency equipment. One exception to this is the Residential HVAC Health and Safety Program, which considers the existing heating system type. If the existing heating system type is electric resistance baseboard heat and is upgrade to a heat pump, the existing heating system type is applied as the baseline.

This measure is offered through different programs listed in Table 4-27 and uses the Impacts Estimation Approach described in this section.

Table 4-27. Programs that offer HVAC upgrade

Program name	Section
Residential Home Energy Assessment Program, DSM Phase VII	Section 4.3.1
Residential Manufactured Housing Program, DSM Phase VIII	Section 10.3.5
Residential Home Retrofit Program, DSM Phase VIII	Section 11.4.1
Residential Multifamily Program, DSM Phase VIII	Section 12.3.1
Residential HVAC Health and Safety Program, DSM Phase VIII	Section 15.3.1

4.3.1.2 Impacts Estimation Approach

For all system types, per-measure gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \Delta kWh_{cool} + \Delta kWh_{heat}$$

Cooling Savings:

For air-source heat pump, ductless mini-split heat pump, package terminal units (air conditioner and heat pump) less than 65,000 Btu/h use the following equation:

$$\Delta kWh_{cool} = Size_{cool} \times \left(\frac{1}{SEER_{base}} - \frac{1}{SEER_{ee}}\right) \times EFLH_{cool} \times \frac{1 \ kBtu/h}{1,000 \ Btu/h}$$

For air-source heat pumps great than or equal to 65,000 Btu/h use the following equation:

$$\Delta kWh_{cool} = Size_{cool} \times \left(\frac{1}{IEER_{base}} - \frac{1}{IEER_{ee}}\right) \times EFLH_{cool} \times \frac{1 \ kBtu/h}{1,000 \ Btu/h}$$

For room air conditioners us the following equation:

$$\Delta kWh_{cool} = Size_{cool} \times \left(\frac{1}{CEER_{base}} - \frac{1}{CEER_{ee}}\right) \times EFLH_{cool} \times \frac{1 \ kBtu/h}{1,000 \ Btu/h}$$

Heating Savings:

Package terminal air conditioners and window air conditioners do not have heating savings.

$$\Delta kWh_{heat}=0$$

For air-source heat pump, ductless mini-split heat pump, package terminal heat pumps less than 65,000 Btu/h use the following equation:

$$\Delta kWh_{heat} = Size_{heat} \times \left(\frac{1}{HSPF_{hase}} - \frac{1}{HSPF_{ee}}\right) \times EFLH_{heat} \times \frac{1 \ kBtu/h}{1,000 \ Btu/h}$$

For air-source heat pumps greater than or equal to 65,000 Btu/h use the following equation:

$$\Delta kWh_{heat} = Size_{heat} \times \left(\frac{1}{COP_{base}} - \frac{1}{COP_{ee}}\right) \times EFLH_{heat} \times \frac{1 \ kBtu/h}{3,412 \ Btu/kWh}$$

Per-measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = Size_{cool} \times \left(\frac{1}{EER_{base}} - \frac{1}{EER_{ee}}\right) \times \frac{1 \ kBtu/h}{1,000 \ Btu/h} \times CF_{summer}$$

Package terminal air conditioners and window air conditioners do not have gross coincident winter peak demand reduction.

For air-source heat pump, ductless mini-split heat pump, package terminal heat pumps less than 65,000 Btu/h, the per-measure gross coincident winter peak demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = Size_{heat} \times \left(\frac{1}{HSPF_{base}} - \frac{1}{HSPF_{ee}}\right) \times \frac{1 \ kBtu/h}{1,000 \ Btu/h} \times CF_{winter}$$

For air-source heat pumps great than or equal to 65,000 Btu/h the per-measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = Size_{heat} \times \left(\frac{1}{COP_{hase}} - \frac{1}{COP_{ee}}\right) \times \frac{1}{3,412 \; Btu/kWh} \times CF_{winter}$$

Where:

 ΔkWh = per-measure gross annual electric energy savings ΔkW_{summer} = per-measure gross coincident demand reduction ΔkW_{winter} = per-measure gross coincident demand reduction

Size_{cool} = cooling capacity of efficient heat pump
Size_{heat} = heating capacity of efficient heat pump
EFLH_{cool} = equivalent full load cooling hours
EFLH_{heat} = equivalent full load heating hours
CF_{summer} = summer peak coincidence factor
CF_{winter} = winter peak coincidence factor

SEER_{base} = seasonal energy efficiency ratio (SEER) of the existing or baseline air conditioning equipment. It is used for heat pumps and AC units that are smaller than 65,000 Btu/h.

SEER_{ee} = seasonal energy efficiency ratio (SEER) of the installed air conditioning equipment. It is used

for heat pumps and AC units that are smaller than 65,000 Btu/h.

IEER_{base} = integrated energy efficiency ratio (IEER) of existing or baseline equipment.

IEER_{ee} = integrated energy efficiency ratio (IEER) of installed equipment.

CEER_{base} = combined energy efficiency ratio of baseline equipment.

DNV - www.dnv.com

CEER_{ee} = combined energy efficiency ratio of efficient equipment.

HSPF_{base} = heating seasonal performance factor (HSPF) of existing or baseline heat pump. HSPF is used

in heating savings for air source heat pumps.

HSPF_{ee} = heating seasonal performance factor (HSPF) of installed heat pump. HSPF is used in heating

savings for air source heat pumps.

COP_{base} = coefficient of performance (COP) of existing or baseline equipment.

COP_{ee} = coefficient of performance (COP) of installed equipment.

EERbase = energy efficiency ratio (EER) of existing or baseline air conditioning equipment. EER is used to

analyse demand performance of heat pumps and AC units.

EERee = energy efficiency ratio (EER) of installed air conditioning equipment. EER is used to analyse

performance of heat pumps and AC units.

4.3.1.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 4-28. Input values for heat pump upgrade savings calculations

Component	Туре	Value	Unit	Source(s)
Size _{cool}	Variable	See customer application	Btu/h	Customer application
	.,	See customer application ⁵⁵	D. //	Customer application
Size _{heat}	Variable	Default = Size _{cool}	Btu/h	Customer-provided cooling size
EFLHcool	Variable	For residential programs see Sub-Appendix F1-IV: Residential equivalent full-load hours for HVAC equipment. The location is assigned by the project's utility office code. For projects without an office code, a default location is assigned. The defaults are assigned based on the project's state. Projects in Virginia use a default location of Richmond, VA. Projects in North Carolina, use a default location of Elizabeth City, NC. See Table 24-7 in Sub-Appendix F1-IV: Residential equivalent full-load hours for HVAC For multifamily common areas see the Non-Residential TRM Sub-Appendix F2-II: Non-residential HVAC equivalent full load hours	hours, annual	Maryland/Mid-Atlantic TRM v10 and scaled from CDH by city
EFLH _{heat}	Variable	For residential programs, see Table 24-7 in Sub-Appendix F1-IV: Residential equivalent full-load hours for HVAC For multifamily common areas see the Non-Residential TRM Sub-Appendix F2-II: Non-residential HVAC equivalent full load hours.	hours, annual	Maryland/Mid-Atlantic TRM v10 and scale from CDH by city

⁵⁵ When customer-provided heating system size is unavailable or is <80% or >156% of customer-provided cooling system size, a default value will be used, instead. In such instances, it is assumed that the heating system size was incorrectly documented. The acceptable range is based on a review of the AHRI database across numerous manufacturers and heat pump types.

Component	Туре	Value	Unit	Source(s)
SEER/IEER/EER/ HSPF/COP _{base}	Variable	See Table 24-9 in Sub-Appendix F1-V: Residential HVAC Equipment Efficiency Ratings and the Non- residential TRM, 13.3 Sub-appendix F2-III: Non-residential HVAC Equipment Efficiency Ratings. Assign baseline system to be the same as the efficient system type with exception for the Residential HVAC Health and Safety Program. In this program, if the existing heat use existing heating equipment type for existing electric resistance baseboard, that is used as the baseline heating equipment. For other heating types the new heating equipment is used to determine the baseline efficiency. Use Equation 6 to convert from COP to HSPF if needed	kBtu/kWh (except COP is dimension less)	10 CFR Ch. II (1-1-12 Edition) §430.32 Non- Residential Technical Reference Manual, 13.3 Sub-Appendix F2-III: Non-Residential HVAC Equipment Efficiency Ratings
CEER _{base}	Variable	See Table 24-10 in Sub-Appendix F1- V: Residential HVAC Equipment Efficiency Ratings	kBtu/kW- hour	Maryland/Mid-Atlantic TRM v10, p. 70
SEER/IEER/CEER/ EER/ HSPF/COPee	Variable	See customer application	kBtu/kWh (except COP is dimension less)	Customer application
		See customer application		Customer application
CEERee	Variable	Default see ENERGY STAR minimum qualifying values in Table 24-10. in Sub-Appendix F1-V: Residential HVAC Equipment Efficiency Ratings	kBtu/kW- hour	Maryland/Mid-Atlantic TRM v10, p. 70
CF _{summer}	Variable	Room AC/Wall AC: 0.31 Ductless Mini-Split HP, package terminal air conditioning, package terminal heat pumps, central AC and central HP: 0.69	-	Maryland/Mid-Atlantic TRM v10 p.93 ⁵⁶
CFwinter	Variable	Ductless Mini-Split HP, package terminal heat pumps, and central HP: 0.69	_	Maryland/Mid-Atlantic TRM v10 p.93 ⁵⁶

The Maryland/Mid-Atlantic TRM v10 provides CF for room/wall AC and central AC systems in the ductless mini-split measure. In this section a generic value is used for each category. In other measures in the Maryland/Mid-Atlantic TRM v10 a utility-specific and equipment specific CF is provided. We use the more generic CF categories. It should be noted that ductless mini-split and package terminal units will likely have thermostats in each room, but we will consider these as a central unity. There are no generic winter CF. Therefore, we apply summer CF.

4.3.1.4 Default savings

If the proper values are not available, zero savings will be given for both gross annual electric energy savings and gross demand energy savings.

4.3.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-29.

Table 4-29. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VIII	Residential Manufactured Housing Program, DSM Phase VIII Residential Home Retrofit Program, DSM Phase VIII Residential Multifamily Program, DSM Phase VIII Residential HVAC Health and Safety Program, DSM Phase VIII	Room AC use 12.00; all other types use 18.00	years	Maryland/Mid-Atlantic TRM v10, p.72, 79 and 85
VII	Residential Home Energy Assessment Program, DSM Phase VII	12.41	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

4.3.1.6 Source(s)

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 70-71, 86, 120, 291.

4.3.1.7 Update summary

Updates to this section are described in Table 4-30.

Table 4-30. Summary of update(s)

Updates in version	Update type	Description		
2022	None	No change		
New table Effective Useful Life (EUL) by program		Effective Useful Life (EUL) by program		
2021	Equation	Added gross winter peak demand reduction equation		
2020		Initial release		

4.3.2 HVAC tune-up

4.3.2.1 Measure description

This measure realizes energy savings by tuning up an existing heat pump or regular air conditioning system. Tuning measures may include refrigerant charge correction, air flow adjustments, cleaning the condensate drain line, clean and straighten coils and fans, replace air filter, or repair damaged insulation.

This measure is offered through different programs listed in Table 4-31 and uses the Impacts Estimation Approach described in this section.

Table 4-31. Programs that offer HVAC tune-up

Program name	Section
Residential Home Energy Assessment Program, DSM Phase VII	Section 4.3.2
Residential Manufactured Housing Program, DSM Phase VIII	Section 10.3.5
Residential Home Retrofit Program, DSM Phase VIII	Section 11.4.2
Residential Multifamily Program, DSM Phase VIII	Section 12.3.2
Residential HVAC Health and Safety Program, DSM Phase VIII	Section 15.3.4
Residential Income and Age Qualifying Energy Efficiency Program, DSM Phase IX	Section 18.3.1

4.3.2.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \Delta kWh_{cool} + \Delta kWh_{heat}$$

$$\Delta kWh_{cool} = Size_{cool} \times \frac{1 \ kBtu/h}{1,000 \ Btu/h} \times \frac{EFLH_{cool}}{SEER} \times ESF$$

Heating savings are only applicable to heat pumps and calculated as follows:

$$\Delta kWh_{heat} = Size_{heat} \times \frac{1 \; kBtu/h}{1,000 \; Btu/h} \times \frac{EFLH_{heat}}{HSPF} \times ESF$$

Per-measure, gross coincident summer peak demand reductions are calculated according to the following equation:

$$\Delta kW_{summer} = Size_{cool} \times \frac{1 \ kBtu/h}{1,000 \ Btu/h} \times \frac{1}{EER} \times DRF \times CF_{summer}$$

Per-measure, gross coincident winter peak demand reductions are only applicable to heat pumps and calculated according to the following equation:

$$\Delta kW_{winter} = Size_{heat} \times \frac{1 \ kBtu/h}{1,000 \ Btu/h} \times \frac{1}{HSPF} \times DRF \times CF_{winter}$$

Where:

ΔkWh = per-measure gross annual electric energy savings

 ΔkW_{summer} = per-measure gross coincident summer demand reductions ΔkW_{winter} = per-measure gross coincident winter demand reductions

Size_{cool} = cooling capacity of HVAC system

DNV – www.dnv.com

Size_{heat} = heating capacity of heat pump

SEER = seasonal energy efficiency ratio of the unit

EER = energy efficiency ratio of the unit

HSPF = heating seasonal performance factor of heat pump

EFLH_{cool} = equivalent cooling full load hours EFLH_{heat} = equivalent heating full load hours

ESF = annual energy savings factor attributed to tune-up
DRF = demand reduction savings factor attributed to tune-up

CF_{summer} = summer peak coincidence factor CF_{winter} = winter peak coincidence factor

4.3.2.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 4-32. Input values for HVAC tune-up savings calculations

Component	Туре	Value	Unit	Source(s)
Size _{cool}	Variable	See customer application ⁵⁷	Btu/h	Customer application
Size _{heat}	Variable	See customer application ⁵⁸	Btu/h	Customer application
		Default = Sizecool		
EFLH _{cool}	Variable	For residential programs, see Table 24-7 in Sub-Appendix F1-IV: Residential equivalent full-load hours for HVAC For multifamily common areas, see the Non-Residential Technical Reference Manual Sub-Appendix F2-II: Non-residential HVAC equivalent full load hours	hours, annual	Maryland/Mid-Atlantic TRM v10 and scaled using cooling degree-hours(CDH) by city
EFLHheat	Variable	For residential program, see Sub-Appendix F1-IV: Residential equivalent full-load hours for HVAC For multi-family common areas, see the Non-Residential Technical Reference Manual Sub-Appendix F2-II: Non-residential HVAC equivalent full load hours	hours, annual	Maryland/Mid-Atlantic TRM v10 and scaled using CDH by city
		See customer application ⁵⁹		Customer application
SEER/EER/ HSPF	Variable	For default see Table 24-9 in Sub- Appendix F1-V: Residential HVAC Equipment Efficiency Ratings	kBtu/kWh	10 CFR Ch. II (1-1-12 Edition) §430.32
ESF	Fixed	0.05	_	Maryland/Mid-Atlantic TRM v10, p. 316

⁵⁷ When customer-provided cooling system size is >5.4 tons, a default value will be assigned to zero tons instead. In such instances, it is assumed that the cooling system size was incorrectly documented as these residential heat pump systems are not expected to exceed 5.4 tons.

When customer-provided heating system size is unavailable or is <80% or >156% of customer-provided cooling system size, a default value will be used, instead. In such instances, it is assumed that the heating system size was incorrectly documented. The acceptable range is based on a review of the AHRI database across numerous manufacturers and heat pump types.

⁵⁹ Customer application efficiency ratings are compared to acceptable ranges. If the provided value is outside the range a default value is applied. The acceptable ranges are based on AHRI rated equipment as follows: SEER 9.9 – 46.2, EER 7.92 – 22.11, HSPF 5.85 – 15.07

Component	Туре	Value	Unit	Source(s)
DRF	Fixed	0.05	_	Maryland/Mid-Atlantic TRM v10, p. 316
CF _{summer}	Fixed	0.69	_	Maryland/Mid-Atlantic TRM v10, p. 93 ⁶⁰
CFwinter	Fixed	0.69	_	Maryland/Mid-Atlantic TRM v10, p. 93 ⁶⁰

4.3.2.4 Default savings

If the proper values are not available, zero savings will be given for both gross annual electric energy savings and gross demand energy savings.

4.3.2.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-33.

Table 4-33. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)	
IX	Residential Income and Age Qualifying Energy Efficiency Program, DSM Phase IX				
	Residential Manufactured Housing Program, DSM Phase VIII				
	Residential Home Retrofit Program, DSM Phase VIII	5.00	years	Maryland/Mid-Atlantic TRM v10, p. 316	
VIII	Residential Multifamily Program, DSM Phase VIII				
	Residential HVAC Health and Safety Program, DSM Phase VIII				
VII	Residential Home Energy Assessment Program, DSM Phase VII	12.41	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)	

4.3.2.6 Source(s)

The primary sources for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 315-316. This reference is for commercial applications. This has been adapted to residential applications using the residential equivalent full load hours and default efficiency values.

4.3.2.7 Update summary

Updates to this section are described in Table 4-34.

⁶⁰ The Maryland/Mid-Atlantic TRM v10 provides CF for central AC systems in the ductless mini-split measure. In other measures in the Maryland/Mid-Atlantic TRM v10 a utility-specific and equipment specific CF is provided. We use the more generic CF. There are no generic winter CF. Therefore, we apply summer CF.

Table 4-34. Summary of update(s)

Updates in version	Update type	Description		
2022	None	No change		
	Equation Added gross coincident winter peak demand reduction equation			
2021 Inputs		Added acceptable customer application efficiency ranges		
	Effective Useful Life (EUL) by program			
	References	Updated the source TRM		
2020		Initial release		

4.3.3 ECM fan motor

4.3.3.1 Measure description

Conventional natural-gas furnaces and air-conditioning systems that contain a permanent split capacitor (PSC) blower motor to deliver the conditioned air to the home are eligible to be replaced with a brushless DC motor, commonly called an electronically-commutated motor (ECM). The baseline condition is a furnace or air handler with a PSC motor at the fan; the efficient condition is an ECM motor in place of the PSC motor.

The federal standard for residential furnaces have a required fan energy rating (FER) that would require an ECM motor for all new equipment. This became effective on July 3, 2019⁶¹. Therefore, this measure only applies to furnaces that were manufactured prior to that date.

This measure is offered through different programs listed in Table 4-35 and uses the Impacts Estimation Approach described in this section.

Table 4-35. Programs that Offer ECM fan motor

Program name	Section
Residential Home Energy Assessment Program, DSM Phase VII	Section 4.3.3
Residential Manufactured Housing Program, DSM Phase VIII	Section 10.3.8
Residential Home Retrofit Program, DSM Phase VIII	Section 11.4.4

4.3.3.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \Delta kWh_{cool} + \Delta kWh_{heat}$$

 $\Delta kWh_{cool} = EFLH_{cool} \times \Delta kW_{fan}$

⁶¹ CFR 10 → Chapter II → Subchapter D → Part 430 → Subpart C → § 430.216 CFR § 305.4, https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part430, accessed 03/25/2022

$$\Delta kWh_{heat} = EFLH_{heat} \times \Delta kW_{fan}$$

Summer per-measure coincident peak demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \Delta kW_{fan} \times CF_{summer}$$

Winter per-measure coincident peak demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \Delta kW_{fan} \times CF_{winter}$$

Where:

ΔkWh = per-measure gross annual electric energy savings

 ΔkW_{summer} = per-measure gross coincident summer peak demand reduction ΔkW_{winter} = per-measure gross coincident winter peak demand reduction

 $\begin{array}{ll} \mathsf{EFLH}_{\mathsf{cool}} & = \mathsf{equivalent} \; \mathsf{full}\text{-load} \; \mathsf{hours} \; \mathsf{for} \; \mathsf{cooling} \\ \mathsf{EFLH}_{\mathsf{heat}} & = \mathsf{equivalent} \; \mathsf{full}\text{-load} \; \mathsf{hours} \; \mathsf{for} \; \mathsf{heating} \end{array}$

 $\begin{array}{ll} \Delta kW_{fan} & = fan \; electric \; energy \; savings \\ CF_{summer} & = summer \; peak \; coincidence \; factor \\ CF_{winter} & = winter \; peak \; coincidence \; factor \end{array}$

4.3.3.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 4-36. Input values for ECM fan motors savings calculations

Component	Туре	Value	Units	Sources
EFLH _{cool}	Variable	See Table 24-7 in Sub- Appendix F1-IV: Residential equivalent full-load hours for HVAC	hours, annual	Maryland/Mid-Atlantic TRM v10 and scaled using CDH by city
Δ k W _{fan}	Fixed	0.116	kW	Pennsylvania TRM Vol. 2 2021, p. 25
EFLH _{heat}	Variable	See Table 24-7 in Sub- Appendix F1-IV: Residential equivalent full-load hours for HVAC	hours, annual	Maryland/Mid-Atlantic TRM v10 and scaled using HDH by city
CF _{summer}	Fixed	0.69	_	Maryland/Mid-Atlantic TRM v10, p. 93 ⁶²
CFwinter	Fixed	0.69	_	Maryland/Mid-Atlantic TRM v10, p. 93 ⁶²

⁶² The same CF as the other HVAC measures are used for consistency. This measure is expected to have a similar savings profile. The Maryland/Mid-Atlantic TRM v10 provides CF for central AC systems in the ductless mini-split measure. In other measures in the Maryland/Mid-Atlantic TRM v10 a utility-specific and equipment specific CF is provided. We use the generic CF. There are no generic winter CF. Therefore, we apply summer CF.

4.3.3.4 Default savings

If the proper values are not supplied, a default savings may be applied using conservative input values. The default per-measure gross annual electric energy savings and the default coincident peak demand reduction will be assigned according to the following calculations, by system type and location.

In Virginia:

$$\Delta kWh = (EFLH_{cool} \times \Delta kW_{fan}) + (EFLH_{heat} \times \Delta kW_{fan})$$

$$= (842 hours \times 0.116 kW) + (789 hours \times 0.116 kW)$$

$$= 189.2 kWh$$

Per-measure, default summer coincident peak demand reduction will be assigned according to the following calculation:

$$\Delta kW_{summer} = \Delta kW_{fan} \times CF_{summer}$$
$$= 0.116 kW \times 0.69$$
$$= 0.08 kW$$

Per-measure, default winter coincident peak demand reduction will be assigned according to the following calculation:

$$\Delta kW_{winter} = \Delta kW_{fan} \times CF_{winter}$$
$$= 0.116 kW \times 0.69$$
$$= 0.08 kW$$

In North Carolina:

$$\Delta kWh = (EFLH_{cool} \times \Delta kW_{fan}) + (EFLH_{heat} \times \Delta kW_{fan})$$

$$= (939 hours \times 0.116 kW) + (744 hours \times 0.116 kW)$$

$$= 195.2 kWh$$

The default per-measure summer coincident peak demand reduction will be assigned according to the following calculation:

$$\Delta kW_{summer} = \Delta kW_{fan} \times CF_{summer}$$

$$= 0.116 \, kW \times 0.69$$

$$= 0.08 \, kW$$

The default per-measure winter coincident peak demand reduction will be assigned according to the following calculation:

$$\Delta kW_{winter} = \Delta kW_{fan} \times CF_{winter}$$
$$= 0.116 kW \times 0.69$$
$$= 0.08 kW$$

4.3.3.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-37.

Table 4-37. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
	Residential Manufactured Housing Program, DSM Phase VIII		years	
	Residential Home Retrofit Program, DSM Phase VIII			
VIII	Residential Manufactured Housing Program, DSM Phase VIII	17.00		Maryland/Mid-Atlantic TRM
VIII	Residential Home Retrofit Program, DSM Phase VIII		Vooro	v8, p. 74 ⁶³
	Residential Manufactured Housing Program, DSM Phase VIII	18.00	years	
	Residential Home Retrofit Program, DSM Phase VIII			
VII	Residential Home Energy Assessment Program, DSM Phase VII	12.41	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

⁶³ The Fan Energy Rating requirements in that became effecting in 2019 result in ECMs to be in new equipment. Therefore, the EUL will be the full equipment life minus the years since 2019. For equipment installed in 2021, the EUL will be 18 years (as provided in the Maryland/Mid-Atlantic TRM) minus 1 year (years since ECM were required in new equipment).

4.3.3.6 Source(s)

The primary source for this deemed savings approach is the Pennsylvania TRM Vol. 2 2021, p. 25, and Maryland/Mid-Atlantic TRM v10, p. 316.

4.3.3.7 Update summary

Updates to this section are described in Table 4-38.

Table 4-38. Summary of update(s)

Updates in version	Update type	Description
2022	EUL	Updated EUL for DSM VIII programs
	Inputs	Changed the equation and calculated the default kWh savings with updated default values
Equation Added gross winter peak demand reduction equation New table Effective Useful Life (EUL) by program		Added gross winter peak demand reduction equation
		Effective Useful Life (EUL) by program
2020		Initial release

4.3.4 Duct insulation

4.3.4.1 Measure description

Energy and demand savings are realized through reductions in the home cooling and heating loads by insulating ductwork in unconditioned areas (e.g., attic with floor insulation, vented crawlspace, and unheated garages). Basements shall be considered conditioned spaces.

The baseline condition is the existing uninsulated or poorly insulated ductwork in unconditioned spaces. The efficient condition is ductwork in unconditioned areas that has been insulated.

This measure is offered through different programs listed in Table 4-39 and uses the Impacts Estimation Approach described in this section.

Table 4-39. Programs that offer duct insulation

Program name	Section
Residential Home Energy Assessment Program, DSM Phase VII	Section 4.3.4
Residential Home Retrofit Program, DSM Phase VIII	Section 11.4.5

4.3.4.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \Delta kWh_{cool} + \Delta kWh_{heat}$$

$$\Delta kWh_{cool} = \left(\frac{1}{R_{base}} - \frac{1}{R_{base} + R_{ee}}\right) \times Length \times Perimeter \times EFLH_{cool} \times \Delta T_{cool,avg.} \times \left(\frac{1}{1,000W/kW \times SEER}\right)$$

Heating savings are only calculated for heat pumps, central air conditioners with non-electric heating will not realize electric energy savings. Heating savings are calculated as follows:

$$\Delta kWh_{heat} = \left(\frac{1}{R_{base}} - \frac{1}{R_{base} + R_{ee}}\right) \times Length \times Perimeter \times EFLH_{heat} \times \Delta T_{heat,avg.} \times \left(\frac{1}{3.412 \; Btu/kWh \times HSPF}\right)$$

Per-measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \frac{\Delta kW h_{cool}}{EFLH_{cool}} \times CF_{summer}$$

Per-measure, gross winter coincident peak demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \frac{\Delta kWh_{heat}}{EFLH_{heat}} \times CF_{winter}$$

Where:

ΔkWh = per-measure gross annual electric energy savings

 $\begin{array}{ll} \Delta kW_{summer} &= per\text{-measure gross coincident summer peak demand reduction} \\ \Delta kW_{winter} &= per\text{-measure gross coincident winter peak demand reduction} \\ R_{base} &= duct heat loss coefficient of existing duct and insulation \end{array}$

Ree = duct heat loss coefficient with new insulation

Area = area of the duct surface exposed to the unconditioned space that has been insulated

EFLH_{cool} = equivalent full load hours of cooling

ΔT_{cool,avg.} = average temperature difference during cooling season between outdoor air temperature,

assuming 60°F supply air temperature

SEER = seasonal energy efficiency ratio (SEER) of the cooling system

EFLH_{heat} = equivalent full load hours of heating

ΔT_{heat,avg.} = average temperature difference during heating season between outdoor air temperature,

assuming 115°F supply air temperature

HSPF = efficiency of the heating system

 CF_{summer} = summer system peak coincidence factor CF_{winter} = winter system peak coincidence factor

4.3.4.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 4-40. Input values for duct insulation savings calculations

Component	Туре	Value	Units	Sources
R _{base}	Fixed	1.0 (minimum for uninsulated duct)	hr-°F-ft²/Btu	Iowa 2021 Res TRM, p. 211
	Variable	See customer application	hr-°F-ft²/Btu	Customer application
Ree	variable	Default: 6.0	nr-*F-it*/Btu	Engineer estimate
Lawrith	\/	See customer application	£.	Customer application
Length	Variable	Default: 10	- ft	Engineer estimate
Perimeter	Fixed	1.57	ft	Iowa 2021 Res TRM, p. 21164
EFLH _{cool}	Variable	See Table 24-7 in Sub- Appendix F1-IV: Residential equivalent full-load hours for HVAC	hours	Maryland/Mid-Atlantic TRM v10 and scaled using CDH by city
ΔT cool,avg.	Variable	Default: VA: 20.0 NC: 18.9	°F	lowa 2021 Res TRM, p. 211. Values are derived from TMY data of Elizabeth City and Rocky Mount-Wilson (for NC), and Richmond (for VA), using 60°F supply temperature and an average OA temperature. ⁶⁵
		See customer application		Customer application
SEER/HSPF	Variable	Default: Table 24-9 baseline efficiencies in Sub-Appendix F1-V: Residential HVAC Equipment Efficiency Ratings	kBtu/kWh	10 CFR Ch. II (1-1-12 Edition) §430.32
EFLH _{heat}	Variable	See Table 24-7 in Sub- Appendix F1-IV: Residential equivalent full-load hours for HVAC	hours	Maryland/Mid-Atlantic TRM v10 and scaled using CDH by city
$\DeltaT_{heat,avg}$.	Variable	Default: VA: 64.9 NC: 61.6	°F	Iowa 2021 Res TRM, pg. 212. Values are derived from TMY data of Elizabeth City and Rocky Mount-Wilson (for NC), and Richmond (for VA), using 115°F supply temperature and an average OA temperature. ⁶⁶
CF _{summer}	Fixed	0.69	_	Maryland/Mid-Atlantic TRM v10, p. 93 ⁶⁷
CF _{winter}	Fixed	0.69	_	Maryland/Mid-Atlantic TRM v10, p. 93 ⁶⁷

 $^{^{64}}$ Based on an assumed circumference of 6 inches and circular duct (0.5 ft x 3.14 = 1.57)

 $^{^{65}}$ Cooling season is estimated as May through August, only during 8 AM to 8 PM each day. See lowa TRM pg. 215, footnote 568.

 $^{^{66}}$ Heating Season is estimated as September through April. See lowa TRM, pg. 215, footnote 568.

⁶⁷ The same CF as the other HVAC measures are used for consistency. This measure is expected to have a similar savings profile. The Maryland/Mid-Atlantic TRM v10 provides CF for central AC systems in the ductless mini-split measure. In other measures in the Maryland/Mid-Atlantic TRM v10 a utility-specific and equipment specific CF is provided. We use the more generic CF. There are no generic winter CF. Therefore, we apply summer CF.

4.3.4.4 Default savings

If the proper values are not supplied, a default savings may be applied using conservative input values.

The default per-measure gross annual electric energy savings will be assigned according to the following calculation: (e.g., for residential homes in Virginia, with Central Air SEER=13, heat pump COP=2.0, and 10 ft. of uninsulated standard 6-inch round duct in an unconditioned space).

$$\Delta kWh_{cool} = \left(\frac{1}{R_{base}} - \frac{1}{R_{base} + R_{ee}}\right) \times Area \times EFLH_{cool} \times \Delta T_{cool.avg.}$$

$$\times \left(\frac{1}{1,000 \, W/kW \times \eta_{cool}}\right)$$

$$= \left(\frac{1}{1.0} - \frac{1}{1.0 + 6.0}\right) ft^2 \cdot {}^\circ F. h/Btu \times (\pi \times 0.5 ft \times 10 ft) \times 613 \ hours$$

$$\times 20.0 \cdot F \times \left(\frac{1}{1,000 \, W/kW \times 13.0}\right)$$

$$= 12.7 \ kWh$$

$$\Delta kWh_{heat} = \left(\frac{1}{R_{base}} - \frac{1}{R_{base} + R_{ee}}\right) \times Area \times EFLH_{heat} \times \Delta T_{avg,heat}$$

$$\times \left(\frac{1}{3,412 \, Btu/kWh \times \eta_{heat}}\right)$$

$$= \left(\frac{1}{1.0} - \frac{1}{1.0 + 6.0}\right) ft^2 \cdot {}^\circ F. h/Btu \times (\pi \times 0.5 ft \times 10 ft) \times 789 \ hours$$

$$\times 64.9 \cdot F \times \left(\frac{1}{3,412 \, Btu/kWh \times 2.0}\right)$$

$$= 101.0 \ kWh$$

The default summer per-measure gross coincident peak demand reduction will be assigned according to the following calculation:

$$\Delta kW_{summer} = \frac{\Delta kWh_{cool}}{EFLH_{cool}} \times CF_{summer}$$
$$= \frac{12.69 \ kWh}{613 \ hours} \times 0.69$$

 $= 0.014 \, kW$

The default winter per-measure gross coincident peak demand reduction will be assigned according to the following calculation:

$$\Delta kW_{winter} = \frac{\Delta kWh_{heat}}{EFLH_{heat}} \times CF_{winater}$$
$$= \frac{101.0 \ kWh}{789 \ hours} \times 0.69$$
$$= 0.089 \ kW$$

4.3.4.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-41.

Table 4-41. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VIII	Residential Home Retrofit Program, DSM Phase VIII	20.00	years	Iowa 2021 Res TRM, p. 210
VII	Residential Home Energy Assessment Program, DSM Phase VII	12.41	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

4.3.4.6 Source(s)

The primary source for this deemed savings approach is the lowa TRM 2021, pp. 210-215. Other assumptions such as heating/cooling full load hours and temperature differences are based on NOAA TMY data estimations.

4.3.4.7 Update summary

Updates to this section are described in Table 4-42.

Table 4-42. Summary of update(s)

Updates in version	Update type	Description
2022	References	Updated references and page numbers
2021	New table	Effective Useful Life (EUL) by program
2021	Equation	Added gross winter peak demand reduction equation
2020		Initial release

DNV - www.dnv.com

4.3.5 Duct sealing

4.3.5.1 Measure description

This measure realizes energy savings by identifying and sealing leaky duct work in unconditioned space using mastic sealant or metal tape.

Three methodologies for estimating the savings associated with sealing the ducts are provided. The first method requires the use of a blower door and the second requires the use of a duct blaster.

 Modified Blower Door Subtraction - this technique is described in of the Energy Conservatory Blower Door Manual:

http://energyconservatory.com/wp-content/uploads/2017/08/Blower-Door-Subtraction-Method.pdf

2. Total Leakage Test / Aerosol Test Equipment – this technique is described in detail on pp. 18 – 24 of the Energy Conservatory Duct Blaster Manual:

https://energyconservatory.com/wp-content/uploads/2014/07/Duct-Blaster-Manual-Series-B-DG700.pdf

- 3. Duct Blaster Testing this technique is described in detail on p. 16 of the RESNET Standard, Test 803.7:
 - $\underline{https://energyconservatory.com/wp-content/uploads/2014/09/RESNET-Standards-Chapter-8.pdf}$
- 4. Prescriptive this method will make assumptions about the pre- and post-sealing leakage proportions. The energy savings and demand reductions are calculated using the Total Leakage Test method.

The existing baseline condition is leaky duct work within the unconditioned space. The efficient condition is sealed duct work throughout the unconditioned space in the home.

This measure is offered through different programs listed in Table 4-43 and uses the Impacts Estimation Approach described in this section.

Table 4-43. Programs that offer duct sealing

Program name	Section
Residential Home Energy Assessment Program, DSM Phase VII	Section 4.3.5
Residential Manufactured Housing Program, DSM Phase VIII	Section 10.3.2
Residential Home Retrofit Program, DSM Phase VIII	Section 11.4.3
Residential Multifamily Program, DSM Phase VIII	Section 12.3.3
Residential New Construction Program, DSM VIII	Section 15.3.2
Residential Income and Age Qualifying Energy Efficiency Program, DSM Phase IX	Section 18.4.1

4.3.5.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to duct leakage reduction and based on the methodology used:

Methodology 1: Modified blower door subtraction leakage

$$cfm50_{duct} = (cfm50_{whole\ house} - cfm50_{envelope\ only}) \times SCF$$

$$\Delta cfm25_{duct} = (cfm50_{duct,base} - cfm50_{duct,ee}) \times 0.64 \times (SLF + RLF)$$

Per-measure, gross annual electric energy savings are calculated according to the following equations:

$$\Delta kWh = \Delta kWh_{cool} + \Delta kWh_{heat}$$

$$\Delta kWh_{cool} = \frac{\Delta cfm25_{duct} \times EFLH_{cool} \times 30 \frac{Btu/h}{cfm}}{1,000 \frac{W}{kW} \times SEER}$$

Heating savings are only calculated for heat pumps. Central air conditioners with non-electric heating and electric baseboard heating will not realize electric energy savings. Heating savings are calculated as follows:

$$\Delta kWh_{heat} = \frac{\Delta cfm25_{duct} \times EFLH_{heat} \times 30 \ \frac{Btu/h}{cfm} \times 293.1 \frac{kW}{MMBtu}}{1,000,000 \frac{Btu}{MMBtu} \times COP}$$

Methodology 2: Total leakage test / Aerosol test equipment

$$\Delta cfm25_{duct} = (cfm25_{DL,base} - cfm25_{DL,ee}) \times DLF$$

Per-measure, gross annual electric energy savings are calculated according to the following equations:

$$\Delta kWh = \Delta kWh_{cool} + \Delta kWh_{heat}$$

$$\Delta kWh_{cool} = \frac{\Delta cfm25_{duct} \times EFLH_{cool} \times 30 \ \frac{Btu/h}{cfm}}{1,000 \frac{W}{kW} \times SEER}$$

Heating savings are only calculated for heat pumps. Central air conditioners with non-electric heating and electric baseboard heating will not realize electric energy savings. Heating savings are calculated as follows:

$$\Delta kWh_{heat} = \frac{\Delta cfm25_{duct} \times EFLH_{heat} \times 30 \ \frac{Btu/h}{cfm} \times 293.1 \frac{kW}{MMBtu}}{1,000,000 \frac{Btu}{MMBtu} \times COP}$$

Methodology 3: Duct blaster testing

Per-measure, gross annual electric energy savings are calculated according to the following equations:

$$\Delta kWh = \Delta kWh_{cool} + \Delta kWh_{heat}$$

$$\Delta kWh_{cool} = \frac{\left(cfm25_{duct,base} - cfm25_{duct,ee}\right) \times EFLH_{cool} \times 30 \ \frac{Btu/h}{cfm}}{1,000 \frac{W}{kW} \times SEER}$$

Heating savings are only calculated for heat pumps. Central air conditioners with non-electric heating and electric baseboard heating will not realize electric energy savings. Heating savings are calculated as follows:

$$\Delta kWh_{heat} = \frac{\left(cfm25_{duct,base} - cfm25_{duct,ee}\right) \times EFLH_{heat} \times 30 \ \frac{Btu/h}{cfm} \times 293.1 \frac{kW}{MMBtu}}{1,000,000 \frac{Btu}{MMBtu} \times COP}$$

After obtaining gross annual electric energy savings from one of the above methods, per-measure, gross coincident summer peak demand reductions are calculated according to the following equation:

$$\Delta kW_{summer} = \frac{\Delta kWh_{cool}}{EFLH_{cool}} \times CF_{summer}$$

Per-measure, gross coincident summer peak demand reductions are calculated according to the following equation:

$$\Delta kW_{winter} = \frac{\Delta kWh_{heat}}{EFLH_{heat}} \times CF_{winter}$$

Where:

 ΔkWh_{heat} = per-measure gross annual electric energy heating savings ΔkW_{summer} = per-measure gross coincident summer peak demand reduction ΔkW_{winter} = per-measure gross coincident winter peak demand reduction

cfm50_{duct} = duct leakage, calculate base & efficient cfm50whole house and cfm50envelope only

 Δ cfm25_{duct} = duct leakage reduction

Size = cooling/heating capacity of equipment in Btu/h (1 ton = 12,000 Btu/h) cfm25 $_{duct,base}$ = duct leakage in cfm25 as measured by duct blaster test before sealing cfm25 $_{duct,ee}$ = duct leakage in cfm25 as measured by duct blaster test after sealing

cfm50_{whole house} = standard blower door test result finding cubic feet per minute at a 50 Pascal pressure differential

unerenta

= blower door test result finding cubic feet per minute at 50 Pascal pressure differential with all supply and return registers sealed

= subtraction correction factor used to account for underestimation of duct leakage due to connections between duct system and the home. This value is determined by measuring pressure in duct system with registers sealed and using look up table provided by

Energy Conservatory.

SCF

cfm50_{envelope only}

SLF = supply loss factor; percentage of leaks sealed located in supply ducts x 168
RLF = return loss factor; percentage of leaks sealed located in return ducts x 0.569

EFLH_{cool} = equivalent cooling full load hours (EFLH) EFLH_{heat} = equivalent heating full load hours (EFLH)

SEER = seasonal energy efficiency ratio of air conditioning equipment

COP = coefficient of performance of heating equipment⁷⁰

DLF = duct leakage to outside factor

CF_{summer} = summer system peak coincidence factor CF_{winter} = winter system peak coincidence factor

4.3.5.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 4-44. Input values for duct sealing savings calculations

Component	Туре	Value	Units	Sources
Size	Variable	See customer application ⁷¹	Btu/h	Customer application
cfm50whole house	Variable	See customer application	cfm	Customer application
cfm50 _{envelope only}	Variable	See customer application cfm Cus		Customer application
SCF	Variable	See Table 4-45. Correction table for blower door subtraction		Mid-Atlantic TRM v9, p. 110
301	Vallable	For default use house to duct pressure of 50 Pa	_	Conservative estimate
SLF	Fixed	0.50	_	Mid-Atlantic TRM v9, p. 111
RLF	Fixed	0.25	_	Mid-Atlantic TRM v9, p. 111
cfm25 _{duct,base}	Variable	See customer application	cfm	Customer application

⁶⁸ Mid-Atlantic TRM v9, p. 111. Assumes that for each percent of supply air loss there is one percent annual energy penalty. This assumes supply side leaks are direct losses to the outside and are not recaptured back to the house. This could be adjusted downward to reflect regain of usable energy to the house from duct leaks. For example, during the winter some of the energy lost from supply leaks in a crawlspace will probably be regained back to the house (sometimes 1/2 or more may be regained). More information provided in "Appendix E Estimating HVAC System Loss From Duct Airtightness Measurements" https://energyconservatory.com/wp-content/uploads/2014/07/Duct-Blaster-Manual-Series-B-DG700.pdf. Accessed 10/01/2019.

⁶⁹ Mid-Atlantic TRM v9, p. 111. Assumes that for each percent of return air loss there is a half percent annual energy penalty. Note that this assumes that return leaks contribute less to energy losses than do supply leaks. This value could be adjusted upward if there was reason to suspect that the return leaks contribute significantly more energy loss than "average" (e.g., pulling return air from a super-heated attic), or can be adjusted downward to represent significantly less energy loss (e.g. pulling return air from a moderate temperature crawl space). More information provided in "Appendix E Estimating HVAC System Loss From Duct Airtightness Measurements" from https://energyconservatory.com/wp-content/uploads/2014/07/Duct-Blaster-Manual-Series-B-DG700.pdf. Accessed 10/01/2019.

⁷⁰ If the HSPF value is provided for residential split-system heat pump systems, convert to COP using COP = HSPF x 3.412.

⁷¹ When customer-provided heating system size is unavailable or is <80% or >156% of customer-provided cooling system size, a default value will be used, instead. In such instances, it is assumed that the heating system size was incorrectly documented. The acceptable range is based on a review of the AHRI database across numerous manufacturers and heat pump types.

Component	Туре	Value	Units	Sources
		Default for Residential HB 2789 Program (Heating and Cooling/Health and Safety), DSM Phase VIII = 386		Dominion Residential HB 2789 Program (Heating and Cooling/Health and Safety), DSM Phase VIII participant data ⁷²
		Prescriptive method default = 30% x size / (12,000 Btu/ton-h) x 400 cfm/ton		Dominion Residential Duct Testing Program participant data ⁷³
		See customer application		Customer application
cfm25 _{duct,ee}	Variable	Prescriptive method = average of available CFM25 _{duct,ee} for similar contractor, if unavailable a default is assigned, default = 15% x size / (12,000 Btu/ton-h) x 400 cfm/ton	cfm	Dominion Residential Duct Testing Program participant data
Δcfm25 _{duct}	Variable	See duct leakage calculations	cfm	Mid-Atlantic TRM v9, p. 111
EFLH _{cool}	Variable	For residential programs see Table 24-7 in Sub-Appendix F1-IV: Residential equivalent full-load hours for HVAC For multifamily common areas see the Non-Residential TRM Sub-Appendix F2-II: Non-residential HVAC equivalent full load hours	hours (annual)	Maryland/Mid-Atlantic TRM v10 and scale of CDH for different cities
EFLH _{heat}	Variable	For residential programs see Table 24-7 in Sub-Appendix F1-IV: Residential equivalent full-load hours for HVAC For multifamily common areas see the Non-Residential TRM Sub-Appendix F2-II: Non-residential HVAC equivalent full load hours	hours (annual)	Maryland/Mid-Atlantic TRM v10 and scaled using CDH by city
		See customer application		Customer application
SEER	Variable	Default: see in Table 24-9 Sub- Appendix F1-V: Residential HVAC Equipment Efficiency Ratings	Btu/W-h	Mid-Atlantic TRM v9, pp. 111-112, based on Table C403.2.3(2) of 2012 IECC
		See customer application		Customer application
COP Variable		Default: see in Table 24-9 Sub- Appendix F1-V: Residential HVAC Equipment Efficiency Ratings	_	Mid-Atlantic TRM v9, p. 114, which is based on Table C403.2.3(2) of 2012 IECC

⁷² A review of available participant data for 2021 was conducted. The average value is used based on 28 participants with a range of 163 cfm to 865 cfm.
73 DNV reviewed the customer application data on total leakage duct blaster method PreCFM25DL percentages in the Residential Duct Testing Program from program start dates through the end of 2014 (12/31/2014). The average pre-sealing duct leakage percentage (PreCFM25DL / (system size in tons x 400 CFM/ton)) was 30% for VA customers. There were no NC participants in this program at the end of 2014. To calculate customer specific PreCFM25DL, 30% was converted to 289 CFM for VA and 287 CFM for NC. For VA, the calculation = 28,903Btu/h 400CFM/ton x 30% / 12000 Btu/ton-hr, assuming a default of 28,903 Btu/h for Richmond, VA. These values were not updated for 2016 as average heat pump capacity varied little between 2014 and 2015.

Component	Туре	Value	Units	Sources
DLF	Variable	Single-story houses: 0.75 Multi-story houses: 0.67	-	DEER Update Study (2004-2005), pp. 8-19 ⁷⁴
CF _{summer}	Fixed	0.69	-	Maryland/Mid-Atlantic TRM v10, p.93 ⁷⁵
CF _{winter}	Fixed	0.69	_	Maryland/Mid-Atlantic TRM v10, p. 93 ⁷⁵

Table 4-45. Correction table for blower door subtraction⁷⁶

House to duct pressure, taped Off) (Pa)	Subtraction correction factor (SCF)
50 (default) ⁷⁷	1.00
49	1.09
48	1.14
47	1.19
46	1.24
45	1.29
44	1.34
43	1.39
42	1.44
41	1.49
40	1.54
39	1.60
38	1.65
37	1.71
36	1.78
35	1.84
34	1.91
33	1.98
32	2.06

House to duct pressure, taped Off) (Pa)	Subtraction correction factor (SCF)
30	2.23
29	2.32
28	2.42
27	2.52
26	2.64
25	2.76
24	2.89
23	3.03
22	3.18
21	3.35
20	3.54
19	3.74
18	3.97
17	4.23
16	4.51
15	4.83
14	5.20
13	5.63
12	6.12

⁷⁴ Itron prepared for SCE, Database for Energy Efficiency Resources (DEER) Update Study, Final Report (2004 – 2005), p. 8-19, http://deeresources.com/files/deer2005/downloads/DEER2005UpdateFinalReport_ItronVersion.pdf. Accessed 8/16/2016.

⁷⁵ The same CF as the other HVAC measures are used for consistency. This measure is expected to have a similar savings profile. The Maryland/Mid-Atlantic TRM v10 provides CF for central AC systems in the ductless mini-split measure. In other measures in the Maryland/Mid-Atlantic TRM v10 a utility-specific and equipment specific CF is provided. We use the more generic CF. There are no generic winter CF. Therefore, we apply summer CF.

⁷⁶ Table sourced from p.1 of the Energy Conservatory blower door manual – blower door subtraction method: http://energyconservatory.com/wp-content/uploads/2017/08/Blower-Door-Subtraction-Method.pdf. Accessed 10/1/2019.

¹⁷⁷ If the application house to duct pressure of the efficient case is less than the existing base house to duct pressure, the default house to duct pressure is used for both the base and efficient cases.

House to duct	Subtraction
pressure, taped	correction factor
Off) (Pa)	(SCF)
31	2.14

House to duct pressure, taped Off) (Pa)	Subtraction correction factor (SCF)
11	6.71

4.3.5.4 Default savings

No default savings will be awarded for this measure if pre- and post-duct testing values are not provided in the customer application.

4.3.5.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-46.

Table 4-46. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)		
ıx	Residential Income and Age Qualifying Energy Efficiency Program, DSM Phase IX					
	Residential Manufactured Housing Program, DSM Phase VIII					
VIII	Residential Home Retrofit Program, DSM Phase VIII	20.00	years	Mid-Atlantic TRM v9, p. 119		
VIII	Residential Multifamily Program, DSM Phase VIII		, , ,			
	Residential HVAC Health and Safety Program, DSM Phase VIII					
VII	Residential Home Energy Assessment Program, DSM Phase VII	12.41	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)		

4.3.5.6 Source(s)

The primary source for this deemed savings approach is the Mid-Atlantic TRM v9, pp. 106–119.

4.3.5.7 Update summary

Updates to this section are described in Table 4-47.

Table 4-47. Summary of update(s)

Updates in version	Update type	Description
2022	Defaults	Removed defaults for Residential HVAC Health and Safety Program, DSM Phase VIII
	New table	Effective Useful Life (EUL) by program
2021	Variable	Size is added (cooling/heating capacity)
	Defaults	Added program specific input defaults for Residential HVAC Health and Safety Program, DSM Phase VIII based on program data review

Updates in version	Update type Description	
	Equation	Added gross winter peak demand reduction equation
	Inputs	For prescriptive approach (methodology 3) we changed the default for cfm25 _{duct,ee} to only be based on historical program participant data only and not compare to individual contractor's historical values
2020	Equation	Removed size from the numerator and denominator of the kWh _{heat} and kWh _{cool} equations and added unit conversion. These values cancel out once units are accounted for. Removed gross annual electric savings component for heating from equation for gross coincident demand reduction
v10		Initial release

4.4 Lighting end use

4.4.1 LED lighting

4.4.1.1 Measure description

Existing incandescent light bulbs or minimum lighting efficacy EISA-compliant bulbs will be replaced with their respective equivalents LED bulbs.

This measure is offered through the programs listed in Table 4-48 uses the Impacts Estimation Approach described in this section. For the Residential Income and Age Qualified Program, the quantity is limited to six. The other programs do not have a specified quantity limit.

Table 4-48. Programs that offer LED lighting

Program name	Section
Residential Home Energy Assessment Program, DSM Phase VII	Section 4.4.1
Residential Energy Efficiency Kits Program, DSM Phase VIII	Section 9.3.1
Residential Manufactured Housing Program, DSM Phase VIII	Section 10.4.1
Residential Home Retrofit Program, DSM Phase VIII	Section 11.5.1
Residential Multifamily Program, DSM Phase VIII	Section 12.4.1
Residential Income and Age Qualifying Energy Efficiency Program, DSM Phase IX	Section 18.4.1
Residential Virtual Audit Program, DSM Phase IX	Section 20.3.1

4.4.1.2 Impacts Estimation Approach

Per unit savings are multiplied by the number of total bulbs installed based on the program tracking data.

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \frac{watts_{base} - watts_{ee}}{1,000 \, W/kW} \times ISR \times HOU \times [WHFe_{heat} + (WHFe_{cool} - 1)]$$

Per-measure, gross summer peak coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \frac{watts_{base} - watts_{ee}}{1,000 W/kW} \times ISR \times WHFd_{summer} \times CF_{summer}$$

Per-measure, gross winter peak coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \frac{watts_{base} - watts_{ee}}{1,000 \, W/kW} \times ISR \times WHFd_{winter} \times CF_{winter}$$

Where:

ΔkWh = per-measure gross annual electric energy savings

 ΔkW_{summer} = per-measure gross summer peak coincident peak demand savings ΔkW_{winter} = per-measure gross winter peak coincident peak demand savings

watts_{base} = wattage of incandescent bulb being replaced

wattsee = wattage of new efficient LED bulb

ISR = in service rate

HOU = hours of use per year

WHFeheat = waste heat factor to account for electric heating increase due to reduced waste heat from

efficient lighting

WHFe_{cool} = waste heat factor to account for electric cooling savings due to reduced waste heat from

efficient lighting

WHF_{d,summer} = waste heat factor for summer coincident peak demand savings to account for cooling

savings from efficient lighting

 $WHF_{d,winter} = waste\ heat\ factor\ for\ summer\ coincident\ peak\ demand\ savings\ to\ account\ for\ cooling\ savings$

from efficient lighting

CF_{summer} = summer peak coincidence factor CF_{winter} = winter peak coincidence factor

4.4.1.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 4-49. Input values for LED lighting savings

Component	Туре	Value	Units	Sources
watts _{base}	Variable	See Table 4-50	watts	US EPA Energy Independence and Security Act of 2007
wattsee	Variable	See Table 4-50	watts	Dominion Residential Home Energy Assessment Program requirements
ISR	Fixed	0.965	_	Maryland/Mid-Atlantic TRM v10, p. 30-32
HOU	Variable	See Table 24-14 in Sub- Appendix F1-VII: Residential Lighting Factors	hour/ year	Sub-Appendix F1-VII: Residential Lighting Factors

Component	Туре	Value	Units	Sources
		Default = 760 for Unknown room location		
WHFeheat	Variable	See Table 24-14 in Sub- Appendix F1-VII: Residential Lighting Factors	_	Sub-Appendix F1-VII: Residential Lighting Factors
		Default = 0.899 for Unknown room location		Lighting Factors
WHFecool	Variable	See Table 24-14 in Sub- Appendix F1-VII: Residential Lighting Factors	_	Sub-Appendix F1-VII: Residential Lighting Factors
		Default = 1.077 for Unknown room location		Lighting Factors
WHFd _{summer} Variable	Variable	See Table 24-14 in Sub- Appendix F1-VII: Residential Lighting Factors	_	Sub-Appendix F1-VII: Residential Lighting Factors
		Default = 1.17 for Unknown room location		
WHFd _{winter} Variable	Variable	See Table 24-14 in Sub- Appendix F1-VII: Residential Lighting Factors	_	Sub-Appendix F1-VII: Residential Lighting Factors
		Default = 1.17 for Unknown room location		Lighting Factors
CF _{summer} Variable	See Table 24-14 in Sub- Appendix F1-VII: Residential Lighting Factors	_	Sub-Appendix F1-VII: Residential	
		Default = 0.058 for Unknown room location		Lighting Factors
CFwinter	Variable	See Table 24-14 in Sub- Appendix F1-VII: Residential Lighting Factors	_	Sub-Appendix F1-VII: Residential Lighting Factors
		Default = 0.124 for Unknown room location		Lighting Factors

Table 4-50. LED Lighting savings for eligible measures

Measure	watts _{base}	wattsee
A-line LED 40 W Equivalent	29	5.0
A-line LED 60 W Equivalent	43	9.0
A-line LED 75 W Equivalent	53	12.0
A-line LED 100 W Equivalent	53	12.0
A-line LED 3 Way 75 W / 100 W / 150 W Equivalent	53	12.0
Decorative LED 25W Equivalent	25	2.7
Decorative LED 40W Equivalent	29	4.0
Globe LED 25W Equivalent	25	3.2

Measure	watts _{base}	wattsee
Globe LED 40W Equivalent	40	4.6
LED Downlight 50 W Equivalent	30	6.0
LED Downlight 65 W Equivalent	45	8.0
LED Downlight 75 W Equivalent	50	10.0
LED Downlight 85 W Equivalent	65	12.7
LED Downlight 90 W Equivalent	75	14.0

4.4.1.4 Default savings

If the proper values are not supplied, a default savings may be applied using conservative input values. In the event that the install location is unavailable on the customer application, the savings are calculated using default values. The default gross annual electric energy savings will be assigned according to the equations that follow. This default calculation is for the Income and Age Qualifying Home Improvement Program. However, the same calculation applies to the other programs using the corresponding wattages in Table 4-50.

40 W LEDs

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \frac{watts_{base} - watts_{ee}}{1,000 \, W/kW} \times ISR \times HOU \times [WHFe_{heat} + (WHFe_{cool} - 1)]$$

$$= \frac{40 - 9}{1,000 \, W/kW} \times 0.965 \times 760 \times [0.899 + (1.077 - 1)]$$

$$= 22.2 \, kWh$$

Per-measure, gross summer peak coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \frac{watts_{base} - watts_{ee}}{1,000 \, W/kW} \times ISR \times WHF_d \times CF_{summer}$$
$$= \frac{40 - 9}{1,000 \, W/kW} \times 0.965 \times 1.17 \times 0.058$$
$$= 0.002 \, kW$$

Per-measure, gross winter peak coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \frac{watts_{base} - watts_{ee}}{1,000 \, W/kW} \times ISR \times WHF_d \times CF_{winter}$$

$$= \frac{40 - 9}{1,000 \, W/kW} \times 0.965 \times 1.17 \times 0.124$$

$$= 0.004 \, kW$$

60 W LEDs

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \frac{watts_{base} - watts_{ee}}{1,000 W/kW} \times ISR \times HOU \times [WHFe_{heat} + (WHFe_{cool} - 1)]$$

$$= \frac{60 - 14.5}{1,000 W/kW} \times 0.965 \times 760 \times [0.899 + (1.077 - 1)]$$

$$= 32.6 kWh$$

Per-measure, gross coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \frac{watts_{base} - watts_{ee}}{1,000 \, W/kW} \times ISR \times WHFd \times CF_{summer}$$
$$= \frac{60 - 14.5}{1,000 \, W/kW} \times 0.965 \times 1.17 \times 0.058$$
$$= 0.003 \, kW$$

Per-measure, gross winter peak coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \frac{watts_{base} - watts_{ee}}{1,000 \, W/kW} \times ISR \times WHF_d \times CF_{winter}$$
$$= \frac{60 - 14.5}{1,000 \, W/kW} \times 0.965 \times 1.17 \times 0.124$$

=0.006 kW

4.4.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-51.

Table 4-51. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
IX	Residential Income and Age Qualifying Energy Efficiency Program, DSM Phase IX			Maryland/Mid-Atlantic TRM v10, p. 42
	Residential Virtual Audit Program, DSM Phase IX	See Sub-		
	Residential Energy Efficiency Kits Program	Appendix F1-VII: Residential	years	
VIII	Residential Manufactured Housing Program	Lighting Factors Table 24-14		Maryland/Mid-Atlantic TRM v10,
VIII	Residential Home Retrofit Program			p. 42
	Residential Multifamily Program			
VII	Residential Home Energy Assessment Program	12.41	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

4.4.1.6 Source(s)

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 26-41. Wattage requirements for EISA-compliant bulbs come from the US EPA's Energy Independence and Security Act of 2007 Frequently Asked Questions, p1.⁷⁸ Mid-Atlantic TRM v9, pp. 21-42 provides the appendix WHFs in Table 24-14 in Sub-Appendix F1-VII: Residential Lighting Factors.

4.4.1.7 Update summary

Updates to this section are described in Table 4-52.

Table 4-52. Summary of update(s)

Updates in version	Update type	Description	
2022	None No change		
2024	New table	Effective Useful Life (EUL) by program	
2021	Default calculation	Updated default calculations with revised wattages	

 $^{78 \ \}text{Available at} \ \underline{\text{https://www.energystar.gov/ia/products/lighting/cfls/downloads/EISA_Backgrounder_FINAL_4-11_EPA.pdf}$

Updates in version	Update type	Description
	Equation	Added winter peak coincident demand reduction equation
2020	Inputs	Revised baseline wattages for Residential Home Energy Assessment Program to reflect the DOE's rollback of the EISA lighting efficiency standard that was scheduled to take effect in 2020 but did not. Updated default savings calculation with revised baseline wattages.
v10	Source	Updated page numbers / version of the Mid-Atlantic TRM

5 RESIDENTIAL EFFICIENT PRODUCTS MARKETPLACE PROGRAM, DSM PHASE VII

The Residential Efficient Products Marketplace Program provides residential customers with an incentive to purchase specific energy efficient appliances. The measures offered through the program and the sections that contain the savings algorithms for each measure are presented in Table 5-1.

Table 5-1. Residential Efficient Products Marketplace Program measure list

End use	Measure	Manual section	
Lighting	Lighting lamps & fixtures	Section 5.1.1	
	Air purifier	Section 5.2.1	
	Clothes washer	Section 5.2.2	
	Clothes dryer	Section 5.2.3	
Appliance or Plug Load	Dehumidifier	Section 5.2.4	
	Dishwasher	Section 5.2.5	
	Freezer	Section 5.2.6	
	Refrigerator	Section 5.2.7	

5.1 Lighting end use

5.1.1 Lighting lamps & fixtures

5.1.1.1 Measure description

This measure describes savings from the purchase and installation of an ENERGY STAR® Integrated Screw Based SSL (LED) Lamp in place of an in-situ lamp. For time of sale, the baseline wattage is assumed to be that of an incandescent or EISA-compliant (where applicable) lamp installed in a screw-base socket. Note that the baseline will be EISA-compliant lamps for all categories to which EISA applies.

5.1.1.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = (watts_{base} - watts_{ee}) \times ISR \times HOU \times [WHFe_{heat} + (WHFe_{cool} - 1)]$$

$$\times \frac{1 \ kW}{1.000 \ W} \times DCP$$

Per-measure, gross summer coincident peak demand savings are calculated according to the following equation:

$$\Delta kW_{summer} = (watts_{base} - watts_{ee}) \times ISR \times WHFd \times CF_{summer} \times \frac{1 \ kW}{1,000 \ W} \times DCP$$

Per-measure, gross winter coincident peak demand savings are calculated according to the following equation:

$$\Delta kW_{winter} = (watts_{base} - watts_{ee}) \times ISR \times WHFd \times CF_{winter} \times \frac{1 \ kW}{1,000 \ W} \times DCP$$

Where:

 Δ kWh = per-measure gross annual electric energy savings

 $\begin{array}{ll} \Delta kW_{summer} & = \mbox{per-measure gross coincident summer peak demand savings} \\ \Delta kW_{winter} & = \mbox{per-measure gross coincident winter peak demand savings} \\ watts_{base} & = \mbox{assumed wattage of lamp being replaced based on lumens of LED} \end{array}$

wattsee = wattage of efficient LED bulb

ISR = in-service rate
HOU = annual hours of use

WHFeheat = waste heat factor to account for electric heating increase due to reduced waste heat from

efficient lighting

WHFecool = waste heat factor to account for electric cooling savings due to reduced waste heat from

efficient lighting

WHFd = waste heat factor for summer coincident peak demand savings to account for cooling savings

from efficient lighting

DCP = dominion customer proportion to account for leakage due to non-Dominion customers making

in-store purchases

CF_{summer} = summer peak coincidence factor CF_{winter} = winter peak coincidence factor

5.1.1.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 5-2. Input parameters for lighting lamps and fixtures

Component	Туре	Value	Sources	
ISR	Variable	0.965	_	Maryland/Mid-Atlantic TRM v10, pp. 30-32
watts _{base}	Variable	If product type = Multifaceted Reflector see customer application If base type of GU5.3, GX5.3, GU10, GU24 see customer application. "Retrofit Kit" or "Fixture" with lumens greater than 4,270 see customer application For all other product types and base types and lumen ranges see Table 5-3. If product type = "Parabolic Aluminized Reflector" and ENERGY STAR Bulb type is unknown set = to PAR20. If ENERGY STAR bulb type is inconsistent with the product type, the ENERGY STAR bulb type is used to define the product type.	watts	Customer application and Maryland/Mid- Atlantic TRM v10, p. 30
wattsee	Variable	See customer application	watts	Customer application

Component	Туре	Value	Units	Sources
HOU	Variable	See Table 24-14 in Sub-Appendix F1-VII: Residential Lighting Factors	hour/year	Maryland/Mid-Atlantic TRM v10, pp. 38-40 ⁷⁹
		Default = unknown fixture location		
WHFeheat	Variable	See Table 24-14 in Sub-Appendix F1-VII: Residential Lighting Factors	_	Mid-Atlantic TRM v9, p.
		Default = 0.899		35
WHFecool	Variable	See Table 24-14 in Sub-Appendix F1-VII: Residential Lighting Factors	_	Mid-Atlantic TRM v9, p. 35
		Default = 1.077		
WHFd	Variable	See Table 24-14 in Sub-Appendix F1-VII: Residential Lighting Factors	_	Mid-Atlantic TRM v9, p. 36
		Default = 1.170		
CF _{summer}	Variable	See Table 24-14 in Sub-Appendix F1-VII: Residential Lighting Factors		Maryland/Mid-Atlantic TRM v10, p. 31, based on PJM Coincidence Factors
Summer		Default = 0.058		
CFwinter	Variable	See Table 24-14 in Sub-Appendix F1-VII: Residential Lighting Factors	_	Maryland/Mid-Atlantic TRM v10, p. 31, based on PJM Coincidence Factors
OI WINTER		Default = 0.124		
DCP	Variable	Varies by store location; See Table 24-15. in Sub-Appendix F1-VII: Residential Lighting Factors		Dominion
		Default = 1.0, for on-line purchases		On-line purchases by Dominion customers, exclusively

Table 5-3 is adapted from the Maryland/Mid-Atlantic TRM v10, with the addition of the right-most columns that maps the defining categories offered by the program. The "Product Types" are mapped to the "Lamp Types" most similar to the "Product Type" category and having the largest lumen range to accommodate a range of lighting types. The minimum and maximum lumen values are used in combination with "Product Type" to determine watts_{base}.

⁷⁹ Hours of use for Dining Room, Bedroom, Bathroom, Hallway, Living Room, and Kitchen are from Navigant, EM&V Report for the 2012 Energy Efficient Lighting Program, Duke Energy Progress, July 2013, p. 23. Hours of use for Indoor ("Residential Interior and in-unit Multi-Family"), Exterior, and Garage are from the 2019 Mid-Atlantic TRM p.36; SF hours (equivalent to "Indoors") and MF hours are from Mid-Atlantic TRM v10 p.38-40

Table 5-3. Baseline wattage determination

Mid-Atlantic v10 TRM lamp type	Lumen range		VA/	Tracking data categories			
	Lower bound	Upper bound	Watts base	Product type	ENERGY STAR bulb type	Program measure, 3-way lamp	Program measure, Base type
	250	450	25				"E26 (Medium)", "E26D",
	450	800	29				
	800	1,100	43				
Standard A-type	1,100	1,600	53	"A-Line"	A15, "A19", A21", "A23",	"No", " "	
(medium base)	1,600	2,600	72	A-LINE	"S14", " "		
	2,600	3,000	150				
	3,000	4,000	200				
	4,000	6,000	300				
	250	450	25	"A-Line"		"YES"	"E26 (Medium)", "E12 (Candelabra)", "E26D", "E17 (Intermediate)"
	450	800	40		A15, "A19", A21", "A23", "S14", " "		
3-way, bug,	800	1,100	60				
marine, rough service, infrared	1,100	1,600	75				
Scrvice, illiarea	1,600	2,000	100				
	2,000	2,550	125				
	2,550	3,000	150				
Standard A-type (candelabra base) ⁸⁰	250	450	25	"A-Line"		"No", " "	"E12 (Candelabra)", "E17 (Intermediate)"
	450	800	40				
	800	1,100	60		A15, "A19", A21", "A23", "S14", " "		
	1,100	1,600	75				
	1,600	2,000	100				

⁸⁰ The Maryland/Mid-Atlantic v10 does not include a category for Standard A-Type with candelabra base, so it is added here. The bin ranges are the same as the "3-Way, bug, marine, rough service, infrared" Lamp Type,

Mid-Atlantic v10 TRM lamp type	Lumen range		Watta	Tracking data categories			
	Lower bound	Upper bound	Watts base	Product type	ENERGY STAR bulb type	Program measure, 3-way lamp	Program measure, Base type
	2,000	2,550	125				
	2,550	3,000	150				
	90	180	10				
Globe (any base	180	250	15			"NO", "YES", "	"E26 (Medium)", "E12 (Candelabra)", "E26D", "E17
< 500 lumens)	250	350	25				(Intermediate)"
	350	500	40				(intermediate)
	500	575	43				
Globe (medium base, > 499	575	650	53	"Globe"	"G16.5", "G25", "G30", "G40", " "		"E26 (Medium)"
lumens)	650	1,100	72				220 (Modium)
,	1,100	1,300	150				
Globe	500	575	60				"E12 (Candelabra)", "E26D", "E17 (Intermediate)"
(candelabra or intermediate	575	650	75				
base, ≥ 500	650	1,100	100				
lumens)	1,100	1,300	150				
Decorative	70	90	10			NO, "YES", " "	E26 (Medium), "E12
(Shapes B, BA,	90	150	15				
C, CA, DC, F, G, any base, < 500	150	300	25				(Candelabra)", "E26D", "E17 (Intermediate)"
lumens)	300	500	40		"B10", "B11", "B12", "B13",		(intermediate)
Decorative (medium base, >	500	1,050	43		"BA10", "BA11", "C11", "C7", "C9", "CA10", "F10", F15", "ST", "ST12", "ST18", "ST19", "S14"		"E26 (Medium)"
499 lumens) Decorative				"Candle"			
(candelabra or intermediate	500	1,050	60				"E12 (Candelabra)", "E26D",
base, ≥ 500 lumens)	330	1,000	30				"E17 (Intermediate)"

Mid-Atlantic v10 TRM lamp type	Lumen range		N	Tracking data categories			
	Lower bound	Upper bound	Watts base	Product type	ENERGY STAR bulb type	Program measure, 3-way lamp	Program measure, Base type
	200	300	20		"PAR16", "R14", R16"	NO, "YES", " "	"E26 (Medium)"
Reflector with	300	400	30				
medium-screw	400	450	40	"Reflector", "Parabolic			
bases w/	450	500	45	Aluminized Reflector"		INO, TES,	
diameter ≤ 2.25"	500	650	50				
	650	1,199	65				
	200	300	20				
R, PAR, ER, BR,	300	540	30			NO, "YES", " "	"E26 (Medium)"
BPAR or	540	630	40				
similar bulb shapes with	630	720	45		"PAR20"		
medium screw	720	1,000	50				
bases w/	1,000	1,200	65	"Parabolic Aluminized			
diameter > 2.26"	1,200	1,520	75	Reflector"			
and ≤ 2.5 "	1,520	1,730	90				
(*see	1,730	2,190	100				
exceptions	2,190	2,900	120				
below)	2,900	3,850	150				
	200	300	20				
	300	400	30			NO, "YES", " "	"E26 (Medium)"
	400	450	40				
	450	850	45				
	850	1,180	50				
*R20	1,180	1,420	65	"Reflector"	"R20"		
•	1,420	1,790	75	Reflector			
	1,790	2,050	90				
	2,050	2,580	100				
	2,580	3,430	120				
	3,430	4,270	150				
R, PAR, ER, BR,	200	300	20	"Reflector", "Parabolic	"PAR30", PAR30L",		
BPAR or similar	300	640	30	,	PAR30S", "PAR38", "R40"	NO, "YES", " "	"E26 (Medium)"

Mid Atlantia ado	Lumer	range	VA/	Tracking data categories			
Mid-Atlantic v10 TRM lamp type	Lower bound	Upper bound	Watts base	Product type	ENERGY STAR bulb type	Program measure, 3-way lamp	Program measure, Base type
bulb shapes	640	740	40				
with medium	740	850	45				
screw bases w/ diameter >2.5"	850	1,180	50				
ulailleter >2.5	1,180	1,420	65				
	1,420	1,790	75				
	1,790	2,050	90				
	2,050	2,580	100				
	2,580	3,430	120				
	3,430	4,270	150				
	200	300	20				
	300	400	30				
	400	450	40		"BR30", "BR40", "ER40",		
	450	500	45		"Downlight Recessed",		"E26 (Medium)", "E12 (Candelabra)", "E26D", "E17 (Intermediate)", " "
DD20 DD40 er	500	650	50	"Bulged Reflector",	"Downlight Solid State		
BR30, BR40, or ER40	650	1,420	65	"Retrofit Kit", "Fixture", "Table Lamps", "Wall	Retrofit", "Ceiling Mount", "Linear Strip", "Residential	NO, "YES", " "	
	1,420	1,790	75	Lamp", "Shop Light"	Portable Desk Task Light",		
	1,790	2,050	90		"Table Lamps", "Accent Light		
	2,050	2,580	100		Line-voltage", "Fixture", "		
	2,580	3,430	120				
	3,430	4,270	150				

5.1.1.4 Default savings

Savings are not calculated when required information is missing.

5.1.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 5-4.

Table 5-4. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VII	Residential Efficient Products Marketplace Program, DSM Phase VII	16.50	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

5.1.1.6 Source

The primary source for this deemed savings approach include the Mid-Atlantic TRM v10, pp. 26-34.

5.1.1.7 Update summary

Updates to this section are described in Table 5-5.

Table 5-5. Summary of update(s)

Updates in version	Update type	Description				
2022	Input	Added "B12" to ENERGY STAR Bulb Type for decorative lamps Added "E17 (Intermediate)" to the Program Measure Base Type Added "Ceiling Mount", "Linear Strip" to ENERGY STAR Bulb Type for BR30, BR40, or ER40 lamps.				
	Equation	Removed the non-residential sales factor, to capture savings from all lamps regardless of sector				
	Source	Updated page numbers / version of the Maryland/Mid-Atlantic TRM v10				
2021	Table	Updated lighting baseline wattage table				
	Equation	Added gross winter peak demand reduction equation				
2020	Inputs	Revised baseline wattages for Residential Home Energy Assessment Program to reflect the DOE's rollback of the EISA lighting efficiency standard that was scheduled to take effect in 2020 but did not.				
V10	Initial release					

5.2 Appliance or Plug Load end use

5.2.1 Air purifier

5.2.1.1 Measure description

An air purifier (cleaner) is a portable electric appliance that removes dust and fine particles from indoor air. This measure characterizes the purchase and installation of a unit meeting the energy efficiency specifications of ENERGY STAR in place of a baseline model.

DNV – www.dnv.com

The baseline equipment is assumed to be a conventional non-ENERGY STAR unit with the consumption estimates based upon EPA research on available models in 2011. The efficient equipment is defined as an air purifier that meets the specifications of ENERGY STAR as provided below:

The efficient equipment is defined as an air purifier that meets the specifications of ENERGY STAR as provided below:

Maximum Standby Power Requirement: 1.0 watts for models without Wi-Fi capabilities, 2.0 watts for models with Wi-Fi capabilities

Maximum ozone production: 50 parts per billion (ppb), per UL Standard 867 for models that emit ozone as a by-product of air cleaning.

The current ENERGY STAR minimum requirements are show in Table 5-6.

Table 5-6. ENERGY STAR minimum smoke CADR/W requirements⁸¹

Product size (cfm)	Smoke CADR/W
30 ≤ Smoke CADR < 100	1.90
100 ≤ Smoke CADR < 150	2.40
150 ≤ Smoke CADR	2.90

5.2.1.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \Delta kWh_{CADR}$$

Per-measure, gross summer coincident peak savings are calculated according to the following equation:

$$\Delta kW_{summer} = \frac{\Delta kWh}{HOU} \times CF_{summer}$$

Per-measure, gross winter coincident peak savings are calculated according to the following equation:

$$\Delta kW_{winter} = \frac{\Delta kWh}{HOU} \times CF_{winter}$$

Where:

ΔkWh = per-measure gross annual electric energy savings

 ΔkW_{summer} = per-measure gross coincident summer peak demand reduction ΔkW_{winter} = per-measure gross coincident winter peak demand reduction

ΔkWh_{CADR} = baseline annual electric energy usage

HOU = average annual hours of use

CF_{summer} = summer Peak Coincidence Factor

CF_{winter} = winter Peak Coincidence Factor

⁸¹ ENERGY STAR Version 2.0 current requirments

5.2.1.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 5-7. Input values for air purifier savings calculations

Component	Туре	Value	Unit	Source(s)
kWh _{base}	Variable	See Table 4-5	kWh	Maryland/Mid-Atlantic TRM v10, p. 188, footnote 410
KVVIIbase		Default use CADR 30-100	KVVII	Conservative savings using smallest CADR category
нои	Fixed	5,840	hours, annual	Maryland/Mid-Atlantic TRM v10, p. 18982
CF _{summer}	Fixed	0.67	_	Maryland/Mid-Atlantic TRM v10, p. 18983
CF _{winter}	Fixed	0.67	-	Maryland/Mid-Atlantic TRM v10, p. 18984

Table 5-8. Annual electric energy usage by clear air delivery rate (CADR)85

Clean air delivery rate (CADR)	CADR used in calculation	kWh _{base} (kWh/year)	kWh₅₅ (kWh/year)	∆kWh cadr
30 ≤ Smoke CADR < 100 (default)	75	441	148	39
100 ≤ Smoke CADR < 150	125	733	245	95
150 ≤ Smoke CADR < 200	175	1,025	342	173
200 ≤ Smoke CADR ⁸⁶	225	1,317	440	328

5.2.1.4 Default savings

Default per-measure gross annual electric energy savings are calculated according to the following equation, by assuming that the CADR < 100:

$$\Delta kWh = \Delta kWh_{CADW}$$

 $= 39.00 \, kWh$

Default per-measure gross summer coincident peak reduction is calculated according to the following equation, by assuming that CADR is < 100:

 $^{^{82}}$ Assumes 16 hours/day, 365 days/year, consistent with ENERGY STAR Qualified Air Cleaner Calculator.

 $^{^{\}mbox{83}}$ Assumes appliance just as likely to operate at night as during the day.

⁸⁴ Maryland/Mid-Atlantic TRM v10 does not provide a Winter CF but based on the assumption that the appliance is as likely to be used any hour of the day, the same CF as summer is used for winter.

⁸⁵ The CADR used for determined savings is smoke CADR. However, we use the application provided dust CADR as an approximation for smoke CADR. A review of current ENERGY STAR products indicates that the smoke CADR is slightly smaller than the dust CADR with a 0.98 R². Therefore, this assumption results in slightly conservative energy savings estimates,

⁸⁶ If the customer application CADR is greater than 563, it is assumed that the wrong value was provided, and the default is assigned. This is based on a review of ENERGY STAR Qualified Products List

$$\Delta kW_{summer} = \frac{\Delta kWh}{HOU} \times CF_{summer}$$
$$= \frac{39.00 \, kWh}{5,840 \, hours} \times 0.67$$
$$= 0.004 \, kW$$

Default per-measure gross winter coincident peak reduction is calculated according to the following equation, by assuming that CADR is < 100:

$$\Delta kW_{winter} = \frac{\Delta kWh}{HOU} \times CF_{summer}$$
$$= \frac{39.00 \ kWh}{5,840 \ hours} \times 0.67$$
$$= 0.004 \ kW$$

5.2.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 5-9.

Table 5-9. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VII	Residential Efficient Products Marketplace	16.50	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

5.2.1.6 Source(s)

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 187-190.

5.2.1.7 Update summary

Updates to this section are described in Table 5-10.

Table 5-10. Summary of update(s)

Updates in version	Update type	Description			
2022	None	No change			
2021	References	Updated the source version			
	New table	Effective Useful Life (EUL) by program			

Updates in version	Update type	Description			
	Equations	Replaced kWh _{base} and kWh _{ee} with a single value, ΔkWh _{CADR} , as these values don't change. Added gross winter peak demand reduction equation			
Inputs		Removed the ENERGY STAR Version 1.2 savings values as Version 2.0 is now current.			
2020		Initial release			

5.2.2 Clothes washer

5.2.2.1 Measure description

This measure relates to the purchase (time of sale) and installation of a clothes washer exceeding either the ENERGY STAR/CEE Tier 1, ENERGY STAR Most Efficient/CEE Tier 2, or CEE Tier 3 minimum qualifying efficiency standards. This measure is offered through multiple programs, as listed in Table 5-11, and uses the Impacts Estimation Approach described in this section.

Table 5-11. Programs that offer efficient clothes washers

Program name	Section
Residential Efficient Products Marketplace Program, DSM Phase VII	Section 5.2.2
Residential Home Retrofit Program, DSM Phase VIII	Section 11.3.1
Residential Multifamily Program, DSM Phase VIII	Section 12.5.1

5.2.2.2 Impacts Estimation Approach

Per-measure, gross annual energy savings are calculated according to the following equation.

$$\begin{split} \Delta kWh &= \left[\left(Size \times 1/IMEF_{base} \times N_{cycle} \right) \right. \\ & \times \left. \left(CW_{base} + \left(DHW_{base} \times DHW_{electric} \right) + \left(Dryer_{base} \times Dryer_{electric} \right) \right) \right] \\ & - \left[\left(Size \times 1/IMEF_{ee} \times N_{cycle} \right) \right. \\ & \times \left. \left(CW_{ee} + \left(DHW_{ee} \times DHW_{electric} \right) + \left(Dryer_{ee} \times Dryer_{electric} \right) \right) \right] \end{split}$$

Per-measure, gross summer coincident peak savings are calculated according to the following equation.

$$\begin{array}{ll} \Delta kW_{summer} &= \frac{\Delta kWh}{HOU} \times CF_{summer} \end{array}$$

Per-measure, gross winter coincident peak savings are calculated according to the following equation.

$$\begin{array}{ll} \Delta kW_{winter} & = \frac{\Delta kWh}{HOU} \times CF_{winter} \end{array}$$

Per-measure, gross annual water savings are calculated according to the following equation.

$$\Delta Water = Size \times (IWF_{base} - IWF_{ee}) \times N_{cycle}$$

Where:

ΔkWh = per-measure gross annual electric energy savings

ΔkW_{summer} = per-measure gross coincident summer peak demand savings ΔkW_{winter} = per-measure gross coincident winter peak demand savings

ΔWater = per-measure gross annual water savings

Size = clothes washer capacity

IMEF_{base} = Integrated Modified Energy Factor of baseline unit IMEF_{ee} = Integrated Modified Energy Factor of efficient unit

 N_{cycle} = number of wash cycles per year

CW_{base} = proportion of total energy consumption of baseline clothes washer operation
DHW_{base} = proportion of total energy consumption for water heating of baseline unit
Dryer_{base} = proportion of total energy consumption for baseline dryer operation

CW_{ee} = proportion of total energy consumption for efficient clothes washer operation
DHW_{ee} = proportion of total energy consumption for water heating of efficient unit
Dryer_{ee} = proportion of total energy consumption for efficient dryer operation

DHW_{electric} = proportion of DHW savings assumed to be electric Dryer_{electric} = proportion of dryer savings assumed to be electric

HOU = annual hours of use of clothes washer

IWF_{base} = integrated water factor of baseline clothes washerIWF_{ee} = integrated water factor of efficient clothes washer

CF_{summer} = summer peak Coincidence Factor CF_{winter} = winter peak Coincidence Factor

5.2.2.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 5-12. Input variables for clothes washer savings calculation

Component	Туре	Value	Unit	Source(s)
		See customer application		Customer application
Size	Variable	Default = 3.39	feet ³	Maryland/Mid-Atlantic TRM v10, p. 164 ⁸⁷
		See Table 5-13		
IMEF _{base}	Variable	Default: If size \leq 2.5 ft^3 , IMEF _{base} =1.84 If size $>$ 2.5 ft^3 , IMEF _{base} =1.72	-	Maryland/Mid-Atlantic TRM v10, p. 165,88 the weighted average of front loading and top loading machine IMEF values is used.
		See customer application		Customer application
IMEF _{ee} ⁸⁹	Variable	For default see Table 5-13, If size $\leq 2.5 \ ft^3$, IMEF _{ee} = 2.07 If size $> 2.5 \ ft^3$, IMEF _{ee} = 2.22	-	Maryland/Mid-Atlantic TRM v10, p. 165

⁸⁷ Maryland/Mid-Atlantic TRM v10, p. 164. Based on the average clothes washer volume of all units that are ENERGY STAR qualified as of 3/17/2020.

⁸⁸ The weighted average of front loading and top loading is used.

⁸⁹ ENERGY STAR Commercial Clothes Washers are rated in MEF instead of IMEF. However, for the purposes of calculating energy savings MEF is substituted for IMEF.

Component	Туре	Value	Unit	Source(s)
Ncycle	Variable	If washer is located in residential space, 90 N _{cycle} = 254 If washer is located in multifamily common area, N _{cycle} = 1,241	-	Residential spaces: Maryland/Mid- Atlantic TRM v10, p. 165 ⁹¹ and common areas: Minnesota TRM 2021, p. 173
CW _{base}	Variable	See Table 5-14 Default=0.07 (for all sizes)	-	Maryland/Mid-Atlantic TRM v10, p. 165
CWee	Variable	See Table 5-14 Default = 0.05 (for all sizes)		Maryland/Mid-Atlantic TRM v10, p. 165
DHW _{base}	Variable	See Table 5-14 Default = 0.28 (for all sizes)	-	Maryland/Mid-Atlantic TRM v10, p. 165
DHW _{ee}	Variable	See Table 5-14 Default = 0.32 (for all sizes)	-	Maryland/Mid-Atlantic TRM v10, p. 165
Dryer _{base}	Variable	See Table 5-14 Default = 0.65 (for all sizes)	-	Maryland/Mid-Atlantic TRM v10, p. 165
Dryer _{ee}	Variable	See Table 5-14 Default = 0.63 (for all sizes)	-	Maryland/Mid-Atlantic TRM v10, p. 165
DHWelectric	Variable	See Table 5-15 For default values, see Table 5-15	-	Maryland/Mid-Atlantic TRM v10, p. 166 Dominion Residential Home Energy Use Survey 2019 – 2020, p. 19
Dryer _{electric}	Variable	See Table 5-16 For default, see Table 5-16	-	Maryland/Mid-Atlantic TRM v10, p. 166 Dominion Residential Home Energy Use Survey 2019 – 2020 Appendix B, p. 112
нои	Variable	If washer is located in residential unit, 92 HOU = 265 If washer is located in multifamily common area, HOU = 1,241	hours, annual	Residential units: Maryland/Mid-Atlantic TRM v10, p. 166 ⁹³ Common areas: Minnesota TRM 2021, p. 173 ⁹⁴
IWF _{base}	Variable	See Table 5-17	gal/ft ³	Maryland/Mid-Atlantic TRM v10, p. 168
IWFee	Variable	See customer application See Table 5-17	gal/ft ³	Customer application Maryland/Mid-Atlantic TRM v10, p. 168
CF _{summer}	Fixed	0.029	-	Maryland/Mid-Atlantic TRM v10, p. 16695

⁹⁰ All programs will use washer location in residential space with the exception of the Nonresidential Multifamily program which uses the common number of cycles per year

⁹¹ Maryland/Mid-Atlantic TRM v10, p. 165. Metered data from Navigant Consulting "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 – May 31, 2013) Appliance Rebate Program." March 21, 2014, page 36.

⁹² All programs use washer location in residential space except the Nonresidential Multifamily program which uses the common area HOU.

⁹³ Maryland/Mid-Atlantic TRM v10, p. 166. Metered data from Navigant Consulting "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 – May 31, 2013) Appliance Rebate Program." March 21, 2014, p. 36.

⁹⁴ Assumes 1 hours per cycle.

⁹⁵ Ibid

Component	Туре	Value	Unit	Source(s)
CFwinter	Fixed	0.014	-	CA 2011 DEER load profile for residential clothes washer

For baseline IMEF, the weighted average is used regardless of the efficient case loading type.

Table 5-13. IMEF based on efficiency level and loading type

		Loading type	
Efficiency level	Front loading	Top loading	Weighted average
Residential clothes washers > 2.5 ft ³			
Federal Standard (baseline)	1.84	1.57	1.72
ENERGYSTAR (default) ⁹⁶	2.76	2.06	2.22
CEE Tier 1	2.76	2.06	2.22
CEE Tier 2	2.92	2.92	2.92
CEE Tier 3	3.10	3.10	3.10
Residential clothes washers ≤ 2.5 ft ³			
Federal Standard (baseline)	1.84	1.57	1.84
ENERGYSTAR (default)	2.07	2.07	2.07
CEE Tier 1	2.07	2.07	2.07
CEE Tier 2	2.20	2.20	2.20
Commercial clothes washers			
Federal Standard (baseline)	1.60	2.00	1.70
ENERGYSTAR (default) ⁹⁷			2.20

Table 5-14. Proportion of total energy consumption based on efficiency level

Efficiency lovel	Total energy consumption proportions				
Efficiency level	Washer	Dryer	DHW		
Federal standard (baseline)	0.07	0.65	0.28		
Clothes washers > 2.5 ft^3					
ENERGY STAR	0.05	0.63	0.32		
CEE Tier 1	0.05	0.63	0.32		
CEE Tier 2	0.10	0.87	0.03		
CEE Tier 3	0.10	0.87	0.03		
Clothes washers \leq 2.5 ft^3					

⁹⁶ If the application IMEF is lower than the ENERGY STAR Minimum the value provided is invalid and the ENERGY STAR Minimum is applied as a default.

⁹⁷ ENERGY STAR Commercial Clothes Washers are rated in MEF instead of IMEF. However, for the purposes of calculating energy savings MEF is substituted for IMEF.

Efficiency level	Total energy consumption proportions				
Efficiency level	Washer	Dryer	DHW		
CEE Tier 1	0.08	0.72	0.20		
CEE Tier 2	0.08	0.72	0.20		

Table 5-15. Proportion of savings assumed based on DHW fuel

DHW Fuel	DHW _{electric}
Electric	1.00
Non-electric	0.00
Unknown (default)	0.57 ⁹⁸

Table 5-16. Proportion of savings assumed based on dryer fuel

Dryer fuel	Dryer _{electric}
Electric	1.00
Fossil fuel	0.00
Unknown (default)	0.9499

Table 5-17. Integrated water factor (IWF) based on efficiency level and loading type

		Loading type			
Efficiency level	Front loading	Top loading	Weighted average (default)		
Residential clothes washers > 2.5 ft ³					
Federal standard (baseline)	4.70	6.50	5.50		
ENERGYSTAR (default)	3.20	4.30	4.00		
CEE Tier 1	3.20	4.30	4.00		
CEE Tier 2	3.20	3.20	3.20		
CEE Tier 3	3.00	3.00	3.00		
Residential clothes washers ≤ 2.5 ft³					
Federal Standard (baseline)		4.70	4.70		
ENERGYSTAR (default)		4.20	4.20		
CEE Tier 1		4.20	4.20		
CEE Tier 2		3.70	3.70		

 $^{^{98}}$ Dominion Energy Residential Home Energy Use Survey 2019 - 2020, p. 19, percent of homes with electric DHW.

⁹⁹ Dominion Energy Residential Home Energy Use Survey 2019 – 2020 Appendix B. p. 112. Used the responses for gas and electric dyers that have been replaced in the past three to five years as a proxy for the number of gas and electric dryers in use.

	Loading type			
Efficiency level	Front loading	Top loading	Weighted average (default)	
Commercial clothes washers				
Federal standard (baseline)	4.10	8.80	4.10100	
ENERGYSTAR (default)		4.00	4.00 ¹⁰¹	

5.2.2.4 Default savings

Per-measure gross annual energy savings, gross summer and winter coincident peak savings, and gross annual water savings respectively, are calculated according to the following equations when input parameter values are not provided.

If the clothes washer volume is > 2.5 ft^3 , default savings are calculated as follows:

$$\Delta kWh = \left[\left(Size \times 1/IMEF_{base} \times N_{cycle} \right) \right. \\ \times \left(CW_{base} + \left(DHW_{base} \times DHW_{electric} \right) \right. \\ + \left(Dryer_{base} \times Dryer_{electric} \right) \right] \\ - \left[\left(Size \times 1/IMEF_{ee} \times N_{cycle} \right) \right. \\ \times \left. \left(CW_{ee} + \left(DHW_{ee} \times DHW_{electric} \right) \right. \\ + \left. \left(Dryer_{ee} \times Dryer_{electric} \right) \right) \right] \\ = \left[\left(3.39 \ ft^3, \times 1/1.72 \times 254 \right) \right. \\ \times \left. \left(0.07 + \left(0.31 \times 0.28 \right) + \left(0.68 \times 0.65 \right) \right) \right] \\ - \left[\left(3.39 \ ft^3 \times 1/2.22 \times 254 \right) \right. \\ \times \left. \left(0.05 + \left(0.31 \times 0.32 \right) + \left(0.68 \times 0.63 \right) \right) \right] \\ = 75.7 \ kWh \\ \Delta kW_{summer} = \frac{\Delta kWh}{HOU} \times CF_{summer}$$

¹⁰⁰ Commercial clothes washer Integrated Water Factor (IWF) is obtained from https://www.ecfr.gov/current/title-10/part-431 and conservative value used for default savings calculation

¹⁰¹ ENERGY STAR Commercial Clothes Washers Integrated Water Factor (IWF) is obtained from https://www.energystar.gov/products/appliances/clothes-washers/key-product-criteria and the value used for the conservative default savings calculation

$$=\frac{75.74 \, kWh \times 0.029}{265 \, hours}$$

= 0.008 kW

$$\Delta kW_{winter} = \frac{\Delta kWh}{HOU} \times CF_{winter}$$

$$= \frac{75.7 \ kWh \times 0.014}{265 \ hours}$$

$$= 0.004 \text{ kW}$$

$$\Delta Water = Size \times (IWF_{base} - IWF_{ee}) \times N_{cycle}$$
$$= 3.39 ft^{3} \times (5.50 - 4.00) \times 254$$
$$= 1,291.59 \text{ gallons}$$

If clothes washer is $\leq 2.5 \ ft^3$, default savings are calculated as follows:

$$\Delta kWh = \left[\left(Size \times 1/IMEF_{base} \times N_{cycle} \right) \right. \\ \times \left(CW_{base} + \left(DHW_{base} \times DHW_{electric} \right) \right. \\ + \left(Dryer_{base} \times Dryer_{electric} \right) \right] \\ - \left[\left(Size \times 1/IMEF_{ee} \times N_{cycle} \right) \right. \\ \times \left. \left(CW_{ee} + \left(DHW_{ee} \times DHW_{electric} \right) \right. \\ + \left. \left(Dryer_{ee} \times Dryer_{electric} \right) \right) \right] \\ = \left[\left(3.39 \ ft^3 \times 1/1.84 \times 254 \right) \times \left(0.07 + \left(0.31 \times 0.28 \right) + \left(0.68 \times 0.65 \right) \right) \right] \\ - \left[\left(3.39 \ ft^3 \times 1/2.07 \times 254 \right) \right. \\ \times \left. \left(0.05 + \left(0.31 \times 0.32 \right) + \left(0.68 \times 0.63 \right) \right) \right] \\ = 40.0 \ kWh$$

$$\Delta kW_{summer} = \frac{\Delta kWh}{HOU} \times CF_{summer}$$

DNV - www.dnv.com

$$= \frac{39.95 \text{ kWh} \times 0.029}{265 \text{ hours}}$$

$$= 0.004 \text{ kW}$$

$$\Delta kW_{winter} = \frac{\Delta kWh}{HOU} \times CF_{winter}$$

$$= \frac{40.0 \text{ kWh} \times 0.014}{265 \text{ hours}}$$

$$= 0.002 \text{ kW}$$

$$\Delta Water = Size \times (IWF_{base} - IWF_{ee}) \times N_{cycle}$$

$$= 3.39 \text{ ft}^3 \times (4.70 \text{ gal/ft3} - 4.20 \text{ gal/ft3}) \times 254$$

$$= 430.53 \text{ gallons}$$

5.2.2.5 Effective Useful Life

The effective useful life of this measure is provided in Table 5-18.

Table 5-18. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)	
Residential Manufactured Housing Program, DSM Phas VIII,				M. I. WASHAN S. TOM 40	
VIII	Residential Home Retrofit Program, DSM Phase VIII,	14.00	years	Maryland/Mid-Atlantic TRM v10, p. 169	
	Residential Multifamily Program, DSM Phase VIII				
VII	Residential Efficient Products Marketplace Program, DSM Phase VII	16.50	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)	

5.2.2.6 Sources

The primary sources for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 163-169, and the Minnesota TRM 2021, p. 173.

5.2.2.7 Update summary

Updates to this section are described in Table 5-19.

Table 5-19. Summary of update(s)

Updates in version	Update type	Description		
2022	None	No change		
	New table	Effective Useful Life (EUL) by program Added new table for Integrated Water Factor (IWF) variable		
	Source	Updated page numbers / version of the Maryland/Mid-Atlantic TRM v10 and replaced some inputs with values from the Dominion Home Energy Use Survey 2019- 2020.		
2021	Equation	Added gross winter peak demand reduction equation Added gross annual water savings equation		
	Default Savings	Added default gross annual water savings value		
	Input table	Expanded to accommodate multifamily common area locations Added IWF _{base} and IWF _{ee} variables for water savings calculation		
2020	Adjusted CW _{ee} , DHW _{ee} , and Dryer _{ee} , Dryer _{electric} and DHW _{electric} from a fixe use customer application. The previous values are assigned as defaults if provided by the application.			
v10		Initial release		

5.2.3 Clothes dryer

5.2.3.1 Measure description

This measure relates to the installation of a residential clothes dryer meeting the ENERGY STAR criteria. ENERY STAR qualified clothes dryers save energy through a combination of more efficient drying and reduced runtime of the drying cycle. More efficient drying is achieved through increased insulation, modifying operating conditions such as air flow and/or heat input rate, improving air circulation through better drum design or booster fans, and improving efficiency of motors. Reducing the runtime of dryers through automatic termination by temperature and moisture sensors is believed to have the greatest potential for reducing energy use in clothes dryers. ENERGY STAR provides criteria for both gas and electric clothes dryers.

This measure is offered through different programs listed in Table 5-20 and uses the Impacts Estimation Approach described in this section.

Table 5-20. Programs that offer clothes dryer

Program name	Section
Residential Efficient Products Marketplace Program, DSM Phase VII	Section 5.2.3
Residential Home Retrofit Program, DSM Phase VIII	Section 11.3.2
Residential Multifamily Program, DSM Phase VIII	Section 12.5.1

5.2.3.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation.

$$\Delta kWh = \left(\frac{Load}{CEF_{hase}} - \frac{Load}{CEF_{ee}}\right) \times N_{cycle} \times Dryer_{electric}$$

Per-measure, gross summer coincident peak savings are calculated according to the following equation.

$$\begin{array}{ll} \Delta kW_{summer} & = \frac{\Delta kWh}{HOU} \times CF_{summer} \end{array}$$

Per-measure, gross winter coincident winter peak savings are calculated according to the following equation.

$$\frac{\Delta kW_{winter}}{HOU} = \frac{\Delta kWh}{HOU} \times CF_{winter}$$

Where:

 Δ kWh = per-measure gross annual electric energy savings

 ΔkW_{summer} = per-measure gross coincident summer peak demand savings ΔkW_{winter} = per-measure gross coincident winter peak demand savings

Load = the average total weight of clothes per drying cycle

CEF_{base} = combined energy factor (CEF) of the baseline unit

CEF_{ee} = combined energy factor (CEF) of the efficient unit

N_{cycle} = number of dryer cycles per year

Dryer_{electric} = proportion of overall savings coming from electricity

HOU = annual hours of use of clothes dryer

CF_{summer} = summer peak coincidence factor for measure CF_{winter} = winter peak coincidence factor for measure

5.2.3.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 5-21. Input variables for clothes dryer savings calculation

Component	Туре	Value	Unit	Source(s)
		See customer application		Customer application
Load Variable		Default = 8.45	lb	Maryland/Mid-Atlantic TRM v10, p. 177
		See customer application		Customer application
CEF _{base}	Variable	Default product class is Vented or Ventless Electric, Standard (≥ 4.4 ft³)	lb/kWh	Maryland/Mid-Atlantic TRM v10, p. 177
		See customer application		Customer application
CEFee	Variable	Default product class is Vented or Ventless Electric, Standard (≥ 4.4 ft³)	lb/kWh	Maryland/Mid-Atlantic TRM v10, p. 178

Component	Туре	Value	Unit	Source(s)
Ncycle	Fixed	If dryer is located in residential space, 102 $N_{cycle} = 311$ If dryer is located in multifamily common area, 103 $N_{cycle} = 1,241$	_	Residential spaces: Maryland/Mid-Atlantic TRM v10, p. 178; common areas: Minnesota TRM 2021, p. 173
Dryerelectric	Variable	See Table 5-24	_	Maryland/Mid-Atlantic TRM v10, p.178
		Default = 1.00		Program assumption
HOU	Fixed	If dryer is located in residential space, 102 HOU = 290 If dryer is located in multifamily common area, HOU = 1,241	hours, annual	Residential spaces: Maryland/Mid-Atlantic TRM v10, p. 179; common areas: Minnesota TRM 2021, p. 173 ¹⁰⁴
CF _{summer}	Fixed	0.029	_	Maryland/Mid-Atlantic TRM v10, p. 179
CFwinter	Fixed	0.014	_	CA 2011 DEER load profile for residential clothes washer

Table 5-22. Load based on dryer size

Dryer size	Default load (lb)
Standard (default)	8.45
Compact	3.00

Table 5-23. CEF_{base} and CEF_{ee} based on product class

Product class	Default CEF _{base} (lb/kWh)	Default CEF _{ee} (lb/kWh)
Vented or Ventless Electric, Standard (≥ 4.4 ft³) (default)	3.11	3.93
Vented or Ventless Electric, Compact, 120V (< 4.4 ft ³)	3.01	3.80
Vented Electric, Compact, 240V (< 4.4 ft ³)	2.73	3.45
Ventless Electric, Compact, 240V (< 4.4 ft ³)	2.13	2.68
Vented Gas	2.84	3.48

¹⁰² All programs will use washer location in residential space with the exception of the Non-residential Multifamily program which uses the common areas

¹⁰³ The Source TRMs do not contain dryer cycles or HOU for multifamily common area applications. Therefore, the multifamily values use the same cycles and HOU as the clothes washer measure

¹⁰⁴ Assumes 1 hour per cycle.

Page 114

Table 5-24. Proportion of overall savings from dryer based on fuel type

Clothes dryer fuel type	Fuel _{dryer}
Electric (default)	1.00
Gas ¹⁰⁵	0.16

5.2.3.4 Default savings

Per-measure gross annual energy savings and gross summer coincident peak savings, respectively, are calculated according to the following equations when input parameter values are not provided.

$$\Delta kWh = \left(\frac{Load}{CEF_{base}} - \frac{Load}{CEF_{ee}}\right) \times N_{cycle} \times Fuel_{electric}$$

$$= \left(\frac{8.45 \, lb}{3.11 \, lb/kWh} - \frac{8.45 \, lb}{3.93 \, lb/kWh}\right) \times 311 \times 1.00$$

$$= 176.3 \, kWh$$

$$\Delta kW_{summer} = \frac{\Delta kWh}{HOU} \times CF_{summer}$$

$$= \frac{176.3 \, kWh}{290 \, hours} \times 0.029$$

$$= 0.018 \, kW$$

$$\Delta kW_{winter} = \frac{\Delta kWh}{HOU} \times CF_{winter}$$

$$= \frac{176.3 \, kWh}{HOU} \times CF_{winter}$$

$$= \frac{176.3 \, kWh}{290 \, hours} \times 0.014$$

$$= 0.009 \, kW$$

5.2.3.5 Effective Useful Life

The effective useful life of this measure is provided in Table 5-25.

DNV – www.dnv.com

¹⁰⁵ Some electric savings are attributed to gas dryers resulting from electrical components (motors, controls, etc.). The Maryland/Mid-Atlantic TRM v10, p. 178 states "16% was determined using a ratio of the electric to total savings from gas dryers given by ENERGY STAR Draft 2 Version 1.0 Clothes Dryers Data and Analysis."

Table 5-25. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VIII	Residential/ Non-Residential Multifamily	14.00	years	Mid-Atlantic TRM v8, p. 239
VII	Residential Efficient Products Marketplace Program	16.50	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

5.2.3.6 Sources

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 177-179.

5.2.3.7 Update summary

Updates to this section are described in Table 5-26.

Table 5-26. Summary of update(s)

Updates in version	Update type	Description
2022	None	No change
Sources Updated default values		Updated default values
2021	Equation	Added gross winter peak demand reduction equation
New table Effective Useful Life (EUL) by program		Effective Useful Life (EUL) by program
2020	Input Corrected error in the Load based on Dryer Size Table, fossil fuel was changed to compact	
v10		Initial release

5.2.4 Dehumidifier

5.2.4.1 Measure description

This measure relates to the purchase (time of sale) and installation of a dehumidifier meeting the minimum qualifying efficiency standard established by the current ENERGY STAR (Version 5.0) in place of a unit that meets the minimum federal standard efficiency.

5.2.4.2 Impacts Estimation Approach

Per-measure, gross annual energy savings are calculated according to the following equation.

$$\Delta kWh = Capacity \times \frac{0.473 \ L/pint}{24 \ hr/day} \times HOU \times \left(\frac{1}{L/kWh_{base}} - \frac{1}{L/kWh_{ee}}\right)$$

Per-measure, gross summer coincident peak savings are calculated according to the following equation.

$$\begin{array}{ll} \Delta kW_{summer} & = \frac{\Delta kWh}{HOU} \times CF_{summer} \end{array}$$

Per-measure, gross winter coincident peak savings are zero for this measure as dehumidifiers typically operate between April through September.

$$\Delta kW_{winter}$$
 0.0

Where:

ΔkWh = per-measure gross annual electric energy savings

 ΔkW_{summer} = per-measure gross coincident summer peak demand savings ΔkW_{winter} = per-measure gross coincident winter peak demand savings

Capacity = capacity of the unit HOU = annual hours of use

L/kWh_{base} = liters of water per kWh consumed for the baseline unit L/kWh_{ee} = liters of water per kWh consumed for the energy efficient unit

CF_{summer} = summer peak coincidence factor for measure

5.2.4.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 5-27. Input variables for dehumidifier savings calculation

Component	Туре	Value	Unit	Source(s)
		See customer application		Customer application
Capacity	Variable	Default for portable dehumidifier: Capacity = 20	pint/day	Portable dehumidifier is from Maryland/Mid-Atlantic TRM v10, p. 182
HOU	Fixed	1,632	hours, annual	Maryland/Mid-Atlantic TRM v10, p. 182
L/kWh _{base}	Variable	See Table 5-28	liter/kWh	Minimum federal standard criteria
		See customer application		Customer application
L/kWh _{ee}	Variable	For default see Table 5-28	liter/kWh	ENERGY STAR minimum qualifying criteria
CF _{summer}	Fixed	0.37	_	Maryland/Mid-Atlantic TRM v10, p. 183

Table 5-28. L/kWh_{base} and L/kWh_{ee} for portable dehumidifier based on dehumidifier capacity

Capacity range (pint/day)	Minimum baseline (Federal standard) criteria, L/kWh _{base}	Minimum ENERGY STAR criteria, L/kWh _{ee} (Default)
≤ 25 (default)	1.30	1.57
> 25 and ≤ 50	1.60	1.80
> 50	2.80	3.30

5.2.4.4 Default savings

Per-measure gross annual energy savings and gross summer coincident peak savings, respectively, are calculated according to the following equations when input parameter values are not provided:

For portable dehumidifier:

$$\Delta kWh = Capacity \times \frac{0.473 \ L/pint}{24 \ hr/day} \times HOU \times \left(\frac{1}{L/kWh_{base}} - \frac{1}{L/kWh_{ee}}\right)$$

$$= 20 \ pint/day \times \frac{0.473 \ L/pint}{24 \ hr/day} \times 1,632 \ hours \times \left(\frac{1}{1.30 \ L/kWh} - \frac{1}{1.57 \ L/kWh}\right)$$

$$= 85.10 \ kWh$$

$$\Delta kW_{summer} = \frac{\Delta kWh}{HOU} \times CF_{summer}$$

$$= \frac{85.10 \ kWh}{1,632 \ hours} \times 0.37$$

$$= 0.019 \ kW$$

5.2.4.5 Effective Useful Life

The effective useful life of this measure is provided in Table 5-29.

Table 5-29. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VIII	Residential HVAC Health and Safety Program, DSM Phase VIII	12.00	years	Maryland/Mid-Atlantic TRM v10, p. 183
VII	Residential Efficient Products Marketplace Program, DSM Phase VII	16.50	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

5.2.4.6 Source

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 181-183.

5.2.4.7 Update summary

Updates to this section are described in Table 5-30.

Table 5-30. Summary of update(s)

Updates in version	Update type	Description
2022	None	No change

Updates in version	Update type	Description		
2021	Source	Updated the source page and values		
2020	Inputs	Clarified that I/kWh _{base} comes from Federal Standard rather than the customer application Removed the default kWh _{ee} values referencing the previous version of ENERGY STAR requirements that were updated October 31, 2019		
v10		Initial release		

5.2.5 Dishwasher

5.2.5.1 Measure description

A dishwasher meeting the efficiency specifications of ENERGY STAR is installed in place of a model meeting the federal standard. This measure is only for standard dishwashers and not compact dishwashers. A compact dishwasher is a unit that holds fewer than eight place settings with six serving pieces.

5.2.5.2 Impacts Estimation Approach

Per-measure, gross annual energy savings are calculated according to the following equation.

$$\Delta kWh = (kWh_{base} - kWh_{ee}) \times [Elec_{op} + (Elec_{heat} \times Elec_{DHW})]$$

Per-measure, gross summer coincident peak savings are calculated according to the following equation.

$$\begin{array}{ll} \Delta kW_{summer} & = \frac{\Delta kWh}{HOU} \times CF_{summer} \end{array}$$

Per-measure, gross winter coincident peak savings are calculated according to the following equation.

$$\frac{\Delta k W_{winter}}{HOU} \times CF_{winter}$$

Per-measure, gross annual water savings are calculated according to the following equation.

$$\Delta Water = Water_{base} - Water_{ee}$$

Where:

 Δ kWh = per-measure gross annual electric energy savings

 ΔkW_{summer} = per-measure gross coincident summer peak demand savings ΔkW_{winter} = per-measure gross coincident winter peak demand savings

kWh_{base} = kWh consumption per year of the baseline unit kWh_{ee} = kwh consumption per year of the energy efficient unit

 Δ Water = per-measure gross annual water savings

Elec_{op} = percent of dishwasher energy consumption used for unit operation Elec_{heat} = percent of dishwasher energy consumption used for water heating

Elecdhw = percentage of DHW savings assumed to be electric

HOU = annual hours of use

Water_{base} = annual water consumption of baseline dishwasher Water_{ee} = annual water consumption of efficient dishwasher

CF_{summer} = summer peak coincidence factor CF_{winter} = winter peak coincidence factor

5.2.5.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 5-31. Input variables for dishwasher savings calculations

Component	Туре	Value	Unit	Source(s)
kWh _{base}	Fixed	307	kWh	Maryland/Mid-Atlantic TRM v10, p. 191
kWh _{ee}	Fixed	270	kWh	Maryland/Mid-Atlantic TRM v10, p. 191
Elecop	Fixed	0.44	_	Maryland/Mid-Atlantic TRM v10, p. 191
Elecheat	Fixed	0.56	_	Maryland/Mid-Atlantic TRM v10, p. 192
Elec _{DHW}	Variable	See Table 5-15 in Section 5.2.2 For Default use unknown DHW fuel	_	Maryland/Mid-Atlantic TRM v10, p. 166
HOU	Fixed	210	hours, annual	Maryland/Mid-Atlantic TRM v10, p. 192
Water _{base}	Fixed	700 ¹⁰⁶	gallons	Maryland/Mid-Atlantic TRM v10, p. 194
Water _{ee}	Fixed	490 ¹⁰⁷	gallons	Maryland/Mid-Atlantic TRM v10, p. 194
CF _{summer}	Fixed	0.026	_	Maryland/Mid-Atlantic TRM v10, p. 192
CFwinter	Fixed	0.006	_	CA 2011 DEER load profile for residential dishwasher

5.2.5.4 Default savings

Per-measure gross annual energy savings, gross summer and winter coincident peak savings, and gross annual water savings respectively, are calculated according to the following equations for all dishwashers.

$$\Delta kWh = (kWh_{base} - kWh_{ee}) \times \left[Elec_{op} + (Elec_{heat} \times Elec_{DHW})\right]$$
$$= (307 \, kWh - 270 \, kWh) \times (0.44 + (0.56 \times 0.57))$$

¹⁰⁶ Assuming 5 gallons/cycle (maximum allowed) and 140 cycles per year based on a weighted average of dishwasher usage in the Mid-Atlantic Region derived from the 2009 RECs data; http://205.254.135.7/consumption/residential/data/2009/

¹⁰⁷ Assuming 3.50 gallons/cycle (maximum allowed) and 140 cycles per year based on a weighted average of dishwasher usage in the Mid-Atlantic Region derived from the 2009 RECs data; http://205.254.135.7/consumption/residential/data/2009/

$$= 28.1 \, kWh$$

$$\Delta kW_{summer} = \frac{\Delta kWh}{HOU} \times CF_{summer}$$

$$= \frac{28.1 \ kWh}{210 \ hours} \times 0.0260$$

$$= 0.004 \ kW$$

$$\Delta kW_{winter} = \frac{\Delta kWh}{HOU} \Delta kWh/HOU \times CF_{winter}$$

$$= \frac{28.1 \ kWh}{210 \ hours} \times 0.006$$

$$= 0.001 \ kW$$

$$\Delta Water = Water_{base} - Water_{ee}$$

$$= 700 \ gallons - 490 \ gallons$$

$$= 210 \ gallons$$

5.2.5.5 Effective Useful Life

The effective useful life of this measure is provided in Table 5-32.

Table 5-32. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VII	Residential Efficient Products Marketplace	16.50	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

5.2.5.6 Source

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 191-194.

5.2.5.7 Update summary

Updates to this section are described in Table 5-33.

Table 5-33. Summary of update(s)

Updates in version	Update type	Description
2022	None	No change
	Source	Updated source references only
2021	Equation	Added gross winter peak demand reduction equation Added gross annual water savings equation
	Input variable	Added Water _{base} and Water _{ee} constants for water savings calculation
	Default savings	Added default gross annual water savings value
2020	Inputs	Adjusted Elec _{DHW} and Fuel _{DHW} from fixed values to use customer application
v10		Initial release

5.2.6 Freezer

5.2.6.1 Measure description

This measure relates to the upstream promotion of residential freezers meeting the ENERGY STAR criteria through the Energy Star Retail Products Program. In the measure, a freezer meeting the efficiency specifications of ENERGY STAR is installed in place of a model meeting the federal standard (NAECA).

5.2.6.2 Impacts Estimation Approach

Per-measure, gross annual energy savings are calculated using one of the following equations, depending on what inputs are available:

$$\Delta kWh = kWh_{base} - kWh_{ee}$$

Per-measure, gross summer coincident peak savings are calculated according to the following equation:

$$\frac{\Delta kW_{summer}}{HOU} = \frac{\Delta kWh}{HOU} \times TAF \times LSAF$$

Per-measure, gross summer coincident peak savings are calculated according to the following equation:

$$\begin{array}{ll} \Delta kW_{winter} & = \frac{\Delta kWh}{HOU} \times CF_{winter} \end{array}$$

Where:

 $\begin{array}{lll} \Delta kWh & = \text{per-measure gross annual electric energy savings} \\ \Delta kW_{\text{summer}} & = \text{per-measure gross coincident peak demand savings} \\ \Delta kW_{\text{winter}} & = \text{per-measure gross coincident peak demand savings} \\ kWh_{\text{base}} & = \text{annual baseline electric energy consumption} \\ & = \text{annual ENERGY STAR electric energy consumption} \end{array}$

TAF = Temperature Adjustment Factor LSAF = Load Shape Adjustment Factor CF_{winter} = winter peak coincident factor

5.2.6.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 5-34. Input variables for freezer savings calculations

Component	Туре	Value	Unit	Source(s)
TAF	Fixed	1.23	_	Maryland/Mid-Atlantic TRM v10, p. 56
LSAF	Fixed	1.15	_	Maryland/Mid-Atlantic TRM v10, p. 56
HOU	Fixed	8,760	hours, annual	Maryland/Mid-Atlantic TRM v10, p. 56
CFwinter	Fixed	0.418	_	CA 2011 DEER load profile for residential high efficiency refrigerator and freezer
kWh _{base} , calculated Fixed		See customer application or ENERGY STAR Qualified Product List value for US Federal Standard. If value is unavailable see Table 5-35 and apply by Freezer type.	kWh	Customer application
		For default see Table 5-35		Maryland/Mid-Atlantic TRM v10, p. 56
		See customer application		See customer application
kWh _{ee}	Variable	For default see Table 5-35	kWh	Maryland/Mid-Atlantic TRM v10, p. 56

Table 5-35. Savings based on product category defaults

Freezer type	Volume _{adj} .	kWh _{base}	kWhee	Weighting if unknown freezer type (default)	ΔkWh	ΔkWsummer	ΔkWwinter
Upright freezer	24.4	438.6	394.8	0.37	43.8	0.007	0.005
Chest freezer	18.0	239.0	215.1	0.63	23.9	0.004	0.003
Unknown (default)	_	313.0	282.0	_	31.0	0.005	0.004

5.2.6.4 Default savings

Per-measure gross annual energy savings and gross summer coincident peak savings, respectively, are calculated according to the following equations when input parameter values are not provided.

$$\Delta kWh = kWh_{base} - kWh_{ee}$$

$$= 313.0 \, kWh - 282.0 \, kWh$$

$$= 31.0 \, kWh$$

$$\Delta kW_{summer} = \frac{\Delta kWh}{HOU} \times TAF \times LSAF$$

$$= \frac{31 \, kWh}{8,760 \, hours} \times 1.23 \times 1.15$$

$$= 0.005 \, kW$$

$$\Delta kW_{winter} = \frac{\Delta kWh}{HOU} \times CF_{winter}$$

$$= \frac{31.0 \, kWh}{8,760 \, hours} \times 0.418$$

$$= 0.001 \, kW$$

5.2.6.5 Effective Useful Life

The effective useful life of this measure is provided in Table 5-36.

Table 5-36. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VII	Residential Efficient Products Marketplace	16.50	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

5.2.6.6 Source

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 54-56.

5.2.6.7 Update summary

Updates to this section are described in Table 5-37.

Table 5-37. Summary of update(s)

Updates in version	Update type	Description
2022	None	No change
2021	Inputs	Use the application ENERGY STAR QPL kWh _{base} values when available

DNV – www.dnv.com

Updates in version	Update type	Description
	Source	Updated page numbers / version of the Maryland/Mid-Atlantic TRM v10
	Equation	Added gross winter peak demand reduction equation
2020	None	No change
v10		Initial release

5.2.7 Refrigerator

5.2.7.1 Measure description

This measure relates to the purchase and installation of a new refrigerator meeting either ENERGY STAR or Consortium for Energy Efficiency (CEE) Tier 2 or Tier 3 specifications (defined as consuming \geq 10%, \geq 15%, or \geq 20% less energy than an equivalent unit meeting federal standard requirements, respectively).

The baseline condition is a new refrigerator meeting the minimum federal efficiency standard. The efficient condition is a new refrigerator meeting either the ENERGY STAR or CEE TIER 2 or TIER 3 efficiency standards.

Table 5-38. Programs that offer refrigerator

Program name	Section
Residential Efficient Products Marketplace Program, DSM Phase VII	Section 6.2.7
Residential Manufactured Housing Program, DSM Phase VIII	Section 9.4.1
Residential Home Retrofit Program, DSM Phase VIII	Section 10.5.1
Residential/Non-Residential Multifamily Program, DSM Phase VIII	Section 11.4.1
Residential Income and Age Qualifying Energy Efficiency Program, DSM Phase IX	Section 18.5.1

5.2.7.2 Impacts Estimation Approach

Per-measure, gross annual energy savings are calculated according to either of the following equation.

$$\Delta kWh = kWh_{base} \times ESF$$

$$\Delta kWh = \Delta kWh_{ENERGY\ STAR\ QPL}$$

Per-measure, gross summer coincident peak savings are calculated according to the following equation.

$$\frac{\Delta kW_{summer}}{HOU} = \frac{\Delta kWh}{HOU} \times TAF \times LSAF$$

Per-measure, gross summer coincident peak savings are calculated according to the following equation.

$$\Delta kW_{winter} = \frac{\Delta kWh}{HOU} \times CF_{winter}$$

Where:

ΔkWh = per-measure gross annual electric energy savings

 ΔkW_{summer} = per-measure gross coincident summer peak demand savings ΔkW_{winter} = per-measure gross coincident winter peak demand savings

kWh_{base} = kWh consumption per year of the baseline unit

ΔkWhenergy star QPL = kWh energy savings provided by the ENERGY STAR qualified project list

ESF = energy savings factor of efficient unit
TAF = temperature adjustment factor

HOU = hours of use

LSAF = load shape adjustment factor CF_{winter} = winter peak coincident factor

5.2.7.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 5-39. Input variables for refrigerator savings calculation

Component	Туре	Value	Unit	Source(s)
△kWh _{EnERGY} STAR QPL	Variable	See customer application	kWh	Customer application
Volume _{adj.}	Variable	See customer application	feet ³	Customer application
		See customer application		Customer application
kWh _{base}	Variable	For default use Table 24-12 in Sub- Appendix F1-VI: Residential Refrigeration Factors	kWh	Pennsylvania TRM 2021, pp. 97-104
нои	Fixed	Default= 8,760	hour, annual	Maryland/Mid-Atlantic TRM v10, p. 60
ESF	Variable	See customer application, ENERGY STAR Qualified Product List or Table 5-40	-	Customer application, Maryland/Mid-Atlantic TRM v10, p. 58 or ENERGY STAR Qualified Product List
		For default use efficiency tier is ENERGY STAR in Table 5-40		Results in most conservative savings
TAF	Fixed	1.23	-	Maryland/Mid-Atlantic TRM ∨10, p. 60
LSAF	Fixed	1.15	-	Maryland/Mid-Atlantic TRM v10, p. 60
CFwinter	Fixed	0.418	-	California DEER2011 load profile for residential high- efficiency refrigerator and freezer

Table 5-40. Energy savings factor based on efficiency tier

Tier	ENERGY	CEE	CEE
	STAR	Tier 2	Tier 3
Energy Savings Factor (ESF)	0.10	0.15	0.20

5.2.7.4 Default savings

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

5.2.7.5 Effective Useful Life

The effective useful life of this measure is provided in Table 5-41.

Table 5-41. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)	
IX	Residential Income and Age Qualifying Energy Efficiency Program, DSM Phase IX		years		
VIII	Residential Manufactured Housing Program, DSM Phase VIII	12.00		Maryland/Mid-Atlantic TRM v10, p. 61	
	Residential Home Retrofit Program, DSM Phase VIII				
	Residential/Non-Residential Multifamily Program, DSM Phase VIII				
VII	Residential Efficient Products Marketplace Program, DSM Phase VII	16.50	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)	

5.2.7.6 Sources

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 57-69, and Pennsylvania Residential TRM 2021, pp. 97-104.

5.2.7.7 Update summary

Updates to this section are described in Table 5-42.

Table 5-42. Summary of update(s)

Updates in version	Update type	Description
2022	Equation	Added equation to allow for the kWh savings to come from the ENERGY STAR qualified product list.
	Reference	Updated the reference TRMs
	Reference	Updated the reference TRMs
2021	Equation	Added gross winter peak demand reduction equation
	Inputs	Removed default for adjusted volume since this input will always be available
2020	None	No changes
v10		Initial release

6 RESIDENTIAL THERMOSTAT PURCHASE AND WEATHER SMART PROGRAM, DSM PHASE VIII

There are three components of the smart thermostat energy efficiency program: purchase, optimization, and behavior.

Thermostat purchase and upgrade

Participants are given a rebate to purchase a qualified ENERGY STAR smart thermostat. The purchaser must buy and activate an ENERGY STAR certified smart thermostat connected to a heat pump. Current eligible manufacturers include ecobee, Emerson, Google Nest and Honeywell Home.

- The thermostat must be in a single-family home (house, townhouse, mobile home).
- The purchaser must be the homeowner or the person responsible for the electric bill.
- The home must have a heat pump (air source, ductless mini-split, or geothermal).
- Rebate application must be submitted within 90 days of purchase.

Smart thermostat behavior – System optimization

The WeatherSmartSM Program adds external controls to account for local weather and automatically adjusts the thermostat settings to optimize the interior temperature and as a result, energy consumption. Thermostat optimization has the same eligibility criteria as thermostat purchase.

- The thermostat must be in a single-family home (house, townhouse, mobile home).
- The purchaser must be the homeowner or the person responsible for the electric bill.
- The home must have a heat pump (air source, ductless mini-split, or geothermal).

Smart thermostat behavior – HVAC O&M reports

All customers enrolled in thermostat optimization and the thermostat demand response program receive email or paper reports with recommendations for behavior and operations and maintenance (O&M) actions that encourage energy efficiency.

This measure applies to all residential applications and may be a time of sale or retrofit measure.

Table 6-1. Programs that offer/involve thermostat upgrades

End use	Measure	Legacy program	Manual section
HVAC	Thermostat purchase and upgrade	_	Section 6.2.1
	Smart thermostat behavior- system optimization	_	Section 6.2.2
	Behavior- HVAC O&M reports	_	Section 6.2.3

6.2 Heating, ventilation, and air conditioning (HVAC) end use

6.2.1 Thermostat purchase and upgrade

6.2.1.1 Measure description—smart and programmable thermostats

The smart thermostat is the purchase or replacement of a manually operated or conventional programmable thermostat with a smart thermostat that meets or exceeds the ENERGY STAR® requirements. A "smart" or communicating thermostat allows remote set point adjustment and control via remote application. The system requires an outdoor air temperature algorithm in the control logic to operate heating and cooling systems.

The baseline is a mix of manual and programmable thermostats; the efficient condition is a smart thermostat that has earned ENERGY STAR certification.

The programmable thermostat retrofit measure involves the replacement of a manually operated thermostat with a programmable thermostat. Energy savings are calculated as a percentage of household heating load.

This smart thermostat and programmable thermostat measures are offered in the programs listed in Table 6-2. Energy savings are calculated as a percentage of household heating and cooling loads using the Impacts Estimation Approach described in this section.

Table 6-2. Programs that offer/involve thermostat upgrades

Program name	Thermostat type	Section
Residential Thermostat Purchase and Weather Smart Program, DSM Phase VIII	Smart Thermostat	Section 6.2.1
Residential Manufactured Housing Program, DSM Phase VIII	Smart Thermostat	Section 10.3.7
Residential Home Retrofit Program, DSM Phase VIII	Smart Thermostat	Section 11.4.6
Residential Multifamily Program, DSM Phase VIII	Smart Thermostat	Section 12.3.4
Residential HVAC Health and Safety Program, DSM Phase VIII	Programmable Thermostat	Section 15.3.5
Residential Smart Home Program, DSM Phase IX	Smart Thermostat	Section 19.2.1

6.2.1.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings per household is calculated according to the following equation: Per account, the gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \Delta kWh_{heat} + \Delta kWh_{cool}$$

If the heating system type is non-electric or electric resistance baseboard there are no heating savings. For heat pump heating systems, the heating savings are calculated as follows:

$$\Delta kW h_{heat} \equiv ESF_{heat} \times kW h_{heat}$$

¹⁰⁸ The key product criteria for Smart thermostats can be found at https://www.energystar.gov/products/heating_cooling/smart_thermostats/key_product_criteria; Savings methodology is taken from the Maryland/Mid-Atlantic TRM v10. Heating and cooling consumption are taken from customer specific consumption data. The savings percent savings assumptions are locked down for three years from June 1, 2020 through May 31, 2023.

$$\Delta kWh_{cool} = ESF_{cool} \times kWh_{cool}$$

Per-measure gross coincident demand reduction for summer and winter is assumed to be zero.

Where:

ΔkWh = per-measure gross annual electric energy savings

 Δ kWh_{heat} = per-measure gross annual electric energy heating savings Δ kWh_{cool} = per-measure gross annual electric energy cooling savings

ESF_{heat} = energy savings factor for heating energy ESF_{cool} = energy savings factor for cooling energy

kWh_{heat} = annual baseline energy consumption for heating kWh_{cool} = annual baseline energy consumption for cooling

The calculation inputs are based on the default savings percentages from the Maryland/Mid-Atlantic TRM v10 and the heating and cooling kWh consumption derived from a billing analysis of monthly customer energy consumption prior to the purchase of the thermostat.

6.2.1.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 6-3. Input variables for thermostat

Component	Туре	Value	Units	Source(s)
ESFheat	Variable	See Table 6-4 For default smart thermostat use segment = all other cases	_	For smart thermostat: Maryland/Mid-Atlantic TRM v10, p. 104 For programmable thermostat Illinois TRM 2020, p. 137
ESF _{cool}	Variable	See Table 6-4 For default smart thermostat use segment = all other cases		Maryland/Mid-Atlantic TRM v10, p. 104
kWh _{heat}	Variable	Customer-specific heating load For default see Table 24-17 and Table 24-18 in Sub-Appendix F1-VIII: Residential Account Normalized Annual Consumption ¹⁰⁹	kWh	Customer billing data Annual heating load from billing data
kWh _{cool}	Variable	Customer-specific cooling load For default see Table 24-17 and Table 24-18 in Sub-Appendix F1-VIII: Residential Account Normalized Annual Consumption ¹⁰⁹	kWh	Customer billing data Annual cooling load from billing data

Table 6-4 provides a summary of the ESFs. The customer application will indicate if the existing thermostat is being replaced because it was broken or if the smart thermostat is being installed concurrently with a new HVAC unit. For all other cases the default value is used.

 $^{^{109}\,\}mathrm{Default}$ values are assigned based on the year that participants enrolled in the program.

Table 6-4. Electric heating and cooling ESF

Thermostat	Segment	Heat _I	pump	Air conditioning	
type		ESF _{heat}	ESFcool	ESF _{heat}	ESFcool
_	Existing smart thermostat is broken	0.030	0.035	_	0.035
Smart thermostat	New HVAC equipment is installed with thermostat	0.030	0.035	1	0.035
	All other cases (default)	0.060	0.070	_	0.070
Programmable thermostat ¹¹⁰		0.062	_	_	_

6.2.1.4 Default savings

If the proper values are not supplied, a default savings may be calculated. The default per-measure gross annual electric energy savings will be assigned according to the following calculation:¹¹¹

Smart thermostat:

Default per-measure gross savings are calculated by assuming a heat pump is used for space conditioning with a smart thermostat, as follows:¹¹²

$$\Delta kWh_{heat} = ESF_{heat} \times kWh_{heat}$$

$$= 0.07 \times 2,439$$

$$= 170.7 \ kWh$$

$$\Delta kWh_{cool} = ESF_{cool} \times kWh_{cool}$$

$$= 0.06 \times 1,802$$

$$= 108.1 \ kWh$$

$$\Delta kWh = \Delta kWh_{heat} + \Delta kWh_{cool}$$

$$= 170.7 + 108.1$$

$$= 278.8 \ kWh$$

There is no default per-measure gross coincident demand reduction.

 $^{^{110}}$ The referenced Illinois TRM 2020 only attributes savings to heating for programmable thermostats.

¹¹¹ Virginia specific defaults are in development and this section will be updated when the defaults are available.

¹¹² Method 3, Maryland/Mid-Atlantic TRM v.10, p. 105.

Programmable thermostat:

Default per-measure gross savings are calculated by assuming a heat pump is used for space conditioning with a programmable thermostat.

$$\Delta kWh_{heat} = ESF_{heat} \times kWh_{heat}$$

= 0.062 \times 2,439
= 151.2 kWh

There are no cooling savings for programmable thermostat. There is no peak coincident demand reduction for this measure.

6.2.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 6-5.

Table 6-5. Effective Useful Life for lifecycle savings calculations

DSM phase	Program name	Value	Units	Source(s)
IX	Residential Smart Home Program, DSM Phase IX			
VIII	Residential Thermostat Purchase and Weather Smart Program, DSM Phase VIII			
	Residential Manufactured Housing Program, DSM Phase VIII	7.50	years	Maryland/Mid-Atlantic TRM v10, pp. 103–106
	Residential Home Retrofit Program, DSM Phase VIII	7.50		
	Residential Multifamily Program, DSM Phase VIII			
	Residential HVAC Health and Safety Program, DSM Phase VIII			

6.2.1.6 Source

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 103–106.

6.2.1.7 Update summary

Updates to this section are described in Table 6-6.

Table 6-6. Summary of update(s)

Updates in version	Update type	Description
2022	None	No change
2021		Initial release

6.2.2 Smart thermostat behavior- system optimization

6.2.2.1 Measure description

Thermostat-system optimization is a behavior measure. System optimization is a passive algorithmic optimization of wi-fi thermostat setpoints to reduce customers' annual heating and cooling consumption. Qualified customers can opt into the program and have their thermostat setpoints optimized to maintain their thermal comfort while reducing their energy consumption. The Program is open to several thermostat manufacturers, makes, and models that meet or exceed the ENERGY STAR requirements and have communicating technology.

The baseline efficiency is a customer with a smart thermostat that is not participating in the temperature optimization program. The high efficiency is a customer participating in the temperature optimization program.

Smart thermostat "home energy reports" are sent to customers participating in the thermostat system optimization and thermostat programs. In contrast to traditional home energy reports, the smart thermostat home energy report emphasizes behavior and O&M actions that encourage HVAC energy efficiency. The HVAC O&M Reports are considered a separate measure in Section 6.2.3, however, the impacts are included in the energy savings factor for smart thermostat-system optimization.

6.2.2.2 Impact Estimation Approach

Per account, gross annual electric energy savings per household is calculated according to the following equation:

$$\Delta kWh = \Delta kWh_{heat} + \Delta kWh_{cool}$$

If the heating system type is non-electric or electric resistance baseboard there are no heating savings. For heat pump heating systems, the heating savings are calculated as follows:

$$\Delta kWh_{heat} = ESF_{heat} \times kWh_{heat}$$

$$\Delta kWh_{cool} = ESF_{cool} \times kWh_{cool}$$

Per-measure, gross summer coincident peak reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \Delta kWh_{cool} \times DR_{summer}$$

Per-measure, gross winter coincident peak reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \Delta kW h_{heat} \times DR_{winter}$$

Where:

ΔkWh = per-measure gross annual electric energy savings

¹¹³ From Massachusetts Technical Reference Manual for Estimating Savings from Energy Efficiency Measures 2019 Plan-Year, May 2020, D.P.U. 20-50, p. 37.

 Δ kWh = per-measure gross annual electric energy savings

 $\begin{array}{ll} \Delta kWh_{heat} & = \mbox{per-measure gross annual electric energy heating savings} \\ \Delta kWh_{cool} & = \mbox{per-measure gross annual electric energy cooling savings} \\ \Delta kW_{summer} & = \mbox{per-measure gross coincident summer peak demand reduction} \\ \Delta kW_{winter} & = \mbox{per-measure gross coincident winter peak demand reduction} \end{array}$

ESF_{heat} = energy savings factor for heating energy ESF_{cool} = energy savings factor for cooling energy

kWh_{heat} = annual baseline energy consumption for heating kWh_{cool} = annual baseline energy consumption for cooling

DR_{summer} = summer demand ratio converting kWh savings to demand reduction

DR_{winter} = winter demand ratio adjustment converting kWh savings to demand reduction

The calculation inputs are based on the default savings percentages from the Maryland/Mid-Atlantic TRM v10 and the heating and cooling kWh consumption derived from a billing analysis of monthly customer energy consumption prior to the purchase of the thermostat.

6.2.2.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 6-7. Input variables for measure smart thermostat-optimization

Component	Туре	Value	Units	Source(s)
ESF _{heat}	Fixed	0.030	_	DNV Judgment ¹¹⁴
ESF _{cool}	Fixed	0.035	_	DNV Judgment ¹¹⁴
		Customer-specific heating load		Annual heating load from billing data
kWh _{heat}	Variable	Variable For default see Table 24-17 in Sub-Appendix F1-VIII: Residential Account Normalized Annual Consumption	kWh	Average Virginia annual heating load from billing data
LAMB	Variable	Customer-specific cooling load	kWh	Annual cooling load from billing data, methodology is described in the Sub-Appendix F1-IX: Billing Analysis
kWh _{cool}		For default see Table 24-17 in Sub-Appendix F1-VIII: Residential Account Normalized Annual Consumption	KVVII	Average Virginia annual cooling load from billing data
DR _{summer}	Fixed	0.00166	kW/kWh	Massachusetts TRM 2020, p. 37
DRwinter	Fixed	0.00044	kW/kWh	Massachusetts TRM 2020, p. 37

6.2.2.4 Default savings

If the proper values are not supplied, a default savings may be calculated. The default per-measure gross annual electric energy savings will be assigned according to the following calculation and by assuming that a heat pump is used for space conditioning.

¹¹⁴ DNV reviewed impact evaluations for similar programs. Based on this review a value of 3.0% and 3.5% were determined to be reasonable for the ESF_{heat} and ESF_{cool}, respectively.

If the proper values are not supplied, a default savings may be calculated. The default per-measure gross annual electric energy savings will be assigned according to the following calculation and by assuming that a heat pump is used for space conditioning.

$$\Delta kWh_{heat} = ESF_{heat} \times kWh_{heat}$$

$$= 0.030 \times 2,439 \, kWh$$

$$= 73.2 \, kWh$$

$$\Delta kWh_{cool} = ESF_{cool} \times kWh_{cool}$$

$$= 0.035 \times 1,802 \, kWh$$

$$= 54.1 \, kWh$$

$$\Delta kWh = \Delta kWh_{heat} + \Delta kWh_{cool}$$

$$= 73.2 \, kWh + 54.1 \, kWh$$

$$= 127.2 \, kWh$$

Default per-measure, gross summer coincident peak reduction is calculated according to the following equation.

$$\Delta kW_{summer} = \Delta kWh_{cool} \times DR_{summer}$$

$$= 54.1 \ kWh \times 0.0016 \ kW/kWh$$

$$= 0.087 \ kW$$

Per-measure, gross summer coincident peak savings are calculated according to the following equation.

$$\Delta kW_{winter} = \Delta kW h_{heat} \times DR_{winter}$$

$$= 73.2 \ kWh \times 0.00044 \ kW/kWh$$

$$= 0.117 \ kW$$

6.2.2.5 Effective Useful Life

The effective useful life of this measure is provided in Table 6-8.

Table 6-8. Effective Useful Life for lifecycle savings calculations

DSM phase	Program name	Value	Units	Source(s)
VIII	Residential Thermostat Purchase and Weather Smart Program, DSM Phase VIII	1.00	years	SEE Action. 2012.Evaluation, Measurement, and Verification (EM&V) of Residential Behavior- Based Energy Efficiency Programs: Issues and Recommendations

6.2.2.6 Source

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 103-106.

6.2.2.7 Update summary

Updates to this section are described in Table 6-9.

Table 6-9. Summary of update(s)

Version with updates	Update type	Description
2022	None	No change
2021		Initial release

6.2.3 Behavior- HVAC O&M reports

Smart thermostat HVAC O&M reports are sent to customers participating in the system optimization and demand response thermostat programs. In contrast to traditional home energy reports, the HVAC O&M report emphasizes behavior and O&M actions that promote HVAC energy efficiency.

6.2.3.1 Impacts Estimation Approach

The energy savings for the HVAC O&M report are incorporated into the Smart Thermostat Behavior – System Optimization measure in Section 6.2.2.

6.2.3.2 Update summary

Updates to this section are described in Table 6-10.

Table 6-10. Summary of update(s)

Version with updates	Update type	Description
2022	None	No change
2021		Initial release

7 Residential Smart Thermostat Rewards Program, DSM Phase VIII

Residential customers living in an owner-occupied single-family home, townhouse, condominium, or manufactured home with central air conditioners or heat pumps who are not already participating in the Company's DSM Phase I Smart Cooling Rewards Program or on a time-of-use rate and who have a qualifying smart thermostat are eligible to enroll in the Thermostat Smart Rewards Demand Response Program. Enrolled customers also receive a "Connected Savings Energy Scorecard" based on their individual HVAC runtime data and temperature setpoint patterns.

7.1 Heating, Ventilation, and Air Conditioning (HVAC) End Use

7.1.1 Thermostat demand response

7.1.1.1 Measure description

Demand response events are called by the Company during times of peak system demand throughout the year and thermostats of participating customers are gradually adjusted to achieve a specified amount of load reduction while maintaining reasonable customer comfort. Customers can opt-out of specific events if they choose to do so.

7.1.1.2 Impacts Estimation Approach

The regression equation that DNV used to estimate the ex post kW impacts per participant in 2022 is derived by fitting a linear regression model for each event hour ending 15–19 with the temperature humidity index (THI), a dummy variable for the event hour interval, and an interaction between the event hour dummy variable and THI as the predictor variables. The event hours included in the ex post analysis is determined by the start and end of each event.¹¹⁵

Ex ante event day demand reduction is calculated according to the following equations:

$$Predicted \ Ex \ Ante \ kW \ Impact_{16:00,day} = \hat{\beta}_{0,16:00} + \hat{\beta}_{1,16:00} * (THI_{16:00})$$

$$= \hat{\beta}_{0,17:00} + \hat{\beta}_{1,17:00} * (THI_{17:00}) + \hat{\beta}_{2,17:00}$$

$$Predicted \ Ex \ Ante \ kW \ Impact_{17:00,day} = \hat{\beta}_{0,18:00} + \hat{\beta}_{1,18:00} * (THI_{18:00}) + \hat{\beta}_{2,18:00}$$

$$= \hat{\beta}_{0,18:00} + \hat{\beta}_{1,18:00} * (THI_{18:00}) + \hat{\beta}_{2,18:00}$$

$$Predicted \ Ex \ Ante \ kW \ Impact_{18:00,day} = \hat{\beta}_{0,18:00} * (Second_{18:00}) + \hat{\beta}_{3,18:00} * (THI_{18:00})$$

$$* (Second_{18:00})$$

Where:

 $\begin{array}{ll} \textit{Predicted Ex Ante kW Impact}_{hour} &= \text{estimated ex ante load impact estimate for hour} \\ \widehat{\boldsymbol{\beta}}_{0,hour} &= \text{fixed estimate for the ex-ante kW impact} \\ \widehat{\boldsymbol{\beta}}_{1,hour} &= \text{increase to the ex ante kW impact estimate when THI increases by} \\ &\text{one} \end{array}$

¹¹⁵ The impact analysis follows protocols outlined in Miriam L. Goldberg & G. Kennedy Agnew. Measurement and Verification for Demand Response, National Forum on the National Action Plan on Demand Response, https://www.ferc.gov/industries/electric/indus-act/demand-response/dr-potential/napdr-mv.pdf.

Page 137

 $\hat{\boldsymbol{\beta}}_{3.hour}$

 $\hat{\beta}_{2,hour}$ = additional fixed estimate for the ex-ante kW impact if 17:00 is the first

event interval or 18:00 is the second event interval

= additional increase to the ex ante kW impact estimates when THI increases by one if 17:00 is first event interval or 18:00 is second

event interval

 THI_{hour} = THI value for a specific hour

First_{17:00} = 1 if 17:00 is the first interval of the event Second_{18:00} = 1 if 18:00 is the second interval the event

The Dominion peak condition for planning purposes is assumed to be 95°F, 43% relative humidity at hour ending 17:00. This corresponds with a THI of 83.4. There were 11 events during the 2022 season where 17:00 was the first interval of the event and 14 events where it was the second or third hour of the event. Therefore, the ex ante peak demand savings are calculated according to the following equations:

$$= \hat{\beta}_{0,17:00} + \hat{\beta}_{1,17:00} * (83.4 THI)$$

$$+ \hat{\beta}_{2,17:00} * (First_{17:00})$$

$$+ \hat{\beta}_{3,17:00} * (83.4 THI)$$

$$* (First_{17:00})$$

$$= 0.7090 + 0.0008 * (83.4) -$$

$$Predicted Ex Ante kW Impact_{17:00,first interval}$$

$$2.6527 * (1) + 0.0362 * (83.4) * (1) =$$

$$1.1436$$

Predicted Ex Ante kW Impact_{17:00,non-first interval} = 0.7090 + 0.0008 * (83.4) = 0.7794

Predicted Ex Ante kW Impact_{17:00} $= \frac{11}{25} * 1.1436 + \frac{14}{25} * 0.7794$ = 0.9400

7.1.1.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 7-1. Regression parameters for the 2022 thermostat DR event season

Component	Туре	Value	Unit	Source
$\widehat{oldsymbol{eta}}_{0,16:00}$	Fixed	-4.8261	kW	
$\widehat{m{eta}}_{1,16:00}$	Fixed	0.0725	kW	Dominion, 2022 Thermostat DR Impact Analysis
$\widehat{oldsymbol{eta}}_{0,17:00}$	Fixed	0.7090	kW	

Component	Туре	Value	Unit	Source
$\widehat{m{eta}}_{1,17:00}$	Fixed	0.0008	kW	
$\widehat{oldsymbol{eta}}_{2,17:00}$	Fixed	-2.6527	kW	
$\widehat{oldsymbol{eta}}_{3,17:00}$	Fixed	0.0362	kW	
$\widehat{oldsymbol{eta}}_{0,18:00}$	Fixed	2.293	kW	
$\widehat{oldsymbol{eta}}_{1,18:00}$	Fixed	-0.0209	kW	
$\widehat{oldsymbol{eta}}_{2,18:00}$	Fixed	-4.3135	kW	
$\widehat{oldsymbol{eta}}_{3,18:00}$	Fixed	0.0553	kW	
THI _{16:00}	Variable	-	THI	
THI _{17:00}	Variable	-	THI	NOAA
THI _{18:00}	Variable	-	THI	
First _{17:00}	Variable	1 if first hour of event, 0 otherwise	_	_
Second _{18:00}	Variable	1 if second hour of event, 0 otherwise	_	_

7.1.1.4 Demand reduction

The kW impact per participant during Dominion's peak conditions for 2022 is 0.94 kW. Demand reduction is not deemed. All savings are taken from annual impact evaluations.

7.1.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 7-2.

Table 7-2. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VIII	Residential Smart Thermostat Rewards Program, DSM Phase VIII	1.00	years	Program design assumption

7.1.1.6 Source

Local weather data are gathered from NOAA, National Centers for Environmental Information.

7.1.1.7 Update summary

Updates to this section are described in Table 7-3.

Table 7-3. Summary of update(s)

Version with updates	Update type	Description
2022	Regression model specification	Regression coefficients for 2022 taken from the 2022 Thermostat DR Impact Analysis, DNV
2021		Initial release

8 Residential Customer Engagement Program, DSM Phase VIII

The Residential Customer Engagement Program delivers paper and email home energy reports (HER) to participating customers selected by the Company. Customers can opt-out of participating in the program at any time.

8.1 Miscellaneous end use

8.1.1 Home Energy report

HERs contain account-specific information that allows customers to view their energy use over time. HERs compare energy use of recipient homes with clusters of similar homes and provide comparisons with other efficient and average homes. This "neighbor" comparison is believed to spur participants to modify their behavior and increase household energy efficiency. Reports also include a variety of seasonally appropriate energy-saving tips that are tailored for the home and are often used to promote other DSM program offerings.

8.1.1.1 Measure description

Paper or email home energy reports..

8.1.1.2 Impacts Estimation Approach

Per-measure, the gross annual electric energy savings are calculated according to the following equation. KW factors are under development.

$$\Delta kWh = kWh_{whole house} \times ESF$$

There is no gross coincident demand reduction for this measure.

Where:

 Δ kWh = per-measure gross annual electric energy savings

kWh_{whole houset} = per-measure gross annual electric energy whole house consumption

ESF = energy savings factor

8.1.1.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 8-1. Input variables for measure smart thermostat-behavioral

Component	Туре	Value	Units	Source(s)
ESF	Variable	Email reports: 0.007 Paper reports: 0.012	-	Program design assumption
		Customer-specific heating load		Customer billing data
kWhwhole house	Variable	For default see Sub-Appendix F1-VIII: Residential Account Normalized Annual Consumption	kWh	Average Virginia annual consumption from billing data

8.1.1.4 Default savings

If the proper values are not supplied, a default savings may be calculated. The default per-measure gross annual electric energy savings will be assigned according to the following calculation:

Per-measure, default savings are calculated for email report:

$$\Delta kWh_{whole\ house} = ESF \times kWh_{whole\ house}$$

$$= 0.007 \times 9,990\ kWh$$

$$= 69.9\ kWh$$

There are no default per-measure gross coincident demand reductions.

8.1.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 8-2.

Table 8-2. Effective Useful Life for lifecycle savings calculations

DSM Phase	DSM Phase	Value	Units	Source(s)
VIII	Residential Customer Engagement Program	1.00	year	Massachusetts Technical Reference Manual for Estimating Savings from Energy Efficiency Measures, 2019 Plan-Year Report Version May 2020, p. 35.

8.1.1.6 Source

The primary source for this deemed savings approach is the Massachusetts Technical Reference Manual for Estimating Savings from Energy Efficiency Measures, 2019 Plan-Year Report Version May 2020, p. 35.

8.1.1.7 Update summary

Updates to this section are described in Table 8-3.

Table 8-3. Summary of update(s)

Updates in version	Update type	Description
2022	None	No change
2021		Initial release

9 RESIDENTIAL ENERGY EFFICIENCY KITS PROGRAM, DSM PHASE VIII

The Residential Energy Efficiency Kits Program provided to new residential accounts. New construction including modular and manufactured homes are eligible. Multifamily customers are ineligible. Each kit includes a Tier 1 advanced smart strip and educational materials. To receive additional measures, customers can complete a phone or web survey confirming their address and answer a few questions to identify which measures will be of value and produce electric energy savings.

The measures offered through the program and the sections that contain the savings algorithms for each measure are presented in Table 9-1.

Table 9-1. Residential Energy Efficiency Kits program measure list

End use	Measure	Legacy program	Manual section
Building envelope	Weatherization	_	Section 9.1.1
Dama atla	Domestic hot water pipe insulation	Residential Home Energy Assessment	Section 4.2.1
Domestic hot water	Faucet aerator	Program, DSM Phase VII	Section 4.2.3
	Low-flow showerhead		Section 4.2.4
Lighting	LED lamps		Section 4.4.1
Appliance or Plug Load	Smart strip	-	Section 9.4.1

9.1 Building envelope end use

9.1.1 Weatherization

9.1.1.1 Measure description

This measure involves thermal shell air leak sealing through strategic use and location of air-tight materials such as door sweeps, gaskets on electrical outlets or switches, caulking, or weatherstripping on windows or doors. This measure is for situations where blower tests are not conducted.

This measure is offered through different programs listed in Table 9-2, and uses the Impacts Estimation Approach described in this section.

Table 9-2. Programs that Offer Weatherization

Program Name	Section
Residential Energy Efficiency Kits Program, DSM Phase VIII	Section 9.1.1
Residential Manufactured Housing Program, DSM Phase VIII	Section 10.1.3
Residential Virtual Audit Program, DSM Phase IX	Section 20.1.1

9.1.1.2 Impacts Estimation Approach

Per-measure, the gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \Delta kWh_{heat,electric} + \Delta kWh_{heat,FAF fan} + \Delta kWh_{cool}$$

If electric resistance heating or a heat pump provided space heating, heating savings are calculated using the following equation:

$$\Delta kWh_{heat,electric} = \left(\frac{\Delta kWh_{heat,electric}}{HDD}\right) \times HDD \times ISR$$

If the heating system is unknown or a forced air furnace (FAF) with gas heat system, the $\Delta kWh_{heat,FAF\,fan}$ is calculated. For all other systems types it equal to zero. This is the kWh savings associated with the electric furnace air fan. Savings are calculated as follows:

$$\Delta kWh_{heat,FAF\,fan} = \left(\frac{\Delta kWh_{heat,FAF\,fan}}{HDD}\right) \times HDD \times ISR$$

If space-cooling is provided, then ΔkWh_{cool} follows the equations below, otherwise ΔkWh_{cool} is zero.

$$\Delta kWh_{cool} = \left(\frac{\Delta kWh_{cool}}{CDD}\right) \times CDD \times cool_{adj} \times ISR$$

Per-measure, the gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \frac{\Delta kWh_{cool}}{EFLH_{cool}} \times CF_{summer}$$

Per-measure, the gross coincident winter peak demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \left(\frac{\Delta kW h_{heat,electric} + \Delta kW h_{heat,FAF\ fan}}{EFLH_{heat}}\right) \times CF_{winter}$$

Where:

ΔkWh = per-measure gross annual electric energy savings

 $\begin{array}{ll} \Delta k W_{summer} & = \mbox{per-measure gross coincident summer peak demand reduction} \\ \Delta k W_{winter} & = \mbox{per-measure gross coincident winter peak demand reduction} \\ \Delta k W h_{heat,eletcic} & = \mbox{gross annual electric savings due to electric heating system} \end{array}$

 Δ kWh_{heating, FAF fan} = gross annual electric savings to furnace air fan

 ΔkWh_{cool} = gross annual electric cooling due to electric cooling system

ΔkWh_{heat,electric} /HDD = gross annual electric heating kWh savings per heating degree day

= gross annual electric furnace air fan (FAF) kWh savings per heating degree

AkWh_{heating, FAF fan}/HDD day at buildings with gas furnaces with electric furnace fans

= gross annual electric cooling kWh savings per cooling degree day at buildings

with electric cooling

HDD = heating degree days (base 60°F)

DNV - www.dnv.com

∆kWh_{cooling} /CDD

= cooling degree days (base 65°F) CDD

= adjustment factor based on nearest weather station for converting heating Cool_{Adj}

savings to cooling savings

CF_{summer} = summer peak coincidence factor **CF**winter = winter peak coincidence factor **EFLH**_{cool} = equivalent full load hours (cooling) **EFLH**heat = equivalent full load hours (heating)

ISR = in-service rate

9.1.1.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 9-3. Input variables for weatherization

Component	Туре	Value	Units	Source(s)	
HDD	Variable	See Table 24-4 in Sub- Appendix F1-IV: Residential equivalent full-load hours for HVAC	Heating Degree Days (HDD)	Table 24-4 is Sub-Appendix F1- IV: Residential equivalent full- load hours for HVAC	
CDD	Variable	See Table 24-4 using base 65° F in Sub-Appendix F1-IV: Residential equivalent full- load hours for HVAC	Cooling Degree Days (CDD)	Table 24-4 is Sub-Appendix F1-IV: Residential equivalent full-load hours for HVAC	
Cool _{adj}	Variable	See Table 9-5	_	See supplementary excel workbook called "2021 Measure Research_Version_1_06082020 – Weatherization 11-5-20.xlsx"	
EFLH _{cool}	Variable	See Sub-Appendix F1-IV: Residential equivalent full- load hours for HVAC, for default use central AC	hours	Sub-Appendix F1-IV: Residential equivalent full-load hours for HVAC	
EFLH _{heat}	Variable	See Sub-Appendix F1-IV: Residential equivalent full- load hours for HVAC, for default use forced-air furnace and baseboard electric resistance heating	hours	Sub-Appendix F1-IV: Residential equivalent full-load hours for HVAC	
ΔkWh _{heat,electric} /HDD	Variable	See Table 9-4.	kWh/HDD	2021 CT PSD pages 246-249, adjusted to Dominion HDD, and incorporating cooling savings by referencing air-sealing measure.	
ΔkWh _{heating} , FAF fan/HDD	Variable	See Table 9-4.	kWh/HDD	2021 CT PSD pages 246-249, adjusted to Dominion HDD, and incorporating cooling savings by referencing air-sealing measure.	
∆kWh _{cooling} /CDD	Variable	See Table 9-4.	kWh/HDD	2021 CT PSD pages 246-249, adjusted to Dominion HDD, and incorporating cooling savings by referencing air-sealing measure.	

Component	Туре	Value	Units	Source(s)
CF _{summer}	Fixed	0.69	_	Maryland/Mid-Atlantic TRM v10, p.93 ¹¹⁶
CFwinter	Fixed	0.69 –		Maryland/Mid-Atlantic TRM v10, p.93 ¹¹⁶
ISR	Variable	For direct install programs such as Residential Manufactured Housing Program, DSM Phase VIII = 1.0 For kit programs such as Residential Energy Efficiency Kits Program, DSM Phase VIII = 0.87	_	Illinois TRM v9.0 Volume 3, p. 312 ¹¹⁷

Table 9-4. Cooling and heating kWh/DD values for weatherization types

Weatherization		Δ kWh $_{heat}$, electric/HDD	Δ k Wh heat, FAF fan	∆ kWh cool
type	Units	Electric resistance	Heat pump	/HDD	/CDD
Door sweep	per unit	0.0386	0.0193	0.0017	0.0060
Gasket	per unit	0.0020	0.0010	0.0001	0.0003
Caulk	oz.	0.0052	0.0026	0.0002	0.0008
Foam	in ²	0.0004	0.0002	0.0000	0.0001
Poly tape	linear foot	0.0022	0.0011	0.0001	0.0003
Weather strip	linear foot	0.0026	0.0013	0.0001	0.0004

Table 9-5. Cool_{Adj} values for each location

State	Location	Cool _{Adj}
MD	Baltimore	0.555
VA	Richmond	0.926
VA	Norfolk	1.488
VA	Roanoke	0.555
VA	Sterling	0.465
VA	Arlington	0.858
VA	Charlottesville	0.664

¹¹⁶ The Maryland/Mid-Atlantic TRM v10 provides CF for room/wall AC and central AC systems in the ductless mini-split measure. In this section we use the generic value for central AC system. For other HVAC measures in the Maryland/Mid-Atlantic TRM v10, a utility-specific and equipment specific CF is provided. We use the more generic CF categories. There are no generic winter CF. Therefore, we apply summer CF.

¹¹⁷ Illinois TRM v9.0 Volume 3, p. 312. For residential showerheads and aerators in the IL-TRM, the ratio of ISRs for opt-in kits to ISRs for distributed school kits vary from 1.9 to 2.4. For weatherization kits, opt-in ISRs are estimate at 1.5 times the distributed school ISR.

State	Location	Cool _{Adj}
VA	Farmville	0.605
VA	Fredericksburg	0.635
NC	Elizabeth City	2.382
NC	Rocky Mount-Wilson	1.190

9.1.1.4 Default savings

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

9.1.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 9-6.

Table 9-6. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
IX	Residential Virtual Audit Program, DSM Phase IX			
	Residential Energy Efficiency Kits Program, DSM Phase VIII	15.00	years	lowa TRM 2021 Vol. 2, p. 268
VIII	Residential Manufactured Housing Program, DSM Phase VIII			

9.1.1.6 Source

The primary source for this deemed savings approach is the 2021 Connecticut Program Savings Documentation (PSD), pp. 246-249. The source for the measure life is the Iowa TRM 2021 Vol. 2, p. 268. The in-service rate is from the Illinois TRM v9.0 Volume 3, p. 312.

9.1.1.7 Update summary

Updates to this section are described in Table 9-7.

Table 9-7. Summary of update(s)

Updates in version	Update type	Description	
2022	Source	Updated source references only	
2021		Initial release	

9.2 Domestic hot water end use

9.2.1 Domestic hot water pipe insulation

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.2.1.

9.2.2 Faucet aerator

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.2.3.

9.2.3 Low-flow showerhead

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.2.4.

9.3 Lighting

9.3.1 LED lamps

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.4.1.

9.4 Appliance or Plug Load end use

9.4.1 Smart strip

9.4.1.1 Measure description

This measure is a Tier 1 Advanced Power Strip with a master control socket arrangement to turn off the items plugged into the controlled power-saver sockets when they detect that the appliance plugged into the master control socket has been turned off. Conversely, the appliance plugged into the master control socket has to be turned on and left on for the devices plugged into the power-saver sockets to function.

The assumed baseline is a standard power strip that does not control any of the connected loads.

The efficient case is the use of Tier 1 Advanced Power Strip.

This measure is offered through different programs listed in Table 9-8 and uses the Impacts Estimation Approach described in this section.

Table 9-8. Programs that offer smart strip

Program name	Section
Residential Energy Efficiency Kits Program, DSM Phase VIII	Section 9.4.1
Residential Virtual Audit Program, DSM Phase IX	Section 20.4.1

9.4.1.2 Impacts Estimation Approach

Per-measure, the gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = kWh \times ESF$$

Per-measure, the gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = Load \times DSF_{summer}$$

Page 148

Per-measure, the gross coincident winter peak demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = Load \times DSF_{winter}$$

Where:

ΔkWh = per-measure gross annual electric energy savings

 ΔkW_{summer} = per-measure gross coincident summer peak demand reduction ΔkW_{winter} = per-measure gross coincident winter peak demand reduction

kWh = annual electric energy consumption of devices plugged into power strip

ESF = proportion of energy saved by power strip

Load = power strip load, kW

DSF_{summer} = percent of summer peak demand saved by smart strip DSF_{winter} = percent of winter peak demand saved by smart strip

9.4.1.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 9-9. Input variables for smart strip

Component	Туре	Value	Units	Source(s)
kWh	Variable	See Table 9-10	kWh	Maryland/Mid-Atlantic TRM v10, p. 200
		Default: 449		Unknow install location
ESF	Variable	See Table 9-10	_	Maryland/Mid-Atlantic TRM v10, p. 200 ¹¹⁸
		Default: 0.25		Unknow install location
DSF _{summer}	Variable	See Table 9-10	_	Maryland/Mid-Atlantic TRM v10, p. 200
		Default: 0.19		Unknown install location
DSF _{winter}	Variable See Table 9-10		_	Maryland/Mid-Atlantic TRM v10, p. 200 ¹¹⁹
		Default: 0.19		Unknown install location
Load	Variable	See Table 9-10	kW	Maryland/Mid-Atlantic TRM v10, p. 200
		Default: 0.052		Unknow install location

The calculation inputs are based on the installation location. This measure is the only measure initially shipped to participants. All smart strips will be considered to have an Unknown/Other installation location. If the participant responds to a follow-up survey and provides an install location, savings will be applied appropriately. The values in the following table incorporate an install rate and realization rates based on impact evaluations according to the Maryland/Mid-Atlantic TRM v10.

DNV – www.dnv.com

 $^{^{118}}$ The ESF incorporates the in-service rate (ISR and realization rates (RR) from field studies.

 $^{^{119}\,\}mathrm{No}$ winter peak DSF in the source TRM, so summer peak DSF is applied as an approximation

Table 9-10. Input values based on install location

Install location	kWh	ESF	DSF _{summer}	DSF _{winter}	Load, kW
Home entertainment system	471	0.27	0.20	0.20	0.058
Home office	399	0.21	0.18	0.18	0.038
Unknow/Other ¹²⁰ (default)	449	0.25	0.19	0.19	0.052

9.4.1.4 Default savings

The default per-measure gross annual electric energy savings per unit will be assigned according to the following calculation:

$$\Delta kWh = kWh \times ESF$$

$$= 449 kWh \times 0.25$$

$$= 112.3 kWh$$

The default per-measure gross summer peak demand reduction per unit will be assigned according to the following calculation:

$$\Delta kW_{summer} = Load \times DSF_{summer}$$
$$= 0.052 \ kW \times 0.19$$
$$= 0.010 \ kW$$

The default per-measure gross winter peak demand reduction per unit will be assigned according to the following calculation:

$$\Delta kW_{winter} = Load \times DSF_{winter}$$
$$= 0.052 kW \times 0.19$$
$$= 0.0010 kW$$

¹²⁰ In some instances, a participant may report that the smart strip was not installed when/if they are surveyed at a later time. In these cases, the "Unknown/Other" installation location will be applied. This is because the savings values already incorporate an installation rate and it is still possible that the smart strip will be installed after the survey is completed.

9.4.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 9-11.

Table 9-11. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
IX	Residential Virtual Audit Program, DSM Phase IX	5.00	vears	Maryland/Mid-Atlantic TRM v10, p.
VIII	Residential Energy Efficiency Kits		, ,	200

9.4.1.6 Source

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 199-201.

9.4.1.7 Update summary

Updates to this section are described in Table 9-12.

Table 9-12. Summary of update(s)

Updates in version	Update type	Description
2022	None	No change
2021		Initial release

10 RESIDENTIAL MANUFACTURED HOUSING PROGRAM, DSM PHASE VIII

The Residential Manufactured Housing Program provides residential customers in manufactured housing with educational assistance and an incentive to install energy efficiency measures.

The measures offered through the program and the sections that contain the savings algorithms for each measure are presented in Table 10-1.

Table 10-1. Residential manufactured housing program measure list

End use	Measure	Legacy program	Manual section
	Air sealing	_	Section 10.1.1
B ##	Building insulation	-	Section 10.1.2
Building envelope	Cool roof	Residential Home Energy Assessment Program, DSM Phase VII	Section 4.1.1
	Weatherization	Residential Energy Efficiency Kits Program, DSM Phase VIII	Section 9.1.1
	Domestic hot water tank wrap	_	Section 10.2.1
	Domestic hot water pipe insulation	Residential Home Energy Assessment Program, DSM Phase VII	Section 4.2.1
Domestic hot	Heat pump domestic water heater	Residential Home Energy Assessment Program, DSM Phase VII	Section 4.2.2
water	Faucet aerator	Residential Home Energy Assessment Program, DSM Phase VII	Section 4.2.3
	Low-flow showerhead	Residential Home Energy Assessment Program, DSM Phase VII	Section 4.2.4
	Water heater temperature setback/turndown	Residential Home Energy Assessment Program, DSM Phase VII	Section 4.2.5
	AC cover for wall/window unit	_	Section 10.3.1
	Digital switch plate wall thermometer		Section 10.3.2
	Duct testing & sealing	Residential Home Energy Assessment Program, DSM Phase VII	Section 4.3.5
HVAC	ECM fan motors	Residential Home Energy Assessment Program, DSM Phase VII	Section 4.3.3
	Filter replacement	-	Section 10.3.4
	Heat pump tune-up	Residential Home Energy Assessment Program, DSM Phase VII	Section 4.3.2
	Heat pump upgrade	Residential Home Energy Assessment Program, DSM Phase VII	Section 4.3.1
Lighting	LED lamps	Residential Home Energy Assessment Program, DSM Phase VII	Section 4.4.1
Appliance or Plug Load	Refrigerator	Residential Efficient Products Marketplace Program, DSM Phase VII	Section 5.2.7

10.1 Building envelope end use

10.1.1 Air sealing

10.1.1.1 Measure description

This measure involves thermal shell air leak sealing through strategic use and location of air-tight materials. Leaks are detected and leakage rates measured with the assistance of a blower-door. Prescriptive savings are provided for use only where a blower door test is not possible (for example in large multifamily buildings).

The existing air leakage should be determined through approved and appropriate test methods using a blower door. The baseline condition of a building upon first inspection significantly impacts the opportunity for cost-effective energy savings through air-sealing. Air sealing materials and diagnostic testing should meet all eligibility program qualification criteria. The initial and final tested leakage rates should be performed in such a manner that the identified reductions can be properly discerned, particularly in situations wherein multiple building envelope measures may be implemented simultaneously.

This measure is offered through different programs listed in Table 10-2 and uses the Impacts Estimation Approach described in this section.

Table 10-2. Programs that offer air sealing

Program Name	Section
Residential Manufactured Housing Program, DSM Phase VIII	Section 10.1.1
Residential Home Retrofit Program, DSM Phase VIII	Section 11.1.1
Residential/Non-Residential Multifamily Program, DSM Phase VIII	Section 12.1.1
Residential HVAC Health and Safety Program, DSM Phase VIII	Section 15.1.1
Residential Income and Age Qualifying Energy Efficiency Program, DSM Phase IX	Section 18.1.1

10.1.1.2 Impacts Estimation Approach

Per-measure, the gross annual electric energy savings are calculated according to the following equations:

$$\Delta kWh = \Delta kWh_{cool} + \Delta kWh_{heat,electric} + \Delta kWh_{heating,EAF}$$

If space cooling is provided, then ΔkWh_{cool} follows the equation below; otherwise ΔkWh_{cool} is zero.

$$\Delta kWh_{cool} = \frac{(cfm50_{base} \ - cfm50_{ee}) \times 60\frac{min}{hr} \times 24\frac{hr}{day} \times CDD \times DUA \times 0.018\frac{Btu}{ft^3 \cdot °F} \times LM}{N_{cool} \times SEER \times 1,000\frac{Btu}{kBtu}}$$

If electric heating is provided, then ΔkWh_{heat} follows the equation below, otherwise ΔkWh_{heat} is zero.

DNV - www.dnv.com

$$\Delta kWh_{heat} = \frac{(cfm50_{base} \ - cfm50_{ee}) \times 60 \frac{min}{hr} \times 24 \frac{hr}{day} \times HDD \times 0.018 \frac{Btu}{ft^3 \cdot °F}}{N_{heat} \times COP \times DE \times 3,412 \frac{kWh}{Btu}}$$

If a forced air furnace (FAF)¹²¹ provides heat, then $\Delta kW h_{heating,FAF}$ follows the equation below, otherwise $\Delta kW h_{heating,FAF}$ is zero.

$$\Delta kWh_{heating,FAF} = \frac{(cfm50_{base} \ - cfm50_{ee}) \times 60\frac{min}{hr} \times 24\frac{hr}{day} \times HDD \times 0.018\frac{Btu}{ft^3 \cdot °F} \times ESF_{FAF}}{N_{heat} \times AFUE \times DE \ \times 3,412\frac{kWh}{Btu}}$$

Per-measure, the gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \frac{\Delta kWh_{cool}}{EFLH_{cool}} \times CF_{summer}$$

Per-measure, the gross coincident winter peak demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \frac{\Delta kWh_{heat} + \Delta kWh_{heating,FAF}}{EFLH_{heat}} \times CF_{winter}$$

Where:

 ΔkWh = per-measure gross annual electric energy savings ΔkWh_{cool} = per-measure gross annual electric cooling energy savings ΔkWh_{heat} = per-measure gross annual electric heating energy savings

ΔkWh_{heating, FAF fan} = gross annual electric savings to furnace air fan, if furnace air fan is present and affected by measure

 ΔkW_{summer} = summer gross coincident demand reduction ΔkW_{winter} = winter gross coincident demand reduction

cfm50_{base} = existing infiltration at 50 Pascals as measured by blower door before air sealing cfm50_{ee} = new infiltration at 50 Pascals as measured by blower door before air sealing

CDD = cooling degree days HDD = heating degree days

DUA = discretionary use adjustment (reflects the fact that people do not always operate their AC when conditions may call for it

LM = latent multiplier to account for latent cooling demand

N_{cool} = cooling conversion factor from leakage at 50 Pascal to leakage at natural

conditions

N_{heat} = heating conversion factor from leakage at 50 Pascal to leakage at natural

SEER = efficiency of cooling system, seasonal energy efficiency ratio (SEER)

COP = efficiency of heating system, coefficient of performance (effective COP estimate =

HSPF/3.413)

¹²¹ If the application cooling system type is cooling system type is Central AC or Packaged System AC and the heating fuel type is non-electric, the heating system is assumed to be a FAF.

ESF_{FAF} = furnace fan energy consumption as a percentage of annual fuel consumption

AFUE = efficiency of gas furnace, annual fuel utilization efficiency

DE = distribution efficiency (accounts for duct leakage in systems with ducts)

EFLH_{cool} = equivalent full load hours (cooling)

CF_{summer} = summer coincidence factor CF_{winter} = winter coincidence factor

10.1.1.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 10-3. Input variables for air sealing

Component	Туре	Value	Units	Source(s)
cfm50 _{base}	Variable	See customer application	ft ³ /min	Customer application
cfm50 _{ee}	Variable	See customer application	ft ³ /min	Customer application
CDD	Variable	See Table 24-4 in Sub- Appendix F1-III: Cooling and heating degree days and hours	Cooling degree days (CDD)	Sub-Appendix F1-III: Cooling and heating degree days and hours
HDD	Variable	See Table 24-5 in Sub- Appendix F1-III: Cooling and heating degree days and hours	Heating Degree Days (HDD)	Sub-Appendix F1-III: Cooling and heating degree days and hours
DUA	Fixed	0.75	_	IL TRM 2020 v8 Vol. 3. p. 286 ¹²²
LM	Variable	See Table 10-4	Btu/°F	See supplementary Excel workbook called "Latent Factor Calculation – 9-16-20.xlsx"
N _{cool}	Variable	See Table 10-5, for default use single story	-	See supplementary Excel workbook called "N_cool N_heat calcs 9-16-20.xlsx", default based on conservative savings estimate
N _{heat}	Variable	See Table 10-6, for default use single story	-	See supplementary Excel workbook called "N_cool N_heat calcs 9-16-20.xlsx", default based on conservative savings estimate

¹²² IL TRM 2020 Ver. 8, Vol. 3. p. 286. Energy Center of Wisconsin, May 2008 metering study; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research", p. 31

Component	Туре	Value	Units	Source(s)
SEER ¹²³	Variable	For residential programs see Table 24-9. Residential Baseline and Efficient HVAC Equipment Efficiency Ratingsand Table 24-10. Room Air Conditioner Federal Standard and ENERGY STAR® Minimum Efficiency For Non-residential Programs see the Non-Residential TRM, Sub-appendix F2-III: Non-residential HVAC Equipment Efficiency Ratings.	kBtu/kWh	See baseline efficiencies in Sub-Appendix F1-V: Residential HVAC Equipment Efficiency Ratings Non- Residential Technical Reference Manual Sub- Appendix F2-III: Non- residential HVAC equipment efficiency ratings
СОР	Variable	For residential programs see Table 24-9. Residential Baseline and Efficient HVAC Equipment Efficiency Ratings For Non-residential programs see the Non- residential STEP Sub-appendix F2-III: Non-residential HVAC equipment efficiency ratings.	_	See baseline efficiencies in Sub-Appendix F1-V: Residential HVAC Equipment Efficiency Ratings Non- Residential Technical Reference Manual Sub- Appendix F2-III: Non- residential HVAC equipment efficiency ratings
DE	Variable	Non-ducted systems (ductless mini-split or electric resistance heat): 1.0 Ducted systems (all other types): 0.85 ¹²⁴	_	IL TRM 2020 v8 Vol. 3, p. 288
AFUE	Variable	See baseline efficiencies in Sub-Appendix F1-V: Residential HVAC Equipment Efficiency Ratings: Table 24-9	-	Sub-Appendix F1-V: Residential HVAC Equipment Efficiency Ratings
ESF _{FAF}	Fixed	0.0314 ¹²⁵	_	IL TRM 2020 Ver. 8 Vv3, p. 346

¹²³ For Equipment types that don't have SEER values, other efficiency values are applied. For room air conditioners use CEER. For Nonresidential equipment types IEER may be applied.

¹²⁴ IL TRM 2020 Ver. 8 Vol. 3. p. 288. Also, average duct system efficiency for heating season for CZ4-5 is 0.854 according to this BPI document, accessed 10/13/20: https://www.bpi.org/sites/default/files/Guidance%20on%20Estimating%20Distribution%20Efficiency.pdf

¹²⁵ IL TRM 2020 v Vol. 3. p. 346. According to IL TRM: "ESF_{FAF} is not one of the AHRI certified ratings provided for residential furnaces, but can be estimated from a calculation based on the certified values for fuel energy (E_I in MMBtu/yr.) and E_{ae} (kWh/yr.). An average of a 300-record sample (non-random) out of 1495 was 3.14%. This is, appropriately, ~50% greater than the ENERGY STAR version 3 criteria for 2% ESF_{FAF}"

Component	Туре	Value	Units	Source(s)
EFLHcool	Variable	For residential programs see Sub-Appendix F1-IV: Residential equivalent full-load hours for HVAC For Non-residential Programs see the Non-Residential Technical Reference Manual Sub-appendix F2-II: Non-Residential HVAC Equivalent Full Load Hours	hours	Sub-Appendix F1-IV: Residential equivalent full-load hours for HVAC
CF _{summer}	Fixed	0.69	_	Maryland/Mid-Atlantic TRM v10, p.93 ¹²⁶
CFwinter	Fixed	0.69	_	Maryland/Mid-Atlantic TRM v10, p. 93 ¹²⁶

Table 10-4. Latent multiplier (LM) values

State	Location	LM
MD	Baltimore	1.75
VA	Richmond	1.81
VA	Norfolk	2.02
VA	Roanoke	1.74
VA	Sterling	1.79
VA	Arlington	1.82
VA	Charlottesville	1.81
VA	Farmville	1.71
VA	Fredericksburg	1.77
NC	Elizabeth City	2.12
NC	Rocky Mount	1.76

Table 10-5. N_{cool} Values

			N _{cool} (by # o	of stories)	
State	Location	1 (default)	1.5	2 3 19.6	
MD	Baltimore	45.0	38.6	29.7	19.6
VA	Richmond	40.0	34.3	26.4	17.4

¹²⁶ The same CF as the other HVAC measures is used for consistency. This measure is expected to have a similar savings profile. The Maryland/Mid-Atlantic TRM v10 provides CF for central AC systems in the ductless mini-split measure. In other measures in the Maryland/Mid-Atlantic TRM v10 a utility-specific and equipment specific CF is provided. We use the more generic CF. There are no generic winter CF. Therefore, we apply summer CF.

			N _{cool} (by # o		
State	Location	1 (default)	1.5	2	3
VA	Norfolk	32.4	27.8	21.4	14.1
VA	Roanoke	47.2	40.5	31.1	20.6
VA	Sterling	49.3	42.3	32.5	21.5
VA	Arlington	37.8	32.4	25.0	16.5
VA	Charlottesville	57.8	49.6	38.1	25.2
VA	Farmville	66.7	57.2	44.0	29.1
VA	Fredericksburg	47.2	40.5	31.1	20.6
NC	Elizabeth City	35.8	30.7	23.6	15.6
NC	Rocky Mount	56.4	48.4	37.3	24.6

Table 10-6. N_{heat} Values

			N _{heat} (by #	of stories)	
State	Location	1 (default)	1.5	2	3
MD	Baltimore	25.7	22.1	17.0	11.2
VA	Richmond	26.0	22.3	17.2	11.3
VA	Norfolk	22.8	19.6	15.1	9.9
VA	Roanoke	27.2	23.3	18.0	11.9
VA	Sterling	27.5	23.6	18.1	12.0
VA	Arlington	23.8	20.4	15.7	10.4
VA	Charlottesville	33.1	28.4	21.8	14.4
VA	Farmville	35.9	30.8	23.7	15.7
VA	Fredericksburg	27.5	23.6	18.1	12.0
NC	Elizabeth City	26.6	22.8	17.6	11.6
NC	Rocky Mount	36.4	31.2	24.0	15.8

10.1.1.4 Default savings

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

10.1.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 10-7.

Table 10-7. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program name	Value	Units	Source(s)
IX	Residential Income and Age Qualifying Energy Efficiency Program, DSM Phase IX			
	Residential Manufactured Housing Program, DSM Phase VIII			
VIII	Residential Home Retrofit Program, DSM Phase VIII	15.00	years	lowa TRM 2016 Vol. 2 p. 241 ¹²⁷
VIII	Residential/Non-Residential Multifamily Program, DSM Phase VIII			
	Residential HVAC Health and Safety Program, DSM Phase VIII			

10.1.1.6 Source

The primary source for this savings approach is the IL TRM 2020 v8 Vol. 3. pp. 284-297. Weather dependent factors such as LM, Ncool, and Nheat were updated to be reflective of local conditions. Factors were update to the source for the measure life is the lowa TRM 2016 Vol. 2 pp. 241.

10.1.1.7 Update summary

Updates to this section are described in Table 10-8.

Table 10-8. Summary of update(s)

Updates in version	Update type	Description
2022	None	No change
2021		Initial release

10.1.2 Building insulation

10.1.2.1 Measure description

This measure involves improving the R-value of building shell components which may include attics/roofs, above grade and below grade walls, and floors above crawlspaces. This measure requires that the implementer determine the baseline and post-case R-value of the assembly of the building shell component for which new insulation is added, and to determine the surface area of the newly insulated assembly. For above grade and below grade wall assemblies, the baseline will be determined by the implementer, but is most likely empty wall cavities, or no insulation. For floors above crawlspaces, the baseline will be determined by the implementer, but is most likely to be no insulation on any surfaces surrounding a crawlspace. For attics and roofs, the baseline will be determined by the implementer, but is most likely no or little attic/roof insulation.

¹²⁷ lowa TRM 2018 Vol. 2 p. 260. According to lowa TRM: "Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, 2007"

This measure is offered through different programs listed in Table 10-9 and uses the Impacts Estimation Approach described in this section.

Table 10-9. Programs that offer building insulation measure

Program name	Section
Residential Manufactured Housing Program, DSM Phase VIII	Section 10.1.2
Residential Home Retrofit Program, DSM Phase VIII	Section 11.1.2
Residential/Non-Residential Multifamily Program, DSM Phase VIII	Section 12.1.2
Residential HVAC Health and Safety Program, DSM Phase VIII	Section 15.1.2
Residential Income and Age Qualifying Energy Efficiency Program, DSM Phase IX	Section 18.1.2

10.1.2.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equations:

$$\Delta kWh = \Delta kWh_{cool} + \Delta kWh_{heat,\,electric} + \Delta kWh_{heating,\,FAF\,fan}$$

If space cooling is provided, then ΔkWh_{cool} follows the equation below, otherwise ΔkWh_{cool} is zero.

$$= \left(\frac{1}{R_{base}} - \frac{1}{R_{base} + R_{ee}}\right)$$

$$\times \frac{CDD \times 24 \frac{hour}{day} \times DUA \times Area \times \left(1 - Factor_{framing}\right) \times Adj_{cool}}{1,000 \ Btu/kBtu \times SEER \times DE}$$

If electric heating is provided 128, then ΔkWh_{heat} follows the equation that follows, otherwise $\Delta kWh_{heat.electric}$ is zero.

$$= \left(\frac{1}{R_{base}} - \frac{1}{R_{base} + R_{ee}}\right)$$

$$\times \frac{HDD \times 24 \frac{hour}{day} \times Area \times \left(1 - Factor_{framing}\right) \times Adj_{heat}}{3,412 \ Btu/kWh \times COP \times DE}$$

If a forced-air furnace (FAF)¹²⁹ provides heat, fan energy savings are calculated. The $\Delta kWh_{heating,FAF\,fan}$ is calculated using the equation that follows, otherwise $\Delta kWh_{heating,FAF\,fan}$ is zero.

¹²⁸ Electric heating is applied if heating system type is heat pump or electric resistance baseboard systems.

¹²⁹ Forced air furnace is assumed if the application indicates non-electric heating fuel.

$$= \left(\frac{1}{R_{base}} - \frac{1}{R_{base} + R_{ee}}\right)$$

$$\Delta kWh_{heat,\,FAF\,fan} \times \frac{HDD \times 24 \frac{hour}{day} \times Area \times (1 - Factor_{framing}) \times Adj_{heat} \times ESF_{FAF}}{3,412\,Btu/kWh \times AFUE \times DE}$$

Per-measure, summer gross coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \frac{\Delta kWh_{cool}}{EFLH_{cool}} \times CF_{summer}$$

Per-measure, summer gross coincident demand reduction is calculated for both electric heat and FAF according to the following equation:

$$\Delta kW_{winter} = \frac{\Delta kWh_{heat,electric} + \Delta kWh_{heat,FAF\,fan}}{EFLH_{heat}} \times CF_{winter}$$

Where:

ΔkWh = per-measure gross annual electric energy savings

∆kW_{summer} = per-measure gross summer peak coincident demand reduction ∆kW_{winter} = per-measure gross winter peak coincident demand reduction

= gross annual electric savings to cooling system, if cooling system is present and ∆kWh_{cool} affected by measure

= gross annual electric savings to heating system, if electric heating is present and $\Delta kWh_{heat,electric}$ affected by measure

= gross annual electric savings to furnace air fan, if furnace air fan is present and $\Delta kWh_{heating, FAF fan}$ affected by measure

= R-value of existing assembly and any existing insulation. This includes the

Rbase thermal resistance of the earth in below grade wall applications.

= R-value of new assembly with the new insulation. This includes the thermal R_{ee} resistance of the earth in below grade wall applications.

= cooling degree days (base 65°F for conditioned basement sidewall, above-grade

wall, ceiling/attic; base 75°F for unconditioned basement sidewall, floor above crawlspace)

= discretionary use adjustment (reflects the fact that people do not always operate DUA their AC when conditions may call for it)

= surface area of insulation applied Area

Factorframing = adjustment to account for area of framing

= adjustment to account for engineering algorithm overclaiming cooling savings Adjcool

= efficiency of cooling system, seasonal energy efficiency ratio of cooling system **SEER**

(SEER)

= heating degree days (base 60°F for conditioned basement sidewall, above-grade HDD wall, ceiling/attic; base 50°F for unconditioned basement sidewall, floor above

= adjustment to account for engineering algorithm overclaiming heating savings Adjheat

= efficiency of electric heating system, coefficient of performance (effective COP COP estimate = HSPF/3.413)

CDD

ESF_{FAF} = furnace fan energy consumption as a percentage of annual fuel consumption

AFUE = efficiency of gas furnace, Annual Fuel Utilization Efficiency

DE = distribution Efficiency (accounts for duct leakage in systems with ducts)

 $\begin{array}{ll} \mathsf{EFLH}_{\mathsf{cool}} & = \mathsf{equivalent} \; \mathsf{full} \; \mathsf{load} \; \mathsf{hours} \; (\mathsf{cooling}) \\ \mathsf{EFLH}_{\mathsf{heat}} & = \mathsf{equivalent} \; \mathsf{full} \; \mathsf{load} \; \mathsf{hours} \; (\mathsf{heating}) \\ \mathsf{CF}_{\mathsf{summer}} & = \mathsf{summer} \; \mathsf{peak} \; \mathsf{coincidence} \; \mathsf{factor} \\ \mathsf{CF}_{\mathsf{winter}} & = \mathsf{winter} \; \mathsf{peak} \; \mathsf{coincidence} \; \mathsf{factor} \end{array}$

10.1.2.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 10-10. Input variables for building insulation

Component	Туре	Value	Units	Source(s)
R _{base}	Variable	See Table 10-11	hr-°F-ft²/Btu	IL TRM 2021 Ver. 9 Vol. 3, p. 343
Ree	Variable	See customer application	hr-°F-ft²/Btu	Customer application
CDD	Variable	Location-dependent value using base 65°F for conditioned basement sidewall, above-grade wall, ceiling/attic; base 75°F for unconditioned basement sidewall, floor above crawlspace, See Table 24-4.	CDD	Sub-Appendix F1-III: Cooling and heating degree days and hours
DUA	Fixed	0.75	_	IL TRM 2021 Ver. 9, Vol. 3. p. 344 ¹³⁰
Area	Variable	See customer application	ft ²	Customer application
Factorframing	Variable	See Table 10-12	_	See Table 10-12
Adj _{cool}	Fixed	0.8	_	IL TRM 2021 Ver. 9, Vol. 3. p. 320 ¹³¹
		See customer application		Customer application
SEER ¹³²	Variable	Default: For residential programs, see Table 24-9. Residential Baseline and Efficient HVAC Equipment Efficiency Ratingsand Table 24-10. If system type is unknown default type is air conditioning, split system. For Non-residential Programs see the Non-Residential STEP Manual Sub-appendix F2-III: Non-residential HVAC Equipment Efficiency Ratings.	kBtu/kWh	Sub-Appendix F1-V: Residential HVAC Equipment Efficiency Ratings Non-Residential Technical Reference Manual Sub-Appendix F2-III: Non-residential HVAC equipment efficiency ratings.

¹³⁰ IL TRM 2021 Ver. 9, Vol. 3. p. 344. Energy Center of Wisconsin, May 2008 metering study; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research", p. 31

¹³¹ Opinion Dynamics Memo "Results for AIC PY6 HPwES Billing Analysis", dated 2/20/15 found realization rate in ComEd PY6 of 0.23, and PY5 of 0.41. Negotiated TAC value was 0.80 based on large error bounds on realization rates.

¹³² For Equipment types that don't have SEER values, other efficiency values are applied. For room air conditioners use CEER. For Nonresidential equipment types IEER may be applied. If size is not available and system type is split system, assume it is larger than 45 kBtu/h.

Component	Туре	Value	Units	Source(s)
HDD	Variable	Location-dependent value using a base 60°F for conditioned basement sidewall, above-grade wall, ceiling/attic; base 50°F for unconditioned basement sidewall, floor above crawlspace.	HDD	Sub-Appendix F1-IV: Residential equivalent full-load hours for HVAC
Adj _{heat}	Fixed	0.6	_	IL TRM 2021 Ver. 9, Vol. 3., p. 322 ¹³³
		See customer application		Customer application
СОР	Variable	For residential programs, see Table 24-9. Residential Baseline and Efficient HVAC Equipment Efficiency RatingsIf system type is unknown, default is indoor gas furnace. For Non-residential Programs, see the Non-Residential STEP Manual Sub-Appendix F2-III: Non-residential HVAC equipment efficiency ratings.	_	Sub-Appendix F1-V: Residential HVAC Equipment Efficiency Ratings Non-Residential STEP Manual Sub-appendix F2-III: Non-residential HVAC equipment efficiency ratings.
ESF _{FAF}	Fixed	0.0314	_	IL TRM 2021 Ver. 9 Vol. 3. p. 309 ¹³⁴
AFUE	Variable	See Table 24-9	_	Baseline efficiencies in Sub-Appendix F1-V: Residential HVAC Equipment Efficiency Ratings
DE	Variable	Non-ducted systems (ductless or electric resistance heat): 1.0 Ducted systems: 0.85 Default: Non-ducted systems (ductless or electric resistance heat): 1.0	. –	IL TRM 2021 Ver. 9 Vol. 3. p. 308 ¹³⁵ Conservative estimate
EFLHcool	Variable	For residential programs, see Section 24.3, Sub-Appendix F1-III: Cooling and heating degree days and hours. For Non-residential programs, see the Non-Residential STEP Manual Sub-appendix F2-II: Non-residential HVAC equivalent full load hours.	hours	Sub-Appendix F1-IV: Residential equivalent full-load hours for HVAC Sub-appendix F2-II: Non- residential HVAC equivalent full load hours

¹³³ Opinion Dynamics Memo "Results for AIC PY6 HPwES Billing Analysis", dated 2/20/15 found realization rate in ComEd PY6 of 0.57, and PY5 of 0.33 for electric heat, and 0.39 and 0.34 for gas heat. Negotiated TAC value was 0.60 based on large error bounds on realization rates.

¹³⁴ IL TRM 2021 Ver. 9 Vol. 3. p. 309. According to IL TRM: "ESF_{FAF} is not one of the AHRI certified ratings provided for residential furnaces, but can be estimated from a calculation based on the certified values for fuel energy (E_i in MMBtu/yr.) and E_{se} (kWh/yr.). An average of a 300-record sample (non-random) out of 1,495 was 3.14%. This is, appropriately, ~50% greater than the ENERGY STAR version 3 criteria for 2% ESF_{FAF}"

¹³⁵ IL TRM 2020 Ver. 8 Vol. 3. p. 308. Also, average duct system efficiency for heating season for CZ4-5 is 0.854 according to this BPI document, accessed 10/13/20: http://www.bpi.org/sites/default/files/Guidance%20on%20Estimating%20Distribution%20Efficiency.pdf

Component	Туре	Value	Units	Source(s)
EFLH heat	Variable	For residential programs, see Section 24.3, Sub-Appendix F1-III: Cooling and heating degree days and hours. For non-residential programs, see the Non-Residential STEP Manual Sub-appendix F2-II: Non-residential HVAC equivalent full load hours.	hours	Sub-Appendix F1-IV: Residential equivalent full-load hours for HVAC Non-Residential STEP Manual Sub-appendix F2-II: Non- residential HVAC equivalent full load hour
CF _{summer}	Fixed	0.69	_	Maryland/Mid-Atlantic TRM v10, p.93 ¹³⁶
CF _{winter}	Fixed	0.69	_	Maryland/Mid-Atlantic TRM v10, p.93 ¹³⁶

Table 10-11. R_{base} values by component type

Component type	R _{base}	Source
Roof/Attic	3.00	IL TRM 2021 Ver. 9 Vol. 3, p. 343 ¹³⁷
Above grade wall	5.00	IL TRM 2021 Ver. 9 Vol. 3, p. 335 ¹³⁸
Below grade wall (basement)	7.98	IL TRM 2021 Ver. 9 Vol. 3, p. 321 ¹³⁹
Floor above crawlspace	3.53	IL TRM 2021 Ver. 9 Vol. 3, p. 327 ¹⁴⁰

Table 10-12. Framing factor values

Component type	Framing factor ¹⁴¹	Source
Roof/Attic	0.07	IL TRM 2021 Ver. 9 Vol. 3, p. 343
Above-grade wall	0.25	IL TRM 2021 Ver. 9 Vol. 3, p. 335
Below-grade wall (basement)	0.00	IL TRM 2021 Ver. 9 Vol. 3, p. 319 ¹⁴²
Floor, above crawlspace	0.12	IL TRM 2021 Ver. 9 Vol. 3, p. 327

10.1.2.4 **Default savings**

If the values are not supplied, default input values may be applied using conservative assumptions.

¹³⁶ The Maryland/Mid-Atlantic TRM v10 provides CF for room/wall AC and central AC systems in the ductless mini-split measure. In this section we use the generic value for central AC system. For other measures in the Maryland/Mid-Atlantic TRM v10, a utility-specific and equipment specific CF is provided. We use the more generic CF categories. There are no generic winter CF. Therefore, we apply summer CF.

¹³⁷ IL TRM 2021 Ver. 9 Vol. 3. p. 343. According to IL TRM: "Component estimate of air film above and below, sheathing and sheet rock, (0.68+0.5+0.45+0.68 =

^{2.3)} is rounded up to R-3"

138 IL TRM 2021 Ver. 9 Vol. 3. p. 335. According to IL TRM: "estimate based on review of Madison Gas and Electric, Exterior Wall Insulation, R-value for no insulation in walls, and NREL's Building Energy Simulation Test for Existing Homes (BESTEST-EX)"

139 IL TRM 2021 Ver. 9 Vol. 3. p. 321. According to IL TRM: "Adapted from Table 1, page 24.4, of the 1977 ASHRAE Fundamentals Handbook". Assumed

average value of 1 through 8 feet.

¹⁴⁰ IL TRM 2021 Ver. 9 Vol. 3. p. 327. According to IL TRM: "Based on 2005 ASHRAE Handbook – Fundamentals: assuming 3/4" subfloor, 1/2" carpet with rubber pad, and accounting for a still air film above and below: 0.68 + 0.94 + 1.23 + 0.68 = 3.53"

¹⁴¹ IL TRM 2021 Ver. 9 Vol. 3. p.319. According to IL TRM: "Characterization of Framing Factors for New Low-Rise Residential Building Envelopes (904-RP)," Table 7.1'

 $^{^{142}\,\}mbox{Assumed}$ spray foam or external rigid board without studs and insulated cavity

10.1.2.5 Effective Useful Life

The effective useful life of this measure is provided in Table 10-13.

Table 10-13. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)	
IX	Residential Income and Age Qualifying Energy Efficiency Program, DSM Phase IX				
	Residential Manufactured Housing Program, DSM Phase VIII	0.5.00		TD1100041V410 070142	
VIII	Residential Home Retrofit Program, DSM Phase VIII	25.00	years	lowa TRM 2021 Vol. 2 p. 276 ¹⁴³	
	Residential Multifamily Program, DSM Phase VIII				
	Residential HVAC Health and Safety Program, DSM Phase VIII				

10.1.2.6 Source

The primary source for this deemed savings approach is the IL TRM 2021 Ver. 9. Vol. 3, pp. 304-358. The source for the measure life is the lowa TRM 2021 Vol. 2, p. 276.

10.1.2.7 Update summary

Updates to this section are described in Table 10-14.

Table 10-14. Summary of update(s)

Updates in version	Update type	Description	
2022	Source	Updated TRM references and page numbers	
	Expanded measure	This measure was expanded from only attic insulation to attics insulation, above grade and below grade walls, and floors above crawlspaces	
2021	Input variable	Assigned Non-ducted systems as the default for DE	
	Equation	Added winter peak coincident demand reduction equation	
	New table	Effective Useful Life (EUL) by program	
2020	None	No change	
v10	Source	Updated page numbers / version of the Mid-Atlantic TRM and ASHRAE Handbook Fundamentals	
	Input variable	Clarified default assumption values	

¹⁴³ lowa TRM 2021 Vol. 2 pp. 276. According to lowa TRM: "Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, 2007"

10.1.3 Cool roof

This measure is also provided by the Residential Home Energy Assessment Program. For this program, this measure is only applicable for Mobile Homes and Modular Homes. The savings are determined using the methodology described in Section 4.1.1.

10.1.4 Weatherization

This measure is also provided by the Residential Energy Efficiency Kits Program, DSM Phase VIII. The savings are determined using the methodology described in Section 9.1.1.

10.2 Domestic hot water end use

10.2.1 Domestic hot water tank wrap

10.2.1.1 Measure description

This measure involves applying insulation wrap (insulation blanket) on the domestic hot water (DHW) tank. Insulating DHW tanks reduce the standby heat losses and thus reduces the heating cost. This measure applies only for homes that have an electric water heater that is not already well insulated.

The baseline condition is a standard electric domestic hot water tank without an additional tank wrap. The efficient condition is the same standard electric domestic hot water tank with an additional tank wrap.

This measure is offered through different programs listed in Table 10-15 and uses the Impacts Estimation Approach described in this section.

Table 10-15. Programs that offer domestic hot water tank wrap

Program name	Section
Residential Manufactured Housing Program, DSM Phase VIII	Section 10.2.1
Residential Income and Age Qualifying Energy Efficiency Program, DSM Phase IX	Section 18.2.2

10.2.1.2 Impacts Estimation Approach

Per-measure, the gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \frac{\left(\frac{1}{R_{base}} - \frac{1}{R_{ee}}\right) \times Area \times \Delta T \times HOU}{3,412 \frac{Btu}{kWh} \times \eta_{DHW}}$$

The Area is calculated according to the following equation 144:

Area =
$$-0.0017 \times capacity^2 + 0.437 \times capacity + 7.831$$

Per-measure, the gross coincident summer peak demand reduction is calculated according to the following equation:

¹⁴⁴ Maryland/Mid-Atlantic TRM v10, p.141 provides areas for specific tank volume sizes. This equation is based on areas and tank volumes provided.

$$\Delta kW_{summer} = \frac{\Delta kWh}{HOU} \times CF_{summer}$$

Per-measure, the gross coincident winter peak demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \frac{\Delta kWh}{HOU} \times CF_{winter}$$

Where:

ΔkWh = per-measure gross annual electric energy savings ΔkW = per-measure gross coincident demand reduction

Capacity = tank storage volume

Area = surface area of storage tank prior to adding tank wrap

ΔT = average temperature difference between tank water and outside air temperature (F) HOU = number of hours in a year (since savings are assumed to be constant over a year)

 η_{DHW} = recovery efficiency of electric hot water heater

 R_{base} = measure of resistance to heat flow prior to adding tank wrap R_{ee} = measure of resistance to heat flow after addition of tank wrap

10.2.1.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 10-16. Input variables for domestic hot water tank wrap

Component	Туре	Value	Units	Source(s)
		See customer application		Customer application
Capacity	Variable	48.3 gal		Dominion Residential Home Energy Use Survey 2019 - 2020 Appendix B, p. 37 ¹⁴⁵
HOU	Fixed	8,760	hr	Maryland/Mid-Atlantic TRM v10, p.142
ΔΤ	Fixed	60	°F	Maryland/Mid-Atlantic TRM v10, p.142
R _{base}	Fixed	8	hr∙°F·ft²/Btu	Maryland/Mid-Atlantic TRM v10, p.142
Ree	Fixed	18	hr·°F·ft²/Btu	Maryland/Mid-Atlantic TRM v10, p.142
η рнw	Fixed	0.98	_	Maryland/Mid-Atlantic TRM v10, p.142

 $^{^{145}}$ The weighted average tank volumes is used

Component	Туре	Value	Units	Source(s)
CF _{summer}	Fixed	1.0	_	DNV Judgment ¹⁴⁶
CFwinter	Fixed	1.0	_	DNV Judgment ¹⁴⁶

10.2.1.4 Default savings

The default per-measure gross annual electric energy savings per unit will be assigned according to the following calculation. If tank specifics are unknown assume 48.3 gallons and the measure savings were resulted from adding R-10 to a poorly insulated R-8 tank.

Area =
$$-0.0017 \times capacity^2 + 0.437 \times capacity + 7.831$$

= $-0.0017 \times 48.3^2 gal + 0.437 \times 48.3 \ gal + 7.831$
= $24.97 \ ft^2$
 $\Delta kWh = Area \times \left(\frac{1}{R_{base}} - \frac{1}{R_{ee}}\right) \times HOU \times \Delta T / \left((3.412 \frac{Btu}{kWh} \times \eta_{DHW}\right)\right)$
= $24.97 \ ft^2 \times \left(\frac{1}{8.0 \ ^\circ F \cdot ft^2 / Btuh} - \frac{1}{18.0 \ ^\circ F \cdot ft^2 / Btuh}\right) \times 60 \ ^\circ F \times 8760 \ hours \times \frac{1 \ kW}{3412 \ Btuh \times 0.98}$

 $= 272.6 \, kWh$

The default per-measure gross summer peak demand reduction per unit will be assigned according to the following calculation:

$$\Delta kW_{summer} = \frac{\Delta kWh}{HOU} \times CF_{summer}$$
$$= \frac{272.6 \ kWh}{8760 \ hours} \times 1.0$$
$$= 0.031 \ kW$$

The default per-measure gross winter peak demand reduction per unit will be assigned according to the following calculation:

 $^{^{146}}$ Mid-Atlantic TRM v9 does not provide a CF, therefore a CF of 1.0 is implied.

$$\Delta kW_{winter} = \frac{\Delta kWh}{HOU} \times CF_{winter}$$
$$= \frac{272.6 \ kWh}{8760 \ hours} \times 1.0$$
$$= 0.031 \ kW$$

10.2.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 10-17.

Table 10-17. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)	
IX	Residential Income and Age Qualifying Energy Efficiency Program, DSM Phase IX	5.00	Vo o ro	Maryland/Mid-Atlantic TRM v10,	
VIII	Residential Manufactured Housing Program, DSM Phase VIII	5.00	years	p.144	

10.2.1.6 Source

The primary source for this deemed savings approach is Maryland/Mid-Atlantic TRM v10, pp. 141-144.

10.2.1.7 Update summary

Updates to this section are described in Table 10-18.

Table 10-18. Summary of update(s)

Version	Update type	Description
2022	Equation	Corrected error in equation
2021		Initial release

10.2.2 Domestic hot water pipe insulation

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.2.1.

10.2.3 Heat pump domestic water heater

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VIII. The savings re determined using the methodology described in Section 4.2.2.

10.2.4 Faucet aerator

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.2.3.

10.2.5 Low-flow showerhead

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.2.4.

10.2.6 Water heater temperature setback/turndown

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.2.5.

10.3 Heating, Ventilation, Air-Conditioning (HVAC) end use

10.3.1 AC Cover for wall/window unit

10.3.1.1 Measure description

This measure covers the installation of a rigid, insulated cover installed on the inside of a room air conditioner (RAC) and a cover or sealing on the gap surrounding the unit. The cover is designed for RAC units, which are comprised of window air conditioners and through-the-wall air conditioners, left in place throughout the heating season and reduces heating load by limiting the infiltration of cold outside air. The building staff shall be instructed on proper annual removal and reinstallation to ensure persistence of savings.

10.3.1.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \frac{1.08 \times cfm \times EFLH}{Eff_{heating} \times 3,412 \; Btuh/kW}$$

Per-measure coincident summer peak demand reduction is zero because the energy saving happens in the heating season:

$$\Delta kW_{summer} = 0.0$$

Per-measure summer coincident winter peak demand reduction is zero because the energy saving happens in the heating season:

$$\Delta kW_{winter} = 0.0$$

Where:

 $\begin{array}{lll} \Delta kWh &= \text{per-measure gross annual electric energy savings} \\ \Delta kW_{\text{summer}} &= \text{per-measure gross summer coincident demand reduction} \\ \Delta kW_{\text{winter}} &= \text{per-measure gross winter coincident demand reduction} \\ \text{cfm} &= \text{cubic foot per minute on the gap surrounding the unit} \end{array}$

EFLH_{heat} = equivalent full-load hours for heating

Eff_{heating} = efficiency of heating system

10.3.1.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 10-19. Input values for AC cover savings calculations

Component	Туре	Value	Units	Sources
cfm	Fixed	19.0	ft ³ /mint	New York TRM v8 2021, p. 53 ¹⁴⁷
EFLH _{heat}	Variable	See Sub-Appendix F1-IV: Residential equivalent full- load hours for HVAC	hours	Sub-Appendix F1-IV: Residential equivalent full-load hours for HVAC
Effheating	Fixed	1.0	-	New York TRM v8 2021, p. 53 ¹⁴⁸

10.3.1.4 Default savings

If the proper values are not supplied, a default savings may be applied using conservative input values.

The default per-measure gross annual electric energy savings will be assigned according to the following calculation: (e.g., for residential homes in Virginia, with Room AC and electric baseboard heating):

In Virginia:

$$\Delta kWh = \frac{1.08 \times CFM \times EFLH}{Eff_{heating} \times 3,412 \ Btuh/kW}$$
$$= \frac{1.08 \times 19.0 \ ft^3/mint \times 519 \ hours}{1.0 \times 3,412 \ Btuh/kW}$$
$$= 3.1 \ kWh$$

10.3.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 10-20.

Table 10-20. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VIII	Residential Manufactured Housing	5.00	years	New York TRM v8 2021, p. 765 ¹⁴⁹

 $^{^{147}}$ New York TRM v8 2021, page 53. Cubic foot per minute (CFM) is based on a negative pressure differential of 10 Pa

 $^{^{148}}$ New York TRM v8 2021, page 53. For electric resistance heat, use a value of 1.0.

¹⁴⁹ New York TRM v8 2021, p. 765. At least one manufacturer's warranty period.

10.3.1.6 Source(s)

The primary source for this deemed savings approach is the New York TRM v8 2021, pp. 48-52 and p. 765. Other assumptions such as heating/cooling full load hours and temperature differences are based on NOAA TMY data estimations.

10.3.1.7 Update summary

Updates to this section are described in Table 10-21. Summary of update(s)

Table 10-21. Summary of update(s)

Version	Update type	Description
2022	None	No change
2021	-	Initial release

10.3.2 Digital switch plate wall thermometer

This measure does not have savings that have been validated by technical resource manuals or other secondary resources. While some savings may be realized at individual households, deemed savings are not attributed to this measure.

10.3.3 Duct testing & sealing

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.3.5.

10.3.4 Filter replacement

10.3.4.1 Measure description

An air filter on a central forced air (heating) system is replaced prior to the end of its useful life with a new filter, resulting in a lower pressure drop across the filter. As filters age, the pressure drop increases as filtered medium accumulates. Replacing filters before they reach the point of becoming ineffective can save energy by reducing the pressure drop required by filtration, subsequently reducing the load on the blower motor.

If a HVAC tune up measure is performed, this measure will not receive energy savings. The tune up measure will incorporate savings for a filter replacement.

10.3.4.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \Delta kWh_{cool} + \Delta kWh_{heat}$$

$$\Delta kWh_{cool} = EFLH_{cool} \times kW_{motor} \times ESF \times ISR$$

$$\Delta kWh_{heat} = EFLH_{heat} \times kW_{motor} \times ESF \times ISR$$

Per-measure coincident summer peak demand reduction is calculated as follows:

$$\Delta kW_{summer} = \frac{\Delta kWh_{cool}}{EFLH_{cool}} \times CF_{summer}$$

Per-measure coincident winter peak demand reduction is calculated as follows:

$$\Delta kW_{winter} = \frac{\Delta kWh_{heat}}{EFLH_{heat}} \times CF_{winter}$$

Where:

 Δ kWh = per-measure gross annual electric energy savings

 Δ kW_{summer} = per-measure gross summer coincident demand reduction Δ kW_{winter} = per-measure gross winter coincident demand reduction

 $\begin{array}{ll} \text{EFLH}_{\text{cool}} &= \text{equivalent full-load hours for cooling} \\ \text{EFLH}_{\text{heat}} &= \text{equivalent full-load hours for heating} \\ \text{kW}_{\text{motor}} &= \text{average motor full load electric demand} \end{array}$

ESF = energy savings factor

ISR = in-service rate

CF_{summer} = summer coincidence factor CF_{winter} = winter coincidence factor

10.3.4.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 10-22. Input values for AC cover savings calculations

Component	Туре	Value	Units	Sources
kW _{motor}	Fixed	0.377	kW	Pennsylvania TRM 2021, p. 46
EFLHcool	Variable	See Table 24-7 in Sub- appendix F1-I: Cooling and heating degree days and hours		Sub-Appendix F1-IV: Residential equivalent full-load hours for HVAC
EFLH _{heat}	Variable	See Table 24-7 in Sub- appendix F1-I: Cooling and Heating Degree Days and Hours	hours, annual	Sub-Appendix F1-IV: Residential equivalent full-load hours for HVAC
ESF	Fixed	0.15	-	Pennsylvania TRM 2021, p. 46
ISR	Fixed	0.15	-	Pennsylvania TRM 2021, p. 46
CF _{summer}	Fixed	0.31	-	Maryland/Mid-Atlantic TRM v10, p. 126
CFwinter	Fixed	0.31	-	Maryland/Mid-Atlantic TRM v10, p. 126 ¹⁵⁰

 $^{^{150}\,\}mbox{The}$ source TRM does not include a winter CF. Therefore, we use the summer CF.

10.3.4.4 Default savings

If the proper values are not supplied, a default savings may be applied using conservative input values.

The default per-measure gross annual electric energy savings will be assigned according to the following calculation: (e.g., for residential homes in Virginia, with central cooling and gas heating):

In Virginia:

$$\Delta kWh_{cool} = EFLH_{cool} \times kW_{motor} \times ESF \times ISR$$

$$= 765 \ hours \times 0.377 \ kW \times 0.15 \times 0.15$$

$$= 6.5 \ kWh$$

$$\Delta kWh_{heat} = EFLH_{heat} \times kW_{motor} \times ESF \times ISR$$

$$= 519 \ hours \times 0.377 \ kW \times 0.15 \times 0.15$$

$$= 4.40 \ kWh$$

$$\Delta kWh = \Delta kWh_{cool} + \Delta kWh_{heat}$$

$$= 6.5 \ kWh + 4.4 \ kWh$$

$$= 10.9 \ kWh$$

$$\Delta kW_{summer} = \frac{\Delta kWh_{cool}}{EFLH_{cool}} \times CF_{summer}$$

$$= \frac{6.5 \ kWh}{765 \ hours} \times 0.31$$

$$= 0.003 \ kW$$

$$\Delta kW_{winter} = \frac{\Delta kWh_{heat}}{EFLH_{heat}} \times CF_{winter}$$

$$= \frac{4.4 \ kWh}{519 \ hours} \times 0.31$$

 $= 0.003 \, kW$

10.3.4.5 Effective Useful Life

The effective useful life of this measure is provided in Table 10-23.

Table 10-23. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VIII	Residential Manufactured Housing	5.00	years	Pennsylvania TRM 2021, p. 46

10.3.4.6 Source(s)

The primary source for this deemed savings approach is Pennsylvania TRM 2021, p. 46-47. Other assumptions such as heating/cooling full load hours and temperature differences are based on NOAA TMY data estimations.

10.3.4.7 Update summary

Updates to this section are described in Table 10-24. Summary of update(s)

Table 10-24. Summary of update(s)

Updates in version	Update type	Description
2022	None	No change
2021		Initial release

10.3.5 HVAC tune-up

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.3.2.

10.3.6 HVAC upgrade

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.3.1.

10.3.7 Smart thermostat installation

This measure is also provided by the Residential Thermostat Purchase and Weather Smart Program. The savings are determined using the methodology described in Section 6.2.1.

10.3.8 ECM fan motor

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in 4.3.3.

10.4 Lighting

10.4.1 LED lamps

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.4.1.

10.5 Plug Load/Appliance end use

10.5.1 ENERGY STAR refrigerator

This measure is also provided by the Residential Efficient Products Marketplace Program, DSM Phase VII. The savings are determined using the methodology described in Section 5.2.7.

11 RESIDENTIAL HOME RETROFIT PROGRAM, DSM PHASE VIII

The Residential Home Retrofit Program would target high users of electricity within the Company's Virginia service territory with an incentive to conduct a comprehensive and deep whole house diagnostic home energy assessment by BPI certified whole house building technicians. The Program will provide rebate incentives for the installation of specific measures recommended as cost-effective by the Program's approved modeling software.

The measures offered through the program and the sections that contain the savings algorithms for each measure are presented in Table 11-1.

Table 11-1. Home Retrofit Program measure list

End use	Measure	Legacy program	Manual section
Building	Air sealing	Residential Manufactured Housing Program, DSM Phase VIII	Section 10.1.1
envelope	Building insulation	Residential Manufactured Housing Program, DSM Phase VIII	Section 10.1.2
	Domestic hot water pipe insulation	Residential Home Energy Assessment Program, DSM Phase VII	Section 4.2.1
	Faucet aerator	Residential Home Energy Assessment Program, DSM Phase VII	Section 4.2.3
Domestic hot water	Heat pump domestic water heater	Residential Home Assessment Program, DSM Phase VII	Section 4.2.2
	Low-flow showerhead	Residential Home Energy Assessment Program, DSM Phase VII	Section 4.2.4
	Water heater temperature setback/turndown	Residential Home Assessment Program, DSM Phase VII	Section 4.2.5
Appliance or Plug Load	Clothes washer	Residential Efficient Products Marketplace Program, DSM Phase VII	Section 5.2.2
	Clothes dryer	Residential Efficient Products Marketplace Program, DSM Phase VII	Section 5.2.3
	ENERGY STAR refrigerator	Residential Efficient Products Marketplace Program, DSM Phase VII	Section 5.2.7
	HVAC upgrade	Residential Home Energy Assessment Program, DSM Phase VII	Section 4.3.1
	HVAC tune-up	Residential Home Energy Assessment Program, DSM Phase VII	Section 4.3.2
HVAC	Duct sealing	Residential Home Energy Assessment Program, DSM Phase VII	Section 4.3.5
HVAC	ECM fan motor	Residential Home Energy Assessment Program, DSM Phase VII	Section 4.3.3
	Duct insulation	Residential Home Energy Assessment Program, DSM Phase VII	Section 4.3.4
	Smart thermostat installation	Residential Thermostat Purchase and Weather Smart Program, DSM Phase VIII	Section 6.2.1
Lighting	LED lamps	Residential Home Energy Assessment Program, DSM Phase VII	Section 4.4.1

11.1 Building envelope end use

11.1.1 Air sealing

This measure is also provided by the Residential Manufactured Housing Program, DSM Phase VIII. The savings are determined using the methodology described in Section 10.1.1.

11.1.2 Building insulation

This measure is also provided by the Residential Manufactured Housing Program, DSM Phase VIII. The savings are determined using the methodology described in Section 10.1.2.

11.2 Domestic hot water end use

11.2.1 Domestic hot water pipe insulation

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.2.1.

11.2.2 Faucet aerator

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.2.3.

11.2.3 Heat pump domestic water heater

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.2.2.

11.2.4 Low-flow showerhead

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.2.4.

11.2.5 Water Heater temperature setback/turndown

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.2.5.

11.3 Appliance or Plug Load end use

11.3.1 Clothes washer

This measure is also provided by the Residential Efficient Products Marketplace Program, DSM Phase VII. The savings are determined using the methodology described in Section 5.2.2.

11.3.2 Clothes dryer

This measure is also provided by the Residential Efficient Products Marketplace Program, DSM Phase VII. The savings are determined using the methodology described in Section 5.2.3.

11.3.3 ENERGY STAR refrigerator

This measure is also provided by the Residential Efficient Products Marketplace Program, DSM Phase VII. The savings are determined using the methodology described in Section 5.2.7.

DNV – www.dnv.com

11.4 Heating, Ventilation, Air-Conditioning (HVAC) End Use

11.4.1 HVAC upgrade

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.3.1.

11.4.2 HVAC tune-up

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.3.2.

11.4.3 Duct sealing

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.3.5.

11.4.4 ECM fan motor

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.3.3.

11.4.5 Duct insulation

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.3.4.

11.4.6 Smart thermostat installation

This measure is also provided by the Residential Thermostat Purchase and Weather Smart Program, DSM Phase VIII. The savings are determined using the methodology described in Section 6.2.1.

11.5 Lighting end use

11.5.1 LED lamps

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.4.1.

12 RESIDENTIAL MULTIFAMILY PROGRAM, DSM PHASE VIII

The Multifamily Program provides on-site energy assessments to property owners and managers. The Program is based on a whole-building approach where the implementation vendor identifies cost-effective measure opportunities in tenant units as well as common areas. This approach provides one stop-shop programming for multifamily property owners with solutions to include direct installing-unit measures and incentives for prescriptive efficiency improvements. The Program identifies, tracks, and reports residential (in-unit) and non-residential (common space) measures separately according to the account type. The Program is delivered through an expanded network of local trade allies that the implementation vendor will recruit and support while also establishing a robust relationship with property management companies since they are the gatekeeper for determining enrollment for their multifamily communities. Once a property management company enrolls the residential property, the implementation vendor sends the tenants a letter that will provide information about Program benefits along with an opportunity to opt-out of participating within a defined time period. If a tenant does not take action to notify the program implementation vendor that they are opting out of participation, their unit will be included in the enrolled locations receiving the installed measures during the delivery phase.

The program implementation vendor or trade ally auditor performs a walkthrough audit covering the envelope and all energy systems in the buildings, paying particular attention to the condition of DHW and HVAC systems, level of insulation, and lighting. After assessing the entire structure and living units, the auditor will use the tool to perform appropriate calculations and generate a report showing projected energy and potential cost savings specific to each unit and/or common area. The auditor will review the findings and recommendations of the complete with the property owner and assist them in making measure installation and investment decisions.

The measures offered in residential tenant units are covered in this section and listed in Table 12-1. The measures offered through the Non-Residential common areas are covered in Appendix F2 Technical Reference Manual (TRM) for Non-Residential Programs, Section 10.

Table 12-1. Residential / Non-residential Multifamily Program measure list

End Use	Measure	Legacy Program	Residential Manual Section
Building	Air sealing	Residential Manufactured Housing Program, DSM Phase VIII	Section 10.1.1
envelope	Building insulation	Residential Manufactured Housing Program, DSM Phase VIII	Section 10.1.2
	Domestic hot water pipe insulation		Section 4.2.1
Domestic	Faucet aerator	Residential Home Energy Assessment	Section 4.2.3
hot water	Low-flow showerhead	Program, DSM Phase VII	Section 4.2.4
	Water heater temperature setback/turndown		Section 4.2.5
	HVAC upgrade		Section 4.3.1
HVAC	Heat pump tune-up	Residential Home Energy Assessment	Section 4.3.2
HVAC	Duct testing and sealing	Program, DSM Phase VII	Section 4.3.5

End Use	Measure	Legacy Program	Residential Manual Section
	Smart thermostat installation	Residential Thermostat Purchase (Energy Efficiency) Program, DSM Phase VIII	Section 6.2.1
Lighting	LED lamps	Residential Home Energy Assessment Program, DSM Phase VII	Section 4.4.1
	ENERGY STAR refrigerator	Residential Efficient Products Marketplace Program, DSM Phase VII	Section 5.2.7
Appliance	Refrigerator coil cleaning	-	Section 12.5.2
or Plug	Refrigerator thermometers	-	Section 12.5.3
Load	ENERGY STAR clothes dryer		Section 5.2.3
	ENERGY STAR clothes washer	Residential Efficient Products Marketplace Program, DSM Phase VII	Section 5.2.2

12.1 Building envelope end use

12.1.1 Air sealing

This measure is also provided by Residential Manufactured Housing Program, DSM Phase VIII. The savings are determined using the methodology described in Section 10.1.1.

12.1.2 Building insulation

This measure is also provided by the Residential Manufactured Housing Program, DSM Phase VIII. The savings are determined using the methodology described in Section 10.1.2.

12.2 Domestic hot water end use

12.2.1 Domestic hot water pipe insulation

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.2.1.

12.2.2 Faucet aerator

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.2.3.

12.2.3 Low-flow showerhead

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.2.4.

12.2.4 Water heater temperature setback/turndown

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.2.5.

12.3 Heating, ventilation, air-conditioning (HVAC) end use

12.3.1 HVAC upgrade

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.3.1.

12.3.2 HVAC tune-up

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.3.2.

12.3.3 Duct testing and sealing

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.3.5.

12.3.4 Smart thermostat installation

This measure is also provided by the Residential Thermostat Purchase and Weather Smart Program. The savings are determined using the methodology described in Section 6.2.1.

12.4 Lighting

12.4.1 LED lamps

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.4.1.

12.5 Appliance or Plug Load end use

12.5.1 ENERGY STAR refrigerator

This measure is also provided by the Residential Efficient Products Marketplace Program, DSM Phase VII. The savings are determined using the methodology described in Section 5.2.7.

12.5.2 Refrigerator coil cleaning

This measure does not have savings that have been validated by technical resource manuals or other secondary resources. While some savings may be realized at individual households, deemed savings are not attributed to this measure.

12.5.3 Refrigerator thermometers

This measure does not have savings that have been validated by technical resource manuals or other secondary resources. While some savings may be realized at individual households, deemed savings are not attributed to this measure.

12.5.4 Clothes dryer

This measure is also provided by the Residential Efficient Products Marketplace Program, DSM Phase VII. The savings are determined using the methodology described in Section 5.2.3.

12.5.5 Clothes washer

This measure is also provided by the Residential Efficient Products Marketplace Program, DSM Phase VII. The savings are determined using the methodology described in Section 5.2.2.

13 RESIDENTIAL ELECTRIC VEHICLE ENERGY EFFICIENCY PROGRAM, DSM PHASE VIII

The Residential Electrical Vehicle Program provides an incentive for the purchase of up to two qualifying level 2 EV chargers. ¹⁵¹ Customers who live in single-family detached homes with WiFi service, are on a residential rate and responsible for the electric bill, are eligible to participate. This program was designed as a pathway to enrolling in the Electric Vehicle Rewards (demand response) Program. Customers who receive rebates through the EE program and consequently enroll in the Rewards (DR) program are counted as participants in both.

13.1 Appliance or Plug Load end use

13.1.1 L2 electric vehicle charger

13.1.1.1 Measure description

A Level 2 EV charger is electric vehicle supply equipment (EVSE) and part of the infrastructure that is used to charge electric vehicle batteries. Battery electric vehicles (BEV) and plug in hybrid electric vehicles (PHEV) use EV chargers to charge electric batteries. The ENERGY STAR specification governs standby mode power consumption and connected functionality (optional). EVSE that meet the connected functionality criteria are capable of supporting Demand Response (DR).

The baseline for PHEVs is a standard efficiency level 1 charger. The baseline for BEVs is a level 2 charger that is network connected. These baselines are determined by standard practices. For BEVs, there is a high adoption rate of level 2 chargers. For PHEVs, the standard practice is a level 1 charger.

13.1.1.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation.

$$\Delta kWh = (BEV \times \Delta kWh_{BEV}) + (PHEV \times \Delta kWh_{PHEV})$$

Per-measure, gross annual electric energy savings are calculated according to the following equation.

$$\Delta kWh_{BEV} = \Delta kWh_{standby,base} - \left(kWh_{no\ vehicle\ standby,ee} + kWh_{plug-in\ standby,ee}\right)$$

$$kWh_{standby,base} = \left(hours_{plug-in\ standby} + hours_{no\ vehicle\ standby}\right) \times watts_{standby,base}$$

$$\times \frac{1\ kW}{1,000\ W}$$

$$kWh_{plug-in\ standby,ee} = hours_{plug-in\ standby} \times watts_{plug-in\ standby,ee} \times \frac{1\ kW}{1.000\ W}$$

$$kWh_{no\ vehicle\ standby,} = hours_{no\ vehicle\ standby} \times watts_{no\ vehicle\ standby,ee} \times \frac{1\ kW}{1,000\ W}$$

DNV – www.dnv.com

¹⁵¹ Electric Vehicle Supply Equipment (EVSE) Key Product Criteria: https://www.energystar.gov/products/evse_key_product_criteria

$$hours_{plug-in \, standby} = \left(\frac{kWh_{charge,BEV}}{kWh_{session}} \times hours_{session}\right) - hours_{charge}$$

$$kWh_{charge,BEV} = \left(\frac{mi_{BEVl}}{Charge_{eff,BEV}}\right)$$

$$hours_{charge} = \left(\frac{1}{Charge_{eff,BEV}}\right) \times \frac{(mi_{BEV})}{kW_{charger,BEV}}$$

$$hours_{no\ vehicle\ standb]} = 8,760 - hours_{plug-in\ standby} - hours_{charge}$$

Per-measure, gross annual electric energy savings are calculated according to the following equation.

$$\Delta kWh_{PHEV} = (kWh_{L1} - kWh_{L2}) - \left(kWh_{no\ vehicle\ standby,ee} + kWh_{plug-in\ standby,ee}\right)$$

$$kWh_{drive,PHEV} = \left(\frac{mi_{PHEV}}{Charge_{eff,PHEV}}\right)$$

$$kWh_{L1} = kWh_{drive,PHEV} \times (1 - \eta_{L1})$$

$$kWh_{L2} = kWh_{drive,PHEV} \times (1 - \eta_{L2})$$

There is no gross coincident demand reduction for this measure.

Where:

 Δ kWh = per-measure gross annual electric energy savings Δ kWh_{BEV} = per-measure gross annual electric energy savings for BEVs Δ kWh_{PHEV} = per-measure gross annual electric energy savings for PHEVs

= baseline annual electric energy consumption during standby mode kWh_{standby, base} including both when no vehicle is present and when a vehicle is

plugged in but not charging

kWh_{no vehicle standby, ee} = energy-efficient annual electric energy consumption during standby mode when no vehicle is present

= energy-efficient annual electric energy consumption during standby

mode when a vehicle is present but not charging
= annual hours in standby mode when a vehicle is present but not

charging

= annual hours in standby mode when no vehicle is present

= baseline charger standby wattage including both when no vehicle is present and when a vehicle is plugged in but not charging

= energy-efficient charger standby wattage when a vehicle is plugged in but not charging

= energy-efficient charger standby wattage when no vehicle is present

wattSplug-in standby, ee

kWhplug-in standby, ee

hoursplug-in standby

watts_{standby, base}

hoursno vehicle standby

wattsno vehicle standby, ee

DNV - www.dnv.com

kWh_{charge,BEV} = annual driving energy consumption

kWh_{session} = average energy consumption per charging session

hours_{charge} = annual hours charger in charging mode

hours_{session} = hours per charge session

charge_{eff,BEV} = average charge efficiency of BEV charge_{eff,PHEV} = average charge efficiency of PHEV

BEV = percent weight of EV vehicles that are BEV

mi_{BEV} = annual miles driven by BEV

EVR_{BEV} = ratio of miles driven in EV mode to total miles driven by BEV

PHEV = percent weight of EV vehicles that are PHEV miPHEV = annual miles driven by PHEV in EV mode

EVR_{PHEV} = ratio of miles driven in EV mode to total miles driven by PHEV

 $\begin{array}{ll} kWh_{L1} & = kWh \ charging \ for \ the \ baseline \ L1 \ charger \\ kWh_{L2} & = kWh \ charging \ for \ the \ efficient \ case \ L2 \ charger \\ \end{array}$

 $\begin{array}{ll} kWh_{drive,PHEV} & = annual \, kWh \, consumed \, while \, driving \\ \eta_{L1} & = baseline \, L1 \, charger \, efficiency \\ \eta_{L2} & = baseline \, L2 \, charger \, efficiency \end{array}$

kW_{charge,PHEV} = steady state charger power output for BEV = steady state charger power output for PHEV

13.1.1.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 13-1. Input variables for level 2 EV charger

Component	Туре	Value	Units	Source(s)
Wattsstandby, base	Fixed	9.9	watts	Regional Technical Forum, Level 2 Electric Vehicle Chargers, ResElectric Vehicle Chargerv1.1.xlsx ¹⁵²
WattSplug-in standby, ee	Variable	See Table 13-2	watts	ENERGY STAR Qualified Product List model specifications
WattSno vehicle standby, ee	Variable	See Table 13-2	watts	ENERGY STAR Qualified Product List model specifications
kWh _{session}	Fixed	7.4	kWh	Regional Technical Forum, Level 2 Electric Vehicle Chargers, ResElectric Vehicle Chargerv1.1.xlsx ¹⁵³
hourssession	Fixed	12.87	hours	Regional Technical Forum, Level 2 Electric Vehicle Chargers, ResElectric Vehicle Chargerv1.1.xlsx ¹⁵⁴
charge _{eff, BEV}	Fixed	3.3	mile/ kWh	Regional Technical Forum, Level 2 Electric Vehicle Chargers, ResElectric Vehicle Chargerv1.1.xlsx ¹⁵⁵

¹⁵² INL charger testing and ENERGY STAR Market and Industry Scoping Report Electric Vehicle Supply Equipment (EVSE) September 2013. Average Prior and Post Steady State Charging Wattages for networked Level 2 units.

¹⁵³ Avista (2018)

¹⁵⁴ Data provided by Avista. Total hours EV is plugged into charging station including both charge and standby time, BEV = 14.7 and PHEV = 11.7, applied the weighted average of BEV and PHEV

¹⁵⁵ Analysis of Avista Docket No. UE-160082 – Avista Utilities Semi-Annual Report on Electric Vehicle Supply Equipment Pilot Program (November 2018). Average for all vehicles and trips.

Component	Туре	Value	Units	Source(s)
charge _{eff, PHEV}	Fixed	2.7	mile/ kWh	Regional Technical Forum, Level 2 Electric Vehicle Chargers, ResElectric Vehicle Chargerv1.1.xlsx ¹⁵⁶
BEV	Fixed	0.391	-	Dominion Energy Residential Home Energy Use Survey 2019 - 2020, July 15. 2020, p. 24 Question 65
MIBEV	Fixed	8,993	miles	Federal Highway Administration, 2017 National Household Travel Survey (NHTS) ¹⁵⁷
EVR _{BEV}	Fixed	1.00	-	Regional Technical Forum, Level 2 Electric Vehicle Chargers, ResElectric Vehicle Chargerv1.1.xlsx ¹⁵⁸
PHEV	Fixed	0.609	-	Dominion Energy Residential Home Energy Use Survey 2019 - 2020, July 15. 2020, p. 24 Question 65
Мірнеv	Fixed	8,993	miles	Federal Highway Administration, 2017 National Household Travel Survey (NHTS) ¹⁵⁷
η _{L1}	Fixed	0.838	-	A Comparison of Electric Vehicle Level 1 and Level 2 Charging Efficiency, Vermont Energy Investment Corporation, 2014 IEEE Conference
η _{L2}	Fixed	0.894	-	A Comparison of Electric Vehicle Level 1 and Level 2 Charging Efficiency, Vermont Energy Investment Corporation, 2014 IEEE Conference
kW charge BEV	Fixed	8.2	kW	Regional Technical Forum, Level 2 Electric Vehicle Chargers, ResElectric Vehicle Chargerv1.1.xlsx
kW charge, PHEV	Fixed	4.2	kW	Regional Technical Forum, Level 2 Electric Vehicle Chargers, ResElectric Vehicle Chargerv1.1.xlsx
WattS _{standby} , base	Fixed	9.9	watts	Regional Technical Forum, Level 2 Electric Vehicle Chargers, ResElectric Vehicle Chargerv1.1.xlsx ¹⁵⁹
Wattsplug-in standby, ee	Variable	See Table 13-2	watts	ENERGY STAR Qualified Product List model specifications
Watts _{no} vehicle standby, ee	Variable	See Table 13-2	watts	ENERGY STAR Qualified Product List model specifications

¹⁵⁶ Analysis of Avista Docket No. UE-160082 – Avista Utilities Semi-Annual Report on Electric Vehicle Supply Equipment Pilot Program (November 2018). Average for all vehicles and trips.

¹⁵⁷ South Atlantic Region Database Queries: http://nhts.ornl.gov

^{158 2014} EV Project percentage of the time vehicle operates purely as an EV https://avt.inl.gov/sites/default/files/pdf/EVProj/eVMTMay2014.pdf

¹⁵⁹ INL charger testing https://avt.inl.gov/evse-type/ac-level-2 and ENERGY STAR Market and Industry Scoping Report Electric Vehicle Supply Equipment (EVSE) September 2013 (source data is from INL). Average Prior and Post Steady State Charging Wattages for networked Level 2 units.

Component	Туре	Value	Units	Source(s)
kWh _{session}	Fixed	7.4	kWh	Regional Technical Forum, Level 2 Electric Vehicle Chargers, ResElectric Vehicle Chargerv1.1.xlsx ¹⁶⁰
hours _{session}	Fixed	12.87	hours	Regional Technical Forum, Level 2 Electric Vehicle Chargers, ResElectric Vehicle Chargerv1.1.xlsx ¹⁶¹

Table 13-2 provides a summary of charger rated wattages from the ENERGY STAR qualified product lists.

Table 13-2. ENERGY STAR standby power ratings

Model	No vehicle mode input power (W)	Partial on mode input power (W)	Idle mode input power (W)	Plug-in standby power ¹⁶² (W)
CPH50- NEMA14-50-L23	0.80	1.36	3.53	2.45
CPH50-NEMA6- 50-L23	0.80	1.30	3.33	2.43
JuiceBox 40 JuiceBox 32	2.97	2.03	4.39	3.21
CPH12-P	1.90	1.90	2.00	1.95
CPH25-P	1.80	1.90	2.00	1.95
2JBO401RNA- PJWX-200	1.57	1.19	1.71	1.45

13.1.1.4 Default savings

There are no default savings for this measure. The savings are calculated depending on the model charger installed.

13.1.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 13-3.

Table 13-3. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VIII	Residential Electrical Vehicle (EE) Program, DSM PHASE VIII	10.00	Years	ResEVChargers_v1_1.xlsx from Eric Shum, PE. Regional Technical Forum, 2019, Residential Level 2 AC Electric Vehicle (EV) Chargers.

DNV - www.dnv.com

¹⁶⁰ Avista (2018)

¹⁶¹ Data provided by Avista. Total hours EV is plugged into charging station including both charge and standby time, BEV = 14.7 and PHEV = 11.7, applied the weighted average of BEV and PHEV

¹⁶² Calculated as the average of partial on mode input power and idle mode input power

13.1.1.6 Source

The primary source for this deemed savings approach is the Regional Technical Forum, 2019, Residential Level 2 AC Electric Vehicle (EV) Chargers.

13.1.1.7 Update summary

Updates to this section are described in Table 13-4.

Table 13-4. Summary of update(s)

Updates in version	Update type	Description
2022	None	No change
2021		Initial release

14 RESIDENTIAL ELECTRIC VEHICLE REWARDS PROGRAM, DSM PHASE VIII

The Electric Vehicle Rewards (DR) Program provides annual on-bill incentives to residential customers for allowing Dominion to adjust the charging schedule or speed of the charger during periods of high electricity demand. 163 Customers may also be participants in the Residential Electrical Vehicle (EE) Program (using the EE program rebate to purchase an eligible Level 2 charger), or may bring their own eligible charger to the DR program. When Dominion calls an event, the customer's EV charging power is reduced for a defined interval. Events will be called by the Company during times of peak system demand throughout the year to reduce system load. Customers can opt-out of specific events if they choose to do so.

14.1 Appliance or Plug Load end use

14.1.1 L2 Electric vehicle charger-DR

14.1.1.1 Measure description

A Level 2 EV charger is electric vehicle supply equipment (EVSE) and part of the infrastructure that is used to charge electric vehicle batteries. The Energy Star specification governs standby mode power consumption and connected Functionality (optional). EVSE that meet the optional connected functionality criteria defined by Energy Star is capable of supporting Demand Response (DR). 164

14.1.1.2 Impacts Estimation Approach

For participants with AMI meters, a linear regression approach will be used to calculate impacts from demand response events. If AMI data is not available, high interval charger data supplied by the charger control vendor will be used.

14.1.1.3 Demand reduction

Demand reduction is not deemed. All impacts are taken from impact evaluations.

14.1.1.4 Effective Useful Life

The effective useful life of this measure is provided in Table 14-1.

Table 14-1. Effective Useful Life for lifecycle savings calculations

Program name	Value	Units	Source(s)
Residential Electric Vehicle Rewards Program, DSM Phase VIII	1.00	Year	Annual participation

14.1.1.5 Source

Local weather data are gathered from NOAA, National Centers for Environmental Information 165.

14.1.1.6 Update summary

Updates to this section are described in Table 14-2.

¹⁶³ Program information can be found on the Company's website: <u>EV Charger Rewards | Virginia | Dominion Energy</u>

¹⁶⁴ ENERGY STAR Electric Vehicle Supply Equipment (EVSE) Key Criteria v1.0 (Revised April 2017)

¹⁶⁵ https://www.ncei.noaa.gov/

Table 14-2 Summary of update

Updates in version	Update type	Description
2022	None	No change
2021		Initial release

15 RESIDENTIAL HVAC HEALTH AND SAFETY PROGRAM, DSM PHASE VIII

This program offers incentives for the installation of measures that reduce residential heating and cooling costs. It also offers measures that enhance the health and safety of residents including repairs and improvements to home heating and cooling systems and installation of energy-saving measures in the house, such as air sealing.

This program is for income qualifying, elderly, and disabled individuals. The Program conforms to the Virginia Department of Housing and Community Development qualification guidelines, which is currently set at 60% State Median Income. It is also available to customers who are 60 years or older with a household income of 120% of the State Median Income. The Program is available to customers residing in single-family homes, multifamily homes, and mobile homes.

Table 15-1. Residential HVAC Health and Safety Program measure list

End use	Measure	Legacy program	Manual section
Building anyolene	Air sealing	Residential Manufactured Housing Program, DSM Phase VIII	Section 10.1.1
Building envelope	Building insulation	Residential Manufactured Housing Program, DSM Phase VIII	Section 10.1.2
Health & safety	Various health & safety measures	-	Section 15.2
	Heat pump upgrade	Residential Home Energy Assessment Program, DSM Phase VII	Section 4.3.1
	Duct testing and sealing	Residential Home Energy Assessment Program, DSM Phase VII	Section 4.3.5
HVAC	HVAC tune-up	Residential Home Energy Assessment Program, DSM Phase VII	Section 4.3.2
	Programmable thermostat	Residential Thermostat Purchase and Weather Smart Program, DSM Phase VIII	Section 6.2.1
	Home ventilation improvement	New Measure	Section 15.3.6

15.1 Building envelope

15.1.1 Air sealing

This measure is also provided by the Residential Manufactured Housing Program, DSM Phase VIII. The savings are determined using the methodology described in Section 10.1.1.

15.1.2 Building insulation

This measure is also provided by the Residential Manufactured Housing Program, DSM Phase VIII. The savings are determined using the methodology described in Section 10.1.2.

15.2 Health & safety

Health & Safety measures are offered through this program. These measures do not have energy savings. Measures include dehumidifier, air quality control, assess indoor air quality, carbon monoxide detector and source, combustion appliance safety check and enhance, fire and fall safety check and enhance, mold and mildew removal, re-wiring and roof repair.

15.3 Heating, ventilation, air-conditioning end use

15.3.1 Heat pump upgrade

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.3.1.

15.3.2 Duct testing & sealing

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.3.5.

15.3.3 Duct insulation

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.3.4.

15.3.4 Heat pump tune-up

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.3.2.

15.3.5 Programmable thermostat

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 6.2.1.

15.3.6 Home ventilation improvement

15.3.6.1 Measure description

This measure realizes energy savings by replacing a standard performance ventilation fan with a high-performance ventilation fan. The high-performance ventilation fan provides the same amount of airflow with lower power (cfm/watts).

15.3.6.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = cfm \times \left(\frac{1}{fan_{efficacy,\,base}} - \frac{1}{fan_{efficacy,\,ee}}\right) \times \frac{1\,kW}{1,000\,W} \times HOU$$

Per-measure, gross summer peak coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{Summer} = cfm \times \left(\frac{1}{fan_{efficacy, \, base}} - \frac{1}{fan_{efficacy, \, ee}}\right) \times \frac{1 \, kW}{1,000 \, W} \times CF_{summer}$$

Per-measure, gross winter peak coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{Winter} = cfm \times \left(\frac{1}{fan_{efficacy,\,base}} - \frac{1}{fan_{efficacy,\,ee}}\right) \times \frac{1\,kW}{1,000\,W} \times CF_{winter}$$

Where:

 ΔkWh = per-measure gross annual electric energy savings per faucet ΔkW_{Summer} = per-measure gross summer peak coincident demand reductions ΔkW_{Winter} = per-measure gross winter peak coincident demand reductions

cfm = fan rated airflow rate

fan_{efficacy,base} = fan efficacy of baseline equipment fan_{efficacy,ee} = fan efficacy of efficient equipment

HOU = hours of use per year

CF_{summer} = summer peak coincident factor CF_{winter} = winter peak coincident factor

15.3.6.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 15-2. Input values for home ventilation improvement savings calculations

Component	Туре	Value	Unit	Source(s)
		See customer application		Customer application
cfm	Fixed	For default see Table 15-3	cfm	Illinois TRM 2021 v9, p. 140
Fan _{efficacy,base}	Variable	See Table 15-3	cfm/watt	Illinois TRM 2021 v9, p. 140
Fon	Variable	See customer application	cfm/watt	Customer application
Fan _{efficacy,ee}	variable	See Table 15-3	CIII/Wall	Illinois TRM 2021 v9, p. 140
HOU	Variable	standard usage: 1,089 continuous: 8,760	houre	Illinois TRM 2021 v9, p. 140
ноо	variable	For default use standard usage = 1,089	hours	Conservative value used as default
CF _{Summer}	Fixed	standard usage: 0.135 continuous: 1.0	Illiania TDM 2024 v0. a	Illinois TPM 2024 v0 p. 440
CFSummer	rixeu	For default use standard usage = 0.135	_	Illinois TRM 2021 v9, p. 140
CF _{Winter}	Fixed standard usage: 0.135 continuous: 1.0 For default use standard usage = 0.135	_		Illinois TPM 2021 v0 p. 140166
		For default use standard usage = 0.135	_	Illinois TRM 2021 v9, p. 140 ¹⁶⁶

¹⁶⁶ Source TRM does not provide winter CF. For continuous usage (8,760 hours), the CF will be 1.0 regardless of the peak period definition. For the standard usage we apply the summer CF for winter CF as there is no better information available

Table 15-3. Ventilation default cfm and fan efficacy based on application

Application	Min cfm	Max cfm	Default cfm	Fan _{efficacy,base} , cfm/watt	Default Fan _{efficacy,ee} , cfm/watt
Cton doud	10	89	70.6	1.7	4.9
Standard usage	90	200	116.1	2.6	5.6
usage	Unknow	n (default)	92.4	2.2	5.3
Continuous usage	Ν	I/A	50.0	1.7	5.1

15.3.6.4 Default savings

If the proper values are not supplied, a default savings may be applied using conservative input values. The default per-measure gross annual savings will be assigned according to the following calculations.

$$\Delta kWh = CFM \times \left(\frac{1}{fan_{efficacy,base}} - \frac{1}{fan_{efficacy,ee}}\right) \times \frac{1 \, kW}{1,000 \, W} \times HOU$$

$$= 92.4 \, cfm \times \left(\frac{1}{2.2 \, cfm/watt} - \frac{1}{5.3 \, cfm/watt}\right) \times \frac{1 \, kW}{1,000 \, W}$$

$$\times 1,089 \, hours$$

$$= 26.75 \, kWh$$

$$\Delta kW_{summer} = CFM \times \left(\frac{1}{fan_{efficacy,base}} - \frac{1}{fan_{efficacy,ee}}\right) \times \frac{1 \, kW}{1,000 \, W} \times CF_{summer}$$

$$= 92.4 \, cfm \times \left(\frac{1}{2.2 \, cfm/watt} - \frac{1}{5.3 \, cfm/watt}\right) \times \frac{1 \, kW}{1,000 \, W} \times 0.135$$

$$= 0.003 \, kW$$

$$\Delta kW_{winter} = CFM \times \left(\frac{1}{fan_{efficacy,base}} - \frac{1}{fan_{efficacy,ee}}\right) \times \frac{1 \, kW}{1,000 \, W} \times CF_{winter}$$

$$= 92.4 \, cfm \times \left(\frac{1}{2.2 \, cfm/watt} - \frac{1}{5.3 \, cfm/watt}\right) \times \frac{1 \, kW}{1,000 \, W} \times 0.135$$

$$= 0.003 \, kW$$

15.3.6.5 Effective Useful Life

The effective useful life of this measure is provided in Table 15-4.

Table 15-4. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VIII	Residential HVAC Health and Safety Program, DSM Phase VIII	19.00	years	Illinois TRM 2021, p. 139 ¹⁶⁷

15.3.6.6 Source(s)

The primary source for this deemed savings approach is the Illinois TRM 2021, pp. 139-141.

15.3.6.7 Update summary

Updates to this section are described in Table 15-5.

Table 15-5. Summary of update(s)

Version with updates	Update type	Description
2022	None	No change
2021		Initial release

¹⁶⁷ Illinois TRM 2021, p.139. Conservative estimate based upon GDS Associates Measure Life Report "Residential and C&I Lighting and HVAC measures" 25 years for whole-house fans, and 19 for thermostatically-controlled attic fans.

16 RESIDENTIAL NEW CONSTRUCTION PROGRAM, DSM VIII

The Residential New Construction Program will provide incentives to home builders for the construction of new homes that are ENERGY STAR certified by directly recruiting existing networks of homebuilders and Home Energy Rating System Raters (HERS Raters) to build and inspect ENERGY STAR Certified New Homes. ENERGY STAR certification requires that homes be efficient at the system level and involves a whole-house set of standards that ensure homes are at least 10% more efficient than a home built to state-level minimum building codes. Key components include shell improvements, HVAC performance, proper ventilation requirements and durability (proper weather sealing, flashing details, site and foundation details). Participating homes must submit an energy model developed using Ekotrope or REM/Rate energy modeling software, along with a copy of the home's ENERGY STAR certificate (both provided by the rater) in order to qualify for an incentive.

16.1 Cross cutting end use

16.1.1 ENERGY STAR new home

16.1.1.1 Impacts Estimation Approach

Site level energy savings are determined using Ekotrope or REM/Rate energy modeling, both of which are RESNET accredited HERS software tools¹⁶⁸ and appear on DOE's list of approved software for calculating the energy efficient home credit.¹⁶⁹

To perform data validation, DNV will conduct an in-depth review of a sample of five building models to check simulation output, thermostat schedules and setpoints, equipment sizing, appropriate baseline assumptions consistent with relevant code, etc. Subsequently, the monthly savings claims will be screened by energy savings per square foot of conditioned space correlated to HERS index.

Per project, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \Delta kWh_{cooling} + \Delta kWh_{DHW} + \Delta kWh_{LA} + \Delta kWh_{heating}$$

Per project, gross summer peak coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \Delta kW_{summer,cooling} + \Delta kW_{summer,DHW} + \Delta kW_{summer,LA} + \Delta kW_{summer,heating}$$

The gross summer peak coincident demand reduction is calculated for each end-use as follows:

$$\Delta kW_{summer,cooling} = \frac{\Delta kWh_{cooling}}{hours_{summer,cooling}}$$

$$\Delta kW_{summer,DHW} = \frac{\Delta kWh_{DHW}}{hours_{summer,DHW}}$$

¹⁶⁸ https://www.resnet.us/providers/accredited-providers/hers-software-tools/

¹⁶⁹ https://www.energy.gov/eere/buildings/list-approved-software-calculating-energy-efficient-home-credit

$$\Delta kW_{summer,LA} = \frac{\Delta kWh_{LA}}{hours_{summer,LA}}$$

$$\Delta kW_{summer,heating} = \frac{\Delta kWh_{LA}}{hours_{summer,heating}}$$

Per project, gross winter peak coincident demand reduction is calculated according to the following equation:

$$\Delta k W_{winter} = \Delta k W_{winter,cooling} + \Delta k W_{winter,DHW} + \Delta k W_{winter,LA} + \Delta k W_{winter,heating}$$

The gross winter peak coincident demand reduction is calculated for each end-use as follows:

$$\Delta kW_{winter,cooling} \quad = \frac{\Delta kWh_{cooling}}{hours_{winter,cooling}}$$

$$\Delta kW_{winter,DHW} = \frac{\Delta kWh_{DHW}}{hours_{summer,DHW}}$$

$$\Delta kW_{winter,LA} = \frac{\Delta kWh_{LA}}{hours_{summer,LA}}$$

$$\Delta kW_{winter,heating} = \frac{\Delta kWh_{heating}}{hours_{winter,heating}}$$

Where:

 Δ kWh = per-measure gross annual electric energy savings

 Δ kWh_{cooling} = space cooling end-use gross annual electric energy savings

ΔkWh_{DHW} = space domestic hot water end-use gross annual electric energy savings ΔkWh_{LA} = space lighting and appliance end-use gross annual electric energy savings

 Δ kWh_{heating} = space heating end-use gross annual electric energy savings Δ kW_{summer} = per-measure gross summer peak coincident demand reduction Δ kW_{winter} = per-measure gross winter peak coincident demand reduction

 $\begin{array}{ll} \Delta kW_{\text{summer, cooling}} & = \text{space cooling end-use gross summer peak coincident demand reduction} \\ \Delta kW_{\text{summer, DHW}} & = \text{domestic hot water end-use gross summer peak coincident demand reduction} \\ \Delta kW_{\text{summer, LA}} & = \text{lighting and appliance end-use gross summer peak coincident demand reduction} \end{array}$

ΔkW_{summer, heating} = space heating end-use gross summer peak coincident demand reduction

hours_{summer, cooling} = space cooling end-use summer peak coincident hours of use to adjust from annual kWh

to peak period kW

hours_{summer}, DHW = domestic hot water end-use summer peak coincident hours of use to adjust from annual

kWh to peak period kW

hours_{summer, LA} = lighting and appliance end-use summer peak coincident hours of use to adjust from

annual kWh to peak period kW

hours_{summer, heating} = space heating end-use summer peak coincident hours of use to adjust from annual kWh

to peak period kW

= space cooling end-use gross winter peak coincident demand reduction ∆kW_{winter, cooling} ∆kWwinter, DHW = domestic hot water end-use gross winter peak coincident demand reduction $\Delta kW_{winter, LA}$ = lighting and appliance end-use gross winter peak coincident demand reduction $\Delta kW_{\text{winter, heating}}$ = space heating end-use gross winter peak coincident demand reduction hourswinter, cooling = space cooling end-use winter peak coincident hours of use to adjust from annual kWh to peak period kW = domestic hot water end-use winter peak coincident hours of use to adjust from annual hourswinter, DHW kWh to peak period kW = lighting and appliance end-use winter peak coincident hours of use to adjust from annual hourswinter, LA kWh to peak period kW = space heating end-use winter peak coincident hours of use to adjust from annual kWh to hourswinter, heating

16.1.1.2 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 16-1. Input variables for ENERGY STAR new homes

peak period kW

Component	Туре	Value	Units	Source(s)	
ΔkWh _{cooling}	Variable	See customer application		Customer application	
ΔkWh _{DHW}	Variable	See customer application	kWh	Customer application	
Δ kWh _{LA}	Variable	See customer application	KVVII	Customer application	
ΔkWh _{heating}	Variable	See customer application		Customer application	
hours _{summer} , cooling	Fixed	887			
hours _{summer} , DHW	Fixed	11,341			
hours _{summer, LA}	Fixed	9,100			
hours _{summer} , heating	Fixed	10,382		Analysis of and use load shapes 170	
hourswinter, cooling	Fixed	99,999	hours	Analysis of end-use load shapes ¹⁷⁰	
hourswinter, DHW	Fixed	11,829			
hourswinter, LA	Fixed	9,070			
hourswinter, heating	Fixed	1,966			

Default savings

There are no default savings as whole-building model savings are required for each project.

16.1.1.3 Effective Useful Life

The effective useful life of this measure is provided in Table 16-2.

¹⁷⁰ DNV used ratio-based load shape format independent of calendar and usage level. These values are scaled up to usage and analysed for peak periods. The hours use ratios are calculated as the sum of annual usage (kWh for all 8,760 hours) divided by the peak hour (or average of peak hours).

Table 16-2. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VIII	Residential New Construction	25.00	years	Ohio TRM 2010, p. 142

16.1.1.4 Source

The primary source for this deemed savings is the Ekotrope or REM/Rate energy modeling.

16.1.1.5 Update summary

Updates to this section are described in Table 16-3.

Table 16-3. Summary of update(s)

Updates in version	Update type	Description
2022	None	No change
2021		Initial release

17 INCOME AND AGE QUALIFYING SOLAR PROGRAM, DSM PHASE IX

This program provides incentives to income and age qualifying residential customers with solar assessments and installation of solar PV systems at no cost. Customers who meet certain income, age, or disability eligibility requirements as well as program-participation requirements regarding weatherization can receive, at no cost to the customer, photovoltaic solar panels installed at their residence. A participant must be a current or new electric service customer of Dominion Energy Virginia receiving or intending to receive electric services on a residential rate schedule. The program provides solar panels to elderly customers who have limited budgets but are not necessarily classified as low-income by the State's Weatherization Assistance Program. Eligible customers must reside in a single-family, town home, or mobile home placed on a permanent foundation.

Photovoltaic (PV) systems range between 3 kW and 5 kW capacity. The program provides installation, maintenance, repairs and monitoring for 25 years. After 25 years, the customer has the option to keep the system and assume responsibility or have the system removed from the property.

17.1 Generation

17.1.1 Solar PV system

Measure description

The solar PV system includes solar panels, electrical panel, and inverter. The system generates electricity which is intended to offset a portion of the customers electric usage.

17.1.1.1 Impacts Estimation Approach

Per-measure, gross annual electric energy generated are calculated according to the following equation:

$$\Delta kWh = \Delta kWh_{modeled}$$

Summer per-measure coincident peak demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \frac{\Delta kWh_{modeled}}{EFLH_{solar}} \times CF_{summer}$$

There are no winter per-measure coincident peak demand reduction, as follows:

$$\Delta kW_{winter} = 0$$

Where:

 ΔkW_{summer} = per-measure gross coincident summer peak demand reduction ΔkW_{winter} = per-measure gross coincident winter peak demand reduction

 $\Delta kWh_{modeled}$ = modelled system annual energy generated $EFLH_{solar}$ = equivalent full load hours of solar system CF_{summer} = summer system peak coincidence factor

17.1.1.2 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 17-1. Input values for solar PV system savings calculations

Component	Туре	Value	Units	Sources
∆kWh _{modeled}	Variable	See customer application	kWh	Customer application
EFLH _{solar}	Fixed	1,583	hours, annual	DNV estimated value ¹⁷¹
CF _{summer}	Fixed	0.57	_	DNV estimated value ¹⁷²

17.1.1.3 Default savings

No default savings will be awarded for this measure.

17.1.1.4 Effective Useful Life

The effective useful life of this measure is provided in Table 17-2.

Table 17-2. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
IX	Income and Age Qualifying Solar Program, DSM Phase IX	25.00	years	Program maintenance, repair and monitoring period

17.1.1.5 Source(s)

The primary source for this deemed production values is the application provided modelled production for each system. Additionally, a prototype model was developed and used to estimate the demand impacts.

17.1.1.6 Update summary

Updates to this section are described in Table 17-3.

Table 17-3. Summary of update(s)

Updates in version	Update type	Description	
2022	-	Initial release	

¹⁷¹ Estimated using a prototype system in System Advisory Model Software, it is calculated as the annual kWh generated divided by the maximum hourly kW.

¹⁷² Estimated using a prototype system in System Advisory Model Software, it is calculated as the average of the two highest hourly kW for all weekdays in July during the peak hour divided by the annual maximum hourly kW.

18 RESIDENTIAL INCOME AND AGE QUALIFYING ENERGY EFFICIENCY PROGRAM, DSM PHASE IX

The measures offered through the program and the sections that contain the savings algorithms for each measure are presented in the Income Age Qualifying Energy Efficiency program. This program provides incentives for income and age qualifying residential customers with in-home energy assessments and installation of select energy-saving products at no cost to eligible participants.

The program provides in-home energy assessments and installation of select energy efficient products. This program is offered in Virginia. Measures include building envelope, DHW, lighting and refrigerators. Table 18-1 provides a summary of the measures offered in this program and which section contains the savings algorithms.

Table 18-1. Residential Income and Age Qualifying Energy Efficiency Program measure list

End use	Measure	Legacy program	Manual section
Building envelope	Air sealing	Residential Manufactured Housing Program, DSM Phase VIII	Section 10.1.1
	Building insulation	Residential Manufactured Housing Program, DSM Phase VIII	Section 10.1.2
	Domestic hot water pipe insulation	Residential Home Energy Assessment Program, DSM Phase VII	Section 4.2.1
	Domestic hot water tank wrap	Residential Manufactured Housing Program, DSM Phase VIII	Section 10.2.1
Domestic hot water	Faucet aerator	Residential Home Energy Assessment	Section 4.2.3
water	Low-flow showerhead	Program, DSM Phase VII	Section 4.2.4
	Duct testing & sealing	Residential Home Energy Assessment	Section 4.3.5
	HVAC tune-up	Program, DSM Phase VII	Section 4.3.2
Lighting	LED lighting	Residential Home Energy Assessment Program, DSM Phase VII	Section 4.4.1
Appliance or Plug Load	Refrigerator	Residential Efficient Products Marketplace Program, DSM Phase VII	Section 5.2.7

18.1 Building envelope end use

18.1.1 Air sealing

This measure is also provided by the Residential Manufactured Housing Program, DSM Phase VIII. The savings are determined using the methodology described in Section 10.1.1.

18.1.2 Building insulation

This measure is also provided by the Residential Manufactured Housing Program, DSM Phase VIII. The savings are determined using the methodology described in Section 10.1.2.

18.2 Domestic hot water end use

18.2.1 Domestic hot water pipe insulation

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.2.1.

18.2.2 Domestic hot water tank wrap

This measure is also provided by the Residential Manufactured Housing Program, DSM Phase VIII. The savings are determined using the methodology described in Section 10.2.1.

18.2.3 Faucet aerator

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.2.3.

18.2.4 Low-flow showerhead

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.2.4.

18.3 Heating, ventilation, air-conditioning (HVAC) end use

18.3.1 HVAC tune-up

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.3.2.

18.4 Lighting end use

18.4.1 Duct testing & sealing

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.3.5.

18.4.2 LED lighting

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.4.1.

18.5 Appliance or Plug Load end use

18.5.1 Refrigerator

This measure is also provided by the Residential Efficient Products Marketplace Program, DSM Phase VII. The savings are determined using the methodology described in Section 5.2.7.

19 Residential Smart Home Program, DSM Phase IX

The Residential Smart Homes Program provides residential customers a suite of smart home products that provide seamless integration into the home. The program delivers the energy-efficient measures bundled in two versions of a Smart Home Kit so that customers can benefit from a fully integrated set of compatible smart products. The Smart Home Kit includes general instructions for installing the specific energy-efficient measures. Customers are encouraged to utilize their smart phone or tablet to access the connected functionality of the Smart Home Kit through individual manufacturer smart thermostat, smart home hub, and smart home energy monitor applications (apps).

Customers are guided to enroll separately in the Dominion Smart Thermostat DR and HVAC optimization programs based on individual program eligibility requirements. Table 19-1 provides a summary of the measures offered through this program and indicates the section with savings algorithms.

Table 19-1. Residential Smart Home Program measure list

End use	Measure	Legacy program	Manual section
Lighting	Central Home Energy Management System: Connected LED	_	Section 19.1.1
HVAC	Smart thermostat	Residential Thermostat Purchase and Weather Smart Program, DSM Phase VIII	Section 6.2.1
Appliance or Plug Load	Central Home Energy Management System: Smart Plugs	-	
	Central Home Energy Management System: Smart Home Energy Monitor	_	Section 19.1.1
Cross-cutting	Central Home Energy Management System: Smart Home Hub with Entry/Motion Sensor		

19.1 Cross-cutting end uses

19.1.1 Central Home Energy Management System

19.1.1.1 Measure description

This measure includes home energy monitor, smart plug, connected LED and motion sensor. The home energy monitor has reporting functionality that impacts customer behaviour to save energy. The device can see baseline "always on" energy use, notify customers of specific loads and give alarms. The smart plug is a connected plug that can be used for lighting or appliances. These devices allow for remote controlling and scheduling. Connected LED is a connected lamp with a hub that allows for remote controlling and scheduling. The smart hub with motion sensor controls connected appliances or lighting based on occupancy or remote control.

For all components included in this measure, the baseline in the absence of the control or monitoring device.

19.1.1.2 Impacts Estimation Approach

This measure is not a standard TRM measure. Therefore, we leverage several sources and make assumptions about related measures that are in TRMs. The energy monitor saves use a savings factor that was derived from DTE Insight: Energy Bridge Electrical Savings White Paper, which studied the impact of the technology. The smart plug

assumes savings will be similar to a smart strip plug (also in Section 9.4.1). The motion sensor assume energy savings will be like a lighting occupancy sensor.

Per account, the gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \Delta kWh_{monitor} + \Delta kWh_{connected\ plug} + \Delta kWh_{LED} + \Delta kWh_{hub\ with\ motion\ sensor}$$

The energy savings for each component are calculated as follows:

$$\Delta kW h_{monitor} = kW h_{whole,house} \times ESF_{monitor} \times PF_{monitor}$$

$$\Delta kWh_{connected\ plug} = kWh_{connected\ plug} \times ESF_{connected\ plug}$$

$$\Delta kWh_{LED} = \frac{W_{base}}{1,000 \, W/kW} \times HOU \times ESF_{LED} \times ISR_{LED}$$

$$\times \left(WHF_{heat} + (WHF_{cool} - 1)\right) - kWh_{standby}$$

$$\Delta kWh_{hub\ with\ motion\ s} = kW_{connected} \times HOU \times ESF_{motion\ sensor} \times ISR_{motion\ sensor}$$

$$\times \left(WHF_{heat} + (WHF_{cool} - 1)\right)$$

The summer gross coincident demand reduction is assumed to be zero for the energy monitor. For the other components, the following equations are used to calculate the summer gross coincident demand reduction measure:

$$\Delta kW_{connected\ plug,\ summer} = kW_{connected\ plug} \times DSF_{connected\ plug,summer}$$

$$\frac{\Delta kW_{LED,\,summer}}{1,000\,W/kW} \times DSF_{LED} \times ISR_{LED} \times WHF_{LED} \times CF_{LED,summer}$$

$$\Delta kW_{\textit{hub with motion sensor, summer}} = kW_{\textit{connected}} \times DSF_{\textit{motion sensor}} \times ISR_{\textit{motion sensor}} \times WHF_{\textit{motion sensor, summer}} \times CF_{\textit{motion sensor, summer}} \times CF_{\textit{mot$$

DNV - www.dnv.com

The winter gross coincident demand reduction is assumed to be zero for the energy monitor and connected LED. For motion sensor and connected smart plug, the following equation is used to calculate the winter gross coincident demand reduction measure:

$$\Delta kW_{\textit{hub with motion sensor, winter}} = kW_{\textit{connected}} \times DSF_{\textit{motion sensor}} \times ISR_{\textit{motion sensor, winter}} \times WHF_{\textit{motion sensor, winter}} \times CF_{\textit{motion sensor, winter}}$$

$$\Delta kW_{connected\ plug,\ winter} = kW_{connected\ plug} \times DSF_{connected\ plug,\ winter}$$

Where:

 $\Delta kW_{LED,summer}$

∆kWconected plug, winter

ΔkWh = per-measure gross annual electric energy savings

= per-measure gross annual electric energy savings from home energy ∆kWh_{monitor}

= per-measure gross annual electric energy savings from smart plug ∆kWhconected plug

= per-measure gross annual electric energy savings from connected LED ΔkWh_{LED} lighting

ΔkWhhub with motion sensor = per-measure gross annual electric energy savings from motion sensor kWhwhole house

= per-measure annual household energy consumption

= per-measure summer gross coincident demand reduction for ∆kWconected plug,summer connected plug

= per-measure summer gross coincident demand reduction for

connected LED

= per-measure summer gross coincident demand reduction for hub with ΔkWhub with motion sensor, summer motion sensor

= per-measure winter gross coincident demand reduction for connected

= per-measure winter gross coincident demand reduction for hub with ΔkWhub with motion sensor, winter motion sensor

ESFmonitor = energy savings factor for home energy monitor

PF_{monitor} = participation factor accounting for participant activity rate kWh_{connect plug}

= annual energy consumption of connect plug equipment

= energy savings factor for connect plug ESF_{connect plug} = demand load of connect plug equipment

kW_{connect plug}

DSFconnect plug,summer = summer demand savings factor for connect plug DSFconnect plug,winter = winter demand savings factor for connect plug

 W_{base} = wattage of new connected LED lighting

HOU = hours of use per year

= annual baseline energy consumption for cooling **ESF**_{LED}

ISRLED = in-service rate of connected LED lighting

= waste heat factor to account for electric heating increase due to WHFheat

reduced waste heat from connected LED lighting

= waste heat factor to account for electric cooling decrease due to WHFcool

reduced waste heat from connected LED lighting = standby energy consumption of controlled LED lighting

kWh_{standby} $kW_{connected}$ = connected kW of LEDs controlled by motion sensor

ESF_{motion} sensor = energy savings factor of motion sensor

= in service rate of motion sensor ISR_{motion} sensor

DSFLED = demand savings factor of connected LED

DNV - www.dnv.com

WHF_{d, LED} = demand waste heat factor

CF_{LED, summer} = connected LED summer peak coincident factor

DSF_{motion sensor} = demand savings factor for motion sensor

WHF_{summer, motion sensor} = summer demand waste heat factor for motion sensor

CF_{motion sensor}, summer = motion sensor summer peak coincident factor
WHF_{winter, motion sensor} = winter demand waste heat factor for motion sensor

CF_{motion sensor, winter} = motion sensor winter peak coincident factor

The calculation inputs are based on the default savings percentages from the Maryland/Mid-Atlantic TRM v10 and the heating and cooling kWh consumption derived from a billing analysis of monthly customer energy consumption prior to the purchase of the thermostat.

19.1.1.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 19-2. Input variables for Central Home Energy Management System

Component	Туре	Value	Units	Source(s)
		Customer-specific kWh		Customer billing data
KWhwholehouse	Variable	For default, see Table 24-17 in Sub-Appendix F1-VIII: Residential Account Normalized Annual Consumption	kWh	Average of customer billing data
ESF _{monitor}	Fixed	0.0321	-	DTE Insight: Energy Bridge Electrical Savings White Paper ¹⁷³ , p.7
PF _{monitor}	Fixed	0.21	-	DTE Insight Program 2018 Reconciliation report, p. 13 ¹⁷⁴
kWhconnect plug	Fixed	449	kWh	Maryland/Mid-Atlantic TRM v10, p. 200
ESF _{connect} plug	Fixed	0.25	-	Maryland/Mid-Atlantic TRM v10, p. 200
kWconnected plug	Fixed	0.052	kW	Maryland/Mid-Atlantic TRM v10, p. 200
DSFconnect plug, summer	Fixed	0.19	-	Maryland/Mid-Atlantic TRM v10, p. 200
DSFconnect plug, winter	Fixed	0.19	-	Maryland/Mid-Atlantic TRM v10, p. 200 ¹⁷⁵
W _{base}	Fixed	9.5	W	Program design assumption
нои	Fixed	679	hours, annual	Maryland/Mid-Atlantic TRM v10, p. 49
ESFLED	Fixed	0.49	-	Maryland/Mid-Atlantic TRM v10, p. 49

 $[\]frac{173}{\text{https://www.michigan.gov/documents/mpsc/DTE_Insight_Electric_Energy_Bridge_522660_7.pdf}, accessed on 05/07/2021$

DNV - www.dnv.com

¹⁷⁴ https://mi-psc.force.com/sfc/servlet.shepherd/document/download/069t0000005YaxRAAS?operationContext=S1

[,] Accessed on 07/07/2021, A total of 36,025 customers had 5 sessions or more within a year out of a total of 172,241 customers that downloaded the app. (36,025/172,241 = 21%)

 $^{^{175}\,\}mathrm{No}$ winter peak DSF in the source TRM, so summer peak DSF is applied as an approximation

Component	Туре	Value	Units	Source(s)
ISRLED	Fixed	0.98	-	Maryland/Mid-Atlantic TRM v10, p. 50
WHF _{heat}	Fixed	0.899	-	Maryland/Mid-Atlantic TRM v10, p. 50
WHF _{cool}	Fixed	1.087	-	Maryland/Mid-Atlantic TRM v10, p. 51
kWh _{standby}	Fixed	2.63	-	Maryland/Mid-Atlantic TRM v10, p. 51
kWconnected	Fixed	0.23	kW	Maryland/Mid-Atlantic TRM v10, p. 45 ¹⁷⁶
ESF _{motion} sensor	Fixed	0.30	-	Maryland/Mid-Atlantic TRM v10, p. 45
ISR _{motion} sensor	Fixed	1.00	-	Maryland/Mid-Atlantic TRM v10, p. 45
DSF _{LED}	Fixed	0.49	-	Maryland/Mid-Atlantic TRM v10, p. 51
WHF _d , LED	Fixed	1.17	-	Maryland/Mid-Atlantic TRM v10, p. 52
CFLED, summer	Fixed	0.059	-	Maryland/Mid-Atlantic TRM v10, p. 52
DSF _{motion} sensor	Fixed	0.30	-	Maryland/Mid-Atlantic TRM v10, p. 47
WHF _{summer} , motion sensor	Fixed	1.245	-	Maryland/Mid-Atlantic TRM v10, p. 47
CF _{motion} sensor, summer	Fixed	0.058	-	Maryland/Mid-Atlantic TRM v10, p. 47
WHFwinter, motion sensor	Fixed	0.751	-	Maryland/Mid-Atlantic TRM v10, p. 47
CFmotion sensor, winter	Fixed	0.124	-	Maryland/Mid-Atlantic TRM v10, p. 47

19.1.1.4 Default savings

Default savings may be applied if the using conservative input values. In this section we calculate default savings for each component. However, we don't sum the components because the quantity of each may vary or in some instances not all components will be implemented.

The per-measure gross annual energy savings for ΔkWh_{connected plug} is calculated as follows:

$$\Delta kWh_{\text{connected }plug} = kWh_{connected \;plug} \times ESF_{connected \;plug}$$

$$= 449 \; kWh \times 0.25$$

$$= 112.3 \; kWh$$

¹⁷⁶ The connected number of lamps and average wattage is unknown, so the Mid-Atlantic TRM default value is used. This assumes 6.8 connect lamps with an average of 0.034 kW/lamp.

The per-measure gross annual energy savings for ΔkWh_{LED} is calculated as follows:

$$\Delta kWh_{LED} = \frac{W_{base}}{1,000 \, W/kW} \times HOU \times ESF_{LED} \times ISR_{LED}$$

$$\times (WHF_{heat} + (WHF_{cool} - 1)) - kWh_{standby}$$

$$= \frac{9.5 \, W}{1,000 \, W/kW} \times 679 \, hours \times 0.49 \times 0.98 \times (0.899 + (1.087 - 1))$$

$$- 2.63$$

$$= 0.4 \, kWh$$

The per-measure gross annual energy savings for ΔkWh_{hub with motion sensor} is calculated as follows:

$$\Delta kW h_{hub\ with\ motion\ sensor} = kW_{connected} \times HOU \times ESF_{motion\ sensor} \times ISR_{motion\ sensor}$$

$$\times \left(WHF_{heat} + (WHF_{cool} - 1)\right)$$

$$= 0.23\ kW \times 679\ hours \times 0.30 \times 1.00 \times \left(0.899 + (1.087 - 1)\right)$$

$$= 46.2\ kWh$$

The per-measure gross annual energy savings for $\Delta kWh_{monitor}$ requires a default $kWh_{whole\ house}$ the participant premise type and region is used to assign this value. For the calculation show, below a central region is used and the premise type is unknown. $\Delta kWh_{monitor}$ is calculated as follows:

$$\Delta kWh_{monitor}$$
 = $kWh_{whole,house} \times ESF_{monitor} \times PF_{monitor}$
= 7,351 $kWh \times 0.0321 \times 0.21$
= 49.6 kWh

The summer gross coincident demand reduction is assumed to be zero for the energy monitor. For the other components, the following equations are used to calculate the summer gross coincident demand reduction measure,

$$\Delta kW_{connected\ plug,\ summer} = kW_{connected\ plug} \times ESF_{connected\ plug,\ summer}$$

$$= 0.052 \times 0.19$$

DNV - www.dnv.com

$$= 0.010 kW$$

= 0.005 kW

$$\Delta kW_{LED, \, summer} = \frac{W_{base}}{1,000 \, W/kW} \times DSF_{LED} \times ISR_{LED} \times WHF_{LED} \times CF_{LED, summer}$$

$$= \frac{9.5 \, W}{1,000 \, W/kW} \times 0.49 \times 0.98 \times 0.899 \times 0.059$$

$$= 0.000 \, kW$$

$$= kW_{connected} \times DSF_{motion \, sensor} \times ISR_{motion \, sensor} \times WHF_{motion \, sensor, summer} \times CF_{motion \, sensor, summer}$$

The winter gross coincident demand reduction is assumed to be zero for the energy monitor, smart plug and connected LED. For motion sensor, the default winter gross coincident demand reduction measure is calculated as

$$\Delta kW_{hub\ with\ motion\ sensor,\ winter} = kW_{connected} \times DSF_{motion\ sensor} \times ISR_{motion\ sensor} \\ \times WHF_{motion\ sensor,winter} \times CF_{motion\ sensor,winter} \\ = 0.23\ W \times 0.30 \times 1.00 \times 0.751 \times 0.124 \\ = 0.006\ kW \\ = kW_{connected\ plug} \times ESF_{connected\ plug,winter} \\ = 0.052\ W \times 0.19 \\ = 0.010\ kW$$

19.1.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 19-3.

follows:

Table 19-3. Effective Useful Life for lifecycle savings calculations

Component	Value	Units	Source(s)
Home energy monitor	7.50		Maryland/Mid-Atlantic TRM v10, p. 106 ¹⁷⁷
Smart plug	5.00		Maryland/Mid-Atlantic TRM v10, p. 201 ¹⁷⁸
Connected LED	15.00	years	Maryland/Mid-Atlantic TRM v10, p. 53
Smart Home Hub with Entry/Motion Sensor Hub with Motion sensor	10.00		Maryland/Mid-Atlantic TRM v10, p. 47

19.1.1.6 Source(s)

The primary source for this deemed savings approach is DTE Insight: Energy Bridge Electrical Savings White Paper, p.7, Maryland/Mid-Atlantic TRM v10, pp. 103–106, Maryland/Mid-Atlantic TRM v10, pp. 48 - 53, Maryland/Mid-Atlantic TRM v10, pp. 49 - 47 and Maryland/Mid-Atlantic TRM v10, pp. 199 - 201. The connected plug uses the smart plug measure methodology and inputs as an approximation.

19.1.1.7 Update summary

Updates to this section are described in Table 19-4.

Table 19-4. Summary of update(s)

Updates in version	Update type	Description
2022	Equations and Inputs	Revised the equations and inputs for the connected plug component to align with the most recent version of the smart strips measure
2022	Moved section	This measure was previously in the Residential Home Retrofit Program Section
2021		Initial release

19.2 Heating, ventilation, and air conditioning (HVAC) end use

19.2.1 Smart thermostat

This measure is also provided by the Residential Thermostat Purchase and Weather Smart Program, DSM Phase VIII. The savings are determined using the methodology described in Section 6.2.1.

¹⁷⁷ Assumed to be similar to Smart Thermostat

¹⁷⁸ Maryland/Mid-Atlantic TRM v10, pp. 201. California Public Utilities Commission Database for Energy Efficient Resources (DEER) EUL Support Table for 2020, http://www.deeresources.com/files/DEER2020/download/SupportTable-EUL2020.xlsx. Accessed December 2018. Via PA TRM.

20 Residential Virtual Audit Program, DSM Phase IX

This program offers customers a self-directed home energy assessment using energy-audit software. Customers are directed to a website or toll-free number where they answer a set of questions about the specific conditions and systems in their home. From this information, the software generates a report of recommended measures and actions the customer could take to improve the efficiency of their home. The report also identifies other active energy efficiency programs that fit each customer's needs.

The software generates a report showing projected energy and potential cost savings specific to the customer's site conditions. The customer can access the report and review the findings and recommended priorities at any time at their convenience. The program also provides participating customers with access to lists of participating contractors and tips on how they can find and select a quality installation contractor.

Customers who complete an energy self-assessment are given the opportunity to receive a kit of low-cost measures at no cost to them. The measures are based on the assessment determining which measures would address specific energy savings opportunities in each home. The kits may consist of LED specialty bulbs, energy-efficient showerheads and faucet aerators, and weatherization products along with instructions on the installation and proper use of the kit measures.

The measures offered through the program and the sections that contain the savings algorithms for each measure are presented Table 20-1.

Table 20-1. Residential Virtual Audit Program measure list

End use	Measure	Legacy program	Manual section
Building envelope	Weatherization	Residential Energy Efficiency Kits Program, DSM Phase VIII	Section 9.1.1
Domestic	Domestic hot water pipe insulation		Section 4.2.1
hot water	Low-flow showerhead	Residential Home Energy Assessment	Section 4.2.4
	Faucet aerator	Program, DSM Phase VII	Section 4.2.3
Lighting	LED lighting		Section 4.4.1
Appliance or Plug Load	Smart strip	Residential Energy Efficiency Kits Program, DSM Phase VIII	Section 9.4.1

20.1 Building envelope end use

20.1.1 Weatherization

This measure is also provided by the Residential Energy Efficiency Kits Program, DSM Phase VIII. The savings are determined using the methodology described in Section 9.1.1.

20.2 Domestic hot water end use

20.2.1 Domestic hot water pipe insulation

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.2.1.

20.2.2 Low-flow showerhead

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.2.4.

20.2.3 Faucet aerator

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.2.3.

20.3 Lighting end use

20.3.1 LED lighting

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.4.1.

20.4 Appliance or Plug Load end use

20.4.1 Smart strip

This measure is also provided by the Residential Energy Efficiency Kits Program, DSM Phase VIII. The savings are determined using the methodology described in Section 9.4.1.

21 RESIDENTIAL WATER SAVINGS DEMAND RESPONSE PROGRAM, DSM PHASE IX

As part of the Residential Water Savings (DR) Program, all customers who purchase and install a qualified product (EE component) will be eligible to enroll in the Residential Water Savings (DR) Program. Customers who have previously purchased a qualifying product and who have the eligible products installed, will also be able to. Customers will be offered an annual incentive (above and beyond the product purchase incentive amount) to participate in the peak reduction component year-round and an additional reduced incentive for each subsequent year they continue to participate. Customers are allowed to opt out of a certain number of events per year.

The measures offered through the program and the sections that contain the impact algorithms for each measure are presented in Table 21-1.

Table 21-1. Residential Water Savings Demand Response Program measure list

End Use	Measure	Manual Section
Domestic hot water	Heat pump domestic water heater (Demand Response)	Section 21.1.1
Recreation	Variable-speed pool pump (Demand Response)	Section 21.2.1

21.1 Domestic hot water end use

21.1.1 Heat pump domestic water heater (Demand Response)

This measure is a qualifying heat pump water heater that meets the optional connected functionality criteria defined by ENERGY STAR and can support Demand Response (DR). The heat pump water heater operation adjusts to reduce the demand during demand response events.

21.1.1.1 Impacts Estimation Approach

The impacts will be determined using the available telemetry data. This program did not have demand events in 2022.

21.1.1.2 Demand reduction

Demand reduction is not deemed. All impacts will be based on an impact evaluation.

21.1.1.3 Effective Useful Life

The effective useful life of this measure is provided in Table 21-4.

Table 21-2. Effective Useful Life for lifecycle savings calculations

Program name	Value	Units	Source(s)
Residential Water Savings Demand Response Program, DSM Phase IX	1.00	Year	Annual participation

21.1.1.4 Update summary

Updates to this section are described in Table 21-5.

Table 21-3. Summary of update

Updates in version	Update type	Description
2022		Initial release

21.2 Recreation end use

21.2.1 Variable-speed pool pump (Demand Response)

This measure is a qualifying pool pump that meets the optional connected functionality criteria defined by ENERGY STAR and can support Demand Response (DR).¹⁷⁹ The pool pump operation adjusts to reduce the demand during demand response events.

21.2.1.1 Impacts Estimation Approach

The impacts will be determined using the available telemetry data. This program did not have demand events in 2022.

21.2.1.2 Demand reduction

Demand reduction is not deemed. All impacts will be based on an impact evaluation.

21.2.1.3 Effective Useful Life

The effective useful life of this measure is provided in Table 21-4.

Table 21-4. Effective Useful Life for lifecycle savings calculations

Program name	Value	Units	Source(s)
Residential Water Savings Demand Response Program, DSM Phase IX	1.00	Year	Annual participation

21.2.1.4 Update summary

Updates to this section are described in Table 21-5.

Table 21-5. Summary of update

Updates in version	Update type	Description
2022		Initial release

 $^{^{179}}$ ENERGY STAR Pool Pump Final Specification v3.1 (Revised June 2, 2021)

22 RESIDENTIAL WATER SAVINGS ENERGY EFFICIENCY PROGRAM, DSM PHASE IX

The Residential Water Savings Energy Efficiency (EE) Program provides residential customers incentives for energy efficient water-related energy use equipment. The program leverages the installation of smart communicating water heating and pool pump technologies to facilitate more efficient operation while reducing overall electricity usage. Customers have the option to purchase a qualified program product online, in-store, equipment distributor, or through qualified local trade allies.

This program offers the measures indicated in Table 22-1.

Table 22-1. Residential Water Savings Energy Efficiency program measure list

End use	Measure	Legacy program	Manual section
Domestic hot water	Heat pump domestic water heater	Residential Home Energy Assessment Program, DSM Phase VII	Section 4.2.2
Recreation	Variable-speed pool pump	Non-Residential Multifamily Program, DSM Phase VIII	Section 22.2.1

22.1 Domestic hot water end use

22.1.1 Heat pump domestic water heater

This measure is also provided by the Residential Home Energy Assessment Program, DSM Phase VII. The savings are determined using the methodology described in Section 4.2.2.

22.2 Recreation end use

22.2.1 Variable-speed pool pump

This measure is provided in the Non-Residential Multifamily Program, DSM Phase VIII. The savings are determined using the methodology described in Appendix F2 Technical Reference Manual (TRM) for Non-Residential Programs, Section 10.6.1.

Page 217

23 REFERENCES

ANSI/ASHRAE/IES Standard 90.1-2013. Energy Standard for Buildings Except Low-Rise Residential Buildings.

ASHRAE 90.1-2004

ASHRAE 62.1-2013

Analysis of special study. Cadmus, "EmPOWER Maryland Heat Pump Water Heater Baseline and Market Analysis", February 2020. The study leveraged HPWH load shapes from "Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters"

(https://www.energy.gov/sites/prod/files/2014/01/f7/heat_pump_water_heater_testing.pdf).

Avista Docket No. UE-160082 - Avista Utilities Semi-Annual Report on Electric Vehicle

Arkansas TRM 2019 Volume 8.1

CFR 10 → Chapter II → Subchapter D → Part 430 → Subpart C → § 430.2

CFR 10 → Chapter II → Subchapter D → Part 430 → Subpart C → § 305.4

California Public Utilities Commission (2016). Impact Evaluation of 2013-14 Commercial Quality Maintenance Programs (HVAC3). http://www.calmac.org/publications/HVAC3ImpactReport_0401.pdf

Cadmus - Commercial Refrigeration Loadshape Project. Lexington, MA, 2015

Cadmus and Opinion Dynamics Evaluation Team. Showerhead and Faucet Aerator Meter Study. For Michigan Evaluation Working Group. June 2013

Connecticut Program Savings Document 2012.

Connecticut Program Savings Document 2013.

Database for Energy Efficient Resources (DEER). (2008). http://www.energy.ca.gov/deer/ (accessed on Oct. 1, 2019).

Database for Energy Efficient Resources (DEER). (2011)

Database for Energy Efficient Resources (DEER). (2021)

Docket No. EERE-2015-BT-TP-0007

Dominion Energy 2012 Commercial HVAC VSD Study

Dominion Energy 2020 Commercial Energy Survey Appendix B

Dominion Residential Home Energy Use Survey 2020 Appendix B

Dominion, 2021 Thermostat DR Impact Analysis

Dominion, 2022 AC Cycling Impact Analysis

Dryer Selection for Compressed Air Systems, Compressed Air Challenge, 1999

2012 International Energy Conservation Code (IECC). International Code Council.

DNV – www.dnv.com

2015 International Energy Conservation Code (IECC). International Code Council.

Efficiency Maine Commercial Technical Reference Manual version 2020. Efficiency Maine Trust.

Efficiency Vermont (2015). Technical Reference User Manual (TRM). Measure Savings Algorithms and Cost Assumptions. TRM User Manual No. 2014-87. March 16, 2015.

Efficiency Vermont (2013). Technical Reference User Manual (TRM). Measure Savings Algorithms and Cost Assumptions. TRM User Manual No. 2013-82. Aug. 9, 2013.

Efficiency Vermont (2009). Technical Reference User Manual (TRM)

EmPOWER heat pump water heater program participation in 2018-2019 and participant survey data.

Energy & Resource Solutions (ERS) 2013. Emerging Technologies Research Report; "Advanced Power Strips for Office Environments prepared for the Regional Evaluation, Measurement, and Verification Forum facilitated by the Northeast Energy Efficiency Partnerships."

ENERGY STAR®, Save Energy, Money and Prevent Pollution with Light-Emitting Diode (LED) Exit Signs. http://www.energystar.gov/ia/business/small_business/led_exitsigns_techsheet.pdf (accessed 9/15/2016).

ENERGY STAR® v3.2 Program Requirements for Residential Water Heaters.

ENERGY STAR Certified Commercial Refrigerators and Freezers List as the "Energy Use (Daily Energy Consumption)(kWh/day)" downloadable list can be found here:

https://www.energystar.gov/productfinder/product/certified-commercial-refrigerators-and-freezers/results

Federal Standards 80 FR 4645

Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004

Hawaii TRM 2021

Illinois TRM V8.0 Volume 2, 2020

Illinois TRM V9.0 Volume 3

Iowa Residential TRM 2019

Iowa TRM 2021 Vol. 2

Iowa TRM v5.0, Vol.3.0, 2020

IL TRM 2021 Vol. 9

Miriam L. Goldberg & G. Kennedy Agnew. *Measurement and Verification for Demand Response*, National Forum on the National Action Plan on Demand Response, https://www.ferc.gov/industries/electric/indus-act/demand-response/dr-potential/napdr-mv.pdf.

Minnesota TRM V3.1, 2020

Minnesota TRM 2021

DNV - www.dnv.com

Massachusetts Statewide Technical Reference Manual (TRM) for Estimating Savings from Energy Efficiency Measures. Massachusetts Department of Energy Resources (2019).

Maryland/Mid-Atlantic Technical Reference Manual v10 (2020).

Mid-Atlantic Technical Reference Manual v9 (2019).

Mid-Atlantic Technical Reference Manual v8 (2018).

Michigan Energy Measure Database (2018), at http://www.michigan.gov/mpsc, Document "FES-I20 Compressed Air Leak Survey and Repair Michigan 11282017.doc," July 2017.

National Electrical Manufacturers Association (NEMA) Standards Publication Condensed MG 1-2007, Energy

Management Guide for Selection and Use of Fixed Frequency Medium AC Squirrel-Cage Polyphase Induction

Motors, Feb 28, 2017. http://www.nema.org/Standards/Pages/Energy-Management-Guide-for-Selection-and-Use-of-Fixed-Frequency-Medium-AC-Squirrel-Cage-Polyphase-Induction-Motors.aspx

NEMA Standards Publication Condensed MG 1-2011 - Information Guide for General Purpose Industrial AC Small and Medium Squirrel-Cage Induction Motor Standards

Navigant Consulting, Inc. (2014). EM&V Report for the 2013 Energy Efficient Lighting Program.

Navigant Consulting, EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 – May 31, 2013) Residential Retrofit Programs

New Jersey Clean Energy Program. (2016). New Jersey Clean Energy Program Protocols to Measure Resource Savings: Revisions to FY2016 Protocols (May 31,2016).

New Jersey Clean Energy Program. (2009). New Jersey Clean Energy Program Protocols to Measure Resource Savings.

New Jersey Clean Energy Program. (2019). New Jersey Clean Energy Program Protocols to Measure Resource Savings

New Jersey Clean Energy Program Protocols to Measure Resource Savings 2020

New York TRM 2018

New York TRM 2019

New York TRM v8 2021

Northeast Energy Efficiency Partnerships, 2015. Commercial Refrigeration Loadshape Project.

Northeast Energy Efficiency Partnerships. (May 2018). Mid-Atlantic Technical Reference Manual Version 6.0.

Northeast Energy Efficiency Partnerships. (May 2019). Mid-Atlantic Technical Reference Manual Version 9.0.

Northeast Energy Efficiency Partnerships. (April 2020). *Maryland/Mid-Atlantic Technical Reference Manual Version* 10.0.

Opinion Dynamics. (December 2016). Evaluation of the PY2015 Duke Energy Progress Energy Efficient Lighting Program.

Ohio TRM 2010

Ohio TRM 2013

Pennsylvania TRM V3, 2019

Pennsylvania TRM V2, 2019

Pennsylvania TRM 2021

Qureshi B.A. and Zubair S.M (2011). Performance Degradation of a Vapor Compression Refrigeration System Under Fouled Conditions. International Journal of Refrigeration 34 (2011), pp. 1,016–1,027.

Regional Technical Forum, Level 2 Electric Vehicle Chargers

Tennessee Valley Authority, Technical Resource Manual 2018.

Texas TRM Residential Measures 2021

The United Illuminating Company, and Connecticut Light & Power Company (2013). *Connecticut Program Savings Document 8th Edition for 2013 Program Year*. Oct. 30, 2012.

US EPA. April 2011. ENERGY STAR® Program Requirements Product Specification for Commercial Hot Food Holding Cabinets Eligibility Criteria Version 2.0

Wisconsin Focus on Energy, 2020 Technical Reference Manual.

Wisconsin Focus on Energy, 2021 Technical Reference Manual.

Wisconsin Focus on Energy, 2022 Technical Reference Manual.

24 SUB-APPENDICES

24.1 Sub-Appendix F1-I: Definition of terms

Term	Definition	
Baseline condition	Typically the less efficient system that is being replaced (pre-retrofit); for HVAC equipment upgrades, the baseline energy efficiency values used to calculate savings equal the minimum requirements set forth by the state building code or federal standards, as relevant.	
CDD	Annual cooling degree days	
CEE	Consortium for Energy Efficiency	
СОР	The Coefficient of Performance (COP) of a heat pump is the ratio of the change in heat at the system output to the energy input of the heat pump	
DBT	A Dry-Bulb Temperature (DBT) is the temperature of air measured using a thermometer freely exposed to the air but shielded from radiation and moisture. This is the most commonly reported measure of air temperature.	
EER	The Energy Efficiency Ratio (EER), an energy efficiency rating for unitary air conditioning and heat pump equipment, is the ratio of cooling output to electric input at a prescribed set of interior and exterior conditions that reflect peak operation	
Energy-efficient condition	The efficient replacement system (post-retrofit)	
ENERGY STAR®	A program, operated by the Environmental Protection Agency, to benchmark efficiency standards for energy-consuming equipment or buildings	
HDD	Annual heating degree days	
HOU	Annual hours of use for energy-consuming equipment	
HSPF	The Heating Seasonal Performance Factor (HSPF) is an estimate of seasonal heating energy efficiency that represents the total heating output of a heat pump, including supplementary electric heat, during the normal heating season (in Btu) as compared to the total electricity consumed (in watt-hours) during the same period	
IEER	The Integrated Energy Efficiency Ratio (IEER) is an energy efficiency rating for unitary air conditioning and heat pump equipment larger than 65 kBtu/h, comprised of cooling part-load EER on the basis of weighted operation at various load capacities	
ISR	In-service rate represents the proportion of rebated equipment that remains installed and operational	
kW/ton	Water-cooled chiller system efficiency, in kW/ton	
ODP	Open, drip-proof (ODP) motor enclosure type	
Participant	Multiple strategies to count participants are in use (see Table 1-3)	
Pascal	A Pascal is a derived SI unit of pressure equal to 1 kg/(m·s²) or 1 N/m²	
ppb	Parts per billion	
R	R-value quantifies the degree of insulation provided by a material or building assembly 180	
rpm	Rotational speed of motor, in revolutions per minute (rpm)	
SEER	The Seasonal Energy Efficiency Ratio (SEER), an energy efficiency rating for unitary air conditioning and heat pump equipment ≤65 kBtu/h, is the total cooling output divided by the total electric input across a typical cooling season	
SVGe	Percentage of annual lighting energy saved by lighting control	
SVGd	Percentage of lighting demand saved by lighting control	

¹⁸⁰ New York Residential TRM. Prepared for New York Department of Public Service by New York Evaluation Advisory Contractor Team, p. 27.

ΔT	Average difference in temperature between cold intake water and shower water
TEFC	Totally enclosed fan-cooled (TEFC) motor enclosure type
TRM	Technical Reference Manual
Time of sale ¹⁸¹	Time at which new equipment purchase takes place to replace an older, pre-existing piece of equipment that has reached the end of its useful life. Also referred to as "replace on burn-out."
VRF	This is a special type of air conditioner or heat pump that allows for Variable Refrigerant Flow (VRF) whereby refrigerant may be used as a cooling and heating medium simultaneously.
∆Water	Customer annual water savings per residential unit, in gallons
WBT	The Wet-Bulb Temperature (WBT) is the air temperature measured with a wet cloth surrounding the thermometer bulb while moving the bulb to simulate a breeze.
WHF	Waste-heat factor to account for electric cooling savings and/or negative electric heating savings from replacing baseline equipment with efficient equipment (e.g., clothes dryers and lighting) ¹⁸²

24.1.1.1 Update summary

Updates to this section are described in Table 24-1.

Table 24-1. Summary of update(s)

Updates in version	Update type	Description
2022	None	No change
2021	Definition	Embellished R-value definition
2020	New table	Added table of participant definitions

24.2 Sub-Appendix F1-II: General equations

Equation 1: Cooling capacities - Btu/h to tons

$$Size_{ton} = \frac{Size_{Btu/h}}{12,000 \ Btu/h \cdot ton}$$

Equation 2: Cooling capacities - tons to Btu/h

$$Size_{Btu/h} = Size_{ton} \times 12,000 Btu/h \cdot ton$$

Equation 3: Energy efficiencies - SEER to EER, 183 for systems < 65,000 Btu/h

¹⁸¹ Mid-Atlantic TRM 2016, p. 97.

¹⁸² Mid-Atlantic TRM, p. 22.

¹⁸³ A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Master's Thesis, University of Colorado at Boulder, Wassmer, M. (2003). Note this is appropriate for single-speed units only.

If SEER ≤ 26.0, then use the following quadratic equation,

$$EER \cong -0.02 \times SEER^2 \mp 1.12 \times SEER$$

Otherwise use,

$$_{EER} \cong 15.6$$

If EER ≤ 15.68, then use the following quadratic equation,

SEER
$$\approx \frac{1.12 - \sqrt{(-1.12)^2 - (4 \times 0.02 \times EER)}}{2 \times 0.02}$$

Otherwise use,

$$SEER \cong \frac{EER}{0.9}$$

Equation 4: Energy efficiencies - EER to IEER

$$IEER \cong \frac{EER}{0.9}$$

Equation 5: Energy efficiencies - HSPF to COP¹⁸⁴

If HSPF ≤ 11.7, then

$$COP \cong -0.0255 \times HSPF^2 + 0.6239 \times HSPF$$

Otherwise, use

$$COP \cong \frac{HSPF}{3.412}$$

Equation 6: Energy efficiencies - COP to HSPF

If $COP \le 3.81$, then use:

$$HSPF \simeq \frac{0.6239 + \sqrt{[(-0.6239)^2 - (4 \times 0.0255 \times COP)]}}{2 \times 0.0255}$$

Otherwise, use:

DNV - www.dnv.com

¹⁸⁴ Ibid.

$$HSPF \cong 3.412 \times COP$$

Equation 7: Energy efficiencies - COP to EER

$$EER \cong 3.412 \times COP$$

Equation 8: Energy efficiencies $-\frac{kW}{ton_{full-load}}$ to $\frac{kW}{ton_{IPLV}}$

$$\frac{kW}{ton_{IPLV}} \cong C \times \frac{kW}{ton_{full-load}}$$

where C = 0.80 for water-cooled chillers < 200 tons

= 0.95 for water-cooled chillers ≥ 200 tons

Equation 9: Energy efficiencies – $EER_{full-load}$ to EER_{IPLV}

$$EER_{IPLV} \cong C \times EER_{full-load}$$

where C = 0.76 for air-cooled chillers

Equation 10: Heat to electric energy - Btu/h to kW

$$kW = 3.412 \, Btu/h$$

24.2.1.1 Update summary

Updates to this section are described in Table 24-2.

Table 24-2. Summary of update(s)

Updates in version	Update type	Description
2022	None	No change
2021	Added equation condition	Added condition to allow for SEER values higher than 26
	Revised equation range	Removed lower bound of system size for which Equation 3 can be used
2020	Added equation	Heat-to-electric energy unit conversion added as Equation 10

24.3 Sub-Appendix F1-III: Cooling and heating degree days and hours

This section provides the reference cooling degree days (CDD) and heating degree days (HDD) using TMY3 data found in the National Solar Radiation Data Base, 1991 – 2005 Update: Typical Meteorological Year 3 (TMY3) produced by the Renewable Resource Data Center (RRDC) of the National Renewable Energy Laboratory (NREL). Data for the following weather stations are used:

- Baltimore BLT-Washington International AP (Weather station number 724060)
- Richmond International AP (Weather station number 724010)
- Norfolk International Airport (Weather station number 723080)
- Roanoke Regional Airport (Weather station number 724110)
- Washington, DC Dulles International Airport (Sterling) (Weather station number 724030)
- Washington, DC Reagan Airport (Arlington) (Weather station number 724050)
- Charlottesville (Weather station number 724016)
- Farmville (Weather station number 724017)
- Shannon Airport (Fredericksburg) (Weather station number 724033)
- Elizabeth City Coast Guard AP (Weather station number 746943)
- Rocky Mount-Wilson AP. (Weather station number 723068)

Weather station identification codes can be found at: Users Manual for TMY3 Data Sets (nrel.gov): https://www.nrel.gov/docs/fy08osti/43156.pdf

TMY3 data spans a base time period between 1976 to 2005 wherever they are available (out of 1,020 locations) and from 1991 to 2005 for the remaining locations. The TMY3 data set provides a reasonably-sized annual dataset that holds hourly meteorological values that typify conditions at a specific location over a longer period of time. It represents a typical climatic condition for a location and excludes extremes. For the purposes of this document, DNV determined that it is more appropriate to use weather data that represents typical climatic conditions. Also, DNV uses actual temperatures from USAF stations in modeling consumption in post-installation evaluations. The corresponding temperatures from TMY3 are then used to predict weather-adjusted—or normalized—consumption. The goal is that models and predictions based on temperature data are using data from the same stations.

The TMY3 hourly data are available for 1,020 USAF stations. For each station, DNV calculates the average hourly temperature for each day. The CDD and HDD are calculated using a range of cooling and heating base temperature. If the average daily temperature is greater than the cooling base temperature, CDD is the deviation in degrees Fahrenheit from the average daily temperature with respect to a cooling base temperature and zero otherwise. If the average daily temperature is less than the heating base temperature, HDD is the deviation in degrees Fahrenheit from the average daily temperature with respect to a heating base temperature and zero otherwise. Daily CDD and HDD are summed for each station to come up with an annual estimate of CDD and HDD, shown in Table 24-4. The same processes are repeated using average hourly temperatures to yield the Cooling Degree Hours (CDH) and Heating Degree Hours (HDH), provided in Table 24-5.

The Maryland/Mid-Atlantic TRM v10 uses different base temperatures for the HDD and CDD calculations, depending upon the measure type. Table 24-3 shows the base temperatures used to determine the CDD, HDD, CDH, and HDH values by the Maryland/Mid-Atlantic TRM for each sector and end use.

Table 24-3. Base temperatures by sector and end use

Sector	End use	End use Cooling base temperature, °F temperature, °F		Source
Residential	Plug Load (appliance recycling, only)	65	65	Maryland/Mid-Atlantic TRM v10, p. 67
Residential	ential HVAC 75		60	Maryland/Mid-Atlantic TRM v10, p.116
Residential	DHW	75	60	Engineering judgment
Residential	Building Envelope	75	60	Mid-Atlantic TRM v9, p. 253, p. 255 ¹⁸⁵
Non- residential	HVAC (except infrared heaters)	65	65	Engineering judgment

Based on the base temperatures used by the Maryland/Mid-Atlantic TRM Version 10, the both tables that follow, Table 24-4 and

Table 24-5, provide the CDD, HDD, CDH, and HDH values using:

- Base temperatures of 65°F and 75°F for cooling metrics
- Base temperatures of 60°F and 65°F for heating metrics

Prior to the DSM Phase VII programs, savings for all residential measures are calculated using 65°F as the base temperature for CDD, HDD, CDH, and HDH. For DSM Phase VII and beyond, savings for all residential measures—besides refrigerator and freezer recycling—are calculated using 75°F as the base temperature for CDD and CDH and 60°F for HDD and HDH. For refrigerator and freezer recycling, savings are still calculated using 65°F as the base temperature for CDD, HDD, CDH, and HDH.

The location is assigned by the project's utility office code. For projects without an office code, a default location is assigned. The defaults are assigned based on the projects state. Projects in Virginia use a default location of Richmond, VA. Projects in North Carolina, use a default location of Elizabeth City, NC.

¹⁸⁵ Maryland/Mid-Atlantic TRM Version 10 does not include building envelope measures, so values from the Mid-Atlantic TRM v9 are used.

Table 24-4. Reference cooling and heating degree days

Ctoto	Weather	Location	Cooling degree days		Heating degree days		
State	station	Location	CDD – 65 °F ¹⁸⁶	CDD – 75 °F	HDD - 50 °F	HDD - 60 °F	HDD – 65 °F ¹⁸⁷
MD	724060	Baltimore	1,222	231	1,788	3,499	4,611
VA	724010	Richmond (default for VA)	1,436	319	1,367	2,891	3,863
VA	723080	Norfolk	1,610	378	1,069	2,442	3,398
VA	724110	Roanoke	1,100	132	1,536	3,146	4,232
VA	724030	Sterling	1,086	147	1,922	3,697	4,806
VA	724050	Arlington	1,505	440	1,519	3,186	4,268
VA	724016	Charlottesville	1,079	146	1,219	2,668	3,695
VA	724017	Farmville	1,272	205	1,481	3,070	4,081
VA	724033	Fredericksburg	1,355	327	1,808	3,486	4,573
NC	746943	Elizabeth City (default for NC)	1,748	363	642	1,831	2,712
NC	723068	Rocky Mount	1,355	188	818	2,048	2,951

Table 24-5. Reference cooling and heating degree hours

State	Weather	Location	Cooling de	gree hours	Heating degree hours	
State	station	Location	CDH - 65 °F ¹⁸⁸	CDH - 75 °F	HDH – 60 °F ¹⁸⁹	HDH – 65 °F
MD	724060	Baltimore	32,841	9,616	87,360	113,644
VA.	724010	Richmond (default for VA)	39,416	12,954	73,168	97,043
7230	723080	Norfolk	42,140	12,282	62,307	85,031

¹⁸⁶ National Solar Radiation Data Base. 1991-2005 Update: Typical Meteorological Year 3. Accessed June 2017. http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3

¹⁸⁷ Ibid.

¹⁸⁸ For consistency across all measures, DNV calculated cooling degree hours at the base 65°F temperature to be used in the attic insulation measure. These values are also used to derive the HVAC full load hours in Sub-appendix II: Residential HVAC Equipment Full Load Hours.

¹⁸⁹ Ibid.

State	Weather	Location	Cooling de	gree hours	Heating degree hours	
State	station	Location	CDH - 65 °F ¹⁸⁸	CDH - 75 °F	HDH – 60 °F ¹⁸⁹	HDH – 65 °F
	724110	Roanoke	30,730	7,894	80,292	105,902
	724030	Sterling	31,126	8,931	93,950	120,405
	724050	Arlington	38,554	13,178	79,256	104,873
	724016	Charlottesville	31,278	8,202	69,452	94,063
	724017	Farmville	35,914	11,873	78,497	103,328
	724033	Fredericksburg	38,081	13,634	89,662	115,322
NC	746943	Elizabeth City (default for NC)	45,491	12,936	47,855	68,632
NC	723068	Rocky Mount-Wilson	38,294	10,759	54,648	76,594

24.3.1.1 Update summary

Updates to this section are described in Table 24-6.

Table 24-6. Summary of update(s)

Updates in version	Update type	Description
2022	Modified Weather Station	Updated reference for weather station codes
2021	Modified Weather Station	Updated Virginia weather stations, 7 additional weather stations for Virginia are added. Removed average North Carolina weather stations and apply Elizabeth City and Rocky Mount-Wilson weather stations independently
2020	Modified Weather Station	Updated North Carolina weather station from Charlotte to an average of Elizabeth City and Rocky Mount-Wilson
	Base Temperature	Modified base temperature used for some measures

24.4 Sub-Appendix F1-IV: Residential equivalent full-load hours for HVAC equipment

Table 24-7 provides the equivalent full-load hours (EFLH) that are used as defaults to calculate gross annual electric energy savings for Dominion residential programs. The Dominion full-load cooling and heating hours are determined by using ratios of the Cooling Degree Hours (CDH) and Heating Degree Hours (HDH) provided in Sub-Appendix I: Cooling and Heating Degree Days and Hours to adapt the EFLH provided in the Maryland/Mid-Atlantic TRM v10 for Baltimore, MD to represent a location in Dominion's service territory.

$$\frac{\textit{City_State_EFLH}_{cool}}{\textit{Baltimore MD CDH}} \times \textit{Baltimore_MD_EFLH}_{cool}$$

The same method is used to determine the equivalent full-load hours for residential heating systems as follows:

$$\frac{\textit{City_State_EFLH}_{heat}}{\textit{Baltimore_MD_HDH}} \times \textit{Baltimore_MD_EFLH}_{heat}$$

The location is assigned by the project's utility office code. For projects without an office code, a default location is assigned. The defaults are assigned based on the projects' state. Projects in Virginia use a default location of Richmond, VA. Projects in North Carolina, use a default location of Elizabeth City, NC

Table 24-7. Cooling and heating equivalent full load hours (EFLH) for residential buildings

System type	State	Location	EFLH _{cool}	EFLH _{heat}
	MD	Baltimore, MD: reference city from Maryland/Mid-Atlantic TRM v10	778 ¹⁹¹	852 ¹⁹²
	VA	Richmond, VA (default for VA)	1,048	714
	VA	Norfolk, VA	994	608
	VA	Roanoke, VA	639	783
Air aguras bast	VA	Sterling, VA	723	916
Air-source heat pump ¹⁹⁰	VA	Arlington, VA	1,066	773
	VA	Charlottesville, VA	664	677
	VA	Farmville, VA	961	766
	VA	Fredericksburg, VA	1,103	874
	NC	Elizabeth City (default for NC)	1,047	467
	NC	Rocky Mount- Wilson	870	533

¹⁹⁰ Air-source Heat Pump is used for PTHPs. The source TRM does not provide specific EFLH values for PTHPs at residential applications.

¹⁹¹ Maryland/Mid-Atlantic TRM v10, p. 82. Maryland Utility-Specific EFLH Values. Based on EmPOWER Maryland Final Evaluation Report, Evaluation Year 4, Residential HVAC Program, dated April 4, 2014.

¹⁹² Maryland/Mid-Atlantic TRM v10, p. 116. Based on billing analysis of furnace program Evaluation of the High efficiency heating and cooling program, technical report, June 1995.

System type	State	Location	EFLHcool	EFLH _{heat}
	MD	Baltimore, MD: reference city from Maryland/Mid-Atlantic TRM v10	542 ¹⁹²	620 ¹⁹³
	VA	Richmond, VA (default for VA)	730	519
	VA	Norfolk, VA	692	442
	VA	Roanoke, VA	445	570
Curava di cassaca	VA	Sterling, VA	503	667
Ground-source heat pump	VA	Arlington, VA	743	562
	VA	Charlottesville, VA	462	493
	VA	Farmville, VA	669	557
	VA	Fredericksburg, VA	768	636
	NC	Elizabeth City (default for NC)	729	340
	NC	Rocky Mount-Wilson	606	388

System type	State	Location	EFLH _{cool}	EFLH _{heat}
	MD	Baltimore, MD: reference city from Maryland/Mid-Atlantic TRM v10	568 ¹⁹⁵	-
	VA	Richmond, VA (default for VA)	765	-
	VA	Norfolk, VA	725	-
	VA	Roanoke, VA	466	-
Control A C193	VA	Sterling, VA	528	-
Central AC ¹⁹³ (default ¹⁹⁴)	VA	Arlington, VA	778	-
	VA	Charlottesville, VA	484	-
	VA	Farmville, VA	701	-
	VA	Fredericksburg, VA	805	-
	NC	Elizabeth City, NC (default for NC)	764	-
	NC	Rocky Mount-Wilson, NC	636	-

¹⁹³ Central AC is also used for PTAC units. The source TRM does not contain a specific PTAC EFLHs for residential applications

¹⁹⁴ For programs that do not collect cooling equipment type Central AC EFLHs are applied.

¹⁹⁵ Maryland/Mid-Atlantic TRM v10, p. 75. Based on Maryland-specific values that the evaluation team calculated in EY3 based on EY1 and EY3 metering data.

System type	State	Location	EFLHcool	EFLH _{heat}
	MD	Baltimore, MD: reference city from Maryland/Mid-Atlantic TRM	-	620 ¹⁹⁸
	VA	Richmond, VA (default for VA)	-	519
	VA	Norfolk, VA	-	442
	VA	Roanoke, VA	-	570
Forced-air furnace and baseboard	VA	Sterling, VA	-	667
electric resistance	VA	Arlington, VA	-	562
heating ¹⁹⁶ (default ¹⁹⁷)	VA	Charlottesville, VA	-	493
(VA	Farmville, VA	-	557
	VA	Fredericksburg, VA	-	636
	NC	Elizabeth City, NC (default for NC)	-	340
	NC	Rocky Mount-Wilson, NC	-	388

¹⁹⁶ Forced-air furnace and baseboard electric resistance heating don't have EFLH_{heat} in the source TRM. Therefore, the ground-source heat pump EFLH_{heat} is applied. This is a reasonable approximation as the heating capacity is not likely to vary with weather conditions.

¹⁹⁷ For programs that do not collect cooling equipment type Central AC EFLHs are applied.

¹⁹⁸ Maryland/Mid-Atlantic TRM Version 10, p. 98, Based on assumption from BG&E billing analysis of furnace program in the '90s, from conversation with Mary Straub; "Evaluation of the High efficiency heating and cooling program, technical report", June 1995. For other utilities offering this measure, a Heating Degree Day adjustment may be appropriate to this FLH heat assumption.

System type	State	Location	EFLH _{cool}	EFLH _{heat}
	MD	Baltimore, MD: reference city from Maryland/Mid-Atlantic TRM	326 ¹⁹⁹	-
	VA	Richmond, VA (default for VA)	439	-
	VA	Norfolk, VA	416	
	VA	Roanoke, VA	268	-
Window/room AC	VA	Sterling, VA	303	-
	VA	Arlington, VA	447	
	VA	Charlottesville, VA	278	-
	VA	Farmville, VA	403	-
	VA	Fredericksburg, VA	462	-
	NC	Elizabeth City, NC (default for NC)	439	-
	NC	Rocky Mount-Wilson, NC	365	-

24.4.1.1 Update summary

Updates to this section are described in Table 24-8.

Table 24-8. Summary of update(s)

Updates in version	Update type	Description					
2022	None	No change					
2024	Modified Weather Station	Updated Virginia weather stations, added seven weather stations for Virginia					
2021	Expanded System Types Added EFLH for ground source heat pump						
2020	Modified Weather Station	Updated North Carolina weather station from Charlotte to an average of Elizabeth City and Rocky Mount-Wilson					

¹⁹⁹ Mid-Atlantic TRM v8, p. 78. "VEIC calculated the average ratio of EFLH for Room AC (provided in RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008) to EFLH for Central Cooling (provided by AHRI: http://www.energystar.gov/ia/business/bulk purchasing/bpsavings calc/Calc CAC.xls) at 31%. Applying this to the EFLH for Central Cooling provided for Baltimore (1050) we get 325 EFLH for Room AC." DNV replicated the equation and calculated 325.5 EFLHcool and rounded to 326 EFLHcool

24.5 Sub-Appendix F1-V: Residential HVAC Equipment Efficiency Ratings²⁰⁰

The efficiency ratings for residential baseline HVAC equipment, <65 kBtu/h, are based upon building code requirements in Virginia and North Carolina, as shown in Table 24-9.

Table 24-9. Residential Baseline and Efficient HVAC Equipment Efficiency Ratings

Standard	System Type ²⁰¹	SEER (Btu/Wh)	EER (Btu/Wh)	HSPF (Btu/Wh)	COP ²⁰² (dimension- less)	AFUE (dimension- less)
	Air conditioning system, split- system	13.0	<45 kBtu/h: 12.2 ≥45 kBtu/h (default): 11.7	-		-
	Air conditioning system, package	14.0	11.0	-		-
Federal Standard ²⁰³ (baseline	Air-source heat pump, split- system, ductless mini split heat pump	14.0	11.8 ²⁰⁴	8.2	3.40	-
case)	Air-source heat pump, package, (default for air-source heat pump)	14.0	11.8	8.0	3.35	-
	Resistance heat	-	-	3.4	1.00	-
	Indoor gas furnace	-	-	-	-	0.80
	Outdoor gas furnace (default)	-	-	-	-	0.81

²⁰⁰ Mid-Atlantic TRM v9 2019, p. 87. Baseline system efficiencies are based on the applicable minimum Federal Appliance & Equipment Standards, Southern Region, consistent with 2015 IECC Table C403.2.3(2)—Minimum Efficiency Requirements: Electrically Operated Unitary and Applied Heat Pump. Further, the table provides minimum efficiency values for units less than 65,000 Btu/h.

²⁰¹ The gas furnace location is assumed to be indoors if the cooling system type is a split system and outdoor for package systems.

 $^{^{202}}$ For all values except resistance heat, this is calculated using Equation 7 in Sub-Appendix F1-II: General

^{203 10} CFR Ch. II (1-1-12 Edition) §430.32 at https://www.govinfo.gov/content/pkg/CFR-2012-title10-vol3/pdf/CFR-2012-title10-vol3-sec430-32.pdf, effective 2015-01-01.

²⁰⁴ Since this value was not provided by 10 CFR Ch. II (1-1-12 Edition) §430.32, it was estimated using Equation 3 in Sub-Appendix III: Residential HVAC Equipment Efficiency Ratings.

Standard	System Type ²⁰¹	SEER (Btu/Wh)	EER (Btu/Wh)	HSPF (Btu/Wh)	COP ²⁰² (dimension- less)	AFUE (dimension- less)
ENERGY STAR ²⁰⁵	Air conditioning, split system	15.0	12.5	-	-	-
(efficient case)	Air conditioning, package system	15.0	12.0	-	-	-
	Air-source heat pump, split- system	15.0	12.5	8.5	3.46	-
	Air-source heat pump, package system	15.0	12.0	8.2	3.40	-
	Ductless Mini-split heat pump ²⁰⁶	15.0	12.5	8.5	3.46	-
AHRI Qualified Equipment	Ground-source heat pump ²⁰⁷	21.2 ²⁰⁸	19.1	8.5	3.1	_

DNV - www.dnv.com

²⁰⁵ ENERGY STAR Air-Source Heat Pumps and Central Air Conditioners Key Product Criteria at https://www.energystar.gov/products/heating_cooling/heat_pumps_air_source/key_product_criteria (accessed 2019-12-04).

²⁰⁶ Mid-Atlantic TRM v9, p. 120. Ductless mini-split heat pump measure, efficient condition follows Energy Star standards.

²⁰⁷ Ground-source heat pumps aren't included in federal standards or ENERGY STAR qualified equipment. Therefore, to establish an efficiency level that can be used for this equipment type in retrocommsinioning measures, we assign the minimum efficiency levels in AHRI database for residential geoexchange heat pumps, found here: https://www.ahridirectory.org/Search/SearchHome (accessed on 11/01/2021)

²⁰⁸ SEER is not provided in the AHRI database for this equipment type, therefore the EER is converted to an approximated SEER using the equations in Sub-Appendix F1-II: General

Table 24-10. Room Air Conditioner Federal Standard and ENERGY STAR® Minimum Efficiency²⁰⁹

Product Type and Class (Btu/h)		Federal Standard with louvered sides (CEER), defaul ¹²¹⁰ Federal Standard without louvered sides (CEER)		ENERGY STAR with louvered sides (CEER)	ENERGY STAR without louvered sides (CEER)	
	<8,000 (default) ²¹⁰	11.0	10.0	12.1	11.0	
	8,000 - 10,999	10.9	9.6	12.0	10.6	
	11,000 – 13,999	10.9	9.5	12.0	10.5	
Without Reverse Cycle	14,000 – 19,999	10.7	9.3	11.8	10.2	
Cycle	20,000 – 24,999	9.4	9.4	10.3	10.3	
	25,000 – 27,999	9.0	9.4	10.3	10.3	
	≥ 28,000	9.0	9.4	9.9	10.3	
	< 14,000	N/A	9.3	N/A	10.2	
With Reverse Cycle	14,000 - 19,999	9.8	8.7	10.8	9.6	
	≥ 20,000	9.3	N/A	10.2	N/A	
Casement Only	Any		9.5		10.5	
Casement-Slider	Any		10.4	11		

24.5.1.1 Update Summary

Updates to this section are described in Table 24-11.

Table 24-11. Summary of Update(s)

Version with Updates	Update Type Description							
2022	None	No change						
	New table	Added new table for Room /Wall AC unit efficiency values						
2021	New equipment	Added ground source heat pump efficiencies to table						
2021	Combined equipment	Combined the ductless mini-split heat pump category with the air source heat pump split system as this is						
	category	a single category in the federal standard baseline.						

²⁰⁹ From Maryland/Mid-Atlantic TRM v10, p.70

²¹⁰ Default value was selected which yields the most conservative savings estimate

Version with Updates	Update Type	Description
2020	Added equipment categories	Added efficiency requirements for ductless mini-split heat pumps Distinguished between split-system and packaged air-conditioning systems
	Added efficiency category	Added column for COP

24.6 Sub-Appendix F1-VI: Residential Refrigeration Factors

Table 24-12 provides the federal standard refrigerator maximum annual energy consumption if configuration and volume are known.

Table 24-12. Default kWh_{base} Based on Category²¹¹

Category	Formula for kWh _{base}
Refrigerator-freezers and refrigerators other than all-refrigerators with manual defrost	7.99 × Volume _{adj.} + 225.0
1A. All-refrigerators—manual defrost	6.79 × Volume _{adj.} + 193.6
2. Refrigerator-Freezer—partial automatic defrost	$7.99 \times Volume_{adj.} + 225.0$
3. Refrigerator-Freezersautomatic defrost with top-mounted freezer without an automatic icemaker	$8.07 \times Volume_{adj.} + 233.7$
3-BI. Built-in refrigerator-freezer—automatic defrost with top-mounted freezer without an automatic icemaker.	$9.15 \times Volume_{adj.} + 264.9$
3I. Refrigerator-freezers—automatic defrost with top-mounted freezer with an automatic icemaker without through-the-door ice service.	$8.07 \times Volume_{adj.} + 317.7$
3I-BI. Built-in refrigerator-freezers—automatic defrost with top-mounted freezer with an automatic icemaker without through-the-door ice service.	$9.15 \times Volume_{adj.} + 348.9$
3A. All-refrigerators—automatic defrost.	$7.07 \times Volume_{adj.} + 201.6$
3A-BI. Built-in All-refrigerators—automatic defrost.	$8.02 \times Volume_{adj.} + 228.5$
4. Refrigerator-Freezersautomatic defrost with side-mounted freezer without an automatic icemaker	$8.51 \times Volume_{adj.} + 297.8$
4-BI. Built-In Refrigerator-freezers—automatic defrost with side-mounted freezer without an automatic icemaker.	$10.22 \times Volume_{adj.} + 357.4$
4I. Refrigerator-freezers—automatic defrost with side-mounted freezer with an automatic icemaker without through-the-door ice service.	$8.51 \times Volume_{adj.} + 381.8$
4I-BI. Built-In Refrigerator-freezers—automatic defrost with side-mounted freezer with an automatic icemaker without through-the-door ice service.	$10.22 \times Volume_{adj.} + 441.4$
5. Refrigerator-Freezersautomatic defrost with bottom-mounted freezer without an automatic icemaker	$8.85 \times Volume_{adj.} + 317.0$
5-BI. Built-In Refrigerator-freezers—automatic defrost with bottom-mounted freezer without an automatic icemaker.	$9.40 \times Volume_{adj.} + 336.9$
5I. Refrigerator-freezers—automatic defrost with bottom-mounted freezer with an automatic icemaker without through-the-door ice service.	$8.85 \times Volume_{adj.} + 401.0$
5I-BI. Built-In Refrigerator-freezers—automatic defrost with bottom-mounted freezer with an automatic icemaker without through-the-door ice service.	$9.40 \times Volume_{adj.} + 420.9$

²¹¹ Pennsylvania TRM 2019, pp. 95-102.

Category	Formula for kWh _{base}
5A. Refrigerator-freezer—automatic defrost with bottom-mounted freezer with through-the-door ice service.	$9.25 \times Volume_{adj.} + 475.4$
5A-BI. Built-in refrigerator-freezer—automatic defrost with bottom-mounted freezer with through-the-door ice service.	$9.83 \times Volume_{adj.} + 499.9$
6. Refrigerator-Freezersautomatic defrost with top-mounted freezer with through-the-door ice service	$8.40 \times Volume_{adj.} + 385.4$
7. Refrigerator-Freezersautomatic defrost with side-mounted freezer with through-the-door ice service	$8.54 \times Volume_{adj.} + 432.8$
7-Bl. Built-In Refrigerator-freezers—automatic defrost with side-mounted freezer with through-the-door ice service.	$10.25 \times Volume_{adj.} + 502.6$
11. Compact Refrigerator and Refrigerator-Freezer other than All-Refrigerator - manual defrost	$9.03 \times Volume_{adj.} + 252.3$
11A. Compact All-Refrigerator - manual defrost	$7.84 \times Volume_{adj.} + 219.1$
12. Compact Refrigerator-Freezer - partial automatic defrost	$5.91 \times Volume_{adj.} + 335.8$
13. Compact refrigerator-freezers - automatic defrost with top-mounted freezer	$11.80 \times Volume_{adj.} + 339.2$
13I. Compact refrigerator-freezers—automatic defrost with top-mounted freezer with an automatic icemaker.	$11.80 \times Volume_{adj.} + 423.2$
13A. Compact All-Refrigerators - automatic defrost	$9.17 \times Volume_{adj.} + 259.3$
14. Compact Refrigerator-Freezer - automatic defrost with side-mounted freezer	$6.82 \times Volume_{adj.} + 456.9$
14I. Compact Refrigerator-Freezer - automatic defrost with side-mounted freezer with an automatic icemaker	$6.82 \times Volume_{adj.} + 540.9$
15. Compact Refrigerator-Freezer - automatic defrost with Bottom-Mounted freezer	$11.80 \times Volume_{adj.} + 339.2$
15I. Compact Refrigerator-Freezer - automatic defrost bottom-mount- with an automatic icemaker	$11.80 \times Volume_{adj.} + 423.2$

24.6.1.1 Update Summary

Updates to this section are described in Table 24-11.

Table 24-13. Summary of Update(s)

Updates in Version	Update Type	Description
2022	None	No changes
2021	Initial release	Moved table from refrigerator measure to Sub-appendix

24.7 Sub-Appendix F1-VII: Residential Lighting Factors

Table 24-14 provides the following associated values for residential LED Lighting measures:

- Annual hours of use (HOU)
- Annual electric waste heat factors for heating season (WHFeheat)
- Annual electric waste heat factors for cooling season (WHFecool)
- Demand reduction waste heat factors (WHFd) and
- Summer coincident factor (CF_{summer})
- Winter coincident factor (CF_{winter)}

Table 24-14. Input Values by Room Type for LED Lighting Savings

HOU ²¹	Annual	EUL ²¹³	and unkno	hase VII and wn heating i nase VIII ²¹⁴			For DSM Phase VIII and DSM IX						Sit min
	HOU ²¹² (hours)	U ²¹² (years)	WHFe _{heat}	WHFe _{cool}	WHFd	WHFe _{heat} with electric heating	WHFe _{heat} w/o electric heating	WHFeccol with cooling	WHFeccol w/o cooling	WHFd with cooling	WHF d w/o cooli ng	CF _{summer}	CF _{winter}
24-hour indoor	8,760	1.71	0.899	1.077	1.17	0.730	1.000	1.087	1.000	1.190	1.000	1.000	1.000
24-hour outdoor	8,760	1.71	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Dining Room	770	19.48	0.899	1.077	1.170	0.730	1.000	1.087	1.000	1.190	1.000	0.058	0.124
Bedroom	661	20.00	0.899	1.077	1.170	0.730	1.000	1.087	1.000	1.190	1.000	0.058	0.124
Bathroom	788	19.04	0.899	1.077	1.170	0.730	1.000	1.087	1.000	1.190	1.000	0.058	0.124
Hallway	920	16.30	0.899	1.077	1.170	0.730	1.000	1.087	1.000	1.190	1.000	0.058	0.124
Living Room	916	16.38	0.899	1.077	1.170	0.730	1.000	1.087	1.000	1.190	1.000	0.058	0.124
Kitchen	2,902	5.17	0.899	1.077	1.170	0.730	1.000	1.087	1.000	1.190	1.000	0.058	0.124

²¹² Hours of use for Dining Room, Bedroom, Bathroom, Hallway, Living Room, Kitchen and Garage are from Navigant, EM&V Report for the 2012 Energy Efficient Lighting Program, Duke Energy Progress, July 2013, p. 23. Hours of use for Indoor ("Residential Interior and in-unit Multi-Family"), and Exterior are from the 2019 Mid-Atlantic TRM, p. 34.

DNV Energy Insights USA Inc.

²¹³ The EUL is based on the methodology used in Maryland/Mid-Atlantic TRM v10, p 34. The EUL is the rated lifetime hours divided by HOU, Rated Lifetime hours is the ENERGY STAR Specifications v2.1 for Integrated Screw Based solid state lighting required to maintain 70% of initial light output for 15,000 hours. The lifetime is capped at 20 years.

The WHFe_{heat}, WHFe_{cool}, and WHFd factors were drawn from the 2019 Mid-Atlantic TRM v9, pp. 29 – 41.

Dominion Energy North Carolina Docket No. E-22, Sub 645

Fixture	Annual HOU ²¹² (hours) EUL ²¹³ (years)	EUI 213	For DSM Phase VII and earlier, and unknown heating in DSM Phase VIII ²¹⁴			For DSM Phase VIII and DSM IX							
Location		(years)	WHFe _{heat}	WHFecool	WHFd	WHFe _{heat} with electric heating	WHFe _{heat} w/o electric heating	WHFecool with cooling	WHFe _{cool} w/o cooling	WHFd with cooling	WHF d w/o cooli ng	CF _{summer}	CF _{winte}
Indoors (residential interior)	679	20.00	0.899	1.077	1.170	0.730	1.000	1.087	1.000	1.190	1.000	0.058	0.124
Exterior	1,643	9.13	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.018	0.12
Garage	391	20.00	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.018	0.124
Unknown ²¹⁵	760	19.74	0.899	1.077	1.170	0.730	1.000	1.087	1.000	1.190	1.000	0.058	0.124

DNV Energy Insights USA Inc. August 29, 2022 Page 242

²¹⁵ For fixtures in unknown locations, the HOU is a weighted average of those for indoor-, outdoor-, and garage-located fixtures using the weights reported in Final EM&V Report for the 2013 Energy Efficient Lighting Program for Duke Energy Progress by Navigant, p. 23, of 89%, 9%, and 2%, respectively.

Table 24-15. provides the Dominion customer proportion (DCP) to account for likely leakage rate due to purchased lighting products that are installed outside of the Dominion service territory.

Table 24-15. DCP Values for In-Store Lighting Purchases²¹⁶

Store Location	DCP Value
100 Easton St, Hampton, VA 23669	1.0000
100 Lizard Creek Road, Littleton, NC 27850	1.0000
1000 19th St, Virginia Beach, VA 23451	1.0000
10001 Southpoint Pkwy, Fredericksburg, VA 22407	0.8740
10083 Brook Rd Ste 76, Glen Allen, VA 23059	0.9010
101 S Van Dorn St, Alexandria, VA 22304	0.9657
101 Tanglewood Pkwy N, Elizabeth City, NC 27909	1.0000
101 Washington Square Plz, Fredericksburg, VA 22405	0.8378
10100 Brook Rd, Glen Allen, VA 23059	0.9059
10101 Southpoint Pkwy, Fredericksburg, VA 22407	0.8930
1012 Fallbrook Bnd, Virginia Beach, VA 23455	1.0000
1015 Fairgrounds Road, Madison, VA 22727	0.8634
1020 Battlefield Blvd N, Chesapeake, VA 23320	1.0000
10233 Lakeridge Pkwy, Ashland, VA 23005	0.9339
10300 Portsmouth Rd, Manassas, VA 20109	0.6667
10301 New Guinea Rd, Fairfax, VA 22032	0.9764
10310B Main St, Fairfax, VA 22030	0.8226
1033 Elm St, Hopewell, VA 23860	0.6998
10408 James Madison Pkwy, King George, VA 22485	0.6667
1041 E 10th St, Roanoke Rapids, NC 27870	1.0000
10461 Midlothian Tpke, Richmond, VA 23235	1.0000
1055 Independence Blvd, Virginia Beach, VA 23455	1.0000
10604 Courthouse Rd, Fredericksburg, VA 22407	0.9067
10689 Sudley Manor Dr, Manassas, VA 20109	0.6753
10731 Jefferson Ave, Newport News, VA 23601	1.0000
10744 Tidewater Trl, Fredericksburg, VA 22408	0.8267
10776 Sudley Manor Dr, Manassas, VA 20109	0.6667
1085 Walmart Dr, Williamston, NC 27892	1.0000
109 Lucy Ln, Waynesboro, VA 22980	0.6668

 $^{^{\}rm 216}$ Provided by program implementation vendor, CleaRESULT.

Store Location	DCP Value
10905 Hull Street Rd, Midlothian, VA 23112	1.0000
1095 International Pkwy, Fredericksburg, VA 22406	0.7230
1098 Frederick Blvd, Portsmouth, VA 23707	1.0000
110 River Oaks Dr, Tarboro, NC 27886	1.0000
1100 Stafford Market PI, Stafford, VA 22556	0.6667
11008 Warwick Blvd Ste 400, Newport News, VA 23601	1.0000
1105 S Military Hwy, Chesapeake, VA 23320	1.0000
111 River Oaks Dr, Tarbobo, NC 27886	1.0000
1110 George Washington Hwy N, Chesapeake, VA 23323	1.0000
11181 Lee Hwy, Fairfax, VA 22030	0.8529
1119 Briarfield Rd, Newport News, VA 23605	1.0000
11214 Jefferson Ave, Newport News, VA 23601	1.0000
11260 W Broad St, Glen Allen, VA 23060	0.9606
11290 W Broad St, Glen Allen, VA 23060	0.9579
11301 Midlothian Tpke, Richmond, VA 23235	1.0000
1135 5th St SW, Charlottesville, VA 22902	0.8283
11400 W Broad St, Glen Allen, VA 23060	0.9586
11409 Windsor Blvd, Windsor, VA 23487	0.9000
1141 London Blvd, Portsmouth, VA 23704	1.0000
1149 Nimmo Pkwy, Virginia Beach, VA 23456	1.0000
117 Forbes Loop Rd, Grandy, NC 27939	1.0000
117 Market Place Dr, Hampton, VA 23666	1.0000
1170 N Military Hwy, Norfolk, VA 23502	1.0000
11712 Jefferson Ave, Newport News, VA 23606	1.0000
11740 W Broad St Ste 101, Richmond, VA 23233	0.9572
1180 Carl D Silver Pkwy, Fredericksburg, VA 22401	0.9422
1200 N Main St, Suffolk, VA 23434	1.0000
12000 Iron Bridge Rd, Chester, VA 23831	0.9863
12000 Ridgefield Pkwy, Richmond, VA 23233	0.9897
1201 Gateway Blvd, Fredericksburg, VA 22401	0.8777
1201 Mall Dr, Richmond, VA 23235	1.0000
1204 S Military Hwy, Chesapeake, VA 23320	1.0000
1208 Westover Hills Blvd, Richmond, VA 23225	1.0000
12101 Jefferson Davis Hwy, Chester, VA 23831	0.9777
1211 Benns Church Blvd, Smithfield, VA 23430	0.6668

Store Location	DCP Value
12121 Jefferson Ave, Newport News, VA 23602	1.0000
12130 Jefferson Ave, Newport News, VA 23602	1.0000
1216 Memorial Drive E, Ahoskie, NC 27910	1.0000
1216 N Main St, Suffolk, VA 23434	0.9999
12197 Sunset Hills Rd, Reston, VA 20190	0.9919
1220 N 25th St, Richmond, VA 23223	1.0000
12200 Chattanooga Plz, Midlothian, VA 23112	1.0000
1221 Harris St, Charlottesville, VA 22903	0.7880
12275 Price Club Plz, Fairfax, VA 22030	0.8378
1230 West Broad St., Falls Church, VA 22046	1.0000
12300 Chattanooga Plz, Midlothian, VA 23112	0.9997
12300 Jefferson Davis Hwy, Chester, VA 23831	0.9464
1236 Concord Ave, Richmond, VA 23228	0.9760
12372 Dillingham Sq, Woodbridge, VA 22192	0.6667
12401 Jefferson Ave, Newport News, VA 23602	1.0000
12407 Jefferson Ave, Newport News, VA 23602	1.0000
12445 Hedges Run Dr., Woodbridge, VA 22192	0.6667
1245 Jeff Davis Hwy, Fredericksburg, VA 22401	0.9586
1245 N Military Hwy, Norfolk, VA 23502	1.0000
12490 Warwick Blvd, Newport News, VA 23606	1.0000
125 Washington Square Plz, Fredericksburg, VA 22405	0.8400
1250 E Atlantic St, LaCrosse, VA 23950	0.6664
1257 Goldrock Road, Rocky Mount, NC 27804	1.0000
1261 N Military Hwy, Norfolk, VA 23502	1.0000
12725 Jefferson Ave, Newport News, VA 23602	1.0000
12917 Jefferson Ave, Newport News, VA 23608	1.0000
13043 Lejaksn Mem Hwy, Chantilly, VA 22033	1.0000
13047 Fair Lakes Shopping Ctr, Fairfax, VA 22033	0.8476
1305 Carmia Way, Richmond, VA 23235	1.0000
13053 Fair Lakes Shopping Ctr, Fairfax, VA 22033	0.8635
13059 Fair Lakes Parkway, Fairfax, VA 22033	0.8521
13076 Boydton Plank Rd, Dinwiddie, VA 23841	0.6666
1308 Battlefield Blvd N, Chesapeake, VA 23320	1.0000
1316 Greenbrier Pkwy, Chesapeake, VA 23320	1.0000
13191 Dawn Blvd., Doswell, VA 23047	1.0000

Store Location	DCP Value
1320 N Laburnum Ave, Richmond, VA 23223	1.0000
1320 Starling Dr, Richmond, VA 23229	0.9868
13268 Warwick Blvd, Newport News, VA 23602	1.0000
13330 Franklin Farm Rd, Herndon, VA 20171	1.0000
13345 Worth Ave, Woodbridge, VA 22192	0.6703
1350 John Tyler Hwy, Williamsburg, VA 23185	1.0000
1350 N Laburnum Ave, Richmond, VA 23223	1.0000
13580 Minnieville Rd, Woodbridge, VA 22192	0.6836
1361 Carl D Silver Pkwy, Fredericksburg, VA 22401	0.9051
13653 Lee Jackson Memorial Hwy # B, Chantilly, VA 20151	0.8863
137 Spotsylvania Mall, Fredericksburg, VA 22407	0.8941
13792 Smoketown Rd, Woodbridge, VA 22192	0.6667
1383 Memorial Dr E, Ahoskie, NC 27910	1.0000
1385 Fordham Dr Ste 113, Virginia Beach, VA 23464	1.0000
13856 Metrotech Dr, Chantilly, VA 20151	0.8582
1386 Carmia Way, Richmond, VA 23235	1.0000
13975 Jefferson Davis Hwy, Woodbridge, VA 22191	0.7181
1400 Tintern St, Chesapeake, VA 23320	1.0000
1401 Emmet St N, Charlottesville, VA 22903	0.7661
1401 Mall Dr, North Chesterfield, VA 23235	0.9999
1404 E Brookland Park Blvd, Richmond, VA 23222	1.0000
1405 Memorial Dr E, Ahoskie, NC 27910	1.0000
1410 Airport RD, Suffolk, VA 23434	1.0000
1413 N Armistead Ave, Hampton, VA 23666	1.0000
14347 Warwick Blvd, Newport News, VA 23602	1.0000
14390 Chantilly Crossing Ln, Chantilly, VA 20151	0.8262
14391 Chantilly Crossing Ln, Chantilly, VA 20151	0.8605
144 Elams Rd, Littleton, NC 27850	1.0000
1450 N. Point Village, Reston, VA 20194	1.0000
14501 Hancock Village St, Chesterfield, VA 23832	0.9899
1454 Chain Bridge Rd, McLean, VA 22101	1.0000
1457 Mt Pleasant Rd Ste 101A, Chesapeake, VA 23322	1.0000
14581 Jefferson Davis Hwy, Woodbridge, VA 22191	0.6710
1459 E. Raleigh Blvd., Rocky Mount, NC 27801	1.0000
14610 Lee Hwy, Gainesville, VA 20155	0.6667

Store Location	DCP Value
15 Town Center Way, Hampton, VA 23666	1.0000
1500 Cornerside Blvd Ste B, Vienna, VA 22182	1.0000
1500 High St, Portsmouth, VA 23704	1.0000
1500 N Croatan Hwy, Kill Devil Hills, NC 27948	1.0000
1500 Wilson Blvd, Rosslyn, VA 22209	0.8396
1501 Sams Cir, Chesapeake, VA 23320	1.0000
1502 Boulevard, Colonial Heights, VA 23834	0.6963
1504 N Parham Rd, Richmond, VA 23229	1.0000
1509 Sams Cir, Chesapeake, VA 23320	1.0000
1511 Benvenue Rd, Rocky Mount, NC 27804	1.0000
1512 Koger Center Blvd, Richmond, VA 23235	1.0000
15139 Patrick Henry Hwy, Amelia, VA 23002	0.6686
1521 Sams Cir, Chesapeake, VA 23320	1.0000
1529 Washington St, Williamston, NC 27892	1.0000
15507 Warwick Blvd, Newport News, VA 23608	1.0000
1551 E Bayview Blvd, Norfolk, VA 23503	1.0000
157 Hillcrest Pkwy, Chesapeake, VA 23322	1.0000
15928 Jefferson Davis Hwy, Colonial Heights, VA 23834	0.8213
1600 Julian R Allsbrook Hwy, Roanoke Rapids, NC 27870	1.0000
1604 Boulevard, Colonial Heights, VA 23834	0.7018
1605 W Ehringhaus St, Elizabeth City, NC 27909	1.0000
1610 Coliseum Dr., Hampton, VA 23451	1.0000
1610 Coliseum Drive, Hampton, VA 23666	1.0000
1629 Tappahannock Blvd, Tappahannock, VA 22560	0.6666
1642 Sparrow Rd # A, Chesapeake, VA 23325	1.0000
1651 Reston Pkwy, Reston, VA 20194	0.9616
171 W Lee Hwy, Warrenton, VA 20186	0.6667
1713 N Main St, Tarboro, NC 27886	1.0000
1720 E Little Creek Rd, Norfolk, VA 23518	1.0000
1720 Williamsburg Rd, Richmond, VA 23231	1.0000
17342 General Puller Hwy, Deltaville, VA 23043	1.0000
17473 Jefferson Davis Hwy, Ruther Glenn, VA 22546	0.6668
1800 Carl D Silver Pkwy, Fredericksburg, VA 22401	0.9558
1800 Liberty St Ste 106, Chesapeake, VA 23324	1.0000
1832 Kempsville Rd, Virginia Beach, VA 23464	1.0000

Store Location	DCP Value
1832 Peery Dr, Farmville, VA 23901	0.6667
1847 Boydton Plank Rd, Petersburg, VA 23805	0.6667
1862 Tappahannock Blvd, Tappahannock, VA 22560	0.6670
1900 Cunningham Dr, Hampton, VA 23666	1.0000
1901 Roane St, Richmond, VA 23222	1.0000
1903 W Main St, Richmond, VA 23220	1.0000
1918 William St, Fredericksburg, VA 22401	0.8434
1922 Urbine Rd., Powhatan, VA 23139	0.6808
1949 Lynnhaven Pkwy Ste 1552, Virginia Beach, VA 23453	1.0000
1950 Anderson Hwy, Powhatan, VA 23139	0.9166
1952 Laskin Rd Ste 512, Virginia Beach, VA 23454	1.0000
1963 E Pembroke Ave, Hampton, VA 23663	1.0000
1973 S Military Hwy, Chesapeake, VA 23320	1.0000
1991 Daniel Stuart Sq, Woodbridge, VA 22191	0.6687
200 Marquis Pkwy, Williamsburg, VA 23185	1.0000
2000 27th St # 2010, Newport News, VA 23607	1.0000
2000 Power Plant Pkwy, Hampton, VA 23666	0.9997
2001 Clarendon Blvd, Arlington, VA 22201	0.9480
2002 Power Plant Pkwy, Hampton, VA 23666	1.0000
2004 Victory Blvd, Portsmouth, VA 23702	1.0000
2006 Nickerson Blvd, Hampton, VA 23663	1.0000
201 E Atlantic St, Emporia, VA 23847	0.6670
201 E Berkley Ave, Norfolk, VA 23523	1.0000
201 Hillcrest Pkwy, Chesapeake, VA 23322	1.0000
201 Perimeter Dr, Midlothian, VA 23113	0.9954
2010 Cromwell Dr, Norfolk, VA 23509	1.0000
2014 S Croatan Hwy, KIII Devil Hills, NC 27948	1.0000
2017 Lafayette Blvd, Fredericksburg, VA 22401	0.8900
2020 Lynnhaven Pkwy, Virginia Beach, VA 23456	1.0000
2020 Rio Hill Ctr, Charlottesville, VA 22901	0.6950
2021 Lynnhaven Pkwy, Virginia Beach, VA 23456	1.0000
2044 Victory Blvd, Portsmouth, VA 23702	1.0000
2060 S Independence Blvd, Virginia Beach, VA 23453	1.0000
2098 Nickerson Blvd Ste A, Hampton, VA 23663	1.0000
2098 Nickerson Blvd, Hampton, VA 23663	1.0000

Store Location	DCP Value
210 E 2nd St, Weldon, NC 27890	1.0000
210 Monticello Ave, Williamsburg, VA 23185	1.0000
21000 S.Bank St 150, Sterling, VA 20165	0.6667
210-238 NC Hwy 186, Seaboard, NC 27876	1.0000
212 S US 64, Manteo, NC 27954	1.0000
21398 Price Cascades Plz, Sterling, VA 20164	0.9811
215 Maple Ave W, Vienna, VA 22180	0.9705
2150 US 13 South, Ahoskie, NC 27910	1.0000
21800 Town Ctr Plaza, Sterling, VA 20164	0.8332
21800 Towncenter Plz Ste 237, Sterling, VA 20164	0.8429
219 Lawrenceville Road, Gaston, NC 27832	1.0000
2203 Wilborn Ave Unit 600, South Boston, VA 24592	0.6667
222 W 21st St, Norfolk, VA 23517	1.0000
2233 Upton Dr, Virginia Beach, VA 23454	1.0000
22330 S Sterling Blvd Ste A123, Sterling, VA 20164	0.7967
224 Market Dr, Emporia, VA 23847	0.6667
2301 Kecoughtan Rd, Hampton, VA 23661	1.0000
2301 Taylor Rd, Chesapeake, VA 23321	0.9999
2324 Elson Green Ave, Virginia Beach, VA 23456	1.0000
2328 E Princess Anne Rd, Norfolk, VA 23504	1.0000
233 Carmichael Way, Chesapeake, VA 23322	1.0000
236 Highway 158, Littleton, NC 27850	1.0000
237 Battlefield Blvd S Ste 13, Chesapeake, VA 23322	1.0000
2371 Carl D Silver Parkway, Fredericksburg, VA 22401	0.9497
2371 Carl D Silver, Fredericksburg, VA 22401	0.9497
2371 Carl D. Silver Pkwy, Fredericksburg, VA 22401	1.0000
2384 Hayes Rd, Hayes, VA 23072	1.0000
2403 Virginia Beach Blvd, Virginia Beach, VA 23454	1.0000
2410 Sheila Ln, Richmond, VA 23225	1.0000
2411 York Crossing Dr, Hayes, VA 23072	1.0000
2420 E Little Creek Rd, Norfolk, VA 23518	1.0000
2421 Old Taylor Rd, Chesapeake, VA 23321	1.0000
2425 Centreville Road, Herndon, VA 20171	0.9979
2430 Sheila Ln, Richmond, VA 23225	1.0000
2444 Chesapeake Square Ring Rd, Chesapeake, VA 23321	1.0000

Store Location	DCP Value
2448 Chesapeake Square Ring Rd, Chesapeake, VA 23321	1.0000
25 S Gateway Dr, Fredericksburg, VA 22406	0.8448
250 W Washington St, Petersburg, VA 23803	0.6667
2501 Sheila Ln, Richmond, VA 23225	1.0000
251 Premier Blvd, Roanoke Rapids, NC 27870	1.0000
2515 Columbia Pike, Arlington, VA 22204	0.9972
2530 Weir Rd, Chester, VA 23831	0.9511
2551 John Milton Dr., Herndon, VA 20171	1.0000
2601 George Washington Mem Hwy, Yorktown, VA 23693	1.0000
2601 Weir PI, Chester, VA 23831	0.9293
264 Cedar Ln SE Ste Ab-C, Vienna, VA 22180	0.9876
2665 Hull St, Richmond, VA 23224	1.0000
2707 General Puller Hwy, Saluda, VA 23149	1.0000
271 Premier Blvd, Roanoke Rapids, NC 27870	1.0000
2715 W Main St, Waynesboro, VA 22980	0.6667
2720 N Mall Dr Ste 208, Virginia Beach, VA 23452	1.0000
2725 Campostella Rd, Chesapeake, VA 23324	1.0000
2815 Merrilee Dr, Fairfax, VA 22031	0.9868
2845 Broad Rock Blvd, Richmond, VA 23224	1.0000
2900 Dale Blvd, Dale City, VA 22193	0.6671
2901 Jefferson Ave, Newport News, VA 23607	1.0000
2901-11S. Glebe Rd, Arlington, VA 22206	1.0000
2905 District Ave, Fairfax, VA 22031	0.9963
2917 North Ave, Richmond, VA 23222	1.0000
2932 Chain Bridge Rd, Oakton, VA 22124	0.9149
299 Banks Ford Pkwy, Fredericksburg, VA 22406	0.8269
30 US Highway 158, Roanoke Rapids, NC 27870	1.0000
300 Chatham Dr, Newport News, VA 23602	1.0000
300 West Blvd, Williamston, NC 27892	1.0000
3016 Sunset Ave., Rocky Mount, NC 27804	1.0000
3061 Plank Rd, Fredericksburg, VA 22401	0.9437
308 Cavalier Sq, Hopewell, VA 23860	0.7074
3101 Jefferson Davis Hwy, Alexandria, VA 22305	0.9828
3102 Plank Rd Ste 600, Fredericksburg, VA 22407	0.8309
3110 Jefferson Davis Hwy, Richmond, VA 23234	1.0000

Store Location	DCP Value
3115 Lee Hwy., Arlington, VA 22201	0.9648
3116 High St, Portsmouth, VA 23707	1.0000
3146 Western Branch Blvd, Chesapeake, VA 23321	1.0000
315 Cowardin Ave, Richmond, VA 23224	1.0000
317 Worth Avenue, Stafford, VA 22554	0.6667
3171 District Ave, Charlottesville, VA 22901	0.7669
3199 Duke Street, Alexandria, VA 22314	1.0000
3201 Holland Rd, Virginia Beach, VA 23453	1.0000
3201 Old Lee Hwy, Fairfax, VA 22030	0.9444
3230 Tidewater Dr, Norfolk, VA 23509	1.0000
325 Chatham Dr, Newport News, VA 23602	1.0000
3317 Oaklawn Blvd, Hopewell, VA 23860	0.6667
3320 Williamsburg Rd, Richmond, VA 23231	1.0000
3330 S Crater Rd, Petersburg, VA 23805	0.6667
3345 Virginia Beach Blvd, Virginia Beach, VA 23452	1.0000
335 Merchant Walk Sq Bldg 800, Charlottesville, VA 22902	0.8634
3350 E Princess Anne Rd, Norfolk, VA 23502	1.0000
3352 Virginia Beach Blvd, Virginia Beach, VA 23452	1.0000
337 Perimeter Dr, Midlothian, VA 23113	0.9966
3376 S Military Hwy, Chesapeake, VA 23323	1.0000
3400 George Washington Hwy, Portsmouth, VA 23704	1.0000
3412 W Mercury Blvd, Hampton, VA 23666	0.9983
3430 Anderson Hwy, Powhatan, VA 23139	0.6808
3450 Washington Blvd, Arlington, VA 22201	1.0000
346 W Broaddus St, Bowling Green, VA 22427	0.6666
3480 S. Jefferson St., Falls Church, VA 22041	1.0000
35 Town & Country Dr, Falmouth, VA 22405	0.6897
35 W Mercury Blvd, Hampton, VA 23669	1.0000
3531 Tidewater Dr # 33, Norfolk, VA 23509	1.0000
3565 Holland Rd, Virginia Beach, VA 23452	1.0000
3569 Bridge Rd # 201, Suffolk, VA 23435	0.9898
359 Maple Ave. East, Vienna, VA 22180	1.0000
3601 Old Halifax Rd Ste 200, South Boston, VA 24592	0.6667
3621 N Courthouse Rd, Providence Forge, VA 23140	1.0000
3627 N. Hathaway Blvd., Rocky Mount, NC 27801	1.0000

Store Location	DCP Value
3690 King St, Alexandria, VA 22302	0.9017
3703 Mechanicsvills Pike, Richmond, VA 23223	1.0000
3712 Virginia Beach Blvd, Virginia Beach, VA 23452	1.0000
3736 Ahoy Dr, Chesapeake, VA 23321	1.0000
3750 Virginia Beach Blvd Ste B, Virginia Beach, VA 23452	1.0000
3857 Kecoughtan Rd, Hampton, VA 23669	1.0000
3877 Holland Rd, Virginia Beach, VA 23452	1.0000
3915 Centreville Rd, Chantilly, VA 20151	0.8523
3978 Meadowdale Blvd, Richmond, VA 23234	1.0000
3985 Plank Rd, Fredericksburg, VA 22407	0.8466
400 S Pickett St, Alexandria, VA 22304	1.0000
400 W 21st St, Norfolk, VA 23517	1.0000
4000 Glenside Dr, Richmond, VA 23228	1.0000
4031 E Little Creek Rd, Norfolk, VA 23518	1.0000
4031 W Mercury Blvd, Hampton, VA 23666	1.0000
4036 Victory Blvd, Portsmouth, VA 23701	1.0000
4040 Victory Blvd, Portsmouth, VA 23701	1.0000
4080 Jermantown Rd, Fairfax, VA 22030	0.8922
41 Lee Hwy. Suite 27, Warrenton, VA 20186	0.6667
415 W Main St, Murfreesboro, NC 27855	1.0000
416 13th Street, West Point, VA 23181	0.6703
41934 NC Highway 12., Avon, NC 27915	1.0000
420 Pantops Ctr, Charlottesville, VA 22911	0.7137
4200 Portsmouth Blvd Ste 600, Chesapeake, VA 23321	1.0000
421 E Laburnum Ave, Richmond, VA 23222	1.0000
4221 Pleasant Valley Rd, Virginia Beach, VA 23464	1.0000
4231 Greenwood Dr, Portsmouth, VA 23701	1.0000
4300 Boydton Plank Rd, Petersburg, VA 23803	0.6667
4300 Portsmouth Blvd Ste 170, Chesapeake, VA 23321	1.0000
4311 Walney Rd, Chantilly, VA 20151	0.8914
43150 Broadlands Center Plz Ste 110, Ashburn, VA 20148	0.6667
4318B George Washington Mem Hwy, Yorktown, VA 23692	1.0000
4323 Indian River Rd Ste A, Chesapeake, VA 23325	1.0000
43330 Junction Plaza, Ashburn, VA 20147	0.6667
4336 Virginia Beach Blvd, Virginia Beach, VA 23452	1.0000

Store Location	DCP Value
4340 S Laburnum Ave, Richmond, VA 23231	1.0000
43670 Greenway Corp. D, Ashburn, VA 20147	0.6667
4368 Chantilly Shopping Center Dr, Chantilly, VA 20151	0.8568
4401 Pouncey Tract Rd, Glen Allen, VA 23060	0.9515
4411 Old Hundred Rd, Chester, VA 23831	0.9829
44110 Ashbrn Shop Ctr, Ashburn, VA 20147	0.6667
44110 Ashburn Shopping Plz, Ashburn, VA 20147	0.6672
4511 John Tyler Hwy Ste L, Williamsburg, VA 23185	1.0000
4521 S Laburnum Ave, Richmond, VA 23231	1.0000
4536 E Princess Anne Rd, Norfolk, VA 23502	1.0000
45425 Dulles Crossing Plz, Sterling, VA 20166	0.7757
455 Oriana Rd, Newport News, VA 23608	1.0000
4551 S Laburnum Ave, Henrico, VA 23231	1.0000
4554 Virginia Beach Blvd, Virginia Beach, VA 23462	1.0000
4601 Commonwealth Centre Pkwy, Midlothian, VA 23112	0.9996
461 Merrimac Trl, Williamsburg, VA 23185	1.0000
462 Wythe Creek Rd, Poquoson, VA 23662	1.0000
4630 Monticello Ave, Williamsburg, VA 23188	1.0000
4640 Monticello Ave, Williamsburg, VA 23188	1.0000
4655 Monticello Ave, Williamsburg, VA 23188	1.0000
4670 Casey Blvd, Williamsburg, VA 23188	1.0000
4708 Portsmouth Blvd, Chesapeake, VA 23321	1.0000
4725 W Ox Rd, Fairfax, VA 22030	0.9032
475 Kempsville Rd, Chesapeake, VA 23320	1.0000
4805 Nine Mile Rd, Richmond, VA 23223	1.0000
4805 Shore Dr Ste B, Virginia Beach, VA 23455	1.0000
4821 Virginia Beach Blvd, Virginia Beach, VA 23462	1.0000
4915 Richmond Tappahannock Hwy, Aylett, VA 23009	0.7271
4925 W Broad St Ste 404, Richmond, VA 23230	1.0000
500 S. Washington St, Falls Church, VA 22046	1.0000
5000 S Croatan Hwy, Nags Head, NC 27959	1.0000
5001 Holt Ave, Hampton, VA 23666	1.0000
5001 Nine Mile Rd, Henrico, VA 23223	1.0000
5007 Victory Blvd, Yorktown, VA 23693	1.0000
502 E Main St Ste 7, Louisa, VA 23093	1.0000

Store Location	DCP Value
504 Bud Dr, Chesapeake, VA 23322	1.0000
5061 Westfields Blvd, Centreville, VA 20120	0.8051
5073 Jefferson Davis Hwy, Fredericksburg, VA 22408	0.9123
5095 Jefferson Davis Hwy, Fredericksburg, VA 22408	0.9096
5101 Jefferson Ave, Newport News, VA 23605	1.0000
5115 Leesburg Pike, Falls Church, VA 22041	1.0000
517 Jefferson Davis Hwy, Fredericksburg, VA 22401	0.8409
5207 Plaza Dr, Hopewell, VA 23860	0.6817
5215 Plank Rd, Fredericksburg, VA 22407	0.9634
522 Caratoke Highway, Moyock, NC 27958	1.0000
5221 Brook Rd, Richmond, VA 23227	0.9863
5222 Oaklawn Blvd Ste B2, Hopewell, VA 23860	0.6906
525 First Colonial Rd, Virginia Beach, VA 23451	1.0000
525 Mineral Ave, Mineral, VA 23117	0.6665
5270A Chamberlayne Rd, Richmond, VA 23227	0.9851
5275 Waterway Dr, Dumfries, VA 22025	0.6667
5300 N Croatan Hwy, Kitty Hawk, NC 27949	1.0000
540 Newtown Rd, Virginia Beach, VA 23462	1.0000
5400 N Croatan Hwy, Kitty Hawk, NC 27949	1.0000
5401 W Broad St, Richmond, VA 23230	1.0000
546 First Colonial Rd, Virginia Beach, VA 23451	1.0000
550 Celebrate VA Pkwy, Fredericksburg, VA 22406	0.6668
5545 N Croatan Hwy, Southern Shores, NC 27949	1.0000
557 E Constance Rd, Suffolk, VA 23434	1.0000
5620 Hull Street Rd, Richmond, VA 23224	1.0000
5630 Princess Anne Rd Ste B, Virginia Beach, VA 23462	1.0000
57 Hidenwood Shopping Ctr, Newport News, VA 23606	1.0000
57 US Highway 64 E, Plymouth, NC 27962	1.0000
5700 Hopkins Rd, North Chesterfield, VA 23234	1.0000
5701 Plank Road, Fredericksburg, VA 22407	0.9586
5744 Churchland Blvd, Portsmouth, VA 23703	1.0000
5771 Plank Rd, Fredericksburg, VA 22407	0.9497
5820 E Virginia Beach Blvd, Norfolk, VA 23502	1.0000
5870 Kingstowne Blvd., Alexandria, VA 22315	1.0000
5885 Kingstowne Blvd, Alexandria, VA 22315	1.0000

Store Location	DCP Value
5893 NC Highway 48, Roanoke Rapids, NC 27870	1.0000
5900 E Virginia Beach Blvd Ste 206, Norfolk, VA 23502	1.0000
60 S Airport Dr, Highland Springs, VA 23075	1.0000
6000 Burke Commons Rd, Burke, VA 22015	0.9863
6000 Nine Mile Rd, Richmond, VA 23223	1.0000
6011 Burke Ctr. Pkwy, Burke, VA 22015	0.9998
605 Dresden Dr, Newport News, VA 23601	1.0000
605 Newmarket Dr N Ste 1, Newport News, VA 23605	0.9991
606 Cokey Rd, Rocky Mount, NC 27801	1.0000
6100 Arlington Blvd, Falls Church, VA 22044	1.0000
6101 N Military Hwy Ste 100, Norfolk, VA 23518	1.0000
6111 Jefferson Ave, Newport News, VA 23605	0.9979
6130 Chesapeake Blvd, Norfolk, VA 23513	1.0000
6140 Rose Hill Dr, Alexandria, VA 22310	1.0000
6155 Community Drive, Chincoteague, VA 23336	1.0000
618 E Little Creek Rd, Norfolk, VA 23505	1.0000
6198 Little River Tpke, Alexandria, VA 22312	1.0000
6200 Little River Turnpike, Alexandria, VA 22312	1.0000
621 East Glebe Rd, Alexandria, VA 22305	1.0000
6210 Seven Corners Ctr, Falls Church, VA 22044	1.0000
624 W Southside Plaza St, Richmond, VA 23224	1.0000
6255 College Dr, Suffolk, VA 23435	0.9981
6259 College Dr, Suffolk, VA 23435	1.0000
6303 Richmond Hwy, Alexandria, VA 22306	0.9715
6308 Jefferson Davis Hwy, Spotsylvania, VA 22551	0.8044
6315 Jahnke Rd, Richmond, VA 23225	1.0000
632 Grassfield Pkwy, Chesapeake, VA 23322	1.0000
6372 Village Center Dr, Bealeton, VA 22712	0.6640
6425 Mechanicsville Tpke, Mechanicsville, VA 23111	0.9984
6449 Centralia Rd, Chesterfield, VA 23832	0.9781
6493 Mechanicsville Tpke, Mechanicsville, VA 23111	0.9821
6501 W Broad St, Richmond, VA 23230	1.0000
6508 Hull Street Rd, Richmond, VA 23224	1.0000
6520 Midlothian Tpke, Richmond, VA 23225	1.0000
6555 Little River Tpke, Alexandria, VA 22312	1.0000

Store Location	DCP Value
6569 Market Dr, Gloucester, VA 23061	1.0000
657 Phoenix Dr, Virginia Beach, VA 23452	1.0000
6600 Richmond Hwy, Alexandria, VA 22306	0.9983
6600 Springfield Mall, Springfield, VA 22150	1.0000
6607 Wilson Blvd, Falls Church, VA 22044	0.9474
6610 Mooretown Rd, Williamsburg, VA 23188	1.0000
663 Turnberry Blvd, Newport News, VA 23602	1.0000
6659 George Washington Memorial Hwy, Gloucester, VA 23061	1.0000
6691 Frontier Dr, Springfield, VA 22150	1.0000
6700 Mooretown Rd, Williamsburg, VA 23188	1.0000
6704 Caratoke Hwy, Grandy, NC 27939	1.0000
6715 Backlick Rd, Springfield, VA 22150	0.9996
672 Elden St, Herndon, VA 20170	0.9587
673 Cedar Rd, Chesapeake, VA 23322	1.0000
6750 Richmond Hwy, Alexandria, VA 22306	0.9848
6800 Richmond Highway, Alexandria, VA 22306	1.0000
6819 Waltons Ln, Gloucester, VA 23061	1.0000
6920 Braddock Rd, Annandale, VA 22003	1.0000
6920 Forest Ave, Richmond, VA 23230	1.0000
6921 Waltons Ln, Gloucester, VA 23061	1.0000
6980 Braddock Rd, Annadale, VA 22003	1.0000
7 E 16th St, Richmond, VA 23224	1.0000
7 Town Center Way, Hampton, VA 23666	1.0000
700 McKinney Blvd Ste 500, Colonial Beach, VA 22443	0.6667
700 N Wesleyan Blvd, Rocky Mount, NC 27804	1.0000
7001 Winterpock Rd, Chesterfield, VA 23832	0.9910
703 W Ehringhaus Street, Elizabeth City, NC 27909	1.0000
7041 Brookfield Plz, Springfield, VA 22150	1.0000
7100 Staples Mill Road, Richmond, VA 23228	0.9996
7107 Forest Hill Ave, Richmond, VA 23225	1.0000
711 E Atlantic St, South Hill, VA 23970	0.6667
7126 Hayes Shopping Ct, Hayes, VA 23072	1.0000
7137 Columbia Pike, Annadale, VA 22003	1.0000
7199 Stonewall Parkway, Mechanicsville, VA 23111	0.9861
72 Coliseum Xing, Hampton, VA 23666	1.0000

Store Location	DCP Value
720 Church St, Norfolk, VA 23510	1.0000
7235 Arlington Blvd, Falls Church, VA 22042	1.0000
7235 Bell Creek Rd, Mechanicsville, VA 23111	1.0000
7251 Bell Creek Rd, Mechanicsville, VA 23111	0.9947
7260 Bell Creek Rd, Mechanicsville, VA 23111	0.9823
7300 Midlothian Tpke Ste A, Richmond, VA 23225	1.0000
7307 Taw St, Richmond, VA 23237	1.0000
731 E Rochambeau Dr, Williamsburg, VA 23188	1.0000
7373 Boston Blvd, Springfield, VA 22153	0.9811
7390 Bell Creek Rd Ste 308A, Mechanicsville, VA 23111	0.9963
7430 Bell Creek Rd, Mechanicsville, VA 23111	0.9924
7448 Little River Tpke Ste B, Annandale, VA 22003	1.0000
7501 Hunts Blvd., Springfield, VA 22153	1.0000
7525 Tidewater Dr, Norfolk, VA 23505	1.0000
7530 Tidewater Dr, Norfolk, VA 23505	1.0000
7552 W Broad St, Richmond, VA 23294	0.9995
7635 Granby St, Norfolk, VA 23505	1.0000
7700 Gunston Plz # A, Lorton, VA 22079	0.9017
7710 Richmond Hwy, Alexandria, VA 22306	1.0000
7734 Hampton Blvd Ste A, Norfolk, VA 23505	1.0000
7812 Richmond Hwy, Alexandria, VA 22306	1.0000
7901 Brook Rd, Richmond, VA 23227	0.9718
7910 Richmond Hwy, Alexandria, VA 22306	1.0000
7940 Richmond Hwy, Alexandria, VA 22306	0.9878
798 Halifax St, Petersburg, VA 23803	0.6667
8001 Brook Rd, Richmond, VA 23227	0.9714
801 E Rochambeau Dr, Williamsburg, VA 23188	1.0000
801 Merrimac Trl, Williamsburg, VA 23185	1.0000
8074 Rolling Road, Springfield, VA 22153	1.0000
809 S Washington St, Alexandria, VA 22314	1.0000
815 W Constance Rd Ste A, Suffolk, VA 23434	1.0000
823 E Washington St, Suffolk, VA 23434	1.0000
83 Brunswick Square Ct, Lawrenceville, VA 23868	0.6667
830 Southpark Blvd, Colonial Heights, VA 23834	0.6667
8320 Old Kene Mil Rd., Springfield, VA 22152	1.0000

Store Location	DCP Value
8484 Kings Hwy, King George, VA 22485	0.6667
849 W Main St, Murfreesboro, NC 27855	1.0000
850 Glenrock Rd, Norfolk, VA 23502	1.0000
869 S Pickett St, Alexandria, VA 22304	1.0000
8784 Guinea Rd, Hayes, VA 23072	1.0000
8794 Sacramento Dr, Alexandria, VA 22309	1.0000
880 West Roslyn Road, Colonial Heights VA, VA 23834	1.0000
8920 Patterson Ave, Richmond, VA 23229	1.0000
8941 Ox Road, Lorton, VA 22079	0.9248
900 City Park Drive, Chesapeake, VA 23320	1.0000
900 Tidewater Dr, Norfolk, VA 23504	1.0000
900 Walmart Way, Midlothian, VA 23113	1.0000
9001 Staples Mill Rd, Henrico, VA 23228	0.9824
901 Walmart Way, Midlothian, VA 23113	0.9984
908 Lasalle Ave, Hampton, VA 23669	1.0000
910 Aberdeen Rd, Hampton, VA 23666	1.0000
910 Great Bridge Blvd Ste 117, Chesapeake, VA 23320	1.0000
911 B St, Chesapeake, VA 23324	1.0000
9110 Mathis Ave, Manassas, VA 20110	0.6667
922 N Main St Ste A, Suffolk, VA 23434	1.0000
9232 Old Keene Mill Rd Ste B, Burke, VA 22015	1.0000
928 Diamond Springs Rd Ste 102, Virginia Beach, VA 23455	1.0000
9422 W Broad St, Richmond, VA 23294	0.9662
9440 W Broad St, Richmond, VA 23294	0.9685
9490 W Broad St, Richmond, VA 23294	0.9718
9534 Main St, Fairfax, VA 22031	0.9519
955 Providence Sq Shopping Ctr, Virginia Beach, VA 23464	1.0000
9573 Shore Dr, Norfolk, VA 23518	1.0000
9616 Boydton Plank Rd, Alberta, VA 23821	0.6657
9620 Granby St, Norfolk, VA 23503	1.0000
9650 W Broad St, Glen Allen, VA 23060	0.9649
970 Hilton Heights Rd, Charlottesville, VA 22901	0.7528
9714 Sliding Hill Rd, Ashland, VA 23005	0.9008
9785 Jefferson Davis Hwy, Fredericksburg, VA 22407	0.8403
9795 Courthouse Rd, Spotsylvania, VA 22553	0.8941

Store Location	DCP Value
980 J Clyde Morris Blvd, Newport News, VA 23601	1.0000
9818 Jefferson Davis Hwy, Richmond, VA 23237	0.9964
9870 W Broad St, Glen Allen, VA 23060	0.9824
99 Hill Carter Pkwy, Ashland, VA 23005	0.6667
Towing Point Park, Norfolk, VA 23324	1.0000

24.7.1.1 Update Summary

Updates to this section are described in Table 24-16.

Table 24-16. Summary of Update(s)

Updates in Version	Update Type	Description
2022	Updated values	updated store locations and DCP values
2021	Updated values	updated store locations and DCP values
2020		Initial release

24.8 Sub-Appendix F1-VIII: Residential Account Normalized Annual Consumption

Forecasted ex ante savings or deemed savings for the smart thermostat, home energy reports, and central home energy management measures are calculated by multiplying a savings factor by either participant specific normalized energy usage or the average energy usage of Dominion's residential customers by premise type and region. This section describes how customer usage values are applied to the deemed savings calculations for applicable measures. The normalized customer specific annual kWh values are determined using the methodology discussed in Section 24.9. The annual kWh default values shown in Table 24-17 will be updated annually.

If a customer specific annual kWh value is unavailable, or outside an acceptable range, a default value is assigned. Examples of circumstances where the default may be required includes:

The customer/premise combination is not found in the Dominion Energy provided billing usage data set. This will apply in the case of new construction.

The predicted annual consumption from the individual customer regression prior to normalization is not within 25% of actual consumption

Defaults values in Table 24-17 are assigned by region and premise type (when available).

Table 24-17. 2021 Default Residential Normalized Consumption by Region and Premise Type

Region	Premise Type	Default Whole House Annual Consumption, kWh	Default Base Load Annual Consumption, kWh	Default Cool Load Consumption, kWh	Default Heating Load Consumption, kWh
	Condo	9,775	5,574	1,698	2,503
	Garden APT	8,487	5,172	1,541	1,774
	MID/HI Rise	7,548	4,963	1,121	1,464
Central	Mobile Home	15,207	7,550	2,177	5,480
	Single Family Home	15,701	8,590	2,790	4,321
	Townhouse	9,615	5,920	1,896	1,798
	Average (default)	7,351	3,930	1,311	2,110
	Condo	11,062	6,501	1,689	2,872
	Garden APT	8,905	5,553	1,406	1,947
	MID/HI Rise	7,995	5,218	1,167	1,611
Eastern	Mobile Home	15,135	7,597	1,876	5,662
	Single Family Home	14,845	8,561	3,067	3,217
	Townhouse	10,938	6,627	2,028	2,283
	Average (default)	8,723	5,078	1,464	2,182
	Condo	11,482	6,257	1,521	3,704
	Garden APT	7,657	4,786	1,345	1,526
	MID/HI Rise	6,661	4,507	1,155	999
Northern	Mobile Home	15,572	7,510	2,101	5,962
	Single Family Home	15,605	9,621	2,832	3,152
	Townhouse11	11,044	7,012	2,087	1,945
	Average (default)	9,264	5,323	1,472	2,469
	Condo	7,911	3,675	2,694	1,542
Southern	Garden APT	10,290	5,396	1,867	3,027
Soumern	MID/HI Rise	9,698	5,231	1,886	2,580
	Mobile Home	16,029	8,360	2,378	5,291

Region	Premise Type	Default Whole House Annual Consumption, kWh	Default Base Load Annual Consumption, kWh	Default Cool Load Consumption, kWh	Default Heating Load Consumption, kWh
	Single Family Home	15,823	8,296	3,405	4,122
	Townhouse	9,644	5,004	2,075	2,565
	Average (default)	10,330	5,525	1,838	2,967
	Condo	10,425	5,794	1,282	3,349
	Garden APT	8,565	5,010	1,036	2,519
	MID/HI Rise	8,620	5,339	949	2,332
Western	Mobile Home	15,574	7,935	1,356	6,283
	Single Family Home	15,006	8,526	1,855	4,626
	Townhouse	11,002	6,218	1,446	3,338
	Average (default)	8,037	4,489	1,002	2,546
Average		9,387	5,463	1,554	2,370

Table 24-18. 2022 Default Residential Normalized Consumption by Region and Premise Type

Region	Premise Type	Default Whole House Annual Consumption, kWh	Default Base Load Annual Consumption, kWh	Default Cool Load Consumption, kWh	Default Heating Load Consumption, kWh
	Condo	9,823	5,469	1,696	2,658
	Garden APT	8,623	5,145	1,598	1,880
	MID/HI Rise	7,746	4,997	1,186	1,563
Central	Mobile Home	15,206	7,503	2,217	5,486
	Single Family Home	15,754	8,302	2,884	4,568
	Townhouse	9,707	5,793	1,964	1,950
	Average (default)	9,080	5,136	1,657	2,287
	Condo	11,134	6,293	1,960	2,881
	Garden APT	9,085	5,556	1,612	1,917
	MID/HI Rise	8,215	5,189	1,376	1,650
Eastern	Mobile Home	15,099	7,540	2,248	5,311
	Single Family Home	15,122	8,204	3,672	3,246
	Townhouse	11,136	6,469	2,354	2,314
	Average (default)	10,250	5,989	1,993	2,268
	Condo	11,250	6,022	1,423	3,805
	Garden APT	7,590	4,643	1,301	1,646
	MID/HI Rise	6,663	4,377	1,170	1,117
Northern	Mobile Home	15,403	7,504	1,981	5,917
	Single Family Home	15,478	9,263	2,746	3,469
	Townhouse11	10,949	6,805	1,975	2,169
	Average (default)	8,521	5,439	1,299	1,784
	Condo	8,653	4,335	2,708	1,610
Southern	Garden APT	10,469	5,480	1,991	2,998
	MID/HI Rise	10,099	5,540	2,011	2,548
	Mobile Home	16,027	8,158	2,632	5,237
	Single Family Home	16,269	8,340	3,697	4,231
	Townhouse	9,944	5,143	2,212	2,589
	Average (default)	12,623	6,635	2,424	3,564

Region	Premise Type	Default Whole House Annual Consumption, kWh	Default Base Load Annual Consumption, kWh	Default Cool Load Consumption, kWh	Default Heating Load Consumption, kWh
	Condo	10,415	5,641	1,245	3,530
	Garden APT	8,605	5,026	1,033	2,547
	MID/HI Rise	8,827	5,626	958	2,244
Western	Mobile Home	15,479	7,706	1,343	6,430
	Single Family Home	14,890	8,225	1,849	4,816
	Townhouse	11,157	6,308	1,452	3,397
	Average (default)	9,459	5,172	1,107	3,180
Average		9,990	5,748	1,802	2,439

24.8.1 Update Summary

Updates to this section are described in Table 24-19.

Table 24-19. Summary of Update(s)

Updates in Version	Update Type	Description
2022	Table	Added 2022 defaults
2021		Initial release

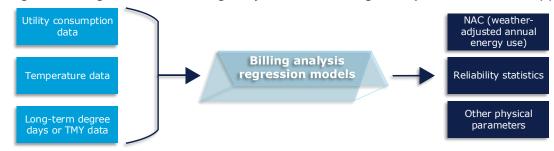
24.9 Sub-Appendix F1-IX: Billing Analysis

24.9.1.1 Billing Analysis Summary

Billing analysis (a form of consumption data analysis) is an industry-standard EM&V method for determining the energy consumption effects of DSM programs. Billing analysis allows a comparison of the energy consumption of buildings or households. This appendix provides an overview of billing analysis methods. The application of billing analysis to specific measure level or program savings estimates can be found in the respective measure sections.

24.9.1.2 Determining Whole-Facility Normalized Annual Consumption

Heating and cooling consumption are estimated using a widely applied method based on the decades-old PriSM approach (PRInceton Scorekeeping Method) at the customer account/site level. This approach involves estimating a set of regression models based on billing data (energy consumption) as a function of weather. The estimated weather parameters combined with typical weather data provide heating and cooling estimates for residential homes to produce estimates of normalized annual consumption (NAC).²¹⁷


This physical model of residential energy consumption is well determined due to the linear relationship between the outdoor temperature and energy consumption for heating and cooling, coupled with the consistent patterns of household behavior.²¹⁸ Conditions such as changes in occupancy, retrofits or renovations that impact heating or

²¹⁷ Further discussion of these methods can be found in Li, M.; Haeri, H.; Reynolds, A. (2017). The Uniform Methods Project: Methods for Determining Energy-Efficiency Savings for Specific Measures, "Chapter 8: Whole-Building Retrofit with Consumption Data Analysis Evaluation Protocol," CO; National Renewable Energy Laboratory. NREL/SR-7A40-70472; CALTRACK Models, Technical Appendix; Fels, M. F. 1986. "PRISM: An introduction," Energy & Buildings 9: pp. 5-18.

²¹⁸ The linear relationship between heat pump operations and outdoor temperature is less well determined than traditional gas and electric HVAC equipment and billing analysis methods for heat pumps are adjusted accordingly.

cooling loads or equipment efficiency, or life events that produce changes in behavior influence the strength of model results, but are detectable and can be adjusted for in an analysis.

Figure 24-1. Regression-based Billing Analysis Method for Single/Group Household Account(s)

24.9.1.3 Regression Model

The regression model is given by:

$$Eim = \beta 0 + \beta h Him(\tau h) + \beta c Cim(\tau c) + \epsilon im$$

Where:

Eim= average electric consumption per day for participant i during period m $Him(\tau h)$ = heating degree-days (HDD) at the heating base reference temperature, τh $Cim(\tau c)$ = cooling degree-days (CDD) at the cooling base reference temperature, τc $\beta 0, \beta h, \beta c$ = site-level regression coefficients measuring intercept (base load), heating load, and cooling load, on a single year's energy consumption, respectively τh = heating base temperatures, determined by choice of the optimal regression τc = cooling base temperatures, determined by choice of the optimal regression ϵim = regression residual

Multiple models are estimated over a range of heating and cooling degree days. The models are screened to remove estimates that have implausible (negative) cooling and heating coefficients and insufficient data. Statistical tests identify the optimal model and the associated site-specific reference temperature base. The optimal site-level models produce parameters that indicate the level of energy consumption correlated with HDD or CDD as well as levels of energy consumption not correlated with either HDD or CDD (baseload).

Model parameter estimates for each site allow the prediction of site-level heating, cooling, and baseload consumption, under any weather condition. For ex post savings calculations, heating and cooling consumption will be put on a typical weather basis, using TMY values or 10–12 years of actual daily or hourly temperature data, converted to degree days based on the site-specific optimal degree-day bases (determined by the reference temperature). Total heating and cooling consumption, or the normalized annual consumption (NAC) will be estimated on an annual basis for electricity consumption for each residential household in Dominion's service territory. Average customer values, or default estimates will also be calculated for household that do not have site-specific heating and cooling estimates.

24.9.1.4 Second Stage Billing Analysis or Measure-Level Savings

Assuming that non-program-related change has been addressed (through billing analysis methods described above and a comparison group), the overall billing analysis result provides the average overall savings given the mix of the

measures installed. With the second stage, regression is used to apportion the pre-post change in consumption to specific measures. A number of factors need to line up to get reasonable estimates of measure-level savings for all measures: savings that do not have too much variation, a large population, and a varied mix of measures. This can be an issue for programs with multiple measures or when there cross-participation between energy efficiency programs.

There are practical limits to a regression's ability to produce a well-founded measure-level estimate of savings under some common scenarios. For example, if two measures are always installed together, it will never be possible to get individual measure, regression-based estimates of savings. Furthermore, highly variable savings for a measure across different measure combinations can produce a measure-level estimate of savings that is not consistent with actual savings for any particular measure mix. As a result, pre-post savings are rarely apportioned rationally to all end use measures.

There are multiple solutions for producing measure-level estimates when the measure-level regression results are insufficient. They include using engineering models as well as secondary source information. Most important however for determining program level savings, is that the estimates aggregate to the overall savings produced by the billing analysis. This kind of consistency is essential and relatively easy to confirm.

24.9.1.5 Annual Electric Heating and Cooling Consumption

The billing analysis methods described above are used to disaggregate seasonal household electric heating and cooling consumption from total consumption for measures where savings are calculated as a percentage of seasonal consumption.²¹⁹

Average heating and cooling consumption values are developed from account level consumption data for the population of residential customers according to premise type and location.

Premise type

Single family home, mobile home, and premises with usage data but no premise type are classified as single family.

Condo, garden apartment, mid/high rise, and townhouse are considered multifamily dwelling type.

Customers with no premise type are classified as single family because their consumption is comparable to single family and probabilistically, they are more likely to be single family than multifamily.

Location

The geographical variables correspond to regions in Dominion's service territory and associated weather stations for the Northern, Eastern, Central, Southern and Western service areas according to the participants address.

24.9.1.6 Update Summary

The updates to this section are described in Table 24-16.

Table 24-20. Summary of Update(s)

Updates in Version	Type of Change	Description of Change
2022	None	No change

²¹⁹ As of 2021 this includes smart thermostats, smart thermostat optimization, home energy management systems, and home energy reports in the Customer Engagement Program.

Updates in Version	Type of Change	Description of Change
2021	New	New section