# FILED

FEB 2 2 2005

VOL.

Clerk's Office

PRESIDING Ervin & PLACE: Dobbes Building, Raluch, Art. DATE: 1/21/05 TIME: 2:02 PM - 4:01 PM DOCKET NO.: E-22, SUB 418 TITLE: \_Application of Dominion North Carolina\_ \_Power to Join PJM as PJM South

APPEARANCES PUBLIC STAFF: ATT. GEN. COMM. STAFF: APPLICANT-COMPLAINANT-RESPONDENT PROTESTANT-RESPONDENT-INTERVENOR

See Attached

2

### **WITNESSES**

Robert B. Stoddard Mathow J. Morey -

**OFFICIAL COPY** 

Public Staff Cross Firs. 5 & L Dominion Direct Stondard-1 Dominion Direct Stondard-C

 Briefs \_\_\_\_\_ or
 Within \_\_\_\_\_ days from mailing of transcript.

 Proposed Orders \_\_\_\_\_ Within \_\_\_\_\_ days.
 Waived \_\_\_\_\_\_

 Due:
 COPIES ORDERED \_\_\_\_\_\_

 COPIES ORDERED \_\_\_\_\_\_
 Commissioners: \_\_\_\_\_\_

 Chief Clerk:
 OTHERS:

 Reported by:
 Date Transcribed:
 TITLI

 Transcribed by:
 TRANSCRIPT

TITLE PGS. <u>3</u> TRANSCRIPT PGS. <u>48</u> TOTAL PGS. <u>114</u>

ADDITIONAL INFORMATION

PREFILED PGS. \_//

Da, Sub

 $\overline{\sim}$ 

# Annual Data for North Carolina Retail Customers

(Dollar figures are nominal)

| Base Case |                                    | <u>2005</u> | <u>2006</u> | <u>2007</u> | <u>2008</u> | <u>2009</u> | <u>2010</u> | <u>2011</u> | <u>2012</u> | <u>2013</u> | <u>2014</u> |
|-----------|------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| (M\$)     | Fuel                               | 47.1        | 48.8        | 50.5        | 51.4        | 53.1        | 54.9        | 57.8        | 60.9        | 63.9        | 66.9        |
| (M\$)     | Variable O&M                       | 9.0         | 9.1         | 8.9         | 8.8         | 9.4         | 10.0        | 10.5        | 11.0        | 11.5        | 12.0        |
| (M\$)     | Total Purchased Power <sup>1</sup> | 27.3        | 28.6        | 29.9        | 31.4        | 32.8        | 34.3        | 38.3        | 42.4        | 46.4        | 50.5        |
| (M\$)     | Congestion - Base Rates            | -           | -           | -           | -           | -           | -           | -           | -           | -           | -           |
| (M\$)     | FTRs                               | -           | -           | -           | -           | -           | -           | -           | -           | -           | -           |
| (GWh)     | Owned Generation <sup>2</sup>      | 3,316       | · 3,326     | 3,337       | 3,306       | 3,274       | 3,243       | 3,286       | 3,329       | 3,372       | 3,415       |
| (GWh)     | Purchases <sup>2,3</sup>           | 994         | 1,013       | 1,032       | 1,030       | 1,028       | 1,026       | 1,073       | 1,121       | 1,168       | 1,215       |
| Change    | Case                               | <u>2005</u> | <u>2006</u> | <u>2007</u> | <u>2008</u> | <u>2009</u> | <u>2010</u> | <u>2011</u> | <u>2012</u> | <u>2013</u> | <u>2014</u> |
| (M\$)     | Fuel                               | 43.2        | 45.1        | 47.0        | 47.9        | 49.6        | 51.4        | 54.         | ሮማ 1        | 60.0        | 62.9        |
| (M\$)     | Variable O&M                       | 8.5         | 8.5         | 8.3         | 8.3         | 8.9         | 9.5         | 10.         |             |             |             |
| (M\$)     | Total Purchased Power <sup>1</sup> | 30.9        | 32.0        | 33.1        | 35.0        | 36.8        | 38.7        | 43.         |             |             |             |
| (M\$)     | Congestion - Base Rates            | 4.9         | 5.2         | 5.5         | 5.8         | 6.1         | 6.3         | 6.          |             |             | بہ          |
| (M\$)     | FTRs                               | 6.8         | 7.3         | 7.7         | 7.9         | 8.0         | 8.1         | 8           |             |             | \$ J        |
| (GWh)     | Owned Generation <sup>2</sup>      | 3,180       | 3,199       | 3,217       | 3,192       | 3,167       | 3,143       | 3,1:        |             |             | x<br>z      |
| (GWh)     | Purchases <sup>1,2,3</sup>         | 1,097       | 1,108       | 1,120       | 1,119       | 1,118       | 1,117       | 1,1         |             | •           | in a        |

<sup>1</sup> Includes purchases from NUGS.

<sup>2</sup> GWh reported at production level.

<sup>3</sup> Sales are NOT netted out from Purchases.

PUBLIC STAFF CROSS-EXAMINATION EXHIBIT NO. 6 E-22 SUB 418 T/A PB 1/21/05

#### Table 1 CRA's Table V-3 Rearranged (millions of dollars; present value at 7/1/03) (positive numbers are net costs; negative numbers are net benefits)

| Line No.  | Line Operations                        | Production/Generation Costs          |          |                    |             |                    |                    |                                        |
|-----------|----------------------------------------|--------------------------------------|----------|--------------------|-------------|--------------------|--------------------|----------------------------------------|
|           |                                        | Fuel Factor Impacts                  |          |                    |             |                    |                    |                                        |
| 1         |                                        | Energy Purchases - Fuel Factor       |          | 20.1               | (with \$2.8 | <u>million Con</u> | estion Costs Rem   | loved)                                 |
| 2         |                                        | Fuel Costs                           |          | (20.5)             |             |                    |                    |                                        |
| 3         |                                        | NUG Energy- Fuel Factor              |          | (0.4)              |             |                    |                    |                                        |
| 4         | 1+2+3                                  | Sub-total Fuel Factor                | _        | (0.8)              |             | <u></u>            |                    |                                        |
|           |                                        | Base Rate Impacts                    |          |                    |             |                    | ·                  | ·                                      |
| 5         |                                        | NUG Energy - Base Rates              |          | (12.7)             |             |                    | ·                  |                                        |
| 6         |                                        | Energy Purchases - Base Rates        |          | 13.0               |             |                    | <u></u>            |                                        |
| 7         |                                        | VOM Reduction - Reduced Output       | (2.3)    |                    |             |                    |                    |                                        |
| 8         | 5+6+7                                  | Sub-Total Base Rate Energy           |          | (2.1)              |             |                    |                    | ·                                      |
|           |                                        |                                      |          |                    |             |                    |                    | ······································ |
| 9         | 4+8                                    | Total Production/Generation Costs (E | (2.9)    |                    |             |                    |                    |                                        |
|           |                                        |                                      |          |                    |             |                    |                    |                                        |
| 10        |                                        | Total Production Revenues            |          | 4.1                |             |                    |                    |                                        |
| 11        | 9+10                                   | Net Production Costs (Energy)        | ÷        | <u>i</u>           | 1.2         | < Loss to          | North Carolina f   | rom PJM                                |
| - <u></u> |                                        | :                                    |          |                    |             |                    |                    |                                        |
| 12        |                                        | Purchased Power Capacity             | <u> </u> | <u></u>            | (2.30)      | < Gain to          | o North Carolina 1 | from PJM                               |
|           | ·                                      |                                      |          | · <u> </u>         |             |                    |                    |                                        |
| 13        |                                        | Congestion Costs Base Rates          |          | 28.4               |             |                    |                    |                                        |
| 14        | *                                      | Congestion Costs Fuel Factor         |          | 2.8                |             |                    |                    |                                        |
| 15        | 13+14                                  | Total Congestion Costs               |          | 31.2               |             |                    | <u> </u>           |                                        |
| 16        | ······································ | FTR Revenues Base Rates              |          | <u>    (35,80)</u> |             |                    |                    | <u> </u>                               |
| 17        |                                        | FTR Revenues Fuel Factor             |          | (2.80)             |             |                    |                    |                                        |
| 18        | 16+17                                  | Total FTR Revenues                   |          | (38.60)            |             |                    | ·                  |                                        |
| 19        | 15+18                                  | Net FTR Revenues                     |          |                    | (7.40)      |                    |                    |                                        |
| 20        |                                        | RTO Admin Fees                       |          |                    | 10.2        |                    |                    |                                        |
| 21        | 20+19+12+11                            | Net Cost to North Carolina Customers |          |                    |             | 1.8                |                    |                                        |
| 22        | 20+12+11                               | Net Cost without Excess FTR Revenue  | <u>s</u> |                    | ·           | 9.2                |                    |                                        |
|           |                                        |                                      |          |                    |             |                    |                    |                                        |

Dominion Studdard Direct Ex. 1 E-22, Bub 418 I/A PB 1/21/25



| I.  | IN     | TRODUCTION                                                             | 1 |
|-----|--------|------------------------------------------------------------------------|---|
|     | I.A.   | Study Overview                                                         | 1 |
|     | I.B.   | Overview of the Models                                                 | 2 |
|     | I.C.   | Structure of the Report                                                | 3 |
| II. | 0      | VERVIEW OF BENEFITS AND COSTS                                          | 5 |
|     | II.A.  | Overview of Benefits                                                   | 5 |
|     | II.B.  | Calculation of Benefits                                                | 8 |
|     | II.C.  | Overview of Costs                                                      | 9 |
| ш   | . IS   | SUES NOT FULLY QUANTIFIED1                                             | 0 |
|     | III.A. | Ongoing Protection of Native Load1                                     | 0 |
|     | III.B. | Reliability1                                                           | 1 |
|     | III.C. | Integrated Transmission Planning1                                      | 1 |
|     | III.D. | Enhanced Wholesale Competition and Generation Technology Improvements1 | 1 |
|     | III.E. | Demand Response Benefits1                                              | 2 |
|     | III.F. | Improved Generation Siting and Transmission Investment1                | 2 |
|     | III.G. | Installed Capacity Market1                                             | 3 |
|     | III.H. | Benefits From Integration With an Established Market                   | 3 |
| IV  | . Al   | NALYTICAL APPROACH1                                                    | 4 |
|     | IV.A.  | Model of Physical System Operations1                                   | 4 |
|     | IV.B.  | Model of Capacity Prices1                                              | 7 |
|     | IV.C.  | Model of Financial Effectsl                                            | 8 |
| v.  | RI     | ESULTS OF THE BENEFIT-COST STUDY2                                      | 1 |
|     | V.A    | Base and Change Case Effects                                           | 1 |
|     | V.B.   | Summary of Benefits and Costs                                          | 7 |
|     | V.C.   | Sensitivity Case Results – High Fuel Price Case                        | 0 |
|     | V.D.   | Sensitivity Case Results – High Load Case                              | 1 |
|     | V.E.   | Sensitivity Case Results – Bedington-Black Oak Case                    | 2 |
|     | VI.CC  | ONCLUSIONS                                                             | 3 |
| AP  | PEND   | IX A: GE MAPS DESCRIPTION                                              | 5 |
|     | A.1.   | Description of the GE MAPS Model                                       | 5 |
|     | A.2.   | MAPS Modeling Results                                                  | 3 |



| APPENI | DIX B: CAPACITY MODEL                                  | 62         |
|--------|--------------------------------------------------------|------------|
| B.1.   | Determining New Build Requirements                     | 62         |
| B.2.   | Determining PJM Capacity Market Clearing Prices        | 64         |
| APPENI | DIX C: FINANCIAL MODEL DESCRIPTION                     | 67         |
| C.1.   | Overview                                               | 67         |
| C.2.   | MAPS Outputs Used in the Financial Model               | 67         |
| C.3.   | Other Inputs into the Financial Model                  | 68         |
| C.4.   | Annual Calculations - North Carolina Retail Customers  | 69         |
| C.5.   | Key Assumptions                                        | <b>7</b> 1 |
| APPEND | DIX D: DETAILED FINANCIAL RESULTS OF SENSITIVITY CASES | 75         |
| APPENI | DIX E: COMPARISON TO SEARUC STUDY                      | 84         |



يزير

| Table V-1: Annual Costs and Offsetting Revenues for North Carolina Retail Customers –<br>Base Case                                 | 22 |
|------------------------------------------------------------------------------------------------------------------------------------|----|
| Table V-2: Annual Costs and Offsetting Revenues for North Carolina Retail Customers –<br>Change Case                               | 23 |
| Table V-3: Annual Costs and Offsetting Revenues for North Carolina Retail Customers –<br>Change Case Minus Base Case               | 26 |
| Table V-4: Annual Benefits of Dominion Joining PJM for North Carolina Retail Customers                                             | 27 |
| Table V-5: Average Hourly Net Imports Into Dominion                                                                                | 28 |
| Table V-6: Summary Benefits of Dominion Joining PJM for North Carolina Retail         Customers (High Fuel Price Sensitivity Case) | 30 |
| Table V-7: Summary Benefits of Dominion Joining PJM for North Carolina Customers         (High Load Sensitivity Case)              | 31 |
| Table V-8: Summary Benefits of Dominion Joining PJM for North Carolina Customers         (Bedington-Black Oak Case)                | 32 |
| Table A-1: Hurdle Rates on Pool-to-Pool Transactions                                                                               | 38 |
| Table A-2: Generator Ramp Rates by Unit Type                                                                                       | 39 |
| Table A-3: Peak Loads and Annual Energy Demand, by Region                                                                          | 41 |
| Table A-4: Outage Rate Assumptions                                                                                                 | 43 |
| Table A-5: RDI-Based Regional Coal Forecast (\$2002/mmBtu)                                                                         | 45 |
| Table A-6: Fuel Oil Prices                                                                                                         | 46 |
| Figure A-1: Comparison of Natural Gas Price Forecasts                                                                              | 47 |
| Table A-7: Definition of Gas Price Regions                                                                                         | 48 |
| Table A-8: Sources for Historical Regional Gas Price Data                                                                          | 49 |
| Figure A-2: Maximum Economic Transfers Between Adjacent RTOs or Control Areas in MW                                                | 51 |
| Table A-9: NOX and SO2 Allowance Prices                                                                                            | 52 |
| Table A-10: Average Dominion Zone Net Imports, by Source (MW)                                                                      | 54 |
| Table A-11: Generation by Type (GWh)                                                                                               | 57 |
| Table A-12: Generation by Type and Expanded PJM Region (GWh)                                                                       | 58 |
|                                                                                                                                    |    |



.

| Table A-13: Generation Production Costs by Zone (\$M)                                                                                                   | .59 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table A-14: All-Hours Average Load Zone Prices                                                                                                          | .60 |
| Table A-15: Effect of Transmission Constraints on Dominion LMPs                                                                                         | .61 |
| Table B-1: Pattern of New Capacity Builds by Region                                                                                                     | .64 |
| Table B-2: ICAP Prices                                                                                                                                  | .66 |
| Table C-1: Transmission Rates (Base and Change Cases)                                                                                                   | .73 |
| Table C-2: PJM Administrative Charges                                                                                                                   | .73 |
| Table C-3: Dominion FTR Quantities by MAPS Unit                                                                                                         | .74 |
| Table D-1: Annual Costs and Offsetting Revenues for North Carolina Retail Customers –         Base Case (High Fuel Price Sensitivity Case)              | .75 |
| Table D-2: Annual Costs and Offsetting Revenues for North Carolina Retail Customers –         Change Case (High Fuel Price Sensitivity Case)            | .76 |
| Table D-3: Annual Costs and Offsetting Revenues for North Carolina Retail Customers –<br>Change Case Minus Base Case (High Fuel Price Sensitivity Case) | .77 |
| Table D-4: Annual Costs and Offsetting Revenues for North Carolina Retail Customers –<br>Base Case (High Load Sensitivity Case)                         | .78 |
| Table D-5: Annual Costs and Offsetting Revenues for North Carolina Retail Customers –         Change Case (High Load Sensitivity Case)                  | .79 |
| Table D-6: Annual Costs and Offsetting Revenues for North Carolina Retail Customers –         Change Case Minus Base Case (High Load Sensitivity Case)  | .80 |
| Table D-7: Annual Costs and Offsetting Revenues for North Carolina Retail Customers –         Base Case (Bedington-Black Oak Case)                      | .81 |
| Table D-8: Annual Costs and Offsetting Revenues for North Carolina Retail Customers –         Change Case (Bedington-Black Oak Case)                    | .82 |
| Table D-9: Annual Costs and Offsetting Revenues for North Carolina Retail Customers –         Change Case Minus Base Case (Bedington-Black Oak Case)    | .83 |

# Tables A-16 through A-31 follow Table A-15.



### I. INTRODUCTION

#### I.A. Study Overview

This is a study of the benefits and costs of Dominion North Carolina Power ("Dominion") joining the PJM Interconnection, L.L.C. ("PJM") Regional Transmission Organization ("RTO").<sup>1</sup> This study was commissioned by Dominion and conducted by Charles River Associates, and this report describes the study, its context, methods and results.<sup>2</sup>

The study assesses the net benefits of Dominion joining PJM for North Carolina jurisdictional retail customers ("North Carolina Retail Customers"). These net benefits are measured over a 10-year study period, from 2005 to 2014, presuming that Dominion, along with American Electric Power ("AEP"), Commonwealth Edison ("ComEd") and Dayton Power & Light ("DP&L" and, collectively with Dominion, AEP and ComEd, the "New PJM Entrants"), will be integrated into the PJM market structure by January 2005. The study is based on a pair of scenarios—a Base Case and a Change Case. In the Base Case, Dominion and the other New PJM Entrants are viewed as not being in PJM for the duration of the study period. In the Change Case, Dominion and the other New PJM Entrants are viewed as being in PJM for the duration of the study period. The difference between the two cases is used to quantify the benefits and costs to North Carolina Retail Customers of Dominion joining PJM.

Our approach to cost-benefit analysis is conservative, inasmuch as it quantifies all the costs, necessarily, while omitting from the quantified benefits many of the most valuable benefits, such as enhanced reliability. Previous studies of the benefits of RTO formation have considered a wide range of potential benefits, ranging from benefits that can be achieved quickly after market integration to longer-term, dynamic benefits of a broader marketplace. There is ample evidence that substantial "seams" issues exist between non-integrated wholesale electricity markets, even those that have adopted similar underlying market systems such as PJM and New York.<sup>3</sup> Elimination of

<sup>&</sup>lt;sup>3</sup> See, for example, 2002 State of the Market Report, NYISO, by David B. Patton, Independent Market Advisor (April 2003), pp. 93-98.



<sup>&</sup>lt;sup>1</sup> PJM currently acts as the system operator for two control zones: PJM East (which includes all of New Jersey, Delaware and the District of Columbia as well as eastern Maryland and most of eastern and central Pennsylvania) and PJM West (the control zone of Allegheny Power spanning portions of Maryland, Ohio, Pennsylvania, Virginia and West Virginia). Throughout this study, the term "PJM" is used to mean either the RTO itself or the combined PJM East and West control zones that it operates.

<sup>&</sup>lt;sup>2</sup> CRA has previously conducted a cost-benefit study of RTOs in the southeast on behalf of the Southeastern Association of Regulatory Utility Commissioners ("SEARUC"). That study is available at the website of SEARUC (Go to http://www.state.va.us/scc/searuc/). The SEARUC study did not include the Dominion control zone within the geographic area under consideration, which instead focused on the GridSouth, SeTrans and GridFlorida areas. This study and the SEARUC study have been conducted using the same modeling approaches appropriately revised to reflect the economic conditions in the expanded PJM area. A further discussion of this study compared to the SEARUC study is contained in Appendix E.

## Introduction

these inter-market seams is the most easily quantifiable benefit from integrating the New PJM Entrants into a common market, and the one most readily and accurately quantified. Consequently, these near-term benefits are the only benefits quantified in this study.

Other benefits of Dominion joining PJM are no less real, but their value is difficult to model or measure. For example, coordinated operation of the transmission grid over a wider area will enhance system reliability, as system operators control more resources to respond to changing system conditions. System planning can take advantage of the greater load diversity of a broader resource pool to ensure the same or higher standards of system reliability with less capital investment. Integration into a broader market will bring many of the benefits of wholesale competition to North Carolina markets, will promote more efficient investment in transmission and demand-side management and will lead to better siting of new generation.<sup>4</sup> Other researchers have linked development of competitive wholesale electricity markets to a material increase in generating unit availability or efficiency.<sup>5</sup> While these longer-term benefits are significant, we find that there is not yet sufficient information to allow us to quantify these benefits with reasonable certainty. Consequently, we discuss these benefits qualitatively only, realizing that the benefits we measure in this study are likely to be conservatively low.

Considering the quantitative and qualitative benefits together, it is clearly a net benefit to the North Carolina Retail Customers for the Company to join PJM. After netting out PJM administrative costs, we see a small quantifiable net cost to North Carolina Retail Customers of \$1.8 million net present value over the ten-year study period. This cost is more than justified by the qualitative benefits described herein.

#### I.B. Overview of the Models

This study uses the General Electric ("GE") Multi-Area Production Simulation ("MAPS") model as the primary analytical tool in the analysis. MAPS is a production simulation model with a detailed transmission representation. Assessing transmission conditions is an important objective of the study, and the MAPS model is well known to be highly capable in such matters. The MAPS model used for this study includes substantially all of the generation and transmission in the Eastern Interconnection, with more detailed transmission monitoring of the combined control areas of PJM East, PJM West, Dominion, AEP, DP&L and ComEd ("Expanded PJM"). To avoid potential confusion with the parallel filing in Virginia, the physical modeling assumptions are unchanged from that

<sup>&</sup>lt;sup>5</sup> See 2003 State of the Market Report, PJM (March 2004), pp. 131-133.



<sup>&</sup>lt;sup>4</sup> See, for example, William W. Hogan, "Transmission Investment and Competitive Electricity Markets," Center for Business and Government, Harvard University, April 1998; and William W. Hogan, "FERC Policy On Regional Transmission Organizations: Comments In Response To The Notice Of Proposed Rulemaking," FERC Docket No. RM99-2-000, pp. 41-44.

# Introduction

study. Although there have been some changes in market conditions since these assumptions were cast, the long-term outlook has not changed materially. Consequently, CRA believes that the results from the physical model and the sensitivity cases still reflect likely future conditions with sufficient confidence to serve as a basis for regulatory decisions.

The study has prepared detailed MAPS model runs for the years 2005, 2007, 2010, and 2014, and has interpolated between the results for the remaining years in the study period. The results from the MAPS model are detailed hour-by-hour prices, generation and load at each location in the model. These results are processed by a post-processor SAS model, the output of which is summarized by a Financial Evaluation Model ("FEM") that analyzes the effect of these changes in the wholesale market operation on rates to Dominion's North Carolina Retail Customers. In both the Base Case and the Change Case, the study assumes that North Carolina Retail Customers will remain on cost-of-service rate regulation. Therefore, the FEM analyzes only the *changes* of those portions of North Carolina retail rates that would be affected by PJM integration. It does not estimate the *level* of the cost-of-service rates in either the Base Case or Change Case.

This study explicitly accounts for Financial Transmission Rights ("FTRs") that will be used to hedge transmission congestion costs under PJM. The proposed set of FTRs have been evaluated by PJM to ensure that the studied set is simultaneously feasible—a requirement under the PJM rules. These FTRs are an important component in any risk mitigation strategy undertaken by market participants in the PJM market structure.

## I.C. Structure of the Report

The remainder of the report is organized into six main sections. The next section, Section II, provides an overview of the benefits and costs associated with Dominion joining PJM, as well as a discussion of certain issues that are addressed quantitatively. Section III contains a discussion of issues not fully quantified in the study. Section IV describes the analytical approach of the study, including the use of the MAPS model and the subsequent financial modeling. Section V presents the estimates of benefits and compares these to the administrative costs of participating in the RTO. The final section, Section VI, provides our conclusions. In addition, there are five technical appendices:

- Appendix A describes the GE MAPS model of the physical operation of the Eastern Interconnection grid operation and detailed results.
- Appendix B describes the capacity additions and pricing models.
- Appendix C discusses the financial model used to compute the rate effects on North Carolina Retail Customers.
- Appendix D presents detailed results of the sensitivity cases.



# Introduction

• Appendix E reviews methods and results of the SEARUC study of RTO costs and benefits and discusses differences in modeling techniques between this study and the SEARUC study.



### II. OVERVIEW OF BENEFITS AND COSTS

#### **II.A.** Overview of Benefits

This study, similar to other RTO cost-benefit studies, focuses on short-run benefits of Dominion joining PJM. Certain short-run benefits, such as enhanced system reliability, optimized system planning and improved resource adequacy, as well as longer-term benefits that can be expected from the establishment of competitive wholesale markets, cannot be easily identified and quantified for purposes of this type of study. These other benefits, while real and likely to be substantial, are difficult to model.

There are two major sources of the short-run benefits studied and presented here: production cost savings and savings from the pooling of regional capacity markets.

Given that North Carolina Retail Customers will pay cost-of-service rates, the quantifiable benefit to PJM integration is focused on the reduction in the purchase costs of energy and capacity not supplied from Dominion's generation fleet. Lower cost generation becomes more readily available as markets become more transparent and barriers to trade are reduced and Dominion is integrated into a regional capacity market.

This study measures the energy benefit of PJM integration as the difference in generation production costs between a Change Case and a Base Case as estimated using the GE MAPS model. The MAPS model used in this study incorporates a detailed representation of the Eastern Interconnection transmission grid, along with the dispatch and start-up costs of substantially all interconnected generating units. Because of the size of this model, more transmission constraints have been monitored in and around PJM, given the focus of this study, than in the remainder of the Eastern Interconnection. However, major transmission limits are monitored throughout the East. Transmission rates are assumed to be de-pancaked within the Expanded PJM when Dominion joins PJM.<sup>6</sup> Otherwise, transmission rates are assumed to continue as a charge to power movements between RTOs, in particular. Outside of the Expanded PJM, we assume RTOs exist in both the Base and Change Cases in most areas of the country, including SeTrans, GridFlorida, MISO, SPP, and the northeast ISOs.<sup>7</sup> In this way, the study focuses on the incremental impact of Dominion joining PJM, as opposed to the more general implementation of RTOs in other regions.

The MAPS model is a single system optimization model. Among other things, this means that MAPS will find the economically efficient unit commitment and generation dispatch to supply

<sup>&</sup>lt;sup>7</sup> The exception to this is the Carolinas, which we modeled as three control areas (Duke, Progress Energy, and South Carolina Electric & Gas), with capacity reserve sharing within the region only. Although there is no longer an active <u>SeTrans</u> proposal, whether SeTrans is formed is not material to our study results.



<sup>&</sup>lt;sup>6</sup> See Testimony of Harold W. Payne, Jr., filed concurrently with this study.

load throughout the study area. The current trading patterns in the Eastern Interconnection cannot be as efficient as this because the various control areas are independently conducting their own dispatch operations. These separate dispatch operations create loop flow on one another's transmission systems that contributes to transmission congestion. Such congestion cannot be managed efficiently in real-time under today's dispatch and trading arrangements. Instead, the utilities have developed other approaches, such as Transmission Line Relief ("TLRs"), to manage congestion. These approaches have served the industry well in the past, but are under additional stress with the development of merchant power producers and competitive wholesale power markets. Moreover, current arrangements for the trading of energy between control areas are based on incomplete bilateral markets that cannot be transparent, given the local management of regional congestion problems. The congestion costs created by transactions can only be partially accounted for under current grid operations in most areas. In contrast, PJM's market structure is based on LMP, which is designed to manage such congestion problems in real-time and to help markets become more efficient and transparent.

MAPS is well suited as a model of the generation dispatch that would take place after the New PJM Entrants are integrated into PJM. However, it cannot depict, without adjustment, the base-case trading arrangements prevailing under local management of congestion in which transactions do not pay the price that reflects the cost of the congestion they create. Accordingly, it is necessary to create a Base Case in MAPS by adding certain elements of inefficiency. In this study, like other studies of RTO benefits conducted previously, we have done this in two ways. First, we modeled individual control areas as having separate unit commitment and dispatch to meet internal load and reserves. Second, net transfers between regions were allowed, but limited by the use of "hurdle" rates. In effect, a hurdle rate is an impediment to trade between control areas, which is modeled as an adder to the transmission rate for transactions between control areas. In part, this hurdle rate reflects direct charges for losses and transmission tariffs; additionally, we assess an additional hurdle to reflect various inefficiencies and costs associated with bilateral trading across control areas. This additional hurdle rate is not actually part of any financial settlement, so it never is actually paid to anyone. Instead, it (together with the wheeling charge) is an input to the unit commitment and dispatch logic of MAPS that represents impediments to trading between control areas. The definition of the hurdle rates for this study is discussed in more detail in Section IV.

These base-case hurdles were chosen so as to calibrate the Base Case to reflect historical patterns of trade between Dominion and its neighbors. In the Change Case in which the New PJM Entrants join PJM, the import hurdle is eliminated for the four New PJM Entrants, but is retained for the Expanded PJM as a whole; that is, trade between the Expanded PJM and neighboring control areas is subject to continuing trade hurdles.<sup>8</sup> The import hurdle continues to apply to the pre-

<sup>8</sup> FERC has recently reaffirmed its order that PJM and the Midwest Independent System Operator ("MISO") work to eliminate out-and-through wheeling charges between them by December 2004. MISO is a net exporting region,



existing RTOs and control areas that are not reconfigured in the Change Case. Similarly, the trade hurdles within the Expanded PJM are eliminated in the Change Case, aside from a small charge to reflect incremental transmission losses.

Production costs, including the costs of starting a plant and the variable costs of running it, will be lower in the Change Case than in the Base Case with hurdles. The difference between the two cases is used as the measurement of the production cost benefits due to the expansion of PJM.

In addition to potential savings in the energy markets, North Carolina Retail Customers benefit from PJM integration through lowered capacity costs. As Dominion's load grows, it will need to rely increasingly on purchases of capacity to meet reliability standards. The cost of these purchases of incremental generation depends on the availability of deliverable capacity. As a general matter, when there is capacity in excess of reliability requirements, the cost of capacity is low; conversely, when new capacity must be built to maintain sufficient installed capacity reserves, prices rise to reflect the levelized cost of new capacity.

By joining the Expanded PJM market, Dominion will become part of a regional, integrated capacity market, bringing with it two benefits on the capacity side. First, two sub-regions of the Expanded PJM currently have fairly substantial amounts of excess capacity reserves: PJM (East and West) and AEP. Second, the Expanded PJM area has greater load diversity than its constituent parts. Taking advantage of this load diversity decreases the total megawatts of installed capacity required across the region while still maintaining the current high standards of reliability. These two effects work together to reduce the pressure on the capacity market, as the need to build new capacity in the Dominion control zone is delayed and reduced. Consequently, the price at which Dominion must purchase incremental capacity is lower as part of PJM than it would be otherwise.

We do not quantify potentially important benefits of joining PJM that should follow from becoming part of a wholesale market with excellent liquidity and transparent price formation. We assume, both in the Base and Change Cases, that all energy is traded at prices consistent with the spot market price of energy, even though most energy is traded bilaterally rather than in spot markets.<sup>9</sup> In markets where trading is thin and prices are not readily observable, market participants manage market risk through greater reliance on self-scheduling, firm transactions, and other relatively blunt tools; in a given hour, this may lead to some higher cost units operating instead of lower-cost units. By contrast, in a well-developed market such as PJM, there is greater convergence between bilateral and spot prices, and the consequent flexibility of unit commitment and dispatch means that customers can be served at lower total cost. Our study, though, focuses solely on the

however, so tighter integration with PJM should increase the net supply of lower-cost resources available to supply North Carolina. Consequently, our modeling choice is conservative. See Testimony of Gregory J. Morgan, filed concurrently with this study.



potential benefits to trade *between* areas, and so it understates potential benefits from improved utilization of resources *within* each control area.

### II.B. Calculation of Benefits

Our Financial Evaluation Model processed the output from the physical modeling supported by MAPS in order to assess the benefits for North Carolina Retail Customers. The Financial Evaluation Model does several things:

- Accounts for imports and exports of power in and out of the Dominion control zone and ascribes the trade benefits equally between the buying and selling control zones for trade supported by point-to-point transmission service, such as between Dominion and CP&L.
- Accounts for the price of purchased power needed to serve North Carolina Retail Customers, including power purchased off-system in the Base Case and under the PJM LMP system.
- Accounts for the sale of power both to off-system customers in the Base Case and into the PJM LMP market structure.
- Accounts for the cost of producing power separately for each Dominion generating unit, including the cost of fuel, emissions allowances, start up costs and O&M costs.
- Accounts for the Fuel Factor formula applicable to North Carolina Retail Customers.
- Accounts for FTRs expected to be allocated to Dominion and its jurisdictional retail customers by PJM.

A more detailed description of the Financial Evaluation Model is provided in Section IV and Appendix C.

It should be noted that the results of this study are subject to a margin of error due to various assumptions that must always be made in any modeling study. Possible sources of error include incomplete monitoring of transmission constraints, incomplete data on generation characteristics, fuel price forecast margin of error, uncertainty as to actual FTR allocations and payments in the future and errors in forecasting RTO costs. The net effect of these sources of error cannot be quantified. In modeling these complex matters, however, we have attempted to make conservative assumptions, that is, towards understating the potential net benefits of PJM membership to consumers. Moreover, the two of the three sensitivity cases discussed below help to bracket the likely range of outcomes for two key assumptions: fuel prices and load growth.



### **II.C. Overview of Costs**

The cost of Dominion joining PJM is assumed to be the average administrative costs of PJM following the integration of the New PJM Entrants. This administrative charge is estimated by PJM to be lower than the current per-unit charge as a result of the four New PJM Entrants being integrated into the PJM market structure. This study has relied on estimated PJM administrative charges from PJM's 2002 budget.

These administrative costs are assumed to be paid by customers on a load-ratio share basis, consistent with the remainder of the load in the Expanded PJM area. These costs are increased at a 2.5 percent annual rate, to reflect inflation.



### III. ISSUES NOT FULLY QUANTIFIED

The issues and impacts associated with Dominion joining PJM are numerous and complex. While this study has quantified the major impacts, particularly those in the short-term, it has not been possible to address all of the issues through formal quantitative analysis. This section discusses the qualitative aspects of several issues that have not been modeled explicitly, but nonetheless may bear on the costs and benefits of Dominion's PJM participation.

## **III.A. Ongoing Protection of Native Load**

Membership in PJM will continue native load protections in place today. Most importantly, FTRs or the corresponding Auction Revenue Rights ("ARRs") will be available under PJM to offset the congestion costs that occur on an LMP system.<sup>10</sup> PJM has conducted a simultaneous feasibility test of Dominion FTRs and has determined that adequate transmission capacity exists to support a full allocation of FTRs to Dominion's load throughout the study period. This FTR allocation is a key factor in ensuring that delivered prices in Dominion's service territory remain hedged against the congestion that can occur between generation buses and load buses.

PJM business rules ensure that the load-serving entities of network customers (such as North Carolina Retail Customers) have a right to FTRs that hedge congestion costs to those customers. As discussed in more detail in Appendix C, PJM has determined that Dominion can obtain sufficient FTRs throughout the study period to hedge congestion risk fully. While changes at some future date may materially alter how FTRs are allocated, we have no way to assess this risk. We believe, however, that the PJM review process will continue to provide substantial protection for native load even if the PJM business practices are revised.

For the purposes of this study, we assume that Dominion will receive a pro rata share of the surplus value of the FTRs that are not allocated under current PJM practice. A representative from PJM has estimated that the surplus value in PJM's FTR auctions is likely to be about \$50 million per year after PJM is expanded to include all four New PJM Entrants. Dominion's load ratio share of this amount would be about \$6 million per year.

Apart from these FTR considerations, it is important to recognize that PJM has agreed that load will not be shed within PJM South (that is, the Dominion control zone) in order to address capacity deficiencies in other parts of PJM. This means that North Carolina Retail Customers will not be placed at risk for capacity shortages occurring elsewhere in PJM.

<sup>&</sup>lt;sup>10</sup> Under PJM rules, holders of ARRs can self-schedule that right into the FTR auction, thereby converting each ARR into a matching FTR.



### **Issues Not Fully Quantified**

#### **III.B. Reliability**

Membership in PJM offers the opportunity for Dominion to ensure improved reliability. Dominion will maintain its own transmission control center to address local reliability problems that will not be monitored by PJM. Moreover, by joining PJM, customers in the current Dominion control zone will have the benefit of an enlarged scope of geographic control of generation that can be used to address transmission system emergencies. The larger scope for generation redispatch in emergency conditions will expand the resources available to PJM operators beyond those currently available to the Dominion control zone operator.<sup>11</sup>

#### **III.C.** Integrated Transmission Planning

PJM offers the opportunity for Dominion to participate in a larger regional planning process that will blend Dominion's local expertise with the regional views provided by PJM of other transmission owners and stakeholders.<sup>12</sup> Much of this interaction occurs today on an informal basis. Joining PJM will help to formalize this process and improve the regional transmission planning process by focusing new investment to projects that realize the greatest net benefit. This coordination is particularly important for North Carolina since the transmission upgrades most needed to reduce prices in the state are located outside the Dominion control zone.

### III.D. Enhanced Wholesale Competition and Generation Technology Improvements

Improvements to generation technology may be facilitated generally by the development of a competitive wholesale electricity market. Adding Dominion into PJM would enhance wholesale competition both by providing merchant generators with greater integration into a large and liquid wholesale market, and by providing clear locational prices that signal the need for new resources in particular places. Expanded wholesale competition can be expected to propel improvements in technology and unit efficiencies over time. The steady march of technological improvements is a significant source of consumer benefits over time. PJM and the other northeast markets, where vigorous competition in a locational pricing system have been adopted, have seen marked improvement in unit availability and increased investment in existing units to increase their competitiveness.<sup>13</sup> While the importance of this advancement could hardly be overstated, it has not been addressed in this study because of the difficulty in quantifying the long-term benefits of these investments.

<sup>&</sup>lt;sup>13</sup> See 2003 State of the Market, PJM, (March 2004), pp. 131-133.



<sup>&</sup>lt;sup>11</sup> See Testimony of William L. Thompson, filed concurrently with this study.

<sup>&</sup>lt;sup>2</sup> See Testimony of Ronnie Bailey, filed concurrently with this study.

## **Issues Not Fully Quantified**

### **III.E. Demand Response Benefits**

A critical component in the development of competitive electricity markets is allowing the demand side of the market to participate fully in spot markets.<sup>14</sup> This issue has not been quantified in this study because, in part, of the difficulty of quantifying such benefits in a pure production-cost model.<sup>15</sup> An important element of a successful demand response program is the ability to provide customers with price information that is directly linked to the incremental cost of providing their power. Further, this information needs to be available both in real-time, to allow for automated price response (such as commercial reductions in air-conditioning load), and day-ahead, to allow industrial users to revise production schedules in response to energy prices, for example. Our Base Case, however, does not include the costs that would be needed to create the independent market system necessary to create and post these real-time and day-ahead prices for a stand-alone Dominion region; rather, North Carolina Retail Customers would continue to be served on an average-cost basis that suppresses price signals to customers and, consequently, provides a poor basis for developing effective demand-side management. Our estimates of the benefits of joining PJM are, therefore, conservative in excluding from the Change Case the benefits from such demand-side management programs or, alternatively, excluding from the Base Case the costs of developing day-ahead and realtime incremental prices in the Dominion control zone. Demand management programs provide material benefits in enhancing grid reliability and reducing the price spikes that lead to high retail prices.

### **III.F. Improved Generation Siting and Transmission Investment**

Over the longer term, the price signals provided by LMP can be expected to promote more efficient siting decisions on the part of developers both of generation and transmission. This effect is not explicitly studied here, but we expect that it will be an important source of benefits over the long term. Under the LMP signals provided in the PJM market structure, generators will have a direct and observable incentive to locate where the generator price is high. In today's market, this price signal is averaged over a wide area, and any locational differences in such average prices are highly muted, at best. In contrast, LMP has the effect of disaggregating the price signals given to each individual generator so that market participants can evaluate the advantages and disadvantages of various locations. Such locational prices are a key to improved siting decisions on the part of future generation and transmission developers that can be expected to benefit North Carolina Retail Customers, as well as others in the Expanded PJM.

<sup>&</sup>lt;sup>15</sup> Production-cost models such as MAPS do not capture well the hourly volatility created by unexpected surges in demand, unit outages, or loss of critical transmission facilities. It is these spikes, however, that are best addressed by demand-side measures.



<sup>&</sup>lt;sup>14</sup> See Testimony of David F. Koogler, filed concurrently with this study.

# **Issues Not Fully Quantified**

### **III.G. Installed Capacity Market**

In this study, we have used the concept of an Installed Capacity ("ICAP") market, more or less as it has been developed in the original PJM area in both the Base and Change Cases. Regardless of the precise administrative design, we believe that the developer of any new generation built in the future to meet a long-term resource adequacy requirement would have to be paid for the capacity costs of the facilities. This may not take the form of a conventional ICAP payment, but we believe that the economic effect would be effectively the same if new capacity were to be attracted into the market to meet reserve requirements. Therefore, we have not considered alternative versions of the ICAP concept, such as the forward market proposal currently under consideration by the Resource Adequacy Market working group of the ISOs of PJM, New York and New England.

Accordingly, in this study we use the term ICAP market and ICAP price as a proxy for the payments needed by new generation (when such generation is required to meet installed capacity requirements) to recover the capital costs of entry not otherwise recovered through the energy market. As such, other mechanisms could be considered as equivalent to the function of the ICAP market in this study, which is to create a mechanism whereby native load pays for certain investments if they are needed by native load in the first instance.

#### **III.H. Benefits From Integration With an Established Market**

It is appropriate to note that this study contrasts the net economic benefits of a Change Case that is fully consistent with federal regulatory directions, versus a Base Case that is not. Although FERC has not yet issued any final order regarding implementation of wholesale market standards, nor has it yet been tested whether FERC has the authority to mandate such standards on jurisdictional utilities, there is clear federal intent that all utilities join an established RTO or join together with neighboring utilities to create one. Dominion is interconnected with only one approved RTO: PJM. While Dominion could conceivably work with other utilities to its south to build a new RTO, there are large costs to designing, implementing and securing regulatory approvals for a new RTO. We have, conservatively, not included such costs in our Base Case.



### IV. ANALYTICAL APPROACH

In order to quantify the likely costs and benefits of the proposed integration of Dominion into PJM, CRA needed to develop and refine several analytic models. To model the change in system operations that would result from the market integration, we used GE MAPS running with CRA's proprietary database, discussed in Section IV.A and Appendix A. Interacting with GE MAPS was a model of capacity additions and resulting capacity pricing, which we discuss in Section IV.B and Appendix B. Finally, CRA developed a Financial Evaluation Model to assess the incidence of costs and benefits flowing from these two models of the physical system, which we discuss in Section IV.C and Appendix C.

### **IV.A. Model of Physical System Operations**

In order to assess the operational benefits of expanding PJM to include Dominion and the other New PJM Entrants, CRA used the GE MAPS model to determine the unit commitment and dispatch in the Base and Change Cases. The GE MAPS model is a security-constrained dispatch model that simulates the hourly chronological operation of an electricity market. It assumes marginal cost bidding, performs a least-cost dispatch subject to thermal and contingency constraints, and calculates hourly, locational-based marginal prices for electricity. The GE MAPS simulation is consistent with the congestion management scheme currently utilized in PJM and the other Northeast ISOs. The model's locational spot price calculation algorithm has been successfully benchmarked against the market price algorithm used in the PJM market.<sup>16</sup>

Models are only as reliable as their data, so CRA has taken extra measures to ensure that the assumptions regarding generation characteristics, transmission representation and limitations, fuel costs, emissions rates and regulations, planned additions and retirements, and NUG contracts are accurate and consistent. To avoid potential confusion with the parallel filing in Virginia, the physical modeling assumptions are unchanged from that study. Details of these model inputs are discussed in Appendix A. Although there have been some changes in market conditions since these assumptions were cast, the long-term outlook has not changed materially. Consequently, CRA believes that the results from the physical model and the sensitivity cases still reflect likely future conditions with sufficient confidence to serve as a basis for regulatory decisions.

CRA modeled four years of the ten-year study period: 2005, 2007, 2010 and 2014. We chose 2005 as the earliest full year when Dominion could be integrated into PJM. The year 2014

<sup>&</sup>lt;sup>16</sup> The actual PJM transmission representation for an individual hour was input into MAPS, along with actual loads, imports and exports and generator bids. The locational prices calculated by the GE MAPS program matched those produced by the PJM LMP system for those conditions.



bounds the ten-year study period, and 2007 and 2010 provide mid-point assessments to improve interpolation.

The principal challenge in modeling commitment and dispatch with a tool as powerful as MAPS is not, surprisingly, finding the security-constrained least-cost dispatch. Instead, the challenge is to find a reasonable representation of the inefficiencies that inevitably exist in real-world markets and, more particularly, how these inefficiencies change when moving from one market system to another. Left to its own devices, MAPS will find and execute all possible trades throughout the entire Eastern Interconnection to minimize total system production cost, subject to meeting all load reliably. Because the current market does not capture all these beneficial trades between market participants and, in particular, across market seams, we have set up our model to add inefficiencies through the use of selective barriers to trade, or "hurdles."

We used financial hurdles to approximate inefficiency in the Base Case stemming from several sources, including:

- Biases toward the use of local control zone resources due to uncertainty and resulting reliability concerns;
- Lack of full coordination among the commitment and dispatch processes of control areas;
- Imperfect economic management of congestion between and within control areas due to loop flows and less-efficient congestion management tools than LMP;
- The lack of market transparency in bilateral markets;
- Transaction costs; and
- Inefficient scheduling of transmission.

For this study, we employed four types of hurdle rates. These are discussed in greater detail in Appendix A. In the unit commitment phase of MAPS, we imposed a \$10 per MWh hurdle between control areas in order to reflect the self-commitment practices prevailing today. In the dispatch phase of MAPS, we employed two hurdle rates:

First, an "import hurdle" rate of \$3 per MWh is imposed on each control area for any imported power during peak periods (\$1 per MWh in off-peak periods). The purpose of this hurdle is to mimic the self commitment that is the basis for current operational practices within each control area, transactions costs associated with searching out and executing bilateral trades,



and other impediments to trade that bias dispatch towards internal resources. The import hurdle applies only once to any transaction, regardless of how many control areas were involved in wheeling the power.

The second type of dispatch hurdle used in this study is a "trade hurdle" rate of \$3 per MWh, which is imposed on power transfers between control areas or RTOs in peak periods (\$1 per MWh in off-peak periods). This trade hurdle rate reflects impediments to move power between control areas separately from the self-commitment logic embodied in the import hurdle. The trade hurdle is intended to represent both wheeling rates and trade impediments that become pancaked as power is wheeled across multiple control areas. Consequently, this charge is assessed for each control area through which a transaction moves.

Finally, a \$1 per MWh fee is imposed at the dispatch phase for line losses for each intercontrol area transfer. These three dispatch hurdles are additive, so a trade involving a single wheel would be subject to a total of a \$7 per MWh peak-period dispatch hurdle rate---\$3 per MWh to be imported, and \$3 per MWh to be transferred to an adjoining control area, plus \$1 per MWh for line losses. A trade involving a second transfer would be subject to a total hurdle rate of \$11 per MWh---the \$3 per MWh import hurdle, plus two transfer hurdles of \$3 per MWh each and two losses charges of \$1 per MWh each.

These hurdles were implemented in MAPS as economic contracts between zones, rather than as incremental line charges or restrictions on the transmission system. This approach has two distinct benefits in interpreting the results. First, the hurdles do not directly affect the locational prices in the model. The only influence the hurdle rates have is through their effect on the commitment and dispatch of the system. Second, the contracts track transfers between zones, rather than physical flows on lines. This feature aligns our contract transfers with the real bilateral contracts we see in today's electricity markets. It also makes tracking of costs and benefits materially more accurate than tracking only physical flows.

To model the integration of the New PJM Entrants into the PJM market system, we eliminated from the Change Case the commitment, trade and import hurdles among the five control zones in the Base Case that comprise the Expanded PJM market area, namely PJM, Dominion, AEP, DP&L and ComEd. The \$1 per MWh line-loss fee remained as the only hurdle, reflecting our view that PJM will implement some version of a distance-dependent transmission loss charge. Commitment and dispatch hurdles from these zones to zones outside the Expanded PJM market were not changed.



### **IV.B. Model of Capacity Prices**

An integral part of the PJM market design is its capacity market, through which PJM ensures that there will be sufficient capacity resources offering to supply energy into the PJM energy markets to ensure reliable system operations. Units selected through the capacity auction are required either to bid into the PJM day-ahead market or to self-schedule that capacity. In return, these capacity resources are paid the auction-clearing price for each kilowatt of supply, regardless of whether the resource is actually called upon to supply energy or ancillary services. These payments allow units that never run, or operate infrequently, to cover their fixed costs; otherwise, generation owners might find it more profitable to mothball or close marginal generation resources, reducing the overall reliability of the system.

For North Carolina Retail Customers, capacity market pricing affects only those purchases of capacity needed to supplement those customers' share of the Dominion generation fleet. The capacity costs of the Dominion generation fleet are included in rate base and, consequently, are unaffected by the transition to the PJM market.

In modeling this capacity market, we first developed the pattern of new entry by location and time. Secondly, we used this pattern of capacity additions to estimate future capacity prices. Appendix B details our modeling assumptions and techniques regarding capacity prices. In summary, CRA modeled first the requirements for new capacity in each area and then the resulting market price for capacity.

In determining new builds for the first year of the study period, 2005, CRA assumed that only those units that are under construction currently would be commercially available. New projects that have been halted were not included among the 2005 builds. Although additional projects might conceivably be tabled, other projects not counted may be completed by Summer 2005. Overall, we believe that this is a reasonable and conservative forecast of 2005 resources.

For subsequent years, we assumed that additional capacity resources are brought on-line to maintain required capacity reserves in each control zone.<sup>17</sup> We allowed trades of capacity between directly interconnected zones provided that two conditions were met. First, the imported capacity could not exceed the transfer capability between the two zones. Second, each zone was required to carry internally enough capacity to meet forecast peak load plus a 2.5 percent operating reserve requirement.

<sup>&</sup>lt;sup>17</sup> We modeled both MISO and SeTrans as having two separate areas, east and west, to reflect the geographic and electrical separation within those two areas. MISO East corresponds to those areas of MISO in ECAR; MISO West includes those parts in MAIN and MAPP. SeTrans is split between the Southern and Entergy areas. The New York Control Area was modeled consistent with its capacity market design as two sub-regions (New York City and Long Island) and an overall New York region.



To estimate the market price of PJM capacity, we developed a probabilistic model, which reflects the uncertainty about whether new capacity will, in fact, be needed in any given year. The model starts from the premise that capacity prices in the PJM auction will be set either at \$20/kW-year if there is a capacity surplus, or at \$50/kW-year if there is not a capacity surplus. We then estimate the probability of each of these two states of the world, assuming that the capacity requirement is centered at our forecast value but has some uncertainty, with a normal random distribution. The forecast uncertainty was assumed to be 0.5 percent in 2003 and to increase by 0.2 percentage points in each subsequent year, so that the standard deviation in 2007 was taken to be 1.3 percent, and in 2014 to be 2.7 percent. These values, in our judgment, reasonably reflect the level of uncertainty intrinsic in long-term load forecasts. Using this model, we estimate the capacity price in each year of the study period for the overall PJM market, defined either with the current footprint in the Base Case or the Expanded PJM area in the Change Case.

### **IV.C. Model of Financial Effects**

North Carolina Retail Customers are assumed to remain under current capped rates through the end of 2005 and under traditionally regulated cost-of-service rates throughout the remainder of the study period. In this study we have not attempted to project actual cost-ofservice rates. Instead, we study only those rate components that would be affected by PJM integration. Therefore, only those costs, and offsetting revenue items, that differ between the Base and Change Cases are captured in this study. Fuel Factor costs are captured in all years, and those cost items captured in this study that impact base rates are reflected in North Carolina Retail Customer costs beginning in 2006, the year after the rate cap ends.

#### **Fuel Factor Charges**

Fuel Factor charges are calculated as the North Carolina Retail Customer share of the fuel cost of the Dominion generating units, the North Carolina Retail Customer share of post-1992 Dominion NUG energy costs, and 61 percent of the cost of additional off-system energy purchases needed to meet North Carolina Retail Customer load. Other production-related costs considered in the dispatch decision for Dominion generating units, but not considered in the Dominion Fuel Factor, include emission allowances and variable O&M. These costs are captured under base rate impacts.



In the Change Case, purchases made on behalf of North Carolina Retail Customers are based on Dominion Load Zone LMP.<sup>18</sup> A portion of Dominion FTRs is allocated through the North Carolina Fuel Factor, based on the percentage of purchases to total load, to offset the congestion charges embedded in these energy purchase prices.<sup>19</sup> The remaining FTRs attributable to North Carolina Retail Customers are allocated as a base rate item.

#### **Costs that Impact Base Rates**

Cost items affected by PJM integration that impact North Carolina base rates are included in this study beginning in 2006. These include 39 percent of the energy purchase costs needed to meet North Carolina Retail Customer load, and the North Carolina Retail Customer share of 1) pre-1992 Dominion NUG energy costs, 2) generating unit variable O&M and emission costs, 3) credits for non-requirements energy sales profits, and 4) capacity purchases.

In the Change Case, congestion costs are incurred and flow through base rates. Congestion costs are based on the difference between Dominion Load Zone LMP and Dominion Generation LMP.<sup>20</sup> North Carolina Retail Customers' share of Dominion FTRs, net of the FTR value included in the North Carolina Fuel Factor, are included as an offset to these congestion costs. In addition, PJM administrative charges are assessed to North Carolina Retail Customers in the Change Case. However, the 2005 charges are deferred and recovered with interest during 2006.<sup>21</sup>

<sup>&</sup>lt;sup>21</sup> The study assumes that the deferrals will accrue interest at a rate of 7 percent, consistent with the interest rate for deferrals in recent FERC filings. This assumption is intended as a placeholder for whatever actual interest might be used later.



<sup>&</sup>lt;sup>18</sup> Under Dominion's PJM integration proposal, the energy price paid by loads in its control zone would be the weighted average price across the Dominion control zone. See Testimony of Gregory J. Morgan, filed concurrently with this study.

<sup>&</sup>lt;sup>19</sup> See Testimony of Andrew J. Evans, filed concurrently with this study.

<sup>&</sup>lt;sup>20</sup> Dominion Generation LMP is computed as average hourly LMPs at each Dominion generator bus, weighted by the generators' output in that hour.

#### Ancillary Services Impacts and Other Impacts

The total cost of ancillary services has been assumed to not change as Dominion joins PJM because the required quantity of ancillary services that must be procured within the control zone is unchanged between the Base and Change Cases, and the costs remain the same.<sup>22</sup>

Transmission costs and revenues are assumed to be identical in the Base and Change Case. Dominion has assumed that there is no change between cases in such costs and revenues because Dominion's zonal base rate will be the same in the Base and Change Case for each year of the study period. As a result, no impact is computed for these costs and revenues.<sup>23</sup>



<sup>&</sup>lt;sup>22</sup> See Testimony of Gregory J. Morgan and Testimony of Harold W. Payne, Jr., filed concurrently with this study.

<sup>&</sup>lt;sup>23</sup> See Testimony of Harold W. Payne, Jr., filed concurrently with this study.

### V. RESULTS OF THE BENEFIT-COST STUDY

Dollar amounts presented in the tables and text below are in nominal dollars for each year, while summary ten-year results are the net present value to July 1, 2003. A 10 percent discount rate is used to calculate the net present values.

### V.A Base and Change Case Effects

Shown in Table V-1 are the annual costs and offsetting revenues for North Carolina Retail Customers under the Base Case for each Fuel Factor and relevant base rate component, separated into the following categories: 1) Production/Generation Costs, 2) Production Revenues, 3) Transmission Rights Revenues (FTRs), and 4) RTO Administrative Fees. The individual line items within each of these four categories are discussed after Table V-2. On Table V-1, negative numbers reflect credits to costs, and base rate line items are zero in 2005 because of the cap on base rates in effect in that year.



### Table V-1: Annual Costs and Offsetting Revenues for North Carolina Retail Customers – Base Case

(Millions of dollars; negative values are credits to cost)

| PV to July                          | / 1, 2003 |             |       |       |             |             |             |             |               |             |             |
|-------------------------------------|-----------|-------------|-------|-------|-------------|-------------|-------------|-------------|---------------|-------------|-------------|
| North Carolina Retail               | ('05-'14) | <u>2005</u> | 2006  | 2007  | <u>2008</u> | <u>2009</u> | <u>2010</u> | <u>2011</u> | <u>2012</u>   | <u>2013</u> | <u>2014</u> |
| Production/Generation Costs         |           |             |       |       |             |             |             |             |               |             |             |
| Fuel Factor Impacts:                |           |             |       |       |             |             |             |             |               |             |             |
| Energy Purchases - Fuel Factor      | 73.6      | 10.6        | 11.0  | 11.4  | 12.0        | 12.6        | 13.2        | 14.8        | 16.3          | 17.8        | 19.4        |
| Fuel Costs                          | 285.0     | 44.0        | 45.7  | 47.3  | 49.0        | 50.6        | 52.2        | 55.1        | 58.1          | 61.1        | 64.1        |
| "Other Fuel" Costs                  | 15.9      | 3.1         | 3.1   | 3.2   | 2.5         | 2.5         | 2.7         | 2.7         | 2.7           | 2.8         | 2.9         |
| NUG Energy - Fuel Factor            | 14.6      | 2.7         | 2.5   | 2.3   | 2.4         | 2.4         | 2.5         | 2.7         | 2.9           | 3.1         | 3.3         |
| Sub-Total Fuel Factor               | 389.2     | 60.3        | 62.3  | 64.2  | 65.8        | 68.1        | 70.6        | 75.3        | 80.1          | 84.9        | 89.6        |
| Base Rate Impacts:                  |           |             |       |       |             |             |             |             |               |             |             |
| NUG Energy - Base Rates             | 50.2      | 0.0         | 8.1   | 9.0   | 9.3         | 9.7         | 10.1        | 11.4        | 12.7          | 14.0        | 15.4        |
| Energy Purchases - Base Rates       | 41.5      | 0.0         | 7.0   | 7.3   | 7.7         | 8.1         | 8.4         | 9.4         | 10.4          | 11.4        | 12.4        |
| Sub-Total Base Rate Energy          | 91.7      | 0.0         | 15.1  | 16.2  | 17.0        | 17.8        | 18.6        | 20.9        | 23.2          | 25.5        | 27.8        |
| Purchased Power Capacity            | 16.0      | 0.0         | 0.5   | 1.0   | 1.4         | 1.5         | 2.5         | 4.1         | 6.6           | 8.9         | 10.7        |
| Total Prod/Gen Costs                | 496.8     | 60.3        | 77.9  | 81.5  | 84.2        | 87.3        | 91.7        | 100.3       | 10 <b>9.8</b> | 119.2       | 128.1       |
| Production Revenues                 |           |             |       |       |             |             |             |             |               |             |             |
| Fuel Factor Impacts:                |           |             |       |       |             |             |             |             |               |             |             |
| Sales Costs - Fuel Factor           | (8.2)     | (1.6)       | (1.6) | (1.6) | (1.5)       | (1.4)       | (1.2)       | (1.3)       | (1.4)         | (1.4)       | (1.5)       |
| Base Rate Impacts:                  |           |             |       |       |             |             |             |             |               |             |             |
| VOM on Sales - Base Rates           | (1.2)     | 0.0         | (0.3) | (0.3) | (0.3)       | (0.2)       | (0.2)       | (0.2)       | (0.2)         | (0.3)       | (0.3)       |
| Profit on Sales - Base Rates        | (0.3)     | 0.0         | (0.1) | (0.1) | (0.1)       | (0.1)       | (0.1)       | (0.1)       | (0.1)         | (0.1)       | (0.1)       |
| Sub-Total Base Rate Energy          | (1.5)     | 0.0         | (0.3) | (0.3) | (0.3)       | (0.3)       | (0.3)       | (0.3)       | (0.3)         | (0.3)       | (0.4)       |
| Capacity Sales                      | 0.0       | 0.0         | 0.0   | 0.0   | 0.0         | 0.0         | 0.0         | 0.0         | 0.0           | 0.0         | 0.0         |
| Total Production Revenue            | (9.7)     | (1.6)       | (1.9) | (2.0) | (1.8)       | (1.7)       | (1.5)       | (1.6)       | (1.7)         | (1.8)       | (1.8)       |
| Transmission Rights Revenues        |           |             |       |       |             |             |             |             |               |             |             |
| Transmission Rights Revenues (FTRs) | 0.0       | 0.0         | 0.0   | 0.0   | 0.0         | 0.0         | 0.0         | 0.0         | 0.0           | 0.0         | 0.0         |
| RTO Admin Fees                      |           |             |       |       |             |             |             |             |               |             |             |
| RTO Admin Fees                      | 0.0       | 0.0         | 0.0   | 0.0   | 0.0         | 0.0         | 0.0         | 0.0         | 0.0           | 0.0         | 0.0         |
| Costs to Customers                  | 487.1     | 58.7        | 76.0  | 79.5  | 82.3        | 85.7        | 90.2        | 98.7        | 108.2         | 117.5       | 126.2       |
| *****                               |           |             |       |       |             |             |             |             |               |             | 1           |
| Fuel Factor                         | 381.0     | 58.7        | 60.7  | 62.6  | 64.3        | 66.7        | 69.4        | 74.0        | <b>78</b> .7  | 83.4        | 88.2        |



Table V-2 summarizes the annual costs and offsetting revenues for North Carolina Retail Customers under the Change Case. Similarly, on Table V-2, negative numbers reflect credits to costs, and base rate line items are zero in 2005 because of the cap on base rates in effect in that year.

#### Table V-2: Annual Costs and Offsetting Revenues for North Carolina Retail Customers – Change Case

(Millions of dollars; negative values are credits to costs)

| PV to Jul                                    | y 1, 2003        |             |             |             |             |             |             |             |             |             |             |
|----------------------------------------------|------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| North Carolina Retail                        | <u>('05-'14)</u> | <u>2005</u> | <u>2006</u> | <u>2007</u> | <u>2008</u> | <u>2009</u> | <u>2010</u> | <u>2011</u> | <u>2012</u> | <u>2013</u> | <u>2014</u> |
| Production/Generation Costs                  |                  |             |             |             |             |             |             |             |             |             |             |
| Fuel Factor Impacts:                         |                  |             |             |             |             |             |             |             |             |             |             |
| Energy Purchases - Fuel Factor               | 96.5             | 13.8        | 14.1        | 14.5        | 15.5        | 16.5        | 17.5        | 19.6        | 21.8        | 23.9        | 26.1        |
| Fuel Costs                                   | 264.6            | 40.1        | 42.0        | 43.8        | 45.4        | 47.1        | 48.7        | 51.5        | 54.4        | 57.2        | 60.1        |
| "Other Fuel" Costs                           | 15.9             | 3.1         | 3.1         | 3.2         | 2.5         | 2.5         | 2.7         | 2.7         | 2.7         | 2.8         | 2.9         |
| NUG Energy - Fuel Factor                     | 14.2             | 2.5         | 2.4         | 2.3         | 2.4         | 2.5         | 2.6         | 2.7         | 2.8         | 2.9         | 3.0         |
| Sub-Total Fuel Factor                        | 391.2            | 59.5        | 61.7        | 63.8        | 65.8        | 68.5        | 71.4        | 76.5        | 81.7        | 86.8        | 92.0        |
| Base Rate Impacts:                           |                  |             |             |             |             |             |             |             |             |             |             |
| NUG Energy - Base Rates                      | 37.5             | 0.0         | 6.4         | 7.0         | 7.2         | 7.4         | 7.6         | 8.4         | 9.1         | 9.9         | 10.7        |
| Energy Purchases - Base Rates                | 54.5             | 0.0         | 9.0         | 9.3         | 9.9         | 10.5        | 11.2        | 12.5        | 13.9        | 15.3        | 16.7        |
| VOM Reduction - Reduced Output               | (2.3)            | 0.0         | (0.5)       | (0.5)       | (0.5)       | (0.5)       | (0.5)       | (0.5)       | (0.5)       | (0.5)       | (0.4)       |
| Sub-Total Base Rate Energy                   | 89.6             | 0.0         | 14.9        | 15.8        | 16.6        | 17.4        | 18.2        | 20.4        | 22.6        | 24.8        | 26.9        |
| Purchased Power Capacity                     | 13.6             | 0.0         | 0.5         | 1.0         | 1.4         | 1.5         | 2.3         | 3.1         | 4.8         | 7.3         | 9.7         |
| Congestion - Base Rates                      | 28.4             | 0.0         | 5.2         | 5.5         | 5.8         | 6.1         | 6.3         | 6.4         | 6.4         | 6.5         | 6.6         |
| Total Prod/Gen Costs                         | 522.9            | 59.5        | 82.3        | 86.1        | 89.5        | 93.4        | 98.3        | 106.3       | 115.4       | 125.4       | 135.3       |
|                                              |                  |             |             |             |             |             |             |             |             |             |             |
| Production Revenues                          |                  |             |             |             |             |             |             |             |             |             |             |
| Fuel Factor Impacts:                         |                  |             |             |             |             |             |             |             |             |             |             |
| Sales Costs - Fuel Factor                    | (4.7)            | (0.7)       | (0.7)       | (0.7)       | (0.8)       | (0.9)       | (1.0)       | (1.0)       | (1.0)       | (0.9)       | (0.9)       |
| Base Rate Impacts:                           |                  |             |             |             |             |             |             |             |             |             |             |
| VOM on Sales - Base Rates                    | (0.8)            | 0.0         | (0.1)       | (0.1)       | (0.1)       | (0.2)       | (0.2)       | (0.2)       | (0.2)       | (0.2)       | (0.2)       |
| Profit on Sales - Base Rates                 | (0.2)            | 0.0         | (0.0)       | (0.0)       | (0.0)       | (0.0)       | (0.1)       | (0.1)       | (0.1)       | (0.1)       | (0.1)       |
| Sub-Total Base Rate Energy                   | (1.0)            | 0.0         | (0.2)       | (0.2)       | (0.2)       | (0.2)       | (0.2)       | (0.2)       | (0.2)       | (0.3)       | (0.3)       |
| Capacity Sales                               | 0.0              | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         |
| Total Production Revenue                     | (5.6)            | (0.7)       | (0.9)       | (0.9)       | (1.0)       | (1.1)       | (1.2)       | (1.2)       | (1.2)       | (1.2)       | (1.2)       |
|                                              |                  |             |             |             |             |             |             |             |             |             | I           |
| Transmission Rights Revenues                 |                  |             |             |             |             |             |             |             |             |             |             |
| FTRs Attributable to Purchases - Fuel Factor | : (2.8)          | (0.4)       | (0.4)       | (0.4)       | (0.5)       | (0.5)       | (0.5)       | (0.6)       | (0.6)       | (0.7)       | (0.7)       |
| Other FTRs - Base Rates                      | (35.8)           | 0.0         | (6.9)       | (7.3)       | (7.4)       | (7.5)       | (7.6)       | (7.7)       | (7.9)       | (8.0)       | (8.1)       |
| Transmission Rights Revenues (FTRs)          | (38.6)           | (0.4)       | (7.3)       | (7.7)       | (7.9)       | (8.0)       | (8.1)       | (8.3)       | (8.5)       | (8.7)       | (8.8)       |
| DTO Admin Ease                               |                  |             |             |             |             |             |             |             |             |             |             |
| RTO Admin Fees                               | 10.2             | 0.0         | 3.8         | 18          | 17          | 18          | 18          | 18          | 1.9         | 10          | 191         |
|                                              | 10.2             | 0.0         | 2.0         | 1.0         | 1./         | 1,0         | 1.0         | 1.0.        | 1.7         | 1.7         |             |
| Costs to Customers                           | 488.9            | 58.3        | 77.9        | 79.3        | 82.5        | 86.2        | 90.8        | 98.7        | 107.6       | 117.4       | 127.2       |
| ******                                       |                  |             |             |             |             |             | 2010        | ,           | - • • • • • |             |             |
| Fuel Factor                                  | 383.8            | 58.3        | 60.5        | 62.7        | 64.5        | 67.1        | 69.9        | 74.9        | 80.1        | 85.2        | 90.4        |



#### 1. Production/Generation Costs

#### Fuel Factor Impacts:

"Energy Purchases – Fuel Factor" reflects the North Carolina Retail Customers' share of the 61% of Dominion energy purchases that are included in the Fuel Factor. "Fuel Costs" reflects the North Carolina share of Dominion generating unit fuel costs included in the Fuel Factor. "Other Fuel Costs" includes the North Carolina Retail Customers' share of gas pipeline demand and nuclear decommissioning charges included in the Fuel Factor. "NUG Energy – Fuel Factor" reflects the North Carolina share of the post-1992 Dominion NUG energy costs that are included in Fuel Factor charges.

#### Base Rate Impacts:

"NUG Energy – Base Rates" reflects the North Carolina Retail Customers' share of the pre-1992 Dominion NUG energy costs that are included in base rates. "Energy Purchases – Base Rates" reflects the North Carolina Retail Customers' share of the 39 percent of Dominion energy purchases that are included in base rates. "Purchased Power Capacity" reflects the North Carolina Retail Customers' share of the cost of Dominion capacity purchases included in base rates.

There are two additional Production/Generation Costs line items in the Change Case results shown in Table V-2. "VOM Reduction – Reduced Output" reflects the reduction in variable O&M and emissions costs as a result of the decrease in the amount of generation from the Dominion generating units in the Change Case. "Congestion – Base Rates" reflects the North Carolina Retail Customers' share of the congestion charges associated with the differential between the Dominion Load Zone LMP and Dominion Generation LMP.

#### 2. Production Revenues

#### Fuel Factor Impacts:

"Sales Costs – Fuel Factor" reflects the North Carolina Retail Customers' share of the fuel cost associated with non-requirements energy sales made from Dominion generating units that are credited to the Fuel Factor.

#### Base Rate Impacts:

"VOM on Sales – Base Rates" reflects the North Carolina Retail Customer share of the variable O&M associated with non-requirements sales made from Dominion generating units, which are credits to base rates. "Profit on Sales – Base Rates" reflects the North Carolina Retail Customer share of the profit on non-requirements sales made from Dominion generating units, which are also credits to base rates. "Capacity Sales" reflects the North Carolina Retail Customer share of any sales of Dominion capacity, which would be credits to base rates.



#### 3. Transmission Rights Revenues

Fuel Factor Impacts:

FTRs are associated with the Change Case only. "FTRs Attributable to Purchases – Fuel Factor" reflects the value of FTRs allocated through the North Carolina Fuel Factor to offset congestion costs included in "Energy Purchases – Fuel Factor" under the Fuel Factor Impacts discussed above.

Base Rate Impacts:

"Other FTRs – Base Rates" reflects the value of the North Carolina Retail Customers' share of the remaining Dominion FTR value included in base rates.

**4. RTO Administrative Fees.** These fees are associated with the Change Case only. Fees in 2005 are deferred and recovered with interest in 2006.

There are two total lines on these three tables. "Costs to Customers" reflects the total of the line items discussed above. "Fuel Factor" reflects the total of all of the Fuel Factor related items discussed above.



Table V-3 summarizes the annual differences in these line items between the Base and Change Cases. On Table V-3, positive numbers represent additional net costs to North Carolina Retail Customers as a result of moving from the Base to the Change Case. Negative numbers represent net benefits.

### Table V-3: Annual Costs and Offsetting Revenues for North Carolina Retail Customers – Change Case Minus Base Case

(Millions of dollars; negative numbers are net benefits)

| PV to Ju                                    | ıly 1, 2003      |             |             |             |             |       |             |             |             |                 |             |
|---------------------------------------------|------------------|-------------|-------------|-------------|-------------|-------|-------------|-------------|-------------|-----------------|-------------|
| North Carolina Retail                       | <u>('05-'14)</u> | <u>2005</u> | <u>2006</u> | <u>2007</u> | <u>2008</u> | 2009  | <u>2010</u> | <u>2011</u> | <u>2012</u> | <u>2013</u>     | <u>2014</u> |
| Production/Generation Costs                 |                  |             |             |             |             |       |             |             |             |                 |             |
| Fuel Factor Impacts:                        |                  |             |             |             |             |       |             |             |             |                 | [           |
| Energy Purchases - Fuel Factor              | 22.9             | 3.1         | 3.1         | 3.1         | 3.5         | 3.9   | 4.2         | 4.9         | 5.5         | 6.1             | 6.7         |
| Fuel Costs                                  | (20.5)           | (3.8)       | (3.7)       | (3.5)       | (3.5)       | (3.5) | (3.5)       | (3.6)       | (3.8)       | (3.9)           | (4.0)       |
| "Other Fuel" Costs                          | 0.0              | 0.0         | 0.0         | 0.0         | 0.0         | 0.0   | 0.0         | 0.0         | 0.0         | 0.0             | 0.0         |
| NUG Energy - Fuel Factor                    | (0.4)            | (0.2)       | (0.1)       | (0.0)       | 0.0         | 0.0   | 0.0         | (0.0)       | (0.1)       | (0.2)           | (0.3)       |
| Sub-Total Fuel Factor                       | 2.0              | (0.9)       | (0.6)       | (0.4)       | 0.0         | 0.4   | 0.8         | 1.2         | 1.6         | 2.0             | 2.4         |
| Base Rate Impacts:                          |                  |             |             |             |             |       |             |             |             |                 |             |
| NUG Energy - Base Rates                     | (12.7)           | 0.0         | (1.6)       | (2.0)       | (2.2)       | (2.3) | (2.5)       | (3.1)       | (3.6)       | (4.1)           | (4.6)       |
| Energy Purchases - Base Rates               | 13.0             | 0.0         | 2.0         | 2.0         | 2.2         | 2.5   | 2.7         | 3.1         | 3.5         | 3.9             | 4.3         |
| VOM Reduction - Reduced Output              | (2.3)            | 0.0         | (0.5)       | (0.5)       | (0.5)       | (0.5) | (0.5)       | (0.5)       | (0.5)       | (0.5)           | (0.4)       |
| Sub-Total Base Rate Energy                  | (2.1)            | 0.0         | (0.2)       | (0.5)       | (0.4)       | (0.4) | (0.3)       | (0.4)       | (0.6)       | (0.7)           | (0.8)       |
| Purchased Power Capacity                    | (2.3)            | 0.0         | 0.0         | 0.0         | 0.0         | 0.0   | (0.2)       | (1.1)       | (1.8)       | (1.6)           | (0.9)       |
| Congestion - Base Rates                     | 28.4             | 0.0         | 5.2         | 5.5         | 5.8         | 6.1   | 6.3         | 6.4         | 6.4         | 6.5             | 6.6         |
| Total Prod/Gen Costs                        | 26.1             | (0.9)       | 4.4         | 4.6         | 5.4         | 6.1   | 6.6         | 6.1         | 5.6         | 6.2             | 7.2         |
| Production Revenues                         |                  |             |             |             |             |       |             |             |             |                 |             |
| Fuel Factor Impacts:                        |                  |             |             |             |             |       |             |             |             |                 |             |
| Sales Costs - Fuel Factor                   | 3.6              | 0.9         | 0.9         | 0.9         | 0.7         | 0.5   | 0.3         | 0.3         | 0.4         | 0.5             | 0.5         |
| Base Rate Impacts:                          |                  |             |             |             |             |       |             |             |             |                 |             |
| VOM on Sales - Base Rates                   | 0.5              | 0.0         | 0.1         | 0.2         | 0.1         | 0.1   | 0.0         | 0.1         | 0.1         | 0.1             | 0.1         |
| Profit on Sales - Base Rates                | 0.1              | 0.0         | 0.0         | 0.0         | 0.0         | 0.0   | (0.0)       | 0.0         | 0.0         | 0.0             | 0.0         |
| Sub-Total Base Rate Energy                  | 0.5              | 0.0         | 0.2         | 0.2         | 0.1         | 0.1   | 0.0         | 0.1         | 0.1         | 0.1             | 0.1         |
| Capacity Sales                              | 0.0              | 0.0         | 0.0         | 0.0         | 0.0         | 0.0   | 0.0         | 0.0         | 0.0         | 0.0             | 0.0         |
| Total Production Revenue                    | 4.1              | 0.9         | 1.0         | 1.1         | 0.9         | 0.6   | 0.3         | 0.4         | 0.5         | 0.6             | 0.6         |
| Transmission Rights Revenues                |                  |             |             |             |             |       |             |             |             |                 | ļ           |
| FTRs Attributable to Purchases - Fuel Facto | or (2.8)         | (0.4)       | (0.4)       | (0.4)       | (0.5)       | (0.5) | (0.5)       | (0.6)       | (0.6)       | (0.7)           | (0.7)       |
| Other FTRs - Base Rates                     | (35.8)           | 0.0         | (6.9)       | (7.3)       | (7.4)       | (7.5) | (7.6)       | (7.7)       | (7.9)       | (8.0)           | (8.1)       |
| Transmission Rights Revenues (FTRs)         | (38.6)           | (0.4)       | (7.3)       | (7.7)       | (7.9)       | (8.0) | (8.1)       | (8.3)       | (8.5)       | (8.7)           | (8.8)       |
| RTO Admin Fees                              |                  |             |             |             |             |       |             |             |             |                 |             |
| RTO Admin Fees                              | 10.2             | 0.0         | 3.8         | 1.8         | 1.7         | 1.8   | 1.8         | 1.8         | 1.9         | 1. <del>9</del> | 1.9         |
| Costs to Customers                          | 1.8              | (0.4)       | 1.9         | (0.2)       | 0.1         | 0.5   | 0.6         | (0.0)       | (0.5)       | (0.0)           | 0.9         |
| Fuel Factor                                 | 2.8              | (0.4)       | (0.2)       | 0.1         | 0.3         | 0.4   | 0.6         | 1.0         | 1.4         | 1.8             | 2.2         |



#### V.B. Summary of Benefits and Costs

Table V-4 summarizes the benefits and costs to North Carolina Retail Customers of Dominion joining PJM. On this table, net benefits are reported as positive numbers, and net costs are reported as negative numbers. Benefits are reported in two basic categories: 1) energy savings, including the impact on the Fuel Factor; and 2) capacity savings. These benefits are taken directly from the more detailed information shown in Table V-3 above. Namely, "Fuel Factor Savings" in Table V-4 below reflects the total change across all of the fuel factor-related items in Table V-3. "Energy – Base Rate Savings" in Table V-4 below reflects the total of energy-related items that impact base rates, and represents the sum of the two "Sub-Total Base Rate Energy" lines in Table V-3 above. "Congestion - Base Rate Savings" and "FTR Value - Base Rate Savings" in Table V-4 below are taken directly from Table V-3 above. Thus, "Total Energy Savings" in Table V-4 below includes not only the impact on the Fuel Factor, but, beginning in 2006, other energy-related items that impact base rates. "Capacity Savings" is also taken directly from Table V-3 above. The cost of joining PJM is reflected in the "Net PJM Admin Charge" in the Change Case and is taken from Table V-3 above, except that the impact of the "Deferral/Recovery" is separately broken out. It is assumed that no costs are incurred in the Base Case, even though it is possible that Dominion might be pressured to form an RTO even if it does not join PJM and such an RTO would likely have equal or greater administrative fees.

| Table V-4: Annual Benefits of Dominion Joining PJM for North Carolina Retail Customers |
|----------------------------------------------------------------------------------------|
| (in millions of \$, positive numbers denote benefits)                                  |

| PV to Ju                        | ıly 1, 2003      |             |             |             |             |             |             |             |             |             |             |
|---------------------------------|------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| North Carolina Retail Customers | <u>('05-'14)</u> | <u>2005</u> | <u>2006</u> | <u>2007</u> | <u>2008</u> | <u>2009</u> | <u>2010</u> | <u>2011</u> | <u>2012</u> | <u>2013</u> | <u>2014</u> |
| Fuel Factor Savings             | (2.8)            | 0.4         | 0.2         | (0.1)       | (0.3)       | (0.4)       | (0.6)       | (1.0)       | (1.4)       | (1.8)       | (2.2)       |
| Energy - Base Rates Savings     | 1.5              | -           | 0.0         | 0.3         | 0.3         | 0.3         | 0.3         | 0.4         | 0.5         | 0.6         | 0.7         |
| Congestion - Base Rates Savings | (28.4)           | -           | (5.2)       | (5.5)       | (5.8)       | (6.1)       | (6.3)       | (6.4)       | (6.4)       | (6.5)       | (6.6)       |
| FTR Value - Base Rates Savings  | 35.8             | -           | 6.9         | 7.3         | 7.4         | 7.5         | 7.6         | 7.7         | 7.9         | 8.0         | 8.1         |
| Total Energy Savings            | 6.1              | 0,4         | 1.8         | 2.0         | 1.6         | 1.3         | 1.0         | 0.8         | 0.5         | 0.3         | 0.1         |
| Capacity Savings                | 2.3              | -           | -           | -           | -           | -           | 0.2         | 1.1         | 1.8         | 1.6         | 0.9         |
| Benefit                         | 8.4              | 0.4         | 1.8         | 2.0         | 1.6         | 1.3         | 1.2         | 1.8         | 2.4         | 2.0         | 1.0         |
| PJM Admin Charge                | (10.2)           | (1.8)       | (1.8)       | (1.8)       | (1.7)       | (1.8)       | (1.8)       | (1.8)       | (1.9)       | (1.9)       | (1.9)       |
| Deferral/Recovery               |                  | 1.8         | (1.9)       | -           | -           | -           | -           | -           | -           | -           | -           |
| Net PJM Admin Charge            | (10.2)           | 0.0         | (3.8)       | (1.8)       | (1.7)       | (1.8)       | (1.8)       | (1.8)       | (1.9)       | (1.9)       | (1.9)       |
| Net Benefit                     | (1.8)            | 0.4         | (1.9)       | 0.2         | (0.1)       | (0.5)       | (0.6)       | 0.0         | 0.5         | 0.0         | (0.9)       |

Overall, we see that the benefits over the 10-study period for North Carolina Retail Customers are \$8.4 million. However, these benefits and the associated reductions in rates to North Carolina Retail Customers are essentially offset by PJM administrative costs. While there is no short-run, quantifiable gain to these customers, neither is there a material increase in costs. As previously



stated, the long-run benefits that are less readily quantifiable but no less real, however, must be considered as well.

#### V.B.1. Energy Cost Impacts

Given our assumption that North Carolina Retail Customers remain under regulated rates throughout the study period, their benefits from Dominion joining PJM are limited to reductions in the cost of energy and capacity purchased from third-party generation.

The Total Energy Savings of \$6.1 million net present value over the ten-year study period is driven by improved opportunities to import power into the Dominion zone. As shown in Table V-5 below, in the Base Case in 2007, Dominion is a net importer of an average of 1,338 MWh in each hour. In the Change Case, Dominion is a net importer of an average of 1,857 MWh in each hour. Note that Dominion is interconnected with AEP, PJM (East and West) and CP&L. Expanding PJM lowers the trade barriers among the zones in the Expanded PJM (including Dominion) with the result that more low-cost energy from those regions can be imported economically into Dominion. As described in more detail in Appendix C, this increased level of trade between and among PJM (East and West), AEP and Dominion results in lower prices in the Dominion area, and it also changes trade opportunities between Dominion and CP&L.

Although there are Total Energy Savings of \$6.1 million, the Fuel Factor is negative \$2.8 million. This is caused by the fact that not all energy costs flow through the Fuel Factor Savings. As Dominion imports more in the Change Case, Dominion's NUG units generate less. Since some NUG energy expenses are recovered in base rates, any decreased generation from these units results in lower base rate energy costs and higher purchases, for which a portion flows through the Fuel Factor.

|                        | <u>2005</u> | <u>2007</u> | <u>2010</u> | <u>2014</u> |
|------------------------|-------------|-------------|-------------|-------------|
| Base Case              |             |             |             |             |
| From AEP               | 1,233       | 1,200       | 1,096       | <b>92</b> 1 |
| From PJM (East & West) | 55          | 93          | 111         | 253         |
| From CP&L              | 63          | 45          | 22          | (25)        |
| TOTAL                  | 1,350       | 1,338       | 1,229       | 1,149       |
| Change Case            |             |             |             |             |
| From AEP               | 1,727       | 1,647       | 1,490       | 1,245       |
| From PJM (East & West) | 133         | 214         | 345         | 544         |
| From CP&L              | (2)         | (4)         | (20)        | (45)        |
| TOTAL                  | 1,858       | 1,857       | 1,815       | 1,744       |

#### Table V-5: Average Hourly Net Imports Into Dominion


### **V.B.2.** Capacity Cost Impacts

The cost of the capacity provided from Dominion's generation fleet to serve North Carolina Retail Customers is recovered through base rates. This component of base rates is assumed to be unchanged between the Base and Change Cases. This rate-base generation, however, is not sufficient to meet the full capacity requirements of the North Carolina Retail Customers. Consequently, Dominion purchases this incremental generation from the market, at market prices that are passed through in cost-of-service rates. In the Expanded PJM market of the Change Case, capacity prices are consistently lower than in the Base Case. See Table B-2 in Appendix B. Consequently, the cost of Dominion's market capacity purchases is lower in the Change Case, reducing cost-of-service rates by \$2.3 million dollars in a net present value over the ten-year study period.

### V.B.3. PJM Administrative Charge

The cost of being a member of PJM is reflected in the PJM administrative charge. These costs are charged to load in all years of the Change Case, when Dominion is in PJM. These costs have a ten-year present value of \$10.2 million.



## V.C. Sensitivity Case Results - High Fuel Price Case

To address some of the uncertainty with respect to long-term natural gas and oil prices, a sensitivity case is analyzed in which natural gas and oil prices are increased 25 percent above those that are used in the results from the Base Case ("Base Results"). Not surprisingly, the higher fuel costs translate directly into higher electricity costs in both the Base and Change Case. When Dominion is integrated into a broader market, with better access to diverse generating facilities, this price increase is less than if Dominion is an isolated market. The higher gas prices provide more benefit from substitution of cheaper coal-fired generation when Dominion joins PJM. This provides higher benefits for North Carolina Retail Customers.

As shown in Table V-6, the total benefits to North Carolina Retail Customers are \$11.2 million over the 10-year study period. The net benefits are \$1.0 million over the 10-year study period. The total and net benefits reflect an increase of almost \$3 million compared to the net benefits in the Base Results (see Table V-4). The difference is entirely attributable to increased energy savings (capacity savings and PJM administrative charges are identical to those in the Base Results). The higher fuel costs of natural gas-fired units increase the marginal cost difference between those units and coal-fired units. In the Change Case, when Dominion is part of PJM, Dominion customers are better able to take advantage of lower cost imports from within PJM. See Appendix D for detail.

## Table V-6: Summary Benefits of Dominion Joining PJM for North Carolina Retail Customers (High Fuel Price Sensitivity Case)

(Millions of \$, positive numbers denote benefits)

| PV to Ju                        | ıly 1, 2003      |             |             |             |             |             |             |             |             |             |             |
|---------------------------------|------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| North Carolina Retail Customers | <u>('05-'14)</u> | <u>2005</u> | <u>2006</u> | <u>2007</u> | <u>2008</u> | <u>2009</u> | <u>2010</u> | <u>2011</u> | <u>2012</u> | <u>2013</u> | <u>2014</u> |
| Fuel Factor Savings             | (0.9)            | 1.5         | 0.8         | (0.0)       | (0.1)       | (0.2)       | (0.2)       | (0.8)       | (1.3)       | (1.9)       | (2.4)       |
| Energy - Base Rates Savings     | (0.5)            | -           | (0.5)       | 0.1         | (0.0)       | (0.1)       | (0.2)       | (0.1)       | (0.1)       | (0.0)       | 0.0         |
| Congestion - Base Rates Savings | (37.0)           | -           | (7.0)       | (7.2)       | (7.6)       | (8.0)       | (8.3)       | (8.3)       | (8.2)       | (8.2)       | (8.1)       |
| FTR Value - Base Rates Savings  | 47.4             | -           | 9.2         | 9.6         | 9.8         | 10.0        | 10.3        | 10.3        | 10.4        | 10.4        | 10.5        |
| Total Energy Savings            | 8.9              | 1.5         | 2.4         | 2.5         | 2.1         | 1.8         | 1.5         | 1.1         | 0.7         | 0.4         | (0.0)       |
| Capacity Savings                | 2.3              | -           | -           | -           | -           | -           | 0.2         | 1.1         | 1.8         | 1.6         | 0.9         |
| Benefit                         | 11.2             | 1.5         | 2.4         | 2.5         | 2.1         | 1.8         | 1.7         | 2.2         | 2.6         | 2.0         | 0.9         |
| PJM Admin Charge                | (10.2)           | (1.8)       | (1.8)       | (1.8)       | (1.7)       | (1.8)       | (1.8)       | (1.8)       | (1.9)       | (1.9)       | (1.9)       |
| Deferral/Recovery               |                  | 1.8         | (1.9)       | -           | -           | -           | ~           | -           | -           | -           | -           |
| Net PJM Admin Charge            | (10.2)           | 0.0         | (3.8)       | (1.8)       | (1.7)       | (1.8)       | (1.8)       | (1.8)       | (1.9)       | (1.9)       | (1.9)       |
| Net Benefit                     | 1.0              | 1.5         | (1.4)       | 0.7         | 0.4         | 0.0         | (0.1)       | 0.4         | 0.7         | 0.1         | (1.0)       |



## V.D. Sensitivity Case Results – High Load Case

A second sensitivity case is analyzed with demand higher than included in the capacity requirements forecast. In this case, peak load is 5 percent higher than that used in the Base Results and total demand is 2 percent higher. As shown in Table V-7, the total benefits to North Carolina Retail Customers are \$5.6 million over the 10-year study period. The net benefits are (\$4.7) million over the 10-year study period. The total and net benefits reflect a decrease of about \$3 million compared to the net benefits in the Base Results (see Table V-4). The increased load increases prices generally. Higher-cost units are forced to generate to meet the increased load. As the higher load is unexpected, (that is, not included in the planned reserve margins) the available capacity is closer to reserve margins so that joining PJM does not moderate prices as much. Dominion customers also incur higher PJM administrative charges as this cost has been modeled on a dollar per MWh of load basis. It is possible that the rate would be reduced if load were higher than expected, thus minimizing any cost difference with respect to the PJM administrative charge. See Appendix D for further detail.

## Table V-7: Summary Benefits of Dominion Joining PJM for North Carolina Customers (High Load Sensitivity Case)

| PV to J                         | uly 1, 2003      |                |             |             |             |             |             |             |             |             |             |
|---------------------------------|------------------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| North Carolina Retail Customers | <u>('05-'14)</u> | <u>2005</u>    | <u>2006</u> | <u>2007</u> | <u>2008</u> | <u>2009</u> | <u>2010</u> | <u>2011</u> | <u>2012</u> | <u>2013</u> | <u>2014</u> |
| Fuel Factor Savings             | (5.9)            | 0.4            | (0.0)       | (0.5)       | (0.6)       | (0.7)       | (0.8)       | (1.7)       | (2.6)       | (3.5)       | (4.3)       |
| Energy - Base Rates Savings     | 0.9              | -              | 0.2         | 0.6         | 0.5         | 0.4         | 0.3         | 0.1         | (0.1)       | (0.3)       | (0.5)       |
| Congestion - Base Rates Savings | (33.7)           | -              | (5.5)       | (5.9)       | (6.3)       | (6.7)       | (7.2)       | (7.8)       | (8.5)       | (9.2)       | (9.9)       |
| FTR Value - Base Rates Savings  | 41.2             | -              | 7.2         | 7.8         | 8.0         | 8.2         | 8.4         | 9.1         | 9.9         | 10.7        | 11.5        |
| Total Energy Savings            | 2.4              | 0.4            | 2.0         | 2.1         | 1.5         | 1.1         | 0.7         | (0.3)       | (1.3)       | (2.3)       | (3.3)       |
| Capacity Savings                | 3.2              | -              | •           | -           | -           | -           | 0.3         | 1.5         | 2.5         | 2.2         | 1.2         |
| Benefit                         | 5.6              | 0.4            | 2.0         | 2.1         | 1.5         | 1.1         | 0.9         | 1.2         | 1.2         | (0.1)       | (2.0)       |
| PJM Admin Charge                | (10.4)           | (1 <i>.</i> 9) | (1.9)       | (1.8)       | (1.8)       | (1.8)       | (1.8)       | (1.9)       | (1.9)       | (1.9)       | (2.0)       |
| Deferral/Recovery               |                  | 1.9            | (2.0)       | -           | -           | -           | -           | -           | -           | -           | - ł         |
| Net PJM Admin Charge            | (10.4)           | 0.0            | (3.8)       | (1.8)       | (1.8)       | (1.8)       | (1.8)       | (1.9)       | (1.9)       | (1.9)       | (2.0)       |
| Net Benefit                     | (4.7)            | 0.4            | (1.9)       | 0.2         | (0.2)       | (0.7)       | (0.9)       | (0.7)       | (0.7)       | (2.1)       | (4.0)       |

(in millions of \$, positive numbers denote benefits)



## V.E. Sensitivity Case Results – Bedington-Black Oak Case

A third sensitivity case is analyzed in which the normal rating of the Bedington-Black Oak 345kV line is increased from 1,700 MW to 1,850 MW both in the Base and the Change Cases. All other model inputs and assumptions remain the same. Bedington-Black Oak is an Allegheny transmission facility in the eastern arm of West Virginia. This key "west-to-east" electricity highway operates at full capacity much of the time. Discussions early this year with PJM operations staff lead to the conclusion that 1,850 MW reasonably reflects a conservative operating limit on this transmission facility under new PJM protocols implemented early in 2003. As shown in Table V-8, the total benefits to North Carolina Retail Customers are \$8.0 million over the 10-year study period. The net benefits are (\$2.2) million over the 10-year study period. The total and net benefits reflect a decrease of about \$0.5 million compared to the net benefits in the Base Results (see Table V-4). This result does not mean that the higher rating on Bedington-Black Oak is not beneficial---it is. The benefits to North Carolina Retail Customers are greater under the Base Case, however, than under the Change Case, despite the fact that the average wholesale price of energy declines by more over the study period. This beneficial effect of lower purchase prices is offset, however, by greater reliance on energy purchases rather than energy from Dominion's owned generation or NUGs. See Appendix D for further detail.

## Table V-8: Summary Benefits of Dominion Joining PJM for North Carolina Customers (Bedington-Black Oak Case)

(in millions of \$, positive numbers denote benefits)

| PV to Ji                        | uly 1, 2003      |             |             |             |             |             |             |             |             |             |             |
|---------------------------------|------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| North Carolina Retail Customers | <u>('05-'14)</u> | <u>2005</u> | <u>2006</u> | <u>2007</u> | <u>2008</u> | <u>2009</u> | <u>2010</u> | <u>2011</u> | <u>2012</u> | <u>2013</u> | <u>2014</u> |
| Fuel Factor Savings             | (3.5)            | 0.4         | (0.0)       | (0.4)       | (0.5)       | (0.5)       | (0.6)       | (1.0)       | (1.4)       | (1.9)       | (2.3)       |
| Energy - Base Rates Savings     | 1.9              | -           | 0.1         | 0.6         | 0.4         | 0.3         | 0.2         | 0.3         | 0.5         | 0.6         | 0.8         |
| Congestion - Base Rates Savings | (35.7)           | -           | (6.8)       | (7.1)       | (7.4)       | (7.6)       | (7.9)       | (7.9)       | (7.9)       | (7.9)       | (7.8)       |
| FTR Value - Base Rates Savings  | 43.0             | -           | 8.7         | 9.1         | 9.1         | 9.2         | 9.2         | 9.1         | 9.0         | 8.9         | 8.9         |
| Total Energy Savings            | 5.7              | 0.4         | 2.0         | <b>2</b> .1 | 1.7         | 1.3         | 0.9         | 0.6         | 0.2         | (0.1)       | (0.5)       |
| Capacity Savings                | 2.3              | -           | -           | -           | -           | -           | 0.2         | 1.1         | 1.8         | 1.6         | 0.9         |
| Benefit                         | 8.0              | 0.4         | 2.0         | 2.1         | 1.7         | 1.3         | 1.1         | 1.7         | 2.1         | 1.5         | 0.5         |
| PJM Admin Charge                | (10.2)           | (1.8)       | (1.8)       | (1.8)       | (1.7)       | (1.8)       | (1.8)       | (1.8)       | (1.9)       | (1.9)       | (1.9)       |
| Deferral/Recovery               |                  | 1.8         | (1.9)       | -           | -           | -           | -           | -           | -           | -           | -           |
| Net PJM Admin Charge            | (10.2)           | 0.0         | (3.8)       | (1.8)       | (1.7)       | (1.8)       | (1.8)       | (1.8)       | (1.9)       | (1.9)       | (1.9)       |
| Net Benefit                     | (2.2)            | 0.4         | (1.8)       | 0.4         | (0.0)       | (0.5)       | (0.7)       | (0.2)       | 0.2         | (0.4)       | (1.5)       |



## VI. CONCLUSIONS

Integration into an established and respected RTO such as PJM will provide North Carolina Retail Customers with a range of important, but difficult to quantify, benefits. Among these are:

- Enhanced reliability in the Dominion service territory through efficient congestion management, restrictions on load shedding in PJM South and a continuation of a local control center to address local reliability.
- Optimized regional transmission planning process that focuses new investment to projects that realize the greatest net economic and reliability benefits. The study also finds that the key transmission constraints that result in locational price differences in the Dominion control zone are located outside of the control zone. Although these constraints do not pose reliability concerns, they impose substantial economic costs. Dominion's membership in PJM would assure that these costs are fully considered in regional transmission planning processes that can address these constraints in the future. In the interim, congestion charges in the Dominion control zone under PJM's LMP congestion management system are fully hedged by the FTR value received by Dominion customers.
- Improved resource adequacy through the Expanded PJM market created by the addition of the New PJM Entrants allowing for greater load diversity, improved reserve sharing across the region, and participation in a larger integrated regional transmission planning process.
- The potential for improvements to the efficiency of installed capacity markets, reflecting investment in generation to enhance its productivity, beyond those that have been incorporated into the formal modeling.
- Enhanced investment and participation in demand-side management programs, in response to clear and time-specific price signals.
- The potential for improved siting decisions on the part of future generation and transmission developers, allowing more efficient investment based on transparent and independent pricing.
- Potential cost savings from joining an established, proven RTO, rather than incurring the costs and uncertainties of developing an alternate response to regulatory requirements.



# Conclusions

This study indicates that there are near-term energy and capacity savings that benefit North Carolina Retail Customers:

- Reduced wholesale energy prices will save North Carolina Retail Customers \$6.1 million through 2014.
- Reduced capacity prices will save North Carolina Retail Customers \$2.3 million through 2014.

Considering the quantitative and qualitative benefits together, it is clearly a net benefit to North Carolina Retail Customers for Dominion to join PJM. After netting out PJM administrative costs, we see a small quantifiable net cost to North Carolina Retail Customers of \$1.8 million net present value over the study period. This cost is more than justified by the benefits described, but not quantified herein.

In conclusion, after a comprehensive examination of the comparative costs and benefits of Dominion joining PJM, we find that PJM membership will offer substantial and continuing net benefits to North Carolina Retail Customers.



## **APPENDIX A: GE MAPS DESCRIPTION**

## A.1. Description of the GE MAPS Model

An overview of the GE MAPS model was provided in Section IV of this report. Here we provide more detail about how the model combines its inputs to project hourly locational prices and unit generation, and we list some of the key input assumptions used in the model. The first section of this appendix describes some assumptions implicit in the GE MAPS modeling approach (*e.g.*, how maintenance is scheduled, how operating reserve requirements are imposed), while the second details some of the fundamental input assumptions, such as fuel prices and loads.

#### **Basic Model Representation**

The GE MAPS model is a security-constrained dispatch model that simulates the hourly chronological operation of an electricity market. Based on unit-level marginal cost bids, the model performs a least-cost dispatch subject to thermal and contingency constraints and calculates hourly, locational-based marginal prices for electricity. Nodal prices and unit level generation data can be aggregated to whatever level is desired (utility, region, state, *etc.*). Zonal load prices can be calculated either as load-weighted averages or as simple averages of locational prices. The GE MAPS simulation is consistent with the congestion management scheme currently utilized in PJM and the other Northeast ISOs. The model's locational spot price calculation algorithm has been successfully benchmarked against the market price algorithm used in the PJM market.<sup>24</sup>

CRA used the Eastern Interconnection version of the MAPS model in our analysis.<sup>25</sup> All modeling and analyses were done at the greatest level of detail possible (*e.g.*, individual company/control zone), given the limitations of our input data.<sup>26</sup> We combined companies into

<sup>24</sup> The actual PJM transmission representation for an individual hour was input into MAPS, along with actual loads, imports and exports and generator bids. The locational prices calculated by the GE MAPS program matched those produced by the PJM LBMP system for those conditions.

<sup>25</sup> The Eastern Interconnection includes all NERC regions, except the Western Systems Coordinating Council (WSCC) and the Electric Reliability Council of Texas (ERCOT). The electrical operations of all areas in the Eastern Interconnection are electrically synchronized with each other (except Hydro Québec), but are not synchronized with those in either ERCOT or the WSCC. Transmission ties with ERCOT, the WSCC and Hydro Québec are through DC ties. The GE MAPS Model of the Eastern Interconnection does not individual generators and loads for the interconnected and synchronized Canadian regions (Ontario, Manitoba, Saskatchewan, and New Brunswick), but rather includes supply curves that captures exports from these regions into the U.S. markets.

<sup>26</sup> Traditional transmission modeling and data reporting arrangements form the basis for all modeling efforts. For example, if an individual company/organization traditionally reports its loads as part of a larger control area, we use that designation in our analyses. Similarly for transmission related information, the control areas in the AC power flow (which is a key input to MAPS) provide the only basis available for aggregating transmission related outputs from the model. If the individual buses of a company/organization are considered as part of a larger control area in typical load flow modeling, we model those buses as part of the larger control area.



pools for commitment and dispatch, where each pool represents either an RTO or independent control zone. RTOs were modeled to correspond to existing ISOs, proposed RTOs as defined in current filings, and public announcements regarding RTO membership plans by individual utilities. Companies without existing definitive plans about their RTO membership were modeled as independent control zones.

Table A-16 at the end of this appendix shows how companies were grouped into RTOs and control zones. The three northeast ISO markets, namely ISO-NE, NYISO, and PJM, were modeled as individual RTOs. In our Base Case, PJM was modeled with its current footprint; in the Change Case, the PJM footprint was expanded to include Dominion, AEP, DP&L, and ComEd. The remaining ECAR and MAIN companies, along with the MAPP companies, were combined to form the Midwest ISO RTO (MISO). The SeTrans and GridFlorida RTOs were also assumed to go forward.<sup>27</sup> SPP and TVA were each assumed to maintain their current composition, but function as RTOs.

Duke Power, Carolina Power & Light (CP&L), and South Carolina Electric & Gas (SCE&G) were treated as individual control areas, with Santee Cooper also included in the SCE&G area. In the Base Case in which Dominion, AEP, DP&L, and ComEd were not integrated into PJM, each of these companies was treated as an individual control zone.

## Least-Cost Commitment and Dispatch

The GE MAPS model commits and dispatches generation units to minimize production costs on a system-wide basis, but allows constraints on pool-to-pool transactions to be specified in order to capture pool-level commitment and dispatch and other impediments to trade.<sup>28</sup> As a result, unless constraints that impede trade are specified, all physically feasible, economically beneficial transactions will take place among various entities in the Eastern Interconnection. Because the current market does not capture all economically beneficial trades between utilities, and since trade across RTO seams is not perfectly coordinated, we implemented hurdle rates to restrict commitment and dispatch efficiencies inherent in the model's operation.

These hurdles must be met before either an RTO or a company (operating outside an RTO) will rely on generation from outside its area to meet internal load. Hence, each pool's unit commitment and dispatch will only reflect the availability of economic external generation if the resulting cost-savings from utilizing that capacity exceeds the hurdle. Hurdles apply to pool-to-pool transactions in both the Base and Change Cases. However, because the PJM pool expands in the Change

<sup>27</sup> See footnote 7.

<sup>28</sup> "System-wide" commitment and dispatch encompasses the entire Eastern Interconnect.



Case to include Dominion, ComEd, DP&L, and AEP, the hurdles among these companies and the existing PJM companies are removed.

We imposed two types of hurdles and the level of each varies between peak and off-peak periods and between the commitment and dispatch phases. The first type of hurdle, which we have termed "trade hurdles," applies to each trade between directly interconnected pools and therefore becomes larger as the number of transmission wheels increases. Trade hurdles reflect the cost of obtaining firm transmission and impediments associated with securing transmission rights. Trade hurdles apply in both commitment and dispatch and were set to \$3/MWh on-peak and \$1/MWh offpeak.

We refer to hurdles of the second type as "import hurdles." Import hurdles are an additional penalty assessed to each pool on positive net imports. The penalty is assessed for each MWh by which a pool's load exceeds its internal generation, and hence is a fixed hurdle on pool-to-pool trades that does not pancake with the number of wheels required for the transfer. The effect of these hurdles is to require an additional amount of savings, even after the trade hurdles have been satisfied, before a pool will utilize external generation. These hurdles capture the margin on trades that must be available before the parties are willing to execute a deal.

In order to capture a bias toward committing local resources for meeting peak loads, in commitment we set import hurdles to \$10/MWh on-peak and \$1/MWh off peak. Each pool is assumed to commit generation to serve its own load except in those instances where a savings of \$10 per MWh can be achieved through imports from another control area. If attractive purchases or sales are available, the requisite units are committed (or decommitted) and made available for (or excluded from) the hourly dispatch. In order to allow the export of available, low-cost capacity that has been committed but is not fully utilized to occur with relatively less trading friction, we imposed import hurdles in dispatch of \$3/MWh on-peak and \$1/MWh off-peak.

We also imposed penalties on trades to simulate the effect of incremental losses. The loss charges were applied to transfers out of or through a pool.<sup>29</sup> We implemented the charges by assess-

<sup>29</sup> GE MAPS can model incremental transmission losses in one of two ways. First, it has the capability to use a set of fixed loss factors based on the specified load flow case and scales these factors up or down as the load increases or decreases with respect to the base case (i.e., it assumes a linear relationship between transmission losses and load on the system). As long as the power flows on transmission lines do not change direction, this is a reasonable approximation, but in much of the study region, flows can reverse direction depending on the season, the time of day, and unit availability. Second, GE has recently added the ability to MAPS to compute incremental loss factors hourly, based on the solved powerflow. CRA has not yet satisfied itself that the new algorithm produces credible results in large-scale studies; nor was this option available at the time the Virginia report was prepared. As a result, neither GE MAPS logic to calculate marginal losses was used, and the impact on market clearing prices of changing physical losses was not determined. Rather, a financial fee for losses was incorporated into the Production Cost Analysis, which provides a reasonable proxy for marginal losses across control zones.



ing a \$1/MWh trade hurdle on all transfers between directly connected pools. Even though other hurdles are removed, loss charges among the PJM subregions are maintained in the Change Case to reflect losses within the Expanded PJM.

Table A-1 summarizes the level of all the hurdles by type and time period.

| 1                  | Com  | nitment  | Dispatch |          |  |
|--------------------|------|----------|----------|----------|--|
|                    | Peak | Off-Peak | Peak     | Off-Peak |  |
| Trade Hurdles      | 3    | 1        | 3        | 1        |  |
| Penalty for Losses | 1    | 1        | 1        | 1        |  |
| Import Hurdles     | 10   | 1        | 3        | 1        |  |

## Table A-1: Hurdle Rates on Pool-to-Pool Transactions

## **Operating Reserves**

MAPS accounts for spinning and non-spinning reserve requirements in its commitment and dispatch. The spinning reserve market affects the energy market prices because the units that provide spinning reserve cannot produce electricity under normal conditions.<sup>30</sup> As a result, energy prices in MAPS are higher when reserve markets are modeled.

In both the Base and Change Case, operating reserve requirements were specified for each pool as 2.5 percent of hourly load, all of which must be met with spinning resources. Additionally, in the Change Case, we imposed locational operating reserve requirements. PJM (East and West combined), ComEd, AEP, DP&L, and Dominion were each required to provide operating reserves internally. The methodology implicitly maintains the Base Case reserve requirements and precludes benefits from reserve sharing across the Expanded PJM.

We assumed that only a limited percentage of generation units' capacity can provide spinning reserves due to ramp-up constraints that prevent units from reaching their full capacity for delivering energy within the ten minutes period required for operating reserves. We specified a ramp rate for each unit and allowed it to hold operating reserves equal to amount the unit can ramp in ten minutes. The ramp rate varies by unit type, as listed in Table A-2.

<sup>30</sup> Non-spinning reserve requirements rarely influence MAPS energy prices in areas like the eastern U.S., with a reasonably large supply of quick-starting gas turbines.



| Unit Type      | Ramp Rate<br>(MW/Minute) |
|----------------|--------------------------|
| Coal           | 6                        |
| Combined Cycle | 25                       |
| Gas Turbines   | 9                        |
| Nuclear        | 0                        |
| Other          | 0                        |
| Peaking Units  | 0                        |
| Steam Gas/Oil  | 6                        |
| Steam Other    | 6                        |

#### Table A-2: Generator Ramp Rates by Unit Type

#### **Maintenance Scheduling for Thermal Generation Units**

The GE MAPS feature of scheduling maintenance of thermal generation units was used to levelize the reserve margin across the weeks of each year.<sup>31</sup> We assumed that maintenance within each pool (*i.e.*, RTO or independent control zone) is scheduled such that reserves within the pool are levelized on an annual basis. For example, if a region's load peaks in the summer, it will schedule little or no maintenance in that season; similarly, if a company's load peaks in the summer and winter, it will schedule no maintenance in these two seasons.

#### Generation from Conventional Hydro and Pumped Storage Units

Hourly generation levels for each hydro unit were determined by the GE MAPS model for each of the scenarios and years modeled. The GE MAPS model takes monthly generation totals for each hydro unit together with limits on their maximum and minimum generation levels and schedules hydro generation against the load shape for the pool in which the unit is located. The GE MAPS model generally does not dispatch hydro generation to relieve transmission congestion. However, if the locational price at the generation unit is very low (less than \$5/MWh), then MAPS backs down generation from that unit to relieve congestion; under these circumstances, backing down the hydro unit is the most economic and may be the only alternative to relieving congestion. Also, GE MAPS does not increase generation from hydro resources to relieve congestion. This modeling assumption impacts each of the scenarios equally because only thermal units are used for congestion management in all scenarios.

GE MAPS dispatches pumped storage units based on load and committed thermal generation in the surrounding region. The model approximates the price elasticity for each hour over the course of a week using the stack of available generating units in the surrounding region and finds the corre-

<sup>&</sup>lt;sup>31</sup> The weekly reserve margin is capacity available during that week minus the week's peak load.



sponding operating pattern for pumped storage units that minimizes total production cost. The model honors the physical characteristics of each unit, including pumping and generating capacities, pumping efficiency, and reservoir storage limits. When developing the schedule, the model does not directly account for transmission limits, but rather restricts the set of generators it considers to be available to ramp up for pumping or ramp down when the pumped storage units generate to those in the local region of each unit. Once the pumping and generating pattern has been developed, the model does honor all transmission constraints when meeting the schedule as part of the dispatch process. However, because the scheduling algorithm does not directly account for the availability of transmission in each hour, the optimization is only an approximation and as a result contains some noise.

In order to avoid potentially spurious benefits or costs between the Base and Change Cases stemming from the optimization of Bath County Pumped Storage unit operations, CRA used a stylized schedule for this unit and held it constant among all cases.<sup>32</sup> Based on initial runs with various pumping and generating schedules for the unit, a schedule was developed that performed reasonably well in all cases, but was not biased towards either case. The schedule honors all physical operating characteristics of the unit and balances pumping requirements with energy output. All other pumped storage hydro units were optimized using the standard GE MAPS algorithm.

#### **Key Input Assumptions**

As inputs to the model, CRA began with GE's complete database for the Eastern Interconnection power system, which is based in part on data from RDI. We have modified this database based on our analysis of public data and model results to ensure data integrity, validity, and consistency of plant operations with historical market data. In addition, we have incorporated data provided by Dominion North Carolina Power.

The following is a list of the major components of the model. The list is followed by a description of each component and the associated data sources.

- (1) Load Inputs
- (2) Thermal Unit Characteristics
- (3) Planned Additions and Retirements
- (4) Fuel Price Forecasts
- <sup>32</sup> Bath County is a 2,520 MW pumped storage facility located in western Virginia. Dominion owns two-thirds of this <u>facility</u>, with the remainder owned by Allegheny.



(5) Transmission System Representation

(6) Environmental Regulations

(7) Hydro Unit Output

(8) NUG Contracts

#### Load Inputs

Peak loads and annual energy demands were based on forecasts reported in the 2001 NERC ES&D. Since published data do not extend to the end of our study period (i.e., 2014), forecasts were extended based on the projected growth over the reported forecast period (2002-2011). Table A-3 shows the regional peak load and annual energy totals assumed in each of the years modeled.

|                     | <u>2005</u> |         | <u>2007</u> |         | <u>2(</u> | <u>)10</u> | <u>2014</u> |                 |  |
|---------------------|-------------|---------|-------------|---------|-----------|------------|-------------|-----------------|--|
|                     | Peak        | Annual  | Peak        | Annual  | Peak      | Annual     | Peak        | Annual          |  |
| Control Zone/RTO    | Load        | Energy  | Load        | Energy  | Load      | Energy     | Load        | Energy          |  |
|                     | (MW)        | (GWh)   | (MW)        | (GWh)   | (MW)      | (GWh)      | (MW)        | (GWh)           |  |
| DVP Zone            | 18,156      | 92,845  | 18,911      | 96,784  | 19,914    | 102,289    | 21,378      | 110,705         |  |
| AEP                 | 20,506      | 124,204 | 21,217      | 128,794 | 22,236    | 135,212    | 23,805      | 144,228         |  |
| DP&L                | 3,169       | 17,227  | 3,285       | 17,697  | 3,374     | 18,203     | 3,602       | 1 <b>9,27</b> 7 |  |
| ComEd               | 23,250      | 102,350 | 24,200      | 105,250 | 25,700    | 109,650    | 27,543      | 115,695         |  |
| PJM (MAAC+APS)      | 66,920      | 348,582 | 69,284      | 359,149 | 72,776    | 375,148    | 77,681      | 398,385         |  |
| MISO                | 133,005     | 724,968 | 137,630     | 745,573 | 144,284   | 782,171    | 155,288     | 835,104         |  |
| CP&L                | 13,033      | 66,506  | 13,353      | 69,367  | 14,191    | 73,647     | 15,367      | 79,606          |  |
| DUKE + CEPCI        | 22,492      | 112,912 | 23,042      | 117,770 | 24,490    | 125,035    | 26,518      | 135,154         |  |
| SCE&G+Santee Cooper | 8,586       | 45,464  | 8,796       | 47,420  | 9,349     | 50,346     | 10,123      | 54,420          |  |
| TVA                 | 31,779      | 176,641 | 33,335      | 183,091 | 35,662    | 192,701    | 38,540      | 205,865         |  |
| SETRANS             | 75,077      | 408,431 | 78,770      | 426,494 | 84,358    | 455,481    | 92,406      | 495,010         |  |
| SPP                 | 42,550      | 210,934 | 44,004      | 217,065 | 47,119    | 233,001    | 50,930      | 251,219         |  |
| GFL                 | 42,536      | 209,759 | 44,344      | 221,485 | 47,316    | 237,493    | 51,693      | 262,592         |  |
| ISO-NE              | 25,685      | 132,085 | 26,408      | 136,162 | 27,529    | 142,242    | 29,337      | 149,743         |  |
| NYISO               | 32,300      | 162,160 | 33,050      | 165,880 | 34,090    | 171,600    | 35,520      | 179,340         |  |

#### Table A-3: Peak Loads and Annual Energy Demand, by Region

Individual company load shapes are based on actual 1997 hourly load data as reported by the companies. The GE MAPS model adjusts each company's historical hourly load shape to fit the peak and annual energy numbers specified for that company for the year being modeled. The hourly load data created by that process for each company is then used as an input for the GE MAPS hourly simulation.



## **Thermal Unit Characteristics**

GE MAPS models generation units in detail, in order to accurately simulate their operational patterns and thereby project realistic hourly prices. The following characteristics are modeled:

- Unit type (steam, combined-cycle, combustion turbine, cogeneration, etc.)
- Full load heat rates and heat rate curves.
- Summer and winter capacities.
- Operation and maintenance costs.
- Forced and planned outage rates.
- Minimum up and down times.
- Quick start and spinning reserve capabilities.
- Startup costs.

Sources for thermal unit data include the EIA-411, EIA-867, and EIA-412 forms, the FERC Form 1, and the REA-12 forms. When unit-specific data were unavailable, we developed generic heat rate curves for different unit types based on available data for similar units. CRA specified unit forced and planned outage rates for each type based on an analysis of NERC's "Generating Availability Data System" data set. Table A-4 shows the outages our outage rate assumptions for each unit type.



|                     |              | Forced | Planned |
|---------------------|--------------|--------|---------|
| II-14 Torres        | Si           | Outage | Data    |
| Unit Type           | Size         | Rate   | Nate    |
| Coal                | 0 - 100 MW   | 5.0%   | 7.2%    |
| Coal                | 100 - 500 MW | 7.0%   | 7.2%    |
| Coal                | 500 MW +     | 7.0%   | 7.2%    |
| Steam Gas/Oil       | 0 - 100 MW   | 5.0%   | 6.7%    |
| Steam Gas/Oil       | 100 - 500 MW | 7.0%   | 6.7%    |
| Steam Gas/Oil       | 500 MW +     | 7.0%   | 6.7%    |
| Combined Cycle      | 0 - 100 MW   | 3.5%   | 4.8%    |
| Combined Cycle      | 100 - 500 MW | 3.5%   | 4.8%    |
| Combined Cycle      | 500 MW +     | 3.5%   | 4.8%    |
| Nuclear             | 0 - 100 MW   | 7.0%   | 7.0%    |
| Nuclear             | 100 - 500 MW | 7.0%   | 7.0%    |
| Nuclear             | 500 MW +     | 7.0%   | 7.0%    |
| Gas Turbines        | 0 - 100 MW   | 5.0%   | 1.5%    |
| Gas Turbines        | 100 - 500 MW | 2.5%   | 1.5%    |
| Gas Turbines        | 500 MW +     | 2.5%   | 1.5%    |
| Other Peaking Units | 0 - 100 MW   | 4.0%   | 1.5%    |
| Other Peaking Units | 100 - 500 MW | 4.0%   | 1.5%    |
| Other Peaking Units | 500 MW +     | 4.0%   | 1.5%    |
| Other               | 0 - 100 MW   | 5.0%   | 6.7%    |
| Other               | 100 - 500 MW | 5.0%   | 6.7%    |
| Other               | 500 MW +     | 5.0%   | 6.7%    |

#### **Table A-4: Outage Rate Assumptions**

A listing of all generators in the Dominion control zone is provided in Table A-17 at the end of this appendix.

#### **Planned Additions and Retirements**

Planned entries and retirements impact the fuel mix of installed capacity and the composition of plants on the margin. Most retirements are oil or steam gas plants, which are likely to be replaced by combined-cycle gas plants.<sup>33</sup> We added new capacity to the model in the years through 2005 based only on existing projects that are currently under construction.<sup>34</sup> Additional generic new capacity was added in the years after 2007 only as needed to meet regional reserve requirements in each case.

We assumed all new capacity would take the form of either gas-fired combined-cycle (CC) or simple-cycle gas turbines (GT), based on the relative economics of their entry. We balanced the entry of CC and GT units in each region consistent with an equilibrium in which each new unit earns

<sup>&</sup>lt;sup>34</sup> As reported in RDI's NewGen Database.



<sup>&</sup>lt;sup>33</sup> Planned retirements were specified based on information in RDI's BaseCase Database.

a sufficient margin from energy and capacity sales to cover its capital costs over a 30-year period. We assumed that a new CC would require a margin (energy revenues plus capacity revenues minus variable O&M, fuel, and emissions allowance costs) of \$85 per kW in each year in order to cover its capital costs and its annual fixed O&M costs and that a new GT would require a margin of \$50 per kW per year. These were derived based on an assumed cost of \$560 per kW for CC units and \$365 per kW for GTs, excluding interest during construction.

Unit additions and retirements modeled are summarized in Tables A-18 and A-19 at the end of this appendix.

## **Fuel Price Forecasts**

The opportunity cost of fuel consumed for generation (i.e., the current spot price of fuel) is generally the largest component of a unit's marginal cost bid. To project these variable fuel costs, we used forecasts of spot fuel prices at regional hubs, and further refined these based on historical differentials between price points around each hub. For oil and gas, we used estimates of the price delivered to generators on a regional basis, while for coal, we used plant specific price forecasts.



## **Coal Prices**

CRA specified coal prices on the plant-level coal prices using forecasts of the fuel costs for each plant from RDI. RDI's forecasts are based on the historical and expected fuel type used at each plant and regional, delivered price of each type of coal. The forecasts account for potential fuel switch in response to environmental regulations. Where plant-level forecasts were not available, we used RDI's regional coal price forecast. Table A-5 shows the default regional annual coal-prices used in the study.

| Region                                    | 2005 | 2007 | 2010 | 2014 |
|-------------------------------------------|------|------|------|------|
| East Central Area Reliability Coord Agrmn | 1.18 | 1.17 | 1.16 | 1.16 |
| Entergy                                   | 1.23 | 1.22 | 1.17 | 1.17 |
| Florida Reliabilty Coordinating Council   | 1.71 | 1.69 | 1.65 | 1.65 |
| MAIN Sub Region                           | 1.13 | 1.11 | 1.06 | 1.06 |
| Mid-Continent Area Power Pool             | 0.87 | 0.88 | 0.85 | 0.85 |
| New Brunswick                             | 1.76 | 1.72 | 1.66 | 1.66 |
| New England Power Pool                    | 1.76 | 1.72 | 1.66 | 1.66 |
| New York Power Pool                       | 1.48 | 1.45 | 1.44 | 1.44 |
| SPP Northern Subregion                    | 0.89 | 0.89 | 0.86 | 0.86 |
| PJM Interconnect PA-NJ-MD                 | 1.32 | 1.30 | 1.28 | 1.28 |
| SPP South Subregion                       | 1.13 | 1.12 | 1.08 | 1.08 |
| Southern Subregion                        | 1.50 | 1.48 | 1.43 | 1.43 |
| Tennessee Valley Authority                | 1.26 | 1.24 | 1.21 | 1.21 |
| Virginia/Carolinas Subregion              | 1.47 | 1.44 | 1.43 | 1.43 |



## Gas and Oil Prices

The key underlying forecasts are projected prices for crude oil and for natural gas (Henry Hub). All other forecasts are derived from these two basic forecasts using projected basis differentials.

To derive #2 fuel oil prices for electric generation, we used state-specific basis differentials developed based on EIA Form 423 data and assumed the price follows the same trajectory as crude oil prices. Our # 6 fuel oil forecast is based on historic New York Harbor prices. Because residual oil is a close substitute for natural gas in many dual-fuel electric generators and industrial facilities, we trended future #6 oil prices based on the price of natural gas. Table A-6 presents CRA forecasts for #6 and #2 fuel oil.

### Table A-6: Fuel Oil Prices

|          |      | rices |      |      |      |      |      |      |
|----------|------|-------|------|------|------|------|------|------|
|          | 2005 | 2007  | 2010 | 2014 | 2005 | 2007 | 2010 | 2014 |
| ECAR     | 4.83 | 4.63  | 4.57 | 4.58 | 3.20 | 3.06 | 3.03 | 3.03 |
| FRCC     | 4.75 | 4.55  | 4.49 | 4.50 | 3.20 | 3.06 | 3.03 | 3.03 |
| MAAC     | 4.69 | 4.49  | 4.44 | 4.45 | 3.20 | 3.06 | 3.03 | 3.03 |
| MAIN     | 4.62 | 4.64  | 4.66 | 4.73 | 3.20 | 3.06 | 3.03 | 3.03 |
| MAPP     | 5.01 | 5.03  | 5.06 | 5.14 | 3.20 | 3.06 | 3.03 | 3.03 |
| NPCC     | 4.97 | 4.99  | 5.02 | 5.10 | 3.20 | 3.06 | 3.03 | 3.03 |
| SERC     | 4.83 | 4.85  | 4.87 | 4.95 | 3.20 | 3.06 | 3.03 | 3.03 |
| SPP      | 4.82 | 4.84  | 4.87 | 4.94 | 3.20 | 3.06 | 3.03 | 3.03 |
| SOUTHERN | 4.83 | 4.85  | 4.87 | 4.95 | 3.20 | 3.06 | 3.03 | 3.03 |
| TVA      | 4.83 | 4.85  | 4.87 | 4.95 | 3.20 | 3.06 | 3.03 | 3.03 |
| VACAR    | 4.83 | 4.85  | 4.87 | 4.95 | 3.20 | 3.06 | 3.03 | 3.03 |



Figure A-1 shows CRA's forecast for the spot price of natural gas at Henry Hub. The forecast is a composition of NYMEX futures prices in the short term, and an average among various, publicly available long-term forecasts in the remaining year.







The burner-tip price for natural gas is a sum of two components—regional price and local delivery charges (which reflect unavoidable LDC and/or lateral charge). CRA's forecasted regional gas prices are derived from the Henry Hub forecast and projected basis differentials for each region derived from historical regional price data. Our natural gas regions and their corresponding price points are identified in Tables A-7 and A-8. Basis differentials and regional delivered gas prices are shown in Table A-20 at the end of this appendix.

|                            | Regional Mapping |    |    |    |    |    |    |  |
|----------------------------|------------------|----|----|----|----|----|----|--|
|                            | 1                | 2  | 3  | 4  | 5  | 6  | 7  |  |
| New England                | MA               | ME | NH | VT | RI | СТ |    |  |
| Eastern NY                 | NY               |    |    |    |    |    |    |  |
| NYC <sup>1</sup>           | NY               |    |    |    |    |    |    |  |
| Eastern PA/NJ <sup>2</sup> | PA               | NJ |    |    |    |    |    |  |
| Western NY/PA              | NY               | PA |    |    |    |    |    |  |
| DC, DE, MD                 | DC               | DE | MD |    |    |    |    |  |
| WV, KY                     | WV               | KY | VA |    |    |    |    |  |
| NC, VA                     | NC               | VA |    |    |    |    |    |  |
| SC, GA                     | SC               | GA |    |    |    |    |    |  |
| Southeast <sup>3</sup>     | LA               | AL | TN | KY | MS | AR | FL |  |
| Florida                    | FL               |    |    |    |    |    |    |  |
| Midcontinent               | IA               | MT | NE | OK | KS | МО |    |  |
| Midwest                    | MI               | OH | IN | IL |    |    |    |  |
| Upper Midwest              | MN               | WI | ND | SD |    |    |    |  |
| Rockies                    | MT               | WY | CO | UT |    |    |    |  |
| Southwest                  | NM               | AZ | NV |    |    |    |    |  |
| East Texas                 | TX               |    |    |    |    |    |    |  |
| West Texas                 | TX               |    |    |    |    |    |    |  |
| PNW                        | WA               | ID | OR | NV |    |    |    |  |
| Northern CA                | CA               |    |    |    |    |    |    |  |
| Southern CA                | CA               | •  |    |    |    |    |    |  |
| Western Canada             | CN               |    |    |    |    |    |    |  |

## Table A-7: Definition of Gas Price Regions

<sup>1</sup>Con Ed, Long Island Lighting

<sup>2</sup>Includes PP&L, Exelon, UGI, GPU's Portland Gilbert, Sayerville and Titus areas

<sup>3</sup>Includes Southern Co. plants in the FL panhandle



# Table A-8: Sources for Historical Regional Gas Price Data

| Region         | Price Point                                                                                                                              |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Henry Hub      | Bloomberg Natural Gas Henry Hub Spot Price                                                                                               |
| New England    | Algonquin Gates (Bloomberg)                                                                                                              |
| Eastern NY     | Avg of Transco Z6 non NY and Iroquois Wright station (2/3 weighting on Z6 due to location of gen stations)                               |
| NYC            | Bloomberg Tmasco Zone 6                                                                                                                  |
| Eastern PA/NJ  | Average between NYC [4] and Leidy                                                                                                        |
| Western NY/PA  | Bloomberg Dominion Leidy Pa. Natural gas Spot Price                                                                                      |
| DC, DE, MD     | Tetco M3                                                                                                                                 |
| WV, KY         | Platts Gas Daily, COLUMBIA, APP, MONTHLY AVERAGE OF DAILY AVERAGE SPOT<br>GAS PRICE                                                      |
| NC, VA         | Priced as a discount to Tetco M3                                                                                                         |
| SC, GA         | Platts SOUTHEAST, AVERAGE, DELIVERED TO PIPELINE, SPOT GAS PRICE                                                                         |
| Southeast      | Piatts FLORIDA GATES VIA FGT, MONTHLY AVERAGE OF DAILY AVERAGE SPOT GAS<br>PRICE                                                         |
| Florida        | Bloomberg Mid-Continent Natural Gas Spot Price Average                                                                                   |
| Midcontinent   | Bloomberg Mid-Continent Natural Gas Spot Price/Chicago City Gate                                                                         |
| Midwest        | Average between Chicago [13] and AECO [22]                                                                                               |
| Upper Midwest  | Mixed sources. Bloomberg Colorado Interstate Gas North System Natural Gas Daily Spot<br>Price; Nat Gas Week Colorado Interstate Kanda WY |
| Rockies        | Mixed sources. Bloomberg Natural Gas San Juan Basin Spot Price. Post 1998 Nat Gas<br>Week Blanco NM                                      |
| Southwest      | Bloomberg Natural Gas Katy Spot Price                                                                                                    |
| East Texas     | Bloomberg Natural Gas Waha Hub Spot Price                                                                                                |
| West Texas     | Bloomberg Spot Natural Gas Price Huntingdon BC/Sumas WA USD                                                                              |
| PNW            | Mixed sources. Platts MALIN, OREGON, PG&E LINE 400, AVG, CITY-GATE, SPOT GAS PRICE. Post 2001 Nat Gas week PGT Malin                     |
| Northern CA    | Platts Gas Daily, SOUTHERN CALIFORNIA LARGE PACKAGES, MONTHLY AVERAGE<br>OF DAILY AVERAGE SPOT GAS PRICE                                 |
| Southern CA    | Bloomberg Spot Natural Gas Price/AECO C Hub USD                                                                                          |
| Western Canada | Priced at a discount to NC, VA                                                                                                           |



## **Transmission System Representation**

GE MAPS honors designated transmission constraints in its commitment and dispatch of generating units. We used a combination of GE's standard transmission representation for the Eastern Interconnection, transmission constraints from publicly available regional studies, and specific transmission information provided by Dominion. Constraints included:

- Thermal limits on all 500 kV lines in the study region.
- NERC flowgates throughout the Eastern Interconnect.
- Contingencies and thermal limits identified by GE's contingency processor as potentially problematic.
- Contingencies listed in the VACAR-TVA-SOUTHERN Study Group's 2003 Summer Study published in February 2000.
- Contingencies listed in the June 1998 VACAR-ECAR-MAAC Study Committee's Interregional Transmission System Reliability Assessment.
- Binding transmission constraints posted on the PJM website.
- Other important constraints identified by Dominion.

We also accounted for several voltage and stability constraints within PJM by limiting the flow on selected interfaces to levels below their thermal ratings. The Bedington-Black Oak line, AP South Interface, and the East, West, and Central Interfaces of PJM were all monitored with limits set to levels consistent with PJM historical operations.

In order to restrict trade between regions to commercially feasible levels, we also limited pool-to-pool transfers. Based on TTC limits reported on OASIS, transfer limits reported in regional transmission studies, NERC reliability assessments, and guidance from Dominion, we imposed the transfer limits shown in Figure A-2. Note that pool-to-pool transfers are also limited by the physical transmission limits described above. However, the MAPS model may in some hours use physically available transmission capacity more efficiently than can generally be accomplished in current markets, even with the hurdles we have implemented. Hence, these additional transfer limits were intended to capture practical commercial limits on the amount of power that can be moved across seams during periods in which physical limits do not bind.





Figure A-2: Maximum Economic Transfers Between Adjacent RTOs or Control Areas in MW



### **Environmental Regulations**

The opportunity cost of tradable SO<sub>2</sub> and NO<sub>X</sub> allowances were added to the variable costs of all affected units, based on their current emission rates, and projected emission allowance prices.<sup>35</sup> We assumed the prices of SO<sub>2</sub> and NO<sub>X</sub> allowances as shown in Table A-9. These allowance prices are based on current trading prices and projections of allowance prices in future years that are consistent with our fuel price forecasts and the continuation of current emissions limits.<sup>36</sup>

| Market                | 2003    | 2004    | 2005    | 2007    | 2010    | 2014    |
|-----------------------|---------|---------|---------|---------|---------|---------|
| SO2 <sup>1</sup>      | \$157   | \$134   | \$110   | \$135   | \$180   | \$194   |
| SIP Call <sup>2</sup> | \$0     | \$4,800 | \$4,800 | \$3,332 | \$3,741 | \$4,230 |
| OTR <sup>3</sup>      | \$7,170 | \$4,800 | \$4,800 | \$3,332 | \$3,741 | \$4,230 |

#### **Table A-9: NOX and SO2 Allowance Prices**

<sup>3</sup>Cantor Fitzgerald 3/24/03. OTR assumed to fully merge with SIP call market starting in 2004

#### **Projected Hydro Output**

CRA used the basic MAPS modeling approach for conventional hydro units, which accounts for environmental and operating constraints, such as maximum and minimum river flows. Monthly maximum and minimum generation and total energy are supplied to GE MAPS, and the model schedules the units to meet these requirements and shave peak loads. We used historical seasonal patterns for each individual hydro unit as a proxy for future seasonal generation (monthly GWh). The historical data were taken from EIA-759 form information as reported in the RDI database.

For pumped storage units, we used the generating and pumping capacities, reservoir sizes, and efficiency levels as specified in the standard GE MAPS database. Where appropriate, CRA refined the specified capacity and operating characteristic assumptions for the Bath County facility based on input from Dominion. As note above, the operation of the Bath County unit followed a pre-specified, stylized schedule, and the standard MAPS procedure determined the dispatch for all other pumped storage units.

 $<sup>\</sup>frac{36}{10}$  In particular, the NO<sub>X</sub> SIP Call, the Title IV national SO<sub>2</sub> cap, and Title V unit-level NO<sub>X</sub> emissions limits.



<sup>&</sup>lt;sup>35</sup> NO<sub>X</sub> adders were applied to units in regions affected by the NO<sub>X</sub> SIP (State Implementation Plan) Call. Adders were included only during the NO<sub>X</sub> season (May through September).

## **NUG Contracts**

Based on guidance from Dominion, CRA modeled certain contractual details for NUGs within Dominion control zone. We modeled all must-take NUGs as fully dispatched, up to capacity factors consistent with historical operation. Also, the operation of dispatchable NUGs reflected specified contract energy prices rather than the plants' variable operating costs. In other words, the NUGS were dispatched whenever the contract energy price fell below the market price of energy, making them economic sources of power for Dominion. We assumed that NUG contracts scheduled to expire during the study period would not be renewed and that the plants would operate on a merchant basis following the expiry.

## A.2. MAPS Modeling Results

As discussed in Section IV of the report, the benefits to North Carolina that stem from joining the PJM RTO are driven by increased ability access lower cost generation from neighboring regions without substantial impediments to trades, along with the offset to congestion costs provided by FTR revenue. Several modeling results illustrate the changes in the unit dispatch and trade patterns that occur that occur between the Base and Change Cases in North Carolina and other areas throughout the Eastern Interconnection.

This section present several key outputs from the GE MAPS wholesale market model including:

- Dominion area net imports.
- Average pool-to-pool transfers.
- Generation by unit type and region.
- LMPs for each regional market.
- Binding transmission constraints and congestion.

## Pattern of Dominion Imports and Regional Transfers

Table A-10 shows net transfers into the Dominion control zone from each neighboring region. The net imports follow a consistent pattern. The Dominion control zone is a net importer of



power, with the largest portion of imports coming from (or through) the AEP area.<sup>37</sup> Net imports increase during off-peak hours, as inexpensive power for pumping the Bath County units can be provided by low cost generators that are otherwise not fully utilized during lower load periods and imported into the Dominion area. During peak hours, flows into the Dominion control zone decrease as Bath County switches from pumping to generating and more of the low cost generation to the west is needed to meet local load.

| Period    | Imports/Transfers               | 2005 Base<br>Case | 2007 Base<br>Case | 2010 Base<br>Case | 2014 Base<br>Case | 2005 Change<br>Case | 2007<br>Change<br>Case | 2010<br>Change<br>Case | 2014<br>Change<br>Case |
|-----------|---------------------------------|-------------------|-------------------|-------------------|-------------------|---------------------|------------------------|------------------------|------------------------|
| Off-Peak  | Average Net Imports to DVP Zone | 1,783             | 1,842             | 1,933             | 2,021             | 2,104               | 2,164                  | 2,214                  | 2,280                  |
|           | Average Transfers from AEP      | 1,583             | 1,602             | 1,693             | 1 <b>,6</b> 01    | 1,963               | 1,911                  | 1,928                  | 1,803                  |
|           | Average Transfers from PJM      | 82                | 130               | 159               | 375               | 109                 | 227                    | 268                    | 505                    |
| 1         | Average Transfers from CPL      | 118               | 110               | 81                | 45                | 32                  | 26                     | 19                     | (28)                   |
| On-Peak   | Average Net Imports to DVP Zone | 874               | 784               | 455               | 190               | 1,587               | 1,519                  | 1,376                  | 1,154                  |
|           | Average Transfers from AEP      | 847               | 758               | 438               | 173               | 1 <b>,467</b>       | 1,357                  | 1,009                  | 632                    |
|           | Average Transfers from PJM      | 25                | 53                | 59                | 120               | 159                 | 200                    | 428                    | 587                    |
|           | Average Transfers from CPL      | 2                 | (27)              | (43)              | (103)             | ) (39)              | (37)                   | (62)                   | (64)                   |
| All-Hours | Average Net Imports to DVP Zone | 1,350             | 1,338             | 1,229             | 1,149             | 1,858               | 1,857                  | 1,815                  | 1,744                  |
|           | Average Transfers from AEP      | 1,233             | 1,200             | 1,096             | 921               | 1,727               | 1,647                  | 1,490                  | 1,245                  |
|           | Average Transfers from PJM      | 55                | 93                | 111               | 253               | 133                 | 214                    | 345                    | 544                    |
|           | Average Transfers from CPL      | 63                | 45                | 22                | (25)              | (2)                 | (4)                    | (20)                   | (45)                   |

#### Table A-10: Average Dominion Zone Net Imports, by Source (MW)

Removing impediments to trade between the Dominion area and the other companies in the Expanded PJM makes imports more attractive, and as a result flows into the Dominion control zone increase by approximately 40 percent. The increase is greatest during peak hours, when the initial trade barriers were the highest.

Removing the internal PJM hurdles causes exporting sub-regions of Expanded PJM to export more, on average, and to refocus existing exports to other PJM sub-regions. Figures A-3 and A-4 show the pattern of net transfers throughout the Eastern Interconnection. Within the Expanded PJM, the AEP area is the largest net exporter, and as expected, lowering the costs of exporting to other parts of Expanded PJM causes AEP net exports to increase. In both the Base and Change Cases, the Expanded PJM region is a combined net exporter, but net exports are lower in the Change Case. In the Change Case when trade barriers between areas within Expanded PJM are removed, the exporting sub-areas of Expanded PJM both export more overall and redirect some of the exports previously sent to areas outside Expanded PJM to internal destinations.

<sup>37</sup> All transfers were modeled as being between first-tier control areas. For example, as shown in Figures A-3 and A-4, flows from ComEd to AEP increase following PJM expansion, but these flows are, in effect, wheeled through to <u>Dominion and PJM</u>.





Figure A-3: Pool to Pool All-Hour Average Transfers (MW) - 2005 Base Case



CHARLES RIVER ASSOCIATES

55



Figure A-4: Pool to Pool All-Hour Average Transfers (MW) – 2005 Change Case

## Generation by Unit Type and Region

Table A-11 shows generation by unit type both within the Expanded PJM footprint and the rest of the Eastern Interconnection. Consistent with the shift in pool-to-pool transfers between the Base and Change Cases shown in Figures A-3 and A-4, total generation decreases in the Expanded PJM region and increases elsewhere. Throughout the Eastern Interconnection, coal generation increases when intra-PJM hurdles are removed, displacing generation among mid-merit combined cycle units and gas- and oil-fired steam generators.



| 1               |          | I         | 2005        |                |           | 2007      |           | I         | 2010      |           |           | 2014      |           |
|-----------------|----------|-----------|-------------|----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|                 |          |           |             | Delta          |           |           | Delta     |           |           | Deita     |           |           | Deita     |
|                 |          |           |             | (Change -      |           | Change    | (Change - |           | Change    | (Change - |           | Change    | (Change - |
| Capacity Pool   | TYPE     | Base Case | Change Case | Base)          | Base Case | Case      | Base)     | Base Case | Case      | Base)     | Base Case | Case      | Base)     |
| Non-PJM         | CC       | 205,293   | 208,194     | 2,901          | 239,935   | 242,690   | 2,755     | 308,407   | 311,457   | 3,050     | 395,371   | 396,340   | 968       |
|                 | Coai     | 1,319,544 | 1,323,220   | 3,676          | 1,345,791 | 1,349,415 | 3,624     | 1,368,591 | 1,372,031 | 3,439     | 1,382,225 | 1,384,345 | 2,120     |
| 5               | Hydro    | 100,956   | 100,956     | -              | 100,956   | 100,956   | -         | 100,956   | 100,956   | - 1       | 100,956   | 100,956   |           |
| ]               | New CC   | •         | -           | •              | -         | -         | •         | 6,435     | 6,472     | 37        | 23,415    | 23,445    | 30        |
|                 | New CT   | - 1       | -           | -              | 254       | 282       | 28        | 4,845     | 4,838     | (8)       | 36,014    | 36,930    | 916       |
| 1               | Nuke     | 411,993   | 411,988     | (5)            | 411,866   | 411,869   | 3         | 412,234   | 412,259   | 25        | 412,095   | 412,102   | 7         |
|                 | Other    | 61,995    | 61,996      | 1              | 62,011    | 62,012    | 2         | 61,987    | 61,991    | 4         | 61,971    | 61,985    | 13        |
|                 | Peaker   | 9,241     | 9,245       | 4              | 15,487    | 15,624    | 137       | 25,853    | 26,304    | 451       | 30,834    | 31,095    | 261       |
|                 | PSH      | 16,333    | 16,343      | 9.             | 16,021    | 16,068    | 47        | 15,010    | 14,976    | (34)      | 12,366    | 12,609    | 243       |
|                 | ST/G/O/D | 102,143   | 103,120     | 976            | 113,000   | 114,197   | 1,198     | 126,968   | 127,646   | 678       | 155,009   | 156,339   | 1.330     |
| Non-PJM Total   |          | 2,227,498 | 2,235,060   | 7,563          | 2,305,320 | 2,313,113 | 7,792     | 2,431,287 | 2,438,928 | 7,642     | 2,610,256 | 2,616,145 | 5,889     |
| рјм             | cc       | 25,336    | 21,748      | (3,588)        | 31,475    | 27,455    | (4,020)   | 42.721    | 39,789    | (2,932)   | 63,638    | 63,002    | (637)     |
| (Expanded)      | Coal     | 411,478   | 408,872     | (2.606)        | 424,429   | 422.018   | (2,411)   | 441,217   | 439,105   | (2,112)   | 453,020   | 451,925   | (1.095)   |
| • •             | Hydro    | 8,074     | 8,074       | · - /          | 8,074     | 8,074     | - 1       | 8.074     | 8.074     |           | 8.074     | 8,074     | •         |
|                 | New CC   | -         | -           | -              |           | -         | -         | •         | -         | -         |           | -         |           |
|                 | New CT   | -         | -           | . 1            | -         | -         | -         | 498       | 16        | (483)     | 3,729     | 1,744     | (1.985)   |
|                 | Nuke     | 239,973   | 239,975     | 2              | 239,971   | 239,968   | (3)       | 239.948   | 239,944   | (4)       | 239,860   | 239,857   | (3)       |
|                 | Other    | 9,356     | 9,308       | (48)           | 9,502     | 9,481     | (22)      | 9.510     | 9,500     | (10)      | 9,540     | 9,528     | (12)      |
|                 | Peaker   | 1,201     | 1,125       | $\dot{\sigma}$ | 1,947     | 1,883     | (63)      | 3,406     | 3,355     | (50)      | 5,209     | 5,180     | (29)      |
|                 | PSH      | 7,893     | 7,886       | ന              | 7,855     | 7,850     | (4)       | 8,138     | 8,153     | 15        | 7.827     | 7,848     | 21        |
|                 | ST/G/O/D | 13,347    | 12,225      | (1.122)        | 18,607    | 17,470    | (1.138)   | 26.051    | 24,093    | (1,959)   | 36,447    | 34,785    | (1.661)   |
|                 | Wind     | 339       | 333         | Ì π            | 339       | 332       | (T)       | 338       | 334       | (4)       | 345       | 342       | (3)       |
| PJM Total       | -        | 716,998   | 709,546     | (7,452)        | 742,200   | 734,532   | (7,668)   | 779,902   | 772,364   | (7,538)   | 827,690   | 822,285   | (5,405)   |
| Eastern         | CC       | 230.629   | 229,942     | (687)          | 271.411   | 270,145   | (1.265)   | 351.128   | 351.246   | 118       | 459.010   | 459.341   | 332       |
| Interconnection | Coal     | 1,731,022 | 1,732,092   | 1.070          | 1,770,220 | 1,771,433 | 1.212     | 1.809 808 | 1.811.135 | 1.327     | 1.835.245 | 1,836,269 | 1.025     |
|                 | Hydro    | 109.030   | 109.030     | -              | 109.030   | 109.030   | - 1       | 109.030   | 109.030   |           | 109.030   | 109.030   |           |
|                 | New CC   | -         | -           | -              |           | -         | -         | 6 4 3 5   | 6.472     | 37        | 23.415    | 23,445    | 30        |
|                 | New CT   | -         |             | -              | 254       | 282       | 28        | 5 344     | 4 853     | (491)     | 39 743    | 38 674    | (1.069)   |
|                 | Nuke     | 651,966   | 651.963     | (3)            | 651,837   | 651.838   | ō         | 652 181   | 652 203   | 22        | 651 955   | 651,959   | 4         |
|                 | Other    | 71,350    | 71,304      | (47)           | 71.513    | 71,493    | (20)      | 71.497    | 71,491    | (7)       | 71.511    | 71,513    | i         |
|                 | Peaker   | 10.442    | 10.370      | (72)           | 17,433    | 17.507    | 74        | 29 259    | 29.660    | 401       | 36.043    | 36.275    | 231       |
|                 | PSH      | 24.226    | 24,229      | 2              | 23.876    | 23,918    | 47        | 23 148    | 23,129    | (19)      | 20,193    | 20,457    | 264       |
|                 | ST/G/O/D | 115,490   | 115.345     | (145)          | 131.607   | 131.667   | 60        | 153 020   | 151,739   | (1.281)   | 191.456   | 191,124   | (332)     |
|                 | Wind     | 339       | 333         | C C D          | 339       | 332       | (7)       | 338       | 334       | (4)       | 345       | 342       | (3)       |
| EI Total        |          | 2,944,496 | 2,944,606   | ní             | 3,047,520 | 3,047,644 | 124       | 3,211,188 | 3,211,293 | 104       | 3,437,946 | 3,438,430 | 484       |

## Table A-11: Generation by Type (GWh)

Within the Expanded PJM, the removal of trade barriers leads to a substantial decrease in the amount of generation among mid-merit combined cycle units and gas- and oil-fired steam generators. Coal-fired generation within Expanded PJM also decreases. To help illustrate the shifts in generation behind this result Table A-12 shows the output by each type of generator within the individual PJM areas. In the areas with surplus low cost coal-fired generation, AEP, DP&L, and ComEd, coal-fired generation increases, while in PJM (East and West) and Dominion, some coal-fired generation is displaced by lower-cost sources during off-peak periods. Outside of PJM, generation among coal, combined cycle, and steam units increases substantially to make up for the decreased transfers from the Expanded PJM areas. Table A-21 at the end of this appendix shows generation by unit type for each pool in the Eastern Interconnect.



| 1             |          | 1               | 2005    |           | 1         | 2007    |           |           | 2010    | -         | <br>i     | 2014    |           |
|---------------|----------|-----------------|---------|-----------|-----------|---------|-----------|-----------|---------|-----------|-----------|---------|-----------|
|               |          |                 |         | Delta     |           |         | Deita     |           |         | Deita     |           |         | Delta     |
|               |          |                 | Change  | (Change - |           | Change  | (Change - |           | Change  | (Change - |           | Change  | (Change - |
| Capacity Pool | TYPE -   | Base Case       | Case    | Base)     | Base Case | Case    | Base)     | Base Case | Case    | Base)     | Base Case | Case    | Base)     |
| AEP           | cc       | 195             | 707     | 511       | 257       | 912     | 655       | 1,304     | 2,928   | 1,624     | 3,510     | 7,179   | 3,669     |
|               | Coal     | 130,287         | 132,465 | 2,178     | 135,631   | 137,062 | 1,431     | 141,082   | 140,863 | (219)     | 144,530   | 144,637 | 107       |
|               | Hydro    | 1,284           | 1,284   | -         | 1,284     | 1,284   | -         | 1,284     | 1,284   | -         | 1,284     | 1,284   | -         |
|               | Nuke     | 15,885          | 15,885  | -         | 15,888    | 15,888  |           | 15,913    | 15,913  | -         | 15,885    | 15,885  | -         |
| 1             | Other    | 214             | 214     | (0)       | 214       | 214     | (0)       | 214       | 214     | -         | 213       | 214     | 0         |
|               | Peaker   | -               | -       |           | -         | 0       | 0         | 20        | 19      | (0)       | 61        | 88      | 27        |
| 1             | PSH      | 730             | 728     | (2)       | 710       | 711     | 1         | 620       | 619     | (i)       | 481       | 481     | 0         |
|               | ST/G/O/D | 0               | 0       | (0)       | 0         | 1       | 0         | 1         | 3       | ĩ         | 1         | 4       | 3         |
|               | New CT   | -               | -       | -         | -         | -       | -         | -         | -       |           | -         | -       | -         |
|               | New CC   | -               | -       | -         | -         | -       | -         | -         | •       |           | -         | -       | -         |
| AEP Sum       |          | 148,595         | 151,282 | 2,687     | 153,984   | 156,071 | 2,087     | 160,438   | 161,842 | 1,404     | 165,965   | 169,771 | 3,806     |
| COMED         | сс       | 1,666           | 1,109   | (557)     | 2,227     | 1,465   | (762)     | 2,929     | 2,430   | (498)     | 3,906     | 3,696   | (211)     |
|               | Coal     | 27,944          | 28,588  | 644       | 29,975    | 30,816  | 840       | 33,144    | 34,154  | 1,010     | 35,142    | 35,704  | 562       |
|               | Nuke     | 80,330          | 80,332  | 2         | 80,364    | 80,364  |           | 80,299    | 80,296  | (4)       | 80,280    | 80,278  | (3)       |
|               | Peaker   | 177             | 78      | (99)      | 345       | 165     | (179)     | 539       | 364     | (175)     | 1.080     | 447     | (633)     |
|               | ST/G/O/D | 1,093           | 335     | (758)     | 1,783     | 565     | (1,218)   | 3,922     | 1,021   | (2,901)   | 6,824     | 3,647   | (3,178)   |
|               | New CT   | -               | -       | -         | -         | -       | -         | 106       | 16      | (90)      | 835       | 241     | (594)     |
|               | New CC   | -               | -       | -         | -         | •       |           | - 1       | -       | -         | -         | -       | -         |
| COMED Sum     |          | 111,211         | 110,443 | (768)     | 114,695   | 113,376 | (1,319)   | 120,939   | 118,280 | (2,658)   | 128,068   | 124,012 | (4,056)   |
| DP&L          | Coal     | 17,682          | 17,874  | 192       | 18,560    | 18,727  | 166       | 19,712    | 20,046  | 334       | 20,765    | 20,886  | 121       |
|               | Other    | 45              | 45      | -         | 45        | 45      | -         | 45        | 45      | -         | 45        | 45      | -         |
|               | Peaker   | .               | -       | -         | 11        |         | (11)      | 25        | 22      | (4)       | 128       | 48      | (18)      |
|               | New CT   | •               | -       | -         | -         | •       | -         | -         |         | -``       | -         | -       | -         |
| DP&L Sum      |          | 17 <b>,72</b> 7 | 17,919  | 192       | 18,616    | 18,772  | 155       | 19,782    | 20,112  | 330       | 20,938    | 20,979  | 41        |
| рјм           | сс       | 17,950          | 16,345  | (1,605)   | 21,890    | 20,245  | (1,644)   | 28,772    | 27,699  | (1,074)   | 41,889    | 41,252  | (637)     |
|               | Coal     | 194,502         | 190,457 | (4,045)   | 198,190   | 194,756 | (3,435)   | 203,688   | 201,286 | (2,402)   | 207,748   | 206,384 | (1,364)   |
|               | HRM      | -               | -       | -         | -         | -       | -         | -         | •       | -         | -         | -       | -         |
|               | Hydro    | 5,599           | 5,599   | -         | 5,599     | 5,599   | -         | 5,599     | 5,599   |           | 5,599     | 5,599   | -         |
|               | Nuke     | 117,393         | 117,393 | -         | 117,470   | 117,467 | (3)       | 117,419   | 117,419 | -         | 117,446   | 117,446 | -         |
|               | Other    | 6,907           | 6,907   |           | 6,913     | 6,912   | (0)       | 6,907     | 6,907   | -         | 6,914     | 6,911   | (3)       |
|               | Peaker   | 306             | 352     | 45        | 651       | 736     | 84        | 1,100     | 1,345   | 245       | 1,838     | 2,654   | 816       |
|               | PSH      | 4,663           | 4,659   | (5)       | 4,645     | 4,639   | (6)       | 4,701     | 4,717   | 16        | 4,528     | 4,549   | 20        |
|               | ST/G/O/D | 7,512           | 8,031   | 519       | 11,026    | 11,998  | 972       | 15,112    | 16,849  | 1,737     | 21,283    | 23,453  | 2,171     |
|               | Wind     | 339             | 333     | (7)       | 339       | 332     | (7)       | 338       | 334     | (4)       | 345       | 342     | (3)       |
|               | New CT   | •               | -       | -         | -         | -       | -         | -         | -       | -         | 942       | -       | (942)     |
|               | New CC   | -               | •       | -         | •         | •       | •         | -         | -       | -         | -         | •       | -         |
| PJM Sum       |          | 355,173         | 350,075 | (5,098)   | 366,724   | 362,685 | (4,038)   | 383,637   | 382,156 | (1,482)   | 408,533   | 408,590 | 57        |
| DVP Zone      | сс       | 5,525           | 3,587   | (1,938)   | 7,102     | 4,833   | (2,268)   | 9,716     | 6,733   | (2,983)   | 14,332    | 10,875  | (3,458)   |
|               | Coal     | 41,062          | 39,488  | (1,574)   | 42,071    | 40,657  | (1,414)   | 43,592    | 42,757  | (835)     | 44,834    | 44,313  | (521)     |
|               | Hydro    | 1,192           | 1,192   | •         | 1,192     | 1,192   | -         | 1,192     | 1,192   | -         | 1,192     | 1,192   |           |
|               | Nuke     | 26,364          | 26,364  | •         | 26,249    | 26,249  | -         | 26,316    | 26,316  | -         | 26,249    | 26,249  | -         |
|               | Other    | 2,189           | 2,142   | (47)      | 2,330     | 2,309   | (21)      | 2,344     | 2,334   | (10)      | 2,367     | 2,358   | (9)       |
|               | Peaker   | 718             | 695     | (23)      | 940       | 982     | 42        | 1,721     | 1,605   | (116)     | 2,103     | 1,943   | (159)     |
|               | PSH      | 2,500           | 2,500   | -         | 2,500     | 2,500   | -         | 2,817     | 2,817   | -         | 2,818     | 2,818   | -         |
|               | ST/G/O/D | 4,741           | 3,859   | (882)     | 5,797     | 4,905   | (892)     | 7,016     | 6,220   | (795)     | 8,339     | 7,682   | (657)     |
|               | New CT   | -               | -       | -         | -         | -       | -         | 393       | -       | (393)     | 1,952     | 1,503   | (449)     |
|               | New CC   | -               | -       | -         | -         | •       | •         | -         | -       | -         | -         | •       | -         |
| DVP Sum       |          | 84,292          | 79,827  | (4,465)   | 88,180    | 83,628  | (4,553)   | 95,106    | 89,974  | (5,132)   | 104,187   | 98,934  | (5,253)   |

#### Table A-12: Generation by Type and Expanded PJM Region (GWh)

As illustrated in Table A-13, the more efficient commitment and dispatch that is facilitated by removing trade barriers leads to lower overall production costs for the Eastern Interconnection. On the pool level, changes in generation costs mirror the shift in energy production, with production costs increasing in regions with lower-cost generation, and falling in areas where generators run less. Within the Expanded PJM, Change Case production costs are substantially lower in the Dominion and PJM East and PJM West areas, as companies in these areas purchase more of their energy from external sources and generate less. Table A-13 cannot be interpreted to indicate a rise or fall in retail



**CHARLES RIVER ASSOCIATES** 

58

rates for any particular region. This chart shows the total cost of output of generation in the control zone, not the cost to serve the load in a zone, which would need to include purchase costs and deduct sales revenues, at a minimum.

| I I           | F         | 2005        |           |           | 2007        |               | 1         | 2010        |                 |           | 2014        | 1               |
|---------------|-----------|-------------|-----------|-----------|-------------|---------------|-----------|-------------|-----------------|-----------|-------------|-----------------|
|               |           |             | Delta     |           |             |               |           |             |                 |           |             |                 |
| 1             |           |             | (Change - |           |             | Delta (Change |           |             | Delta (Change - |           |             | Delta (Change - |
| Capacity Pool | Base Case | Change Case | Base)     | Base Case | Change Case | - Base)       | Base Case | Change Case | Base)           | Base Case | Change Case | Base)           |
| AEP           | 2,099     | 2,180       | 80        | 2,133     | 2,195       | 61            | 2,305     | 2,368       | 64              | 2,495     | 2,638       | 142             |
| COMED         | 1,102     | 1,046       | (56)      | 1,148     | 1,071       | (77)          | 1,298     | 1,179       | (119)           | 1,525     | 1,363       | (162)           |
| CPL           | 957       | 984         | 28        | 998       | 1,021       | 23            | 1,117     | 1,142       | 25              | 1,370     | 1,395       | 25              |
| DP&L          | 338       | 341         | 2         | 332       | 334         | 2             | 368       | 375         | 7               | 405       | 404         | (1)             |
| DUKE          | 1,133     | 1,150       | 17        | 1,182     | 1,195       | 13            | 1,340     | 1,351       | 11              | 1,611     | 1,634       | 23              |
| GFL           | 4,814     | 4,829       | 15        | 5,111     | 5,115       | 4             | 5,576     | 5,586       | 10              | 6,535     | 6,542       | 7               |
| MISO E        | 5,546     | 5,578       | 32        | 5,618     | 5,654       | 36            | 6,227     | 6,277       | 50              | 7,100     | 7,115       | 15              |
| MISO W        | 4.310     | 4,327       | 17        | 4,452     | 4,467       | 15            | 4,930     | 4,945       | 15              | 5,674     | 5,711       | 37              |
| ISO-NE        | 2,483     | 2,483       | (0)       | 2,544     | 2,542       | (2)           | 2,738     | 2,738       | L L             | 3,010     | 3,011       | 0               |
| NYC           | 839       | 848         | 9         | 835       | 843         | 8             | 875       | 885         | 10              | 951       | 963         | 12              |
| NYL           | 383       | 385         | 2         | 386       | 387         | 1             | 423       | 423         | 0               | 485       | 487         | 1               |
| NYO           | 1,646     | 1,654       | 8         | 1,667     | 1,663       | (4)           | 1,803     | 1,796       | (7)             | 1,986     | 1,977       | (10)            |
| MIN           | 5,025     | 4,919       | (106)     | 5,178     | 5,103       | (75)          | 5,770     | 5,767       | (3)             | 6,663     | 6,692       | 29              |
| SCE&G         | 828       | \$40        | 12        | 845       | 860         | 15            | 911       | 924         | 13              | 1,034     | 1,048       | 15              |
| SETRANS E     | 4,465     | 4,525       | 60        | 4,681     | 4,761       | 80            | 5,209     | 5,281       | 72              | 6,065     | 6,096       | 31              |
| SETRANS W     | 2,245     | 2,223       | (22)      | 2,469     | 2,450       | (19)          | 2,871     | 2,841       | (30)            | 3,465     | 3,462       | (3)             |
| SPP           | 3,018     | 3,028       | 10        | 3,159     | 3,169       | 10            | 3,597     | 3,606       | 9               | 4,212     | 4,223       | 10              |
| TVA           | 2,267     | 2,275       | 9         | 2,331     | 2,342       | 11            | 2,603     | 2,612       | 9               | 3,016     | 3,015       | (1)             |
| DVP Zone      | 1,331     | 1,186       | (146)     | 1,409     | 1,263       | (146)         | 1,628     | 1,448       | (180)           | 1,969     | 1,776       | (192)           |
| Total         | 44,831    | 44,800      | (31)      | 46,478    | 46,435      | (43)          | 51,587    | 51,544      | (43)            | 59,573    | 59,551      | (21)            |

## Table A-13: Generation Production Costs by Zone (\$M)

## **Locational Spot Prices and Congestion**

The change in the pattern of generation between the Base and Change Cases is also reflected in locational prices throughout the Eastern Interconnection. Table A-14 reports each pool's all-hours average LMP. Prices decrease substantially in the importing areas of the Expanded PJM, and prices increase in AEP, reflecting its additional exports. Outside of the Expanded PJM, prices are generally higher, as net imports decrease and higher cost local generation is relied upon more.



|               |           |               |           |           |        |           | •         |        |           |           |        |           |
|---------------|-----------|---------------|-----------|-----------|--------|-----------|-----------|--------|-----------|-----------|--------|-----------|
| 1             | 1         | 2005          |           | I         | 2007   |           | I         | 2010   |           | 1         | 2014   |           |
|               |           |               | Delta     |           |        | Delta     |           |        | Delta     |           |        | Deita     |
|               | ļ         | Change        | (Change - |           | Change | (Change - |           | Change | (Change - |           | Change | (Change - |
| Capacity Pool | Base Case | Case          | Base)     | Base Case | Case   | Base)     | Base Case | Case   | Base)     | Base Case | Case   | Base)     |
| AEP           | 20.98     | 21.79         | 0,81      | 21.14     | 22.10  | 0,95      | 23.85     | 24,83  | 0.98      | 28.21     | 28.31  | 0.10      |
| COMED         | 20.62     | 20.56         | (0.06)    | 20.87     | 20.87  | (0.01)    | 23.33     | 23.63  | 0.30      | 27.30     | 27.22  | (0.08)    |
| CPL           | 27.69     | 28.23         | 0,55      | 28.58     | 29,35  | 0.77      | 31,67     | 32.59  | 0.92      | 36.30     | 36.78  | 0.48      |
| DP&L          | 21.05     | 21.34         | 0,28      | 20.82     | 21.52  | 0,70      | 23.20     | 24.24  | 1.03      | 27.19     | 27.58  | 0.39      |
| DUKE          | 27.83     | 28.38         | 0.55      | 28.71     | 29.37  | 0.66      | 31.78     | 32.48  | 0.70      | 36.49     | 36.84  | 0.35      |
| GFL           | 34.31     | 34.38         | 0.07      | 40.80     | 40.84  | 0.05      | 36.50     | 36.56  | 0.06      | 38.03     | 38.06  | 0.02      |
| MISO E        | 22.14     | 22.30         | 0.16      | 22.37     | 22.60  | 0.23      | 24.98     | 25.30  | 0.31      | 28,77     | 28.91  | 0.15      |
| MISO W        | 23.67     | 23.78         | 0.11      | 24.54     | 24.66  | 0.12      | 29.23     | 29.36  | 0.12      | 31.25     | 31.35  | 0.10      |
| ISO-NE        | 33.10     | 33.09         | (0.01)    | 32.62     | 32.63  | 0.01      | 33.21     | 33.17  | (0.04)    | 34.20     | 34.21  | 0.01      |
| NYC           | 34.30     | 34.34         | 0.04      | 33.09     | 33.17  | 0.09      | 34.09     | 34.15  | 0.07      | 35,75     | 35.85  | 0.10      |
| NYL           | 36,58     | 36.53         | (0.05)    | 35.48     | 35.47  | (0.01)    | 36.86     | 36.85  | (0.00)    | 38.25     | 38.22  | (0.04)    |
| NYO           | 30.14     | 29.93         | (0.21)    | 29.50     | 29.35  | (0.15)    | 30.44     | 30.34  | (0.11)    | 31.55     | 31.45  | (0.09)    |
| РЈМ           | 26.91     | 26.64         | (0.27)    | 26.93     | 26.79  | (0.14)    | 29.14     | 29.33  | 0.19      | 31.96     | 32,86  | 0,90      |
| SCE&G         | 26.70     | 27.19         | 0.49      | 27.44     | 28.02  | 0.57      | 30.16     | 30.75  | 0.59      | 33,96     | 34.33  | 0.37      |
| SETRANS E     | 28.86     | 28,98         | 0.13      | 29.42     | 29,55  | 0.13      | 31.53     | 31.62  | 0.08      | 34.89     | 34.95  | 0.06      |
| SETRANS W     | 29.41     | 29.42         | 0.01      | 29.77     | 29.79  | 0.02      | 31.15     | 31.20  | 0.05      | 32.69     | 32.66  | (0.03)    |
| SPP           | 26.64     | 26.73         | 0.09      | 27.10     | 27.22  | 0.12      | 29.11     | 29.23  | 0.11      | 31.52     | 31.60  | 0.08      |
| TVA           | 25.98     | 26.10         | 0.13      | 26.26     | 26.46  | 0.20      | 28.74     | 28.90  | 0.16      | 31.85     | 31.83  | (0.02)    |
| DVP Zone      | 30.61     | <b>29</b> ,10 | (1.51)    | 31,09     | 29.60  | (1.49)    | 33.62     | 32.65  | (0.98)    | 37.11     | 36.39  | (0.72)    |
| Total         | 27.08     | 27.10         | 0.02      | 27.77     | 27.84  | 0.08      | 29.85     | 30.00  | 0,15      | 32.53     | 32.68  | 0.15      |

#### Table A-14: All-Hours Average Load Zone Prices

The regional prices shown in Table A-14 also help illustrate the typical pattern of power flows and congestion within the Expanded PJM area. As power flows from the lower cost coal-fired sources in the west to load in the eastern part of the region, the east-west transmission capacity becomes fully utilized, resulting in congestion and separation among LMPs. In particular, transmission facilities in the western portion of PJM East and PJM West are fully more utilized, with substantial congestion on the Bedington-Black Oak and AP South interfaces, over which flows need to be constrained due to voltage and stability limits.

The Bedington-Black Oak and AP South constraints are also the greatest source of congestion costs and the primary cause of price separations within the Dominion control zone. In fact, flows on transmission lines with Dominion are rarely at their limits and contribute very little to congestion costs. Table A-15 shows the transmission constraints that contribute most to differences among the LMPs within the Dominion control zone. Prices are shown for a collection of locations throughout the Dominion area, along with the contribution of each constraint to the price differential between that location's LMP and the area-wide average LMP. Locations in the western part of the control zone have much lower LMPs on average than locations in the east, and congestion on Bedington-Black Oak and AP South are the primary sources of the price difference.



# Table A-15: Effect of Transmission Constraints on Dominion LMPs

|                                                         | Hours   | Mount  | Bath   |        | Possum | North  |          |        |
|---------------------------------------------------------|---------|--------|--------|--------|--------|--------|----------|--------|
|                                                         | Limited | Storm  | County | Clover | Point  | Anna   | Yorktown | Surry  |
| Average Price Across Generator Set                      |         | 28.67  | 28.67  | 28.67  | 28.67  | 28.67  | 28 67    | 28.67  |
| Average Generator Bus Price                             |         | 25.52  | 27.22  | 28.28  | 31.07  | 30.17  | 29.26    | 29.18  |
| Total Congestion                                        |         | (3.15) | (1.45) | (0.39) | 2.40   | 1.50   | 0.59     | 0,51   |
| Congestion from Constraints in Virginia Power Area      |         |        |        |        |        |        |          |        |
| Lexington-Cloverdale for Outage of Pruntytown-Mt. Storm | 820     | 0.04   | 0.15   | (0.08) | (0.02) | (0.02) | (0.03)   | (0.03) |
| FG 1710 Chesterfiled-Tyler 230                          | 64      | (0.00) | (0.00) | 0.01   | (0.00) | (0.00) | (0.00)   | 0.00   |
| Lexington-Cloverdale for Outage of Mt. Storm Valley     | 202     | (0.01) | 0.04   | (0.01) | (0.01) | (0.00) | (0.00)   | (0.00) |
| FG 1718 Chuchatuk-Suffolk 230 kV                        | 36      | 0 00   | 0.00   | 0.00   | 0.00   | 0.00   | (0.00)   | (0.00) |
| Total Impact of DVP Constraints                         |         | 0.02   | 0.19   | (0.09) | (0.03) | (0.02) | (0.04)   | (0.03) |
| Congestion from Constraints Outside Virginia            |         |        |        |        |        |        |          |        |
| APS South Interface                                     | 1,284   | (1.47) | (0 43) | 0.15   | 0.62   | 0.55   | 0.30     | 0.29   |
| Black Oak Beddington Voltage Interface                  | 6,652   | (1 49) | (1.20) | (0.59) | 1.84   | 0.98   | 0.27     | 0.19   |
| Kanawa-Matt Funk for Outage of Broadford-J Ferry        | 560     | (0.04) | 0.06   | 0.02   | (0.03) | (0.01) | 0.00     | 0.00   |
| FG 5 PIM Western Interface                              | 484     | (0.02) | (0.01) | (0 00) | 0.01   | 0 01   | 0.00     | 0.00   |
| Kanawa-Matt Funk for Outage of Baker-Broadford          | 164     | (0.01) | 0.02   | 0.01   | (0.01) | (0.00) | 0.00     | 0.00   |
| Other Contraints                                        |         | (0 14) | (0.07) | 0.12   | (0.01) | 0.00   | 0.05     | 0.06   |
| Total Impact of Outside Constraints                     |         | (3,18) | (1.64) | (0,30) | 2.43   | 1.52   | 0,63     | 0.54   |

.



### Table A-16: RTOs and Control Zones

| RTO/Control Zone       | Abbreviation | Companies/Zones                                                     |
|------------------------|--------------|---------------------------------------------------------------------|
| Carolina Power & Light | CP&L         | Carolina Power & Light Co.                                          |
| Duke Control Zone      | Duke         | Central Electric Power Coop.                                        |
|                        |              | Duke Energy Corp.                                                   |
| Grid Florida           | GFL          | Florida Power Corp.                                                 |
|                        |              | Florida Power & Light Co.                                           |
|                        |              | Florida Municipal Power Agency                                      |
|                        |              | Gainesville Regional Utilities                                      |
|                        |              | Kissimmee Utility Authority                                         |
|                        |              | Lakeland Electric & Water                                           |
|                        |              | Orlando Utilities Comm.                                             |
|                        |              | Seminole Electric Coop.                                             |
|                        |              | Tampa Electric Co.                                                  |
| Midwest ISO            | MISO         | American Municipal Power                                            |
|                        |              | AmerenUE                                                            |
|                        |              | Basin Electric Power Coop.                                          |
|                        |              | Big Rivers Electric Corp.                                           |
|                        |              | Buckeve Power Co.                                                   |
|                        |              | Consumers Energ Co.                                                 |
|                        |              | Central Illinois Light Co.                                          |
|                        |              | Central Illinois PSC                                                |
|                        |              | Cincinnati Gas & Electric Co                                        |
|                        |              | Detroit Edison Co.                                                  |
|                        |              | Dairyland Power Coop.                                               |
|                        |              | Electric Energy Inc.                                                |
|                        |              | East Kentucky Power Coop                                            |
|                        |              | FirstEnergy Corp                                                    |
|                        |              | Great River Energy                                                  |
|                        |              | Hoosier Energy Rural Electric Coon                                  |
|                        |              | Hutchinson Litilities Comm                                          |
|                        |              | Central Iowa Power Coop                                             |
|                        |              | Illinois Power Co                                                   |
|                        |              | Indiananolie Rower & Light Co                                       |
|                        |              | Interstate Power Co                                                 |
|                        |              | Kontucky Utilities Co                                               |
|                        |              | Lensing Board of Water and Light                                    |
|                        |              | Lansing Board of Water and Light                                    |
|                        |              |                                                                     |
|                        |              | Louisville Gas & Electric Co.<br>Mediaen Con & Electric Co.         |
|                        |              | Madison Gas & Electric Co.                                          |
|                        |              | Municipal Energy Agency Of Nebreeke                                 |
|                        |              | Municipal Energy Agency Of Nebraska                                 |
|                        |              | MigAmerican Energy Co.                                              |
| 1                      |              | Minnkola Power Coop.<br>Minnoacto Rower Inc.                        |
|                        |              | Mussotine Dower & Water                                             |
|                        |              | Wusdallie Fower & Waler<br>Northern Indiana Bublia Service Ce       |
|                        |              | Normern mulana Fublic Service Co.<br>Nebroska Public Power District |
|                        |              | Nephaska Fublic Fuwer District                                      |
|                        |              | Northwestern Public Service Co.                                     |
|                        |              | Amaha Public Rower District                                         |
|                        |              | Uniana Fublic Fower District                                        |

## Table A-16: RTOs and Control Zones

| RTO/Control Zone     | Abbreviation | Companies/Zones<br>Otter Tail Power Co.<br>Ohio Valley Electric Corp.<br>PSI Energy, Inc.<br>Southern Indiana Gas & Electric Co.<br>Southern Minnesota Municipal Power Agency<br>Southern Illinois Power Coop.<br>Springfield Water, Light & Power Dept.<br>St. Joseph Light & Power Co.<br>Union Electric Co.<br>Upper Peninsula Power<br>Western Area Power Association<br>Wisconsin Public Service Co.<br>Wisconsin Electric Power Co. |
|----------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      |              | Wisconsin Power & Light Co.<br>Wisconsin Public Power Inc.                                                                                                                                                                                                                                                                                                                                                                                |
|                      |              | Wolverine Power Supply Coop.                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      |              | Wabash Valley Power Assoc.                                                                                                                                                                                                                                                                                                                                                                                                                |
| ISO-New England      | ISO-NE       | Boston Edison Co.                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                      |              | Bangor Hydro-Electric Co.                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                      |              | Cambridge Electric Light Co.                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      |              | Central Maine Power Co.                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                      |              | Commonwealth Electric Co.                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1                    |              | Central Vermont Public Service Corp.                                                                                                                                                                                                                                                                                                                                                                                                      |
|                      |              | Eastern Utilities Associates                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      |              | Green Mountain Power Corp.                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |              | Massachusetts Municipal Wholesale Electric Co.                                                                                                                                                                                                                                                                                                                                                                                            |
|                      |              | National Grid USA                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                      |              | Northeast Utilities                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      |              | United Illuminating Co.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| New York ISO         | NYISO        | NYISO - Capital Zone                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                      |              | NYISO - Central Zone                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                      |              | NYISO - Duriwoodie Zone                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1                    |              | NYISO - Hudson Valley                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      |              | NYISO - Long Island                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1                    |              | NYISO - Williwood Zone                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      |              | NVISO - Mohawk Valley                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      |              | NYISO - North Zone                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                      |              | NYISO - NY City                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      |              | NYISO - West Zone                                                                                                                                                                                                                                                                                                                                                                                                                         |
| P.IM Interconnection | PJM          | American Electric Coop Inc.                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      |              | Atlantic City Electric Co.                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |              | Allegheny Energy, Inc.                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      |              | Baltimore Gas & Electric Co.                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      |              | Commonwealth Electric Co.                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1                    |              | Dayton Power & Light Co.                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                      |              | Delmarva Power & Light Co.                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | •            | Duquesne Light Co.                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                      |              | GPU Corp. East                                                                                                                                                                                                                                                                                                                                                                                                                            |

### Table A-16: RTOs and Control Zones

| RTO/Control Zone           | Abbreviation     | Companies/Zones<br>GPU Corp. West<br>Old Dominion Electric Coop.<br>Peco Energy Co.<br>Potomac Electric Power Co.<br>PPL Electric Utility<br>Public Service Electric & Gas Co.<br>Virginia Electric & Power Co.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SeTrans RTO                | SCE&G<br>SETRANS | South Carolina Electric & Gas Co.<br>Associated Electric Coop.<br>Alabama Electric Coop.<br>Cajun Electric Power Coop.<br>Entergy Corp.<br>Jacksonville Electric Authority<br>Oglethorpe Power Corp.<br>South Carolina Public<br>South Mississippi Electric Power Assoc.<br>Southern Company<br>Sam Rayburn G&T Inc.<br>Tallahassee Electric Operations<br>Walton Electric M. Co                                                                                                                                                                                                                                                                                                                            |
| Southwest Power Pool       | SPP              | Arkansas Electric Coop. Corp.<br>Central LA Electric Co.<br>Central & South West Corp.<br>Empire District Electric Co.<br>Grand River Dam Authority<br>Independence Power & Light Dept.<br>Kansas City Board of Public Utilities<br>Kansas City Power & Light Co.<br>Lafayette Utilities System<br>Louisiana Energy & Power Authority<br>Midwest Energy, Inc.<br>Missouri Public Service Co.<br>Northeast Texas Electric Coop.<br>Oklahoma Gas & Electric Co.<br>Public Service Co. of Oklahoma<br>Springfield City Utilities<br>Sunflower Electric Power Corp.<br>Southwestern Power Administration<br>Southwestern Public Service Co.<br>Western Farmers Electric Coop.<br>Western Farmers Electric Coop. |
| Tennessee Valley Authority | TVA              | Tennessee Valley Authority                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

.
| MAPS Unit | Plant Name                       | County     | State    | Unit Type      | Summer   | Winter   | Installation |
|-----------|----------------------------------|------------|----------|----------------|----------|----------|--------------|
| Name      |                                  | •          |          |                | Cap (MW) | Cap (MW) | Date         |
|           | New Units in VAP                 |            |          |                |          |          |              |
| MANASSAS  | MANASSAS IC LUMP                 |            | VA       | Peaking Units  | 30       | 30       | 1/1/2000     |
| FAUQUIC1  | REMINGTON 1                      | FAUQUIER   | VA       | Peaking Units  | 145      | 178      | 7/5/2000     |
| IFAUQUIC2 | REMINGTON 2                      | FAUQUIER   | VA       | Peaking Units  | 145      | 178      | 7/5/2000     |
| FAUQUIC3  | REMINGTON 3                      | FAUQUIER   | VA       | Peaking Units  | 145      | 178      | 7/5/2000     |
| FAUQUIC4  | REMINGTON 4                      | FAUQUIER   | VA       | Peaking Units  | 145      | 178      | 7/5/2000     |
| DOSWELL1  |                                  | MANOVER    | VA       | Peaking Units  | 153.9    | 1/1      | 6/7/2001     |
| CAROLNE1  |                                  |            | VA       | Peaking Units  | 145      | 1/8      | 7/1/2001     |
|           | CAROLINE COUNT FII (DOMGEN)      |            |          | Peaking Units  | 140      | 1/0      | 5/1/2001     |
| POSSUMGS  | POSSUM POINT (Conversion to Gas) |            |          | Steam Gas/Oil  | 101      | 201      | 5/1/2003     |
| POSSUMB4  | POSSUM POINT (Conversion to Gas) |            |          | Combined Cycle | 221      | 450      | 5/1/2003     |
| POSOUVIPO |                                  |            |          | Combined Cycle | 78 75    | 400      | 6/1/2003     |
| BOSWIAVI  | BOSWELLS TAVERN (LOUISA COU      |            |          | Peaking Units  | 78.75    | 85       | 6/1/2003     |
| BOSWTAV2  | BOSWELLS TAVERN (LOUISA COU      |            | VA<br>VA | Peaking Units  | 78 75    | 85       | 6/1/2003     |
| BOSWTAVA  | BOSWELLS TAVERN (LOUISA COU      | LOUISA     | VA       | Peaking Units  | 78 75    | 85       | 6/1/2003     |
| BOSWTAVS  | BOSWELLS TAVERN (LOUISA COU      | LOUISA     | VA       | Peaking Units  | 150      | 170      | 6/1/2003     |
| FLUVANN1  | TENASKA VIRGINIA PARTNERS 1      | FLUVANNA   | VA       | Combined Cycle | 300      | 300      | 6/1/2004     |
| FLUVANN2  | TENASKA VIRGINIA PARTNERS 2      | FLUVANNA   | VA       | Combined Cycle | 300      | 300      | 6/1/2004     |
| FLUVANN3  | TENASKA VIRGINIA PARTNERS 3      | FLUVANNA   | VA       | Combined Cycle | 300      | 300      | 6/1/2004     |
| REMINGM1  | REMINGTON MARSH RUN 1            | FAUQUIER   | VA       | Peaking Units  | 150      | 170      | 10/1/2004    |
| REMINGM2  | REMINGTON MARSH RUN 2            | FAUQUIER   | VA       | Peaking Units  | 150      | 170      | 10/1/2004    |
| REMINGM3  | REMINGTON MARSH RUN 3            | FAUQUIER   | VA       | Peaking Units  | 150      | 170      | 10/1/2004    |
| REMINGM4  | REMINGTON MARSH RUN 4            | FAUQUIER   | VA       | Peaking Units  | 150      | 170      | 1/1/2014     |
|           |                                  |            |          | -              |          |          |              |
|           | <u>New Units in AEP</u>          |            |          |                |          |          |              |
| RIVERSD1  | RIVERSIDE                        | LAWRENCE   | KY       | Peaking Units  | 186.5    | 186.5    | 1/1/2001     |
| RIVERSD2  | RIVERSIDE                        | LAWRENCE   | KY       | Peaking Units  | 186.5    | 186.5    | 1/1/2001     |
| RIVERSD3  | RIVERSIDE                        | LAWRENCE   | KY       | Peaking Units  | 186.5    | 186.5    | 1/1/2001     |
| WOLFHIL1  | WOLF HILLS                       | WASHINGTON | VA       | Peaking Units  | 50       | 50       | 1/1/2001     |
| WOLFHIL2  | WOLF HILLS                       | WASHINGTON | VA       | Peaking Units  | 50       | 50       | 1/1/2001     |
| WOLFHIL3  | WOLF HILLS                       | WASHINGTON | VA       | Peaking Units  | 50       | 50       | 1/1/2001     |
| WOLFHIL4  | WOLFHILLS                        | WASHINGTON | VA       | Peaking Units  | 50       | 50       | 1/1/2001     |
| WOLFHIL5  | WOLF HILLS                       | WASHINGTON | VA       | Peaking Units  | 50       | 50       | 1/1/2001     |
| BIGSANDY  |                                  | MACHINOTON |          | Peaking Units  | 300      | 300      | 8/10/2001    |
| DUOLANNA  |                                  | PLOLANAN   |          | Combined Cycle | 336      | 020      | 6/1/2002     |
|           |                                  |            |          | Peaking Units  | 152      | 90       | 8/4/2002     |
| VANWERTT  |                                  |            |          | Peaking Units  | 153      | 170      | 8/1/2002     |
| VANWERT3  |                                  |            |          | Peaking Units  | 153      | 170      | 8/1/2002     |
| WATEREDI  | WATERFORD (PSEGP)                | WASHINGTON | OH       | Combined Cycle | 270      | 300      | 5/1/2002     |
| WATERED2  | WATERFORD (PSEGP)                | WASHINGTON | OH       | Combined Cycle | 270      | 300      | 5/1/2003     |
| WATEREDS  | WATERFORD (PSEGP)                | WASHINGTON | OH       | Combined Cycle | 270      | 300      | 5/1/2003     |
| HANGING1  | HANGING ROCK                     | LAWRENCE   | OH       | Combined Cycle | 558      | 620      | 6/1/2003     |
| HANGING2  | HANGING ROCK                     | LAWRENCE   | OH       | Combined Cycle | 558      | 620      | 6/1/2003     |
| LAWRENB1  | LAWRENCEBURG                     | DEARBORN   | IN       | Combined Cycle | 508.5    | 565      | 6/1/2003     |
| LAWRENB2  | LAWRENCEBURG                     | DEARBORN   | IN       | Combined Cycle | 508.5    | 565      | 6/1/2003     |
| ROLLING1  | ROLLING HILLS                    | VINTON     | ОН       | Peaking Units  | 144      | 160      | 6/1/2003     |
| ROLLING2  | ROLLING HILLS                    | VINTON     | ОН       | Peaking Units  | 144      | 160      | 6/1/2003     |
| ROLLING3  | ROLLING HILLS                    | VINTON     | ОН       | Peaking Units  | 144      | 160      | 6/1/2003     |
| ROLLING4  | ROLLING HILLS                    | VINTON     | OH       | Peaking Units  | 144      | 160      | 6/1/2003     |
| ROLLING5  | ROLLING HILLS                    | VINTON     | OH       | Peaking Units  | 144      | 160      | 6/1/2003     |
| DRESDEC1  | DRESDEN ENERGY CENTER            | MUSKINGUM  | OH       | Combined Cycle | 601.2    | 668      | 9/1/2003     |
| FREMONT1  | FREMONT ENERGY CENTER            | SANDUSKY   | ОН       | Combined Cycle | 630      | 700      | 3/1/2005     |
| 1         | <u>New Units in DPL</u>          |            |          |                |          |          | ļ            |

| MAPS Unit<br>Name | Plant Name                  | County     | State      | Unit Type      | Summer<br>Cap (MW) | Winter<br>Cap (MW) | installation<br>Date |
|-------------------|-----------------------------|------------|------------|----------------|--------------------|--------------------|----------------------|
| GREENVI1          | GREENVILLE ELECTRIC GENERAT | DARKE      | ОН         | Peaking Units  | 50                 | 50                 | 1/1/2000             |
| GREENVI2          | GREENVILLE ELECTRIC GENERAT | DARKE      | ОН         | Peaking Units  | 50                 | 50                 | 1/1/2000             |
| GREENVI3          | GREENVILLE ELECTRIC GENERAT | DARKE      | ОH         | Peaking Units  | 50                 | 50                 | 1/1/2000             |
| GREENVI4          | GREENVILLE ELECTRIC GENERAT | DARKE      | ОН         | Peaking Units  | 50                 | 50                 | 1/1/2000             |
| MADISON1          | MADISON GENERATING STATION  | BUTLER     | ОН         | Peaking Units  | 80                 | 80                 | 1/1/2000             |
| MADISON2          | MADISON GENERATING STATION  | BUTLER     | ОН         | Peaking Units  | 80                 | 80                 | 1/1/2000             |
| MADISON3          | MADISON GENERATING STATION  | BUTLER     | ОН         | Peaking Units  | 80                 | 80                 | 1/1/2000             |
| MADISON4          | MADISON GENERATING STATION  | BUTLER     | ОН         | Peaking Units  | 80                 | 80                 | 1/1/2000             |
| MADISON5          | MADISON GENERATING STATION  | BUTLER     | OH         | Peaking Units  | 80                 | 80                 | 1/1/2000             |
| MADISON6          | MADISON GENERATING STATION  | BUTLER     | ОН         | Peaking Units  | 80                 | 80                 | 1/1/2000             |
| MADISON7          | MADISON GENERATING STATION  | BUTLER     | ОН         | Peaking Units  | 80                 | 80                 | 1/1/2000             |
| MADISON8          | MADISON GENERATING STATION  | BUTLER     | ŎН         | Peaking Units  | 80                 | 80                 | 1/1/2000             |
| CHESTER1          | CHESTER TOWNSHIP            | WELLS      | IN         | Peaking Units  | 50                 | 50                 | 1/1/2001             |
| CHESTER2          | CHESTER TOWNSHIP            | WELLS      | IN         | Peaking Units  | 50                 | 50                 | 1/1/2001             |
| CHESTER3          | CHESTER TOWNSHIP            | WELLS      | iN         | Peaking Units  | 50                 | 50                 | 1/1/2001             |
| CHESTER4          | CHESTER TOWNSHIP            | WELLS      | IN         | Peaking Units  | 50                 | 50                 | 1/1/2001             |
| DARBYGE1          | DARBY GENERATING STATION    | PICKAWAY   | OH         | Peaking Units  | 80                 | 80                 | 1/1/2001             |
| DARBYGE2          | DARBY GENERATING STATION    | PICKAWAY   | OH         | Peaking Units  | 80                 | 80                 | 1/1/2001             |
| DARBYGE3          | DARBY GENERATING STATION    | PICKAWAY   | OH         | Peaking Units  | 80                 | 80                 | 1/1/2001             |
| DARBYGE4          | DARBY GENERATING STATION    | PICKAWAY   | OH         | Peaking Units  | 80                 | 80                 | 1/1/2001             |
| DARBYGE5          | DARBY GENERATING STATION    | PICKAWAY   | ОН         | Peaking Units  | 80                 | 80                 | 6/1/2002             |
| DARBYGES          | DARBY GENERATING STATION    |            | OH         | Peaking Units  | 80                 | 80                 | 6/1/2002             |
| TAITDT01          | TAIT                        | MONTCOMEDY | <u>01</u>  | Peaking Units  | 70                 | 80                 | 12/1/2002            |
| TAITDT02          |                             | MONTCOMERY |            | Peaking Units  | 72                 | 00                 | 12/1/2002            |
| TAITDTO2          |                             |            |            | Peaking Units  | 72                 | 00                 | 12/1/2002            |
| TAITDTO           |                             | MONTGOMERT |            | Peaking Units  | 72                 | 00                 | 12/1/2002            |
| 174110104         | New Linite in ComEd         | WONTGOMERT | Оп         | reaking Units  | 12                 | 80                 | 12/1/2002            |
| MORRISCI          |                             | CRUNDY     |            | Combined Cycle | 150.00             | 176.00             | 2/20/2000            |
|                   |                             | VANEL      | 1⊑         | Desking Unite  | 109.20             | 170.30             | S/30/2000            |
|                   |                             |            | 11         | Peaking Units  | 74.7               | 00                 | 6/1/2000             |
|                   |                             |            | 11         | Peaking Units  | 74.7               | 00                 | 6/1/2000             |
|                   |                             |            | 16         | Peaking Units  | 74.7               | 03                 | 6/1/2000             |
|                   |                             |            | 1          | Peaking Units  | 74.7               | 00                 | 6/1/2000             |
| LINCOLES          |                             |            | 16         | Peaking Units  | 74.7               | 03<br>03           | 6/1/2000             |
|                   |                             |            | 16         | Peaking Units  | 74.7               | 03                 | 0/1/2000             |
|                   |                             |            | 12         | Peaking Units  | 74.7               | 03                 | 6/1/2000             |
|                   |                             |            | 1L<br>11   | Peaking Units  | /4./               | 83                 | 6/1/2000             |
| BOCKEOBS          |                             |            | <i>"</i> L | Peaking Units  | 180                | 200                | 6/1/2000             |
| RUCKFURZ          |                             |            | 1          | Peaking Units  | 90                 | 100                | 6/1/2000             |
|                   |                             | KANE       | 1L<br>     | Peaking Units  | 90                 | 100                | //15/2000            |
| LEEGENST          |                             |            | IL         | Peaking Units  | 72                 | 80                 | 6/1/2001             |
| LEEGENSZ          |                             |            | IL-<br>    | Peaking Units  | 72                 | 80                 | 6/1/2001             |
| LEEGENS3          |                             |            | IL.        | Peaking Units  | 72                 | 80                 | 6/1/2001             |
| LEEGENS4          |                             |            | IL.        | Peaking Units  | /2                 | 80                 | 6/1/2001             |
| LEEGENSS          |                             |            | IL.        | Peaking Units  | 72                 | 80                 | 6/1/2001             |
| LEEGENSE          |                             |            | IL.        | Peaking Units  | 72                 | 80                 | 6/1/2001             |
| LEEGENS7          | LEE GENERATING STATION      | LEE        | 11.        | Peaking Units  | 72                 | 80                 | 6/1/2001             |
| LEEGENSS          |                             |            | IL         | Peaking Units  | /2                 | 80                 | 6/1/2001             |
| RELIAURI          |                             | DU PAGE    | IL         | Peaking Units  | 153.9              | 1/1                | 6/1/2001             |
| RELIAUR2          |                             | DUPAGE     | IL.        | reaking Units  | 153.9              | 1/1                | 6/1/2001             |
| RELIAUR3          |                             | DU PAGE    | IL<br>     | reaking Units  | 153,9              | 171                | 6/1/2001             |
|                   |                             | DU PAGE    | IL<br>U    | reaking Units  | 153,9              | 171                | 6/1/2001             |
| RELIAUR6          |                             |            | IL<br>     | Peaking Units  | 40.5               | 45                 | 6/1/2001             |
| KELIAUR7          |                             | DU PAGE    | IL<br>     | Peaking Units  | 40.5               | 45                 | 6/1/2001             |
| KELIAUR8          | RELIANT ENERGY AURORA LP    | DU PAGE    | IL<br>     | Peaking Units  | 40.5               | 45                 | 6/1/2001             |
| RELIAUR9          | RELIANT ENERGY AURORA LP    | DU PAGE    | IL.        | Peaking Units  | 40.5               | 45                 | 6/1/2001             |

| MAPS Unit<br>Name | Plant Name                  | County      | State     | Unit Type      | Summer<br>Cap (MW) | Winter<br>Cap (MW) | Installation<br>Date |
|-------------------|-----------------------------|-------------|-----------|----------------|--------------------|--------------------|----------------------|
| RELIAR10          | RELIANT ENERGY AURORA LP    | DU PAGE     | IL        | Peaking Units  | 40.5               | 45                 | 6/1/2001             |
| CHICAGC1          | CHICAGO (CONPOW)            | COOK        | IL        | Peaking Units  | 45                 | 50                 | 7/22/2001            |
| CHICAGC2          | CHICAGO (CONPOW)            | COOK        | IL        | Peaking Units  | 45                 | 50                 | 7/22/2001            |
| CHICAGC3          | CHICAGO (CONPOW)            | COOK        | IL        | Peaking Units  | 45                 | 50                 | 7/22/2001            |
| CHICAGC4          | CHICAGO (CONPOW)            | COOK        | IL.       | Peaking Units  | 45                 | 50                 | 7/22/2001            |
| CHICAGC5          | CHICAGO (CONPOW)            | COOK        | íL.       | Peaking Units  | 45                 | 50                 | 7/22/2001            |
| CHICAGC6          | CHICAGO (CONPOW)            | COOK        | IL        | Peaking Units  | 45                 | 50                 | 7/22/2001            |
| COOKCOU1          | COOK COUNTY                 | COOK        | IL        | Peaking Units  | 136.8              | 152                | 3/1/2002             |
| RELIAUR5          | RELIANT ENERGY AURORA LP    | DU PAGE     | 1L        | Peaking Units  | 40.5               | 45                 | 3/1/2002             |
| COOKCOU2          | COOK COUNTY                 | COOK        | IL        | Peaking Units  | 136.8              | 152                | 3/20/2002            |
| KENDALC1          | KENDALL COUNTY PROJECT      | KENDALL     | IL        | Combined Cycle | 262.8              | 292                | 4/15/2002            |
| KENDALC2          | KENDALL COUNTY PROJECT      | KENDALL     | IL        | Combined Cycle | 262.8              | 292                | 4/15/2002            |
| KENDALC3          | KENDALL COUNTY PROJECT      | KENDALL     | 1L        | Combined Cycle | 262.8              | 292                | 4/15/2002            |
| CRETEEP1          | CRETE ENERGY PARK           | WILL        | ۱L        | Peaking Units  | 76.5               | 85                 | 6/1/2002             |
| CRETEEP2          | CRETE ENERGY PARK           | WILL        | IL        | Peaking Units  | 76.5               | 85                 | 6/1/2002             |
| CRETEEP3          | CRETE ENERGY PARK           | WILL        | IL        | Peaking Units  | 76.5               | 85                 | 6/1/2002             |
| CRETEEP4          | CRETE ENERGY PARK           | WILL        | IL .      | Peaking Units  | 76.5               | 85                 | 6/1/2002             |
| ROCKFD23          | ROCKFORD                    | WINNEBAGO   | IL.       | Peaking Units  | 149.4              | 165                | 6/1/2002             |
| ZIONENC1          | ZION ENERGY CENTER          | LAKE        | 11_       | Peaking Units  | 150                | 165                | 6/25/2002            |
| ZIONENC2          | ZION ENERGY CENTER          | LAKE        | IL        | Peaking Units  | 150                | 165                | 6/25/2002            |
| ELGINGT2          | ELGIN                       | COOK        | IL        | Peaking Units  | 105.3              | 117                | 7/1/2002             |
| STHCHICI          | SOUTH CHICAGO               | COOK        | 11        | Peaking Units  | 151.2              | 168                | 7/1/2002             |
| STHCHIC2          |                             | COOK        | IL<br>II  | Peaking Units  | 151.2              | 158                | 7/1/2002             |
| UNIVPART          | UNIVERSITY PARK             |             | IL.       | Peaking Units  | 158.4              | 170                | 7/25/2002            |
|                   | UNIVERSITY PARK             |             | 11        | Peaking Units  | 130.4              | 170                | 7/25/2002            |
| UNIVPARS          |                             | WILL COOK   | 1         | Peaking Units  | 105.4              | 117                | 8/1/2002             |
|                   |                             |             | 16        | Cambined Cude  | 262.9              | 202                | 8/16/2002            |
| EL CINCTA         | FLOW                        |             | 11        | Combined Cycle | 105.3              | 234                | 0/10/2002            |
| ELGINGT4          | ELGIN                       | COOK        | ال.<br>ال | Peaking Units  | 105.3              | 117                | 10/1/2002            |
|                   |                             |             | 1         | Desking Units  | 150                | 150                | 6/1/2002             |
| ZIONENCO          | New linite in P.IM          |             | 15        | reaking Onits  | 100                | 100                | 0/ 1/2000            |
| BURINGT1          | BURINGTON (PSEG)            | BURUNGTON   | NI        | Peaking Linits | 46 5               | 46.5               | 1/1/2000             |
| BURINGT2          | BURLINGTON (PSEG)           | BURLINGTON  | N.I       | Peaking Units  | 46.5               | 46.5               | 1/1/2000             |
| BURINGT3          | BURLINGTON (PSEG)           | BURLINGTON  | N.I       | Peaking Units  | 46.5               | 46.5               | 1/1/2000             |
| BURLNGT4          | BURLINGTON (PSEG)           | BURLINGTON  | NJ        | Peaking Units  | 46.5               | 46.5               | 1/1/2000             |
| COMMNCH1          | COMMONWEALTH CHESAPEAKE PRO | ACCOMACK    | VA        | Peaking Units  | 45                 | 45                 | 1/1/2000             |
| COMMNCH2          | COMMONWEALTH CHESAPEAKE PRO | ACCOMACK    | VA        | Peaking Units  | 45                 | 45                 | 1/1/2000             |
| COMMNCH3          | COMMONWEALTH CHESAPEAKE PRO | ACCOMACK    | VA        | Peaking Units  | 45                 | 45                 | 1/1/2000             |
| DELWREC5          | DELAWARE CITY               | NEW CASTLE  | DE        | Combined Cycle | 113.75             | 113.75             | 1/1/2000             |
| DELWREC6          | DELAWARE CITY               | NEW CASTLE  | DE        | Combined Cycle | 113.75             | 113.75             | 1/1/2000             |
| DELWREC7          | DELAWARE CITY               | NEW CASTLE  | DE        | Combined Cycle | 5.48               | 5.48               | 1/1/2000             |
| GREENMO8          | GREEN MOUNTAIN WIND FARM    | SOMERSET    | PA        | Other          | 10                 | 10                 | 1/1/2000             |
| HUNLOCK1          | HUNLOCK CREEK               | LUZERNE     | PA        | Peaking Units  | 44                 | 44                 | 1/1/2000             |
| LINDENG5          | LINDEN (PSEG)               | UNION       | NJ        | Peaking Units  | 80                 | 80                 | 1/1/2000             |
| LINDENG6          | LINDEN (PSEG)               | UNION       | NJ        | Peaking Units  | 80                 | 80                 | 1/1/2000             |
| AESWARR1          | AES WARRIOR RUN INC.        | ALLEGANY    | MD        | Coal           | 180                | 180                | 2/1/2000             |
| ALLEGHE1          | ALLEGHENY ENERGY 8 & 9      | FAYETTE     | PA        | Peaking Units  | 44                 | 44                 | 8/15/2000            |
| ALLEGHE2          | ALLEGHENY ENERGY 8 & 9      | FAYETTE     | PA        | Peaking Units  | 44                 | 44                 | 8/15/2000            |
| ARCHIBD1          | ARCHIBALD COGENERATION PLAN | LACKAWANNA  | PA        | Peaking Units  | 45                 | 45                 | 1/1/2001             |
| GREENKN1          | GREEN KNIGHT ENERGY CENTER  | NORTHAMPTON | PA        | Peaking Units  | 9.5                | 9.5                | 1/1/2001             |
| KEARNY01          | KEARNY (PSEG)               | HUDSON      | NJ        | Peaking Units  | 85.4               | 85.4               | 1/1/2001             |
| KEARNY02          | KEARNY (PSEG)               | HUDSON      | NJ        | Peaking Units  | 85.4               | 85.4               | 1/1/2001             |
| MILLRUN1          | MILL RUN WINDPOWER          | FAYETTÊ     | PA        | Other          | 15                 | 15                 | 1/1/2001             |
| ROCKLAN1          | ROCKLAND TOWNSHIP           |             |           | Peaking Units  | 50                 | 50                 | 1/1/2001             |

| ICOCILANS     ROCILLAND TOWNSHIP     Peaking Units     50     50     11/2001       ROCILLANS     ROCILLAND TOWNSHIP     Peaking Units     50     50     11/2001       ROCILLANS     ROCILLAND TOWNSHIP     Peaking Units     50     50     11/2001       SOMERSET     SOMERSET     PA     Other     9     9     11/2001       SOMERSET     SOMERSET     PA     Other     9     9     11/2001       COMMINUE     COMMONUEALTH CHESAPEAKE PRO     ACCOMACK     VA     Peaking Units     45     45     61/52001       COMMONUEALTH CHESAPEAKE PRO     ACCOMACK     VA     Peaking Units     44     44     71/72001       KRAFTFOOL     KRAFT FOODS COGENERATION     KENT     DE     Peaking Units     45     65     61/2001       HANDSOM     Handsome Lake Energy     FA     Peaking Units     50     50     81/2001       HANDSOM     Handsome Lake Energy     FA     Peaking Units     50     50     81/2001       HANDSOM     Handsome Lake Energy     FA                                                                                                                                                                                                                                                                                         | MAPS Unit<br>Name | Plant Name                     | County      | State | Unit Type      | Summer<br>Cap (MW) | Winter<br>Cap (MW) | Installation<br>Date |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------|-------------|-------|----------------|--------------------|--------------------|----------------------|
| ROCKLANS     ROCKLANS     ROCKLANS     SOLKANS     50     50     11/2001       ROCKLANS     ROCKLANS     ROCKLANS     SOLKANS     50     50     11/2001       ROCKLANS     ROCKLANS     ROCKLANS     SOLREST     Peaking Units     50     50     11/2001       ROCKLANS     ROCKLANS     SOLREST     SOLREST     Peaking Units     50     50     11/2001       ROCKLANS     SOLREST     SOLREST     DE     Peaking Units     111     111     61/2001       COMMONICH     COMMONIVEALTH CHESAPEAKE PRO     ACCOMACK     VA     Peaking Units     45     45     61/52001       COMMONICH     COMMONIVEALTH CHESAPEAKE PRO     ACCOMACK     VA     Peaking Units     44     44     7/72001       RAFTFO1     KRAFTFO1     KENT     DE     Peaking Units     50     50     81/2001       HANDSOM     Handsome Lake Energy     PA     Peaking Units     50     50     81/2001       HANDSOM     Handsome Lake Energy     PA     Peaking Units     50                                                                                                                                                                                                                                                                                                    | ROCKLAN2          | ROCKLAND TOWNSHIP              |             |       | Peaking Units  | 50                 | 50                 | 1/1/2001             |
| ROCKLAND     ROCKLAND TOWNSHIP     Peaking Units     50     50     11/12001       SOMERST                                                                                                                                                                                                                                              | ROCKLAN3          | ROCKLAND TOWNSHIP              |             |       | Peaking Units  | 50                 | 50                 | 1/1/2001             |
| ROCKLAMD     TOWNSHIP     Peaking Units     50     11//2001       SOMERST     SOMERST     PA     Other     9     9     11//2001       WILMINGTON     NEW CASTLE     DE     Peaking Units     111     111     61//2001       COMMINCH     COMMONWEALTH CHESAPEAKE PRO     ACCOMACK     VA     Peaking Units     45     45     61/52001       COMMINCH     COMMONWEALTH CHESAPEAKE PRO     ACCOMACK     VA     Peaking Units     44     44     71/72001       COMMINCH     COMMONWEALTH CHESAPEAKE PRO     ACCOMACK     VA     Peaking Units     44     44     71/72001       KRAFTFOOLS COGENERATION     KENT     DE     Peaking Units     50     50     81//2001       HANDSOM     Handsome Lake Energy     PA     Peaking Units     50     50     81//2001       HANDSOMS     Handsome Lake Energy     PA     Peaking Units     50     50     81//2001       HANDSOMS     Handsome Lake Energy     PA     Peaking Units     50     50     81//2001       HANDSOMS                                                                                                                                                                                                                                                                                 | ROCKLAN4          | ROCKLAND TOWNSHIP              |             |       | Peaking Units  | 50                 | 50                 | 1/1/2001             |
| SOMERST     SOMERSET     PA     Other     9     9     1/1/2001       WILMING2     WILMINGTON     NEW CASTLE     DE     Peaking Units     111     111     6/1/2001       COMMINCH     COMMONWEALTH CHESAPEAKE PRO     ACCOMACK     VA     Peaking Units     45     45     6/15/2001       COMMINCH     COMMONWEALTH CHESAPEAKE PRO     ACCOMACK     VA     Peaking Units     44     44     7/17/2001       KRAFTFOOLS COGENERATION     KENT     DE     Peaking Units     44     44     7/17/2001       KRAFTFOOLS COGENERATION     KENT     DE     Peaking Units     44     44     7/17/2001       VILMING3     WILMINGTON     NEW CASTLE     DE     Peaking Units     50     50     8/1/2001       HANDSOM     Handsome Lake Energy     PA     Peaking Units     50     50     8/1/2001       HANDSOM     Handsome Lake Energy     PA     Peaking Units     50     50     8/1/2001       HANDSOM     Handsome Lake Energy     PA     Peaking Units     50     8/1/2001                                                                                                                                                                                                                                                                             | ROCKLAN5          | ROCKLAND TOWNSHIP              |             |       | Peaking Units  | 50                 | 50                 | 1/1/2001             |
| VILLINIGT     VILLINIGTON     NEW CASTLE     DE     Peaking Units     111     111     61/2001       COMMINCH     COMMONWEALTH CHESAPEAKE PRO     ACCOMACK     VA     Peaking Units     45     45     67/52001       COMMINCH     COMMONWEALTH CHESAPEAKE PRO     ACCOMACK     VA     Peaking Units     45     45     67/52001       COMMINCH     COMMONWEALTH CHESAPEAKE PRO     ACCOMACK     VA     Peaking Units     44     44     7/7/2001       KRAFTFO0     KRAFT FOODS COGENERATION     KENT     DE     Peaking Units     60     50     81/2001       MAINDSOM     Handsome Lake Energy     PA     Peaking Units     50     50     81/2001       HANDSOM     Handsome Lake Energy     PA     Peaking Units     50     50     81/2001       HANDSOM     Handsome Lake Energy     PA     Peaking Units     50     50     81/2001       HANDSOM     Handsome Lake Energy     PA     Peaking Units     50     50     81/2001       HANDSOM     Handsome Lake Energy     PA     Pe                                                                                                                                                                                                                                                                | SOMERST1          | SOMERSET WIND PROJECT          | SOMERSET    | PA    | Other          | 9                  | 9                  | 1/1/2001             |
| VILUMING2     VILUMISOTON     NEW CASTLE     DE     Peaking Units     111     111     617/2001       COMMINCH5     COMMONWEALTH CHESAPEAKE PRO     ACCOMACK     VA     Peaking Units     45     45     645     67/65/2001       COMMINCH5     COMMONWEALTH CHESAPEAKE PRO     ACCOMACK     VA     Peaking Units     44     44     7/17/2001       RRAFTEO1     KRAFT FOODS COGENERATION     KENT     DE     Peaking Units     44     44     7/17/2001       VILLINIG3     WILLINGTON     NEW CASTLE     DE     Peaking Units     50     50     8/1/2001       HANDSOM1     Handsome Lake Energy     PA     Peaking Units     50     50     8/1/2001       HANDSOM3     Handsome Lake Energy     PA     Peaking Units     50     50     8/1/2001       HANDSOM4     Handsome Lake Energy     PA     Peaking Units     50     0     8/1/2001       HANDSOM4     Handsome Lake Energy     PA     Peaking Units     50     0     8/1/2001       HANDSOM4     Handsome Lake Energy     A                                                                                                                                                                                                                                                                | WILMING1          | WILMINGTON                     | NEW CASTLE  | DE    | Peaking Units  | 111                | 111                | 6/1/2001             |
| COMMINCH4     COMMONWEALTH CHESAPEAKE PRO     ACCOMACK     VA     Peaking Units     45     45     645     6675/2001       COMMINCH6     COMMONWEALTH CHESAPEAKE PRO     ACCOMACK     VA     Peaking Units     45     45     645     6615/2001       RAFTFO1     KRAFT FODS COGENERATION     KENT     DE     Peaking Units     44     44     717/2001       RADSOM     Handsome Lake Energy     PA     Peaking Units     50     50     81/2001       HANDSOM     Handsome Lake Energy     PA     Peaking Units     50     50     81/2001       HANDSOM     Handsome Lake Energy     PA     Peaking Units     50     50     81/2001       HANDSOM     Handsome Lake Energy     PA     Peaking Units     50     50     81/2001       HANDSOM     Handsome Lake Energy     PA     Peaking Units     50     50     81/2001       UNDON     PA     Peaking Units     50     50     81/2001       COMMONCH     COMMONWEALTH (ECOAST)     UNION     PA     Peaking Units     5                                                                                                                                                                                                                                                                             | WILMING2          | WILMINGTON                     | NEW CASTLE  | DE    | Peaking Units  | 111                | 111                | 6/1/2001             |
| COMMINCHE COMMONIVELTH CHESAPEAKE PRO     ACCOMACK     VA     Peaking Units     45     45     645     645     65     675/2001       COMMINCHE COMMONIVEALTH CHESAPEAKE PRO     ACCOMACK     VA     Peaking Units     44     44     717/2001       IRAPTFOID     KRAFT FOODS COGENERATION     KENT     DE     Peaking Units     44     44     717/2001       IRADSOMI     Handsome Lake Energy     PA     Peaking Units     50     60     87/2001       HANDSOM     Handsome Lake Energy     PA     Peaking Units     50     60     87/2001       HANDSOM     Handsome Lake Energy     PA     Peaking Units     50     60     87/2001       HANDSOM     Handsome Lake Energy     PA     Peaking Units     50     60     87/2001       COMMONDE     Handsome Lake Energy     PA     Peaking Units     53     10     11/2001       HANDSOM     Handsome Lake Energy     PA     Peaking Units     53     17/2010     11/2002       ILUDRCH CORED PLANT (ECOAST)     UNION     NJ     Peaking Units </td <td></td> <td>COMMONWEALTH CHESAPEAKE PRO</td> <td>ACCOMACK</td> <td>VA</td> <td>Peaking Units</td> <td>45</td> <td>45</td> <td>6/15/2001</td>                                                                                                 |                   | COMMONWEALTH CHESAPEAKE PRO    | ACCOMACK    | VA    | Peaking Units  | 45                 | 45                 | 6/15/2001            |
| COMMINCHE     COMMONWEALTH CHESAPEAKE PRO     ACCOMACK     VA     Peaking Units     45     45     6f/sizzoo1       KRAFTFO     KRAFT FOODS COGENERATION     KENT     DE     Peaking Units     44     44     7/17/2001       WILMINGS     WILMINGTON     NEW CASTLE     DE     Peaking Units     50     50     8/1/2001       HANDSOM1     Handsome Lake Energy     PA     Peaking Units     50     50     8/1/2001       HANDSOM2     Handsome Lake Energy     PA     Peaking Units     50     50     8/1/2001       HANDSOM3     Handsome Lake Energy     PA     Peaking Units     50     50     8/1/2001       HANDSOM4     Handsome Lake Energy     PA     Peaking Units     50     50     8/1/2001       COMINCH7     COMONWEALTH CHESAPEAKE PRO     ACCOMACK     VA     Peaking Units     51     170     1/1/2002       RONWOD1     INDEX     Combined Cycle     700     700     700     700     700     700     700     700     701     700     1/1/2002 </td <td></td> <td>COMMONWEALTH CHESAPEAKE PRO</td> <td>ACCOMACK</td> <td>VA</td> <td>Peaking Units</td> <td>45</td> <td>45</td> <td>6/15/2001</td>                                                                                                                                 |                   | COMMONWEALTH CHESAPEAKE PRO    | ACCOMACK    | VA    | Peaking Units  | 45                 | 45                 | 6/15/2001            |
| RRAFTEO1     KRAFT FOODS COGENERATION     KENT     DE     Peaking Units     44     44     7/17/2001       WILMING3     WILMINGTON     NEW CASTLE     DE     Peaking Units     112     112     7/31/2001       HANDSOM1     Handsome Lake Energy     PA     Peaking Units     50     8/1/2001       HANDSOM3     Handsome Lake Energy     PA     Peaking Units     50     8/1/2001       HANDSOM5     Handsome Lake Energy     PA     Peaking Units     50     8/1/2001       HANDSOM5     Handsome Lake Energy     PA     Peaking Units     50     8/1/2001       HANDSOM5     Handsome Lake Energy     PA     Peaking Units     50     8/1/2001       COMMNCH7     COMMONDELTIT CIESAPEAKE PRO     ACCOMACW VA     Peaking Units     88     88     11/3/2002       IUNDKO DI ROLVECT     LEBANON     PA     Peaking Units     25     25     2/1/2002       IRONWOD1     IRONWOD0 PROJECT     LEBANON     PA     Peaking Units     25     25     2/1/2002       HAZELTON     LUZERNE                                                                                                                                                                                                                                                               |                   | COMMONWEALTH CHESAPEAKE PRO    | ACCOMACK    | VA    | Peaking Units  | 45                 | 45                 | 6/15/2001            |
| IRRAFTEO2     KRAFT FOODS COGENERATION     KENT     DE     Peaking Units     44     44     717/2001       MANDSOM1     Handsome Lake Energy     PA     Peaking Units     50     50     8/1/2001       HANDSOM2     Handsome Lake Energy     PA     Peaking Units     50     50     8/1/2001       HANDSOM4     Handsome Lake Energy     PA     Peaking Units     50     50     8/1/2001       HANDSOM5     Handsome Lake Energy     PA     Peaking Units     50     6/1/2001       HANDSOM4     Handsome Lake Energy     PA     Peaking Units     50     8/1/2001       COMMNCH7     COMMONWEALTH CHESAPEAKE PRO     ACCOMACK     VA     Peaking Units     45     45     8/17/2001       IUNDNC01     LINDEN COGEN PLANT (ECOAST)     UNION     NJ     Peaking Units     25     25     2/1/2002       HAZELTON     LUZERNE     PA     Peaking Units     25     25     2/1/2002       HAZELTON     LUZERNE     PA     Peaking Units     25     25     2/1/2002 <t< td=""><td>KRAFTFO1</td><td>KRAFT FOODS COGENERATION</td><td>KENT</td><td>DE</td><td>Peaking Units</td><td>44</td><td>44</td><td>7/17/2001</td></t<>                                                                                                                              | KRAFTFO1          | KRAFT FOODS COGENERATION       | KENT        | DE    | Peaking Units  | 44                 | 44                 | 7/17/2001            |
| WILLING3     WILLINGTON     NEW CASTLE     DE     Peaking Units     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112     112 <th1< td=""><td>KRAFTFO2</td><td>KRAFT FOODS COGENERATION</td><td>KENT</td><td>DE</td><td>Peaking Units</td><td>44</td><td>44</td><td>7/17/2001</td></th1<>                                                                                                                                                                                                                                                                        | KRAFTFO2          | KRAFT FOODS COGENERATION       | KENT        | DE    | Peaking Units  | 44                 | 44                 | 7/17/2001            |
| HANDSOM1     Handsome Lake Energy     PA     Peaking Units     50     50     67/2001       HANDSOM3     Handsome Lake Energy     PA     Peaking Units     50     50     87/2001       HANDSOM4     Handsome Lake Energy     PA     Peaking Units     50     50     87/2001       HANDSOM4     Handsome Lake Energy     PA     Peaking Units     50     50     87/2001       COMMNCH7     COMMONVEALTH CHESAPEAKE PRO     ACCOMACK     VA     Peaking Units     45     45     87/72001       IUNDNC01     LINDEN COGEN PLANT (ECOAST)     UNION     NJ     Peaking Units     153     170     1/1/12002       HAZELTON     LUZERNE     PA     Peaking Units     25     25     2/1/2002       HAZELTON     LUZERNE     PA     Peaking Units     25     25     2/1/2002       HAZELTON     LUZERNE     PA     Peaking Units     153     170     2/1/2002       HAZELTON     LUZERNE     PA     Peaking Units     153     170     2/1/2002       PLEASANTS                                                                                                                                                                                                                                                                                              | WILMING3          | WILMINGTON                     | NEW CASTLE  | DE    | Peaking Units  | 112                | 112                | 7/31/2001            |
| HANDSOM2     Handsome Lake Energy     PA     Peaking Units     50     51/12001       HANDSOM3     Handsome Lake Energy     PA     Peaking Units     50     50     8/1/2001       HANDSOM4     Handsome Lake Energy     PA     Peaking Units     50     50     8/1/2001       HANDSOM5     Handsome Lake Energy     PA     Peaking Units     50     50     8/1/2001       ICOMMINCT/ COMMONTALTH CHESAPEAKE PRO     ACCOMACK     VA     Peaking Units     45     45     41/10/2002       ICOMMINCT/ COMMONTALTH CHESAPEAKE PRO     ACCOMACK     VA     Peaking Units     45     45     41/10/2002       IRONWOD1     INDEX COGEN PLANT (ECOAST)     UNION     NJ     Peaking Units     25     25     21/12002       HAZELTN1     HAZELTON     LUZERNE     PA     Peaking Units     25     25     21/12002       HAZELTON     LUZERNE     PA     Peaking Units     50     100     2/1/2002       HAZELTON     LUZERNE     PA     Peaking Units     153     170     2/1/2002 <tr< td=""><td>HANDSOM1</td><td>Handsome Lake Energy</td><td></td><td>PA</td><td>Peaking Units</td><td>50</td><td>50</td><td>8/1/2001</td></tr<>                                                                                                                         | HANDSOM1          | Handsome Lake Energy           |             | PA    | Peaking Units  | 50                 | 50                 | 8/1/2001             |
| HANDSOM3     Handsome Lake Energy     PA     Peaking Units     50     51/12001       HANDSOM4     Handsome Lake Energy     PA     Peaking Units     50     50     8/1/2001       COMMACH7     COMMACH7     COMMACH7     COMMACH7     50     8/1/2001       COMMACH7     COMMACH7     COMMACH7     COMACK     VA     Peaking Units     50     50     8/1/2001       COMMACH7     COMMACH7     COMMACH7     COMACK     VA     Peaking Units     45     84     81/30/201       INDNC01     LINDEN COGEN PLANT (ECOAST)     UNION     NJ     Peaking Units     25     25     2/1/2002       HAZELTN1     HAZELTON     LUZERNE     PA     Peaking Units     25     25     2/1/2002       HAZELTON     LUZERNE     PA     Peaking Units     25     25     2/1/2002       PLEASANT5     PLEASANTS     VV     Peaking Units     153     170     2/1/2002       PLEASANT2     PLEASANTS     VV     Peaking Units     165     6/1/2002       VILLE                                                                                                                                                                                                                                                                                                           | HANDSOM2          | Handsome Lake Energy           |             | PA    | Peaking Units  | 50                 | 50                 | 8/1/2001             |
| HANDSOM4     Handsome Lake Energy     PA     Peaking Units     50     60     8/1/2001       HANDSOM5     Handsome Lake Energy     PA     Peaking Units     50     8/1/2001       COMMINCH7     COMMONWEALTH CHESAPEAKE PRO     ACCOMACK     VA     Peaking Units     85     45     64     8/17/2001       GUILFORD     Guilford Township     PA     Peaking Units     88     88     11/3/2002       IRONWOD1     IRONWOD2 PROJECT     LEBANON     PA     Peaking Units     25     21/1/2002       HAZELTN1     HAZELTON     LUZERNE     PA     Peaking Units     25     25     21/1/2002       HAZELTN1     HAZELTON     LUZERNE     PA     Peaking Units     25     25     21/1/2002       HAZELTN1     HAZELTON     LUZERNE     PA     Peaking Units     153     170     21/1/2002       PLEASNT2     PLEASANTS COUNTY     PLEASANTS     WV     Peaking Units     153     170     21/1/2002       RMBTRM2     RMSTRONG COUNTY     PLEASANTS     WV     Peaking Units                                                                                                                                                                                                                                                                             | HANDSOM3          | Handsome Lake Energy           |             | PA    | Peaking Units  | 50                 | 50                 | 8/1/2001             |
| HANDSOMS     Handsome Lake Energy     PA     Peaking Units     50     50     81/12001       COMMNCH7     COMMONWEALTH CHESAPEAKE PRO     ACCOMACK     VA     Peaking Units     45     45     81/172001       GUILFORD     Guilford Township     PA     Peaking Units     45     88     11/30/2001       ILNDROC01     LINDEN COGEN PLANT (ECOAST)     UNION     NJ     Peaking Units     153     170     1/1/2002       IAZELTN1     HAZELTON     LUZERNE     PA     Peaking Units     25     21/1/2002       HAZELTN1     HAZELTON     LUZERNE     PA     Peaking Units     25     22     21/1/2002       HAZELTON     LUZERNE     PA     Peaking Units     153     170     21/1/2002       PLEASNT1     PLEASANTS COUNTY     PLEASANTS WV     Peaking Units     153     170     21/1/2002       SMYRNA01     SMYRA     Peaking Units     40.5     45     21/1/2002       VILLASST2     VLEASANTS     CONTHA     PEaking Units     148.5     65     61/1/2002  <                                                                                                                                                                                                                                                                                  | HANDSOM4          | Handsome Lake Energy           |             | PA    | Peaking Units  | 50                 | 50                 | 8/1/2001             |
| COMMONCH7     COMMONWEALTH CHESAPEAKE PRO     ACCOMACK     VA     Peaking Units     45     45     8/17/2001       GUILFORD     Guilford Township     PA     Peaking Units     88     88     11/30/2011       LINDENC COGEN PLANT (ECOAST)     UNION     NJ     Peaking Units     88     88     11/30/2011       HAZELTN1     HAZELTON     LUZERNE     PA     Peaking Units     25     25     2/1/2002       HAZELTN3     HAZELTON     LUZERNE     PA     Peaking Units     25     25     2/1/2002       HAZELTN4     HAZELTON     LUZERNE     PA     Peaking Units     25     25     2/1/2002       HAZELTN4     HAZELTON     LUZERNE     PA     Peaking Units     153     170     2/1/2002       PLEASNT5     PLEASNTS     WV     Peaking Units     153     170     2/1/2002       SMYRNA0     SWYRNA0     SWYRNA     SV     Peaking Units     165     6/1/2002       SMYRNA01     SMYRNA0     SWITRNA     RMSTRNOG COUNTY     ARMSTRONG PA     Peaking                                                                                                                                                                                                                                                                                           | HANDSOM5          | Handsome Lake Energy           |             | PA    | Peaking Units  | 50                 | 50                 | 8/1/2001             |
| GUILFORD     Guilford Township     PA     Peaking Units     88     88     11/30/2001       LINDNCO1     LINDEN COGEN PLANT (ECOAST)     UNION     NJ     Peaking Units     153     170     1/1/2002       IRONWOD1 IRONWODD PROJECT     LEBANON     PA     Peaking Units     25     25     21/1/2002       HAZELTON     LUZERNE     PA     Peaking Units     25     25     21/1/2002       HAZELTON     LUZERNE     PA     Peaking Units     25     25     21/1/2002       HAZELTON     LUZERNE     PA     Peaking Units     30     100     2/1/2002       PLEASNT1     PLEASANTS COUNTY     PLEASANTS     WV     Peaking Units     153     170     2/1/2002       PLEASNT2     PLEASANTS COUNTY     PLEASANTS     WV     Peaking Units     163     170     2/1/2002       PLEASANT2     VLEASANTS COUNTY     PLEASANTS     WV     Peaking Units     165     6/1/2002       RMSTRNA     RMSTRONG COUNTY     ARMSTRONG PA     Peaking Units     148.5     166     6/1/2                                                                                                                                                                                                                                                                             | COMMNCH7          | COMMONWEALTH CHESAPEAKE PRO    | ACCOMACK    | VA    | Peaking Units  | 45                 | 45                 | 8/17/2001            |
| LINDR.COT     LINDEN COGEN PLANT (ECOAST)     UNION     NJ     Peaking Units     153     170     1/1/2002       IRONWOD PROJECT     LEBANON     PA     Combined Cycle     700     700     1/31/2002       HAZELTON     LUZERNE     PA     Peaking Units     25     25     2/1/2002       HAZELTON     LUZERNE     PA     Peaking Units     25     25     2/1/2002       HAZELTON     LUZERNE     PA     Peaking Units     25     25     2/1/2002       HAZELTON     LUZERNE     PA     Peaking Units     153     170     2/1/2002       HAZELTON     LUZERNE     PA     Peaking Units     153     170     2/1/2002       PLEASNT1     PLEASANTS COUNTY     PLEASANTS     WV     Peaking Units     40.5     45     2/1/2002       SMYRNAO     NEW CASTLE     DE     Combined Cycle     450     500     5/1/2002       RMISTRNA     ARMSTRONG COUNTY     ARMSTRONG PA     Peaking Units     148.5     165     6/1/2002       ARMSTRONG COUNTY                                                                                                                                                                                                                                                                                                        | GUILFORD          | Guilford Township              |             | PA    | Peaking Units  | 88                 | 88                 | 11/30/2001           |
| IRONWOD1     IRONWOD PROJECT     LEBANON     PA     Combined Cycle     700     1/31/2002       HAZELTON     LUZERNE     PA     Peaking Units     25     25     2/1/2002       HAZELTON     LUZERNE     PA     Peaking Units     25     25     2/1/2002       HAZELTON     LUZERNE     PA     Peaking Units     25     25     2/1/2002       HAZELTON     LUZERNE     PA     Peaking Units     90     100     2/1/2002       HAZELTON     LUZERNE     PA     Peaking Units     153     170     2/1/2002       PLEASNTS     VULANTS COUNTY     PLEASANTS     WV     Peaking Units     163     170     2/1/2002       SMYRNA01     SMYRNA     PEASANTS COUNTY     PLEASANTS     WV     Peaking Units     465     500     5/1/2002       VILINIGTON     WULARSTRONG COUNTY     ARMSTRONG PA     Peaking Units     148.5     165     6/1/2002       ARMSTRNA     ARMSTRONG COUNTY     ARMSTRONG PA     Peaking Units     148.5     165     6/1/2002                                                                                                                                                                                                                                                                                                     | LINDNCO1          | LINDEN COGEN PLANT (ECOAST)    | UNION       | NJ    | Peaking Units  | 153                | 170                | 1/1/2002             |
| HAZELTNI     HAZELTON     LUZERNE     PA     Peaking Units     25     25     2/1/2002       HAZELTN2     HAZELTON     LUZERNE     PA     Peaking Units     25     25     2/1/2002       HAZELTON     LUZERNE     PA     Peaking Units     25     25     2/1/2002       HAZELTON     LUZERNE     PA     Peaking Units     25     25     2/1/2002       HAZELTON     LUZERNE     PA     Peaking Units     153     170     2/1/2002       PLEASNT     PLEASANTS COUNTY     PLEASANTS     WV     Peaking Units     153     170     2/1/2002       SMYRNA01     SMYRNA0     SMYRNA01     SMYRNA01     NEW CASTLE     DE     Combined Cycle     450     500     5/1/2002       ARMSTRN1     ARMSTRONG COUNTY     ARMSTRONG PA     Peaking Units     148.5     165     6/1/2002       ARMSTRN2     ARMSTRONG COUNTY     ARMSTRONG PA     Peaking Units     148.5     165     6/1/2002       ARMSTRN2     ARMSTRONG COUNTY     ARMSTRONG PA     Peaking Units <td< td=""><td>IRONWOD1</td><td>RONWOOD PROJECT</td><td>LEBANON</td><td>PA</td><td>Combined Cycle</td><td>700</td><td>700</td><td>1/31/2002</td></td<>                                                                                                                                       | IRONWOD1          | RONWOOD PROJECT                | LEBANON     | PA    | Combined Cycle | 700                | 700                | 1/31/2002            |
| HAZELTN2     HAZELTON     LUZERNE     PA     Peaking Units     25     25     21/12002       HAZELTN3     HAZELTON     LUZERNE     PA     Peaking Units     25     25     21/12002       HAZELTON     LUZERNE     PA     Peaking Units     25     25     21/12002       HAZELTON     LUZERNE     PA     Peaking Units     153     170     21/12002       PLEASNT1     PLEASANTS COUNTY     PLEASANTS     WV     Peaking Units     153     170     21/12002       SMYRNA01     SMYRNA     DELAWARE     PA     Combined Cycle     450     500     5/172002       SIMTRN1     ARMSTRONG COUNTY     ARMSTRONG     PA     Peaking Units     148.5     165     6/1/2002       ARMSTRN1     ARMSTRONG COUNTY     ARMSTRONG     PA     Peaking Units     148.5     165     6/1/2002       ARMSTRN3     ARMSTRONG COUNTY     ARMSTRONG     PA     Peaking Units     148.5     165     6/1/2002       ARMSTRONG COUNTY     ARMSTRONG     PA     Peaking Units                                                                                                                                                                                                                                                                                                 | HAZELTN1          | HAZELTON                       | LUZERNE     | PA    | Peaking Units  | 25                 | 25                 | 2/1/2002             |
| IHAZELTN3     HAZELTON     LUZERNE     PA     Peaking Units     25     25     21/12002       HAZELTN3     HAZELTON     LUZERNE     PA     Peaking Units     25     25     21/12002       HAZELTON     LUZERNE     PA     Peaking Units     153     170     21/12002       PLEASNT1     PLEASANTS COUNTY     PLEASANTS     WV     Peaking Units     153     170     21/12002       PLEASNT2     PLEASANTS COUNTY     PLEASANTS     WV     Peaking Units     163     170     21/12002       SMYRNA01     SMYRNA01     SMYRNA01     Peaking Units     165     6/1/2002       ARMSTRN1     ARMSTRONG COUNTY     ARMSTRONG PA     Peaking Units     148.5     165     6/1/2002       ARMSTRN4     ARMSTRONG COUNTY     ARMSTRONG PA     Peaking Units     148.5     165     6/1/2002       ARMSTRN4     ARMSTRONG COUNTY     ARMSTRONG PA     Peaking Units     148.5     166     6/1/2002       REDOAK01     RED OAK     MIDDLESEX     NJ     Combined Cycle     450     5                                                                                                                                                                                                                                                                             | HAZELTN2          | HAZELTON                       |             | PA    | Peaking Units  | 25                 | 25                 | 2/1/2002             |
| HAZELTVA     HAZELTON     LUZERNE     PA     Peaking Units     25     25     21/12002       HAZELTO1     HAZELTON     LUZERNE     PA     Peaking Units     90     100     21/12002       PLEASNT2     PLEASANTS COUNTY     PLEASANTS     WV     Peaking Units     153     170     21/12002       SMYRNA0     SMYRNA     Peaking Units     40.5     45     21/12002       LIBERTY     LIBERTY ELECTRIC PROJECT     DELAWARE     PA     Combined Cycle     450     500     5/1/2002       ARMSTRN1     ARMSTRONG COUNTY     ARMSTRONG     PA     Peaking Units     148.5     165     6/1/2002       ARMSTRN3     ARMSTRONG COUNTY     ARMSTRONG     PA     Peaking Units     148.5     165     6/1/2002       ARMSTRN3     ARMSTRONG COUNTY     ARMSTRONG     PA     Peaking Units     148.5     165     6/1/2002       REDOAKO1     REDOAKO1     REDOAKO1     REDOAKO1     REDOAKO1     8ERGEN     NJ     Combined Cycle     450     500     6/1/2002 <t< td=""><td>HAZELTN3</td><td>HAZE! TON</td><td></td><td>PA</td><td>Peaking Units</td><td>25</td><td>25</td><td>2/1/2002</td></t<>                                                                                                                                                           | HAZELTN3          | HAZE! TON                      |             | PA    | Peaking Units  | 25                 | 25                 | 2/1/2002             |
| HAZELTOI     HAZELTON     LUZERNE     PA     Peaking Units     100     2/1/2002       PLEASNT1     PLEASANTS COUNTY     PLEASANTS     WV     Peaking Units     153     170     2/1/2002       SMYRNA01     SMYRNA     PLEASANTS     WV     Peaking Units     153     170     2/1/2002       LIBERTY1     LIBERTY ELECTRIC PROJECT     DELAWARE     PA     Combined Cycle     450     500     5/1/2002       ARMSTRONG COUNTY     ARMSTRONG     PA     Peaking Units     148.5     165     6/1/2002       ARMSTRN1     ARMSTRONG COUNTY     ARMSTRONG     PA     Peaking Units     148.5     165     6/1/2002       ARMSTRN1     ARMSTRONG COUNTY     ARMSTRONG     PA     Peaking Units     148.5     165     6/1/2002       ARMSTRN4     ARMSTRONG COUNTY     ARMSTRONG     PA     Peaking Units     148.5     165     6/1/2002       ARMSTRN4     ARMSTRONG COUNTY     ARMSTRONG     PA     Peaking Units     148.5     165     6/1/2002       ARMSTRN4     ARMSTRONG COUNTY                                                                                                                                                                                                                                                                     | HAZELTNA          | HAZELTON                       | LUZERNE     | PA    | Peaking Units  | 25                 | 25                 | 2/1/2002             |
| PLEASNT1     PLEASANTS COUNTY     PLEASANTS     WV     Peaking Units     153     170     2/1/2002       PLEASNT2     PLEASANTS COUNTY     PLEASANTS     WV     Peaking Units     153     170     2/1/2002       SMYRNA01     SMYRNA     Peaking Units     153     170     2/1/2002       LIBERTY1     LIBERTY ELECTRIC PROJECT     DELAWARE     PA     Combined Cycle     450     500     5/1/2002       ARMSTRN1     ARMSTRONG COUNTY     ARMSTRONG     PA     Peaking Units     148.5     165     6/1/2002       ARMSTRN2     ARMSTRONG COUNTY     ARMSTRONG     PA     Peaking Units     148.5     165     6/1/2002       ARMSTRN4     ARMSTRONG COUNTY     ARMSTRONG     PA     Peaking Units     148.5     165     6/1/2002       ARMSTRN4     ARMSTRONG COUNTY     ARMSTRONG     PA     Peaking Units     148.5     165     6/1/2002       ARMSTRN4     ARMSTRONG COUNTY     ARMSTRONG     PA     Peaking Units     148.5     165     6/1/2002       REDOAK01     RED OAK <td>HAZELTO1</td> <td>HAZELTON</td> <td>LUZERNE</td> <td>PA</td> <td>Peaking Units</td> <td>90</td> <td>100</td> <td>2/1/2002</td>                                                                                                                                 | HAZELTO1          | HAZELTON                       | LUZERNE     | PA    | Peaking Units  | 90                 | 100                | 2/1/2002             |
| PLEASNT2     PLEASANTS COUNTY     PLEASANTS     WV     Peaking Units     153     170     2/1/2002       SMYRNA0     SMYRNA     Peaking Units     450     500     5/1/2002       LIBERTY LIBERTY ELECTRIC PROJECT     DELAWARE     PA     Combined Cycle     450     500     5/1/2002       ARMSTRN1     ARMSTRONG COUNTY     ARMSTRONG     PA     Peaking Units     148.5     165     6/1/2002       ARMSTRN2     ARMSTRONG COUNTY     ARMSTRONG     PA     Peaking Units     148.5     165     6/1/2002       ARMSTRN4     ARMSTRONG COUNTY     ARMSTRONG     PA     Peaking Units     148.5     165     6/1/2002       ARMSTRN4     ARMSTRONG COUNTY     ARMSTRONG     PA     Peaking Units     148.5     165     6/1/2002       BERGEN     NJ     Combined Cycle     450     500     6/1/2002       MNT_WID     Mountaineer Wind Energy Center     BERGEN     NJ     Combined Cycle     450     500     6/1/2002       MNT_WID     Mountaineer Wind Energy Center     WV     Wind                                                                                                                                                                                                                                                               | PLEASNT1          | PLEASANTS COUNTY               | PLEASANTS   | wv/   | Peaking Units  | 153                | 170                | 2/1/2002             |
| SMYRNA01SMYRNAPeaking Units40.5452/1/2002LIBERTY1LIBERTY1LIBERTY1ELGURTODELAWAREPACombined Cycle4505005/1/2002WILMINGT0WILMINGTONNEW CASTLEDECombined Cycle4505005/1/2002ARMSTRNAARMSTRONG COUNTYARMSTRONGPAPeaking Units148.51656/1/2002ARMSTRN2ARMSTRONG COUNTYARMSTRONGPAPeaking Units148.51656/1/2002ARMSTRN4ARMSTRONG COUNTYARMSTRONGPAPeaking Units148.51656/1/2002ARMSTRN4ARMSTRONG COUNTYARMSTRONGPAPeaking Units148.51656/1/2002BERGEN02BERGENNJCombined Cycle4505006/1/2002REDOAK01RED OAKMIDDLESEXNJCombined Cycle4505006/1/2002INT_WINDMountaineer Wind Energy CenterBERKSPACombined Cycle490.554510/1/2002IMT_WINDMountaineer Wind Energy CenterWVWind66661/2/3/2003LAKEWDC2LAKEWOOD COGENERATION L/POCEANNJPeaking Units149.94166.61/3/2/2003LAKEWDC2LAKEWOOD COGENERATION L/POCEANNJPeaking Units149.94166.61/3/2/2003LAKEWDC3LAKEWOOD COGENERATION L/POCEANNJPeaking Units149.94166.61/3/2/2003ROCKSPR1Rock Springs<                                                                                                                                                                                                                                                                                                               | PLEASNT2          | PLEASANTS COUNTY               | PLEASANTS   | Ŵ     | Peaking Units  | 153                | 170                | 2/1/2002             |
| LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY1LIBERTY                                                                                                                                                                                                                                                    | SMYRNA01          | SMYRNA                         |             |       | Peaking Units  | 40.5               | 45                 | 2/1/2002             |
| IndextrintIndextributionIndextributionIndextributionIndextributionIndextributionIndextributionARMSTRN1ARMSTRONG COUNTYARMSTRONGPAPeaking Units148.51656/1/2002ARMSTR12ARMSTRONG COUNTYARMSTRONGPAPeaking Units148.51656/1/2002ARMSTRN2ARMSTRONG COUNTYARMSTRONGPAPeaking Units148.51656/1/2002ARMSTRN4ARMSTRONG COUNTYARMSTRONGPAPeaking Units148.51656/1/2002BERGEN02BERGENBERGENNJCombined Cycle4505006/1/2002REDOAK01RED OAKMIDDLESEXNJCombined Cycle4505006/1/2002REDOAK01RED OAKMIDDLESEXNJCombined Cycle490.554510/1/2002NT_WINDMountaineer Wind Energy CenterWVWind666612/21/2002BETHLEC1BETHLEHEM (CIV)NORTHAMPTONPAPeaking Units149.94166.61/30/2003LAKEWDC2LAKEWOOD COGENERATION L/POCEANNJPeaking Units149.94166.61/30/2003ROCKSPR1Rock SpringsMDPeaking Units149.94166.61/30/2003ROCKSPR2Rock SpringsMDPeaking Units1701702/28/2003BETHLEHEM (CIV)NORTHAMPTONPAPeaking Units3333333/1/2003BETHLEHEM (CIV)NORTHAMPTONPACombined Cycle </td <td>UBERTY1</td> <td></td> <td>DELAWARE</td> <td>PA</td> <td>Combined Cycle</td> <td>450</td> <td>500</td> <td>5/1/2002</td>                                                                                                                                                                 | UBERTY1           |                                | DELAWARE    | PA    | Combined Cycle | 450                | 500                | 5/1/2002             |
| ARMSTRN1     ARMSTRONG COUNTY     ARMSTRONG     PA     Peaking Units     148.5     165     6/1/2002       ARMSTRN2     ARMSTRONG COUNTY     ARMSTRONG     PA     Peaking Units     148.5     165     6/1/2002       ARMSTRN3     ARMSTRONG COUNTY     ARMSTRONG     PA     Peaking Units     148.5     165     6/1/2002       ARMSTRN4     ARMSTRONG COUNTY     ARMSTRONG     PA     Peaking Units     148.5     165     6/1/2002       BERGEN02     BERGEN     BERGEN     NJ     Combined Cycle     450     500     6/1/2002       REDOAK01     RED OAK     MIDDLESEX     NJ     Combined Cycle     747     830     9/15/2002       ONTELAU1     ONTELAUNEE ENERGY CENTER     BERKS     PA     Combined Cycle     747     830     9/15/2002       IMT_WIND     Mountaineer Wind Energy Center     WV     Wind     66     66     12/31/2002       IAKEWDC1     LAKEWOOD COGENERATION L/P     OCEAN     NJ     Peaking Units     149.94     166.6     1/30/2003       IAKEWDC2                                                                                                                                                                                                                                                                      | WILMNGT1          | WILMINGTON                     | NEW CASTLE  | DE    | Combined Cycle | 450                | 500                | 5/17/2002            |
| ARMSTRN2ARMSTRONG COUNTYARMSTRONGPAProvidingProvided StateARMSTRN3ARMSTRONG COUNTYARMSTRONGPAPeaking Units148.51656/1/2002ARMSTRN4ARMSTRONG COUNTYARMSTRONGPAPeaking Units148.51656/1/2002ARMSTRN4ARMSTRONG COUNTYARMSTRONGPAPeaking Units148.51656/1/2002BERGEN0BERGENNJCombined Cycle4505006/1/2002NEDOAKO1REDOAKMIDDLESEXNJCombined Cycle7478309/15/2002ONTELAU1ONTELAUNEE ENERGY CENTERBERKSPACombined Cycle490.554510/1/2002IMNT_WINDMountaineer Wind Energy CenterWVWind66661/2/31/2002BETHLEC1BETHLEHEM (CIV)NORTHAMPTONPAPeaking Units149.94166.61/30/2003LAKEWDC2LAKEWOOD COGENERATION L/POCEANNJPeaking Units149.94166.61/30/2003LAKEWDC3LAKEWOOD COGENERATION L/POCEANNJPeaking Units149.94166.61/30/2003ROCKSPR1Rock SpringsMDPeaking Units1701702/28/2003ROCKSPR2Rock SpringsMDPeaking Units33333331/1/2003MOOSICMUNTAINWAYNEPAOther50505/1/2003LINDENP2LINDEN (PSEGF)UNIONNJCombined Cycle533.75935/1/2003 <td>ARMSTRN1</td> <td>ARMSTRONG COUNTY</td> <td>ARMSTRONG</td> <td>PA</td> <td>Peaking Units</td> <td>148 5</td> <td>165</td> <td>6/1/2002</td>                                                                                                                                                                           | ARMSTRN1          | ARMSTRONG COUNTY               | ARMSTRONG   | PA    | Peaking Units  | 148 5              | 165                | 6/1/2002             |
| ARMSTRN3ARMSTRONG COUNTYARMSTRONGPAPeaking Units148.516561/12002ARMSTRN4ARMSTRONG COUNTYARMSTRONGPAPeaking Units148.516561/12002ARMSTRN4ARMSTRONG COUNTYARMSTRONGPAPeaking Units148.516561/12002BERGEN02BERGENBERGENNJCombined Cycle4505006/1/2002REDOAK01RED OAKMIDDLESEXNJCombined Cycle490.554510/1/2002ONTELAU1ONTELAUNEE ENERGY CENTERBERKSPACombined Cycle490.554510/1/2002BETHLEC1BETHLEHEM (CIV)NORTHAMPTONPAPeaking Units3333331/1/2003LAKEWDC1LAKEWOOD COGENERATION L/POCEANNJPeaking Units149.94166.61/30/2003LAKEWDC2LAKEWOOD COGENERATION L/POCEANNJPeaking Units149.94166.61/30/2003LAKEWDC3LAKEWOOD COGENERATION L/POCEANNJPeaking Units1701702/28/2003ROCKSPR1Rock SpringsMDPeaking Units1701702/28/2003BETHLEC2BETHLEHEM (CIV)NORTHAMPTONPAPeaking Units3333333/1/2003BETHLEC2BETHLEHEM (CIV)NORTHAMPTONPAPeaking Units3333333/1/2003BETHLEC2BETHLEHEM (CIV)NORTHAMPTONPAPeaking Units3333333/1/2003ILINDENP1LI                                                                                                                                                                                                                                                                                                                   | ARMSTRN2          | ARMSTRONG COUNTY               | ARMSTRONG   | PA    | Peaking Units  | 148.5              | 165                | 6/1/2002             |
| ARMSTR04ARMSTR010 GOUNTYARMSTR0NGPAPeaking Units148.51656/1/2002BERGEN02BERGENBERGENNJCombined Cycle4505006/1/2002REDOAK01RED OAKMIDDLESEXNJCombined Cycle7478309/15/2002ONTELAU1ONTELAUNEE ENERGY CENTERBERKSPACombined Cycle490.554510/1/2002IMNT_WINDMountaineer Wind Energy CenterWVWind666612/31/2002BETHLEC1BETHLEHEM (CIV)NORTHAMPTONPAPeaking Units149.94166.61/30/2003LAKEWDC2LAKEWOOD COGENERATION L/POCEANNJPeaking Units149.94166.61/30/2003LAKEWDC3LAKEWOOD COGENERATION L/POCEANNJPeaking Units149.94166.61/30/2003LAKEWDC3LAKEWOOD COGENERATION L/POCEANNJPeaking Units1701702/28/2003ROCKSPR1Rock SpringsMDPeaking Units1701702/28/2003BETHLEC2BETHLEHEM (CIV)NORTHAMPTONPAPeaking Units3333333/1/2003BETHLEC2BETHLEHEM (CIV)NORTHAMPTONPAPeaking Units1701702/28/2003BOOSICM1MOOSIC MOUNTAINWAYNEPAOther50505/1/2003LINDENP2LINDEN (PSEGF)UNIONNJCombined Cycle533.75935/1/2003LINDENP2LINDEN (PSEGF)UNION                                                                                                                                                                                                                                                                                                                        | ARMSTRN3          | ARMSTRONG COUNTY               | ARMSTRONG   | PA    | Peaking Units  | 148.5              | 165                | 6/1/2002             |
| Alchio HighAlchio HortoFightFightFightFightFightFightBERGEN02BERGENRED OAKMIDDLESEXNJCombined Cycle4505006/1/2002ONTELAU1ONTELAUNEE ENERGY CENTERBERKSPACombined Cycle490.554510/1/2002IMNT_WINDMountaineer Wind Energy CenterWVWind666612/31/2002BETHLEC1BETHLEHEM (CIV)NORTHAMPTONPAPeaking Units149.94166.61/30/2003LAKEWDC1LAKEWOOD COGENERATION L/POCEANNJPeaking Units149.94166.61/30/2003LAKEWDC2LAKEWOOD COGENERATION L/POCEANNJPeaking Units149.94166.61/30/2003LAKEWDC3LAKEWOOD COGENERATION L/POCEANNJPeaking Units149.94166.61/30/2003ROCKSPR1Rock SpringsMDPeaking Units149.94166.61/30/2003ROCKSPR2Rock SpringsMDPeaking Units1701702/28/2003ROCKSPR2Rock SpringsMDPeaking Units3333333/1/2003MOOSIC MOUNTAINWAYNEPAOther5050/1/2003BETHLEHEM (CIV)NORTHAMPTONPACombined Cycle49550/1/2003INDENP1LINDEN (PSEGF)UNIONNJCombined Cycle533.75935/1/2003LINDENP2LINDEN (PSEGF)UNIONNJCombined Cycle533.75935/1/2003 <td>ARMSTRNA</td> <td>ARMSTRONG COUNTY</td> <td>ARMSTRONG</td> <td>PA</td> <td>Peaking Units</td> <td>148.5</td> <td>165</td> <td>6/1/2002</td>                                                                                                                                                                      | ARMSTRNA          | ARMSTRONG COUNTY               | ARMSTRONG   | PA    | Peaking Units  | 148.5              | 165                | 6/1/2002             |
| BETOGRAGDELOCIANDELOCIANDELOCIANDECONDOIDOIREDOAK01REDOAKMIDDLESEXNJCombined Cycle7408309/15/2002INT_WINDMountaineer Wind Energy CenterBERKSPACombined Cycle490.5\$4510/1/2002IMNT_WINDMountaineer Wind Energy CenterWVWind666612/31/2002BETHLEC1BETHLEHEM (CIV)NORTHAMPTONPAPeaking Units3333331/1/2003LAKEWDC1LAKEWOOD COGENERATION L/POCEANNJPeaking Units149.94166.61/30/2003LAKEWDC2LAKEWOOD COGENERATION L/POCEANNJPeaking Units149.94166.61/30/2003LAKEWDC3LAKEWOOD COGENERATION L/POCEANNJPeaking Units149.94166.61/30/2003ROCKSPR1Rock SpringsMDPeaking Units1701702/28/2003ROCKSPR2Rock SpringsMDPeaking Units1701702/28/2003BETHLEC2BETHLEHEM (CIV)NORTHAMPTONPAPeaking Units3333333/1/2003BETHLEHEMCIV)NORTHAMPTONPAPeaking Units3333333/1/2003BETHLEHEMCIV)NORTHAMPTONPACombined Cycle4955505/1/2003LINDENP1LINDEN (PSEGF)UNIONNJCombined Cycle533.75935/1/2003LINDENP2LINDEN (PSEGF)UNIONNJCombined Cycle5                                                                                                                                                                                                                                                                                                                           | BERGEN02          | BERGEN                         | BERGEN      | N.I   | Combined Cycle | 450                | 500                | B/1/2002             |
| InternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalInternationalIntern | REDOAK01          | RED OAK                        |             | N.I   | Combined Cycle | 747                | 830                | 9/15/2002            |
| INTENDONTEDROTE Intended ConterWWWind66666612/31/2002IMNT_WINDMountaineer Wind Energy CenterWVWind66666612/31/2002BETHLEC1BETHLEHEM (CIV)NORTHAMPTONPAPeaking Units3333331/1/2003LAKEWDC1LAKEWOOD COGENERATION L/POCEANNJPeaking Units149.94166.61/30/2003LAKEWDC3LAKEWOOD COGENERATION L/POCEANNJPeaking Units149.94166.61/30/2003LAKEWDC3LAKEWOOD COGENERATION L/POCEANNJPeaking Units149.94166.61/30/2003ROCKSPR1Rock SpringsMDPeaking Units1701702/28/2003ROCKSPR2Rock SpringsMDPeaking Units1701702/28/2003BETHLEC2BETHLEHEM (CIV)NORTHAMPTONPAPeaking Units3333333/1/2003MOOSICM1MOOSIC MOUNTAINWAYNEPAOther50503/1/2003BETHLEH1BETHLEHEM (CIV)NORTHAMPTONPACombined Cycle533.75935/1/2003LINDENP1LINDEN (PSEGF)UNIONNJCombined Cycle533.75935/1/2003LINDENP2LINDEN (PSEGF)UNIONNJCombined Cycle533.75935/1/2003ESSEXENEEssex EnergyNJPeaking Units5.65.66/1/2003GERMANCCGermanPACombined Cycle640640 <td>ONTEL ALL1</td> <td>ONTEL ALINEE ENERGY CENTER</td> <td>REPKS</td> <td></td> <td>Combined Cycle</td> <td>400.5</td> <td>545</td> <td>10/1/2002</td>                                                                                                                                                                                | ONTEL ALL1        | ONTEL ALINEE ENERGY CENTER     | REPKS       |       | Combined Cycle | 400.5              | 545                | 10/1/2002            |
| Initial ControlInitial ControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControlControl <t< td=""><td>MNT WIND</td><td>Mountaineer Wind Energy Center</td><td>DEIXIO</td><td>W/V</td><td>Wind</td><td>-30.5</td><td>545</td><td>12/31/2002</td></t<>                                                                                                                                                    | MNT WIND          | Mountaineer Wind Energy Center | DEIXIO      | W/V   | Wind           | -30.5              | 545                | 12/31/2002           |
| LAKEWDC1LAKEWOOD COGENERATION L/POCEANNJPeaking Units149.94166.61/30/2003LAKEWDC2LAKEWOOD COGENERATION L/POCEANNJPeaking Units149.94166.61/30/2003LAKEWDC3LAKEWOOD COGENERATION L/POCEANNJPeaking Units149.94166.61/30/2003LAKEWDC3LAKEWOOD COGENERATION L/POCEANNJPeaking Units149.94166.61/30/2003ROCKSPR1Rock SpringsMDPeaking Units1701702/28/2003ROCKSPR2Rock SpringsMDPeaking Units1701702/28/2003BETHLEC2BETHLEHEM (CIV)NORTHAMPTONPAPeaking Units3333313/1/2003MOOSIC MOUNTAINWAYNEPAOther50505/1/2003LINDENP1LINDEN (PSEGF)UNIONNJCombined Cycle4955505/1/2003LINDENP2LINDEN (PSEGF)UNIONNJCombined Cycle533.75935/1/2003LINDENP2LINDEN (PSEGF)UNIONNJPeaking Units5.65.66/1/2003GERMANCCGermanPACombined Cycle6406406/1/2003HUNTERS1HUNTERSTOWNADAMSPACombined Cycle7208006/1/2003LOWERMB1LOWER MOUNT BETHELNORTHAMPTONPACombined Cycle5406006/1/2003                                                                                                                                                                                                                                                                                                                                                                                    | BETHLEC1          | BETHLEHEM (CIV)                | NORTHAMPTON | PA    | Peaking Units  | 233                | 333                | 1/1/2002             |
| LAKEWDC2LAKEWOOD COGENERATION L/POCEANNJPeaking Units149.94166.61/30/2003LAKEWDC3LAKEWOOD COGENERATION L/POCEANNJPeaking Units149.94166.61/30/2003ROCKSPR1Rock SpringsMDPeaking Units1701702/28/2003ROCKSPR2Rock SpringsMDPeaking Units1701702/28/2003BETHLEC2BETHLEHEM (CIV)NORTHAMPTONPAPeaking Units3333333/1/2003MOOSICM1MOOSIC MOUNTAINWAYNEPAOther50503/1/2003BETHLEH1BETHLEHEM (CIV)NORTHAMPTONPACombined Cycle4955505/1/2003LINDENP1LINDEN (PSEGF)UNIONNJCombined Cycle533.75935/1/2003LINDENP2LINDEN (PSEGF)UNIONNJCombined Cycle533.75935/1/2003LINDENP2LINDEN (PSEGF)UNIONNJPaking Units5.65.66/1/2003LINDEN2LINDEN (PSEGF)UNIONNJCombined Cycle533.75935/1/2003LINDEN2LINDEN (PSEGF)UNIONNJPaking Units5.65.66/1/2003LINDEN2LINDEN (PSEGF)UNIONNJPaking Units5.65.66/1/2003LINDEN2LOWER MOUNT BETHELNORTHAMPTONPACombined Cycle7208006/1/2003LOWERMB1LOWER MOUNT BETHELNORTHAMPTONPACombined Cycle                                                                                                                                                                                                                                                                                                                                     | LAKEWDC1          | LAKEWOOD COGENERATION L/P      | OCEAN       | NI    | Peaking Units  | 140.04             | 166.6              | 1/30/2003            |
| LAKEWDC3LAKEWOOD COGENERATION L/POCEANNJPeaking Units140.54160.61/30/2003ROCKSPR1Rock SpringsMDPeaking Units1701702/28/2003ROCKSPR2Rock SpringsMDPeaking Units1701702/28/2003BETHLEC2BETHLEHEM (CIV)NORTHAMPTONPAPeaking Units3333333/1/2003MOOSICM1MOOSIC MOUNTAINWAYNEPAOther50503/1/2003BETHLEH1BETHLEHEM (CIV)NORTHAMPTONPACombined Cycle4955505/1/2003LINDENP1LINDEN (PSEGF)UNIONNJCombined Cycle533.75935/1/2003LINDENP2LINDEN (PSEGF)UNIONNJCombined Cycle533.75935/1/2003LINDENP2LINDEN (PSEGF)UNIONNJCombined Cycle533.75935/1/2003LINDEN2LINDEN (PSEGF)UNIONNJPaking Units5.65.66/1/2003LINDEN2LINDEN (PSEGF)UNIONNJPaking Units5.65.66/1/2003LINDEN2LINDEN (PSEGF)UNIONNJPaking Units5.65.66/1/2003LINDEN2LOWER MOUNT BETHELNORTHAMPTONPACombined Cycle7208006/1/2003LOWERMB1LOWER MOUNT BETHELNORTHAMPTONPACombined Cycle5406006/1/2003                                                                                                                                                                                                                                                                                                                                                                                                | LAKEWDC2          | LAKEWOOD COGENERATION L/P      | OCEAN       | NI    | Peaking Units  | 149.04             | 166.6              | 1/30/2003            |
| ROCKSPR1Rock SpringsMDPeaking Units1701702/28/2003ROCKSPR2Rock SpringsMDPeaking Units1701702/28/2003BETHLEC2BETHLEHEM (CIV)NORTHAMPTONPAPeaking Units3333333/1/2003MOOSICM1MOOSIC MOUNTAINWAYNEPAOther50503/1/2003BETHLEH1BETHLEHEM (CIV)NORTHAMPTONPACombined Cycle4955505/1/2003LINDENP1LINDEN (PSEGF)UNIONNJCombined Cycle533.75935/1/2003LINDENP2LINDEN (PSEGF)UNIONNJCombined Cycle533.75935/1/2003ESSEXENEEssex EnergyNJPeaking Units5.65.66/1/2003GERMANCCGermanPACombined Cycle6406/1/2003HUNTERS1HUNTERSTOWNADAMSPACombined Cycle7208006/1/2003LOWERMB1LOWER MOUNT BETHELNORTHAMPTONPACombined Cycle5406006/1/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LAKEWDC3          | LAKEWOOD COGENERATION L/P      |             | NI    | Peaking Units  | 140.04             | 166.6              | 1/30/2003            |
| ROCKSPR2Rock SpringsMDForking Units1701702/20/2003BETHLEC2BETHLEHEM (CIV)NORTHAMPTONPAPeaking Units3333333/1/2003MOOSICM1MOOSIC MOUNTAINWAYNEPAOther50503/1/2003BETHLEH1BETHLEHEM (CIV)NORTHAMPTONPACombined Cycle4955505/1/2003LINDENP1LINDEN (PSEGF)UNIONNJCombined Cycle533.75935/1/2003LINDENP2LINDEN (PSEGF)UNIONNJCombined Cycle533.75935/1/2003ESSEXENEEssex EnergyNJPeaking Units5.65.66/1/2003GERMANCCGermanPACombined Cycle7208006/1/2003HUNTERS1HUNTERSTOWNADAMSPACombined Cycle7406006/1/2003LOWERMB1LOWER MOUNT BETHELNORTHAMPTONPACombined Cycle5406006/1/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BOCKSPR1          | Back Springs                   |             | MD    | Peaking Units  | 170                | 170                | 2/28/2003            |
| INDFeeking Units1701702120/2003BETHLEC2BETHLEHEM (CIV)NORTHAMPTONPAPeaking Units3333333/1/2003IMOOSICM1MOOSIC MOUNTAINWAYNEPAOther50503/1/2003BETHLEH1BETHLEHEM (CIV)NORTHAMPTONPACombined Cycle4955505/1/2003LINDENP1LINDEN (PSEGF)UNIONNJCombined Cycle533.75935/1/2003LINDENP2LINDEN (PSEGF)UNIONNJCombined Cycle533.75935/1/2003ESSEXENEEssex EnergyNJPeaking Units5.65.66/1/2003GERMANCCGermanPACombined Cycle7208006/1/2003HUNTERS1HUNTERSTOWNADAMSPACombined Cycle7208006/1/2003LOWERMB1LOWER MOUNT BETHELNORTHAMPTONPACombined Cycle5406006/1/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | POCKSPP2          | Rock Springs                   |             | MD    | Peaking Units  | 170                | 170                | 2/28/2003            |
| IndextractionNorthalini forFAFaFormula formula50050050171/2003ImposeMOOSIC MOUNTAINWAYNEPAOther50503/1/2003BETHLEH1BETHLEHEM (CIV)NORTHAMPTONPACombined Cycle4955505/1/2003LINDENP1LINDEN (PSEGF)UNIONNJCombined Cycle533.75935/1/2003LINDENP2LINDEN (PSEGF)UNIONNJCombined Cycle533.75935/1/2003ESSEXENEEssex EnergyNJPeaking Units5.65.66/1/2003GERMANCCGermanPACombined Cycle6406/1/2003HUNTERS1HUNTERSTOWNADAMSPACombined Cycle7208006/1/2003LOWER M0UNT BETHELNORTHAMPTONPACombined Cycle5406006/1/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BETHIEC2          | RETHLEHEM (CIVA                | NORTHAMPTON |       | Peaking Units  | 333                | 333                | 3/1/2003             |
| BETHLEH1     BETHLEHEM (CIV)     NORTHAMPTON     PA     Combined Cycle     495     550     5/1/2003       LINDEN1     LINDEN (PSEGF)     UNION     NJ     Combined Cycle     533.7     593     5/1/2003       LINDENP2     LINDEN (PSEGF)     UNION     NJ     Combined Cycle     533.7     593     5/1/2003       ESSEXENE     Essex Energy     NJ     Peaking Units     5.6     5.6     6/1/2003       GERMANCC     German     PA     Combined Cycle     640     6/1/2003       HUNTERS1     HUNTERSTOWN     ADAMS     PA     Combined Cycle     720     800     6/1/2003       LOWERMB1     LOWER MOUNT BETHEL     NORTHAMPTON     PA     Combined Cycle     540     600     6/1/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MOOSICM1          | MOOSIC MOUNTAIN                | WAYNE       | PA    | Other          | 50                 | 50                 | 3/1/2003             |
| LINDENP1LINDEN (PSEGF)UNIONNJCombined Cycle533.75935/1/2003LINDENP2LINDEN (PSEGF)UNIONNJCombined Cycle533.75935/1/2003LINDENP2LINDEN (PSEGF)UNIONNJCombined Cycle533.75935/1/2003ESSEXENEEssex EnergyNJPeaking Units5.65.66/1/2003GERMANCCGermanPACombined Cycle6406/1/2003HUNTERS1HUNTERSTOWNADAMSPACombined Cycle7208006/1/2003LOWERMB1LOWER MOUNT BETHELNORTHAMPTONPACombined Cycle5406006/1/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | BETHLEHEM (CIV)                | NORTHAMPTON | PA    | Combined Cycle | 495                | 550                | 5/1/2003             |
| LINDEN P2LINDEN (PSEGF)UNIONNJCombined Cycle533.75935/1/2003ESSEXENEEssex EnergyNJPeaking Units5.65.66/1/2003GERMANCCGermanPACombined Cycle6406406/1/2003HUNTERS1HUNTERSTOWNADAMSPACombined Cycle7208006/1/2003LOWERMB1LOWER MOUNT BETHELNORTHAMPTONPACombined Cycle5406006/1/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | LINDEN (PSEGE)                 |             | N.I   | Combined Cycle | 533 7              | 500                | 5/1/2003             |
| ESSEXENEEssex EnergyNJPeaking Units5.65.66/1/2003GERMANCCGermanPACombined Cycle6406406/1/2003HUNTERS1HUNTERSTOWNADAMSPACombined Cycle7208006/1/2003LOWERMB1LOWER MOUNT BETHELNORTHAMPTONPACombined Cycle5406006/1/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LINDENP2          | LINDEN (PSEGE)                 | UNION       | N.I   | Combined Cycle | 533.7              | 503                | 5/1/2003             |
| GERMANCC German PA Combined Cycle 640 6/1/2003   HUNTERS1 HUNTERSTOWN ADAMS PA Combined Cycle 720 800 6/1/2003   LOWERMB1 LOWER MOUNT BETHEL NORTHAMPTON PA Combined Cycle 540 600 6/1/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ESSEXENE          | Essex Energy                   |             | N.I   | Peaking Units  | 5.6                | 56                 | 6/1/2003             |
| HUNTERS1 HUNTERSTOWN ADAMS PA Combined Cycle 720 800 6/1/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GERMANCC          | German                         |             | PA    | Combined Cycle | 640                | 640                | 6/1/2003             |
| LOWERMB1 LOWER MOUNT BETHEL NORTHAMPTON PA Combined Cycle 540 600 6/1/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HUNTERS1          | HUNTERSTOWN                    | ADAMS       | PA    | Combined Cycle | 720                | 800                | 6/1/2003             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LOWERMB1          | LOWER MOUNT BETHEL             | NORTHAMPTON | PA    | Combined Cycle | 540                | 600                | 6/1/2003             |

| MAPS Unit<br>Name | Plant Name                  | County     | State | Unit Type      | Summer<br>Cap (MW) | Winter<br>Cap (MW) | installation<br>Date |
|-------------------|-----------------------------|------------|-------|----------------|--------------------|--------------------|----------------------|
| ROCKSPR3          | Rock Springs                |            | MD    | Peaking Units  | 170                | 170                | 6/1/2003             |
| ROCKSPR4          | Rock Springs                |            | MD    | Peaking Units  | 170                | 170                | 6/1/2003             |
| SPRINGD1          | SPRINGDALE                  | ALLEGHENY  | PA    | Combined Cycle | 486                | 540                | 10/1/2003            |
| FALLSTW1          | FALLS TOWNSHIP              | BUCKS      | PA    | Combined Cycle | 495                | 550                | 3/1/2004             |
| MARCUSR1          | MARCUS HOOK REFINERY COGEN  | DELAWARE   | PA    | Combined Cycle | 216.9              | 241                | 3/1/2004             |
| MARCUSR2          | MARCUS HOOK REFINERY COGEN  | DELAWARE   | PA    | Combined Cycle | 216.9              | 241                | 3/1/2004             |
| MARCUSR3          | MARCUS HOOK REFINERY COGEN  | DELAWARE   | PA    | Combined Cycle | 216.9              | 241                | 3/1/2004             |
| FALLSTW2          | FALLS TOWNSHIP              | BUCKS      | PA    | Combined Cycle | 495                | 550                | 6/1/2004             |
| SEWARD01          | SEWARD (RELIANT)            | INDIANA    | PA    | Coal           | 520                | 520                | 9/1/2004             |
|                   | New Units in CP&L           |            |       |                |                    |                    | 1                    |
| ASHEVLE1          | ASHEVILLE                   | BUNCOMBE   | NC    | Peaking Units  | 144                | 160                | 3/1/2000             |
| WAYNECT1          | WAYNE COUNTY (CP&L)         | WAYNE      | NC    | Peaking Units  | 180                | 200                | 6/2/2000             |
| WAYNECT2          | WAYNE COUNTY (CP&L)         | WAYNE      | NC    | Peaking Units  | 180                | 200                | 6/2/2000             |
| WAYNECT3          | WAYNE COUNTY (CP&L)         | WAYNE      | NC    | Peaking Units  | 180                | 200                | 6/2/2000             |
| WAYNECT4          | WAYNE COUNTY (CP&L)         | WAYNE      | NC    | Peaking Units  | 83.7               | 93                 | 6/2/2000             |
| RICHMND1          | RICHMOND PLANT (CPLC)       | RICHMOND   | NC    | Peaking Units  | 139.5              | 155                | 5/29/2001            |
| RICHMND2          | RICHMOND PLANT (CPLC)       | RICHMOND   | NC    | Peaking Units  | 139.5              | 155                | 5/29/2001            |
| RICHMND3          | RICHMOND PLANT (CPLC)       | RICHMOND   | NC    | Peaking Units  | 139.5              | 155                | 5/29/2001            |
| RICHMND4          | RICHMOND PLANT (CPLC)       | RICHMOND   | NC    | Peaking Units  | 139.5              | 155                | 5/29/2001            |
| ROWANGT1          | ROWAN                       | ROWAN      | NC    | Peaking Units  | 155                | 155                | 5/29/2001            |
| ROWANGT2          | ROWAN                       | ROWAN      | NC    | Peaking Units  | 155                | 155                | 5/29/2001            |
| ROWANGT3          | ROWAN                       | ROWAN      | NC    | Peaking Units  | 155                | 155                | 5/29/2001            |
| RICHMND5          | RICHMOND PLANT (CPLC)       | RICHMOND   | NC    | Combined Cycle | 423                | 470                | 5/30/2002            |
| RICHMND6          | RICHMOND PLANT (CPLC)       | RICHMOND   | NC    | Peaking Units  | 139.5              | 155                | 5/30/2002            |
| ROWANCC4          | ROWAN                       | ROWAN      | NC    | Combined Cycle | 423                | 470                | 1/1/2003             |
|                   | New Units in Duke           |            |       |                |                    |                    |                      |
| BROADRE1          | BROAD RIVER ENERGY CENTER   | CHEROKEE   | SC    | Peaking Units  | 180                | 200                | 6/1/2000             |
| BROADRE2          | BROAD RIVER ENERGY CENTER   | CHEROKEE   | SC    | Peaking Units  | 180                | 200                | 6/1/2000             |
| BROADRE3          | BROAD RIVER ENERGY CENTER   | CHEROKEE   | SC    | Peaking Units  | 45                 | 50                 | 6/1/2000             |
| ROCKGHM1          | ROCKINGHAM POWER PLANT      | ROCKINGHAM | NC    | Peaking Units  | 180                | 200                | 7/12/2000            |
| ROCKGHM2          | ROCKINGHAM POWER PLANT      | ROCKINGHAM | NC    | Peaking Units  | 180                | 200                | 7/12/2000            |
| ROCKGHM3          | ROCKINGHAM POWER PLANT      | ROCKINGHAM | NC    | Peaking Units  | 72                 | 80                 | 7/12/2000            |
| ROCKGHM4          | ROCKINGHAM POWER PLANT      | ROCKINGHAM | NC    | Peaking Units  | 180                | 200                | 7/17/2000            |
| ROCKGHM5          | ROCKINGHAM POWER PLANT      | ROCKINGHAM | NC    | Peaking Units  | 108                | 120                | 7/17/2000            |
| BROADRE4          | BROAD RIVER ENERGY CENTER   | CHEROKEE   | SC    | Peaking Units  | 157.5              | 175                | 6/15/2001            |
| BROADRE5          | BROAD RIVER ENERGY CENTER   | CHEROKEE   | SC    | Peaking Units  | 157.5              | 175                | 6/15/2001            |
| JOHNSRN1          | JOHN S RAINEY GENERATING ST | ANDERSON   | SC    | Combined Cycle | 450                | 500                | 1/1/2002             |
| JOHNSRN2          | JOHN S RAINEY GENERATING ST | ANDERSON   | SC    | Peaking Units  | 135                | 150                | 3/1/2002             |
| JOHNSRN3          | JOHN S RAINEY GENERATING ST | ANDERSON   | SC    | Peaking Units  | 135                | 150                | 5/1/2002             |
| MILLCRK1          | MILL CREEK STATION          | CHEROKEE   | SC    | Peaking Units  | 72                 | 80                 | 12/31/2002           |
| MILLCRK2          | MILL CREEK STATION          | CHEROKEE   | SC    | Peaking Units  | 72                 | 80                 | 12/31/2002           |
| MILLCRK3          | MILL CREEK STATION          | CHEROKEE   | SC    | Peaking Units  | 72                 | 80                 | 12/31/2002           |
| MILLCRK4          | MILL CREEK STATION          | CHEROKEE   | SC    | Peaking Units  | 72                 | 80                 | 12/31/2002           |
| MILLCRK5          | MILL CREEK STATION          | CHEROKEE   | SC    | Peaking Units  | 72                 | 80                 | 4/1/2003             |
| MILLCRK6          | MILL CREEK STATION          | CHEROKEE   | SC    | Peaking Units  | 72                 | 80                 | 4/1/2003             |
| MILLCRK7          | MILL CREEK STATION          | CHEROKEE   | SC    | Peaking Units  | 72                 | 80                 | 4/1/2003             |
| MILLCRK8          | MILL CREEK STATION          | CHEROKEE   | SC    | Peaking Units  | 72                 | 80                 | 4/1/2003             |
| JOHNSRN4          | JOHN S RAINEY GENERATING ST | ANDERSON   | SC    | Peaking Units  | 72                 | 80                 | 1/1/2004             |
| JOHNSRN5          | JOHN S RAINEY GENERATING ST | ANDERSON   | SC    | Peaking Units  | 72                 | 80                 | 1/1/2004             |
| JOHNSRN6          | JOHN S RAINEY GENERATING ST | ANDERSON   | SC    | Peaking Units  | 72                 | 80                 | 1/1/2004             |
|                   | New Units in SCE&G          |            |       | -              |                    |                    |                      |
| URQUHAR1          | URQUHART - SCEG             | AIKEN      | SC    | Combined Cycle | 202.5              | 225                | 6/3/2002             |
| URQUHAR2          | URQUHART - SCEG             | AIKEN      | SC    | Combined Cycle | 202.5              | 225                | 6/3/2002             |
| COLUMBE1          | COLUMBIA ENERGY CENTER      | CALHOUN    | SC    | Combined Cycle | 450                | 500                | 6/1/2003             |
| JASPERC1          | JASPER COUNTY               | JASPER     | SC    | Combined Cycle | 787.5              | 875                | 6/1/2004             |

| MAPS Unit | Plant Name                  | County    | State        | Unit Type                      | Summer | Winter<br>Cap (MW) | Installation |
|-----------|-----------------------------|-----------|--------------|--------------------------------|--------|--------------------|--------------|
| Name      |                             |           |              |                                |        |                    | Date         |
|           | New Units in MISO (ECAR)    |           |              |                                |        |                    |              |
| 491E48T9  | 491 E. 48TH STREET          | OTTAWA    | MI           | Peaking Units                  | 80     | 80                 | 6/1/2000     |
| ASHTABU1  | ASHTABULA (TRCISO)          | ASHTABULA | OH           | Peaking Units                  | 28     | 28                 | 2/28/2001    |
| BELLERR3  |                             | ST. CLAIR | MI           | Peaking Units                  | 144    | 160                | 8/1/2002     |
| BELLERR4  | BELLE RIVER                 | ST. CLAIR | MI           | Peaking Units                  | 144    | 160                | 8/1/2002     |
| BOWLINA   | BOWLING GREEN (AMP)         | WOOD      | OH           | Peaking Units                  | 32     | 32                 | //11/2000    |
| BOWLING1  | BOWLING GREEN (USGECO)      | WOOD      | OH           | Peaking Units                  | 33     | 33                 | 1/1/2000     |
| BOWLING2  | BOWLING GREEN (USGECO)      | WOOD      | OH           | Peaking Units                  | 16.5   | 16.5               | 1/1/2000     |
| BROWNKU4  | BROWN (KUC)                 | MERCER    | KT<br>INI    | Peaking Units                  | 133    | 133                | 1/1/2001     |
| BROWNSGT  |                             | PUSET     |              | Peaking Units                  | 12     | 00                 | //30/2002    |
| CARBONLI  |                             |           |              |                                | 20.8   | 20.8               | 1/1/2001     |
| CEREDOGI  | CEREDO                      |           |              | Peaking Units                  | 80     | 60                 | 1/1/2001     |
| CEREDOG2  | CEREDO                      |           |              | Peaking Units                  | 85     | C0                 | 1/1/2001     |
| CEREDOGS  | CEREDO                      |           |              | Peaking Units                  | 60     | 60                 | 4/4/2001     |
| CEREDOG4  | CEREDO                      |           |              | Peaking Units                  | 60     | 60                 | 1/1/2001     |
| CEREDOGS  | CEREDO                      |           |              | Peaking Units                  | 60     | 60                 | 1/1/2001     |
| CLAUDEVZ  |                             |           |              | Peaking Units                  | 60     | 00                 | 1/1/2001     |
| COVERTO1  | COVERT                      |           | IVII<br>AAI  | Combined Cuele                 | 24     | 29                 | 6/20/2001    |
| COVERTO   | COVERT                      |           | IVII<br>AAI  | Combined Cycle                 | 300    | 400                | 6/1/2003     |
| COVERTOZ  | COVERT                      |           | IVII<br>MAL  | Combined Cycle                 | 360    | 400                | 6/1/2003     |
| DEABBOOM  |                             |           | IVEI<br>KAS  | Combined Cycle                 | 550    | 400                | 1/1/2003     |
|           |                             |           | IVC<br>MI    | Combined Cycle                 | 277    | 277                | 1/1/2001     |
| DEARBORI  | DEARBORN DIST GEN FACILITY  | VVATINE.  | MI           | Peaking Units<br>Booking Units | 37.7   | 37.7               | 6/1/2007     |
| DIECHINI  | DTE East China              |           | 1VII<br>6.41 | Peaking Units                  | 80     | 00                 | 6/1/2002     |
| DIECHINZ  | DTE East China              |           | NII<br>NAI   | Peaking Units<br>Reaking Units | 80     | 80                 | 6/1/2002     |
| DTECHINA  | DTE East China              |           | MI           | Peaking Units                  | 80     | 80                 | 6/1/2002     |
| DYNEGYB1  | DYNEGY - BILIEGRASS         |           | KY.          | Peaking Units                  | 180    | 186                | 6/1/2002     |
| DYNEGYB2  | DYNEGY - BLUEGRASS          |           | KY KY        | Peaking Units                  | 180    | 186                | 6/1/2002     |
| DYNEGYB3  | DYNEGY - BLUEGRASS          |           | KY           | Peaking Units                  | 100 8  | 186                | 6/1/2002     |
| FOOTHIL 1 | FOOTHILLS GENERATING PROJEC |           | KY           | Peaking Units                  | 144    | 160                | A/1/2002     |
| FOOTHIL 2 | FOOTHILLS GENERATING PROJEC |           | KY           | Peaking Units                  | 153    | 170                | 4/1/2002     |
| GALIONG1  | GALION                      | CRAWEORD  | OH           | Peaking Units                  |        | 33                 | 1/1/2002     |
| GALIONG2  | GALION                      | CRAWEORD  | ОН           | Peaking Units                  | 16.5   | 16.5               | 1/1/2000     |
| GAYLORDW  | Gavlord IWPSCI              |           | MI           | Peaking Units                  | 75     | 75                 | 6/1/2001     |
| GEORGE.11 | GEORGE JOHNSON              | OSCEOLA   | MI           | Peaking Units                  | 25     | 25                 | 1/1/2000     |
| GEORGE.12 | GEORGE JOHNSON              | OSCEOLA   | MI           | Peaking Units                  | 25     | 25                 | 1/1/2000     |
| GEORGET1  | GEORGETOWN                  | MARION    | IN IN        | Peaking Units                  | 88     | 88                 | 1/1/2000     |
| GEORGET2  | GEORGETOWN                  | MARION    | IN           | Peaking Units                  | 88     | 88                 | 1/1/2000     |
| GEORGET3  | GEORGETOWN                  | MARION    | IN           | Peaking Units                  | 88     | 88                 | 1/1/2000     |
| GEORGET4  | GEORGETOWN                  | MARION    | IN           | Peaking Units                  | 80     | 80                 | 1/1/2001     |
| HAMILTON  | HAMILTON (AMP)              | BUTLER    | OH           | Peaking Units                  | 32     | 32                 | 1/1/2000     |
| HARDING8  | HARDING STREET              |           | IN           | Peaking Units                  | 155    | 155                | 5/31/2002    |
| HAWESVI1  | HAWESVILLE MILL             | HANCOCK   | KY           | Steam Gas/Oil                  | 60     | 60                 | 1/1/2001     |
| HENRYGT1  | HENRY                       | HENRY     | IN           | Peaking Units                  | 45     | 45                 | 1/1/2001     |
| HENRYGT2  | HENRY                       | HENRY     | IN           | Peaking Units                  | 45     | 45                 | 1/1/2001     |
| HENRYGT3  | HENRY                       | HENRY     | IN           | Peaking Units                  | 45     | 45                 | 1/1/2001     |
| HOOSFAIR  | Hoosier Energy Fairview     |           | IN           | Peaking Units                  | 16.43  | 16.43              | 6/15/2001    |
| HOOSMIDW  | Hoosier Energy Midway       |           | IN           | Peaking Units                  | 16     | 16                 | 6/15/2001    |
| IRONSIDE  | Ironside Energy             |           | IN           | Peaking Units                  | 50     | 50                 | 1/1/2002     |
| JACKSON1  | JACKSON                     | JACKSON   | МІ           | Combined Cycle                 | 338.4  | 376                | 6/1/2002     |
| JACKSON2  | JACKSON                     | JACKSON   | MI           | Peaking Units                  | 162    | 180                | 6/1/2002     |
| JKSMITG2  | J.K. SMITH                  | CLARK     | KY           | Peaking Units                  | 85.4   | 85.4               | 1/1/2001     |
| JKSMITG3  | J.K. SMITH                  | CLARK     | KY           | Peaking Units                  | 85     | 85                 | 1/1/2001     |
| LAFARGE1  | LAFARGE GYPSUM              | CAMPBELL  | KY           | Peaking Units                  | 5.2    | 5.2                | 1/1/2000     |

| MAPS Unit<br>Name | Plant Name                  | County         | State | Unit Type      | Summer<br>Cap (MW) | Winter<br>Cap (MW) | Installation<br>Date |
|-------------------|-----------------------------|----------------|-------|----------------|--------------------|--------------------|----------------------|
| LORAINL1          | LORAIN LANDFILL             | LORAIN         | он    | Combined Cycle | 7.8                | 7.8                | 1/1/2001             |
| MACKINA1          | MACKINAW CITY               | ÉMMET          | ML    | Other          | 3.3                | 3.3                | 12/3/2001            |
| NAPOLEO1          | NAPOLEON                    | HENRY          | ОН    | Peaking Units  | 33                 | 33                 | 1/1/2000             |
| NAPOLEO2          | NAPOLEON                    | HENRY          | OH    | Peaking Units  | 16.5               | 16.5               | 1/1/2000             |
| NOBLEVL1          | NOBLESVILLE                 | HAMILTON       | IN    | Combined Cycle | 270                | 300                | 6/1/2003             |
| OHIOAMP1          | OHIO (AMP)                  | NOT APPLICABLE | OH    | Peaking Units  | 21.6               | 21.6               | 1/1/2000             |
| OHIOAMP2          | OHIO (AMP)                  | NOT APPLICABLE | о́н   | Peaking Units  | 16.2               | 16.2               | 1/1/2000             |
| PADDYS13          | PADDYS RUN                  | JEFFERSON      | κ̈́Υ  | Peaking Units  | 151                | 151                | 1/1/2001             |
| RENAIS10          | RENAISSANCE POWER PROJECT   | MONTCALM       | MI    | Peaking Units  | 153                | 170                | 6/1/2002             |
| RENAISS7          | RENAISSANCE POWER PROJECT   | MONTCALM       | MI    | Peaking Units  | 153                | 170                | 6/1/2002             |
| RENAISS8          | RENAISSANCE POWER PROJECT   | MONTCALM       | MI    | Peaking Units  | 153                | 170                | 6/1/2002             |
| RENAISS9          | RENAISSANCE POWER PROJECT   | MONTCALM       | Mi    | Peaking Units  | 153                | 170                | 6/1/2002             |
| RICHLAN1          | RICHLAND PEAKING            | DEFIANCE       | OH    | Peaking Units  | 130                | 130                | 1/1/2000             |
| RICHLAN2          | RICHLAND PEAKING            | DEFIANCE       | ОH    | Peaking Units  | 130                | 130                | 1/1/2000             |
| <b>RICHLAN3</b>   | RICHLAND PEAKING            | DEFIANCE       | ŎН    | Peaking Units  | 130                | 130                | 1/1/2000             |
| SPURLCK1          | SPURLOCK                    | MASON          | ΚY    | Coal           | 250                | 250                | 4/1/2005             |
| SUGARCK1          | SUGAR CREEK                 | VIGO           | IN    | Combined Cycle | 450                | 500                | 6/1/2003             |
| SUGARCK3          | SUGAR CREEK                 | VIGO           | IN    | Peaking Units  | 153                | 170                | 6/1/2002             |
| SUGARCK4          | SUGAR CREEK                 | VIGO           | IN    | Peaking Units  | 153                | 170                | 6/1/2002             |
| SUMPTER1          | SUMPTER TOWNSHIP            | WAYNE          | MI    | Peaking Units  | 76.5               | 85                 | 6/1/2002             |
| SUMPTER2          | SUMPTER TOWNSHIP            | WAYNE          | MI    | Peaking Units  | 76.5               | 85                 | 6/1/2002             |
| SUMPTER3          | SUMPTER TOWNSHIP            | WAYNE          | MI    | Peaking Units  | 76.5               | 85                 | 6/1/2002             |
| SUMPTER4          | SUMPTER TOWNSHIP            | WAYNE          | M     | Peaking Units  | 76.5               | 85                 | 6/1/2002             |
| TRAVERS1          | TRAVERSE CITY               | GRAND TRAVERSE | Mi    | Peaking Units  | 45                 | 50                 | 11/1/2002            |
| TRIMBLC4          | TRIMBLE COUNTY              | TRIMBLE        | KY    | Peaking Units  | 135                | 150                | 6/1/2002             |
| TRIMBLC5          | TRIMBLE COUNTY              | TRIMBLE        | KY    | Peaking Units  | 135                | 150                | 6/1/2002             |
| VERMILL1          | VERMILLION GENERATING STATI | VERMILLION     | IN    | Peaking Units  | 80                 | 80                 | 1/1/2000             |
| VERMILL2          | VERMILLION GENERATING STATI | VERMILLION     | IN    | Peaking Units  | 80                 | 80                 | 1/1/2000             |
| VERMILL3          | VERMILLION GENERATING STATI | VERMILLION     | IN    | Peaking Units  | 80                 | 80                 | 1/1/2000             |
| VERMILL4          | VERMILLION GENERATING STATI | VERMILLION     | IN    | Peaking Units  | 80                 | 80                 | 1/1/2000             |
| VERMILL5          | VERMILLION GENERATING STATI | VERMILLION     | IN    | Peaking Units  | 80                 | 80                 | 1/1/2000             |
| VERMILL6          | VERMILLION GENERATING STATI | VERMILLION     | IN    | Peaking Units  | 80                 | 80                 | 1/1/2000             |
| VERMILL7          | VERMILLION GENERATING STATI | VERMILLION     | IN    | Peaking Units  | 80                 | 80                 | 1/1/2000             |
| VERMILL8          | VERMILLION GENERATING STATI | VERMILLION     | IN    | Peaking Units  | 80                 | 80                 | 1/1/2000             |
| WAYNECA1          | WAYNE COUNTY AIRPORT        | WAYNE          | MI    | Peaking Units  | 15.3               | 17                 | 3/1/2002             |
| WHITINR1          | WHITING REFINERY (PRIENE)   | LAKE           | IN    | Combined Cycle | 490.5              | 545                | 1/31/2002            |
| WOODCOU1          | WOOD COUNTY                 | WOOD           | OH    | Peaking Units  | 153                | 170                | 6/1/2002             |
| WOODCOU2          | WOOD COUNTY                 | WOOD           | ОН    | Peaking Units  | 153                | 170                | 6/1/2002             |
| WOODCOU3          | WOOD COUNTY                 | WOOD           | OH    | Peaking Units  | 153                | 170                | 6/1/2002             |
| WOODCOU4          | WOOD COUNTY                 | WOOD           | ОН    | Peaking Units  | 153                | 170                | 6/1/2002             |
| WORTHIN1          | WORTHINGTON PLANT           | GREENE         | IN    | Peaking Units  | 45                 | 45                 | 1/1/2000             |
| WORTHIN2          | WORTHINGTON PLANT           | GREENE         | IN    | Peaking Units  | 45                 | 45                 | 1/1/2000             |
| WORTHIN3          | WORTHINGTON PLANT           | GREENE         | IN    | Peaking Units  | 45                 | 45                 | 1/1/2000             |
| WORTHIN4          | WORTHINGTON PLANT           | GREENE         | IN    | Peaking Units  | 45                 | 45                 | 1/1/2000             |
| WSTFORK1          | WEST FORK                   | KNOX           | IN    | Peaking Units  | 135                | 135                | 1/1/2000             |
| WSTFORK2          | WEST FORK                   | KNOX           | IN    | Peaking Units  | 135                | 135                | 1/1/2000             |
| WSTFORK3          | WESTFORK                    | KNOX           | IN    | Peaking Units  | 135                | 135                | 1/1/2000             |
| WSTFORK4          | WEST FORK                   | KNOX           | IN    | Peaking Units  | 135                | 135                | 1/1/2000             |
| WSTLORG1          | WEST LORAIN                 | LORAIN         | ОН    | Peaking Units  | 85                 | 85                 | 1/1/2001             |
| WSTLORG2          | WESTLORAIN                  | LORAIN         | OH    | Peaking Units  | 85                 | 85                 | 1/1/2001             |
| WSTLORG3          | WEST LORAIN                 | LORAIN         | OH    | Peaking Units  | 85                 | 85                 | 1/1/2001             |
| WSTLORG4          | WESTLORAIN                  | LORAIN         | OH    | Peaking Units  | 85                 | 85                 | 1/1/2001             |
| WSTLORG5          | WESTLORAIN                  | LORAIN         | ОН    | Peaking Units  | 85                 | 85                 | 1/1/2001             |
| ZEELAND1          | ZEELAND (MIR)               | OTTAWA         | MI    | Peaking Units  | 170                | 170                | 1/1/2001             |
| ZEELAND2          | ZEELAND (MIR)               | OTTAWA         | MI    | Peaking Units  | 170                | 170                | 1/1/2001             |

| MAPS Unit<br>Name   | Plant Name                  | County     | State  | Unit Type                      | Summer<br>Cap (MW) | Winter<br>Cap (MW) | Installation<br>Date |
|---------------------|-----------------------------|------------|--------|--------------------------------|--------------------|--------------------|----------------------|
| ZEELND01            | ZEELAND (MIR)               | OTTAWA     | MI     | Combined Cycle                 | 478.8              | 532                | 8/12/2002            |
| ZEELND02            | ZEELAND (MIR)               | OTTAWA     | MI     | Combined Cycle                 | 360                | 400                | 6/1/2002             |
| ZEELND03            | ZEELAND (MIR)               | OTTAWA     | MI     | Combined Cycle                 | 387                | 430                | 6/1/2002             |
| ZILWAUK1            | ZILWAUKEE                   | SAGINAW    | MI     | Peaking Units                  | 29                 | 29                 | 1/1/2000             |
| ZILWAUK2            | ZILWAUKEE                   | SAGINAW    | MI     | Peaking Units                  | 12.12              | 12.12              | 1/1/2000             |
|                     | New Units in MISO (MAIN)    |            |        |                                |                    |                    |                      |
| AESMEDV1            | AESMEDINA VALLEY            | TAZEWELL   | IL I   | Combined Cycle                 | 36                 | 40                 | 6/20/2001            |
| AESMEDV2            | AESMEDINA VALLEY            | TAZEWELL   | IL.    | Peaking Units                  | 28.35              | 31.5               | 6/1/2001             |
| ALSEYGT1            | ALSEY                       | SCOTT      | iL.    | Peaking Units                  | 18.9               | 21                 | 6/1/2000             |
| APPLETN1            | APPLETON PAPER-LOCKS MILL   | OUTAGAMIE  | WI     | Peaking Units                  | 43.2               | 48                 | 4/1/2002             |
| AUDRAIN1            | AUDRAIN                     | AUDRAIN    | MO     | Peaking Units                  | 81                 | 90                 | 6/6/2001             |
| AUDRAIN2            | AUDRAIN                     | AUDRAIN    | MO     | Peaking Units                  | 81                 | 90                 | 6/6/2001             |
| AUDRAIN3            | AUDRAIN                     | AUDRAIN    | MO     | Peaking Units                  | 81                 | 90                 | 6/6/2001             |
| AUDRAIN4            | AUDRAIN                     | AUDRAIN    | MO     | Peaking Units                  | 81                 | 90                 | 6/6/2001             |
| AUDRAIN5            | AUDRAIN                     | AUDRAIN    | MO     | Peaking Units                  | 81                 | 90                 | 6/6/2001             |
| AUDRAIN6            | AUDRAIN                     | AUDRAIN    | MO     | Peaking Units                  | 81                 | 90                 | 6/6/2001             |
| AUDRAIN7            | AUDRAIN                     | AUDRAIN    | MO     | Peaking Units                  | 81                 | 90                 | 6/6/2001             |
| AUDRAIN8            | AUDRAIN                     | AUDRAIN    | MO     | Peaking Units                  | 81                 | 90                 | 6/6/2001             |
| COLUMSS1            | COLUMBIA SUBSTATION         | BOONE      | MO     | Peaking Units                  | 80                 | 80                 | 9/4/2001             |
| COLUMSS2            | Columbia Substation         |            | MO     | Peaking Units                  | 80                 | 80                 | 9/4/2001             |
| ELWOOGT5            | ELWOOD                      | WILL       | IL.    | Peaking Units                  | 150                | 150                | 7/15/2001            |
| ELWOOG16            | ELWOOD                      | WILL       | IL.    | Peaking Units                  | 150                | 150                | 7/15/2001            |
| IELWOOG17           | ELWOOD                      | WILL       |        | Peaking Units                  | 150                | 150                | 7/15/2001            |
| IELWOOG18           | ELWOOD                      |            |        | Peaking Units                  | 150                | 150                | 7/15/2001            |
| ELWOOGI9            | ELWOOD                      | WILL       | 1      | Peaking Units                  | 150                | 150                | 7/15/2001            |
| GERMINIWI           | GERMANTOWN                  | WASHINGTON | 140    | Peaking Units                  | /0.5               | 80                 | 5/1/2000             |
| GERMINIWZ           | GERMANTOWN                  | WASHINGTON |        | Peaking Units                  | 40                 | 105                | 8/1/2000             |
| GIBSONI             | Gibson                      |            | 11     | Peaking Units<br>Deaking Units | 117                | 100                | 6/30/2000            |
| GIBSUNZ<br>COOSECR1 |                             |            | 11     | Peaking Units                  | 76.6               | 130                | 1/20/2000            |
| GOOSECRI            | COOSE CREEK ENERGY CENTER   |            | (L     | Peaking Units                  | 76.5               | 00<br>85           | 6/1/2003             |
| GOOSECR3            | COOSE CREEK ENERGY CENTER   |            | 1      | Peaking Units                  | 76.5               | 85                 | 6/1/2003             |
| GOOSECRA            | COOSE CREEK ENERGY CENTER   |            | 11     | Peaking Units                  | 76.5               | 85                 | 6/1/2003             |
| GOOSECRS            | GOOSE CREEK ENERGY CENTER   | PIATT      | · •    | Peaking Units                  | 76.5               | 85                 | 6/1/2003             |
| GOOSECRE            | GOOSE CREEK ENERGY CENTER   | PIATT      | 11     | Peaking Units                  | 76.5               | 85                 | 6/1/2003             |
| GRANDTW1            | GRAND TOWER                 | JACKSON    | 11     | Combined Cycle                 | 238.5              | 265                | 12/1/2001            |
| GRANDTW2            | GRAND TOWER                 | JACKSON    | IL.    | Combined Cycle                 | 258.3              | 287                | 6/29/2001            |
| GRANDTW3            | GRAND TOWER                 | JACKSON    | IL.    | Peaking Units                  | 12.24              | 13.6               | 12/1/2001            |
| GRANDTW4            | GRAND TOWER                 | JACKSON    | IL     | Peaking Units                  | 8.1                | 9                  | 6/29/2001            |
| GREATRE1            | GREAT RIVER ENERGY - PLEASA | MOWER      | MN     | Peaking Units                  | 137.2              | 140                | 5/1/2001             |
| GREATRE2            | GREAT RIVER ENERGY - PLEASA | MOWER      | MN     | Peaking Units                  | 137.2              | 140                | 5/1/2001             |
| GREATRE3            | GREAT RIVER ENERGY - PLEASA | MOWER      | MN     | Peaking Units                  | 111.6              | 124                | 5/1/2002             |
| HOLLAND1            | HOLLAND ENERGY              | SHELBY     | IL     | Combined Cycle                 | 603                | 670                | 6/1/2002             |
| INDIATW1            | INDIANTOWN WINDPOWER PROJEC |            |        | Other                          | 50                 | 50                 | 12/1/2002            |
| LAKEFLJ1            | LAKEFIELD JUNCTION GENERAT  | MARTIN     | MN     | Peaking Units                  | 82.8               | 92                 | 6/15/2001            |
| LAKEFLJ2            | LAKEFIELD JUNCTION GENERAT  | MARTIN     | MN     | Peaking Units                  | 82.8               | 92                 | 6/15/2001            |
| LAKEFLJ3            | LAKEFIELD JUNCTION GENERAT  | MARTIN     | MN     | Peaking Units                  | 82.8               | 92                 | 6/15/2001            |
| LAKEFLJ4            | LAKEFIELD JUNCTION GENERAT  | MARTIN     | MN     | Peaking Units                  | 82.8               | 92                 | 6/15/2001            |
| LAKEFLJ5            | LAKEFIELD JUNCTION GENERAT  | MARTIN     | MN     | Peaking Units                  | 82.8               | 92                 | 6/15/2001            |
| LAKEFLJ6            | LAKEFIELD JUNCTION GENERAT  | MARTIN     | MN     | Peaking Units                  | 82.8               | 92                 | 6/15/2001            |
| MARION01            | MARION (SIPC)               | WILLIAMSON | IL.    | Coal                           | 18                 | 18                 | 3/1/2003             |
| MEPIGTF1            |                             | MASSAC     | IL<br> | Peaking Units                  | 64.8               | 72                 | 8/1/2000             |
| MEPIGTF2            | MEPLOT FACILITY             | MASSAC     |        | Peaking Units                  | 64.8               | 72                 | 8/1/2000             |
| MEPIGIF3            |                             | MASSAU     |        | Peaking Units                  | 64.8               | /2                 | 8/1/2000             |
| MEPIG1F4            | MEPTGTFACILITY              | MASSAC     | IL     | reaking Units                  | 45.9               | 51                 | 8/1/2000             |

-

| MAPS Unit<br>Name | Plant Name                                       | County         | State      | Unit Type      | Summer<br>Cap (MW) | Winter<br>Cap (MW) | installation<br>Date |
|-------------------|--------------------------------------------------|----------------|------------|----------------|--------------------|--------------------|----------------------|
| MEPIGTF5          | MEPI GT FACILITY                                 | MASSAC         | IL         | Peaking Units  | 45.9               | 51                 | 8/1/2000             |
| MERAMC01          | MERAMEC                                          | ST. LOUIS      | MO         | Peaking Units  | 43.2               | 48                 | 6/1/2000             |
| MONTFRW1          | MONTFORT WIND FARM                               | IOWA           | Wi         | Other          | 25.5               | 25.5               | 5/15/2001            |
| NEENAH01          | NEENAH                                           | WINNEBAGO      | WI         | Peaking Units  | 135                | 150                | 5/8/2000             |
| NEENAH02          | NEENAH                                           | WINNEBAGO      | W!         | Peaking Units  | 135                | 150                | 5/8/2000             |
| PATOKA01          | PATOKA                                           | MARION         | IL.        | Peaking Units  | 105.3              | 117                | 4/10/2001            |
| PATOKA02          | PATOKA                                           | MARION         | iL         | Peaking Units  | 105.3              | 117                | 5/25/2001            |
| PENOCREK          | Peno Creek                                       |                | MO         | Peaking Units  | 192                | 1 <b>92</b>        | 5/24/2002            |
| PINCKNV1          | PINCKNEYVILLE                                    | PERRY          | IL         | Peaking Units  | 158.4              | 176                | 6/30/2000            |
| PINCKNV2          | PINCKNEYVILLE                                    | PERRY          | IL.        | Peaking Units  | 32.4               | 36                 | 6/18/2001            |
| PINCKNV3          | PINCKNEYVILLE                                    | PERRY          | 1L         | Peaking Units  | 32.4               | 36                 | 6/26/2001            |
| PINCKNV4          | PINCKNEYVILLE                                    | PERRY          | IL         | Peaking Units  | 32.4               | 36                 | 6/27/2001            |
| PINCKNV5          | PINCKNEYVILLE                                    | PERRY          | IL         | Peaking Units  | 32.4               | 36                 | 8/28/2001            |
| PULLIAM9          | PULLIAM                                          | BROWN          | Wi         | Peaking Units  | 83                 | 83                 | 6/1/2003             |
| RACCOON1          | RACCOON CREEK ENERGY CENTER                      | CLAY           | <u>s</u> ۲ | Peaking Units  | 72                 | 80                 | 6/1/2002             |
| RACCOON2          | RACCOON CREEK ENERGY CENTER                      | CLAY           | IL         | Peaking Units  | 72                 | 80                 | 6/1/2002             |
| RACCOON3          | RACCOON CREEK ENERGY CENTER                      | CLAY           | IL         | Peaking Units  | 72                 | 80                 | 7/1/2002             |
| RACCOON4          | RACCOON CREEK ENERGY CENTER                      | CLAY           | IL         | Peaking Units  | 72                 | 80                 | 8/13/2002            |
| RELIAES1          | RELIANT ENERGY SHELBY COUNT                      | SHELBY         | JL.        | Peaking Units  | 180                | 200                | 7/14/2000            |
| RELIAES2          | RELIANT ENERGY SHELBY COUNT                      | SHELBY         | IL.        | Peaking Units  | 126                | 140                | 7/14/2000            |
| RIVEREC1          | RIVERSIDE ENERGY CENTER                          | ROCK           | Wi         | Combined Cycle | 540                | 600                | 6/1/2004             |
| ROCKGEC1          | ROCKGEN ENERGY CENTER                            | DANE           | Wi         | Peaking Units  | 153                | 170                | 5/1/2001             |
| ROCKGEC2          | ROCKGEN ENERGY CENTER                            | DANE           | Wi         | Peaking Units  | 153                | 170                | 5/1/2001             |
| ROCKGEC3          | ROCKGEN ENERGY CENTER                            | DANE           | WI         | Peaking Units  | 153                | 170                | 5/1/2001             |
| STELMO01          | STELMO                                           | FAYETTE        | IL         | Peaking Units  | 40.5               | 45                 | 6/1/2000             |
| TOPIOWA1          | TOP OF IOWA WIND FARM                            | WORTH          | IA         | Other          | 80                 | 80                 | 12/4/2001            |
| UNIVMIST          | UNIVERSITY OF MISSOURI-COLU                      | BOONE          | MO         | Peaking Units  | 23.4               | 26                 | 4/15/2002            |
| VENICE01          | VENICE (AUEP)                                    | MADISON        | IL         | Peaking Units  | 43.2               | 48                 | 6/1/2002             |
| WSTMARN1          | WEST MARINETTE (MGE)<br>New Units in MISO (MAPP) | MARINETTE      | WI         | Peaking Units  | 74.7               | 83                 | 6/1/2000             |
| BLACKDG3          | BLACK DOG                                        | DAKOTA         | MN         | Combined Cycle | 261                | 290                | 6/15/2002            |
| BROADWAY          | Broadway Generation Plant                        |                | MN         | Peaking Units  | 12                 | 12                 | 6/1/2003             |
| CASCADE2          | Cascade Creek                                    |                | MN         | Peaking Units  | 50                 | 50                 | 5/23/2002            |
| CASSENTY          | Cass County                                      |                | NE         | Peaking Units  | 330                | 330                | 6/1/2003             |
| CORDENG1          | CORDOVA ENERGY                                   | ROCK ISLAND    | łL.        | Combined Cycle | 483.39             | 537.1              | 6/14/2001            |
| CWBURDP1          | C W Burdick                                      |                | NE         | Peaking Units  | 40                 | 40                 | 3/15/2003            |
| CWBURDP2          | C.W. Burdick                                     |                | NE         | Peaking Units  | 40                 | 40                 | 3/15/2003            |
| FLKMNDS1          | ELK MOUND STATION                                | CHIPPEWA       | W          | Peaking Units  | 36.9               | 41                 | 5/30/2001            |
| ELKMNDS2          | ELK MOUND STATION                                | CHIPPEWA       | WI         | Peaking Units  | 36.9               | 41                 | 6/6/2001             |
| EREMNT 1          | Fremont 1                                        | <b>-</b>       | NE         | Peaking Units  | 42                 | 42                 | 6/1/2003             |
| GREADES2          | GREATER DES MOINES ENERGY C                      | POLK           | IA         | Peaking Units  | 180                | 200                | 6/1/2003             |
| GREADES3          | GREATER DES MOINES ENERGY C                      | POLK           | IA IA      | Peaking Units  | 126                | 140                | 6/1/2003             |
| KIMBALL 1         | KIMBALL WIND                                     | KIMBALI        | NE         | Other          | 14                 | 14                 | 9/1/2002             |
| KNOXVI I1         | KNOXVILLE INDUSTRIAL (MIDAM                      | MARION         | IA         | Peaking Units  | 16                 | 16                 | 6/1/2000             |
|                   | LUNDOUIST                                        | NOT APPLICABLE | IA         | Peaking Units  | 20                 | 20                 | 6/1/2000             |
| MANKAT01          | MANKATO                                          | BLUE EARTH     | MN         | Peaking Units  | 10.53              | 11.7               | 1/31/2002            |
| MARKETS1          | MARKET STREET ENERGY COMPAN                      | RAMSEY         | MN         | Other          | 25                 | 25                 | 12/1/2002            |
| MNRIVERS          | Minnesota River Station                          |                | MN         | Peaking Units  | 43                 | 43                 | 1/1/2002             |
| NTHHOME1          | NORTHOME WOOD PLANT                              | KOOCHICHING    | MN         | Other          | 20                 | 20                 | 11/1/2002            |
| POTLACC1          | POTLATCH CLOQUET COGEN                           | CARLTON        | MN         | Combined Cycle | 21.6               | 24                 | 5/31/2001            |
| POWERIO1          | POWER IOWA 1                                     |                | IA         | Combined Cycle | 450                | 500                | 6/1/2004             |
| SALTVAL2          | SALT VALLEY GENERATING STAT                      | LANCASTER      | NE         | Peaking Units  | 41.5               | 45                 | 5/1/2004             |
| SALTVAL3          | SALT VALLEY GENERATING STAT                      | LANCASTER      | NE         | Peaking Units  | 90                 | 90                 | 6/1/2003             |
| SARPYGT1          | SARPY                                            | SARPY          | NE         | Peaking Units  | 90                 | 100                | 5/26/2000            |
| SHENAND1          | SHENANDOAH                                       | PAGE           | VA         | Peaking Units  | 20                 | 20                 | 6/1/2000             |

| MAPS Unit<br>Name | Plant Name                                       | County       | State | Unit Type      | Summer<br>Cap (MW) | Winter<br>Cap (MW) | Installation<br>Date |
|-------------------|--------------------------------------------------|--------------|-------|----------------|--------------------|--------------------|----------------------|
| SHENANDO          | Shenandoah                                       |              | IA    | Peaking Units  | 20                 | 20                 | 6/1/2000             |
| SOLWAYP1          | SOLWAY POWER PLANT                               | BELTRAMI     | MN    | Peaking Units  | 39.6               | 44                 | 6/1/2003             |
| TACONTH1          | TACONITE HARBOR POWER PLANT                      | COOK         | MN    | Coal           | 62.5               | 67.5               | 2/7/2002             |
| TACONTH2          | TACONITE HARBOR POWER PLANT                      | COOK         | MN    | Coal           | 62.5               | 67.5               | 4/1/2002             |
| TACONTH3          | TACONITE HARBOR POWER PLANT<br>New Units in FRCC | COOK         | MN    | Coal           | 62.5               | 67.5               | 6/5/2002             |
| ELDORAD1          | EL DORADO (FPL)                                  |              |       | Combined Cycle | 114                | 114                | 1/1/2000             |
| MCINTSL1          | MCINTOSH (LALW)                                  | POLK         | FL    | Coal           | 120                | 120                | 1/1/2000             |
| WINSTON1          | WINSTON DISTRIBUTED GEN                          | POLK         | FL    | Peaking Units  | 52                 | 52                 | 1/1/2000             |
| HARDEEP1          | HARDEE POWER STATION - SEC1                      | HARDEE       | FL    | Peaking Units  | 72                 | 90                 | 5/20/2000            |
| SOPURDM1          | S.O. PURDOM                                      | WAKULLA      | FL    | Combined Cycle | 233                | 262                | 8/1/2000             |
| POLKGT02          | POLK                                             | POLK         | FL    | Peaking Units  | 160                | 180                | 8/15/2000            |
| FORTMY10          | FORT MYERS                                       | LEE          | FL    | Peaking Units  | 150                | 170                | 11/1/2000            |
| FORTMY11          | FORT MYERS                                       | LEE          | FL    | Peaking Units  | 300                | 340                | 12/1/2000            |
| INTERCC1          | INTERCESSION CITY                                | OSCEOLA      | FL    | Peaking Units  | 80                 | 94                 | 12/13/2000           |
| INTERCC2          | INTERCESSION CITY                                | OSCEOLA      | FL    | Peaking Units  | 80                 | 94                 | 12/14/2000           |
| INTERCC3          | INTERCESSION CITY                                | OSCEOLA      | FL    | Peaking Units  | 80                 | 94                 | 12/17/2000           |
| INTERCC4          | INTERCESSION CITY P15                            | OSCEOLA      | FL    | Peaking Units  | 154                | 184                | 12/17/2000           |
| FORTMY12          | FORT MYERS                                       | LEE          | FL    | Peaking Units  | 150                | 170                | 2/1/2001             |
| FORTMY13          | FORT MYERS                                       | LEE          | FL    | Peaking Units  | 150                | 170                | 3/1/2001             |
| FORTMYR9          | FORT MYERS                                       | LEE          | FL    | Peaking Units  | 150                | 170                | 4/1/2001             |
| MCINTSL4          | MCINTOSH (LALW)                                  | POLK         | FL    | Peaking Units  | 180                | 200                | 4/16/2001            |
| MCINTSL5          | MCINTOSH (LALW)                                  | POLK         | FL    | Peaking Units  | 44.1               | 49                 | 4/16/2001            |
| JOHNRKL1          | JOHN R. KELLY                                    | ALACHUA      | FL    | Combined Cycle | 104.4              | 116                | 5/31/2001            |
| FIELDST1          | FIELD STREET                                     | VOLUSIA      | FL    | Peaking Units  | 36                 | 40                 | 6/1/2001             |
| CANEIPP5          | CANE ISLAND POWER PARK                           | OSCEOLA      | FL    | Peaking Units  | 153                | 170                | 6/6/2001             |
| MARTINE5          | MARTIN (FLPL)                                    | MARTIN       | FL    | Peaking Units  | 149                | 181                | 6/20/2001            |
| MARTINE6          | MARTIN (FLPL)                                    | MARTIN       | FL    | Peaking Units  | 149                | 181                | 6/20/2001            |
| CRYSTRV1          | CRYSTAL RIVER                                    | CITRUS       | FL    | Coal           | 100                | 100                | 10/1/2001            |
| FORTMYR2          | FORT MYERS                                       | LEE          | FL    | Combined Cycle | 651                | 652                | 10/1/2001            |
| FORTMYR3          | FORT MYERS                                       | LEE          | FL    | Combined Cycle | 901                | 904                | 10/1/2001            |
| RELEOSC2          | RELIANT ENERGY OSCEOLA                           | OSCEOLA      | FL    | Peaking Units  | 159                | 170                | 12/1/2001            |
| RELEOSC3          | RELIANT ENERGY OSCEOLA                           | OSCEOLA      | FL    | Peaking Units  | 159                | 170                | 12/1/2001            |
| PAYNECK1          | PAYNE CREEK GENERATING FACI                      | HARDEE       | FL    | Combined Cycle | 488                | 572                | 1/1/2002             |
| CANEIPP1          | CANE ISLAND POWER PARK                           | OSCEOLA      | FL    | Combined Cycle | 225                | 250                | 1/25/2002            |
| PASCOPR1          | PASCO POWER PROJECT                              | PASCO        | FL    | Peaking Units  | 158                | 158                | 3/1/2002             |
| PASCOPR2          | PASCO POWER PROJECT                              | PASCO        | FL    | Peaking Units  | 158                | 158                | 3/1/2002             |
| PASCOPR3          | PASCO POWER PROJECT                              | PASCO        | FL    | Peaking Units  | 158                | 158                | 3/1/2002             |
| RELEOSC1          | RELIANT ENERGY OSCEOLA                           | OSCEOLA      | FL    | Peaking Units  | 159                | 170                | 3/1/2002             |
| POLKGT03          | POLK                                             | POLK         | FL    | Peaking Units  | 160                | 180                | 5/1/2002             |
| VANDOLH2          | VANDOLAH POWER PROJECT                           | HARDEE       | FL    | Peaking Units  | 153                | 170                | 6/1/2002             |
| VANDOLH3          | VANDOLAH POWER PROJECT                           | HARDEE       | FL    | Peaking Units  | 153                | 170                | 6/1/2002             |
| DESOTGC1          | DESOTO GENERATING CO. (PREN                      | DE SOTO      | FL    | Peaking Units  | 150                | 170                | 6/1/2002             |
| DESOTGC2          | DESOTO GENERATING CO. (PREN                      | DE SOTO      | FL    | Peaking Units  | 150                | 170                | 6/1/2002             |
| OLEANDP1          | OLEANDER POWER FACILITY                          | BREVARD      | FL    | Peaking Units  | 155                | 182                | 6/1/2002             |
| OLEANDP2          | OLEANDER POWER FACILITY                          | BREVARD      | FL    | Peaking Units  | 155                | 182                | 6/1/2002             |
| OLEANDP3          | OLEANDER POWER FACILITY                          | BREVARD      | FL    | Peaking Units  | 155                | 182                | 6/1/2002             |
| OLEANDP4          | OLEANDER POWER FACILITY                          | BREVARD      | FL    | Peaking Units  | 155                | 182                | 6/1/2002             |
| VANDOLH1          | VANDOLAH POWER PROJECT                           | HARDEE       | FL    | Peaking Units  | 153                | 170                | 6/1/2002             |
| VANDOLH4          | VANDOLAH POWER PROJECT                           | HARDEE       | FL    | Peaking Units  | 153                | 170                | 6/1/2002             |
| SANFRDF3          | SANFORD (FPL)                                    | VOLUSIA      | FL    | Combined Cycle | 1030               | 1116               | 6/15/2002            |
| AUBURDP1          | AUBURNDALE POWER PARTNERS L                      | POLK         | FL    | Peaking Units  | 121.5              | 135                | 7/31/2002            |
| FORTMYR5          | FORT MYERS                                       | LEE          | FL    | Peaking Units  | 170                | 170                | 1/1/2003             |
| FORTMYR6          | FORT MYERS                                       | LEE          | FL    | Peaking Units  | 170                | 170                | 1/1/2003             |
| GANNONC1          | GANNON                                           | HILLSBOROUGH | FL    | Combined Cycle | 737                | 742                | 6/1/2003             |

,

| MAPS Unit<br>Name | Plant Name                  | County       | State | Unit Type      | Summer<br>Cap (MW) | Winter<br>Cap (MW) | Installation<br>Date |
|-------------------|-----------------------------|--------------|-------|----------------|--------------------|--------------------|----------------------|
| SANFRDF4          | SANFORD (FPL)               | VOLUSIA      | FL    | Combined Cycle | 1030               | 1116               | 6/1/2003             |
| OSPREYE1          | OSPREY ENERGY CENTER        | POLK         | FL    | Combined Cycle | 486                | 540                | 10/1/2003            |
| STANTN01          | STANTON                     | ORANGE       | FL.   | Combined Cycle | 700                | 700                | 10/1/2003            |
| HINESCC2          | Hines Energy Complex        | POLK         | FL    | Combined Cycle | 516                | 582                | 11/1/2003            |
| GANNONC2          | GANNON                      | HILLSBOROUGH | FL    | Combined Cycle | 1042               | 1072               | 6/1/2004             |
| MCINTSL2          | MCINTOSH (LALW)             | POLK         | FL    | Combined Cycle | 332.1              | 369                | 1/1/2005             |
|                   | New Units in ISO-NE         |              |       |                |                    |                    |                      |
| ANDROEC3          | ANDROSCOGGIN ENERGY CENTER  | FRANKLIN     | ME    | Peaking Units  | 54.46              | 54.46              | 1/1/2000             |
| BERKSHP1          | BERKSHIRE POWER             | HAMPDEN      | MA    | Combined Cycle | 252                | 252                | 1/1/2000             |
| BUKSPTE1          | BUCKSPORT ENERGY            | HANCOCK      | ME    | Peaking Units  | 174                | 17 <b>4</b>        | 1/1/2000             |
| FALLRIV1          | FALL RIVER COGEN PLANT      | BRISTOL      | MA    | Combined Cycle | 6.7                | 6.7                | 1/1/2000             |
| MAINEIN1          | MAINE INDEPENDENCE STATION  | PENOBSCOT    | ME    | Combined Cycle | 519                | 519                | 1/1/2000             |
| NEWENGW1          | NEW ENGLAND WIND ENERGY STA | CUMBERLAND   | ME    | Other          | 20                 | 20                 | 1/1/2000             |
| TIVERTN1          | TIVERTON POWER PLANT        | NEWPORT      | RI    | Combined Cycle | 88.72              | 88.72              | 1/1/2000             |
| BLACKST1          | BLACKSTONE (AMNAPO)         | WORCESTER    | MA    | Combined Cycle | 290                | 290                | 1/1/2001             |
| BLACKST2          | BLACKSTONE (AMNAPO)         | WORCESTER    | MA    | Combined Cycle | 290                | 290                | 1/1/2001             |
| WALLNGF1          | WALLINGFORD                 | NEW HAVEN    | СТ    | Peaking Units  | 44                 | 44                 | 1/1/2001             |
| WALLNGE2          | WALLINGFORD                 | NEW HAVEN    | СТ    | Peaking Units  | 44                 | 44                 | 1/1/2001             |
| WALLNGE3          | WALLINGFORD                 | NEW HAVEN    | CT    | Peaking Units  | 44                 | 44                 | 1/1/2001             |
| WALLNGF4          |                             | NEW HAVEN    | CT    | Peaking Units  | 44                 | 44                 | 1/1/2001             |
| WALLNGF5          | WALLINGFORD                 | NEW HAVEN    | CT    | Peaking Units  | 44                 | 44                 | 1/1/2001             |
| WALLNGES          | WALLINGFORD                 | NEW HAVEN    | CT    | Peaking Units  | 44                 | 44                 | 1/1/2001             |
| WALLINGFU         |                             |              | ME    | Combined Cycle | 540                | 540                | 1/1/2001             |
| MILLENINI         |                             | WORCESTER    |       | Combined Cycle | 360                | 360                | 4/5/2001             |
|                   |                             |              |       | Booking Units  | 180                | 200                | 1/15/2002            |
| WALLING !         |                             |              |       | Combined Cycle | 190 6              | 200                | 3/1/2002             |
|                   |                             |              |       | Combined Cycle | 409.0              | 505                | 3/1/2002             |
| NEVVINGUT         |                             |              |       | Combined Cycle | 472.0              | 323                | 5/1/2002             |
|                   |                             |              |       | Combined Cycle | 237.0              | 204                | 5/1/2002             |
|                   |                             |              |       | Combined Cycle | 237.0              | 204                | 6/1/2002             |
| RENULSOT          |                             |              |       | Combined Cycle | 210.0              | 234                | 6/1/2002             |
| RIHOPEET          |                             | PROVIDENCE   | Ri    | Combined Cycle | J22                | 535                | 6/1/2002             |
| WESTSPRI          | WEST SPRINGFIELD            | HAMPDEN      | MA    | Peaking Units  | 40                 | 40                 | 6/7/2002             |
| WESTSPR2          | WEST SPRINGFIELD            |              | MA    | Peaking Units  | 40                 | 40                 | 6/1/2002             |
| LAKEROAS          |                             | WINDHAM      | CI    | Combined Cycle | 237.0              | 264                | 8/14/2002            |
| FORERIV1          | FORE RIVER                  | NORFULK      | MA    | Combined Cycle | 450                | 500                | 0/1/2002             |
| FORERIV2          | FORE RIVER                  | NORFULK      | MA    | Combined Cycle | 225                | 250                | 8/1/2002             |
| BELLINC1          | BELLINGHAM                  | NORFOLK      | MA    | Combined Cycle | 261                | 290                | 11/1/2002            |
| BELLINC2          | BELLINGHAM                  | NORFOLK      | MA    | Combined Cycle | 261                | 290                | 12/31/2002           |
| LONDOND1          | AES LONDONDERRY             | ROCKINGHAM   | NH    | Combined Cycle | 648                | 720                | 2/28/2003            |
| MERIDEN1          | MERIDEN POWER               | NEW HAVEN    | СТ    | Combined Cycle | 489.6              | 544                | 3/1/2003             |
| MYSTICC1          | MYSTIC                      | MIDDLESEX    | MA    | Combined Cycle | 750                | 750                | 4/1/2003             |
| MYSTICC2          | MYSTIC                      | MIDDLESEX    | MA    | Combined Cycle | 750                | 750                | 4/1/2003             |
|                   | New Units in NYISO          |              |       |                |                    |                    |                      |
| MADISNW1          | MADISON WINDPOWER PROJECT   | MADISON      | NY    | Other          | 11.5               | 11.5               | 1/1/2000             |
| UPNYWF11          | UPPER NEW YORK WIND FARM    | WYOMING      | NY    | Other          | 6.6                | 6.6                | 1/1/2000             |
| 23RDSTR1          | 23RD STREET                 | KINGS        | NY    | Peaking Units  | 39.95              | 39.95              | 1/1/2001             |
| 23RDSTR2          | 23RD STREET                 | KINGS        | NY    | Peaking Units  | 39.95              | 39.95              | 1/1/2001             |
| CANASTO1          | CANASTOTA                   | MADISON      | NY    | Other          | 30                 | 30                 | 1/1/2001             |
| CARLSON1          | CARLSON                     | CHAUTAUQUA   | NY    | Peaking Units  | 43                 | 43                 | 1/1/2001             |
| HARLEMR1          | HARLEM RAIL                 | BRONX        | NY    | Peaking Units  | 39.95              | 39.95              | 1/1/2001             |
| HARLEMR2          | HARLEM RAIL                 | BRONX        | NY    | Peaking Units  | 39.95              | 39.95              | 1/1/2001             |
| HELLGTE1          | HELL GATE                   | BRONX        | NY    | Peaking Units  | 39.95              | 39.95              | 1/1/2001             |
| HELLGTE2          | HELL GATE                   | BRONX        | NY    | Peaking Units  | 39.95              | 39.95              | 1/1/2001             |
| LINDENC9          | LINDEN COGEN PLANT (ECOAST) | UNION        | NJ    | Peaking Units  | 180                | 180                | 1/1/2001             |
| PILGRMS1          | PILGRIM STATE HOSPITAL      |              |       | Peaking Units  | 44                 | 44                 | 1/1/2001             |

| MAPS Unit<br>Name | Plant Name                     | County           | State      | Unit Type                      | Summer<br>Cap (MW) | Winter<br>Cap (MW) | Installation<br>Date |
|-------------------|--------------------------------|------------------|------------|--------------------------------|--------------------|--------------------|----------------------|
| RIVERST1          | RIVER STREET (NYPA)            | KINGS            | NY         | Peaking Units                  | 44                 | 44                 | 1/1/2001             |
| VERNONB1          | VERNON BOULEVARD               | QUEENS           | NY         | Peaking Units                  | 39.95              | 39.95              | 1/1/2001             |
| VERNONB2          | VERNON BOULEVARD               | QUEENS           | NY         | Peaking Units                  | 39.95              | 39.95              | 1/1/2001             |
| VIRGNAA1          | VIRGINIA AVENUE                | NEW YORK         | NY         | Peaking Units                  | 44                 | 44                 | 1/1/2001             |
| CARLSNN1          | CARLSON                        | CHAUTAUQUA       | NY         | Peaking Units                  | 63.9               | 71                 | 1/15/2002            |
| BETHPAG1          | BETHPAGE (TBG - GRUMMAN)       | NASSAU           | NY         | Peaking Units                  | 39.6               | 44                 | 5/1/2002             |
| EFBARRE1          | E.F. BARRETT                   | NASSAU           | NY         | Peaking Units                  | 71.1               | 79                 | 5/1/2002             |
| PORTJFF1          | PORT JEFFERSON                 | SUFFOLK          | NY         | Peaking Units                  | 71.1               | 79                 | 5/1/2002             |
| SHOREHA1          | SHOREHAM                       |                  |            | Peaking Units                  | 71.91              | 79.9               | 5/1/2002             |
| BAYSWAT1          | BAYSWATER CLEAN ENERGY CENT    | QUEENS           | NY         | Peaking Units                  | 39.6               | 44                 | 6/1/2002             |
| GLENWOO1          | GLENWOOD                       | NASSAU           | NY         | Peaking Units                  | 35.1               | 39                 | 6/1/2002             |
| GLENWOO2          | GLENWOOD                       | NASSAU           | NY         | Peaking Units                  | 35.1               | 39                 | 6/1/2002             |
| EDGEWEG1          | EDGEWOOD ELECTRIC GENERATIN    | SUFFOLK          | NY         | Peaking Units                  | 71.1               | 79                 | 7/24/2002            |
| RAVENSW1          | RAVENSWOOD                     | KINGS            | NY         | Combined Cycle                 | 225                | 250                | 6/1/2003             |
| ATHENGP1          | ATHENS GENERATING PLANT        | GREENE           | NY         | Combined Cycle                 | 328.5              | 365                | 7/1/2003             |
| ATHENGP2          | ATHENS GENERATING PLANT        | GREENE           | NY         | Combined Cycle                 | 328.5              | 365                | 7/1/2003             |
| ATHENGPS          | ATHENS GENERATING PLANT        | GREENE           | NY         | Combined Cycle                 | 328 5              | 365                | 7/1/2003             |
| EASTRIV1          | FAST RIVER                     | NEW/YORK         | NY         | Peaking Units                  | 162                | 180                | 1/1/2003             |
| EASTRIV2          | FAST RIVER                     | NEW YORK         | NY         | Peaking Units                  | 162                | 180                | 1/1/2004             |
| AL BANSSI         | AL BANY STEAM STATION          |                  | NY         | Combined Cycle                 | 241                | 267                | 6/1/2005             |
| ALBANSS2          | ALBANY STEAM STATION           | ALBANY           | NY         | Combined Cycle                 | 241                | 267                | 6/1/2005             |
| ALBANSS3          |                                |                  | NV         | Combined Cycle                 | 241                | 267                | 6/1/2005             |
|                   | New Units in SETRANS (Enteroy) |                  |            | Combined Oycle                 | 241                | 207                | 0/1/2005             |
|                   | ACADIA                         | ST LANDRY        | IA         | Combined Cycle                 | 558                | 620                | 6/1/2002             |
|                   |                                | ST LANDRY        |            | Combined Cycle                 | 558                | 620                | 8/5/2002             |
| ATTAL AF1         | ATTALA ENERGY CENTER           |                  | MS         | Combined Cycle                 | 459                | 510                | 6/1/2002             |
| BAYOUCV1          | BAYOU COVE                     | JEFFERSON DAVIS  | I A        | Peaking Units                  | 72                 | 80                 | 10/15/2002           |
| BAYOUCV2          | BAYOU COVE                     | JEFEERSON DAVIS  | IΔ         | Peaking Units                  | 72                 | 80                 | 10/15/2002           |
| BAYOUCV3          | BAYOUCOVE                      | JEFFERSON DAVIS  |            | Peaking Units                  | 72                 | 80                 | 10/15/2002           |
| BAYOUCV4          | BAYOU COVE                     | JEFFERSON DAVIS  |            | Peaking Units                  | 72                 | 80                 | 10/15/2002           |
| BIGC IN11         | BIG CALUN 1                    | POINTE COUPEE    |            | Peaking Units                  | 108                | 120                | 6/6/2001             |
| BIGC IN12         | BIG CAILIN 1                   |                  |            | Peaking Units                  | 108                | 120                | 6/6/2001             |
| BRANDEGA          | BRANDY BRANCH GENERATING ST    |                  | 티          | Peaking Units                  | 158                | 101                | 5/31/2001            |
| BRANDRG5          | BRANDY BRANCH GENERATING ST    |                  | FI         | Peaking Units                  | 158                | 101                | 5/31/2001            |
| BRANDRCS          | BRANDY BRANCH GENERATING ST    |                  | FI         | Peaking Units<br>Peaking Units | 150                | 101                | 10/12/2001           |
| CALCASUI          |                                |                  |            | Peaking Units<br>Desking Units | 139.5              | 155                | 5/31/2000            |
| CALCASU2          | CALCASIEU GENERATION PROJEC    |                  |            | Peaking Units                  | 148.5              | 165                | 5/15/20001           |
|                   |                                |                  |            | Combined Cycle                 | 234.0              | 261                | 5/1/2003             |
|                   |                                | IBERVILLE        |            | Combined Cycle                 | 234.9              | 261                | 5/1/2003             |
|                   |                                |                  |            |                                | 109.8              | 122                | 5/1/2003             |
| CHOUTEUI          |                                | MAVES            | <u>o</u> k | Combined Cycle                 | 477                | 530                | 7/21/2000            |
| COTTONW1          |                                |                  | TY         | Combined Cycle                 | 555 75             | 617.5              | 2/1/2003             |
| COTTONW           |                                | NEWTON           | TY         | Combined Cycle                 | 555 75             | 617.5              | 2/1/2003             |
| CPOSSEC1          | CROSSROADS ENERGY CENTER       | COAHOMA          | MS         | Desking Units                  | 75                 | 80                 | 6/30/2002            |
| CROSSEC2          | CROSSBOADS ENERGY CENTER       | COAHOMA          | MS         | Peaking Units                  | 75                 | 80                 | 6/30/2002            |
| CROSSEC3          | CROSSROADS ENERGY CENTER       |                  | MS         | Peaking Units                  | 75                 | 80                 | 7/31/2002            |
| CROSSEC4          | CROSSROADS ENERGY CENTER       | COAHOMA          | MS         | Peaking Units                  | 75                 | 80                 | 7/31/2002            |
| HINDSEF1          | HINDS ENERGY FACILITY          | HINDS            | MS         | Combined Cvcle                 | 450                | 500                | 6/1/2001             |
| HOLDENP1          | HOLDEN POWER PLANT             | JOHNSON          | MÓ         | Peaking Units                  | 96.3               | 107                | 5/31/2002            |
| HOLDENP2          | HOLDEN POWER PLANT             | JOHNSON          | MO         | Peaking Units                  | 96.3               | 107                | 5/31/2002            |
| HOLDENP3          | HOLDEN POWER PLANT             | JOHNSON          | MO         | Peaking Units                  | 96.3               | 107                | 5/31/2002            |
| HOTSPRF2          | HOT SPRING ENERGY FACILITY     | HOT SPRING       | AR         | Combined Cycle                 | 558                | 620                | 5/31/2002            |
| HOTSPRP1          | HOT SPRINGS POWER              | GARLAND          | AR         | Combined Cycle                 | 648                | 720                | 7/1/2004             |
| JDKENND1          | J.D. KENNEDY                   | DUVAL            | FL         | Peaking Units                  | 158                | 191                | 4/1/2000             |
| LOUISI21          | LOUISIANA 2                    | EAST BATON ROUGE | LA         | Steam Gas/Oil                  | 140                | 140                | 7/1/2000             |

| MAPS Unit<br>Name | Plant Name                  | County      | State | Unit Type      | Summer<br>Cap (MW) | Winter<br>Cap (MW) | Installation<br>Date |
|-------------------|-----------------------------|-------------|-------|----------------|--------------------|--------------------|----------------------|
| NROCCGF1          | NROC COGEN FACILITY         | JEFFERSON   | ТХ    | Combined Cycle | 72                 | 80                 | 8/1/2001             |
| OUACHIT1          | OUACHITA POWER PLANT        | OUACHITA    | LA    | Combined Cycle | 720                | 800                | 11/1/2002            |
| PERRYVP1          | PERRYVILLE POWER STATION    | OUACHITA    | LA    | Peaking Units  | 153                | 170                | 6/15/2001            |
| PERRYVP3          | PERRYVILLE POWER STATION    | OUACHITA    | LA    | Combined Cycle | 502.2              | 558                | 7/1/2002             |
| PINEBLF1          | PINE BLUFF ENERGY CENTER (S | JEFFERSON   | AR    | Combined Cycle | 198                | 220                | 9/24/2001            |
| RSCOGEN1          | RS COGEN                    | CALCASIEU   | LA    | Combined Cycle | 403.2              | 448                | 8/1/2002             |
| SABINEC1          | SABINE COGENERATION FACILIT | ORANGE      | ΤX    | Combined Cycle | 90                 | 100                | 1/15/2000            |
| SABINER1          | SABINE RIVER WORKS (COGLPO) | ORANGE      | ŤΧ    | Combined Cycle | 378                | 420                | 11/28/2001           |
| SHELLGM1          | SHELL GEISMAR               | ASCENSION   | LA    | Combined Cycle | 36                 | 40                 | 8/1/2002             |
| SHELLGM2          | SHELL GEISMAR               | ASCENSION   | LA    | Combined Cycle | 36                 | 40                 | 8/1/2002             |
| STERGT10          | STERLINGTON (NRG)           | OUACHITA    | LA    | Peaking Units  | 17                 | 17                 | 6/15/2000            |
| STERLGT1          | STERLINGTON (NRG)           | OUACHITA    | LA    | Peaking Units  | 22.22              | 22.22              | 6/15/2000            |
| STERLGT2          | STERLINGTON (NRG)           | OUACHITA    | LA    | Peaking Units  | 22.22              | 22.22              | 6/15/2000            |
| STERLGT3          | STERLINGTON (NRG)           | OUACHITA    | LA    | Peaking Units  | 22.22              | 22.22              | 7/15/2000            |
| STERLGT4          | STERLINGTON (NRG)           | OUACHITA    | LA    | Peaking Units  | 22.22              | 22.22              | 8/15/2000            |
| STERLGT5          | STERLINGTON (NRG)           | OUACHITA    | LA    | Peaking Units  | 22.22              | 22.22              | 3/1/2001             |
| STERLGT6          | STERLINGTON (NRG)           | OUACHITA    | LA    | Peaking Units  | 22.22              | 22.22              | 3/1/2001             |
| STERLGT7          | STERLINGTON (NRG)           | OUACHITA    | LA    | Peaking Units  | 22.22              | 22.22              | 7/15/2001            |
| STERLGT8          | STERLINGTON (NRG)           | OUACHITA    | LA    | Peaking Units  | 22.22              | 22.22              | 7/15/2001            |
| STERLGT9          | STERLINGTON (NRG)           | OUACHITA    | LA    | Peaking Units  | 17                 | 17                 | 7/15/2001            |
| STFRANS1          | ST FRANCIS                  | DUNKLIN     | мо    | Combined Cycle | 234                | 260                | 6/1/2001             |
| STHAVEN1          | SOUTHAVEN (DUENNO)          | DE SOTO     | MS    | Peaking Units  | 72                 | 80                 | 5/30/2002            |
| STHAVEN2          | SOUTHAVEN (DUENNO)          | DE SOTO     | MS    | Peaking Units  | 72                 | 80                 | 5/30/2002            |
| STHAVEN3          | SOUTHAVEN (DUENNO)          | DE SOTO     | MS    | Peaking Units  | 72                 | 80                 | 5/30/2002            |
| STHAVEN4          | SOUTHAVEN (DUENNO)          | DE SOTO     | MS    | Peaking Units  | 72                 | 80                 | 5/30/2002            |
| STHAVEN5          | SOUTHAVEN (DUENNO)          | DE SOTO     | MS    | Peaking Units  | 72                 | 80                 | 5/30/2002            |
| STHAVEN6          | SOUTHAVEN (DUENNO)          | DE SOTO     | MS    | Peaking Units  | 72                 | 80                 | 5/30/2002            |
| STHAVEN7          | SOUTHAVEN (DUENNO)          | DE SOTO     | MS    | Peaking Units  | 72                 | 80                 | 5/30/2002            |
| STHAVEN8          | SOUTHAVEN (DUENNO)          | DE SOTO     | MS    | Peaking Units  | 72                 | 80                 | 5/30/2002            |
| STHHAVN1          | SOUTHAVEN (COGENT)          | DE SOTO     | MS    | Combined Cycle | 240.3              | 267                | 6/1/2003             |
| STHHAVN2          | SOUTHAVEN (COGENT)          | DE SOTO     | MS    | Combined Cycle | 240.3              | 267                | 6/1/2003             |
| STHHAVN3          | SOUTHAVEN (COGENT)          | DE SOTO     | MS    | Combined Cycle | 239.4              | 266                | 6/1/2003             |
| TAFTPRO1          | TAFT PROJECT                | ST. CHARLES | LA    | Combined Cycle | 700.2              | 778                | 9/1/2002             |
| UNIONPP2          | UNION POWER PARTNERS        | UNION       | AR    | Combined Cycle | 495                | 550                | 1/27/2003            |
| UNIONPP3          | UNION POWER PARTNERS        | UNION       | AR    | Combined Cycle | 495                | 550                | 4/1/2003             |
| UNIONPP4          | UNION POWER PARTNERS        | UNION       | AR    | Combined Cycle | 495                | 550                | 6/1/2003             |
| UNIONPP5          | UNION POWER PARTNERS        | UNION       | AR    | Combined Cycle | 495                | 550                | 8/1/2003             |
| WARRNPP1          | WARREN POWER PROJECT (ENWHO | WARREN      | MS    | Peaking Units  | 67.5               | 75                 | 8/13/2001            |
| WARRNPP2          | WARREN POWER PROJECT (ENWHO | WARREN      | MS    | Peaking Units  | 67.5               | 75                 | 8/13/2001            |
| WARRNPP3          | WARREN POWER PROJECT (ENWHO | WARREN      | MS    | Peaking Units  | 67.5               | 75                 | 8/13/2001            |
| WARRNPP4          | WARREN POWER PROJECT (ENWHO | WARREN      | MS    | Peaking Units  | 67.5               | 75                 | 8/13/2001            |
| WASHPAR1          | WASHINGTON PARISH ENERGY CE | WASHINGTON  | LA    | Combined Cycle | 253.8              | 282                | 7/1/2004             |
| WASHPAR2          | WASHINGTON PARISH ENERGY CE | WASHINGTON  | LA    | Combined Cycle | 253.8              | 282                | 7/1/2004             |
| WRIGHTV1          | WRIGHTSVILLE POWER FACILITY | PULASKI     | AR    | Combined Cycle | 322.2              | 358                | 6/25/2002            |
| WRIGHTV2          | WRIGHTSVILLE POWER FACILITY | PULASKI     | AR    | Combined Cycle | 172.8              | 1 <b>92</b>        | 6/25/2002            |
|                   | New Units in SETRANS (SOCO) |             |       |                |                    |                    |                      |
| AUTAUGA1          | AUTAUGAVILLE                | AUTAUGA     | AL    | Combined Cycle | 567                | 630                | 6/1/2003             |
| AUTAUGA2          | AUTAUGAVILLE                | AUTAUGA     | AL    | Combined Cycle | 567                | 630                | 6/1/2003             |
| BACONTO1          | BACONTON                    | MITCHELL    | GA    | Peaking Units  | 126.9              | 141                | 6/1/2000             |
| BACONTO2          | BACONTON                    | MITCHELL    | GA    | Peaking Units  | 42.3               | 47                 | 7/1/2000             |
| BARRYAL1          | BARRY (ALAP)                | MOBILE      | AL    | Combined Cycle | 483.3              | 537                | 5/31/2000            |
| BARRYAL2          | BARRY (ALAP)                | MOBILE      | AL    | Combined Cycle | 483.3              | 537                | 5/1/2001             |
| CALHOUN1          | CALHOUN POWER CO (FPL)      | CALHOUN     | AL    | Peaking Units  | 157                | 167                | 6/1/2003             |
| CALHOUN2          | CALHOUN POWER CO (FPL)      | CALHOUN     | AL    | Peaking Units  | 157                | 167                | 6/1/2003             |
| CALHOUN3          | CALHOUN POWER CO (FPL)      | CALHOUN     | AL    | Peaking Units  | 157                | 167                | 6/1/2003             |

| MAPS Unit<br>Name | Plant Name                  | County     | State | Unit Type      | Summer<br>Cap (MW) | Winter<br>Cap (MW) | Installation<br>Date |
|-------------------|-----------------------------|------------|-------|----------------|--------------------|--------------------|----------------------|
| CALHOUN4          | CALHOUN POWER CO (FPL)      | CALHOUN    | AL    | Peaking Units  | 157                | 167                | 6/1/2003             |
| DAHLBRG1          | DAHLBERG                    | JACKSON    | GA    | Peaking Units  | 180                | 200                | 6/1/2000             |
| DAHLBRG2          | DAHLBERG                    | JACKSON    | GA    | Peaking Units  | 180                | 200                | 6/1/2000             |
| DAHLBRG3          | DAHLBERG                    | JACKSON    | GA    | Peaking Units  | 72                 | 80                 | 6/1/2000             |
| DAHLBRG4          | DAHLBERG                    | JACKSON    | GA    | Peaking Units  | 72                 | 80                 | 6/20/2000            |
| DAHLBRG5          | DAHLBERG                    | JACKSON    | GA    | Peaking Units  | 72                 | 80                 | 7/1/2000             |
| DAHLBRG6          | DAHLBERG                    | JACKSON    | GA    | Peaking Units  | 144                | 160                | 11/1/2001            |
| DOYLEPT1          | DOYLE PLANT                 | WALTON     | GA    | Peaking Units  | 180                | 200                | 6/15/2000            |
| DOYLEPT2          | DOYLE PLANT                 | WALTON     | GA    | Peaking Units  | 81                 | 90                 | 6/15/2000            |
| DOYLEPT3          | DOYLE PLANT                 | WALTON     | GA    | Peaking Units  | 72                 | 80                 | 7/30/2000            |
| EFFINGH1          | EFFINGHAM COUNTY            | EFFINGHAM  | GA    | Combined Cycle | 480                | 530                | 6/1/2003             |
| ENTERPE1          | ENTERPRISE ENERGY FACILITY  | CLARKE     | MS    | Peaking Units  | 72                 | 80                 | 6/15/2002            |
| ENTERPE2          | ENTERPRISE ENERGY FACILITY  | CLARKE     | MS    | Peaking Units  | 72                 | 80                 | 6/15/2002            |
| ENTERPE3          | ENTERPRISE ENERGY FACILITY  | CLARKE     | MS    | Peaking Units  | 72                 | 80                 | 6/15/2002            |
| ENTERPE4          | ENTERPRISE ENERGY FACILITY  | CLARKE     | MS    | Peaking Units  | 72                 | 80                 | 6/15/2002            |
| ENTERPE5          | ENTERPRISE ENERGY FACILITY  | CLARKE     | MS    | Peaking Units  | 72                 | 80                 | 6/15/2002            |
| ENTERPE6          | ENTERPRISE ENERGY FACILITY  | CLARKE     | MS    | Peaking Units  | 72                 | 80                 | 6/15/2002            |
| ENTERPE7          | ENTERPRISE ENERGY FACILITY  | CLARKE     | MS    | Peaking Units  | 72                 | 80                 | 6/15/2002            |
| ENTERPE8          | ENTERPRISE ENERGY FACILITY  | CLARKE     | MS    | Peaking Units  | 72                 | 80                 | 6/15/2002            |
| GOATRCK1          | GOAT ROCK (GPCO)            | HARRIS     | GA    | Combined Cycle | 513                | 570                | 6/1/2005             |
| GOATRCK3          | GOAT ROCK (GPCO)            | HARRIS     | GA    | Combined Cycle | 513                | 570                | 6/1/2002             |
| GOATRCK4          | GOAT ROCK (GPCO)            | HARRIS     | GA    | Combined Cycle | 513                | 570                | 6/1/2003             |
| HEARDCP1          | HEARD COUNTY POWER PLANT    | HEARD      | GA    | Peaking Units  | 150.3              | 167                | 6/1/2001             |
| HEARDCP2          | HEARD COUNTY POWER PLANT    | HEARD      | GA    | Peaking Units  | 150.3              | 167                | 6/1/2001             |
| HEARDCP3          | HEARD COUNTY POWER PLANT    | HEARD      | GA    | Peaking Units  | 149.4              | 166                | 6/1/2001             |
| HILLABE1          | HILLABEE ENERGY CENTER      | TALLAPOOSA | AL    | Combined Cycle | 693                | 770                | 12/1/2003            |
| HOGBAYU1          | HOG BAYOU ENERGY CENTER     | MOBILE     | AL    | Combined Cycle | 198                | 220                | 7/15/2001            |
| LANSINS1          | LANSING SMITH (GUPC)        | BAY        | FL    | Combined Cycle | 450                | 500                | 4/22/2002            |
| MONROEC1          | MONROF (CPLC)               | MONROE     | GA    | Peaking Units  | 135                | 150                | 6/6/2001             |
| MONROEC2          | MONROE (CPLC)               | MONROE     | GA    | Peaking Units  | 135                | 150                | 6/6/2001             |
| MONROEC3          | MONROE (CPLC)               | MONROE     | GA    | Peaking Units  | 135                | 150                | 6/6/2001             |
| MONROFM1          | MONROE (MONPOW)             | WAITON     | GA    | Peaking Units  | 144                | 160                | 3/31/2001            |
| MURRAYE1          | MURRAY ENERGY FACILITY (DUK | MURRAY     | GA    | Combined Cycle | 540                | 600                | 3/1/2003             |
| MURRAYE2          | MURRAY ENERGY FACILITY (DUK | MURRAY     | GA    | Combined Cycle | 540                | 600                | 3/1/2003             |
| SANDERV1          | SANDERSVILLE STATION (DUKE) | WASHINGTON | GA    | Peaking Linits | 72                 | 80                 | 6/15/2002            |
| SANDERV2          | SANDERSVILLE STATION (DUKE) | WASHINGTON | GA    | Peaking Units  | 72                 | 80                 | 6/15/2002            |
| SANDERV3          | SANDERSVILLE STATION (DUKE) | WASHINGTON | GA    | Peaking Units  | 72                 | 80                 | 6/15/2002            |
| SANDERVA          | SANDERSVILLE STATION (DUKE) | WASHINGTON | GA    | Peaking Units  | 72                 | 80                 | 6/15/2002            |
| SANDERV5          | SANDERSVILLE STATION (DUKE) | WASHINGTON | GA    | Peaking Units  | 72                 | 80                 | 6/15/2002            |
| SANDERV6          | SANDERSVILLE STATION (DUKE) | WASHINGTON | GA    | Peaking Units  | 72                 | 80                 | 6/15/2002            |
| SANDERV7          | SANDERSVILLE STATION (DUKE) | WASHINGTON | GA    | Peaking Units  | 72                 | 80                 | 6/15/2002            |
| SANDERVA          | SANDERSVILLE STATION (DUKE) | WASHINGTON | GA    | Peaking Units  | 72                 | 80                 | 6/15/2002            |
| SANTARS1          | SANTA ROSA (SKYSER)         | SANTA ROSA | FL.   | Combined Cycle | 216                | 240                | 9/1/2002             |
| SEGENCP1          | SE GENERATING CORP          | DECATUR    | GA    | Peaking Units  | 72                 | 80                 | 7/1/2000             |
| SEWELLC1          | SEWELL CREEK ENERGY CENTER  | POLK       | GA    | Peaking Units  | 180                | 200                | 7/1/2000             |
| SEWELLC2          | SEWELL CREEK ENERGY CENTER  | POLK       | GA    | Peaking Units  | 117                | 130                | 7/1/2000             |
| SEWELLC3          | SEWELL CREEK ENERGY CENTER  | POLK       | GA    | Peaking Units  | 117                | 130                | 9/15/2000            |
| SYLVARE1          | SYLVARENA                   | SMITH      | MS    | Peaking Units  | 38.7               | 43                 | 6/1/2003             |
| SYLVARE2          | SYLVARENA                   | SMITH      | MS    | Peaking Units  | 38.7               | 43                 | 6/1/2003             |
| SYLVARE3          | SYLVARENA                   | SMITH      | MS    | Peaking Units  | 38.7               | 43                 | 6/1/2003             |
| TALBOTE1          | TALBOT ENERGY FACILITY      | TALBOT     | GA    | Peaking Units  | 99                 | 110                | 5/15/2002            |
| TALBOTE2          | TALBOT ENERGY FACILITY      | TALBOT     | GA    | Peaking Units  | 99                 | 110                | 5/15/2002            |
| TALBOTE3          | TALBOT ENERGY FACILITY      | TALBOT     | GA    | Peaking Units  | 99                 | 110                | 6/1/2002             |
| TALBOTE4          | TALBOT ENERGY FACILITY      | TALBOT     | GA    | Peaking Units  | 99                 | 110                | 6/6/2002             |
| TALBOTE5          | TALBOT ENERGY FACILITY      | TALBOT     | GA    | Peaking Units  | 99                 | 110                | 6/1/2003             |

\_

| MAPS Unit<br>Name | Plant Name                       | County     | State | Unit Type      | Summer<br>Cap (MW) | Winter<br>Cap (MW)    | Installation<br>Date |
|-------------------|----------------------------------|------------|-------|----------------|--------------------|-----------------------|----------------------|
| TALBOTE6          | TALBOT ENERGY FACILITY           | TALBOT     | GA    | Peaking Units  | 99                 | 110                   | 6/1/2003             |
| TENASCA1          | TENASKA CENTRAL ALABAMA GEN      | AUTAUGA    | AL.   | Combined Cycle | 765                | 850                   | 6/1/2003             |
| TENASGG1          | TENASKA GEORGIA                  | HEARD      | GA    | Peaking Units  | 140.4              | 156                   | 6/1/2001             |
| TENASGG2          | TENASKA GEORGIA                  | HEARD      | GA    | Peaking Units  | 140.4              | 156                   | 6/1/2001             |
| TENASGG3          | TENASKA GEORGIA                  | HEARD      | GA    | Peaking Units  | 140.4              | 156                   | 8/15/2001            |
| TENASGG4          | TENASKA GEORGIA                  | HEARD      | GA    | Peaking Units  | 140.4              | 156                   | 6/1/2002             |
| TENASGG5          | TENASKA GEORGIA                  | HEARD      | GA    | Peaking Units  | 140.4              | 156                   | 6/1/2002             |
| TENASGG6          | TENASKA GEORGIA                  | HEARD      | GA    | Peaking Units  | 140.4              | 156                   | 6/1/2002             |
| TENASLH1          | TENASKA LINDSAY HILL GENERA      | AUTAUGA    | AL    | Combined Cycle | 761.4              | 846                   | 5/1/2002             |
| TENASLH2          | TENASKA LINDSAY HILL GENERA      | AUTAUGA    | AL    | Combined Cycle | 311.4              | 346                   | 5/15/2002            |
| THEODRC1          | THEODORE COGEN                   | MOBILE     | AL    | Combined Cycle | 216                | 240                   | 12/23/2000           |
| VANNPWP1          | VANN POWER PLANT                 | COVINGTON  | AL    | Combined Cycle | 450                | 500                   | 1/1/2002             |
| VICTORJ1          | VICTOR J. DANIEL                 | JACKSON    | MS    | Combined Cycle | 450                | 500                   | 4/1/2001             |
| VICTORJ2          | VICTOR J. DANIEL                 | JACKSON    | MS    | Combined Cycle | 450                | 500                   | 4/1/2001             |
| WANSLE01          | WANSLEY                          | HEARD      | GA    | Combined Cycle | 509.4              | 566                   | 6/1/2002             |
| WANSLE02          | WANSLEY                          | HEARD      | GA    | Combined Cycle | 509.4              | 566                   | 6/1/2002             |
| WANSLEM1          | WANSLEY (MEAG)                   | HEARD      | GA    | Combined Cycle | 452.7              | 503                   | 5/1/2004             |
| WANSLE01          |                                  | HEARD      | GA    | Combined Cycle | 468.9              | 521                   | 3/1/2003             |
| WASHCPP1          | WASHINGTON COUNTY POWER PLA      | WASHINGTON | GA    | Peaking Units  | 152                | 170                   | 6/1/2002             |
| WASHUPPZ          | WASHINGTON COUNTY POWER PLA      | WASHINGTON | GA    | Peaking Units  | 152                | 170                   | 6/1/2002             |
| WASHUPPS          |                                  | WASHINGTON | GA    | Peaking Units  | 152                | 170                   | 6/1/2002             |
| WASHUFF4          | WASHINGTON COUNTY POWER PLA      | UPSON      | GA    | Peaking Units  | 152                | 170                   | 6/1/2002             |
| WETCERCI          |                                  | UPSON      | GA    | Peaking Units  | 180                | 200                   | 6/7/2000             |
| WETGERGZ          |                                  | LIDSON     | GA    | Peaking Units  | 100                | 200                   | 6/7/2000             |
| WSTGERGS          |                                  | HIDSON     | GA    | Peaking Units  | 100                | 200                   | 6/7/2000             |
| WO IGENO4         | New Units in SPP                 | UFSON      | 34    | reaking Units  | 12                 | 00                    | 0///2000             |
| GORDONE1          | GORDON EVANS                     | SEDGWICK   | KS    | Peaking Lights | 132.66             | 1 <i>4</i> 7 <i>4</i> | 6/1/2000             |
| HAWTHRN3          | HAWTHORN                         | JACKSON    | MO    | Peaking Units  | 69.3               | 77                    | 6/30/2000            |
| HAWTHRN2          | HAWTHORN                         | JACKSON    | MO    | Combined Cycle | 242 1              | 269                   | 7/11/2000            |
| HAWTHRN5          | HAWTHORN                         | JACKSON    | MO    | Peaking Linits | 31.5               | 35                    | 7/11/2000            |
| HORSESL1          | HORSESHOE LAKE                   | OKLAHOMA   | OK    | Peaking Units  | 85.5               | 95                    | 7/30/2000            |
| MUSTNG01          | MUSTANG                          | OKLAHOMA   | OK    | Steam Gas/Oil  | 115                | 115                   | 7/30/2000            |
| MASSEGL1          | MASSENGALE                       | LUBBOCK    | тх    | Combined Cycle | 55.8               | 62                    | 9/7/2000             |
| ANADRK11          | ANADARKO                         | CADDO      | OK    | Peaking Units  | 81                 | 90                    | 5/8/2001             |
| ONEOKLC1          | ONEOK - LOGAN COUNTY PEAKIN      |            |       | Peaking Units  | 180                | 200                   | 5/16/2001            |
| ONEOKLC2          | ONEOK - LOGAN COUNTY PEAKIN      |            |       | Peaking Units  | 90                 | 100                   | 5/16/2001            |
| FULTONA1          | FULTON (AEC)                     | HEMPSTEAD  | AR    | Peaking Units  | 137.7              | 153                   | 5/26/2001            |
| MCCLAIN1          | MCCLAIN ENERGY FACILITY          | MCCLAIN    | OK    | Combined Cycle | 450                | 500                   | 6/1/2001             |
| GORDONE2          | GORDON EVANS                     | SEDGWICK   | KS    | Peaking Units  | 135.45             | 150.5                 | 6/12/2001            |
| HAWTHRN1          | HAWTHORN                         | JACKSON    | MO    | Coal           | 540                | 540                   | 6/30/2001            |
| STATLNE1          | STATELINE (EMDE)                 | JASPER     | MO    | Combined Cycle | 451.8              | 502                   | 7/2/2001             |
| NTHEST01          | NORTHEASTERN                     | ROGERS     | OK    | Combined Cycle | 420.3              | 467                   | 7/15/2001            |
| ARIESGT1          | ARIES                            | CASS       | MO    | Peaking Units  | 180                | 200                   | 7/16/2001            |
| ARIESGT2          | ARIES                            | CASS       | MO    | Peaking Units  | 1 <b>54.8</b>      | 172                   | 7/16/2001            |
| GRAYCNT1          | GRAY COUNTY                      | GRAY       | KS    | Other          | 110                | 110                   | 12/17/2001           |
| ILLANOEC1         | LLANO ESTACADO                   | CARSON     | TX    | Other          | 80                 | 80                    | 12/28/2001           |
| EASTEXC1          | EASTEX COGENERATION FACILIT      | HARRISON   | TX    | Combined Cycle | 396                | 440                   | 12/30/2001           |
| GREENCE1          | GREEN COUNTRY ENERGY PROJEC      | TULSA      | OK    | Combined Cycle | 239.4              | 266                   | 2/10/2002            |
| GREENCE2          | GREEN COUNTRY ENERGY PROJEC      | TULSA      | OK    | Combined Cycle | 240.3              | 267                   | 2/10/2002            |
| GREENCE3          | GREEN COUNTRY ENERGY PROJEC      | TULSA      | OK    | Combined Cycle | 240.3              | 267                   | 2/10/2002            |
| ARIESCC3          | ARIES                            | CASS       | MO    | Combined Cycle | 531.9              | 591                   | 3/1/2002             |
| ARIESGT6          | AKIES<br>DUSSELL INDUSTRIAL RADY | CASS       | MO    | Combined Cycle | 36.9               | 41                    | 3/1/2002             |
| INUSSIDPT         | RUSSELL INDUSTRIAL PARK          | RUSSELL    | KS    | Combined Cycle | 13.5               | 15                    | 3/1/2002             |
| MCCARTN1          | MUCARINEY GENERATING STATIO      | GREENE     | MO    | Peaking Units  | 90                 | 100                   | 4/1/2002             |

| MAPS Unit<br>Name | Plant Name                  | County    | State    | Unit Type      | Summer<br>Cap (MW) | Winter<br>Cap (MW) | Installation<br>Date |
|-------------------|-----------------------------|-----------|----------|----------------|--------------------|--------------------|----------------------|
| ONETAGS1          | ONETA GENERATING STATION    | WAGONER   | OK       | Combined Cycle | 513                | 570                | 7/15/2002            |
| ONETAGS2          | ONETA GENERATING STATION    | WAGONER   | OK       | Combined Cycle | 513                | 570                | 3/1/2003             |
| THOMFIT1          | THOMAS FITZHUGH             | FRANKLIN  | AR       | Peaking Units  | 153                | 170                | 4/1/2003             |
| EMPIREE1          | EMPIRE ENERGY CENTER        | JASPER    | MÓ       | Peaking Units  | 45                 | 50                 | 5/1/2003             |
| EMPIREE2          | EMPIRE ENERGY CENTER        | JASPER    | MO       | Peaking Units  | 45                 | 50                 | 5/1/2003             |
| PITTSBP1          | PITTSBURG POWER PLANT       | PITTSBURG | ок       | Combined Cycle | 330.3              | 367                | 6/1/2003             |
| PITTSBP2          | PITTSBURG POWER PLANT       | PITTSBURG | OK       | Combined Cycle | 119.7              | 133                | 6/1/2003             |
| KIAMICH1          | KIAMICHI ENERGY FACILITY    | PITTSBURG | OK       | Combined Cycle | 269.55             | 299.5              | 6/1/2003             |
| KIAMICH2          | KIAMICHI ENERGY FACILITY    | PITTSBURG | OK       | Combined Cycle | 269.55             | 299.5              | 6/1/2003             |
| KIAMICH3          | KIAMICHI ENERGY FACILITY    | PITTSBURG | OK       | Combined Cycle | 269.55             | 299.5              | 6/1/2003             |
| KIAMICH4          | KIAMICHI ENERGY FACILITY    | PITTSBURG | OK       | Combined Cycle | 269.55             | 299.5              | 6/1/2003             |
| REDBUD01          | REDBUD                      | OKLAHOMA  | OK       | Combined Cycle | 1080               | 1200               | 6/1/2003             |
| PAOLAGT1          | PAOLA                       | MIAMI     | KS       | Peaking Units  | 75.6               | 84                 | 6/1/2003             |
| HARRISC1          | HARRISON COUNTY POWER PROJE | HARRISON  | TX       | Combined Cycle | 468                | 520                | 6/1/2003             |
| DOWPALQ1          | DOW PLAQUEMINE (AEP)        | IBERVILLE | LA       | Combined Cycle | 810                | 900                | 8/15/2003            |
|                   | New Units in TVA            |           |          |                |                    |                    |                      |
| ACKERMN1          | ACKERMAN                    | CHOCTAW   | MS       | Combined Cycle | 450                | 500                | 1/1/2005             |
| ACKERMN2          | ACKERMAN                    | CHOCTAW   | MS       | Combined Cycle | 180                | 200                | 1/1/2005             |
| ASHLAND1          | ASHLAND [MAGNEN]            | BENTON    | MS       | Combined Cycle | 810                | 900                | 6/1/2003             |
| BATESVL1          | BATESVILLE GENERATION FACIL | PANOLA    | MS       | Combined Cycle | 450                | 500                | 8/15/2000            |
| BATESVL2          | BATESVILLE GENERATION FACIL | PANOLA    | MS       | Combined Cycle | 303.3              | 337                | 8/15/2000            |
| BOLIVAR1          | BOLIVAR                     | HARDEMAN  | IN       | Peaking Units  | 18                 | 20                 | 6/30/2001            |
| CALEDN01          | CALEDONIA                   | LOWNDES   | MS       |                | 240.3              | 267                | 6/1/2003             |
| CALEDNU2          | CALEDONIA                   | LOWNDES   | NIS      |                | 240.3              | 267                | 6/1/2003             |
| CALEDNUS          |                             | LOWNDES   | MS<br>KV |                | 239.4              | 200                | 6/1/2003             |
| CALVECT1          |                             | MORCAN    |          | Combined Cycle | 23.4               | 20                 | 4/0/2000             |
| DECATECT          | DEGATUR ENERGY CENTER       | MORGAN    |          | Combined Cycle | 450                | 200                | 6/1/2002             |
|                   | CALLATING (TVA)             |           |          | Desking Unite  | 190                | 200                | 6/1/2003             |
| GALLATNI          |                             | SUMMER    | TN       | Peaking Units  | 100                | 100                | 6/1/2000             |
| GALLATINZ         | GALLATIN (TVA)              |           | TN       | Peaking Units  | 180                | 200                | 6/1/2000             |
| GLEASN02          | GLEASON                     |           | TN       | Peaking Units  | 180                | 200                | 6/1/2000             |
| GLEASN02          | GLEASON                     |           | TN       | Peaking Units  | 90                 | 110                | 6/1/2000             |
| HAYMOEC1          |                             | HAYIMOOD  | TN       | Combined Cycle | 450                | 500                | 6/1/2004             |
| IOHNSNV1          |                             | HUMPHREYS | TN       | Peaking Units  | 180                | 200                | 6/1/2000             |
| JOHNSNV2          |                             | HUMPHREYS | TN       | Peaking Units  | 90                 | 100                | 6/1/2000             |
| LAGONC10          |                             | HAYWOOD   | ŤN       | Peaking Units  | 78 75              | 87.5               | 6/21/2001            |
| LAGONC11          | LAGOON CREEK                | HAYWOOD   | TN       | Peaking Units  | 78.75              | 87.5               | 6/21/2001            |
| LAGONC12          | LAGOON CREEK                | HAYWOOD   | TN       | Peaking Units  | 78.75              | 87.5               | 6/21/2001            |
| LAGOONC1          | LAGOON CREEK                | HAYWOOD   | TN       | Peaking Units  | 78.75              | 87.5               | 6/21/2001            |
| LAGOONC2          | LAGOON CREEK                | HAYWOOD   | TN       | Peaking Units  | 78,75              | 87.5               | 6/21/2001            |
| LAGOONC3          | LAGOON CREEK                | HAYWOOD   | TN       | Peaking Units  | 78,75              | 87.5               | 6/21/2001            |
| LAGOONC4          | LAGOON CREEK                | HAYWOOD   | TN       | Peaking Units  | 78.75              | 87.5               | 6/21/2001            |
| LAGOONC5          | LAGOON CREEK                | HAYWOOD   | TN       | Peaking Units  | 78.75              | 87.5               | 6/21/2001            |
| LAGOONC6          | LAGOON CREEK                | HAYWOOD   | TN       | Peaking Units  | 78.75              | 87.5               | 6/21/2001            |
| LAGOONC7          | LAGOON CREEK                | HAYWOOD   | TN       | Peaking Units  | 78.75              | 87.5               | 6/21/2001            |
| LAGOONC8          | LAGOON CREEK                | HAYWOOD   | TN       | Peaking Units  | 78.75              | 87.5               | 6/21/2001            |
| LAGOONC9          | LAGOON CREEK                | HAYWOOD   | TN       | Peaking Units  | 78.75              | 87.5               | 6/21/2001            |
| MARSHCN1          | MARSHALL COUNTY (DUENMC)    | MARSHALL  | KY       | Peaking Units  | 72                 | 80                 | 6/24/2002            |
| MARSHCN2          | MARSHALL COUNTY (DUENMC)    | MARSHALL  | KY       | Peaking Units  | 72                 | 80                 | 6/24/2002            |
| MARSHCN3          | MARSHALL COUNTY (DUENMC)    | MARSHALL  | KY       | Peaking Units  | 72                 | 80                 | 6/24/2002            |
| MARSHCN4          | MARSHALL COUNTY (DUENMC)    | MARSHALL  | KY       | Peaking Units  | 72                 | 80                 | 6/24/2002            |
| MARSHCN5          | MARSHALL COUNTY (DUENMC)    | MARSHALL  | KY       | Peaking Units  | 72                 | 80                 | 6/24/2002            |
| MARSHCN6          | MARSHALL COUNTY (DUENMC)    | MARSHALL  | KY       | Peaking Units  | 72                 | 80                 | 6/24/2002            |
| MARSHCN7          | MARSHALL COUNTY (DUENMC)    | MARSHALL  | KY       | Peaking Units  | 72                 | 80                 | 6/24/2002            |

| MAPS Unit<br>Name | Plant Name                  | County         | State | Unit Type      | Summer<br>Cap (MW) | Winter<br>Cap (MW) | Installation<br>Date |
|-------------------|-----------------------------|----------------|-------|----------------|--------------------|--------------------|----------------------|
| MARSHCN8          | MARSHALL COUNTY (DUENMC)    | MARSHALL       | KY    | Peaking Units  | 72                 | 80                 | 6/24/2002            |
| MEMPHRF1          | MEMPHIS REFINERY            | SHELBY         | TN    | Combined Cycle | 71.1               | 79                 | 6/1/2003             |
| MIDDLEP1          | MIDDLEPOINT LANDFILL        | NOT APPLICABLE | TN    | Peaking Units  | 4.68               | 5.2                | 4/9/2001             |
| MISSISF1          | MISSISSIPPI FUEL CELL PLANT | NOT APPLICABLE | MS    | Combined Cycle | 12                 | 12                 | 6/1/2003             |
| MORGANE1          | MORGAN ENERGY CENTER        | MORGAN         | AL    | Combined Cycle | 711                | 790                | 5/1/2003             |
| PADUCAH1          | PADUCAH                     |                |       | Peaking Units  | 180                | 200                | 1/1/2005             |
| PADUCAH2          | PADUCAH                     |                |       | Peaking Units  | 180                | 200                | 1/1/2005             |
| PADUCAH3          | PADUCAH                     |                |       | Peaking Units  | 180                | 200                | 1/1/2005             |
| REDHILL1          | RED HILLS GENERATION FACILI | CHOCTAW        | MS    | Coal           | 440                | 440                | 3/15/2002            |
| RELECHO1          | RELIANT ENERGY CHOCTAW COUN | CHOCTAW        | MS    | Combined Cycle | 720                | 800                | 11/1/2003            |
| SCOOBAP1          | SCOOBA PEAKER               | KEMPER         | MS    | Peaking Units  | 153                | 170                | 6/1/2002             |
| SCOOBAP2          | SCOOBA PEAKER               | KEMPER         | MS    | Peaking Units  | 153                | 170                | 6/1/2002             |

| MAPS Unit<br>Name | Plant Name                  | County         | State | Unit Type       | Summer<br>Cap (MW) | Winter<br>Cap (MW) | Installation<br>Date | Retirement<br>Date |
|-------------------|-----------------------------|----------------|-------|-----------------|--------------------|--------------------|----------------------|--------------------|
|                   | Retirements in VAP          |                |       |                 |                    |                    |                      | ]                  |
| POSSUMP1          | POSSUM POINT 1              | PRINCE WILLIAM | VA    | Steam Gas/Oil   | 74                 | 74                 | 1/1/1948             | 5/1/2003           |
| POSSUMP2          | POSSUM POINT 2              | PRINCE WILLIAM | VA    | Steam Gas/Oil   | 69                 | 71                 | 1/1/1951             | 5/1/2003           |
| POSSUMP3          | POSSUM POINT 3              | PRINCE WILLIAM | VA    | Coal            | 101                | 105                | 1/1/1955             | 5/1/2003           |
| POSSUMP4          | POSSUM POINT 4              | PRINCE WILLIAM | VA    | Coal            | 221                | 221                | 1/1/1962             | 5/1/2003           |
|                   | Retirements in AEP          |                |       |                 |                    |                    |                      |                    |
| SEARSLO3          | SEARS LOGISTICS SERVICES    | FRANKLIN       | ОH    | Peaking Units   | 17.05              | 18.46              | 1/1/1972             | 1/8/2000           |
| GLENLYN5          | GLEN LYN                    | GILES          | VA    | Coal            | 90                 | 95                 | 1/1/1944             | 12/31/2004         |
|                   | Retirements in Duke         |                |       |                 |                    |                    |                      |                    |
| BUCKNC07          | BUCK (NC)                   | ROWAN          | NC    | Peaking Units   | 31                 | 31                 | 1/1/1970             | 12/1/2004          |
| BUCKNC08          | BUCK (NC)                   | ROWAN          | NC    | Peaking Units   | 31                 | 31                 | 1/1/1970             | 12/1/2004          |
| BUCKNC09          | BUCK (NC)                   | ROWAN          | NC    | Peaking Units   | 31                 | 31                 | 1/1/1970             | 12/1/2004          |
| LEESC05           | LEE (SC)                    | ANDERSON       | SC    | Peaking Units   | 30                 | 30                 | 1/1/1968             | 12/1/2004          |
| LFESC06           | LEE (SC)                    | ANDERSON       | SC    | Peaking Units   | 30                 | 30                 | 1/1/1968             | 12/1/2004          |
| LINCOLN1          |                             |                | NC    | Peaking Units   | 75                 | 90                 | 1/1/1995             | 12/1/2004          |
| RIVERB10          | RIVERBEND                   | GASTON         | NC    | Peaking Units   | 30                 | 30                 | 1/1/1960             | 12/1/2004          |
| RIVERB11          | RIVERBEND                   | GASTON         | NC    | Peaking Units   | 30                 | 30                 | 1/1/1060             | 12/1/2004          |
| DIVEORES          | PIVERBEND                   | GASTON         | NC    | Peaking Units   | 30                 | 30                 | 1/1/1000             | 12/1/2004          |
| BIVEBBEG          | RIVERBEND                   | GASTON         | NC    | Peaking Units   | 30                 | 30                 | 1/1/1009             | 12/1/2004          |
| BUZZADDE          |                             | NEWBEDRY       | NC RC | Peaking Units   | 30                 | 30                 | 1/1/1909             | 12/1/2004          |
| BUZZARDO          | BUZZARD ROOST               |                | 30    | Peaking Units   | 22                 | 22                 | 1/1/19/1             | 12/1/2005          |
| BUZZARU/          |                             | NEWDERRT       | 50    | Peaking Units   | 22                 | 22                 | 1/1/19/1             | 12/1/2005          |
| BUZZARDS          | BUZZARD ROUST               | NEVVBERRY      | SC    | Peaking Units   | 22                 | 22                 | 1/1/1971             | 12/1/2005          |
| BUZZARDƏ          | BOZZARD ROOST               | NEWBERRI       | 30    | reaking onts    | 22                 | 22                 | 1111971              | 12/1/2005          |
|                   | Retirements in PJM          |                |       |                 |                    |                    |                      |                    |
| BURLNGT7          | BURLINGTON (PSEG)           | BURLINGTON     | NJ    | Steam Gas/Oil   | 180                | 185                | 1/1/1955             | 3/1/2000           |
| DELWREC1          | DELAWARE CITY               | NEW CASTLE     | DE    | Coal            | 28.5               | 28.5               | 1/1/1956             | 4/30/2000          |
| DELWREC2          | DELAWARE CITY               | NEW CASTLE     | DE    | Coal            | 28.5               | 28.5               | 1/1/1956             | 4/30/2000          |
| LINDEN05          | LINDEN (PSEG)               | UNION          | NJ    | Peaking Units   | 46                 | 60                 | 1/1/1970             | 6/1/2000           |
| LINDEN06          | LINDEN (PSEG)               | UNION          | NJ    | Peaking Units   | 46                 | 60                 | 1/1/1970             | 6/1/2000           |
| RINGGOL1          | RINGGOLD                    | JEFFERSON      | PA    | Peaking Units   | 15                 | 15                 | 1/1/1990             | 9/1/2000           |
| WILMING1          | WILMINGTON                  | NEW CASTLE     | DE    | Peaking Units   | 111                | 111                | 6/1/2001             | 5/31/2002          |
| WILMING2          | WILMINGTON                  | NEW CASTLE     | DE    | Peaking Units   | 111                | 111                | 6/1/2001             | 5/31/2002          |
| WILMING3          | WILMINGTON                  | NEW CASTLE     | DE    | Peaking Units   | 112                | 112                | 7/31/2001            | 5/31/2002          |
| LINDEN01          | LINDEN (PSEG)               | UNION          | NJ    | Steam Gas/Oil   | 168                | 180                | 1/1/1957             | 5/1/2003           |
| LINDEN02          | LINDEN (PSEG)               | UNION          | NJ    | Steam Gas/Oil   | 247                | 250                | 1/1/1957             | 5/1/2003           |
| AESBVPA3          | AES BV PARTNERS BEAVER VALL | BEAVER         | PA    | Coal            | 100.26             | 107                | 1/1/1987             | 5/31/2003          |
| BETHLEC1          | BETHLEHEM (CIV)             | NORTHAMPTON    | PA    | Peaking Units   | 333                | 333                | 1/1/2003             | 6/1/2003           |
| SEWARD04          | SEWARD (RELIANT)            | INDIANA        | PA    | Coal            | 60                 | 62                 | 1/1/1950             | 9/30/2003          |
| SEWARD05          | SEWARD (RELIANT)            | INDIANA        | PA    | Coal            | 136                | 137                | 1/1/1957             | 9/30/2003          |
| RIEGEL01          | RIEGEL                      | HUNTERDON      | NJ    | Peaking Units   | 21                 | 21                 | 1/1/1970             | 7/1/2004           |
| HUNLOCK3          | HUNLOCK CREEK               | LUZERNE        | PA    | Coal            | 48                 | 48                 | 1/1/1959             | 12/1/2004          |
| DICKRSN4          | DICKERSON                   | MONTGOMERY     | MD    | Peaking Units   | 13                 | 13                 | 1/1/1967             | 12/31/2004         |
| DICKRSN5          | DICKERSON                   | MONTGOMERY     | MD    | Peaking Units   | 139                | 167                | 1/1/1992             | 12/31/2004         |
| DICKRSN6          | DICKERSON                   | MONTGOMERY     | MD    | Peaking Units   | 139                | 167                | 1/1/1993             | 12/31/2004         |
| ELRAMA01          | FIRAMA                      | WASHINGTON     | PA    | Coal (Scrubbed) | 97                 | 100                | 1/1/1952             | 12/31/2004         |
| ELRAMA02          | FLRAMA                      | WASHINGTON     | PA    | Coal (Scrubbed) | 97                 | 100                | 1/1/1953             | 12/31/2004         |
| EL RAMA03         | FLRAMA                      | WASHINGTON     | PA    | Coal (Scrubbed) | 109                | 112                | 1/1/1054             | 12/31/2004         |
| ELRAMA04          | ELRAMA                      | WASHINGTON     | PA    | Coal (Scrubbed) | 171                | 175                | 1/1/1960             | 12/31/2004         |
| 1                 | Retirements in MISO (ECAR)  |                |       |                 |                    |                    |                      |                    |
| BLACKDO1          | BLACK DOG                   | DAKOTA         | MN    | Coal            | 75                 | 64                 | 1/1/1952             | 1/1/2000           |
| MORRIGT1          | MORRIS COGENERATION PLANT   | GRUNDY         | IL.   | Peaking Units   | 78                 | 78                 | 1/1/1990             | 6/1/2000           |
| MORRIGT2          | MORRIS COGENERATION PLANT   | GRUNDY         | IL    | Peaking Units   | 78                 | 78                 | 1/1/1990             | 6/1/2000           |
| MORRIGT3          | MORRIS COGENERATION PLANT   | GRUNDY         | IL    | Peaking Units   | 78                 | 78                 | 1/1/1990             | 6/1/2000           |
| WYANDOT4          | WYANDOTTE (WYAN)            | WAYNE          | Mi    | Steam Gas/Oil   | 10.5               | 11.5               | 1/1/1948             | 10/1/2000          |
| WYANDOT6          | WYANDOTTE (WYAN)            | WAYNE          | M     | Coal            | 7.5                | 7.5                | 1/1/1969             | 10/1/2000          |

\_--

| MAPS Unit<br>Name | Plant Name                                         | County      | State        | Unit Type              | Summer<br>Cap (MW) | Winter<br>Cap (MW) | Installation<br>Date | Retirement<br>Date |
|-------------------|----------------------------------------------------|-------------|--------------|------------------------|--------------------|--------------------|----------------------|--------------------|
| GRANDTO3          | GRAND TOWER                                        | JACKSON     | IL.          | Coai                   | 82                 | 82                 | 1/1/1951             | 6/29/2001          |
| AESMEDV2          | AESMEDINA VALLEY                                   | TAZEWELL    | iL.          | Peaking Units          | 28.35              | 31.5               | 6/1/2001             | 7/15/2001          |
| GRANDTO4          | GRAND TOWER                                        | JACKSON     | IL           | Coal                   | 104                | 104                | 1/1/1958             | 12/1/2001          |
| MIAMIWA1          | MIAMI WABASH                                       | WABASH      | iN           | Peaking Units          | 16                 | 17                 | 1/1/1968             | 12/31/2001         |
| MIAMIWA2          | MIAMI WABASH                                       | WABASH      | IN           | Peaking Units          | 16                 | 17                 | 1/1/1968             | 12/31/2001         |
| MIAMIWA3          | MIAMI WABASH                                       | WABASH      | IN           | Peaking Units          | 15                 | 17                 | 1/1/1968             | 12/31/2001         |
| MIAMIWA4          | MIAMI WABASH                                       | WABASH      | IN           | Peaking Units          | 15                 | 17                 | 1/1/1968             | 12/31/2001         |
| MIAMIWA5          | MIAMI WABASH                                       | WABASH      | IN           | Peaking Units          | 15                 | 18                 | 1/1/1969             | 12/31/2001         |
| MIAMIWA6          | MIAMI WABASH                                       | WABASH      | IN           | Peaking Units          | 16                 | 18                 | 1/1/1969             | 12/31/2001         |
| MITCHE11          | MITCHELL (NIPS)                                    |             | IN           | Coal                   | 110                | 110                | 1/1/1970             | 12/31/2001         |
| MITCHEL4          |                                                    |             | LINI<br>INI  | Steam Gas/Ull          | 125                | 125                | 1/1/1950             | 12/31/2001         |
| MITCHELS          |                                                    |             | IN           | Coal                   | 120                | 125                | 1/1/1959             | 12/31/2001         |
| MITCHELS          | MITCHELL (NIPS)                                    |             | IN           | Coal<br>Reaking Linite | 120                | 123                | 1/1/1959             | 12/31/2001         |
| WABASH07          | WABASH RIVER                                       | VIGO        | IN           | Peaking Units          | 8                  |                    | 1/1/1967             | 12/31/2001         |
| VERMIGT1          | VERMILION                                          | VERMILION   | ii ii        | Peaking Units          | 10                 | 12                 | 1/1/1967             | 1/1/2002           |
| ZEELAND1          | ZEELAND (MIR)                                      | OTTAWA      | M            | Peaking Units          | 170                | 170                | 1/1/2001             | 6/1/2002           |
| ZEELAND2          | ZEELAND (MIR)                                      | OTTAWA      | MI           | Peaking Units          | 170                | 170                | 1/1/2001             | 6/1/2002           |
| BLACKDO2          | BLACK DOG                                          | DAKOTA      | MN           | Coal                   | 101                | 88                 | 1/1/1954             | 6/15/2002          |
| LAKERDM3          | LAKE ROAD (MO)                                     | BUCHANAN    | мо           | Steam Gas/Oil          | 11                 | 8                  | 1/1/1962             | 12/1/2002          |
| BEMORROA          | B.E. MORROW                                        | KALAMAZOO   | MI           | Peaking Units          | 14                 | 17                 | 1/1/1968             | 12/31/2002         |
| BEMORROB          | B.E. MORROW                                        | KALAMAZOO   | MI           | Peaking Units          | 14                 | 17                 | 1/1/1969             | 12/31/2002         |
| CAMPBELA          | CAMPBELL (CEC)                                     | OTTAWA      | MI           | Peaking Units          | 13                 | 17                 | 1/1/1968             | 12/31/2002         |
| GAYLORD1          | GAYLORD                                            | OTSEGO      | Mí           | Peaking Units          | 14                 | 17                 | 1/1/1966             | 12/31/2002         |
| GAYLORD2          | GAYLORD                                            | OTSEGO      | MI           | Peaking Units          | 14                 | 17                 | 1/1/1966             | 12/31/2002         |
| GAYLORD3          | GAYLORD                                            | OTSEGO      | MI           | Peaking Units          | 14                 | 17                 | 1/1/1966             | 12/31/2002         |
| GAYLORD4          | GAYLORD                                            | OTSEGO      | MI           | Peaking Units          | 14                 | 17                 | 1/1/1966             | 12/31/2002         |
| GAYLORD5          | GAYLORD                                            | OTSEGO      | MI           | Peaking Units          | 14                 | 17                 | 1/1/1968             | 12/31/2002         |
| STRAITST          | SIRAIIS                                            |             | MI           | Peaking Units          | 16                 | 21                 | 1/1/1969             | 12/31/2002         |
| TUETFOR           |                                                    | GENESEE     | MI           | Peaking Units          | 30                 | 37                 | 1/1/1970             | 12/31/2002         |
| THETFOR           |                                                    | GENEGEE     | IVII<br>A AI | Peaking Units          | 29                 | 3/                 | 1/1/19/0             | 12/31/2002         |
| THETEORA          | THETFORD                                           | GENESEE     | NAL.         | Peaking Units          | 30                 | 37                 | 1/1/1970             | 12/31/2002         |
| THETEORS          | THETEORD                                           | GENESEE     | MI           | Peaking Units          | 30                 | 17                 | 1/1/1071             | 12/31/2002         |
| THETEORE          | THETEORD                                           | GENESEE     | MI           | Peaking Units          | 15                 | 17                 | 1/1/1071             | 12/31/2002         |
| THETFOR7          | THETFORD                                           | GENESEE     | Mi           | Peaking Units          | 14                 | 17                 | 1/1/1971             | 12/31/2002         |
| THETFORS          | THETFORD                                           | GENESEE     | MI           | Peaking Units          | 15                 | 18                 | 1/1/1971             | 12/31/2002         |
| THETFOR9          | THETFORD                                           | GENESEE     | MI           | Peaking Units          | 14                 | 17                 | 1/1/1971             | 12/31/2002         |
| WEADOCKA          | WEADOCK                                            | BAY         | MI           | Peaking Units          | 13                 | 17                 | 1/1/1968             | 12/31/2002         |
| WHITINGA          | WHITING (CEC)                                      | MONROE      | MI           | Peaking Units          | 13                 | 17                 | 1/1/1968             | 12/31/2002         |
| EDWARDS6          | EDWARDSPORT                                        | KNOX        | IN           | Coal                   | 40                 | 40                 | 1/1/1944             | 12/31/2003         |
| EDWARDS7          | EDWARDSPORT                                        | KNOX        | IN           | Coat                   | 45                 | 45                 | 1/1/1949             | 12/31/2003         |
| EDWARDS8          | EDWARDSPORT                                        | KNOX        | IN           | Coal                   | 75                 | 75                 | 1/1/1951             | 12/31/2003         |
| NOBLESV1          | NOBLESVILLE                                        | HAMILTON    | IN           | Coal                   | 45                 | 45                 | 1/1/1950             | 5/31/2004          |
| NOBLESV2          | NOBLESVILLE                                        | HAMILTON    | IN           | Coal                   | 45                 | 45                 | 1/1/1950             | 5/31/2004          |
| CONNEVL1          | CONNERSVILLE                                       | FAYETTE     | IN           | Peaking Units          | 42                 | 49                 | 1/1/1972             | 12/31/2004         |
| CONNEVL2          |                                                    | FAYETTE     | IN           | Peaking Units          | 43                 | 49                 | 1/1/1972             | 12/31/2004         |
| SALIVAL3          | SALT VALLEY GENERATING STAT                        | LANCASTER   | NE           | Peaking Units          | 90                 | 90                 | 6/1/2003             | 5/1/2004           |
| PORTWAST          | PORTWASHINGTON                                     |             | VVI          | Coal (Scrubbed)        | 80                 | 80                 | 1/1/1935             | 1/1/2005           |
| POR I WASZ        |                                                    |             | 100          | Coal                   | 03                 | 83                 | 1/1/1943             | 1/1/2005           |
| PORTWAS           | PORT WASHINGTON                                    |             | 100          | Coal (Scrubbod)        | 03<br>80           | 04<br>80           | 1/1/1940             | 1/1/2005           |
| HOOTI AK1         | HOOTLAKE                                           |             | MN           | Coal (Scrubbed)        | 7 55               | 7 55               | 1/1/1945             | 5/1/2005           |
|                   |                                                    | OTTER ITAL  |              | 008                    | 1.55               | 1.55               | 171710-40            | 5/ 1/2003          |
| HMOSES01          | Retirements in SETRANS (Enterav)<br>HAMILTON MOSES | ST. FRANCIS | AR           | Steam Gas/Oil          | 72                 | 72                 | 1/1/1951             | 12/1/2001          |
| HMOSES02          | HAMILTON MOSES                                     | ST. FRANCIS | AR           | Steam Gas/Oil          | 72                 | 72                 | 1/1/1951             | 12/1/2001          |
| DELTA01           | DELTA (MS)                                         | BOLIVAR     | MS           | Steam Gas/Oil          | 99                 | 99                 | 1/1/1953             | 12/1/2003          |
| LKCATHE3          | LAKE CATHERINE                                     | HOT SPRING  | AR           | Steam Gas/Oil          | 100                | 100                | 1/1/1953             | 12/1/2003          |
| CLYNCH01          | CECIL LYNCH                                        | PULASKI     | AR           | Steam Gas/Oil          | 110                | 110                | 1/1/1954             | 12/1/2004          |

F

| MAPS Unit<br>Name | Plant Name                    | County         | State      | Unit Type                      | Summer<br>Cap (MW) | Winter<br>Cap (MW) | Installation<br>Date | Retirement<br>Date |
|-------------------|-------------------------------|----------------|------------|--------------------------------|--------------------|--------------------|----------------------|--------------------|
| HCOUCH02          | HARVEY COUCH                  | LAFAYETTE      | AR         | Steam Gas/Oil                  | 125                | 125                | 1/1/1954             | 12/1/2004          |
| NINEMIL3          |                               | JEFFERSON      | LA         | Steam Gas/Oil                  | 125                | 125                | 1/1/1955             | 12/1/2005          |
| MABELVA3          | MABELVALE                     | PULASK         | AR         | Peaking Units                  | 16                 | 16                 | 1/1/1970             | 12/31/2005         |
|                   |                               |                |            |                                |                    |                    |                      |                    |
|                   | Retirements in SETRANS (SOCO) | DUMAL          | <b>F</b> 1 | Change Con/Oil                 | 130                | 100                | 4440004              | 4/1/2000           |
| KENNED10          |                               |                | FL         | Steam Gas/Oil                  | 129                | 129                | 1/1/1961             | 4/1/2000           |
| STHSIDE4          | SOUTHSIDE                     |                | FL         | Steam Gas/Oil                  | 142                | 140                | 1111900              | 10/26/2001         |
| STHSIDES          | SUUTATT                       |                |            | Steam Gas/Oil                  | 142                | 142                | 1/1/1904             | 1/1/20/2001        |
| SVVEATTUA         |                               |                | MO<br>CA   | Cool                           | 33                 | 43.3               | 1/1/19/1             | 1/1/2002           |
| ARKVVRIUS         |                               |                | GA         | Coal                           | 44.3               | 44.3               | 1/1/1940             | 1/1/2003           |
| ARKVVRIU4         |                               |                | GA         | Coal<br>Besking Units          | 43.2               | 43.4               | 1/1/1940             | 1/1/2003           |
| ARKIVRISA         |                               |                | GA         | Peaking Units<br>Reaking Units | 15.47              | 18.02              | 1/1/1909             | 1/1/2003           |
|                   |                               | 8188           | GA         | Coal                           | A1 0               | 10.02              | 1/1/1000             | 1/1/2003           |
| ARRIVEST          |                               | RIRB           | GA<br>GA   | Coal                           | 40.9               | 40.0               | 1/1/1047             | 1/1/2003           |
| ATKING02          |                               | COBB           | GA<br>GA   | Steam Gas/Oil                  | 62.8               | 40.9               | 1/1/1942             | 1/1/2003           |
| ATKINSUS          | ATKINGON                      | COBB           | 64         | Steam Gas/Oil                  | 59.9               | 50.0               | 1/1/1049             | 1/1/2003           |
| ATKINGSA          | ATKINSON                      | COBB           | GA<br>GA   | Desking Unite                  | 34.55              | 139.9<br>43.56     | 1/1/1070             | 1/1/2003           |
| ATKINGSA          | ATKINGON                      | COBB           | GA         | Peaking Units                  | 34.55              | 42.50              | 1/1/1070             | 1/1/2003           |
| ATKINGOD          | ATKINGON                      | COBB           | GA         | Steam Gas/Oil                  | 57.2               | 42.00              | 1/1/10/1             | 1/1/2003           |
| CDIST01           |                               | ESCAMPIA       | 5          | Steam Gas/Oil                  | 25.6               | 57.Z               | 1/1/1045             | 1/1/2003           |
| GATONO2           | CRIST<br>EATON                | ESCANIBIA      | L<br>NG    | Steam Gas/Oil                  | 20.0               | <b>∡</b> 3.0<br>25 | 1/1/1943             | 1/1/2003           |
| MITCHISI          |                               | DONGHEDTY      | CA.        | Coal                           | 21.2               | 23                 | 1/1/1048             | 1/1/2003           |
| MITCHISS          | MITCHELL (GPCO)               | DOUGHERTY      | GA<br>GA   | Coal                           | 20.1               | 21.2               | 1/1/1940             | 1/1/2003           |
| EATONO2           | EATON                         | FORREST        | MS         | Steam Gas/Oil                  | 20.1               | 20.1               | 1/1/1949             | 1/1/2005           |
| IDIVEDEEA         |                               | CHATHAM        | CA         | Steam Gas/Oil                  | 19.3               | 103                | 1/1/1026             | 1/1/2005           |
| RIVER334          |                               | CHATHAM        | GA         | Steam Gas/Oil                  | 19.5               | 19.3               | 1/1/1920             | 1/1/2005           |
| RIVERSSS          |                               | CHATHAM        | CA<br>CA   | Steam Gas/Oil                  | 163                | 163                | 1/1/10/0             | 1/1/2005           |
| RIVERSSO          |                               | CHATHAM        | GA<br>GA   | Steam Gas/Oil                  | 21                 | 10.3               | 1/1/1054             | 1/1/2005           |
| Diversor          |                               | СНАТНАМ        | GA<br>GA   | Steam Gas/Oil                  | 40.4               | 40 4               | 1/1/1956             | 1/1/2005           |
| RIVER050          | RIVERSIDE (SAEF)              | <b>VICTION</b> | 07         | Gloann Gaaron                  |                    | v-                 | 11 11 1000           |                    |
| ŀ                 | Retirements in SPP            |                |            |                                |                    |                    |                      |                    |
| LOVINGT1          | NORTH LOVINGTON               | LEA            | NM         | Steam Gas/Oil                  | 16                 | 16                 | 1/1/1962             | 1/1/2000           |
| LOVINGT2          | NORTH LOVINGTON               | LEA            | NM         | Steam Gas/Oil                  | 33                 | 33                 | 1/1/1966             | 1/1/2000           |
| MUSTSTN2          | MUSTANG STATION               | YOAKUM         | ТΧ         | Peaking Units                  | 261                | 290                | 6/1/1999             | 4/20/2000          |
| HAWTHOR6          | HAWTHORN                      | JACKSON        | MO         | Peaking Units                  | 142                | 162                | 1/1/1997             | 7/15/2000          |
| STATELI2          | STATELINE (MO)                | JASPER         | MO         | Peaking Units                  | 152                | 152                | 1/1/1997             | 6/20/2001          |
| NTHESTN1          | NORTHEASTERN                  | ROGERS         | ок         | Steam Gas/Oil                  | 157                | 157                | 1/1/1961             | 7/14/2001          |
| TUCULUMP          | TUCUMCARI                     | QUAY           | NM         | Peaking Units                  | 13                 | 13                 | 1/1/1975             | 8/1/2001           |
| RUSSLUMP          | RUSSELL                       | RUSSELL        | KS         | Peaking Units                  | 26.6               | 26.6               | 1/1/1956             | 9/2/2001           |
| NATCLUMP          | NATCHITOCHES                  | NATCHITOCHES   | LA         | Steam Gas/Oil                  | 8.6                | 8.6                | 1/1/1972             | 12/1/2001          |
| SOUTHWE2          | SOUTHWESTERN                  | CADDO          | OK         | Steam Gas/Oil                  | 80                 | 80                 | 1/1/1954             | 12/1/2001          |
| ARIESGT1          | ARIES                         | CASS           | MO         | Peaking Units                  | 180                | 200                | 7/16/2001            | 3/1/2002           |
| ARIESGT2          | ARIES                         | CASS           | MO         | Peaking Units                  | 154.8              | 172                | 7/16/2001            | 3/1/2002           |
| NATCHI10          | NATCHITOCHES                  | NATCHITOCHES   | LA         | Steam Gas/Oil                  | 24                 | 24                 | 1/1/1972             | 4/1/2002           |
| NATCHIT8          | NATCHITOCHES                  | NATCHITOCHES   | LA         | Steam Gas/Oil                  | 7                  | 7                  | 1/1/1962             | 4/1/2002           |
| NATCHIT9          | NATCHITOCHES                  | NATCHITOCHES   | LA         | Steam Gas/Oil                  | 11                 | 11                 | 1/1/1966             | 4/1/2002           |
| NICHOTX2          | NICHOLS STATION               | POTTER         | тх         | Steam Gas/Oil                  | 106                | 106                | 1/1/1962             | 8/1/2002           |
| KNOXLEE2          | KNOX LEE                      | GREGG          | TX         | Steam Gas/Oil                  | 25                 | 25                 | 1/1/1950             | 12/1/2002          |
| KNOXLEE3          | KNOX LEE                      | GREGG          | TX         | Steam Gas/Oil                  | 25                 | 25                 | 1/1/1952             | 12/1/2002          |
| MCPH2GT1          | MCPHERSON 2                   | MCPHERSON      | KS         | Peaking Units                  | 52.9               | 60                 | 1/1/1973             | 12/1/2002          |
| MCPH2GT2          | MCPHERSON 2                   | MCPHERSON      | KS         | Peaking Units                  | 50.9               | 60                 | 1/1/1976             | 12/1/2002          |
| MCPH2GT3          | MCPHERSON 2                   | MCPHERSON      | KS         | Peaking Units                  | 52                 | 60                 | 1/1/1979             | 12/1/2002          |
| PLANTX01          | PLANT X (TX)                  |                | IX         | Steam Gas/Oil                  | 48                 | 48                 | 1/1/1952             | 5/24/0002          |
| FITZHUGH          | THOMAS FITZHUGH               |                | AR         | Steam Gas/Oil                  | 59                 | 59                 | 1/1/1963             | 5/31/2003          |
| LONESTAR          | LONE STAR                     | MORRIS         |            | Steam Gas/Oil                  | 50                 | 50                 | 1/1/1954             | 1/1/2003           |
| PLANTX02          | PLANT X (TX)                  |                |            | Steam Gas/Oil                  | 102                | 102                | 1/1/1953             | 1/1/2004           |
| PLANTX04          | PLANT X (TX)                  |                | IX<br>IA   | Steam Gas/Oil                  | 191                | 191                | 1/1/1964             | 12/1/2004          |
| LIEBER03          |                               | CADDO          |            | Steam Cas/Oll                  | 112                | 112                | 1/1/195/             | 12/1/2004          |
| LIEBER04          |                               |                |            | Steam Gas/Ull                  | 110                | 110                | 1111909              | 12/1/2004          |
| IN I MESTN2       | NURTHEASTERN                  | RUGERO         | UK         | Steam Gas/Oil                  | 400                | 460                | 1/1/19/0             | 12/1/2004          |

| MAPS Unit<br>Name | Plant Name                | County         | State    | Unit Type                  | Summer<br>Cap (MW) | Winter<br>Cap (MW) | Installation<br>Date | Retirement<br>Date |
|-------------------|---------------------------|----------------|----------|----------------------------|--------------------|--------------------|----------------------|--------------------|
| WELEETK4          | WELEETKA                  | OKFUSKEE       | ок       | Peaking Units              | 55                 | 55                 | 1/1/1975             | 12/1/2004          |
| WILKES02          | WILKES                    | MARION         | ТХ       | Steam Gas/Oil              | 357                | 357                | 1/1/1970             | 12/1/2004          |
| PLANTX03          | PLANT X (TX)              | LAMB           | ΤХ       | Steam Gas/Oil              | 103                | 103                | 1/1/1955             | 1/1/2005           |
| CUNGHAM2          | CUNNINGHAM                | LEA            | NM       | Steam Gas/Oil              | 196                | 196                | 1/1/1965             | 8/1/2005           |
| KNOXLEE4          | KNOX LEE                  | GREGG          | ΤХ       | Steam Gas/Oil              | 77                 | 77                 | 1/1/1956             | 12/1/2005          |
| LIEBER01          | LIEBERMAN                 | CADDO          | LA       | Steam Gas/Oil              | 25                 | 25                 | 1/1/1947             | 12/1/2005          |
| MCPHER21          | MCPHERSON 2               | MCPHERSON      | KS       | Steam Gas/Oil              | 26.6               | 26.6               | 1/1/1963             | 12/1/2005          |
| WELEETK5          | WELEETKA                  | OKFUSKEE       | OK       | Peaking Units              | 54                 | 54                 | 1/1/1976             | 12/1/2005          |
| WELEETK6          | WELEETKA                  | OKFUSKEE       | OK       | Peaking Units              | 54                 | 54                 | 1/1/1976             | 12/1/2005          |
| WILKES03          | WILKES                    | MARION         | тх       | Steam Gas/Oil              | 348                | 348                | 1/1/1971             | 12/1/2005          |
|                   | <b>Retirements in TVA</b> |                |          |                            |                    |                    |                      |                    |
| ELIZABE1          | ELIZABETHTON PLANT        | CARTER         | TN       | Coal                       | 24                 | 24                 | 1/1/1988             | 4/1/2000           |
| DECATEC1          | DECATUR ENERGY CENTER     | MORGAN         | AL       | Combined Cycle             | 450                | 500                | 6/1/2002             | 6/1/2003           |
|                   | Retirements in GFL        | DAL 11 DE 1011 | -        | Channe () 10 <sup>th</sup> |                    |                    |                      | 444 10000          |
| TSMITHS4          |                           | PALM BEACH     | FL       | Steam Gas/Oil              | 32                 | 33                 | 1/1/1971             | 4/1/2000           |
| CANEIPP5          | CANE ISLAND POWER PARK    | OSCEOLA        | FL.      | Peaking Units              | 153                | 170                | 6/6/2001             | 8/15/2001          |
| FTMYST01          | FORT MYERS                | LEE            | FL       | Steam Gas/OII              | 141                | 142                | 1/1/1958             | 9/1/2001           |
| FTMYST02          | FORT MYERS                | LEE            | FL<br>Fl | Steam Gas/OII              | 391                | 394                | 1/1/1969             | 9/1/2001           |
| MCINTSL4          | MCINTOSH (LALW)           | POLK           | +L<br>   | Peaking Units              | 180                | 200                | 4/16/2001            | 9/15/2001          |
| MCINTSL5          | MCINTOSH (LALW)           | POLK           | 7L       | Peaking Units              | 44.1               | 49                 | 4/16/2001            | 9/15/2001          |
| FORTMY10          | FORT MYERS                |                | FL       | Peaking Units              | 150                | 170                | 11/1/2000            | 10/1/2001          |
| FORTMYTT          |                           |                | FL       | Peaking Units              | 300                | 340                | 12/1/2000            | 10/1/2001          |
| FORTMY12          |                           |                |          | Peaking Units              | 150                | 170                | 2/1/2001             | 10/1/2001          |
| FORTMYTS          |                           |                | FL       | Peaking Units              | 150                | 170                | 3/1/2001             | 10/1/2001          |
| FUR IMTR9         |                           |                |          | Peaking Units              | 150                | 170                | 4/1/2001             | 10/1/2001          |
| SANFURD4          | SANFORD (FPL)             |                |          | Steam Gas/Oil              | 384                | 390                | 1/1/19/2             | 12/31/2001         |
| BANFURDS          |                           |                | г.       | Steam Gas/Oil              | 390                | 394                | 1/1/19/4             | 12/31/2001         |
| I ADSENO7         |                           |                | гц<br>С1 | Steam Gas/Oil              | 40.2               | 51.2               | 1/1/1900             | 2/1/2003           |
| GANNON05          | CANNON                    |                |          | Coal                       | -3.2               | 232                | 1/1/1965             | 1/1/2003           |
| GANNONOS          | GANNON                    | HILLSBOROUGH   | FI       | Coal                       | 362                | 372                | 1/1/1967             | 1/1/2004           |
| AVNPARK1          |                           | HIGHLANDS      | Fi       | Peaking Units              | 25                 | 30                 | 1/1/1968             | 12/1/2004          |
| AVNPARK2          | AVON PARK                 | HIGHLANDS      | FL       | Peaking Units              | 25                 | 30                 | 1/1/1968             | 12/1/2004          |
| BAYBORO1          | BAYBORO                   | PINELLAS       | FI       | Peaking Units              | 54                 | 58                 | 1/1/1973             | 12/1/2004          |
| BAYBORO2          | BAYBORO                   | PINELLAS       | FI       | Peaking Units              | 54                 | 58                 | 1/1/1973             | 12/1/2004          |
| BAYBORO3          | BAYBORO                   | PINELLAS       | FI       | Peaking Units              | 54                 | 58                 | 1/1/1973             | 12/1/2004          |
| BAYBORO4          | BAYBORO                   | PINELLAS       | FL       | Peaking Units              | 54                 | 58                 | 1/1/1973             | 12/1/2004          |
| TURNER01          | G E. TURNER               | VOLUSIA        | FL       | Peaking Units              | 13                 | 16                 | 1/1/1970             | 12/1/2004          |
| TURNER02          | G E TURNER                | VOLUSIA        | FL       | Peaking Units              | 13                 | 16                 | 1/1/1970             | 12/1/2004          |
| GANNON01          | GANNON                    | HILLSBOROUGH   | FL       | Coal                       | 119                | 119                | 1/1/1957             | 1/1/2005           |
| GANNON02          | GANNON                    | HILLSBOROUGH   | FL       | Coal                       | 98                 | 98                 | 1/1/1958             | 1/1/2005           |
| GANNON03          | GANNON                    | HILLSBOROUGH   | FL       | Coal                       | 145                | 145                | 1/1/1960             | 1/1/2005           |
| GANNON04          | GANNON                    | HILLSBOROUGH   | FL       | Coal                       | 159                | 169                | 1/1/1963             | 1/1/2005           |
| MARTINES          | MARTIN (FLPL)             | MARTIN         | FL       | Peaking Units              | 149                | 181                | 6/20/2001            | 6/1/2005           |
| MARTINF6          | MARTIN (FLPL)             | MARTIN         | FL       | Peaking Units              | 149                | 181                | 6/20/2001            | 6/1/2005           |
|                   | Retirements in ISO-NE     |                |          |                            |                    |                    |                      |                    |
| SOMERSJ1          | SOMERSET                  | BRISTOL        | MA       | Peaking Units              | 19.7               | 22                 | 1/1/1970             | 5/1/2000           |
| REFERBUS          | REFERENCE BUS             |                |          | Other                      | 1                  | 1                  | 1/1/1999             | 12/31/2000         |
| WSTSPRF1          | WEST SPRINGFIELD          | HAMPDEN        | MA       | Steam Gas/Oil              | 51                 | 51.5               | 1/1/1949             | 9/1/2001           |
| WSTSPRF2          | WEST SPRINGFIELD          | HAMPDEN        | MA       | Steam Gas/Oil              | 51                 | 51.5               | 1/1/1952             | 9/1/2001           |
| MYSTIC04          | MYSTIC                    | MIDDLESEX      | MA       | Steam Gas/Oil              | 135                | 135                | 1/1/1957             | 3/1/2002           |
| MYSTIC05          | MYSTIC                    | MIDDLESEX      | MA       | Steam Gas/Oil              | 115                | 115                | 1/1/1959             | 3/1/2002           |
| MYSTIC06          | MYSTIC                    | MIDDLESEX      | MA       | Steam Gas/Oil              | 138                | 138.28             | 1/1/1961             | 3/1/2002           |
| KENDALL1          | KENDALL SQUARE            | MIDDLESEX      | MA       | Steam Gas/Oil              | 18                 | 17                 | 1/1/1949             | 6/1/2002           |
| KENDALL2          | KENDALL SQUARE            | MIDDLESEX      | MA       | Steam Gas/Oil              | 19                 | 21                 | 1/1/1 <b>951</b>     | 6/1/2002           |
| KENDALL3          | KENDALL SQUARE            | MIDDLESEX      | MA       | Steam Gas/Oil              | 26                 | 26                 | 1/1/1958             | 6/1/2002           |
| CANALSN2          | CANAL (SENENG)            | BARNSTABLE     | MA       | Steam Gas/Oil              | 551.38             | 586                | 1/1/1976             | 12/31/2002         |
|                   |                           |                |          |                            |                    |                    |                      |                    |

| MAPS Unit<br>Name | Plant Name                 | County   | State | Unit Type     | Summer<br>Cap (MW) | Winter<br>Cap (MW) | Installation<br>Date | Retirement<br>Date |
|-------------------|----------------------------|----------|-------|---------------|--------------------|--------------------|----------------------|--------------------|
|                   | <b>Retirements in NYC</b>  |          |       |               |                    |                    |                      |                    |
| WATERS16          | WATERSIDE (CONED)          | NEW YORK | NY    | Steam Gas/Oil | 69                 | 69                 | 1/1/1992             | 12/31/2001         |
| WATERSD8          | WATERSIDE (CONED)          | NEW YORK | NY    | Steam Gas/Oil | 47                 | 47                 | 1/1/1949             | 12/31/2001         |
| WATERSD9          | WATERSIDE (CONED)          | NEW YORK | NY    | Steam Gas/Oil | 47                 | ~ 47               | 1/1/1949             | 12/31/2001         |
| ASTOGSO2          | ASTORIA GENERATING STATION | QUEENS   | NY    | Steam Gas/Oil | 171                | 175                | 1/1/1954             | 12/31/2003         |
| ASTOGSO3          | ASTORIA GENERATING STATION | QUEENS   | NY    | Steam Gas/Oil | 353                | 361                | 1/1/1958             | 12/31/2003         |
| ASTOGSO4          | ASTORIA GENERATING STATION | QUEENS   | NY    | Steam Gas/Oil | 361                | 369                | 1/1/1961             | 12/31/2004         |
| ASTOGSO5          | ASTORIA GENERATING STATION | QUEENS   | NY    | Steam Gas/Oil | 361                | 369                | 1/1/1962             | 12/31/2004         |
|                   | <b>Retirements in NYO</b>  |          |       |               |                    |                    |                      | 1                  |
| ALBANYS1          | ALBANY STEAM STATION       | ALBANY   | NY    | Steam Gas/Oil | 96.7               | 100.7              | 1/1/1952             | 12/31/2002         |
| ALBANYS2          | ALBANY STEAM STATION       | ALBANY   | NY    | Steam Gas/Oil | 96.5               | 100.75             | 1/1/1952             | 12/31/2002         |
| ALBANYS3          | ALBANY STEAM STATION       | ALBANY   | NY    | Steam Gas/Oil | 97.25              | 100                | 1/1/1953             | 12/31/2002         |
| ALBANYS4          | ALBANY STEAM STATION       | ALBANY   | NY    | Steam Gas/Oil | 98.25              | 100                | 1/1/1954             | 12/31/2002         |
|                   | Retirements in SCE&G       |          |       |               |                    |                    |                      |                    |
| URQUAHA1          | URQUHART - SCEG            | AIKEN    | SC    | Coal          | 245                | 265                | 1/1/1953             | 5/31/2002          |
| URQUAHA1          | URQUHART - SCEG            | AIKEN    | SC    | Coal          | 245                | 265                | 1/1/1953             | 5/31/2002          |

#### Monthly Gas Prices

.

Table A-19: Basis Differentials and Regional Natural Gas Prices

| Image     Easter     Parte     Parte <t< th=""><th></th><th></th><th>Plant Gat</th><th>Prices</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |       | Plant Gat  | Prices |            |       |            |               |            |       |            |       |            |       |            |       |          |       |            |       |            |       |            |       |            |       |            |              |            |       |            |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|------------|--------|------------|-------|------------|---------------|------------|-------|------------|-------|------------|-------|------------|-------|----------|-------|------------|-------|------------|-------|------------|-------|------------|-------|------------|--------------|------------|-------|------------|-------|
| Benick     Benick<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |       | New En     | gland  | Easten     | a NY  | NYC        | 2             | Eastern    | PA'NJ | Western    | NY/PA | DC. DE     | . MD  | WV.        | KΥ    | NC.      | VA    | SC. C      | 3A    | South      | east  | Flori      | da    | Midconi    | inent | Midw       | est          | Upper Mi   | dwest | East Te    | IXAS  |
| Lemix A     Bunk A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |       |            | •      |            |       |            |               |            |       |            |       |            | •     |            |       | 12ania 8 |       |            |       |            |       |            |       |            |       |            |              | ••         |       |            |       |
| Image     Desk     Desk <t< th=""><th></th><th></th><th>Basis &amp;</th><th></th><th>Basis &amp;</th><th></th><th>Basis &amp;</th><th></th><th>Basis &amp;</th><th></th><th>Basis &amp;</th><th></th><th>Basia &amp;</th><th></th><th>Basis &amp;</th><th></th><th>Plant</th><th></th><th>Basis &amp;</th><th></th><th>Basis &amp;</th><th></th><th>Rasis &amp;</th><th></th><th>Basis &amp;</th><th></th><th>Basis &amp;</th><th></th><th>Basis &amp;</th><th></th><th>Basis &amp;</th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |       | Basis &    |        | Basis &    |       | Basis &    |               | Basis &    |       | Basis &    |       | Basia &    |       | Basis &    |       | Plant    |       | Basis &    |       | Basis &    |       | Rasis &    |       | Basis &    |       | Basis &    |              | Basis &    |       | Basis &    |       |
| MPMP     Deak     Deak <th< th=""><th></th><th></th><th>Plant Gete</th><th></th><th>Plant Gate</th><th></th><th>Plant Gate</th><th></th><th>Plant Gate</th><th></th><th>Plant Gate</th><th></th><th>Plant Gate</th><th></th><th>Plant Gate</th><th></th><th>Gate</th><th></th><th>Plant Gale</th><th></th><th>Plant Gate</th><th></th><th>Plant Gate</th><th></th><th>Plant Gate</th><th></th><th>Plant Gate</th><th></th><th>Plant Gate</th><th></th><th>Plant Gate</th><th></th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |       | Plant Gete |        | Plant Gate |       | Plant Gate |               | Plant Gate |       | Plant Gate |       | Plant Gate |       | Plant Gate |       | Gate     |       | Plant Gale |       | Plant Gate |       | Plant Gate |       | Plant Gate |       | Plant Gate |              | Plant Gate |       | Plant Gate |       |
| mm     mm <thmm< th="">     mm     mm     mm<!--</th--><th></th><th>Henry</th><th>Deliv.</th><th>Divid</th><th>Deliv.</th><th>Divrd</th><th>Deliv.</th><th>Divrd</th><th>Deliv,</th><th>Divid</th><th>Deliv.</th><th>Divid</th><th>Deliv.</th><th>Divid</th><th>Deliv.</th><th>Divid</th><th>Deliv.</th><th>Divrd</th><th>Deliv.</th><th>Divid</th><th>Deliv.</th><th>Divid</th><th>Deliv.</th><th>Divrd</th><th>Deliv.</th><th>Divid</th><th>Deliv.</th><th>Divrd</th><th>Deliv.</th><th>Divid</th><th>Deliv.</th><th>Divid</th></thmm<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | Henry | Deliv.     | Divid  | Deliv.     | Divrd | Deliv.     | Divrd         | Deliv,     | Divid | Deliv.     | Divid | Deliv.     | Divid | Deliv.     | Divid | Deliv.   | Divrd | Deliv.     | Divid | Deliv.     | Divid | Deliv.     | Divrd | Deliv.     | Divid | Deliv.     | Divrd        | Deliv.     | Divid | Deliv.     | Divid |
| metric base     +10     15     2.53     0.91     +10     1.53     0.05     +10     0.10     +11     0.04     +11     0.04     +11     0.04     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05     0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MONTERI<br>Jame 2005 | 4 11  | Cost       | Price  | Cost       | Price | Cost       | Price<br>6 76 | Cost       | Price | Cost       | Price | Cost       | Price | Cost       | Price | Cost     | Price | Cost       | Price | Cost       | Price | Cost       | Price | Cost       | Price | Cost       | Price        | (0.10)     | 2 0 2 | Cost       | 4 00  |
| Image 2005     3.84     0.81     4.55     0.51     4.45     0.50     4.24     0.31     4.25     0.27     4.50     0.30     4.24     0.37     4.50     0.31     4.24     0.37     4.50     0.31     4.24     0.31     4.24     0.31     4.24     0.31     4.24     0.25     4.21     0.31     4.24     0.24     4.14     0.16     4.13     0.07     3.85     0.14     4.44     0.24     4.21     0.31     4.24     0.24     4.12     0.24     4.12     0.24     4.12     0.24     4.12     0.18     4.06     0.39     4.27     0.02     3.86     0.11     4.05     4.13     0.16     0.38     4.27     0.22     3.86     0.51     4.39     0.39     4.26     0.24     4.11     0.31     4.16     0.24     4.11     0.31     4.16     0.24     4.11     0.31     4.16     0.24     4.12     0.18     4.06     0.39     4.27     0.02     3.80     0.020     3.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sair 2005            | 4 10  | 1.27       | 5.36   | 0.00       | 4.01  | 104        | 5.70          | 0.97       | 5.09  | 0.00       | 9.72  | 0.93       | 5.04  | 0.27       | 4.30  | 0.70     | 4.07  | 0.00       | 4.80  | 0.23       | 4.34  | 0.20       | 4.31  | (0,04)     | 4.07  | 0.00       | 4.19         | (0.18)     | 3.92  | (0.11)     | 4.00  |
| pr     pr<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mar 2005             | 3.94  | 0.61       | 4 55   | 0.51       | 4 45  | 0.51       | 4 45          | 0.30       | 4 24  | 0.01       | 4 25  | 0.34       | 4 34  | 0.27       | 4 23  | 0.37     | 4.30  | 0.05       | 4 24  | 0.24       | 4.09  | 0.21       | 4.13  | 0.04)      | 3.95  | 0 12       | 4.06         | (0.16)     | 3 78  | 0.10)      | 3.96  |
| May 2005     382     0.02     4.55     0.53     4.45     0.52     4.24     0.29     4.21     0.38     4.24     0.22     4.14     0.20     3.89     0.14     4.66     0.04     3.78       Jul 2005     3.88     0.51     4.39     0.33     4.25     0.24     4.11     0.31     4.21     0.14     1.66     0.23     4.27     0.20     3.49     0.06     3.66     0.073     3.61     0.06     3.61     0.06     3.61     0.06     3.61     0.06     3.61     0.06     3.61     0.06     3.61     0.06     3.61     0.06     3.61     0.06     3.61     0.06     3.61     0.06     3.61     0.06     3.61     0.06     3.61     0.06     3.61     0.61     3.71     0.70     3.51     0.55     4.45     0.56     4.45     0.54     4.26     0.26     4.11     0.31     4.24     0.25     4.11     0.31     4.26     0.55     4.56     0.66     0.26     4.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Apr 2005             | 3.93  | 0.62       | 4.55   | 0.52       | 4.45  | 0.52       | 4.45          | 0.31       | 4.24  | 0 32       | 4.25  | 0.41       | 4.34  | 0.29       | 4 22  | 0.37     | 4 30  | 0.31       | 4.24  | 0.21       | 4 14  | 0.19       | 4 13  | 0.02       | 3.95  | 0.13       | 4.06         | (0.15)     | 3.78  | 0.03       | 3.96  |
| juni2005     3.88     0.51     4.39     0.39     4.28     0.42     4.29     0.70     4.58     0.23     4.11     0.33     4.21     0.24     4.12     0.18     4.06     0.39     4.27     0.02     3.80     0.08     3.86     0.07     3.81     0.05     3.51       Aug 2005     3.87     0.52     4.39     0.39     4.26     0.42     4.12     0.11     4.30     0.34     4.24     0.22     4.11     0.31     4.16     0.24     4.14     0.16     4.66     0.40     4.27     0.02     3.80     0.08     3.86     0.021     3.81     0.08     4.26     0.24     4.14     0.31     4.14     0.24     4.14     0.31     4.24     0.24     4.14     0.24     4.14     0.24     4.14     0.24     4.14     0.24     4.14     0.24     4.14     0.24     4.14     0.24     4.14     0.24     4.14     0.24     4.14     0.24     4.14     0.24     4.14     0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | May 2005             | 3.92  | 0.62       | 4.55   | 0.53       | 4.45  | 0.53       | 4.45          | 0.32       | 4.24  | 0.32       | 4.25  | 0.42       | 4.34  | 0.29       | 4.21  | 0.38     | 4.30  | 0.31       | 4.24  | 0.22       | 4.14  | 0.20       | 4.13  | 0.03       | 3.95  | 0.14       | 4.06         | (0.14)     | 3.78  | 0.04       | 3.96  |
| Jul 2005   3.88   0.51   4.39   0.39   4.26   0.42   4.29   0.71   4.56   0.24   4.12   0.18   0.06   0.39   4.27   0.02   3.80   0.06   3.86   (0.28)   3.81   0.06   3.55     Sep 2005   3.90   0.65   4.55   0.55   4.45   0.35   4.24   0.24   4.11   0.31   4.18   0.24   4.14   0.23   4.13   0.06   3.95   0.16   4.06   0.213   3.76   0.06   3.86   0.23   4.13   0.05   3.45   0.44   0.24   0.14   4.30   0.34   4.24   0.23   4.14   0.23   4.14   0.23   4.14   0.23   4.14   0.23   4.14   0.23   4.14   0.23   4.14   0.23   4.14   0.23   4.14   0.23   4.14   0.23   4.14   0.23   4.14   0.23   4.14   0.23   4.14   0.23   4.14   0.23   4.14   0.23   4.14   0.23   4.14   0.23   4.14   0.23   4.14   0.23   4.14<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jun 2005             | 3.88  | 0.51       | 4.39   | 0.39       | 4.26  | 0.42       | 4.29          | 0.70       | 4.58  | 0.23       | 4.11  | 0.33       | 4.21  | 0.24       | 4.12  | 0.31     | 4.18  | 0.24       | 4 12  | 0.18       | 4.06  | 0.39       | 4.27  | 0.02       | 3.90  | 0.08       | 3.96         | (0.27)     | 3.61  | 0.05       | 3.93  |
| Aug 2005   3.87   0.52   4.39   0.39   4.26   0.24   4.11   0.31   4.18   0.25   4.12   0.14   4.20   0.14   4.20   0.14   4.20   0.14   0.24   4.14   0.24   4.14   0.24   4.14   0.24   4.14   0.24   4.14   0.23   4.13   0.06   3.95   0.16   4.06   0.11   3.78   0.06   3.15   0.06   4.15   0.06   4.15   0.06   4.14   0.23   4.14   0.23   4.14   0.23   4.14   0.23   4.16   0.24   4.14   0.23   4.14   0.23   4.16   0.24   4.14   0.23   4.14   0.23   4.14   0.23   4.15   0.06   3.85   0.16   4.06   0.11   3.78   0.06   3.85   0.16   4.02   0.10   3.85   0.16   4.06   0.11   3.78   0.10   3.85   0.16   4.02   0.04   3.85   0.16   4.02   0.01   3.85   0.16   4.02   0.01   3.85   0.16   3.88   0.11   3.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Jul 2005             | 3.88  | 0.51       | 4.39   | 0.39       | 4.26  | 0.42       | 4.29          | 0.70       | 4.58  | 0.23       | 4.11  | 0.33       | 4.21  | 0.24       | 4.12  | 0.31     | 4.18  | 0.24       | 4.12  | D.18       | 4.06  | 0.39       | 4.27  | 0.02       | 3.90  | 0.08       | 3.96         | (0.27)     | 3.61  | 0.05       | 3.93  |
| Sep 2005     3.99     0.65     4.55     0.55     4.45     0.34     4.24     0.24     4.14     0.23     4.14     0.23     4.14     0.23     4.14     0.23     4.14     0.23     4.14     0.23     4.14     0.23     4.14     0.23     4.14     0.23     4.14     0.23     4.14     0.23     4.14     0.23     4.14     0.23     4.14     0.23     4.14     0.23     4.14     0.23     4.14     0.23     4.14     0.23     4.14     0.23     4.14     0.23     4.14     0.23     4.14     0.23     4.14     0.23     4.14     0.24     4.14     0.24     4.14     0.24     4.14     0.24     4.14     0.23     4.13     0.06     3.13     0.5     4.47     0.24     4.13     0.24     4.25     0.24     4.16     0.75     4.57     0.53     4.25     0.24     4.15     0.23     4.15     0.23     4.15     0.23     4.15     0.23     4.15     0.23     4.15    <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Aug 2005             | 3.87  | 0.52       | 4.39   | 0.39       | 4.26  | 0.42       | 4.29          | 0.71       | 4.58  | 0.24       | 4.11  | 0.34       | 4.21  | 0.24       | 4.11  | 0.31     | 4.18  | 0.25       | 4.12  | 0.19       | 4.06  | 0.40       | 4.27  | 0.02       | 3.90  | 0.09       | 3.96         | (0.26)     | 3.61  | 0.06       | 3.93  |
| Oct 2000     3.89     0.66     4.45     0.56     4.45     0.35     4.24     0.34     4.20     0.41     4.30     0.03     4.22     0.23     4.18     0.22     4.11     0.22     4.13     0.06     3.85     0.17     4.66     0.011     3.78     0.07     3.3       Dec 2005     4.03     1.31     5.34     0.90     4.83     0.90     4.33     0.91     4.23     0.31     4.34     0.011     3.78     0.100     3.86     0.11     4.02     0.00     3.81     1.13     5.34     0.90     4.21     0.22     4.13     0.22     4.13     0.34     4.22     0.23     4.15     0.30     4.22     0.04     3.88     0.11     4.02     0.18     3.73     (0.10)     3.85     0.114     4.90     0.41     4.16     0.22     4.85     0.24     4.15     0.31     4.07     0.33     4.07     0.33     4.12     0.34     4.16     0.24     4.15     0.31     4.04     0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sep 2005             | 3.90  | 0.65       | 4.55   | 0.55       | 4.45  | 0.55       | 4.45          | 0.34       | 4.24  | 0.35       | 4.25  | 0.44       | 4.34  | 0.29       | 4.19  | 0.41     | 4.30  | 0.34       | 4.24  | 0.24       | 4.14  | 0.23       | 4.13  | 0.05       | 3.95  | 0.16       | 4.06         | (0.12)     | 3.78  | 0.06       | 3,96  |
| Nov Zoop     3.68     0.59     4.48     0.59     4.48     0.59     4.49     0.33     4.22     0.29     4.17     0.22     4.16     0.10     3.78     (0.00)     3.88     (0.11)     3.79     0.00     3.81     (0.11)     3.79     (0.10)     3.74     (0.00)     3.88     (0.11)     3.79     (0.10)     3.74     (0.00)     3.88     (0.11)     3.72     (0.10)     3.75     (0.10)     3.75     (0.11)     3.75     (0.11)     3.75     (0.11)     3.75     (0.11)     3.75     (0.11)     3.75     (0.11)     3.75     (0.11)     3.75     (0.11)     3.75     (0.12)     3.75     (0.11)     3.76     (0.14)     3.73     (0.10)     3.74     (0.10)     3.76     (0.11)     3.76     (0.11)     3.76     (0.11)     3.76     (0.11)     3.76     (0.11)     3.76     (0.11)     3.76     (0.12)     3.76     (0.12)     3.76     (0.12)     3.76     (0.12)     3.76     (0.14)     3.75     (0.12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Oct 2005             | 3.89  | 0.66       | 4.55   | 0.56       | 4.45  | 0.56       | 4.45          | 0.35       | 4.24  | 0.36       | 4.25  | 0.45       | 4.34  | 0.29       | 4.18  | D.41     | 4.30  | 0.34       | 4.24  | 0.25       | 4.14  | 0.23       | 4.13  | 0.06       | 3.95  | 0.17       | 4.06         | (0.11)     | 3,78  | 0.07       | 3.96  |
| Late 2000     1.31     5.34     0.00     4.33     1.45     5.48     0.93     4.79     0.16     4.79     0.00     4.71     0.22     4.25     0.21     4.23     0.31     4.34     (0.11)     3.52     0.13     4.15       1280     5.17     0.70     4.71     1.60     5.52     0.96     4.67     0.60     4.67     0.66     4.67     0.66     4.67     0.66     4.67     0.66     4.67     0.66     2.0     3.86     0.24     4.15     0.31     4.22     (0.01)     3.86     0.24     4.15     0.31     4.22     (0.01)     3.86     0.24     4.15     0.31     4.02     (0.18)     3.73     (0.10)     3.15       Mer2007     3.75     0.61     4.37     0.52     4.26     0.31     4.07     0.34     4.16     0.29     4.04     0.38     4.12     0.31     4.05     0.21     3.96     0.30     4.04     0.02     3.71     0.10     3.80     0.44     0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Nov 2005             | 3.00  | 0.59       | 4.48   | 0.50       | 4.38  | 0.58       | 4.45          | 0.41       | 4.30  | 0.47       | 4.35  | 0.44       | 4.32  | 0.29       | 4.17  | 0.40     | 4.29  | 0.33       | 4.22  | 0.29       | 4.17  | 0.22       | 4.10  | (0.10)     | 3.78  | (0.00)     | 3.88         | (0.19)     | 3.70  | (0.06)     | 3.62  |
| Junc 200   Junc 200 <th< td=""><td>Lec 2003</td><td>3.03</td><td>1.31</td><td>0.34</td><td>0.80</td><td>4.93</td><td>1.40</td><td>0.48<br/>5.62</td><td>0.70</td><td>4./9</td><td>0.40</td><td>4.43</td><td>0.93</td><td>4.95</td><td>0.26</td><td>4.29</td><td>0.75</td><td>4./9</td><td>0.66</td><td>4.71</td><td>0.22</td><td>4.25</td><td>0.21</td><td>4.24</td><td>0.21</td><td>9.23</td><td>0.31</td><td>4.09</td><td>(0.11)</td><td>3.92</td><td>0.13</td><td>3.81</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lec 2003             | 3.03  | 1.31       | 0.34   | 0.80       | 4.93  | 1.40       | 0.48<br>5.62  | 0.70       | 4./9  | 0.40       | 4.43  | 0.93       | 4.95  | 0.26       | 4.29  | 0.75     | 4./9  | 0.66       | 4.71  | 0.22       | 4.25  | 0.21       | 4.24  | 0.21       | 9.23  | 0.31       | 4.09         | (0.11)     | 3.92  | 0.13       | 3.81  |
| Mar 2007   3.75   0.61   4.37   0.62   4.01   0.52   4.02   0.74   4.16   0.76   4.17   0.10   4.22   0.03   4.12   0.03   4.12   0.03   4.12   0.03   4.12   0.03   4.12   0.03   4.16   0.21   3.96   0.22   4.96   0.21   3.96   0.22   4.04   0.03   4.12   0.33   4.06   0.21   3.96   0.22   4.04   0.03   7.6   0.14   4.38   0.15   3.59   0.03   3.7   0.62   4.07   0.42   4.16   0.29   4.04   0.33   4.12   0.33   4.06   0.21   3.96   0.28   4.04   0.03   3.76   0.16   3.89   0.15   3.59   0.03   3.7     Jun 2007   3.70   0.52   4.22   0.33   4.04   0.24   3.94   0.31   4.01   0.25   3.94   0.18   3.88   0.48   4.18   0.02   3.71   0.10   3.80   0.424   3.90   0.31   4.01   0.25   3.94   0.18   3.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Eeb 2007             | 3.91  | 1 28       | 5.17   | 0.79       | 4.71  | 1.60       | 5.52          | 0.95       | 4.07  | 0.00       | 4.51  | 0.92       | 4.83  | 0.27       | 4.10  | 0.75     | 4.67  | 0.07       | 4.50  | 0.23       | 4.10  | 0.30       | 4.22  | (0.04)     | 3.00  | 0.11       | 4.02         | (0.18)     | 3 73  | (0.10)     | 3.81  |
| Apr 2007   3.75   0.62   4.37   0.52   4.27   0.53   4.28   0.32   4.07   0.42   4.16   0.29   4.04   0.38   4.12   0.31   4.06   0.21   3.96   0.29   4.04   0.02   3.76   0.15   3.89   (0.15)   3.59   0.03   3.1     May 2007   3.74   0.63   4.37   0.53   4.27   0.54   4.28   0.33   4.07   0.42   3.80   0.39   4.04   0.02   3.76   0.15   3.89   (0.15)   3.59   0.03   3.1   0.01   0.25   3.94   0.10   0.25   3.94   0.16   3.88   0.44   4.18   0.02   3.71   0.10   3.80   (0.26)   3.43   0.05   3.71   0.10   3.80   (0.26)   3.44   1.40   0.24   3.94   0.31   4.01   0.25   3.94   0.18   3.88   0.48   4.18   0.02   3.71   0.10   3.80   (0.26)   3.43   0.05   3.71   0.18   3.89   0.43   1.02   3.93   0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mar 2007             | 3.75  | 0.61       | 4.37   | 0.51       | 4.27  | 0.52       | 4.28          | 0.31       | 4.07  | 0.31       | 4.07  | 0.32       | 4.16  | 0.29       | 4.04  | 0.37     | 4.12  | 0.30       | 4.06  | 0.20       | 3.95  | 0.28       | 4.04  | 0.01       | 3.76  | 0.14       | 3.89         | (0.16)     | 3.59  | 0.02       | 3.78  |
| Hisy 2007     3.74     0.63     4.37     0.53     4.27     0.54     4.28     0.33     4.07     0.43     4.16     0.29     4.03     0.39     4.12     0.32     4.06     0.22     3.96     0.30     4.04     0.03     3.76     0.16     3.89     0.15     3.59     0.04     3.1       Jun 2007     3.70     0.52     4.22     0.39     4.09     0.44     0.43     9.44     0.31     4.01     0.25     3.94     0.16     3.88     0.48     4.18     0.02     3.71     0.10     3.80     0.24     3.93     0.34     4.04     0.24     3.94     0.31     4.01     0.25     3.94     0.18     3.88     0.48     4.18     0.02     3.71     0.16     3.80     0.24     3.93     0.35     4.04     0.24     3.93     0.35     4.04     0.25     3.94     0.19     3.88     0.49     4.18     0.02     3.71     0.11     3.80     0.25     3.95     0.01     3.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Apr 2007             | 3.75  | 0.62       | 4.37   | 0.52       | 4.27  | 0.53       | 4.28          | 0.32       | 4.07  | 0.32       | 4.07  | 0.42       | 4.16  | 0.29       | 4.04  | 0.38     | 4.12  | 0.31       | 4.05  | 0.21       | 3.96  | 0.29       | 4.04  | 0.02       | 3.76  | 0.15       | 3.89         | (0.15)     | 3.59  | 0.03       | 3.78  |
| Jun 2007   3.70   0.52   4.22   0.39   4.09   0.43   4.13   0.69   4.39   0.24   3.94   0.31   4.01   0.25   3.84   0.18   3.88   0.48   4.18   0.02   3.71   0.10   3.80   0.28   3.41   0.05   3.1     Jul 2007   3.70   0.52   4.22   0.39   4.09   0.44   4.13   0.69   4.39   0.24   3.94   0.31   4.01   0.25   3.94   0.18   3.88   0.48   4.18   0.02   3.71   0.10   3.80   0.24   3.93   0.34   4.04   0.24   3.94   0.31   4.01   0.25   3.94   0.18   3.88   0.48   4.18   0.02   3.71   0.10   3.80   0.26   3.84   0.48   4.18   0.02   3.71   0.10   3.80   0.26   3.43   0.66   3.7     Sep 2007   3.72   0.65   4.37   0.56   4.28   0.35   4.07   0.36   4.07   0.48   4.16   0.29   3.90   0.31   4.06   0.22 <td>May 2007</td> <td>3.74</td> <td>0.63</td> <td>4.37</td> <td>0.53</td> <td>4.27</td> <td>0.54</td> <td>4.28</td> <td>0.33</td> <td>4.07</td> <td>0.33</td> <td>4.07</td> <td>0.43</td> <td>4.16</td> <td>0,29</td> <td>4.03</td> <td>0.39</td> <td>4.12</td> <td>0.32</td> <td>4.06</td> <td>0.22</td> <td>3.96</td> <td>0.30</td> <td>4.04</td> <td>0.03</td> <td>3.76</td> <td>0.16</td> <td>3.89</td> <td>(0.15)</td> <td>3,59</td> <td>0.04</td> <td>3.78</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | May 2007             | 3.74  | 0.63       | 4.37   | 0.53       | 4.27  | 0.54       | 4.28          | 0.33       | 4.07  | 0.33       | 4.07  | 0.43       | 4.16  | 0,29       | 4.03  | 0.39     | 4.12  | 0.32       | 4.06  | 0.22       | 3.96  | 0.30       | 4.04  | 0.03       | 3.76  | 0.16       | 3.89         | (0.15)     | 3,59  | 0.04       | 3.78  |
| Jul 2007   3.70   0.52   4.22   0.39   4.09   0.43   4.13   0.66   4.39   D.24   3.93   0.24   4.04   0.24   3.94   0.11   0.25   3.89   0.48   4.18   0.02   3.71   0.10   3.80   0.26   3.43   0.06   3.13   0.01   0.25   3.94   0.11   3.80   0.48   4.18   0.02   3.71   0.10   3.80   0.26   3.43   0.06   3.13     Aug 2007   3.69   0.55   4.37   0.56   4.27   0.56   4.28   0.35   4.07   0.35   4.07   0.46   4.16   0.29   4.00   0.41   4.12   0.34   4.06   0.25   3.96   0.33   4.04   0.06   3.76   0.18   3.89   0.12   3.59   0.06   3.7   0.10   3.80   0.24   4.04   0.26   3.90   0.31   4.04   0.06   3.35   4.04   0.06   3.35   4.04   0.24   3.96   0.33   4.04   0.06   3.35   4.04   0.24   3.96   0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Jun 2007             | 3.70  | 0.52       | 4.22   | 0.39       | 4.09  | 0.43       | 4.13          | 0.69       | 4.39  | 0.24       | 3.93  | 0.34       | 4.04  | 0.24       | 3.94  | 0.31     | 4.01  | 0.25       | 3.94  | 0.18       | 3.88  | 0.48       | 4.18  | 0.02       | 3.71  | 0.10       | 3.80         | (0.26)     | 3.43  | 0.05       | 3.75  |
| Aug 2007   3.69   0.53   4.22   0.40   4.09   0.44   4.13   0.70   4.39   0.24   3.93   0.35   4.04   0.24   3.93   0.32   4.01   0.25   3.89   0.19   3.88   0.49   4.18   0.02   3.71   0.11   3.80   0.22   3.43   50   0.66   3.7   0.18   3.89   0.12   3.88   0.49   4.18   0.02   3.71   0.11   3.80   0.22   3.43   50   0.66   3.7   0.18   3.89   0.12   3.59   0.06   3.7     0.62   0.50   4.37   0.56   4.27   0.57   4.28   0.35   4.07   0.46   4.16   0.29   4.00   0.42   4.12   0.35   4.06   0.22   3.96   0.33   4.04   0.06   3.76   0.19   3.89   0.17   3.69   0.77   4.59   0.67   4.10   0.44   4.14   0.29   3.99   0.31   4.15   0.20   4.06   0.22   4.06   0.31   4.17   0.000   3.83   0.15 <t< td=""><td>Jul 2007</td><td>3.70</td><td>0.52</td><td>4.22</td><td>0.39</td><td>4.09</td><td>0.43</td><td>4.13</td><td>0.69</td><td>4.39</td><td>0.24</td><td>3.93</td><td>0.34</td><td>4.04</td><td>0.24</td><td>3.94</td><td>0.31</td><td>4.01</td><td>0.25</td><td>3.94</td><td>0.18</td><td>3.88</td><td>0.48</td><td>4.18</td><td>0.02</td><td>3.71</td><td>0.10</td><td>3.80</td><td>(0.28)</td><td>3.43</td><td>0.05</td><td>3.75</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jul 2007             | 3.70  | 0.52       | 4.22   | 0.39       | 4.09  | 0.43       | 4.13          | 0.69       | 4.39  | 0.24       | 3.93  | 0.34       | 4.04  | 0.24       | 3.94  | 0.31     | 4.01  | 0.25       | 3.94  | 0.18       | 3.88  | 0.48       | 4.18  | 0.02       | 3.71  | 0.10       | 3.80         | (0.28)     | 3.43  | 0.05       | 3.75  |
| Sep 2007 3.72 0.65 4.37 0.56 4.27 0.56 4.28 0.35 4.07 0.36 4.07 0.36 4.07 0.45 4.16 0.29 4.00 0.41 4.12 0.34 4.06 0.24 3.96 0.32 4.04 0.05 3.76 0.18 3.89 (0.12) 3.59 0.06 3.7<br>Nov2007 3.71 0.66 4.37 0.56 4.27 0.57 4.28 0.36 4.07 0.36 4.07 0.36 4.07 0.46 4.16 0.29 4.00 0.42 4.12 0.35 4.06 0.24 3.96 0.32 4.04 0.06 3.76 0.18 3.89 (0.12) 3.59 0.06 3.7<br>Nov2007 3.70 0.80 4.30 0.50 4.20 0.58 4.29 0.42 4.12 0.46 4.16 0.44 4.14 0.29 3.99 0.40 4.11 0.34 4.04 0.28 3.99 0.31 4.02 (0.10) 3.61 0.02 3.72 (0.19) 3.51 (0.06) 3.7<br>Dec 2007 3.84 1.28 5.11 0.83 4.65 1.63 5.46 0.99 4.59 0.40 4.24 0.91 4.75 0.26 4.10 0.75 4.59 0.67 4.51 0.22 4.06 0.31 4.15 0.20 4.04 0.32 4.16 (0.12) 3.73 0.13 3.6<br>Jan 2010 3.83 1.28 5.11 0.83 4.65 1.63 5.46 0.99 4.82 0.63 4.46 0.95 4.78 0.26 4.09 0.79 4.62 0.71 4.54 0.27 4.10 0.34 4.17 (0.00) 3.83 0.15 3.97 (0.15) 3.68 (0.06) 3.7<br>Feb 2010 3.83 1.28 5.11 0.83 4.65 1.63 5.46 0.99 4.82 0.63 4.46 0.95 4.78 0.26 4.09 0.79 4.62 0.71 4.54 0.27 4.10 0.34 4.17 (0.00) 3.83 0.15 3.97 (0.15) 3.68 (0.06) 3.7<br>Mar 2010 3.88 0.64 4.32 0.54 4.22 0.55 4.23 0.34 4.02 0.34 4.02 0.44 4.12 0.29 3.97 0.39 4.08 0.33 4.01 0.23 3.91 0.31 3.99 0.03 3.72 0.16 3.85 (0.14) 3.54 0.05 3.7<br>Mar 2010 3.86 0.64 4.32 0.54 4.22 0.55 4.23 0.34 4.02 0.34 4.02 0.43 4.12 0.29 3.97 0.39 4.08 0.33 4.01 0.23 3.91 0.31 3.99 0.03 3.72 0.16 3.85 (0.14) 3.54 0.05 3.7<br>Jun 2010 3.85 0.54 4.17 0.39 4.04 0.43 4.08 0.69 4.34 0.24 3.89 0.34 3.99 0.24 3.89 0.31 3.96 0.25 3.90 0.18 3.83 0.48 4.13 0.02 3.67 0.10 3.75 (0.26) 3.39 0.05 3.7<br>Jun 2010 3.65 0.52 4.17 0.39 4.04 0.43 4.08 0.69 4.34 0.24 3.89 0.34 3.99 0.24 3.89 0.31 3.96 0.25 3.90 0.18 3.83 0.48 4.13 0.02 3.67 0.10 3.75 (0.26) 3.39 0.05 3.7<br>Jun 2010 3.65 0.52 4.17 0.39 4.04 0.43 4.08 0.69 4.34 0.24 3.89 0.34 3.99 0.24 3.89 0.31 3.96 0.25 3.90 0.18 3.83 0.48 4.13 0.02 3.67 0.10 3.75 (0.26) 3.39 0.05 3.7<br>Jun 2010 3.65 0.52 4.17 0.39 4.04 0.43 4.08 0.69 4.34 0.24 3.89 0.34 3.99 0.24 3.89 0.31 3.96 0.25 3.90 0.18 3.83 0.48 4.13 0.02 3.67 0.10 3.75 (0.26) 3.39 0.05 3.7<br>Jun 2010 3.65 0.52 4.17 0.39 4.04 0. | Aug 2007             | 3.69  | 0.53       | 4.22   | 0.40       | 4.09  | 0.44       | 4.13          | 0.70       | 4.39  | 0.24       | 3.93  | 0.35       | 4.04  | 0.24       | 3.93  | 0.32     | 4.01  | 0.25       | 3.94  | 0.19       | 3.88  | 0.49       | 4.18  | 0.02       | 3.71  | 0.11       | 3.80         | (0.26)     | 3.43  | 0.06       | 3.75  |
| Oct 2007   3.71   0.56   4.37   0.56   4.27   0.57   4.28   0.38   4.07   0.48   4.16   0.29   4.00   0.42   4.12   0.35   4.06   0.25   3.96   0.33   4.04   0.08   3.76   0.19   3.89   (0.12)   3.59   (0.19)   3.69   (0.19)   3.69   (0.19)   3.69   (0.19)   3.69   (0.12)   3.96   0.31   4.04   0.08   3.76   0.19   3.89   (0.12)   3.59   (0.31   4.16   0.24   4.12   0.25   3.96   0.31   4.04   0.08   3.76   0.19   3.89   (0.12)   3.73   0.13   3.6   0.31   4.15   0.20   4.04   0.32   4.16   (0.41)   3.4   4.04   0.24   4.12   0.24   4.61   0.31   4.15   0.20   4.04   0.32   4.16   0.43   4.17   0.20   3.31   4.15   0.20   4.04   0.32   4.06   3.51   0.26   4.09   0.79   4.62   0.71   4.54   0.27  4.10   0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sep 2007             | 3.72  | 0.65       | 4.37   | 0.55       | 4.27  | 0.56       | 4.28          | 0.35       | 4.07  | 035        | 4.07  | 0.45       | 4.16  | 0.29       | 4.00  | 0.41     | 4.12  | 0.34       | 4.06  | 0.24       | 3.96  | 0.32       | 4.04  | 0.05       | 3.76  | 0.18       | 3.89         | (0.12)     | 3.59  | 0.06       | 3.78  |
| Nor body   3.60   0.50   4.30   0.50   4.30   0.50   4.30   0.50   4.30   0.50   4.30   0.50   4.30   0.50   4.30   0.50   4.30   0.50   4.30   0.50   4.30   0.50   4.30   0.50   4.30   0.50   4.30   0.50   4.30   0.50   4.30   0.50   4.30   0.51   0.02   0.31   4.15   0.20   3.99   0.31   4.15   0.20   4.06   0.31   4.15   0.20   4.06   0.31   4.15   0.20   4.06   0.31   4.15   0.20   4.04   0.21   4.06   0.31   4.15   0.20   4.04   0.21   4.06   0.31   4.15   0.20   4.04   0.21   4.05   4.05   4.05   4.06   0.95   4.78   0.26   4.00   0.79   4.62   0.71   4.54   0.27   4.10   0.34   4.17   0.00   3.83   0.15   3.97   0.015   3.68   (0.06)   3.7     Feb 2010   3.83   1.28   5.11   0.83   4.60   0.95 </td <td>Oct 2007</td> <td>3.71</td> <td>0.66</td> <td>4.37</td> <td>0.56</td> <td>4.27</td> <td>0.57</td> <td>4.28</td> <td>0.36</td> <td>4.07</td> <td>0.40</td> <td>4.07</td> <td>0.48</td> <td>4.16</td> <td>0.29</td> <td>4.00</td> <td>0.42</td> <td>4.12</td> <td>0.35</td> <td>4.06</td> <td>0.25</td> <td>3.96</td> <td>0.33</td> <td>4.04</td> <td>0.06</td> <td>3.76</td> <td>0.19</td> <td>3.89</td> <td>(0.12)</td> <td>3.09</td> <td>0.07</td> <td>3.10</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Oct 2007             | 3.71  | 0.66       | 4.37   | 0.56       | 4.27  | 0.57       | 4.28          | 0.36       | 4.07  | 0.40       | 4.07  | 0.48       | 4.16  | 0.29       | 4.00  | 0.42     | 4.12  | 0.35       | 4.06  | 0.25       | 3.96  | 0.33       | 4.04  | 0.06       | 3.76  | 0.19       | 3.89         | (0.12)     | 3.09  | 0.07       | 3.10  |
| Jan 2010   3.83   1.28   5.13   5.05   5.05   5.15   5.05   5.15   5.05   5.15   5.05   5.15   5.05   5.15   5.05   5.15   5.05   5.15   5.05   5.15   5.05   5.15   5.05   5.15   5.05   5.15   5.05   5.15   5.05   5.15   5.05   5.15   5.05   5.15   5.05   5.15   5.05   5.15   5.05   5.15   5.05   5.15   5.05   5.15   5.05   5.15   5.05   5.15   5.05   5.15   5.05   5.15   5.05   5.15   5.05   5.15   5.05   5.15   5.05   4.22   5.5   4.23   0.54   4.02   0.44   4.12   0.29   3.97   0.39   4.06   0.33   4.01   0.23   3.91   0.31   3.99   0.03   3.72   0.16   3.85   (0.14)   3.54   0.05   3.7     Apr 2010   3.86   0.64   4.32   0.54   4.22   0.55   4.23   0.34   4.02   0.43   4.12   0.29   3.97   0.39 <td>Dec 2007</td> <td>3.84</td> <td>1 20</td> <td>5.12</td> <td>0.50</td> <td>4.20</td> <td>1.13</td> <td>5 27</td> <td>0.42</td> <td>4.14</td> <td>0.40</td> <td>4.10</td> <td>0.44</td> <td>4.19</td> <td>0.29</td> <td>3.99</td> <td>0.40</td> <td>4.60</td> <td>0.34</td> <td>4.51</td> <td>0.20</td> <td>3.93</td> <td>0.31</td> <td>9.02</td> <td>(0.10)</td> <td>4.04</td> <td>0.02</td> <td>3.1Z<br/>A 16</td> <td>(0.12)</td> <td>3.71</td> <td>0.12</td> <td>3.07</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dec 2007             | 3.84  | 1 20       | 5.12   | 0.50       | 4.20  | 1.13       | 5 27          | 0.42       | 4.14  | 0.40       | 4.10  | 0.44       | 4.19  | 0.29       | 3.99  | 0.40     | 4.60  | 0.34       | 4.51  | 0.20       | 3.93  | 0.31       | 9.02  | (0.10)     | 4.04  | 0.02       | 3.1Z<br>A 16 | (0.12)     | 3.71  | 0.12       | 3.07  |
| Feb 2010   3.83   1.28   5.11   0.83   4.85   1.86   5.46   0.99   4.82   0.63   4.78   0.26   4.09   0.79   4.62   0.71   4.54   0.27   4.10   0.34   4.17   (0.00)   3.83   0.15   3.97   (0.15)   3.88   (0.06)   3.7     Mar 2010   3.86   0.64   4.32   0.54   4.22   0.55   4.23   0.34   4.02   0.44   4.12   0.29   3.97   0.39   4.08   0.33   4.01   0.23   3.91   0.31   3.99   0.03   3.72   0.16   3.85   (0.14)   3.54   0.05   3.7     Apr 2010   3.86   0.64   4.32   0.54   4.22   0.53   4.02   0.44   4.12   0.29   3.97   0.39   4.08   0.33   4.01   0.23   3.91   0.31   3.99   0.03   3.72   0.16   3.85   (0.14)   3.54   0.05   3.7     Jun 2010   3.85   0.54   4.32   0.54   4.32   0.54   4.32   0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Jan 2010             | 3.83  | 1 28       | 5 11   | 0.83       | 4.85  | 1.63       | 5.46          | 0.99       | 4 82  | 0.45       | 4 46  | 0.05       | 4 78  | 0.20       | 4.00  | 0.79     | 4 62  | 0.07       | 4.54  | 0.27       | 4 10  | 0.34       | 4.13  | (0.00)     | 3.83  | 0.02       | 3 97         | (0.15)     | 3.68  | (0.06)     | 3 76  |
| Mar 2010 3.88 0.64 4.32 0.54 4.22 0.55 4.23 0.34 4.02 0.34 4.02 0.44 4.12 0.29 3.97 0.39 4.08 0.33 4.01 0.23 3.91 0.31 3.99 0.03 3.72 0.16 3.85 (0.14) 3.54 0.05 3.7<br>Apr 2010 3.88 0.64 4.32 0.54 4.22 0.55 4.23 0.34 4.02 0.34 4.02 0.43 4.12 0.29 3.97 0.39 4.08 0.33 4.01 0.23 3.91 0.31 3.99 0.03 3.72 0.16 3.85 (0.14) 3.54 0.05 3.7<br>Mary 2010 3.88 0.64 4.32 0.54 4.22 0.55 4.23 0.34 4.02 0.34 4.02 0.43 4.12 0.29 3.97 0.39 4.08 0.33 4.01 0.23 3.91 0.31 3.99 0.03 3.72 0.16 3.85 (0.14) 3.54 0.05 3.7<br>Jun 2010 3.85 0.52 4.17 0.39 4.04 0.43 4.08 0.69 4.34 0.24 3.89 0.34 3.99 0.24 3.89 0.31 3.96 0.25 3.90 0.18 3.83 0.48 4.13 0.02 3.67 0.10 3.75 (0.26) 3.39 0.05 3.7<br>Jul 2010 3.65 0.52 4.17 0.39 4.04 0.43 4.08 0.69 4.34 0.24 3.89 0.34 3.99 0.24 3.89 0.31 3.96 0.25 3.90 0.18 3.83 0.48 4.13 0.02 3.67 0.10 3.75 (0.26) 3.39 0.05 3.7<br>Jul 2010 3.65 0.52 4.17 0.39 4.04 0.43 4.08 0.69 4.34 0.24 3.89 0.34 3.99 0.24 3.89 0.31 3.96 0.25 3.90 0.18 3.83 0.48 4.13 0.02 3.67 0.10 3.75 (0.26) 3.39 0.05 3.7<br>Jul 2010 3.65 0.52 4.17 0.39 4.04 0.43 4.08 0.69 4.34 0.24 3.89 0.34 3.99 0.24 3.89 0.31 3.96 0.25 3.90 0.18 3.83 0.48 4.13 0.02 3.67 0.10 3.75 (0.26) 3.39 0.05 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Feb 2010             | 3.83  | 1.28       | 5.11   | 0.83       | 4.65  | 1.63       | 5.46          | 0.99       | 4.82  | 0.63       | 4.46  | 0.95       | 4.78  | 0.26       | 4.09  | 0.79     | 4.62  | 0.71       | 4.54  | 0.27       | 4.10  | 0.34       | 4.17  | (0.00)     | 3.83  | 0.15       | 3.97         | (0.15)     | 3.68  | (0.06)     | 3.76  |
| Apr2010   3.88   0.64   4.32   0.54   4.22   0.55   4.23   0.34   4.02   0.43   4.12   0.29   3.97   0.39   4.08   0.33   4.01   0.23   3.91   0.31   3.99   0.03   3.72   0.16   3.85   (0.14)   3.54   0.00   3.71     May 2010   3.88   0.84   4.32   0.54   4.22   0.55   4.23   0.34   4.02   0.43   4.12   0.29   3.97   0.39   4.08   0.33   4.01   0.23   3.91   0.31   3.99   0.03   3.72   0.16   3.85   (0.14)   3.54   0.04   3.13   3.90   0.33   4.01   0.22   3.91   0.31   3.99   0.03   3.72   0.16   3.85   (0.14)   3.54   0.04   3.13   3.91   0.31   3.99   0.03   3.72   0.16   3.85   (0.14)   3.54   0.04   3.91   3.91   0.31   3.99   0.03   3.72   0.16   3.85   (0.41)   3.54   0.04   3.91   3.91   0.31 <th< td=""><td>Mar 2010</td><td>3.68</td><td>0.64</td><td>4.32</td><td>0.54</td><td>4.22</td><td>0.55</td><td>4.23</td><td>0.34</td><td>4.02</td><td>0.34</td><td>4.02</td><td>0.44</td><td>4.12</td><td>0.29</td><td>3.97</td><td>0.39</td><td>4.08</td><td>0.33</td><td>4.01</td><td>0.23</td><td>3.91</td><td>0.31</td><td>3.99</td><td>0.03</td><td>3.72</td><td>0,16</td><td>3.85</td><td>(0.14)</td><td>3,54</td><td>0.05</td><td>3.73</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mar 2010             | 3.68  | 0.64       | 4.32   | 0.54       | 4.22  | 0.55       | 4.23          | 0.34       | 4.02  | 0.34       | 4.02  | 0.44       | 4.12  | 0.29       | 3.97  | 0.39     | 4.08  | 0.33       | 4.01  | 0.23       | 3.91  | 0.31       | 3.99  | 0.03       | 3.72  | 0,16       | 3.85         | (0.14)     | 3,54  | 0.05       | 3.73  |
| May 2010     3.88     D.64     4.32     0.54     4.22     0.55     4.23     D.34     4.02     D.43     4.12     D.29     3.97     D.39     4.08     D.33     4.01     D.22     3.91     0.31     3.99     D.03     3.72     D.16     3.85     (0.14)     3.54     0.04     3.1       Jun 2010     3.85     0.52     4.17     0.39     4.04     0.43     4.02     0.34     3.99     0.24     3.89     0.31     3.96     0.25     3.90     0.16     3.83     0.48     4.13     0.02     3.67     0.10     3.75     (0.26)     3.39     0.24     3.89     0.31     3.96     0.25     3.90     0.16     3.83     0.48     4.13     0.02     3.67     0.10     3.75     (0.26)     3.39     0.24     3.89     0.31     3.96     0.25     3.90     0.16     3.83     0.48     4.13     0.02     3.67     0.10     3.75     (0.26)     3.39     0.24     3.89     0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Apr 2010             | 3.66  | 0.64       | 4.32   | 0.54       | 4.22  | 0.55       | 4.23          | 0.34       | 4.02  | 0.34       | 4.02  | 0.43       | 4.12  | 0.29       | 3.97  | 0.39     | 4.08  | 0.33       | 4.01  | 0.23       | 3.91  | 0.31       | 3.99  | 0.03       | 3.72  | 0.16       | 3.85         | (0.14)     | 3.54  | 0.05       | 3.73  |
| Jun 2010 3.65 0.52 4.17 0.39 4.04 0.43 4.08 0.69 4.34 0.24 3.89 0.34 3.99 0.24 3.89 0.31 3.96 0.25 3.90 0.18 3.83 0.48 4.13 0.02 3.67 0.10 3.75 (0.26) 3.39 0.05 3.7<br>Jul 2010 3.65 0.52 4.17 0.39 4.04 0.43 4.08 0.69 4.34 0.24 3.89 0.34 3.99 0.24 3.89 0.31 3.96 0.25 3.90 0.18 3.83 0.48 4.13 0.02 3.67 0.10 3.75 (0.26) 3.39 0.05 3.7<br>Jul 2010 3.65 0.52 4.17 0.39 4.04 0.43 4.08 0.69 4.34 0.24 3.89 0.34 3.99 0.24 3.89 0.31 3.96 0.25 3.90 0.18 3.83 0.48 4.13 0.02 3.67 0.10 3.75 (0.26) 3.39 0.05 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | May 2010             | 3.68  | 0.64       | 4.32   | 0.54       | 4.22  | 0.55       | 4.23          | 0.34       | 4.02  | 0.33       | 4.02  | 0.43       | 4.12  | 0.29       | 3.97  | 0.39     | 4.08  | 0.33       | 4.01  | 0.22       | 3.91  | 0.31       | 3.99  | 0.03       | 3.72  | 0.16       | 3.85         | (0.14)     | 3.54  | 0.04       | 3.73  |
| Jul 2010 3.65 0.52 4.17 0.39 4.04 0.43 4.08 0.69 4.34 0.24 3.89 0.34 3.99 0.24 3.89 0.31 3.96 0.25 3.90 0.18 3.83 0.48 4.13 0.02 3.67 0.10 3.75 (0.26) 3.39 0.05 3.7<br>Aun 2010 3.65 0.52 4.17 0.39 4.04 0.43 4.08 0.69 4.34 0.24 3.89 0.34 3.90 0.31 3.96 0.35 3.96 0.18 3.93 0.48 4.13 0.02 3.87 0.10 3.75 (0.26) 3.39 0.05 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Jun 2010             | 3.65  | 0.52       | 4.17   | 0.39       | 4.04  | 0.43       | 4.08          | 0.69       | 4.34  | 0.24       | 3.89  | 0.34       | 3.99  | 0.24       | 3.89  | 0.31     | 3.96  | 0.25       | 3.90  | 0.18       | 3.83  | 0.48       | 4.13  | 0.02       | 3.67  | 0 10       | 3.75         | (0.26)     | 3.39  | 0.05       | 3.70  |
| AUG2010 365 057 417 039 404 0A3 408 069 434 024 380 034 300 024 380 031 306 025 390 019 382 0AR 412 002 387 010 375 0280 330 006 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jul 2010             | 3.65  | 0.52       | 4.17   | 0.39       | 4.04  | 0.43       | 4.08          | 0.69       | 4.34  | 0.24       | 3.89  | 0.34       | 3.99  | 0.24       | 3.89  | 0.31     | 3.96  | 0.25       | 3,90  | 0.18       | 3.83  | 0.48       | 4.13  | 0.02       | 3.67  | 0.10       | 3.75         | (0.26)     | 3.39  | 0.05       | 3.70  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Aug 2010             | 3.05  | 0.52       | 4.17   | 0.39       | 4.04  | 0.43       | 4.08          | 0.69       | 4.34  | 0.24       | 3.69  | 0.34       | 3.99  | 0.24       | 3.89  | 0.31     | 396   | 0.25       | 3.90  | 0.18       | 3.83  | 0.48       | 4.13  | 0.02       | 3.57  | 0.10       | 3.75         | (0.26)     | 3.39  | 0.05       | 3.70  |
| 3-00 ματρ 5-00 υση 4.32 υση 4.22 υση 4.22 υση 4.12 υση 4.12 υ.29 4.12 υ.29 4.00 υ.32 4.01 υ.22 3.13 3.99 υ.03 3.72 υ.10 3.55 (0.14) 3.59 (0.4) 3.7<br>Οπαρική 3.68 0.64 4.29 0.64 4.29 0.64 4.29 0.24 4.09 0.34 4.29 0.29 0.29 0.01 0.22 4.01 0.24 3.00 0.03 3.70 0.04 3.55 (0.14) 3.59 (0.14) 3.59 (0.14) 3.59 (0.14) 3.59 (0.14) 3.59 (0.14) 3.59 (0.14) 3.59 (0.14) 3.59 (0.14) 3.59 (0.14) 3.59 (0.14) 3.59 (0.14) 3.59 (0.14) 3.59 (0.14) 3.59 (0.14) 3.59 (0.14) 3.59 (0.14) 3.59 (0.14) 3.59 (0.14) 3.59 (0.14) 3.59 (0.14) 3.59 (0.14) 3.59 (0.14) 3.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Oct 2010             | 3.68  | 0.04       | 4.32   | 0.54       | 4.22  | 0.00       | 4 22          | 0.34       | 4.02  | 0.33       | 4.02  | 0.43       | 4.12  | 0.28       | 3.91  | 0.39     | 4.00  | 0.32       | 4.01  | 0.22       | 3.91  | 0.31       | 3,99  | 0.03       | 3.72  | 0.10       | 3,00         | (0.14)     | 3.54  | 0.04       | 3.13  |
| Control 369 0.57 4.96 0.47 4.18 0.56 4.24 0.30 4.07 0.43 4.11 0.44 4.10 0.52 0.37 4.06 0.32 5.00 0.25 5.00 0.32 (0.12) 3.56 (0.12) 3.57 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (0.10) 3.67 (                                      | Nov 2010             | 3.69  | 0.57       | 4 26   | 0.47       | 4 16  | 0.55       | 4 24          | 0.34       | 4.07  | 0.43       | 4.11  | 0.43       | 4 10  | 0.23       | 3.37  | 0.35     | 4.06  | 0.32       | 3 00  | 0.22       | 3.91  | 0.31       | 3.35  | (0.12)     | 3.56  | (0.01)     | 3.65         | (0.17)     | 3.47  | (0.09)     | 3.60  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dec 2010             | 3.83  | 1.24       | 5.08   | 0.85       | 4.68  | 1.38       | 5.21          | 0.71       | 4.54  | 0.36       | 4.19  | 0.87       | 4.70  | 0.26       | 4 10  | 0.70     | 4 53  | 0.63       | 4.46  | 0.18       | 4.01  | 0.27       | 4 10  | 0 15       | 3.99  | 0.28       | 4 11         | (0.16)     | 3.68  | 0.08       | 3.92  |
| Jan 2014 3.84 1.28 5.12 0.82 4.86 1.63 5.47 0.99 4.83 0.63 4.47 0.95 4.79 0.26 4.10 0.79 4.62 0.71 4.55 0.27 4.10 0.34 4.18 (0.00) 3.83 0.14 3.98 (0.15) 3.69 (0.07) 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Jan 2014             | 3.84  | 1.28       | 5.12   | 0.82       | 4.66  | 1.63       | 5.47          | 0.99       | 4.83  | 0.63       | 4.47  | 0.95       | 4.79  | 0.26       | 4.10  | 0.79     | 4.62  | 0.71       | 4.55  | 0.27       | 4.10  | 0.34       | 4.18  | (0.00)     | 3.83  | 0.14       | 3.98         | (0.15)     | 3.69  | (0.07)     | 3.77  |
| Feb 2014 3.84 1.28 5.12 0.82 4.86 1.63 5.47 0.99 4.83 0.83 4.47 0.95 4.79 0.26 4.10 0.79 4.62 0.71 4.55 0.27 4.10 0.34 4.18 (0.00) 3.83 0.14 3.98 (0.15) 3.69 (0.07) 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Feb 2014             | 3.84  | 1.28       | 5.12   | 0.82       | 4.66  | 1.63       | 5.47          | 0.99       | 4.83  | 0.63       | 4.47  | 0.95       | 4.79  | 0.26       | 4.10  | 0.79     | 4.62  | 0.71       | 4.55  | 0.27       | 4,10  | 0.34       | 4.18  | (0.00)     | 3.63  | 0.14       | 3,98         | (0.15)     | 3.69  | (0.07)     | 3.77  |
| Mar 2014 3.89 0.64 4.33 0.54 4.23 0.55 4.24 0.34 4.03 0.33 4.03 0.43 4.13 0.29 3.98 0.39 4.08 0.32 4.02 0.22 3.92 0.31 4.00 0.03 3.72 0.16 3.85 (0.14) 3.55 0.04 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mar 2014             | 3.69  | 0.64       | 4.33   | 0.54       | 4.23  | 0.55       | 4.24          | 0.34       | 4.03  | 0.33       | 4.03  | 0.43       | 4.13  | 0.29       | 3.98  | 0.39     | 4.08  | 0.32       | 4.02  | 0.22       | 3.92  | 0.31       | 4.00  | 0.03       | 3.72  | 0.16       | 3.85         | (0.14)     | 3.55  | 0.04       | 3.74  |
| Apr 2014 3.69 0.64 4.33 0.54 4.23 0.55 4.24 0.34 4.03 0.33 4.03 0.43 4.13 0.29 3.98 0.39 4.08 0.32 4.02 0.22 3.92 0.31 4.00 0.03 3.72 0.16 3.85 (0.14) 3.55 0.04 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Apr 2014             | 3.69  | 0.64       | 4.33   | 0.54       | 4.23  | 0.55       | 4.24          | 0.34       | 4.03  | 0.33       | 4.03  | 0.43       | 4.13  | 0.29       | 3.98  | 0.39     | 4.08  | 0.32       | 4.02  | 0.22       | 3.92  | 0.31       | 4.00  | 0.03       | 3.72  | 0.16       | 3.85         | (0.14)     | 3.55  | 0.04       | 3.74  |
| Nay 2014 3.69 0.64 4.33 0.54 4.23 0.55 4.24 0.34 4.03 0.33 4.03 0.43 4.13 0.29 3.98 0.39 4.08 0.32 4.02 0.22 3.92 0.31 4.00 0.03 3.72 0.16 3.85 (0.14) 3.55 0.04 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | May 2014             | 3.69  | 0.64       | 4.33   | 0.54       | 4.23  | 0.55       | 4.24          | 0.34       | 4.03  | 0.33       | 4.03  | 0.43       | 4.13  | 0.29       | 3.98  | 0.39     | 4.08  | 0.32       | 4.02  | 0.22       | 3.92  | 0.31       | 4.00  | 0.03       | 3.72  | 0.16       | 3.85         | (0.14)     | 3.55  | 0.04       | 3.74  |
| Jun 2014 3.86 0.52 4.18 0.39 4.05 0.43 4.09 0.69 4.35 0.24 3.89 0.34 4.00 0.24 3.90 0.31 3.97 0.25 3.91 0.18 3.84 0.48 4.13 0.02 3.67 0.10 3.76 (0.26) 3.39 0.05 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Jun 2014             | 3.66  | 0.52       | 4.18   | 0.39       | 4.05  | 0.43       | 4.09          | 0.69       | 4.35  | 0.24       | 3.89  | 0.34       | 4.00  | 0.24       | 3.90  | 0.31     | 3.97  | 0.25       | 3.91  | 0.18       | 3.84  | 0.48       | 4.13  | 0 02       | 3.67  | 0.10       | 3.76         | (0.26)     | 3.39  | 0.05       | 3.71  |
| 3/07/2014 3/05 0.52 4.18 0.39 4.05 0.43 4.09 0.69 4.25 0.24 3.89 0.34 4.00 0.24 3.90 0.31 3.97 0.25 3.91 0.18 3.84 0.46 4.13 0.02 3.67 0.10 3.76 (0.26) 3.39 0.05 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Jul 2014             | 3.66  | 0.52       | 4.18   | 0.39       | 4.05  | 0.43       | 4.09          | 0.69       | 4.35  | 0.24       | 3.89  | 0.34       | 4.00  | 0.24       | 3.90  | 0.31     | 3.97  | 0.25       | 3.91  | 0.18       | 3.84  | 0.48       | 4.13  | 0.02       | 3.67  | 0.10       | 3.76         | (0.26)     | 3.39  | 0.05       | 3.71  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NUG 2014<br>Sen 2014 | 3,00  | 0.52       | 4.18   | 0.59       | 4.05  | 0.43       | 4.09          | 0.09       | 4,35  | 0.24       | 3.89  | 0.34       | 4.00  | 0.24       | 3.90  | 0.31     | 3.97  | 0.25       | 3.91  | 0.18       | 3.84  | 0.48       | 4.13  | 0.02       | 3.67  | 0.10       | 3./6         | (0.26)     | 3.39  | 0.05       | 3.71  |
| ναρεστη νων μωνη τροι μωνη τεοι μου τενη μου μοο τμο μου του του μου μου μου μου του μου μου του μου του μου το<br>Ομερημά 369 Παμ ματα Π5μ ματα πραγματικά ματα ματα ματα ματα ματα ματα ματα ματ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Get2014              | 3.69  | 0.64       | 4.33   | 0.54       | 4.23  | 0.55       | 4.24          | 0.34       | 4.03  | 0.33       | 4.03  | 0.43       | 4.13  | 0.29       | 3.98  | 0.39     | 4.09  | 0.33       | 4.02  | 0.22       | 3.92  | 0.31       | 4.00  | 0.03       | 3.72  | 0.10       | 3.65         | (0.14)     | 3.59  | 0.04       | 3.74  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Nov 2014             | 3.69  | 0.57       | 4.26   | 0.47       | 4.16  | 0.55       | 4.25          | 0.39       | 4 08  | 0.43       | 4.12  | 0.44       | 4 10  | 0.29       | 3.90  | 0.38     | 4.07  | 0.33       | 4 00  | 0.25       | 3.92  | 0.31       | 3.98  | (0.12)     | 3.57  | (0.01)     | 3.69         | (0.22)     | 3.47  | (0.09)     | 3.60  |
| Dec 2014 3.84 1.25 5.08 0.85 4.69 1.38 5.22 0.71 4.55 0.37 4.20 0.87 4.71 0.26 4.10 0.71 4.54 0.63 4.47 0.18 4.02 0.27 4.11 0.16 3.99 0.28 4.12 (0.15) 3.68 0.09 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dec 2014             | 3.84  | 1.25       | 5.08   | 0.85       | 4.69  | 1.38       | 5.22          | 0.71       | 4.55  | 0.37       | 4.20  | 0.87       | 4.71  | 0.26       | 4.10  | 0.71     | 4.54  | 0.63       | 4.47  | 0.18       | 4.02  | 0.27       | 4.11  | 0.16       | 3.99  | 0.28       | 4.12         | (0.15)     | 3.68  | 0.09       | 3.92  |

)

|           |           |                              |            | Summer   |                 |              |            |                                         |
|-----------|-----------|------------------------------|------------|----------|-----------------|--------------|------------|-----------------------------------------|
|           |           |                              |            | Capacity | Winter Capacity | Installation | Retirement |                                         |
| MAPS Name | Ownership | Unit Name                    | Туре       | (MW)     | (MW)            | Date         | Date       | Notes                                   |
| BELLMEAD  | Dominion  | BELL MEADE                   | CC         | 230.26   | 3 250           | 1/1/1991     | 12/31/2100 | 1                                       |
| CHESTFD7  | Dominion  | CHESTERFIELD 7               | CC         | 197      | 232             | 1/1/1990     | 12/31/2100 | l i i i i i i i i i i i i i i i i i i i |
| CHESTFD8  | Dominion  | CHESTERFIELD 8               | CC         | 200      | ) 235           | 1/1/1992     | 12/31/2100 | )                                       |
| POSSUMP6  | Dominion  | POSSUM POINT 6               | CC         | 405      | 5 450           | 5/1/2003     | 12/31/2100 | 1                                       |
| BREMOBL3  | Dominion  | BREMO BLUFF 3                | Coal       | 71       | 74              | 1/1/1950     | 12/31/2100 | 1                                       |
| BREMOBL4  | Dominion  | BREMO BLUFF 4                | Coal       | 156      | 5 160           | 1/1/1958     | 12/31/2100 | 1                                       |
| CHESAST1  | Dominion  | CHESAPEAKE ENERGY CENTER 1   | Coal       | 111      | 111             | 1/1/1953     | 12/31/2100 | 1                                       |
| CHESAST2  | Dominion  | CHESAPEAKE ENERGY CENTER 2   | Coal       | 111      | 111             | 1/1/1954     | 12/31/2100 | 1                                       |
| CHESAPE3  | Dominion  | CHESAPEAKE ENERGY CENTER 3   | Coal       | 156      | 3 162           | 1/1/1959     | 12/31/2100 | 1                                       |
| CHESAST4  | Dominion  | CHESAPEAKE ENERGY CENTER 4   | Coal       | 217      | 221             | 1/1/1962     | 12/31/2100 | 1                                       |
| CHESTFD3  | Dominion  | CHESTERFIELD 3               | Coal       | 100      | ) 105           | 1/1/1952     | 12/31/2100 | 1                                       |
| CHESTFD4  | Dominion  | CHESTERFIELD 4               | Coal       | 166      | 3 171           | 1/1/1960     | 12/31/2100 | )                                       |
| CHESTFD5  | Dominion  | CHESTERFIELD 5               | Coal       | 310      | 312             | 1/1/1964     | 12/31/2100 | )                                       |
| CHESTFD6  | Dominion  | CHESTERFIELD 6               | Coal       | 656      | 8 671           | 1/1/1969     | 12/31/2100 | )                                       |
| CLOVER01  | Dominion  | CLOVER 1                     | Coal       | 44       | 441             | 1/1/1995     | 12/31/2100 | 50% ODEC                                |
| CLOVER02  | Dominion  | CLOVER 2                     | Coal       | 44       | I 441           | 1/1/1996     | 12/31/2100 | 50% ODEC                                |
| LGEALTAV  | Dominion  | LG&E WESTMORELAND-ALTAVISTA  | Coal       | 62.7     | 62.7            | 1/1/1992     | 12/31/2100 | }                                       |
| LGEHOPEW  | Dominion  | LG&E WESTMORELAND-HOPEWELL   | Coal       | 62.7     | 62.7            | 1/1/2006     | 12/31/2100 | )                                       |
| LGESOUTH  | Dominion  | LG&E WESTMORELAND-SOUTHAMPTN | Coal       | 62.7     | 62.7            | 1/1/1992     | 12/31/2100 | )                                       |
| MTSTORM1  | Dominion  | MOUNT STORM 1                | Coal       | 524      | 4 545           | 1/1/1965     | 12/31/2100 | )                                       |
| MTSTORM2  | Dominion  | MOUNT STORM 2                | Coal       | 53:      | 3 545           | 1/1/1966     | 12/31/2100 | )                                       |
| MTSTORM3  | Dominion  | MOUNT STORM 3                | Coal       | 52       | 1 536           | 1/1/1973     | 12/31/2100 | )                                       |
| POSSUMG3  | Dominion  | POSSUM POINT 3               | Coal       | 10       | 1 105           | 1/1/1955     | 5/1/2003   | Converted to Gas                        |
| POSSUMG4  | Dominion  | POSSUM POINT 4               | Coal       | 22       | 1 221           | 1/1/1962     | 5/1/2003   | Converted to Gas                        |
| YORKTOWI  | Dominion  | YORKTOWN 1                   | Coal       | 159      | 9 163           | 1/1/1957     | 12/31/2100 | )                                       |
| YORKTOW2  | Dominion  | YORKTOWN 2                   | Coal       | 16       | 7 172           | 1/1/1959     | 12/31/2100 |                                         |
| NTHBRANC  | Dominion  | NORTH BRANCH PROJECT         | Waste Coal | 7        | 4 77            | 1/1/1992     | 12/31/2100 | )                                       |
| BATHCVAP  | Dominion  | BATH COUNTY                  | PSH        | 252      | 2520            | 1/1/1990     | 12/31/2100 | 60% Dominion 40% APS                    |
| CUSHAWPD  | Dominion  | CUSHAW                       | Hydro      |          | 2 2             | 1/1/1990     | 12/31/2100 | )                                       |
| GASTONPO  | Dominion  | GASTON (NC)                  | Hydro      | 22       | 5 225           | 1/1/1990     | 12/31/2100 |                                         |
| NTHANNAH  | Dominion  | NORTH ANNA HYDRO             | Hydro      |          | 1 1             | 1/1/1990     | 12/31/2100 |                                         |
| ROANOKPD  | Dominion  | ROANOKE RAPIDS               | Hydro      | 91       |                 | 1/1/1990     | 12/31/2100 |                                         |
| NTHANNA1  | Dominion  | NORTH ANNA 1                 | Nuke       | 92       | 5 925           | 1/1/1978     | 4/1/2018   | ,<br>3 11 6% ODEC                       |
| NTHANNA?  | Dominion  | NORTH ANNA 2                 | Nuke       | 91       | 7 917           | 1/1/1980     | 8/21/2020  | 11.6% ODEC                              |
| SUDDAN    | Dominion  | SURRY 1                      | Nuko       | 81       | 0 810           | 1/1/1972     | 5/25/2012  |                                         |
| SURATO    | Dominion  |                              | Nuko       | 91       | 5 815           | 1/1/1073     | 1/20/2012  |                                         |
|           | Dominion  |                              | Poskor     | 14       | 5 013           | 7/1/2001     | 12/21/210  |                                         |
|           | Dominion  |                              | Peaker     | 1-4-5    | 5 170           | 7/1/2001     | 12/31/2100 |                                         |
| CHECACT(  | Dominion  |                              | Peaker     | 14:      | D 1/0           | 1/1/2001     | 12/31/2100 |                                         |
| CHESAGII  | Dominion  | CHECADEAKE CTOO              | Peaker     | 1        | 5 19            | 4/1/1907     | 12/3/12/00 | 3                                       |
| CHESAGT2  | Dominion  | CHESAPEAKE GT02              | Peaker     |          | D 10            | 1/1/1909     | 12/31/2100 |                                         |
|           | Dominikun |                              | Peaker     | 1        | 5 18<br>E 40    | 1/1/1909     | 12/31/2100 | ,                                       |
| CHESAPE0  | Dominion  | OUEDADEAKE GIUD              | Peaker     | 1        | o 18            | 1/1/1969     | 12/31/2100 |                                         |
| CHESAPE/  | Dominion  | UTEDAPEAKE GTU               | Peaker     | 2        | 1 29            | 1/1/1969     | 12/31/2100 |                                         |
| CHESAPE8  | Dominion  | CHESAPEAKE G108              | Peaker     | 2        | 1 29            | 1/1/1969     | 12/31/2100 | 1                                       |
| CHESAPE9  | Dominion  | CHESAPEAKE GT09              | Peaker     | 2        | 1 29            | 1/1/1970     | 12/31/2100 | J                                       |

Ì

|           |           |                                      |          | Summer   |                 |              |            |                       |
|-----------|-----------|--------------------------------------|----------|----------|-----------------|--------------|------------|-----------------------|
|           |           |                                      |          | Capacity | Winter Capacity | Installation | Retirement |                       |
| MAPS Name | Ownership | Unit Name                            | Туре     | (MW)     | (MW)            | Date         | Date       | Notes                 |
| CHESAP10  | Dominion  | CHESAPEAKE GT10                      | Peaker   | 21       | 29              | 1/1/1970     | 12/31/2100 | )                     |
| DARBYTO1  | Dominion  | DARBYTOWN 1                          | Peaker   | 72       | 92              | 1/1/1990     | 12/31/2100 | )                     |
| DARBYTO2  | Dominion  | DARBYTOWN 2                          | Peaker   | 72       | 92              | 1/1/1990     | 12/31/2100 | )                     |
| DARBYTO3  | Dominion  | DARBYTOWN 3                          | Peaker   | 72       | 92              | 1/1/1990     | 12/31/2100 | )                     |
| DARBYTO4  | Dominion  | DARBYTOWN 4                          | Peaker   | 72       | 92              | 1/1/1990     | 12/31/2100 | )                     |
| FAUQUIC1  | Dominion  | REMINGTON 1                          | Peaker   | 145      | 178             | 7/5/2000     | 12/31/2100 | )                     |
| FAUQUIC2  | Dominion  | REMINGTON 2                          | Peaker   | 145      | 178             | 7/5/2000     | 12/31/2100 | )                     |
| FAUQUIC3  | Dominion  | REMINGTON 3                          | Peaker   | 145      | 178             | 7/5/2000     | 12/31/2100 | 1                     |
| FAUQUIC4  | Dominion  | REMINGTON 4                          | Peaker   | 145      | 178             | 7/5/2000     | 12/31/2100 |                       |
| GRAVELN1  | Dominion  | GRAVEL NECK 1                        | Peaker   | 15       | 17              | 1/1/1970     | 12/31/2100 | )                     |
| GRAVELN2  | Dominion  | GRAVEL NECK 2                        | Peaker   | 22       | 28              | 1/1/1970     | 12/31/2100 |                       |
| GRAVELN3  | Dominion  | GRAVEL NECK 3                        | Peaker   | 73       | 92              | 1/1/1989     | 12/31/2100 | )                     |
| GRAVELN4  | Dominion  | GRAVEL NECK 4                        | Peaker   | 73       | 92              | 1/1/1989     | 12/31/2100 | )                     |
| GRAVELN5  | Dominion  | GRAVEL NECK 5                        | Peaker   | 73       | 92              | 1/1/1989     | 12/31/2100 | )                     |
| GRAVELN6  | Dominion  | GRAVEL NECK 6                        | Peaker   | 73       | 92              | 1/1/1989     | 12/31/2100 | )                     |
| KITTYGT1  | Dominion  | KITTY HAWK 1                         | Peaker   | 22       | 28              | 1/1/1971     | 12/31/2100 | )                     |
| KITTYGT2  | Dominion  | KITTY HAWK 2                         | Peaker   | 22       | 28              | 1/1/1971     | 12/31/2100 | )                     |
| LOWMOOR1  | Dominion  | LOW MOOR 1                           | Peaker   | 15       | 18              | 1/1/1971     | 12/31/2100 | )                     |
| LOWMOOR2  | Dominion  | LOW MOOR 2                           | Peaker   | 15       | i 18            | 1/1/1971     | 12/31/2100 | )                     |
| LOWMOOR3  | Dominion  | LOW MOOR 3                           | Peaker   | 15       | i 18            | 1/1/1971     | 12/31/2100 | )                     |
| LOWMOOR4  | Dominion  | LOW MOOR 4                           | Peaker   | 15       | 18              | 1/1/1971     | 12/31/2100 | )                     |
| MTSTOJF1  | Dominion  | MOUNT STORM GT1                      | Peaker   | 12       | 16              | 1/1/1967     | 12/31/2100 | 0                     |
| NTHNECK1  | Dominion  | NORTHERN NECK 1                      | Peaker   | 16       | 19              | 1/1/1971     | 12/31/2100 | 0                     |
| NTHNECK2  | Dominion  | NORTHERN NECK 2                      | Peaker   | 16       | 19              | 1/1/1971     | 12/31/2100 | 0                     |
| NTHNECK3  | Dominion  | NORTHERN NECK 3                      | Peaker   | 16       | 19              | 1/1/1971     | 12/31/2100 | 0                     |
| NTHNECK4  | Dominion  | NORTHERN NECK 4                      | Peaker   | 16       | 19              | 1/1/1971     | 12/31/2100 | 0                     |
| POSSUGT1  | Dominion  | POSSUM POINT GT1                     | Peaker   | 13       | 16              | 1/1/1968     | 12/31/2100 | 0                     |
| POSSUGT2  | Dominion  | POSSUM POINT GT2                     | Peaker   | 13       | 16              | 1/1/1968     | 12/31/2100 | )                     |
| POSSUGT3  | Dominion  | POSSUM POINT GT3                     | Peaker   | 13       | 16              | 1/1/1968     | 12/31/2100 | 0                     |
| POSSUGT4  | Dominion  | POSSUM POINT GT4                     | Peaker   | 13       | 16              | 1/1/1968     | 12/31/2100 | 0                     |
| POSSUGT5  | Dominion  | POSSUM POINT GT5                     | Peaker   | 13       | 16              | 1/1/1968     | 12/31/2100 | 0                     |
| POSSUGT8  | Dominion  | POSSUM POINT GT6                     | Peaker   | 13       | 16              | 1/1/1968     | 12/31/2100 | 0                     |
| POSSUMP1  | Dominion  | POSSUM POINT 1                       | ST/G/O/D | 74       | 74              | 1/1/1948     | 5/1/2003   | 3 Retired w new CC    |
| POSSUMP2  | Dominion  | POSSUM POINT 2                       | ST/G/O/D | 69       | 71              | 1/1/1951     | 5/1/2003   | 3 Retired w new CC    |
| POSSUMP3  | Dominion  | POSSUM POINT 3                       | ST/G/0/D | 101      | 105             | 5/1/2003     | 12/31/2100 | Converted to Gas      |
| POSSUMP4  | Dominion  | POSSUM POINT 4                       | ST/G/O/D | 221      | 221             | 5/1/2003     | 12/31/2100 | 0 Converted to Gas    |
| POSSUMP5  | Dominion  | POSSUM POINT 5                       | ST/G/O/D | 786      | 8 801           | 1/1/1975     | 12/31/2100 | D                     |
| YORKTOW3  | Dominion  | YORKTOWN 3                           | ST/G/O/D | 818      | 820             | 1/1/1974     | 12/31/2100 | D                     |
| DOSWECC1  | NUG       | DOSWELL COMBINED CYCLE FACILITY CC 1 | сс       | 302.5    | 363             | 1/1/1992     | 12/31/2100 | 0 5/5/2017 Term End   |
| DOSWECC2  | NUG       | DOSWELL COMBINED CYCLE FACILITY CC 2 | CC       | 302.5    | 5 363           | 1/1/1992     | 12/31/2100 | 0 5/5/2017 Term End   |
| GORDONCC  | NUG       | GORDONSVILLE ENERGY L.P.             | CC       | 217      | 288             | 1/1/1994     | 12/31/2100 | 0 5/31/2024 Term End  |
| HOPEWECC  | NUG       | HOPEWELL COGENERATION                | CC       | 337      | 400             | 1/1/1993     | 12/31/2100 | 0 7/30/2015 Term End  |
| BIRCHW01  | NUG       | BIRCHWOOD POWER FACILITY 1           | Coal     | 238      | 3 242           | 1/1/1996     | 12/31/2100 | 0 11/14/2021 Term End |
| CGNHOPEW  | NUG       | COGENTRIX HOPEWELL 1                 | Coal     | 92.5     | i 92.5          | 1/1/1987     | 12/31/2100 | 0 1/9/2008 Term End   |

|            |                                     |                                   |        | Summer         |                 |                  | <b>-</b>    |                             |
|------------|-------------------------------------|-----------------------------------|--------|----------------|-----------------|------------------|-------------|-----------------------------|
|            | A                                   | N                                 | -      | Capacity       | Winter Capacity | Installation     | Retirement  | <b>1</b> - 4                |
| CONDICUS N | Ownersnip                           |                                   | rype   | (MVV)<br>115.5 | (NIVY)<br>115.5 | Uate<br>1/1/1002 | 10/01/01/00 | 10165<br>7/31/2017 Torm End |
| CONDICU? N | NUG                                 |                                   | Coal   | 110.0          | 02.5            | 1/1/1992         | 12/31/2100  | 7/31/2017 Term End          |
|            |                                     |                                   | Coal   | 93.3<br>57 F   | 93.5            | 1/1/1992         | 12/31/2100  | 10/14/2015 Term End         |
| DOBATTLY N | NUG                                 | DC BATTLE (COG ROCKY MT) 1        | Coal   | 0/.0<br>57.5   | 57.5<br>E7.5    | 1/1/1990         | 12/31/2100  | 10/14/2015 Term End         |
| MECKIENI A |                                     | MECKI ENDUDO 4                    | Coal   | 57,5           | 57.5            | 1/1/1990         | 12/31/2100  | 11/5/0017 Term End          |
| MECKLENI N | NEC                                 |                                   | Coal   | 00             | 00              | 1/1/1992         | 12/31/2100  | 11/5/2017 Term End          |
|            | NUG                                 |                                   | Coal   | 00             | 00              | 1/1/1992         | 12/31/2100  | 10/2017 Term End            |
|            | NUC                                 | PARK 500 DIVISION 1               | Coal   | 0              | 0               | 1/1/1904         | 12/31/2100  | 12/30/2003 Term End         |
| DODTEMO1 N | NUC                                 |                                   | Coal   | 57 5           | 576             | 1/1/1903         | 12/31/2100  | 6/9/2003 Term End           |
| PORISMUI N | NUG                                 |                                   | Coal   | D/.D           | 37.3<br>57 5    | 1/1/1988         | 12/31/2100  | 6/8/2006 Term End           |
|            | NUG                                 | COGENTRIA PORTSMOUTH 2            | Coal   | 0/.5           | 07.0            | 1/1/1988         | 12/31/2100  | 5/8/2006 Term End           |
| POANOKVE N | NUC                                 |                                   | Coal   | 601            | 107.21          | 1/1/1994         | 12/31/2100  | 5/20/2019 Term End          |
|            | NUG                                 |                                   | Coal   | 44             | 40.1            | 1/1/1995         | 12/31/2100  | 5/31/2020 Term End          |
| ALEXARL1 N | NUG                                 |                                   | Other  | 10             | 10              | 1/1/1988         | 12/31/2100  | 1/28/2023 Term End          |
| ADDOMATA N | NUG                                 | ALEXANDRIAVARLINGTON MOVY 2       | Other  | 10             | 10              | 1/1/1988         | 12/31/2100  | 1/26/2023 Term End          |
| APPOMATI N | NUG                                 | APPOMATION COGEN-STONE CONT       | Other  | 38             | 38              | 1/1/1961         | 12/31/2100  | 10/25/2004 Term End         |
|            | NUG                                 | WEST VACU COVINGTON 1             | Other  | 11.5           | 11.5            | 1/1/1990         | 12/31/2100  | 12/26/2003 Term End         |
| COVINGT2 N | NUG                                 | WEST VACO COVINGTON 2             | Other  | 11.5           | 11.5            | 1/1/1990         | 12/31/2100  | 12/26/2003 Term End         |
| COVINGIS N | NUG                                 | WESTVACO COVINGTON 3              | Other  | 11.5           | 11.5            | 1/1/1990         | 12/31/2100  | 12/26/2003 Term End         |
| COVINGIA N | NUG                                 | WESTVACO COVINGTON 4              | Other  | 11.5           | 11.5            | 1/1/1990         | 12/31/2100  | 12/26/2003 Term End         |
| COVING15 N | NUG                                 | WESTVACO COVINGTON 5              | Other  | 11.5           | 11.5            | 1/1/1990         | 12/31/2100  | 12/26/2003 Term End         |
| COVINGIS N | NUG                                 | WESTVACO COVINGTON 6              | Other  | 11.5           | 11.5            | 1/1/1990         | 12/31/2100  | 12/26/2003 Term End         |
| 195ENER1 N | NUG                                 | 1-95 ENERGY-COVANTA FAIRFAX       | Other  | 79             | 79              | 1/1/1990         | 12/31/2100  | 5/31/2015 Term End          |
| MULTITR1 N | NUG                                 | MULTITRADE OF PITTSYLVANIA        | Other  | 39.8           | 39.8            | 1/1/1994         | 12/31/2100  | 6/14/2019 Term End          |
| MULTITR2 N | NUG                                 | MULTITRADE OF PITTSYLVANIA        | Other  | 39.8           | 39.8            | 1/1/1994         | 12/31/2100  | 6/14/2019 Term End          |
| SPSAPOW1 N | NUG (Netted from VAP Load Forecast) | NORFOLK NAVAL SHIPYARD 1          | Other  | 18.6           | 20              | 1/1/1987         | 12/31/2100  |                             |
| SPSAPOW2 N | NUG (Netted from VAP Load Forecast) | NORFOLK NAVAL SHIPYARD 2          | Other  | 18.6           | 20              | 1/1/1987         | 12/31/2100  |                             |
| SPSAPOW3 N | NUG (Netted from VAP Load Forecast) | NORFOLK NAVAL SHIPYARD 3          | Other  | 18.6           | 20              | 1/1/1987         | 12/31/2100  |                             |
| PLYMOUT4 N | NUG                                 | WEYERHAUSER PLYMOUTH NC 4         | Other  | 4.73           | 4.73            | 1/1/1949         | 12/31/2100  | 7/26/2004 Term End          |
| PLYMOUT6 N | NUG                                 | WEYERHAUSER PLYMOUTH NC 6         | Other  | 4.73           | 4.73            | 1/1/1956         | 12/31/2100  | 7/26/2004 Term End          |
| PLYMOUT7 N | NUG                                 | WEYERHAUSER PLYMOUTH NC 7         | Other  | 4.73           | 4.73            | 1/1/1952         | 12/31/2100  | 7/26/2004 Term End          |
| PLYMOUT8 N | NUG                                 | WEYERHAUSER PLYMOUTH NC 8         | Other  | 4.73           | 4.73            | 1/1/1964         | 12/31/2100  | 7/26/2004 Term End          |
| PLYMOUT9 N | NUG                                 | WEYERHAUSER PLYMOUTH NC 9         | Other  | 4.73           | 4.73            | 1/1/1976         | 12/31/2100  | 7/26/2004 Term End          |
| PLYMOU10 N | NUG                                 | WEYERHAUSER PLYMOUTH NC 10        | Other  | 4.73           | 4.73            | 1/1/1978         | 12/31/2100  | 7/26/2004 Term End          |
| CHESAPP6   | NUG (Netted from VAP Load Forecast) | CHESAPEAKE PAPER PRODUCTS 06      | Other  | 5.7            | 5.7             | 1/1/1937         | 12/31/2100  |                             |
| CHESAPP8 N | NUG (Netted from VAP Load Forecast) | CHESAPEAKE PAPER PRODUCTS 08      | Other  | 5              | 5               | 1/1/1954         | 12/31/2100  |                             |
| CHESAPP9   | NUG (Netted from VAP Load Forecast) | CHESAPEAKE PAPER PRODUCTS 09      | Other  | 9.6            | 10              | 1/1/1960         | 12/31/2100  |                             |
| CHESPP10 N | NUG (Netted from VAP Load Forecast) | CHESAPEAKE PAPER PRODUCTS 10      | Other  | 24             | 25              | 1/1/1968         | 12/31/2100  |                             |
| CHESAP11 N | NUG (Netted from VAP Load Forecast) | CHESAPEAKE PAPER PRODUCTS 11      | Other  | 14.4           | 15              | 1/1/1977         | 12/31/2100  |                             |
| CHESAP12 N | NUG (Netted from VAP Load Forecast) | CHESAPEAKE PAPER PRODUCTS 12      | Other  | 42.7           | 46              | 1/1/1985         | 12/31/2100  |                             |
| COMMONA1 N | NUG                                 | COMMONWEALTH ATLANTIC LIMIT 1     | Peaker | 104            | 125             | 1/1/1992         | 12/31/2100  | 6/4/2017 Term End           |
| COMMONA2   | NUG                                 | COMMONWEALTH ATLANTIC LIMIT 2     | Peaker | 104            | 125             | 1/1/1992         | 12/31/2100  | 6/4/2017 Term End           |
| COMMONA3 N | NUG                                 | COMMONWEALTH ATLANTIC LIMIT 3     | Peaker | 104            | 125             | 1/1/1992         | 12/31/2100  | 6/4/2017 Term End           |
| DOSWELL1   | NUG                                 | DOSWELL COMBINED CYCLE FACILITY 1 | Peaker | 155            | 182             | 6/7/2001         | 12/31/2100  | 12/31/2005 Term End         |
| FRANKLI1   | NUG (Netted from VAP Load Forecast) | FRANKLIN FINE PAPER 1             | Other  | 5              | 5               | 1/1/1937         | 12/31/2100  |                             |
| CDANK/ 10  |                                     |                                   |        |                |                 |                  |             |                             |

|           |                                     |                                |        | Summer<br>Capacity | Winter Capacity | Installation | Retirement |       |                     |
|-----------|-------------------------------------|--------------------------------|--------|--------------------|-----------------|--------------|------------|-------|---------------------|
| MAPS Name | Ownership                           | Unit Name                      | Туре   | (MW)               | (MW)            | Date         | Date       | Notes |                     |
| FRANKLI7  | NUG (Netted from VAP Load Forecast) | FRANKLIN FINE PAPER 7          | Other  | 15.02              | 15.63           | 1/1/1958     | 12/31/2100 |       |                     |
| FRANKLI8  | NUG (Netted from VAP Load Forecast) | FRANKLIN FINE PAPER 8          | Other  | 31.14              | 32.4            | 1/1/1970     | 12/31/2100 |       |                     |
| FRANKLI9  | NUG (Netted from VAP Load Forecast) | FRANKLIN FINE PAPER 9          | Other  | 26.91              | 28              | 1/1/1977     | 12/31/2100 |       |                     |
| PANDARCC  | NUG                                 | PANDA-ROSEMARY                 | CC     | 165                | 198             | 1/1/1990     | 12/31/2100 |       | 12/26/2015 Term End |
| ROANOST1  | NUG                                 | INTL PAPER ROANOKE RAPIDS      | Coal   | 14                 | 14              | 1/1/1966     | 12/31/2100 |       | 8/26/2006 Term End  |
| 195LNDFL  | NUG                                 | I-95 LANDFILL                  | Other  | 3.2                | 3.2             | 3/1/1993     | 12/31/2100 |       | 12/31/2011 Term End |
| 1951_NDF2 | NUG                                 | 1-95 LANDFILL PHASE II         | Other  | 3.2                | 3.2             | 1/1/1992     | 12/31/2100 |       | 2/9/2013 Term End   |
| SCOTTENE  | NUG                                 | SCOTT ENERGY                   | Other  | 2.5                | 2               | 12/1/1989    | 12/31/2100 |       | 12/28/2015 Term End |
| SUFFLKLF  | NUG                                 | SUFFOLK LANDFILL               | Other  | 3.2                | 3.28            | 11/1/1994    | 12/31/2100 | •     | 11/3/2014 Term End  |
| WPP3RICH  | NUG                                 | WPP 3 RICHMOND PLANT           | Other  | 2.93               | 3               | 7/1/1991     | 12/31/2100 |       | 8/26/2013 Term End  |
| BRASFLDD  | NUG                                 | BRASFIELD DAM                  | Hydro  | 3                  | 3               | 1/1/1990     | 12/31/2100 | •     | 10/11/2013 Term End |
| EMPORIAH  | NUG                                 | EMPORIA HYDRO                  | Hydro  | 1                  | 1               | 1/1/1990     | 12/31/2100 |       | 3/30/2006 Term End  |
| SCHOOLFD  | NUG                                 | SCHOOLFIELD DAM                | Hydro  | 3                  | 3               | 1/1/1990     | 12/31/2100 | ł     | 11/30/2015 Term End |
| FLUVANN1  | Merchant                            | TENASKA VIRGINIA PARTNERS 1    | сс     | 300                | 300             | 6/1/2004     | 12/31/2100 | •     |                     |
| FLUVANN2  | Merchant                            | TENASKA VIRGINIA PARTNERS 2    | CC     | 300                | 300             | 6/1/2004     | 12/31/2100 | )     |                     |
| FLUVANN3  | Merchant                            | TENASKA VIRGINIA PARTNERS 3    | CC     | 300                | 300             | 6/1/2004     | 12/31/2100 |       |                     |
| BOSWTAV1  | ODEC                                | BOSWELL'S TAVERN (LOUISA CO) 1 | Peaker | 78.75              | 85              | 6/1/2003     | 12/31/2100 |       |                     |
| BOSWTAV2  | ODEC                                | BOSWELL'S TAVERN (LOUISA CO) 2 | Peaker | 78.75              | 85              | 6/1/2003     | 12/31/2100 |       |                     |
| BOSWTAV3  | ODEC                                | BOSWELL'S TAVERN (LOUISA CO) 3 | Peaker | 78.75              | 85              | 6/1/2003     | 12/31/2100 |       |                     |
| BOSWTAV4  | ODEC                                | BOSWELL'S TAVERN (LOUISA CO) 4 | Peaker | 78.75              | 85              | 6/1/2003     | 12/31/2100 |       |                     |
| BOSWTAV5  | ODEC                                | BOSWELL'S TAVERN (LOUISA CO) 5 | Peaker | 150                | 170             | 6/1/2003     | 12/31/2100 |       |                     |
| REMINGM1  | ODEC                                | REMINGTON MARSH RUN 1          | Peaker | 150                | 170             | 10/1/2004    | 12/31/2100 |       |                     |
| REMINGM2  | ODEC                                | REMINGTON MARSH RUN 2          | Peaker | 150                | 170             | 10/1/2004    | 12/31/2100 |       |                     |
| REMINGM3  | ODEC                                | REMINGTON MARSH RUN 3          | Peaker | 150                | 170             | 10/1/2004    | 12/31/2100 |       |                     |
| REMINGM4  | ODEC                                | REMINGTON MARSH RUN 4          | Peaker | 150                | 170             | 1/1/2014     | 12/31/2100 |       |                     |
| PLEASANV  | Harrisonburg Electric               | PLEASANT VALLEY (HARRISNBRG)   | Peaker | 14                 | 14              | 1/1/1998     | 12/31/2100 | I     |                     |
| MTCLINT1  | Harrisonburg Electric               | MT. CLINTON (HARRISONBURG)     | Peaker | 14                 | 14              | 1/1/1999     | 12/31/2100 | 1     |                     |
| MANASSAS  | Manassas Electric Dept.             | AGGREGATED MANASSAS ICs        | Peaker | 30                 | 30              | 1/1/2000     | 12/31/2100 | )     |                     |
| JKERRVAP  | SEPA                                | JOHN H. KERR                   | Hydro  | 146                | 146             | 1/1/1990     | 1/1/2100   | I     |                     |



# Pool to Pool All-Hour Average Transfers (MW) 2005 Base Case



Pool to Pool All-Hour Average Transfers (MW) 2005 Change case





# Pool to Pool All-Hour Average Transfers (MW) 2007 Change Case



*'* 

Pool to Pool All-Hour Average Transfers (MW) 2010 Base Case



# Pool to Pool All-Hour Average Transfers (MW) 2010 Change Case

1



.

# Pool to Pool All-Hour Average Transfers (MW) 2014 Base Case



# Pool to Pool All-Hour Average Transfers (MW) 2014 Change Case

# Table A-21: Generation by Type and Pool (GWh)

|               |                  | -         | 2005    |           |           | 2007                 |           |              | 2010    |           |           | 2014    |           |
|---------------|------------------|-----------|---------|-----------|-----------|----------------------|-----------|--------------|---------|-----------|-----------|---------|-----------|
|               |                  |           |         | Delta     |           |                      | Delta     |              |         | Delta     |           |         | Delta     |
|               |                  |           | 2005    | (Change - |           | 2007                 | (Change - |              | 2010    | (Change - |           | 2014    | (Change - |
| Capacity Pool | TYPE -           | 2005 Base | Change  | Base)     | 2007 Base | Change               | Base)     | 2010 Base    | Change  | Base)     | 2014 Base | Change  | Base)     |
| AEP           | CC               | 195       | 707     | 511       | 257       | 912                  | 655       | 1,304        | 2,928   | 1,624     | 3,510     | 7,179   | 3,669     |
|               | Coal             | 130,287   | 132,465 | 2,178     | 135,631   | 137,062              | 1,431     | 141,082      | 140,863 | (219)     | 144,530   | 144,637 | 107       |
|               | Hydro            | 1,284     | 1,284   | -         | 1,284     | 1,284                | -         | 1,284        | 1,284   | -         | 1,284     | 1,284   | -         |
|               | Nuke             | 15,885    | 15,885  | -         | 15,888    | 15,888               | -         | 15,913       | 15,913  | -         | 15,885    | 15,885  | -         |
|               | Other            | 214       | 214     | (0)       | ) 214     | 214                  | (0)       | ) 214        | 214     | -         | 213       | 214     | 0         |
|               | Peaker           | -         | -       | -         | -         | 0                    | 0         | 20           | 19      | (0)       | ) 61      | 88      | 27        |
|               | PSH              | 730       | 728     | (2)       | ) 710     | 711                  | 1         | 620          | 619     | (1)       | 481       | 481     | 0         |
|               | ST/G/O/D         | 0         | 0       | (0)       | ) 0       | 1                    | 0         | 1            | 3       | 1         | 1         | 4       | 3         |
|               | New CT           | -         | -       | -         | -         | -                    | -         | -            | -       | -         | -         | -       | -         |
|               | New CC           | -         | -       | -         | -         | -                    | -         | -            | -       | -         | -         | -       | -         |
| AEP Sum       |                  | 148,595   | 151,282 | 2,687     | 153,984   | 15 <del>6</del> ,071 | 2,087     | 160,438      | 161,842 | 1,404     | 165,965   | 169,771 | 3,806     |
| COMED         | СС               | 1,666     | 1,109   | (557)     | ) 2,227   | 1,465                | (762)     | ) 2,929      | 2,430   | (498)     | 3,906     | 3,696   | (211)     |
|               | Coal             | 27,944    | 28,588  | 644       | 29,975    | 30,816               | 840       | 33,144       | 34,154  | 1,010     | 35,142    | 35,704  | 562       |
|               | Nuke             | 80,330    | 80,332  | 2         | 80,364    | 80,364               | _         | 80.299       | 80,296  | (4)       | 80,280    | 80,278  | (3)       |
|               | Peaker           | 177       | 78      | (99)      | ) 345     | 165                  | (179)     | ) 539        | 364     | (175)     | 1,080     | 447     | (633)     |
|               | ST/G/O/D         | 1,093     | 335     | (758)     | ) 1,783   | 565                  | (1,218    | ,<br>) 3,922 | 1,021   | (2,901)   | 6,824     | 3,647   | (3,178)   |
|               | New CT           | -         | -       | -         | · -       | -                    | -         | 106          | 16      | (90       | 835       | 241     | (594)     |
|               | New CC           | -         | -       | -         | -         | -                    | -         | -            | -       | -         | -         | -       | -         |
| COMED Sum     |                  | 111,211   | 110,443 | (768)     | ) 114,695 | 113,376              | (1,319)   | ) 120,939    | 118,280 | (2,658)   | ) 128,068 | 124,012 | (4,056)   |
| CPL           | CC               | 1,530     | 2,087   | 557       | 2,152     | 2,570                | 418       | 3,044        | 3,395   | 351       | 4,259     | 4,376   | 117       |
|               | Coal             | 34,977    | 35,155  | 178       | 36,738    | 36,916               | 178       | 37,848       | 38,006  | 159       | 39,383    | 39,497  | 114       |
|               | Hydro            | 949       | 949     | -         | 949       | 949                  | -         | 949          | 949     | -         | 949       | 949     | ı –       |
|               | Nuke             | 24,491    | 24,491  | -         | 24,494    | 24,494               | _         | 24,519       | 24,519  | -         | 24,507    | 24,507  |           |
|               | Other            | 2,512     | 2,512   | -         | 2,504     | 2,504                | -         | 2,509        | 2,509   | (1)       | ) 2,509   | 2,509   | ) 0       |
|               | Peaker           | 379       | 415     | 36        | 668       | 747                  | 78        | 1,137        | 1,357   | 221       | 1,531     | 1,618   | 87        |
|               | New CT           | -         | -       | -         | -         | -                    | -         | 560          | 498     | (62)      | ) 3,537   | 3,814   | 277       |
|               | New CC           | -         | -       | -         | -         | -                    | -         | -            | -       | -         | -         | -       | -         |
| CPL Sum       |                  | 64,838    | 65,610  | 772       | 67,504    | 68,179               | 675       | 70,566       | 71,233  | 667       | 76,675    | 77,269  | 594       |
| DP&L          | Coal             | 17,682    | 17,874  | 192       | 18,560    | 18,727               | 166       | 19,712       | 20,046  | 334       | 20,765    | 20,886  | 121       |
|               | Other            | 45        | 45      | -         | 45        | 45                   | -         | 45           | 45      | -         | 45        | 45      | i -       |
|               | Peaker<br>New CT | -         | -       | -         | _11       | -                    | (11)      | ) 25         | 22      | (4        | ) 128     | 48      | (81)      |
| DP&L Sum      | 100 01           | 17,727    | 17,919  | 192       | 18,616    | 18,772               | 155       | 19,782       | 20,112  | 330       | 20,938    | 20,979  | 41        |
# Table A-21: Generation by Type and Pool (GWh)

|               |             | 2005      |              |           | 2007      |         |           | 2010      |         |            | 2014             |              |           |  |
|---------------|-------------|-----------|--------------|-----------|-----------|---------|-----------|-----------|---------|------------|------------------|--------------|-----------|--|
|               |             |           |              | Delta     |           |         | Delta     |           |         | Delta      |                  |              | Delta     |  |
|               |             |           | 2005         | (Change - |           | 2007    | (Change - |           | 2010    | (Change -  |                  | 2014         | (Change - |  |
| Capacity Pool | TYPE -      | 2005 Base | Change       | Base)     | 2007 Base | Change  | Base)     | 2010 Base | Change  | Base)      | 2014 Base        | Change       | Base)     |  |
| DUKE          | CC          | 990       | 1,276        | 287       | 1,465     | 1,627   | 162       | 2,034     | 2,132   | 98         | 2,851            | 2,903        | 53        |  |
|               | Coal        | 50,497    | 50,731       | 233       | 52,169    | 52,373  | 203       | 53,477    | 53,618  | 142        | 54,954           | 55,040       | 85        |  |
|               | Hydro       | 4,265     | 4,265        | -         | 4,265     | 4,265   | -         | 4,265     | 4,265   | -          | 4,265            | 4,265        | -         |  |
|               | Nuke        | 53,021    | 53,021       | -         | 52,958    | 52,958  | -         | 53,031    | 53,031  | -          | 53,054           | 53,054       | -         |  |
|               | Other       | 56        | 56           | ~         | 56        | 56      | -         | 56        | 56      | -          | 57               | 57           | 0         |  |
|               | Peaker      | 536       | 569          | 33        | 786       | 827     | 41        | 1,588     | 1,645   | 57         | 3,307            | 3,432        | 125       |  |
|               | PSH         | 3,665     | 3,677        | 12        | 3,494     | 3,547   | 53        | 3,236     | 3,231   | (5)        | 2,332            | 2,308        | (24)      |  |
|               | ST/G/O/D    | 4         | 6            | 1         | 2         | 4       | 1         | 8         | 9       | 2          | 10               | 11           | Ì         |  |
|               | New CT      | -         | -            | -         | 205       | 233     | 28        | 1,460     | 1,497   | 38         | 3,795            | 4.047        | 251       |  |
|               | New CC      | -         | -            | -         | -         | -       | -         | -         | -       | -          | · -              | · -          | -         |  |
| DUKE Sum      |             | 113,035   | 113,601      | 566       | 115,401   | 115,890 | 489       | 119,156   | 119,486 | 331        | 124,624          | 125,116      | 491       |  |
| GFL           | cc          | 63,040    | 63,319       | 280       | 67,521    | 67,571  | 51        | 72,380    | 72,507  | 127        | 79.002           | 79.071       | 69        |  |
|               | Coal        | 55,677    | 55,778       | 101       | 56,264    | 56,313  | 49        | 56.513    | 56,572  | 58         | 57,107           | 57,120       | 13        |  |
|               | HRM         | -         | _            | -         | -         | -       | -         | -         | -       | -          |                  |              | -         |  |
|               | Hydro       | 214       | 214          | -         | 214       | 214     | -         | 214       | 214     | -          | 214              | 214          | -         |  |
|               | Nuke        | 29,964    | 29,964       | -         | 29.897    | 29.897  | -         | 29,929    | 29.929  | -          | 29 886           | 29 886       | -         |  |
|               | Other       | 3,147     | 3,147        | -         | 3,150     | 3,150   | -         | 3,147     | 3,147   | -          | 3 148            | 3.148        | _         |  |
|               | Peaker      | 2,067     | 2,050        | (17       | ) 4.897   | 4,884   | (13       | ) 4.424   | 4.473   | 49         | 3,178            | 3.205        | 27        |  |
|               | ST/G/O/D    | 39,627    | 39,812       | 185       | 42.647    | 42,712  | 65        | 44.974    | 45.023  | 49         | 49,240           | 49,300       | 60        |  |
|               | New CT      | · -       | -            | -         | -         | · -     | -         | 2.699     | 2.710   | 12         | 7 958            | 7,960        | 2         |  |
|               | New CC      | -         | -            | -         | -         | -       | -         | 6,435     | 6.472   | 37         | 20 370           | 20 407       | 37        |  |
| GFL Sum       |             | 193,737   | 194,284      | 548       | 204,590   | 204,742 | 152       | 220,716   | 221,048 | 332        | 250,104          | 250,311      | 207       |  |
| MISO E        | СС          | 3,654     | 3,689        | 34        | 5.369     | 5,471   | 103       | 10.497    | 10.938  | 441        | 19.597           | 19.749       | 152       |  |
|               | Coal<br>HRM | 317,718   | 319,634<br>- | 1,916     | 326,664   | 328,666 | 2,002     | 340,013   | 342,181 | 2,169      | 351,778          | 353,087      | 1,308     |  |
|               | Hvdro       | 2.658     | 2.658        | -         | 2.658     | 2.658   | -         | 2,658     | 2.658   | -          | 2 658            | 2 658        | -         |  |
|               | Nuke        | 29.335    | 29.335       | -         | 29,324    | 29.324  | -         | 29,279    | 29 279  | _          | 29.334           | 29 334       | _         |  |
|               | Other       | 2.456     | 2.456        | -         | 2.451     | 2.451   | _         | 2 454     | 2454    | -          | 2 455            | 2 456        | . 1       |  |
|               | Peaker      | 416       | 399          | (16       | 3) 771    | 762     | (9        | ) 1343    | 1 332   | (10        | ) 2704           | 2,400        | (226)     |  |
|               | PSH         | 5 234     | 5 234        | . (n      | ) 5 072   | 5 084   | 12        | 4 718     | 4 715   | (13        | 3846             | 3 820        | (17)      |  |
|               | ST/G/O/D    | 1 076     | 1 128        | 53        | 1 830     | 1 850   | 20        | 3 843     | 3 808   | 55         | , 3,040<br>8,404 | 8 3 8 7      | (17)      |  |
|               | New CT      | -         | -            | -         | -         | -       | -         | -         | -       | -          | 765              | 737          | (17)      |  |
| MISO E Sum    |             | 362,546   | 364,532      | 1,986     | 374,138   | 376,266 | 2,128     | 394,805   | 397,456 | -<br>2,651 | -<br>421,541     | -<br>422,715 | 1,174     |  |

į

# Table A-21: Generation by Type and Pool (GWh)

| ·             | ······   |           | 2005    |           |           | 2007    | · • · · · • • • • • • • • • • • • • • • |           | 2010    |           |           | 2014    |           |
|---------------|----------|-----------|---------|-----------|-----------|---------|-----------------------------------------|-----------|---------|-----------|-----------|---------|-----------|
|               |          |           |         | Delta     |           |         | Delta                                   |           |         | Delta     |           |         | Delta     |
|               |          |           | 2005    | (Change - |           | 2007    | (Change -                               |           | 2010    | (Change - |           | 2014    | (Change - |
| Capacity Pool | TYPE -   | 2005 Base | Change  | Base)     | 2007 Base | Change  | Base)                                   | 2010 Base | Change  | Base)     | 2014 Base | Change  | Base)     |
| MISO W        | CC       | 6,582     | 6,722   | 139       | 8,558     | 8,686   | 128                                     | 13,140    | 13,247  | 106       | 18,334    | 18,417  | 83        |
|               | Coal     | 283,317   | 284,023 | 706       | 288,503   | 289,180 | 677                                     | 292,908   | 293,582 | 674       | 301,069   | 301,556 | 487       |
|               | HRM      | -         | -       | -         | -         | -       | -                                       | -         | -       | -         | _         | -       | -         |
|               | Hydro    | 15,458    | 15,458  | -         | 15,458    | 15,458  | -                                       | 15,458    | 15,458  | -         | 15,458    | 15,458  | -         |
|               | Nuke     | 56,909    | 56,903  | (6)       | 56,946    | 56,950  | 4                                       | 56,941    | 56,967  | 26        | 56,905    | 56,915  | 9         |
|               | Other    | 10,576    | 10,577  | 1         | 10,584    | 10,586  | 2                                       | 10,559    | 10,564  | 4         | 10,566    | 10,578  | 12        |
|               | Peaker   | 3,927     | 3,919   | (8)       | 5,161     | 5,174   | 13                                      | 10,951    | 11,015  | 64        | 10,135    | 10,327  | 191       |
|               | PSH      | 661       | 660     | (2        | 670       | 673     | 3                                       | 672       | 674     | 2         | 673       | 669     | (5)       |
|               | ST/G/O/D | 277       | 295     | 18        | 455       | 468     | 12                                      | 1,290     | 1,294   | 5         | 1,663     | 1,700   | 37        |
|               | New CT   | -         | -       | -         | -         | -       | -                                       | -         | -       | -         | 11,811    | 12,189  | 378       |
|               | New CC   | -         | -       | -         | -         | -       | -                                       | -         | -       | -         | ·         | -       | -         |
| MISO W Sum    |          | 377,707   | 378,557 | 850       | 386,336   | 387,175 | 839                                     | 401,919   | 402,800 | 881       | 426,615   | 427,808 | 1,193     |
| ISO-NE        | сс       | 25,943    | 25,968  | 24        | 28,074    | 27,992  | (82                                     | ?) 34,313 | 34,329  | 16        | 38,941    | 38,652  | (290)     |
|               | Coal     | 21,568    | 21,550  | (18)      | 21,810    | 21,776  | (34                                     | ) 22,067  | 22,062  | (4        | ) 22,102  | 22,103  | 1         |
|               | HRM      | -         | -       | -         | -         | -       | -                                       | -         | -       | -         | -         | -       | -         |
|               | Hydro    | 7,261     | 7,261   | -         | 7,261     | 7,261   | -                                       | 7,261     | 7,261   | -         | 7,261     | 7,261   | -         |
|               | Nuke     | 33,909    | 33,909  | -         | 33,884    | 33,883  | (1                                      | ) 33,963  | 33,963  | -         | 33,989    | 33,989  | - 1       |
|               | Other    | 14,314    | 14,314  | -         | 14,322    | 14,322  | -`                                      | 14,317    | 14,317  | -         | 14,311    | 14,311  | -         |
|               | Peaker   | -         | -       | -         | -         | -       | -                                       | -         | -       | -         | -         | -       | -         |
|               | PSH      | 1,125     | 1,122   | (3)       | 1.053     | 1,046   | (7                                      | ') 1.019  | 1,010   | (9        | ) 867     | 884     | 17        |
|               | ST/G/O/D | 16,801    | 16,771  | (30)      | 18,701    | 18,794  | 93                                      | 18,148    | 18,145  | (3        | ) 20,603  | 20,952  | 350       |
|               | New CT   | -         | -       | -         | -         | -       | -                                       | -         | -       | - '       | -         | -       | -         |
|               | New CC   | -         | -       | -         | -         | -       | -                                       | -         | -       | -         | -         | -       | -         |
| ISO-NE Sum    |          | 120,921   | 120,894 | (27)      | ) 125,104 | 125,073 | (31                                     | ) 131,087 | 131,087 | (0        | ) 138,074 | 138,151 | 77        |
| NYC           | СС       | 6,174     | 6,304   | 130       | 6.429     | 6.533   | 105                                     | 6.819     | 6.944   | 124       | 7.297     | 7,381   | 84        |
|               | Other    | 179       | 179     | -         | 179       | 179     | -                                       | 179       | 179     | -         | 179       | 179     | ) -       |
|               | Peaker   | 342       | 338     | (5)       | ) 219     | 225     | e                                       | 5 274     | 265     | (9        | ) 483     | 493     | 39        |
|               | ST/G/O/D | 18,223    | 18,367  | 144       | 19.237    | 19,403  | 165                                     | 5 20.157  | 20.393  | 236       | 21,505    | 21,785  | 5 281     |
|               | New CT   | -         | -       | -         | 29        | 29      | (0                                      | )) 58     | 59      | 1         | 157       | 165     | ; 8       |
|               | New CC   | -         | -       | -         | -         | -       | -`                                      | -         | -       | -         | _         | -       | -         |
| NYC Sum       |          | 24,918    | 25,188  | 269       | 26,094    | 26,369  | 276                                     | 6 27,488  | 27,840  | 352       | 29,620    | 30,002  | 381       |
| NYL           | сс       | 1,502     | 1,508   | 7         | 1,530     | 1,544   | 14                                      | 1,608     | 1,608   | 0         | 1,690     | 1,690   | ) 0       |
|               | Other    | 992       | 992     | -         | 991       | 991     | -                                       | 991       | 991     | -         | 988       | 988     | 3 -       |
|               | Peaker   | 152       | 150     | (3)       | ) 128     | 128     | (0                                      | )) 226    | 221     | (5        | ) 303     | 311     | 8         |

| Table A-21: Ge | neration by Ty | pe and Pool ( | (GWh) |
|----------------|----------------|---------------|-------|
|----------------|----------------|---------------|-------|

1

| — <u>—                                   </u> |          |           | 2005      |                    |           | 2007    |                    |                  | 2010    |                    | •            | 2014             |                    |
|-----------------------------------------------|----------|-----------|-----------|--------------------|-----------|---------|--------------------|------------------|---------|--------------------|--------------|------------------|--------------------|
|                                               |          |           | 2005      | Delta<br>(Change - |           | 2007    | Delta<br>(Change - |                  | 2010    | Delta<br>(Change - |              | 2014             | Delta<br>(Change - |
| Capacity Pool                                 | TYPE -   | 2005 Base | Change    | Base)              | 2007 Base | Change  | Base)              | 2010 Base        | Change  | Base)              | 2014 Base    | Change           | Base)              |
|                                               | ST/G/O/D | 8,199     | 8,237     | 37                 | 8,790     | 8,802   | 12                 | 9,605            | 9,607   | 2                  | 10,862       | 10,887           | 24                 |
|                                               | New CT   | -         | -         | -                  | 20        | 20      | 0                  | 70               | 73      | 3                  | 206          | 204              | · (2)              |
|                                               | New CC   | -         | +         | -                  | -         | -       | -                  | -                | -       | -                  | -            | -                | -                  |
| NYL Sum                                       |          | 10,845    | 10,886    | 41                 | 11,460    | 11,486  | 26                 | 12,500           | 12,501  | 1                  | 14,050       | 14,080           | 31                 |
| NYO                                           | СС       | 10,934    | 11,204    | 271                | 11,898    | 11,711  | (187)              | ) 13,800         | 13,772  | (28)               | ) 15,957     | 15,798           | (159)              |
|                                               | Coal     | 26,150    | 25,821    | (330)              | ) 26,643  | 26,384  | (259)              | ) 27,290         | 27,053  | (237)              | ) 27,558     | 27,406           | (152)              |
|                                               | HRM      | -         | -         | -                  |           | -       | -                  |                  | -       | -                  | -            | -                | -                  |
|                                               | Hydro    | 28,623    | 28,623    |                    | 28,623    | 28,623  | -                  | 28,623           | 28,623  | -                  | 28,623       | 28,623           | -                  |
|                                               | Nuke     | 37,813    | 37,813    | 1                  | 37,718    | 37,718  | (0)                | ) 37,741         | 37,740  | (1)                | ) 37,718     | 37,715           | (2)                |
|                                               | Other    | 2,408     | 2,408     | (0                 | ) 2,403   | 2,403   | (0)                | ) 2,402          | 2,402   | (0)                | ) 2,398      | 2,398            | 0                  |
|                                               | Peaker   | 1         | 1         | 0                  | 0         | 0       | 0                  | 2                | . 2     | 0                  | 5            | 5                | 0                  |
|                                               | PSH      | 2,008     | 2,014     | 6                  | 2,013     | 2,017   | 4                  | 1,861            | 1,846   | (15                | ) 1,693      | 1,699            | 6                  |
|                                               | ST/G/U/D | 666,1     | 8,119     | 261                | 9,373     | 9,713   | 340                | 10,200           | 10,298  | 98                 | 12,456       | 12,490           | 33                 |
|                                               | New CT   | -         | -         | -                  | -         | -       | -                  | -                | -       | -                  | 59           | 99               | 40                 |
| NYO Sum                                       | New CC   | 115,795   | 116,003   | 208                | 118,670   | 118,569 | (102)              | ) 121,918        | 121,736 | (183)              | ) 126,466    | 126,232          | (234)              |
| PJM                                           | CC       | 17.950    | 16.345    | (1.605             | ) 21.890  | 20.245  | (1.644             | ) 28.772         | 27,699  | (1.074             | ) 41.889     | 41.252           | (637)              |
|                                               | Coal     | 194,502   | 190,457   | (4,045             | ) 198,190 | 194,756 | (3,435             | ) 203,688        | 201,286 | (2,402             | ) 207,748    | 206,384          | (1,364)            |
|                                               |          | -         | -         | -                  | -         | -       | -                  | -                |         | -                  | -            | -                | -                  |
|                                               | Nuka     | 2,099     | 0,099     | -                  | 0,099     | 0,099   | - (9)              | 0,098<br>147,440 | 0,099   | -                  | 0,099        | 0,099            | -                  |
|                                               | Other    | 6 007     | 0 117,393 | -                  | 6 012     | 6 012   | (3)                | ) 117,419        | 6,007   | -                  | 014          | 117,440<br>6.014 | - (0)              |
|                                               | Danier   | 0,907     | 0,907     | -                  | 0,913     | 0,912   | (0)                | ) 0,907          | 0,907   | -                  | 0,914        | 0,911            | (3)<br>I 916       |
|                                               | DQL      | 4 663     | A 650     | 40                 | ) A 645   | 130     |                    | ) A 701          | / 1,340 | 240                | (,030        | 2,034<br>1 540   | , 010<br>) 20      |
|                                               | STIGIOID | ) 7.512   | 8 031     | , (J<br>510        | 11 026    | 11 009  | 072                | 15 112           | 16.849  | 1 737              | 21 283       | 23,453           | 20                 |
|                                               | Wind     | 330       | . 0,001   | (7                 | 330       | 337     | - JIZ<br>- 17      | 10,112           | 334     | 1,737<br>(A        | ) 345        | 347              | >(3)               |
|                                               | New CT   | -         | -         | · _ ('             | ,         |         |                    | ,                |         |                    | , 043<br>942 | -                | · (3)<br>/942)     |
|                                               | New CC   | -         | -         | -                  | -         | _       | -                  | -                | _       | -                  | -            | · _              | (042)              |
| PJM Sum                                       |          | 355,173   | 350,075   | (5,098             | ) 366,724 | 362,685 | (4,038             | ) 383,637        | 382,156 | (1,482             | ) 408,533    | 408,590          | ) 57               |
| SCE&G                                         | СС       | 1,935     | 2,180     | 245                | 2,617     | 2,987   | 370                | 3,749            | 4,081   | 331                | 5,263        | 5,466            | <b>3</b> 202       |
|                                               | Coal     | 36,724    | 36,867    | 143                | 37,938    | 38,070  | 132                | 38,746           | 38.854  | 108                | 39,534       | 39,595           | j <u>61</u>        |
|                                               | Hydro    | 875       | 5 875     | i -                | 875       | 875     | · -                | 875              | 875     | -                  | 875          | 875              | <br>- ز            |
|                                               | Nuke     | 7,611     | 7.611     | -                  | 7,610     | 7.610   | -                  | 7,609            | 7,609   | -                  | 7,650        | 7,650            | J -                |
|                                               | Other    | 1,004     | 1,004     | -                  | 1,007     | 1,007   | -                  | 1,008            | 1,008   | _                  | 1,006        | 1,006            | j –                |

# Table A-21: Generation by Type and Pool (GWh)

|               |          |           | 2005    | · · · · · · |           | 2007    | · · · · · · · · · · · · · · · · · · · |           | 2010    |           |           | 2014    |           |
|---------------|----------|-----------|---------|-------------|-----------|---------|---------------------------------------|-----------|---------|-----------|-----------|---------|-----------|
|               |          |           |         | Delta       |           |         | Delta                                 |           |         | Delta     |           |         | Delta     |
|               |          |           | 2005    | (Change -   |           | 2007    | (Change -                             |           | 2010    | (Change - |           | 2014    | (Change - |
| Capacity Pool | TYPE -   | 2005 Base | Change  | Base)       | 2007 Base | Change  | Base)                                 | 2010 Base | Change  | Base)     | 2014 Base | Change  | Base)     |
|               | Peaker   | 9         | 10      | 1           | 31        | 33      | 2                                     | 59        | - 69    | 10        | 24        | 31      | 7         |
|               | PSH      | 948       | 941     | (7)         | ) 886     | 884     | (2)                                   | ) 803     | 793     | (10)      | ) 504     | 520     | 16        |
|               | ST/G/O/D | 6         | 9       | 3           | 28        | 29      | 1                                     | 40        | 44      | 4         | 59        | 64      | 4         |
|               | New CT   | -         | -       | -           | -         | -       | -                                     | -         | -       | -         | 766       | 889     | 124       |
|               | New CC   | -         | -       | -           | -         | -       | -                                     | -         | -       | -         | -         | -       | -         |
| SCE&G Sum     |          | 49,113    | 49,498  | 386         | 50,991    | 51,495  | 504                                   | 52,890    | 53,333  | 443       | 55,681    | 56,095  | 414       |
| SETRANS E     | CC       | 18,168    | 19,452  | 1,284       | 23,209    | 25,276  | 2,067                                 | 36,790    | 38,971  | 2,181     | 55,618    | 56,530  | 912       |
|               | Coal     | 186,069   | 186,481 | 412         | 191,153   | 191,474 | 321                                   | 190,531   | 190,758 | 227       | 181,389   | 181,500 | 111       |
|               | HRM      | -         | -       | -           | -         | -       | -                                     | -         | -       | -         | -         | -       | -         |
|               | Hydro    | 9,179     | 9,179   | -           | 9,179     | 9,179   | -                                     | 9,179     | 9,179   | -         | 9,179     | 9,179   | -         |
|               | Nuke     | 45,935    | 45,935  | -           | 46,039    | 46,039  | -                                     | 46,072    | 46,072  | -         | 46,029    | 46,029  | -         |
|               | Other    | 8,842     | 8,842   | -           | 8,847     | 8,847   | -                                     | 8,856     | 8,856   | -         | 8,840     | 8,840   | -         |
|               | Peaker   | 381       | 390     | 10          | 1,488     | 1,517   | 28                                    | 3,254     | 3,281   | 28        | 4,632     | 4,672   | 40        |
|               | PSH      | 315       | 312     | (3)         | ) 298     | 288     | (10)                                  | ) 272     | 273     | 1         | 145       | 144     | (0)       |
|               | ST/G/O/D | 4,560     | 4,658   | 98          | 4,815     | 4,957   | 142                                   | 5,853     | 5,925   | 72        | 6,427     | 6,491   | 64        |
|               | New CT   | -         | -       | -           | -         | -       | -                                     | -         | -       | -         | 5,373     | 5,331   | (42)      |
|               | New CC   | -         | -       | -           | -         | -       | -                                     | -         | -       | -         | 3,045     | 3,038   | (7)       |
| SETRANS E S   | um       | 273,448   | 275,249 | 1,801       | 285,029   | 287,577 | 2,548                                 | 300,806   | 303,315 | 2,510     | 320,675   | 321,753 | 1,077     |
| SETRANS W     | CC       | 31,610    | 30,898  | (713)       | ) 39,824  | 39,064  | (760)                                 | ) 50,547  | 49,502  | (1,045    | ) 64,096  | 63,520  | (576)     |
|               | Coal     | 56,497    | 56,586  | 89          | 56,517    | 56,531  | 14                                    | 57,393    | 57,397  | 5         | 58,095    | 58,086  | (9)       |
|               | Hydro    | 581       | 581     | -           | 581       | 581     | -                                     | 581       | 581     | -         | 581       | 581     | -         |
|               | Nuke     | 38,906    | 38,906  | -           | 38,920    | 38,920  | -                                     | 39,055    | 39,055  | -         | 39,016    | 39,016  | i –       |
|               | Other    | 1,608     | 1,608   | -           | 1,610     | 1,610   | -                                     | 1,606     | 1,606   | -         | 1,606     | 1,606   | i -       |
|               | Peaker   | 634       | 612     | (22         | ) 702     | 694     | (9                                    | ) 993     | 1,012   | 19        | 1,410     | 1,420   | 10        |
|               | ST/G/O/D | 1,815     | 1,936   | 121         | 2,218     | 2,431   | 213                                   | 4,879     | 4,906   | 27        | 9,781     | 10,147  | 366       |
|               | New CT   | -         | -       | -           | -         | -       | -                                     | -         | -       | -         | -         | -       | -         |
|               | New CC   | -         | -       | -           | -         | -       | -                                     | -         | -       | -         | -         | -       | -         |
| SETRANS WS    | ium -    | 131,651   | 131,126 | (525        | ) 140,372 | 139,830 | (542                                  | ) 155,054 | 154,059 | (995      | ) 174,586 | 174,376 | (210)     |
| SPP           | сс       | 26,796    | 27,017  | 221         | 33,017    | 33,223  | 206                                   | 45,171    | 45,296  | 124       | 58,991    | 59,146  | 154       |
|               | Coal     | 146,368   | 146,403 | 35          | 143,750   | 143,858 | 109                                   | 142,381   | 142,456 | 76        | 138,289   | 138,337 | 48        |
|               | HRM      | -         | -       | -           | -         | -       | -                                     | -         | -       | -         | -         | -       | -         |
|               | Hydro    | 11,041    | 11,041  | -           | 11,041    | 11,041  | -                                     | 11,041    | 11,041  | -         | 11,041    | 11,041  | -         |
|               | Nuke     | 9,358     | 9,358   | -           | 9,337     | 9,337   | -                                     | 9,381     | 9,381   | -         | 9,337     | 9,337   | ' -       |
|               | Other    | 11,249    | 11,249  | -           | 11,252    | 11,252  | -                                     | 11,245    | 11,245  | -         | 11,254    | 11,254  | - 1       |

|               |                  |           | 2005     |           |           | 2007    |           |           | 2010    |                |           | 2014    |               |
|---------------|------------------|-----------|----------|-----------|-----------|---------|-----------|-----------|---------|----------------|-----------|---------|---------------|
|               |                  |           |          | Delta     |           |         | Delta     |           |         | Delta          |           |         | Delta         |
|               |                  |           | 2005     | (Change - |           | 2007    | (Change - |           | 2010    | (Change -      |           | 2014    | (Change -     |
| Capacity Pool | TYPE -           | 2005 Base | Change   | Base)     | 2007 Base | Change  | Base)     | 2010 Base | Change  | Base)          | 2014 Base | Change  | Base)         |
|               | Peaker           | 263       | 266      | 2         | 415       | 386     | (29)      | 1,118     | 1,118   | (0)            | 1,969     | 2,003   | 34            |
|               | ST/G/O/D         | 3,696     | 3,782    | 86        | 4,903     | 5,035   | 132       | 7,973     | 8,103   | 131            | 14,000    | 14,126  | 126           |
|               | New CT           | -         | -        | -         | ~         | -       | -         | -         | -       | -              | 329       | 320     | (9)           |
|               | New CC           | -         | -        | -         | -         | -       | -         | -         | -       | -              | -         | -       | -             |
| SPP Sum       |                  | 208,770   | 209,115  | 344       | 213,714   | 214,131 | 418       | 228,309   | 228,639 | 330            | 245,208   | 245,562 | 354           |
| TVA           | CC               | 6,435     | 6,570    | 134       | 8,275     | 8,436   | 162       | 14,514    | 14,735  | 222            | 23,475    | 23,643  | 168           |
|               | Coal             | 103,982   | 104,192  | 210       | 107,644   | 107,874 | 230       | 109,426   | 109,490 | 64             | 110,966   | 111,020 | 54            |
|               | Hydro            | 19,852    | 19,852   | -         | 19,852    | 19,852  | -         | 19,852    | 19,852  | -              | 19,852    | 19,852  | -             |
|               | Nuke             | 44,740    | 44,740   | -         | 44,738    | 44,738  | -         | 44,713    | 44,713  | -              | 44,671    | 44,671  | -             |
|               | Other            | 2,653     | 2,653    | -         | 2,655     | 2,655   | -         | 2,656     | 2,656   | -              | 2,655     | 2,655   | , 0           |
|               | Peaker           | 133       | 127      | (6)       | ) 219     | 247     | 28        | 485       | 514     | 29             | 1,152     | 1,101   | (52)          |
|               | PSH              | 2,377     | 2,383    | 6         | 2,536     | 2,529   | (7)       | ) 2,428   | 2,435   | 6              | 2,306     | 2,556   | 250           |
|               | ST/G/O/D         | -         | -        | -         | -         | -       | -         | -         | -       | -              | -         | -       | -             |
|               | New CT           | -         | -        | -         | -         | -       | -         | -         | -       | -              | 1,259     | 1,176   | ; (83)        |
|               | New CC           | -         | -        | -         | -         | -       | -         | -         | -       | -              | -         | -       | -             |
| TVA Sum       |                  | 180,173   | 180,517  | 343       | 185,918   | 186,332 | 413       | 194,074   | 194,395 | 321            | 206,337   | 206,675 | 338           |
| VAP           | CC               | 5,525     | 3,587    | (1,938)   | ) 7,102   | 4,833   | (2,268)   | ) 9,716   | 6,733   | (2,983)        | ) 14,332  | 10,875  | (3,458        |
|               | Coal             | 41,062    | 39,488   | (1,574)   | ) 42,071  | 40,657  | (1,414)   | ) 43,592  | 42,757  | (835)          | ) 44,834  | 44,313  | ; (521        |
|               | Hydro            | 1,192     | 2. 1,192 | -         | 1,192     | 1,192   | -         | 1,192     | 1,192   | -              | 1,192     | 1,192   | ! -           |
|               | Nuke             | 26,364    | 26,364   | · -       | 26,249    | 26,249  | ) –       | 26,316    | 26,316  | i –            | 26,249    | 26,249  | ) –           |
|               | Other            | 2,189     | ) 2,142  | (47       | ) 2,330   | 2,309   | ) (21)    | ) 2,344   | 2,334   | . (10          | ) 2,367   | 2,358   | , (9          |
|               | Peaker           | 718       | 695      | (23       | ) 940     | 982     | 42        | 1,721     | 1,605   | ; <u>(</u> 116 | ) 2,103   | 1,943   | ; (159        |
|               | PSH              | 2,500     | ) 2,500  | - 1       | 2,500     | 2,500   | ) –       | 2,817     | 2,817   | -              | 2,818     | 2,818   | i –           |
|               | ST/G/O/D         | ) 4,741   | 3,859    | (882      | ) 5,797   | 4,905   | (892)     | ) 7,016   | 6,220   | (795           | ) 8,339   | 7,682   | . <b>(657</b> |
|               | New CT<br>New CC | -         | -        | -         | -         | -       | -         | 393       |         | (393)          | ) 1,952   | 1,503   | i (449<br>-   |
| VAP Sum       |                  | 84,292    | 2 79,827 | (4,465    | ) 88,180  | 83,628  | (4,553    | ) 95,106  | 89,974  | (5,132         | ) 104,187 | 98,934  | (5,253        |

# Table A-21: Generation by Type and Pool (GWh)

| Period    | Imports/Transfers          | 2005 Base<br>Case | 2007 Base<br>Case | 2010 Base<br>Case | 2014 Base<br>Case | 2005<br>Change<br>Case | 2007<br>Change<br>Case | 2010<br>Change<br>Case | 2014<br>Change<br>Case |
|-----------|----------------------------|-------------------|-------------------|-------------------|-------------------|------------------------|------------------------|------------------------|------------------------|
| Off-Peak  | Average of VAP Net Imports | 1,764             | 1,805             | 1,954             | 2,015             | 2,061                  | 2,095                  | 2,173                  | 2,226                  |
|           | Average Transfers from AEP | 1,566             | 1,551             | 1,705             | 1,558             | 1,935                  | 1,847                  | 1,906                  | 1,739                  |
|           | Average Transfers from PJM | 85                | 155               | 183               | 413               | 89                     | 227                    | 271                    | 525                    |
|           | Average Transfers from CPL | 112               | 100               | 66                | 44                | 37                     | 21                     | (3)                    | (38)                   |
| On-Peak   | Average of VAP Net Imports | 893               | 760               | 493               | 233               | 1,440                  | 1,373                  | 1,235                  | 1,043                  |
|           | Average Transfers from AEP | 843               | 733               | 445               | 200               | 1,378                  | 1,275                  | 865                    | 524                    |
|           | Average Transfers from PJM | 43                | 58                | 103               | 175               | 105                    | 169                    | 464                    | 675                    |
|           | Average Transfers from CPL | 7                 | (31)              | (55)              | (142)             | (43)                   | (70)                   | (95)                   | (156)                  |
| All-Hours | Average of VAP Net Imports | 1,349             | 1,307             | 1,258             | 1,166             | 1,765                  | 1,751                  | 1,726                  | 1,662                  |
|           | Average Transfers from AEP | 1,222             | 1,161             | 1,105             | 911               | 1,670                  | 1,575                  | 1,410                  | 1,160                  |
|           | Average Transfers from PJM | 65                | 108               | 145               | 300               | 97                     | 199                    | 363                    | 597                    |
|           | Average Transfers from CPL | 62                | 37                | 9                 | (45)              | (1)                    | (22)                   | (47)                   | (94)                   |

Table A-22: Average VAP Net Imports by Source (MW) 2005-2014, High Fuel Prices



,

1

# Pool to Pool All-Hour Average Transfers (MW) 2005 High Fuel/Base



# Pool to Pool All-Hour Average Transfers (MW) 2005 High Fuel/Change



. . .....

# Pool to Pool Ali-Hour Average Transfers (MW) 2007 High Fuel/Base



γ.

Pool to Pool All-Hour Average Transfers (MW) 2007 High Fuel/Change





Pool to Pool All-Hour Average Transfers (MW) 2010 High Fuel/Change

•



# Pool to Pool All-Hour Average Transfers (MW) 2014 High Fuel/Base

-



# Pool to Pool All-Hour Average Transfers (MW) 2014 High Fuel/Change

### Table A-23: Generation by Type and Pool (GWh), High Fuel Prices

| · · · · · · · · · · · · · · · · · · · |          |           | 2005      |                    |           | 2007        |                    |                  | 2010        |                    | <u> </u>  | 2014        |                    |
|---------------------------------------|----------|-----------|-----------|--------------------|-----------|-------------|--------------------|------------------|-------------|--------------------|-----------|-------------|--------------------|
|                                       |          |           | Change    | Delta<br>(Change - |           |             | Deita<br>(Change - |                  |             | Delta<br>(Change - |           |             | Delta<br>(Change - |
| Capacity Pool                         | TYPE     | Base Case | Case      | Base)              | Base Case | Change Case | Base)              | <b>Base Case</b> | Change Case | Base)              | Base Case | Change Case | Base)              |
| Non-PJM                               | CC       | 193,665   | 196,743   | 3,078              | 229,789   | 232,917     | 3,128              | 298,980          | 301,730     | 2,750              | 387,043   | 388,281     | 1,238              |
|                                       | Coal     | 1,331,021 | 1,334,905 | 3,884              | 1,354,481 | 1,358,170   | 3,688              | 1,377,395        | 1,380,625   | 3,230              | 1,391,696 | 1,393,401   | 1,705              |
|                                       | Hydro    | 100,956   | 100,956   | -                  | 100,956   | 100,956     | (0)                | 100,956          | 100,956     | -                  | 100,956   | 100,956     | -                  |
|                                       | New CC   | -         | -         | -                  | -         | -           |                    | 6,432            | 6,446       | 14                 | 23,299    | 23,334      | 35                 |
|                                       | New CT   | -         | -         | -                  | 252       | 257         | 4                  | 4,731            | 4,710       | (21)               | 33,499    | 34,642      | 1,142              |
|                                       | Nuke     | 411,921   | 411,926   | 5                  | 411,791   | 411,808     | 18                 | 412,133          | 412,153     | 20                 | 412,004   | 412,010     | 6                  |
|                                       | Other    | 61,990    | 61,992    | 2                  | 61,999    | 62,001      | 2                  | 61,970           | 61,971      | 1                  | 61,953    | 61,963      | 10                 |
|                                       | Peaker   | 8,201     | 8,180     | (21)               | 14,511    | 14,552      | 40                 | 24,324           | 24,600      | 276                | 28,385    | 28,942      | 557                |
|                                       | PSH      | 17,069    | 17,094    | 25                 | 16,771    | 16,853      | 62                 | 15,421           | 15,426      | 5                  | 13,841    | 13,807      | (34)               |
|                                       | ST/G/0/D | 100,103   | 100,771   | 668                | 111,532   | 112,421     | 889                | 125,567          | 126,277     | 710                | 153,581   | 154,648     | 1,067              |
| Non-PJM Total                         |          | 2,224,925 | 2,232,567 | 7,642              | 2,302,081 | 2,309,933   | 7,852              | 2,427,909        | 2,434,895   | 6,987              | 2,606,256 | 2,611,982   | 5,726              |
| PJM                                   | CC       | 22,164    | 19,224    | (2,940)            | 29,113    | 26,026      | (3,087)            | 40,086           | 38,412      | (1,674)            | 62,621    | 61,564      | (1,057)            |
| (Expanded)                            | Coal     | 416,816   | 413,175   | (3,641)            | 429,065   | 425,807     | (3.258)            | 446,002          | 443,393     | (2,609)            | 458,180   | 456,631     | (1,549)            |
|                                       | Hydro    | 8,074     | 8,074     | -                  | 8,074     | 8,074       | -                  | 8,074            | 8,074       | -                  | 8,074     | 8,074       | -                  |
|                                       | New CC   | ·_        | -         | -                  |           | -           | -                  | -                | -           | -                  | -         | -           | -                  |
|                                       | New CT   | -         | -         | -                  | -         | -           | -                  | 481              | 15          | (466)              | 3,670     | 1,796       | (1,874)            |
|                                       | Nuke     | 239,971   | 239,975   | 4                  | 239,971   | 239,971     | 1                  | 239,946          | 239,941     | (5)                | 239,858   | 239,857     | (2)                |
|                                       | Other    | 9,372     | 9,340     | (32)               | 9,514     | 9,506       | (7)                | 9,522            | 9,519       | (3)                | 9,554     | 9,546       | (7)                |
|                                       | Peaker   | 1,127     | 1,044     | (83)               | 1,888     | 1,831       | (57)               | 3,285            | 3,233       | (52)               | 4,709     | 5,018       | 308                |
|                                       | PSH      | 8,157     | 8,163     | 6                  | 8,033     | 8,012       | (21)               | 8,313            | 8,333       | 20                 | 7,967     | 7,995       | 29                 |
|                                       | ST/G/O/D | 13,962    | 13,187    | (775)              | 19,235    | 18,003      | (1,232)            | 26,586           | 24,487      | (2,099)            | 37,162    | 35,625      | (1,537)            |
|                                       | Wind     | 337       | 329       | (8)                | 336       | 330         | (6)                | 337              | 333         | (3)                | 343       | 340         | (3)                |
| PJM Total                             |          | 719,981   | 712,512   | (7,469)            | 745,229   | 737,561     | (7,667)            | 782,633          | 775,741     | (6,892)            | 832,139   | 826,447     | (5,691)            |
| Eastern                               | сс       | 215,829   | 215,967   | 138                | 258,901   | 258,943     | 42                 | 339,066          | 340,142     | 1,076              | 449,664   | 449,845     | 181                |
| Interconnection                       | Coal     | 1,747,836 | 1,748,080 | 243                | 1,783,546 | 1,783,976   | 430                | 1,823,398        | 1,824,018   | 621                | 1,849,876 | 1,850,032   | 157                |
|                                       | Hydro    | 109,030   | 109,030   | -                  | 109,030   | 109,030     | (0)                | 109,030          | 109,030     | -                  | 109,030   | 109,030     | -                  |
|                                       | New CC   | -         | -         | -                  | -         | -           | -                  | 6,432            | 6,446       | 14                 | 23,299    | 23,334      | 35                 |
|                                       | New CT   | -         | -         | -                  | 252       | 257         | 4                  | 5,212            | 4,725       | (487)              | 37,169    | 36,438      | (731)              |
|                                       | Nuke     | 651,892   | 651,901   | 9                  | 651,761   | 651,779     | 18                 | 652,078          | 652,094     | 15                 | 651,862   | 651,866     | 4                  |
|                                       | Other    | 71,362    | 71,333    | (30)               | 71,513    | 71,508      | (5)                | 71,492           | 71,490      | (2)                | 71,507    | 71,509      | 2                  |
|                                       | Peaker   | 9,328     | 9,224     | (104)              | 16,400    | 16,383      | (17)               | 27,609           | 27,833      | 224                | 33,094    | 33,959      | 865                |
|                                       | PSH      | 25,226    | 25,257    | 31                 | 24,803    | 24,865      | 61                 | 23,734           | 23,759      | 25                 | 21,807    | 21,802      | (5)                |
|                                       | ST/G/O/D | 114,065   | 113,958   | (107)              | 130,767   | 130,424     | (343)              | 152,154          | 150,765     | (1,389)            | 190,743   | 190,273     | (470)              |
|                                       | Wind     | 337       | 329       | (8)                | 336       | 330         | (6)                | 337              | 333         | (3)                | 343       | 340         | (3)                |
| El Total                              |          | 2,944,906 | 2,945,079 | 173                | 3,047,310 | 3,047,495   | 185                | 3,210,541        | 3,210,636   | 95                 | 3,438,394 | 3,438,429   | 35                 |

| Table A-24: Generation by T | ype and Pool (GWh), High Fuel |
|-----------------------------|-------------------------------|
|-----------------------------|-------------------------------|

|               |          |                  | 2005    |           |                    | 2007    |           |           | 2010    |           |           | 2014    |           |
|---------------|----------|------------------|---------|-----------|--------------------|---------|-----------|-----------|---------|-----------|-----------|---------|-----------|
|               |          |                  |         | Delta     |                    |         | Delta     |           |         | Delta     |           |         | Delta     |
|               |          |                  | Change  | (Change - |                    | Change  | (Change - |           | Change  | (Change - |           | Change  | (Change - |
| Capacity Pool | TYPE     | <b>Base Case</b> | Case    | Base)     | Base Case          | Case    | Base)     | Base Case | Case    | Base)     | Base Case | Case    | Base)     |
| AEP           | CC       | 167              | 514     | 347       | 264                | 789     | 526       | 1,380     | 2,673   | 1,293     | 4,793     | 7,091   | 2,298     |
|               | Coal     | 132,267          | 133,331 | 1,065     | 137,298            | 137,869 | 571       | 142,526   | 141,915 | (611)     | 146,128   | 145,833 | (295)     |
|               | Hydro    | 1,284            | 1,284   | -         | 1,284              | 1,284   | -         | 1,284     | 1,284   | -         | 1,284     | 1,284   | -         |
|               | Nuke     | 15, <b>88</b> 5  | 15,885  | -         | 15,888             | 15,888  | -         | 15,913    | 15,913  | -         | 15,885    | 15,885  | -         |
|               | Other    | 213              | 213     | (0)       | 214                | 213     | (0)       | 214       | 214     | -         | 214       | 213     | (0)       |
|               | Peaker   | -                | -       | -         | 1                  | 3       | 2         | 19        | 21      | 2         | 31        | 90      | 59        |
|               | PSH      | 786              | 784     | (2)       | 752                | 750     | (1)       | 674       | 676     | 2         | 528       | 525     | (3)       |
|               | ST/G/O/D | 0                | 0       | 0         | 1                  | 1       | Ō         | 1         | 3       | 2         | 2         | 4       | 2         |
|               | New CT   | -                | -       | -         | -                  | -       | -         | -         | -       | -         | -         | -       | -         |
|               | New CC   | -                | -       | -         | -                  | -       | -         | -         | -       | -         | -         | -       | -         |
| AEP Sum       |          | 150,602          | 152,012 | 1,410     | 155,700            | 156,797 | 1,097     | 162,010   | 162,698 | 688       | 168,864   | 170,925 | 2,061     |
| COMED         | CC       | 1,201            | 674     | (528)     | 1,943              | 1,209   | (734)     | 2,758     | 2,134   | (624)     | 3,767     | 3,363   | (405)     |
|               | Coal     | 28,526           | 29,144  | 618       | 30,360             | 31,111  | 751       | 33,599    | 34,408  | 809       | 35,600    | 36,041  | 441       |
|               | Nuke     | 80,328           | 80.332  | 4         | 80,363             | 80,364  | 1         | 80,297    | 80,292  | (5)       | 80,278    | 80,277  | (2)       |
|               | Peaker   | 163              | 86      | (77)      | 301                | 168     | (133)     | 470       | 356     | (114)     | 919       | 421     | (498)     |
|               | ST/G/O/D | 884              | 292     | (592)     | 1,5 <del>6</del> 4 | 539     | (1,026)   | 3,610     | 897     | (2,713)   | 6,677     | 3,586   | (3,090)   |
|               | New CT   | -                | -       | -         | -                  | -       | -         | 90        | 15      | (74)      | 726       | 248     | (477)     |
|               | New CC   |                  | -       | -         | -                  | -       | -         | -         | -       | -         | -         | -       | -         |
| COMED Sum     |          | 111,103          | 110,528 | (575)     | 114,532            | 113,391 | (1,141)   | 120,824   | 118,103 | (2,721)   | 127,967   | 123,937 | (4,030)   |
| CPL           | CC       | 1,236            | 1,737   | 501       | 1,841              | 2,337   | 496       | 2,847     | 3,149   | 302       | 4,024     | 4,139   | 115       |
|               | Coal     | 35,577           | 35,676  | 99        | 37,176             | 37,301  | 125       | 38,369    | 38,471  | 102       | 39,960    | 40,021  | 60        |
|               | Hydro    | 949              | 949     | -         | 949                | 949     | -         | 949       | 949     | -         | 949       | 949     | -         |
|               | Nuke     | 24,491           | 24,491  | -         | 24,494             | 24,494  | -         | 24,519    | 24,519  | -         | 24,507    | 24,507  | -         |
|               | Other    | 2,512            | 2,512   | -         | 2,504              | 2,504   | -         | 2,509     | 2,509   | (1)       | 2,509     | 2,509   | 0         |
|               | Peaker   | 299              | 310     | 11        | 573                | 630     | 57        | 1,048     | 1,162   | 114       | 1,174     | 1,290   | 117       |
|               | New CT   | -                | -       | -         | -                  | -       | -         | 477       | 400     | (77)      | 2,853     | 3,196   | 344       |
|               | New CC   | -                | -       | -         | -                  | -       | -         | -         | -       | -         | -         | -       | -         |
| CPL Sum       |          | 65,064           | 65,675  | 610       | 67,537             | 68,215  | 678       | 70,719    | 71,160  | 441       | 75,976    | 76,611  | 636       |
| DP&L          | Coal     | 18,137           | 18,305  | 168       | 19,062             | 19,106  | 44        | 20,311    | 20,512  | 201       | 21,373    | 21,469  | 96        |
|               | Other    | 45               | 45      | -         | 45                 | 45      | -         | 45        | 45      | -         | 45        | 45      | -         |
|               | Peaker   | -                | -       | -         | 11                 | 1       | (10)      | 19        | 23      | 4         | 77        | 40      | (37)      |
| DP&L Sum      | New OI   | 18,182           | 18,350  | 168       | 19,118             | 19,152  | 34        | 20,375    | 20,581  | 206       | 21,495    | 21,554  | 59        |

.

| Table A-24: Generation by Type and Pool (GWh), Hig | h Fuel |
|----------------------------------------------------|--------|
|----------------------------------------------------|--------|

|               |          |           | 2005    |           |           | 2007    | - <u></u> | <u> </u>  | 2010    |           |           | 2014    |           |
|---------------|----------|-----------|---------|-----------|-----------|---------|-----------|-----------|---------|-----------|-----------|---------|-----------|
|               |          |           |         | Delta     |           |         | Delta     |           |         | Delta     |           |         | Delta     |
|               |          |           | Change  | (Change - |
| Capacity Pool | TYPE     | Base Case | Case    | Base)     |
| DUKE          | CC       | 776       | 1,033   | 257       | 1,242     | 1,513   | 271       | 1,855     | 1,957   | 102       | 2,702     | 2,804   | 102       |
|               | Coal     | 51,256    | 51,411  | 154       | 52,870    | 53,002  | 132       | 54,112    | 54,180  | 68        | 55,566    | 55,584  | 19        |
|               | Hydro    | 4,265     | 4,265   | -         | 4,265     | 4,265   | -         | 4,265     | 4,265   | -         | 4,265     | 4,265   | -         |
|               | Nuke     | 53,021    | 53,021  | -         | 52,958    | 52,958  | -         | 53,031    | 53,031  | -         | 53,054    | 53,054  | -         |
|               | Other    | 56        | 56      | -         | 56        | 56      | -         | 56        | 56      | -         | 57        | 57      | 0         |
|               | Peaker   | 409       | 429     | 20        | 677       | 718     | 41        | 1,390     | 1,444   | 54        | 2,625     | 2,851   | 226       |
|               | PSH      | 3,791     | 3,794   | 3         | 3,618     | 3,680   | 63        | 3,322     | 3,332   | 9         | 2,558     | 2,509   | (49)      |
|               | ST/G/O/D | 3         | 4       | 1         | 2         | 2       | 0         | 7         | 8       | 1         | 4         | 10      | 6         |
|               | New CT   | -         | -       | -         | 206       | 210     | 4         | 1,442     | 1,475   | 33        | 3,447     | 3,696   | 249       |
|               | New CC   | -         | -       | -         | -         | -       | -         | -         | -       | -         | -         | -       | -         |
| DUKE Sum      |          | 113,577   | 114,012 | 436       | 115,894   | 116,404 | 510       | 119,483   | 119,749 | 266       | 124,277   | 124,830 | 553       |
| GFL           | сс       | 61,644    | 61,806  | 162       | 66,268    | 66,372  | 105       | 71,415    | 71,429  | 14        | 78,343    | 78,372  | 29        |
|               | Coal     | 55,811    | 55,896  | 85        | 56,289    | 56,373  | 84        | 56,545    | 56,617  | 71        | 57,113    | 57,118  | 5         |
|               | HRM      | -         | -       | -         | -         | -       | -         |           | -       | -         | -         | -       | -         |
|               | Hydro    | 214       | 214     | -         | 214       | 214     | -         | 214       | 214     | -         | 214       | 214     | -         |
|               | Nuke     | 29,964    | 29,964  | -         | 29,889    | 29,897  | 9         | 29,929    | 29,929  | -         | 29,886    | 29,886  | -         |
|               | Other    | 3,147     | 3,147   | -         | 3 148     | 3,150   | 2         | 3,147     | 3,147   | -         | 3,148     | 3,148   | -         |
|               | Peaker   | 1,833     | 1,832   | (1)       | 4,726     | 4,690   | (36)      | 4,045     | 4,074   | 29        | 3,044     | 3,063   | 19        |
|               | ST/G/O/D | 38,064    | 38,318  | 254       | 41,665    | 41,743  | 78        | 44,083    | 44,196  | 113       | 48,622    | 48,661  | 40        |
|               | New CT   | -         | -       | -         | -         | -       | -         | 2,691     | 2,713   | 21        | 7,040     | 7,138   | 98        |
|               | New CC   | -         | -       | -         | -         | -       | -         | 6,432     | 6,446   | 14        | 20,269    | 20,288  | 19        |
| GFL Sum       |          | 190,678   | 191,179 | 501       | 202,199   | 202,441 | 241       | 218,502   | 218,765 | 263       | 247,679   | 247,889 | 209       |
| MISO E        | CC       | 3,019     | 3,220   | 201       | 4,911     | 5,077   | 166       | 9,902     | 10,295  | 393       | 18,966    | 19,234  | 268       |
|               | Coal     | 321,465   | 323,678 | 2,213     | 329,611   | 331,721 | 2,110     | 343,140   | 345,250 | 2,110     | 354,919   | 356,109 | 1,190     |
|               | HRM      | -         | -       | -         | -         | -       | -         | -         | -       | -         | -         | -       | -         |
|               | Hydro    | 2,658     | 2,658   | -         | 2,658     | 2,658   | -         | 2,658     | 2,658   | -         | 2,658     | 2,658   | -         |
|               | Nuke     | 29,335    | 29,335  | -         | 29,324    | 29,324  | -         | 29,279    | 29,279  | -         | 29,334    | 29,334  | -         |
|               | Other    | 2,456     | 2,456   | -         | 2,451     | 2,451   | -         | 2,454     | 2,454   | -         | 2,455     | 2,456   | 1         |
|               | Peaker   | 357       | 325     | (32)      | 706       | 674     | (32)      | 1,156     | 1,176   | 20        | 2,185     | 2,060   | (125)     |
|               | PSH      | 5,498     | 5,501   | 3         | 5,207     | 5,200   | (7)       | 4,951     | 4,942   | (9)       | 4,047     | 4,036   | (11)      |
|               | ST/G/O/D | 794       | 736     | (58)      | 1,498     | 1,463   | (35)      | 3,405     | 3,508   | 103       | 7,977     | 7,980   | 3         |
|               | New CT   | -         | -       | -         | -         | -       | -         | -         | -       | -         | 730       | 753     | 22        |
|               | New CC   | -         | -       | -         | -         | -       | -         | -         | -       | -         | -         | -       | -         |
| MISO E Sum    |          | 365,581   | 367,908 | 2,327     | 376,367   | 378,568 | 2,202     | 396,946   | 399,562 | 2,616     | 423,272   | 424,620 | 1,347     |

|               |          | ·         | 2005    | ·         |           | 2007        |           |           | 2010    |           |           | 2014    |           |
|---------------|----------|-----------|---------|-----------|-----------|-------------|-----------|-----------|---------|-----------|-----------|---------|-----------|
|               |          |           |         | Delta     |           |             | Deita     |           |         | Delta     |           |         | Delta     |
|               |          |           | Change  | (Change - |           | Change      | (Change - |           | Change  | (Change - |           | Change  | (Change - |
| Capacity Pool | TYPE     | Base Case | Case    | Base)     | Base Case | Case        | Base)     | Base Case | Case    | Base)     | Base Case | Case    | Base)     |
| MISO W        | CC       | 5,872     | 6,061   | 189       | 8,085     | 8,221       | 136       | 12,442    | 12,621  | 179       | 17,806    | 17,982  | 176       |
|               | Coal     | 284,524   | 285,350 | 826       | 289,244   | 289,968     | 724       | 293,767   | 294,485 | 718       | 302,179   | 302,516 | 337       |
|               | HRM      | -         | -       | -         | -         | -           | -         | -         | -       | -         | -         | -       | -         |
|               | Hydro    | 15,458    | 15,458  | -         | 15,458    | 15,458      | -         | 15,458    | 15,458  | -         | 15,458    | 15,458  | -         |
|               | Nuke     | 56,836    | 56,841  | 5         | 56,881    | 56,890      | 9         | 56,844    | 56,864  | 20        | 56,813    | 56,820  | 7         |
|               | Other    | 10,571    | 10,573  | 2         | 10,575    | 10,575      | 1         | 10,542    | 10,543  | 2         | 10,548    | 10,557  | 9         |
|               | Peaker   | 3,405     | 3,412   | 7         | 4,673     | 4,687       | 14        | 10,419    | 10,429  | 10        | 9,713     | 9,881   | 168       |
|               | PSH      | 673       | 674     | 1         | 692       | 690         | (2)       | 681       | 683     | 2         | 688       | 680     | (8)       |
|               | ST/G/O/D | 252       | 261     | 9         | 430       | 444         | 14        | 1,280     | 1,277   | (2)       | 1,652     | 1,684   | 32        |
|               | New CT   | -         | -       | -         | -         | -           | -         | -         | -       | -         | 11,492    | 11,776  | 284       |
|               | New CC   | -         | -       | -         | -         | -           | -         | -         | -       | -         | -         | -       | -         |
| MISO W Sum    |          | 377,590   | 378,630 | 1,039     | 386,038   | 386,933     | 896       | 401,433   | 402,361 | 928       | 426,348   | 427,353 | 1,005     |
| ISO-NE        | сс       | 24,838    | 24,878  | 40        | 26,500    | 26,481      | (20)      | 33,071    | 33,084  | 13        | 37,666    | 37,316  | (350)     |
|               | Coal     | 21,593    | 21,568  | (25)      | 21,866    | 21,841      | (25)      | 22,059    | 22,059  | 0         | 22,130    | 22,131  | 1         |
|               | HRM      | -         | -       | -         | -         | -           | -         | -         | -       | -         | -         | -       | -         |
|               | Hydro    | 7,261     | 7,261   | -         | 7,261     | 7,261       | -         | 7,261     | 7,261   | -         | 7,261     | 7,261   | -         |
|               | Nuke     | 33,909    | 33,909  | -         | 33,884    | 33,884      | -         | 33,963    | 33,963  | -         | 33,989    | 33,989  | -         |
|               | Other    | 14,314    | 14,314  | -         | 14,322    | 14,322      | -         | 14,317    | 14,317  | -         | 14,311    | 14,311  | -         |
|               | Peaker   | -         | -       | -         | -         | -           | -         | -         | -       | -         | -         | -       | -         |
|               | PSH      | 1,047     | 1,046   | (1)       | 1,061     | 1,062       | 0         | 853       | 855     | 1         | 790       | 806     | 16        |
|               | ST/G/O/D | 17,048    | 17,025  | (23)      | 19,124    | 19,188      | 64        | 18,469    | 18,457  | (12)      | 20,988    | 21,382  | 395       |
|               | New CT   | -         | -       | -         | -         | -           | -         | -         | -       | -         | -         | -       | -         |
|               | New CC   | -         | -       | -         | -         | -           | -         | -         | -       | -         | -         | -       | -         |
| ISO-NE Sum    |          | 120,009   | 120,000 | (9)       | 124,018   | 124,039     | 20        | 129,993   | 129,995 | 2         | 137,134   | 137,196 | 62        |
| NYC           | CC       | 6,186     | 6,270   | 84        | 6,384     | 6,491       | 107       | 6,792     | 6,882   | 90        | 7,319     | 7,365   | 45        |
|               | Other    | 179       | 179     | -         | 179       | 179         | -         | 179       | 179     | -         | 179       | 179     | -         |
|               | Peaker   | 330       | 330     | 1         | 198       | 202         | 4         | 247       | 246     | (1)       | 441       | 452     | 11        |
|               | ST/G/O/D | 18,355    | 18,335  | (19)      | 19,000    | 19,184      | 184       | 20,131    | 20,276  | 145       | 21,473    | 21,684  | 211       |
|               | New CT   | -         | -       | -         | 28        | 27          | (1)       | 58        | 58      | 1         | 158       | 160     | 3         |
|               | New CC   | -         | -       | -         | -         | -           | -         | -         | -       | -         | •         | -       | -         |
| NYC Sum       |          | 25,050    | 25,115  | 65        | 25,790    | 26,083      | 293       | 27,407    | 27,642  | 234       | 29,569    | 29,840  | 270       |
| NYL           | cc       | 1,504     | 1,506   | 3         | 1,546     | 1,552       | 6         | 1,609     | 1,610   | 1         | 1,686     | 1,691   | 5         |
|               | Other    | 992       | 992     | -         | 991       | <b>9</b> 91 | -         | 991       | 991     | -         | 988       | 988     | -         |
|               | Peaker   | 144       | 140     | (3)       | 124       | 122         | (2)       | 203       | 202     | (1)       | 273       | 274     | 1         |

Table A-24: Generation by Type and Pool (GWh), High Fuel

)

|               |          |                 | 2005           |           |                 | 2007    |           | ·····     | 2010    |           |           | 2014    |           |
|---------------|----------|-----------------|----------------|-----------|-----------------|---------|-----------|-----------|---------|-----------|-----------|---------|-----------|
|               |          |                 |                | Delta     |                 |         | Delta     |           |         | Delta     |           |         | Delta     |
|               |          |                 | Change         | (Change - |                 | Change  | (Change - |           | Change  | (Change - |           | Change  | (Change - |
| Capacity Pool | TYPE     | Base Case       | Case           | Base)     | Base Case       | Case    | Base)     | Base Case | Case    | Base)     | Base Case | Case    | Base)     |
|               | ST/G/O/D | 8,214           | 8,250          | 36        | 8,787           | 8,804   | 17        | 9,639     | 9,620   | (19)      | 10,923    | 10,929  | 6         |
|               | New CT   | -               | -              | -         | 18              | 20      | 2         | 63        | 64      | 1         | 180       | 185     | 5         |
|               | New CC   | -               | -              | -         | -               | -       | -         | -         | -       | -         | -         | -       | -         |
| NYL Sum       |          | 10,853          | 10,889         | 36        | 11,466          | 11,489  | 23        | 12,505    | 12,487  | (18)      | 14,051    | 14,068  | 17        |
| NYO           | CC       | 10,272          | 10,569         | 297       | 11,149          | 11,259  | 110       | 13,115    | 13,085  | (29)      | 15,289    | 15,191  | (98)      |
|               | Coal     | 26,608          | 26,284         | (324)     | 27,075          | 26,803  | (271)     | 27,834    | 27,610  | (224)     | 28,310    | 28,171  | (139)     |
|               | HRM      | -               | -              | -         | -               | -       | -         | -         | -       | -         | -         | -       | -         |
|               | Hydro    | 28,623          | 28,623         | -         | 28,623          | 28,623  | (0)       | 28,623    | 28,623  | -         | 28,623    | 28,623  | -         |
|               | Nuke     | 37,813          | 37,814         | 1         | 37,716          | 37,717  | 1         | 37,737    | 37,737  | 0         | 37,719    | 37,718  | (2)       |
|               | Other    | 2,408           | 2,408          | 0         | 2,403           | 2,403   | -         | 2,402     | 2,402   | -         | 2,398     | 2,398   | -         |
|               | Peaker   | 1               | 1              | (0)       | 0               | 0       | (0)       | 1         | 1       | 0         | 4         | 4       | 0         |
|               | PSH      | 2,068           | 2,080          | 11        | 2,063           | 2,069   | 6         | 1,935     | 1,932   | (3)       | 1,778     | 1,782   | 3         |
|               | ST/G/O/D | 7,505           | 7,896          | 391       | 9,395           | 9,586   | 190       | 10,193    | 10,368  | 175       | 12,352    | 12,424  | 72        |
|               | New CT   | -               | -              | -         | -               | -       | -         | -         | -       | -         | 63        | 107     | 45        |
|               | New CC   | -               | -              | -         | -               | -       | -         | -         | -       | -         | -         | -       | -         |
| NYO Sum       |          | 115,298         | 115,674        | 376       | 118, <b>424</b> | 118,461 | 36        | 121,840   | 121,759 | (81)      | 126,536   | 126,417 | (119)     |
| PJM           | сс       | 15,943          | 14,572         | (1,371)   | 20,249          | 19,233  | (1,016)   | 26,850    | 26,772  | (78)      | 40,187    | 40,290  | 103       |
|               | Coal     | 196,141         | 192,132        | (4,010)   | 199,585         | 196,220 | (3,365)   | 205,507   | 203,160 | (2,346)   | 209,701   | 208,341 | (1,360)   |
|               | HRM      | -               | -              | -         | -               | -       |           | -         | -       | · · · ·   | -         | -       | -         |
|               | Hydro    | 5,599           | 5,599          | -         | 5,599           | 5,599   | -         | 5,599     | 5,599   | -         | 5,599     | 5,599   | -         |
|               | Nuke     | 117,393         | 117,393        | -         | 117,470         | 117,470 | -         | 117,419   | 117,419 | -         | 117,446   | 117,446 | -         |
|               | Other    | 6,907           | 6, <b>90</b> 7 | -         | 6,913           | 6,913   | -         | 6,907     | 6,907   | -         | 6,914     | 6,911   | (3)       |
|               | Peaker   | 312             | 343            | 30        | 662             | 706     | 44        | 1,158     | 1,320   | 162       | 1,800     | 2,606   | 806       |
|               | PSH      | 4,871           | 4,879          | 8         | 4,781           | 4,762   | (19)      | 4,822     | 4,840   | 18        | 4,620     | 4,651   | 31        |
|               | ST/G/O/D | 8,289           | 8,831          | 541       | 11,825          | 12,433  | 608       | 15,976    | 17,261  | 1,285     | 22,142    | 24,199  | 2,057     |
|               | Wind     | 337             | 329            | (8)       | 336             | 330     | (6)       | 337       | 333     | (3)       | 343       | 340     | (3)       |
|               | New CT   | -               | -              | -         | -               | -       | -         | -         | -       | -         | 1,023     | -       | (1,023)   |
|               | New CC   | -               | -              | -         | -               | -       | -         | -         | -       | -         | -         | -       | -         |
| PJM Sum       |          | 355,794         | 350,984        | (4,810)   | 367,422         | 363,668 | (3,754)   | 384,575   | 383,613 | (963)     | 409,775   | 410,384 | 609       |
| SCE&G         | сс       | 1,827           | 1,961          | 134       | 2,495           | 2,812   | 317       | 3,542     | 3,810   | 267       | 5,346     | 5,512   | 166       |
|               | Coal     | 36, <b>94</b> 3 | 37,090         | 147       | 38,105          | 38,261  | 156       | 38,978    | 39,063  | 85        | 39,881    | 39,912  | 31        |
|               | Hydro    | 875             | 875            | -         | 875             | 875     | -         | 875       | 875     | -         | 875       | 875     | -         |
|               | Nuke     | 7,611           | 7,611          | -         | 7,610           | 7,610   | -         | 7,609     | 7,609   | -         | 7.650     | 7.650   | -         |
|               | Other    | 1,004           | 1,004          | -         | 1,007           | 1,007   | -         | 1.008     | 1,008   | -         | 1,006     | 1,006   | -         |

# Table A-24: Generation by Type and Pool (GWh), High Fuel

|               |          |           | 2005    |           |           | 2007        |           |           | 2010    |             |           | 2014            |
|---------------|----------|-----------|---------|-----------|-----------|-------------|-----------|-----------|---------|-------------|-----------|-----------------|
|               |          |           |         | Deita     |           |             | Delta     |           |         | Delta       |           |                 |
|               |          |           | Change  | (Change - |           | Change      | (Change - |           | Change  | (Change -   |           | Change          |
| Capacity Pool | TYPE     | Base Case | Case    | Base)     | Base Case | Case        | Base)     | Base Case | Case    | Base)       | Base Case | Case            |
|               | Peaker   | 7         | 7       | (0)       | 24        | 28          | 5         | 64        | 72      | 9           | 27        | 32              |
|               | PSH      | 964       | 978     | 14        | 901       | 91 <b>1</b> | 11        | 849       | 853     | 4           | 627       | 616             |
|               | ST/G/O/D | 8         | 9       | 1         | 24        | 28          | 5         | 49        | 54      | 5           | 50        | 64              |
|               | New CT   | -         | -       | -         | -         | -           | -         | -         | -       | -           | 1,049     | 1,080           |
|               | New CC   | -         | -       | -         | -         | -           | -         | -         | -       | -           | -         | -               |
| SCE&G Sum     |          | 49,240    | 49,536  | 296       | 51,040    | 51,533      | 493       | 52,976    | 53,346  | 370         | 56,511    | 56,748          |
| SETRANS E     | CC       | 16,530    | 17,638  | 1,108     | 22,388    | 24,036      | 1,648     | 35,867    | 37,503  | 1,636       | 54,571    | 55,511          |
|               | Coal     | 188,144   | 188,573 | 429       | 192,465   | 192,779     | 314       | 191,518   | 191,754 | 236         | 182,305   | 182,385         |
|               | HRM      | -         | -       | -         | -         | -           | -         | -         | -       | -           | -         | -               |
|               | Hydro    | 9,179     | 9,179   | -         | 9,179     | 9,179       | -         | 9,179     | 9,179   | -           | 9,179     | 9,179           |
|               | Nuke     | 45,935    | 45,935  | -         | 46,039    | 46,039      | -         | 46,072    | 46,072  | -           | 46,029    | 46,029          |
|               | Other    | 8,842     | 8,842   | -         | 8,847     | 8,847       | -         | 8,856     | 8,856   | -           | 8,839     | 8,839           |
|               | Peaker   | 428       | 416     | (12)      | 1,436     | 1,444       | 8         | 3,246     | 3,273   | 27          | 4,785     | 4,859           |
|               | PSH      | 433       | 423     | (10)      | 355       | 369         | 14        | 294       | 290     | (4)         | 163       | 163             |
|               | ST/G/O/D | 4,592     | 4,662   | 70        | 4,843     | 4,930       | 87        | 6,086     | 5,992   | (94)        | 6,628     | 6,699           |
|               | New CT   | -         | -       | -         | -         | -           | -         | -         | -       | -           | 5,110     | 5,144           |
|               | New CC   | -         | -       | -         | -         | -           | -         | -         | -       | -           | 3,030     | 3,045           |
| SETRANS E SI  | m        | 274,083   | 275,668 | 1,584     | 285,552   | 287,623     | 2,071     | 301,118   | 302,918 | 1,800       | 320,639   | 321,854         |
| SETRANS W     | CC       | 29,993    | 29,697  | (295)     | 38,525    | 37,871      | (654)     | 49,871    | 49,219  | (651)       | 63,661    | 63,267          |
|               | Coal     | 56,062    | 56,120  | 58        | 56,110    | 56,171      | 61        | 57,136    | 57,111  | (25)        | 57,927    | 57,928          |
|               | Hydro    | 581       | 581     | -         | 581       | 581         | -         | 581       | 581     | -           | 581       | <del>5</del> 81 |
|               | Nuke     | 38,906    | 38,906  | -         | 38,920    | 38,920      | -         | 39,055    | 39,055  | -           | 39,016    | 39,016          |
|               | Other    | 1,608     | 1,608   | -         | 1,610     | 1,610       | -         | 1,606     | 1,606   | -           | 1,606     | 1,606           |
|               | Peaker   | 656       | 644     | (12)      | 775       | 762         | (13)      | 985       | 988     | 3           | 1,392     | 1,405           |
|               | ST/G/O/D | 1,829     | 1,695   | (135)     | 2,155     | 2,269       | 115       | 4,609     | 4,814   | 205         | 9,352     | 9,390           |
|               | New CT   | -         | -       | -         | -         | -           | -         | -         | -       | -           | -         | -               |
|               | New CC   | -         | -       | -         | -         | -           | -         | -         | -       | -           | -         | -               |
| SETRANS W S   | um       | 129,635   | 129,251 | (384)     | 138,676   | 138,184     | (491)     | 153,841   | 153,373 | (468)       | 173,535   | 173,193         |
| SPP           | CC       | 25,178    | 25,437  | 259       | 31,616    | 31,777      | 160       | 43,954    | 44,069  | 1 <b>14</b> | 58,007    | 58,212          |
|               | Coal     | 146,482   | 146,559 | 78        | 143,904   | 144,043     | 139       | 142,535   | 142,614 | 79          | 138,426   | 138,480         |
|               | HRM      | -         | -       | -         | -         | -           | -         | -         | -       | -           | -         | -               |
|               | Hydro    | 11,041    | 11,041  | -         | 11,041    | 11,041      | -         | 11,041    | 11,041  | -           | 11,041    | 11,041          |

9,337

11,252

Deita (Change -

Base)

5

(11)

15

31

-

237

940

-

-

-

(1)

74

34

16

1,215

(394)

-

-

-

13

38

--

(342)

205

54

-

-

-

-

1

-71

80

9,337

11,254

9,337

11,254

-

-

#### Table A-24: Generation by Type and Pool (GWh), High Fuel

Nuke

Other

9,358

11,249

9,358

11,249

-

-

Page 5 of 6

-

-

9,381

11,245

9,381

11,245

9,337

11,252

|               | ·        |           | 2005           |                    |           | 2007           |                    |           | 2010           |                    |           | 2014           |                                 |
|---------------|----------|-----------|----------------|--------------------|-----------|----------------|--------------------|-----------|----------------|--------------------|-----------|----------------|---------------------------------|
|               |          |           |                | Delta              |           |                | Delta              |           |                | Delta              |           |                | Delta                           |
| Capacity Pool | TYPE     | Base Case | Change<br>Case | (Change -<br>Base) | Base Case | Change<br>Case | (Change -<br>Base) | Base Case | Change<br>Case | (Change -<br>Base) | Base Case | Change<br>Case | (Change -<br>Ba <del>se</del> ) |
|               | Peaker   | 206       | 202            | (4)                | 370       | 343            | (27)               | 1,033     | 1,015          | (18)               | 1,787     | 1,823          | 36                              |
|               | ST/G/O/D | 3,439     | 3,579          | 140                | 4,608     | 4,779          | 170                | 7,615     | 7,706          | 91                 | 13,560    | 13,739         | 179                             |
|               | New CT   | -         | -              | -                  | -         | -              | -                  | -         | -              | -                  | 288       | 296            | 8                               |
|               | New CC   | -         | -              | -                  | -         | -              | -                  | -         | -              | -                  | -         | -              | -                               |
| SPP Sum       |          | 206,952   | 207,425        | 473                | 212,128   | 212,571        | 443                | 226,804   | 227,070        | 266                | 243,699   | 244,181        | 482                             |
| TVA           | cc       | 4,791     | 4,930          | 139                | 6,837     | 7,116          | 279                | 12,697    | 13,018         | 321                | 21,657    | 21,686         | 29                              |
|               | Coal     | 106,556   | 106,700        | 145                | 109,766   | 109,905        | 140                | 111,401   | 111,411        | 9                  | 112,979   | 113,046        | 67                              |
|               | Hydro    | 19,852    | 19,852         | -                  | 19,852    | 19,852         | -                  | 19,852    | 19,852         | -                  | 19,852    | 19,852         | -                               |
|               | Nuke     | 44,740    | 44,740         | -                  | 44,738    | 44,738         | -                  | 44,713    | 44,713         | -                  | 44,671    | 44,671         | -                               |
|               | Other    | 2,653     | 2,653          | -                  | 2,655     | 2,655          | -                  | 2,656     | 2,656          | -                  | 2,655     | 2,655          | 0                               |
|               | Peaker   | 126       | 131            | 5                  | 231       | 252            | 21                 | 487       | 518            | 31                 | 936       | 949            | 13                              |
|               | PSH      | 2,596     | 2,599          | 3                  | 2,873     | 2,870          | (3)                | 2,535     | 2,540          | 4                  | 3,190     | 3,215          | 25                              |
|               | ST/G/O/D | -         | -              | -                  | -         | -              | -                  | -         | -              | -                  | -         | -              | -                               |
|               | New CT   | -         | -              | -                  | -         | -              | -                  | -         | -              | -                  | 1,090     | 1,110          | 20                              |
|               | New CC   | -         | -              | -                  | -         | -              | -                  | -         | -              | -                  | -         | -              | -                               |
| TVA Sum       |          | 181,314   | 181,607        | 292                | 186,952   | 187,389        | 437                | 194,342   | 194,708        | 366                | 207,030   | 207,183        | 153                             |
| VAP           | cc       | 4,853     | 3,464          | (1,388)            | 6,657     | 4,794          | (1,862)            | 9,098     | 6,833          | (2,265)            | 13,874    | 10,820         | (3,054)                         |
|               | Coal     | 41,745    | 40,263         | (1,482)            | 42,761    | 41,501         | (1,259)            | 44,060    | 43,397         | (662)              | 45,377    | 44,946         | (431)                           |
|               | Hydro    | 1,192     | 1,192          | -                  | 1,192     | 1,192          | -                  | 1,192     | 1,192          | -                  | 1,192     | 1,192          | -                               |
|               | Nuke     | 26,364    | 26,364         | -                  | 26,249    | 26,249         | -                  | 26,316    | 26,316         | -                  | 26,249    | 26,249         | -                               |
|               | Other    | 2,206     | 2,175          | (32)               | 2,342     | 2,335          | (7)                | 2,356     | 2,353          | (3)                | 2,381     | 2,377          | (4)                             |
|               | Peaker   | 652       | 616            | (36)               | 914       | 954            | 40                 | 1,620     | 1,513          | (107)              | 1,882     | 1,861          | (21)                            |
|               | PSH      | 2,500     | 2,500          | -                  | 2,500     | 2,500          | -                  | 2,817     | 2,817          | -                  | 2,818     | 2,818          | -                               |
|               | ST/G/O/D | 4,788     | 4,064          | (724)              | 5,844     | 5,030          | (815)              | 6,999     | 6,326          | (673)              | 8,342     | 7,837          | (506)                           |
|               | New CT   | -         | -              | -                  | -         | -              | -                  | 392       | -              | (392)              | 1,922     | 1,548          | (374)                           |
|               | New CC   | -         | -              | -                  | -         | -              | -                  | -         | -              | -                  | -         | -              | -                               |
| VAP Sum       |          | 84,300    | 80,638         | (3,663)            | 88,458    | 84,555         | (3,903)            | 94,849    | 90,747         | (4,102)            | 104,037   | 99,647         | (4,390)                         |

# Table A-24: Generation by Type and Pool (GWh), High Fuel

# Table A-25: Generation Cost (\$k), High Fuel

|                      | 2005       |            |                | 2007 2010  |            |           |            |            | 2014          |            |            |               |
|----------------------|------------|------------|----------------|------------|------------|-----------|------------|------------|---------------|------------|------------|---------------|
|                      |            |            | Delta          |            |            | Deita     |            |            |               |            |            |               |
|                      |            | Change     | (Change -      |            | Change     | (Change - |            | Change     | Delta (Change |            | Change     | Delta (Change |
| <b>Capacity Pool</b> | Base Case  | Case       | Base)          | Base Case  | Case       | Base)     | Base Case  | Case       | - Base)       | Base Case  | Case       | - Base)       |
| AEP                  | 2,152,216  | 2,201,423  | 49,207         | 2,174,579  | 2,215,008  | 40,430    | 2,351,521  | 2,403,291  | 51,770        | 2,619,628  | 2,718,016  | 98,388        |
| COED                 | 1,108,962  | 1,053,096  | (55,866)       | 1,165,885  | 1,084,256  | (81,629)  | 1,341,785  | 1,196,294  | (145,492)     | 1,608,930  | 1,415,169  | (193,761)     |
| CPL                  | 971,802    | 999,776    | 27,974         | 1,013,408  | 1,040,625  | 27,217    | 1,151,828  | 1,170,810  | 18,982        | 1,398,797  | 1,432,658  | 33,861        |
| DP&L                 | 349,812    | 353,424    | 3 <u>,</u> 611 | 342,903    | 343,497    | 594       | 381,822    | 386,922    | 5,100         | 419,636    | 419,626    | (10)          |
| DUKE                 | 1,148,830  | 1,165,325  | 16,495         | 1,204,323  | 1,220,565  | 16,242    | 1,380,280  | 1,390,844  | 10,564        | 1,651,434  | 1,684,779  | 33,345        |
| GFL                  | 5,515,566  | 5,533,680  | 18,114         | 5,909,656  | 5,915,765  | 6,109     | 6,481,555  | 6,491,597  | 10,042        | 7,642,129  | 7,652,451  | 10,322        |
| MISO E               | 5,643,742  | 5,685,392  | 41,650         | 5,709,443  | 5,749,788  | 40,345    | 6,376,537  | 6,432,344  | 55,806        | 7,363,701  | 7,390,981  | 27,280        |
| MISO W               | 4,366,728  | 4,389,203  | 22,475         | 4,536,743  | 4,554,301  | 17,557    | 5,104,385  | 5,121,042  | 16,657        | 5,982,797  | 6,020,467  | 37,669        |
| ISO-NE               | 2,808,023  | 2,808,515  | 493            | 2,885,796  | 2,885,707  | (89)      | 3,126,949  | 3,127,074  | 125           | 3,455,234  | 3,455,988  | 754           |
| NYC                  | 1,036,892  | 1,040,310  | 3,418          | 1,015,608  | 1,026,537  | 10,929    | 1,074,106  | 1,082,635  | 8,529         | 1,165,409  | 1,175,844  | 10,435        |
| NYL                  | 468,178    | 470,467    | 2,289          | 472,529    | 473,677    | 1,149     | 517,806    | 516,858    | (949)         | 593,292    | 594,319    | 1,026         |
| NYO                  | 1,769,810  | 1,792,930  | 23,121         | 1,823,211  | 1,825,313  | 2,102     | 1,981,478  | 1,979,805  | (1,673)       | 2,202,679  | 2,198,882  | (3,797)       |
| PJM                  | 5,224,665  | 5,124,655  | (100,010)      | 5,432,629  | 5,365,272  | (67,358)  | 6,116,894  | 6,145,587  | 28,694        | 7,190,830  | 7,254,348  | 63,519        |
| SCE&G                | 844,834    | 853,855    | 9,021          | 865,596    | 882,677    | 17,080    | 939,723    | 953,100    | 13,377        | 1,116,618  | 1,126,218  | 9,600         |
| SETRANS E            | 4,613,851  | 4,672,872  | 59,021         | 4,871,900  | 4,949,744  | 77,844    | 5,520,836  | 5,583,171  | 62,335        | 6,596,703  | 6,640,607  | 43,904        |
| SETRANS W            | 2,431,892  | 2,410,698  | (21,194)       | 2,720,684  | 2,697,497  | (23,186)  | 3,226,171  | 3,211,210  | (14,962)      | 3,961,933  | 3,950,995  | (10,937)      |
| SPP                  | 3,148,178  | 3,165,538  | 17,361         | 3,342,461  | 3,358,038  | 15,577    | 3,894,867  | 3,903,052  | 8,185         | 4,665,475  | 4,683,400  | 17,925        |
| TVA                  | 2,321,835  | 2,330,848  | 9,013          | 2,386,493  | 2,400,950  | 14,457    | 2,694,341  | 2,707,600  | 13,259        | 3,166,439  | 3,171,888  | 5,449         |
| VAP                  | 1,419,034  | 1,283,605  | (135,429)      | 1,528,822  | 1,382,388  | (146,434) | 1,765,262  | 1,591,656  | (173,606)     | 2,174,809  | 1,984,186  | (190,623)     |
| Total                | 47,344,848 | 47,335,611 | (9,237)        | 49,402,670 | 49,371,607 | (31,063)  | 55,428,146 | 55,394,890 | (33,256)      | 64,976,472 | 64,970,820 | (5,652)       |

)

| Table A-26: Ave | erage Spot Pri | ces (\$/MWh), | High Fuel |
|-----------------|----------------|---------------|-----------|
|-----------------|----------------|---------------|-----------|

| ·             |       | 2005   |           |       | 2007   |           |       | 2010   |           | -     | 2014   |           |
|---------------|-------|--------|-----------|-------|--------|-----------|-------|--------|-----------|-------|--------|-----------|
|               |       |        | Delta     |       |        | Delta     |       |        | Delta     |       |        | Delta     |
|               | Base  | Change | (Change - |
| Capacity Pool | Case  | Case   | Base)     |
| AEP           | 22.51 | 23.16  | 0.65      | 23.21 | 23.97  | 0.76      | 26.71 | 27.37  | 0.66      | 31.99 | 32.17  | 0.18      |
| COED          | 21.88 | 21.65  | (0.23)    | 22.61 | 22.38  | (0.23)    | 25.90 | 25.80  | (0.10)    | 30.96 | 30.75  | (0.20)    |
| CPL           | 30.67 | 31.09  | 0.42      | 32.02 | 32.73  | 0.71      | 35.88 | 37.08  | 1.20      | 41.83 | 42.35  | 0.52      |
| DP&L          | 22.31 | 22.63  | 0.32      | 22.63 | 23.28  | 0.65      | 25.82 | 26.65  | 0.84      | 30.83 | 31.27  | 0.44      |
| DUKE          | 30.71 | 31.16  | 0.45      | 32.08 | 32.74  | 0.66      | 35.92 | 36.71  | 0.80      | 42.02 | 42.43  | 0.40      |
| GFL           | 39.66 | 39.73  | 0.07      | 46.75 | 46.77  | 0.02      | 42.64 | 42.67  | 0.03      | 44.79 | 44.81  | 0.02      |
| MISO E        | 23.45 | 23.67  | 0.22      | 24.05 | 24.32  | 0.27      | 27.46 | 27.74  | 0.28      | 32.29 | 32.52  | 0.23      |
| MISO W        | 25.64 | 25.80  | 0.16      | 27.00 | 27.13  | 0.13      | 33.05 | 33.12  | 0.08      | 35.89 | 36.01  | 0.13      |
| ISO-NE        | 38.47 | 38.45  | (0.02)    | 37.96 | 37.96  | 0.00      | 38.50 | 38.48  | (0.02)    | 39.86 | 39.94  | 0.08      |
| NYC           | 40.00 | 39.97  | (0.04)    | 38.54 | 38.65  | 0.10      | 39.65 | 39.69  | 0.04      | 41.92 | 42.01  | 0.09      |
| NYL.          | 42.88 | 42.82  | (0.06)    | 41.72 | 41.70  | (0.02)    | 43.25 | 44.08  | 0.84      | 45.06 | 45.04  | (0.02)    |
| NYO           | 34.16 | 33.82  | (0.34)    | 33.45 | 33.27  | (0.17)    | 34.66 | 34.49  | (0.17)    | 36.25 | 36.15  | (0.10)    |
| PJM           | 29.89 | 29.51  | (0.38)    | 30.15 | 29.95  | (0.21)    | 32.99 | 33.26  | 0.27      | 36.69 | 37.57  | 0.88      |
| SCE&G         | 30.01 | 30.39  | 0.39      | 31.11 | 31.74  | 0.63      | 34.66 | 35.27  | 0.61      | 39.90 | 40.28  | 0.38      |
| SETRANS E     | 32.25 | 32.40  | 0.15      | 33.23 | 33.40  | 0.17      | 36.05 | 36.31  | 0.26      | 40.64 | 40.70  | 0.06      |
| SETRANS W     | 33.16 | 33.19  | 0.03      | 33.87 | 33.95  | 0.07      | 35.74 | 35.80  | 0.06      | 38.13 | 38.14  | 0.02      |
| SPP           | 29.83 | 29.85  | 0.02      | 30.68 | 30.75  | 0.07      | 33.38 | 33.46  | 0.08      | 36.57 | 36.67  | 0.10      |
| TVA           | 28.52 | 28.63  | 0.11      | 29.31 | 29.54  | 0.23      | 32.59 | 32.79  | 0.20      | 36.75 | 36.77  | 0.02      |
| VAP           | 34.24 | 32.37  | (1.87)    | 35.07 | 33.56  | (1.50)    | 38.30 | 37.61  | (0.69)    | 42.97 | 42.28  | (0.69)    |
| Total         | 30.14 | 30.12  | (0.02)    | 31.18 | 31.23  | 0.06      | 33.96 | 34.13  | 0.17      | 37.53 | 37.70  | 0.17      |

| Period    | imports/Transfers          | 2005 Base<br>Case | 2007 Base<br>Case | 2010 Base<br>Case | 2014 Base<br>Case | 2005<br>Change<br>Ca <del>se</del> | 2007<br>Change<br>Case | 2010<br>Change<br>Case | 2014<br>Change<br>Case |
|-----------|----------------------------|-------------------|-------------------|-------------------|-------------------|------------------------------------|------------------------|------------------------|------------------------|
| Off-Peak  | Average of VAP Net Imports | 1,722             | 1,770             | 1,906             | 1,980             | 2,063                              | 2,106                  | 2,197                  | 2,259                  |
|           | Average Transfers from AEP | 1,494             | 1,521             | 1,624             | 1,526             | 1,918                              | 1,862                  | 1,882                  | 1,750                  |
|           | Average Transfers from PJM | 100               | 154               | 191               | 432               | 98                                 | 224                    | 313                    | 553                    |
|           | Average Transfers from CPL | 128               | 96                | 90                | 22                | 46                                 | 20                     | 2                      | (43)                   |
| On-Peak   | Average of VAP Net Imports | 697               | 584               | 346               | 137               | 1,413                              | 1,303                  | 1,238                  | 1,068                  |
|           | Average Transfers from AEP | 663               | 555               | 334               | 140               | 1,249                              | 1,071                  | 729                    | 544                    |
|           | Average Transfers from PJM | 45                | 68                | 95                | 109               | 218                                | 282                    | 622                    | 576                    |
|           | Average Transfers from CPL | (12)              | (39)              | (83)              | (112)             | (54)                               | (50)                   | (114)                  | (52)                   |
| All-Hours | Average of VAP Net Imports | 1,234             | 1,206             | 1,163             | 1,102             | 1,753                              | 1,723                  | 1,740                  | 1,692                  |
|           | Average Transfers from AEP | 1,098             | 1,061             | 1,010             | 866               | 1,600                              | 1,485                  | 1,333                  | 1,176                  |
|           | Average Transfers from PJM | 74                | 113               | 145               | 278               | 155                                | 252                    | 460                    | 564                    |
|           | Average Transfers from CPL | 61                | 32                | 8                 | (42)              | (1)                                | (1 <u>3)</u>           | _ (53)                 | (48)                   |

Table A-27: Average VAP Net Imports by Source (MW) 2005-2014, High Load

)

-



# Pool to Pool All-Hour Average Transfers (MW) 2005 High Load/Base



# Pool to Pool All-Hour Average Transfers (MW) 2005 High Load/Change



# Pool to Pool All-Hour Average Transfers (MW) 2007 High Load/Base

i.



Pool to Pool Ali-Hour Average Transfers (MW) 2007 High Load/Change



Pool to Pool All-Hour Average Transfers (MW) 2010 High Load/Base



Pool to Pool Ali-Hour Average Transfers (MW) 2010 High Load/Change



# Pool to Pool Ali-Hour Average Transfers (MW) 2014 High Load/Base



Pool to Pool All-Hour Average Transfers (MW) 2014 High Load/Change

# Table A-28: Generation by Type and Pool (GWh), High Load

|                 |          |           | 2005      |           |           | 2007      |           | · · ·     | 2010      |           | _ <b></b> | 2014      |           |
|-----------------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|                 |          |           |           | Delta     |           |           | Deita     |           |           | Delta     |           | 2014      | Delta     |
|                 |          |           | Change    | (Change - |
| Capacity Pool   | TYPE     | Base Case | Case      | Base)     |
|                 | CC       | 231,512   | 234,109   | 2,597     | 266,969   | 269,759   | 2,791     | 335,612   | 338,144   | 2,532     | 414,807   | 415,943   | 1,135     |
|                 | Coal     | 1,323,143 | 1,326,698 | 3,555     | 1,346,190 | 1,349,580 | 3,390     | 1,365,218 | 1,368,522 | 3,303     | 1,376,704 | 1,378,545 | 1,841     |
|                 | Hydro    | 100,956   | 100,956   | -         | 100,956   | 100,956   |           | 100,956   | 100,956   | -         | 100,956   | 100,956   | -         |
|                 | New CC   | -         | -         | -         | -         | -         | _         | 6,411     | 6,417     | 6         | 23,675    | 23,708    | 33        |
|                 | New CT   | -         | -         | -         | 466       | 484       | 18        | 6,562     | 6,349     | (214)     | 47,583    | 49,149    | 1,565     |
|                 | Nuke     | 411,983   | 411,981   | (2)       | 411,822   | 411,827   | 5         | 412,078   | 412,084   | 6         | 412,037   | 412,038   | 1         |
|                 | Other    | 61,952    | 61,954    | 2         | 61,997    | 61,998    | 1         | 61,979    | 61,985    | 5         | 61,973    | 61,982    | 9         |
|                 | Peaker   | 15,033    | 15,094    | 61        | 23,998    | 24,336    | 338       | 38,020    | 38,474    | 454       | 44,519    | 44,969    | 450       |
|                 | PSH      | 17,082    | 17,107    | 25        | 16,673    | 16,687    | 13        | 15,921    | 15,910    | (10)      | 13,637    | 13,609    | (28)      |
|                 | ST/G/O/D | 112,055   | 112,831   | 776       | 123,343   | 124,495   | 1,152     | 140,166   | 140,971   | 805       | 169,515   | 170,224   | 709       |
| Non-PJM Total   |          | 2,273,717 | 2,280,731 | 7,014     | 2,352,414 | 2,360,121 | 7,707     | 2,482,922 | 2,489,811 | 6,888     | 2,665,407 | 2,671,122 | 5,715     |
| PJM             | сс       | 32,117    | 28,792    | (3,325)   | 38,673    | 35,420    | (3,253)   | 51,448    | 50,210    | (1,237)   | 71,923    | 72,724    | 801       |
| (Expanded)      | Coal     | 412,848   | 410,874   | (1,974)   | 425,047   | 423,079   | (1,967)   | 439,957   | 437,718   | (2,238)   | 450,656   | 448,949   | (1,706)   |
|                 | Hydro    | 8,074     | 8,074     | -         | 8,074     | 8,074     | • • •     | 8,074     | 8,074     | -         | 8,074     | 8,074     |           |
|                 | New CC   | -         | -         | -         | -         | -         | -         |           | -         | -         | · -       |           | -         |
|                 | New CT   | -         | -         | -         | -         | -         | -         | 612       | 22        | (590)     | 5.373     | 2,289     | (3,085)   |
|                 | Nuke     | 239,964   | 239,968   | 4         | 239,953   | 239,951   | (2)       | 239,872   | 239,868   | (4)       | 239,780   | 239,777   | (4)       |
|                 | Other    | 9,359     | 9,329     | (29)      | 9,502     | 9,491     | (11)      | 9,511     | 9,503     | (7)       | 9,536     | 9,525     | (11)      |
|                 | Peaker   | 2,048     | 1,866     | (182)     | 3,283     | 3,020     | (263)     | 5,355     | 5,068     | (287)     | 8,294     | 7,792     | (502)     |
|                 | PSH      | 7,893     | 7,899     | 6         | 7,899     | 7,899     | o         | 8,143     | 8,156     | 13        | 7,804     | 7,849     | 45        |
|                 | ST/G/O/D | 18,274    | 16,888    | (1,386)   | 24,372    | 22,302    | (2,070)   | 30,803    | 28,360    | (2,443)   | 41,869    | 40,778    | (1,091)   |
|                 | Wind     | 339       | 332       | (7)       | 335       | 329       | (6)       | 333       | 329       | (4)       | 344       | 341       | (3)       |
| PJM Total       |          | 730,917   | 724,023   | (6,893)   | 757,138   | 749,566   | (7,572)   | 794,107   | 787,310   | (6,797)   | 843,655   | 838,099   | (5,555)   |
| Eastern         | cc       | 263,629   | 262,901   | (728)     | 305,641   | 305,179   | (462)     | 387,059   | 388,355   | 1,295     | 486,731   | 488,667   | 1,937     |
| Interconnection | Coal     | 1,735,991 | 1,737,572 | 1,581     | 1,771,237 | 1,772,659 | 1,422     | 1,805,175 | 1,806,240 | 1,065     | 1,827,359 | 1,827,494 | 135       |
|                 | Hydro    | 109,030   | 109,030   | -         | 109,030   | 109,030   | -         | 109,030   | 109,030   | -         | 109,030   | 109,030   | -         |
|                 | New CC   | -         | -         | -         | -         | -         | •         | 6,411     | 6,417     | 6         | 23,675    | 23,708    | 33        |
|                 | New CT   | -         | -         | -         | 466       | 484       | 18        | 7,174     | 6,370     | (804)     | 52,957    | 51,437    | (1,519)   |
|                 | Nuke     | 651,947   | 651,950   | 2         | 651,775   | 651,778   | 3         | 651,950   | 651,951   | 2         | 651,818   | 651,815   | (2)       |
|                 | Other    | 71,311    | 71,284    | (27)      | 71,500    | 71,489    | (10)      | 71,490    | 71,488    | (2)       | 71,509    | 71,507    | (2)       |
|                 | Peaker   | 17,082    | 16,961    | (121)     | 27,281    | 27,356    | 75        | 43,375    | 43,542    | 167       | 52,813    | 52,761    | (52)      |
|                 | PSH      | 24,975    | 25,006    | 31        | 24,572    | 24,586    | 14        | 24,064    | 24,067    | 3         | 21,441    | 21,458    | 17        |
|                 | ST/G/O/D | 130,329   | 129,719   | (610)     | 147,715   | 146,797   | (918)     | 170,968   | 169,331   | (1,637)   | 211,384   | 211,002   | (382)     |
|                 | Wind     | 339       | 332       | (7)       | 335       | 329       | (6)       | 333       | 329       | (4)       | 344       | 341       | (3)       |
| El Total        |          | 3,004,633 | 3,004,754 | 121       | 3,109,552 | 3,109,687 | 135       | 3,277,030 | 3,277,120 | 91        | 3,509,061 | 3,509,221 | 160       |

|               |                  |           | 2005    | <del> </del> |           | 2007    |           |           | 2010    |           |                  | 2014    |           |
|---------------|------------------|-----------|---------|--------------|-----------|---------|-----------|-----------|---------|-----------|------------------|---------|-----------|
|               |                  |           | 2000    | Delta        |           | 2007    | Deita     |           | 2070    | Delta     |                  | 2014    | Delta     |
|               |                  |           | Change  | (Change -    |           | Change  | (Change - |           | Change  | (Change - |                  | Change  | (Change - |
| Capacity Pool | TYPE -           | Base Case | Case    | Base)        | Base Case | Case    | Base)     | Basø Case | Case    | Base)     | <b>Base Case</b> | Case    | Base)     |
| AEP           | CC               | 579       | 1,485   | 906          | 830       | 1,930   | 1,099     | 2,278     | 4,240   | 1,962     | 5,586            | 10,454  | 4,868     |
|               | Coal             | 131,081   | 132,571 | 1,491        | 136,231   | 137,403 | 1,171     | 140,841   | 140,490 | (351)     | 144,074          | 143,882 | (191)     |
|               | Hydro            | 1,284     | 1,284   | -            | 1,284     | 1,284   | -         | 1,284     | 1,284   | -         | 1,284            | 1,284   | -         |
|               | Nuke             | 15,885    | 15,885  | -            | 15,885    | 15,885  | -         | 15,913    | 15,913  | -         | 15,884           | 15,884  | -         |
|               | Other            | 214       | 214     | (0)          | 213       | 213     | (0)       | 214       | 214     | -         | 214              | 214     | -         |
|               | Peaker           | -         | -       | -            | 24        | 34      | 10        | 176       | 233     | 57        | 251              | 304     | 54        |
|               | PSH              | 729       | 731     | 2            | 718       | 718     | (1)       | 618       | 618     | 0         | 465              | 463     | (2)       |
|               | ST/G/O/D         | 1         | 1       | 0            | 2         | 2       | 0         | 3         | 5       | 2         | 4                | 8       | 4         |
|               | New CT           | -         | -       | -            | -         | -       | -         | -         | -       | -         | -                | -       | -         |
|               | New CC           | -         | -       | -            | -         | -       | -         | -         | -       | -         | -                | -       | -         |
| AEP Sum       |                  | 149,772   | 152,170 | 2,398        | 155,188   | 157,468 | 2,280     | 161,326   | 162,995 | 1,670     | 167,760          | 172,493 | 4,732     |
| COMED         | cc               | 2,258     | 1,776   | (482)        | 2,656     | 2,113   | (543)     | 3,261     | 3,015   | (246)     | 4,344            | 4,079   | (265)     |
|               | Coal             | 28,550    | 29,565  | 1,015        | 30,245    | 31,190  | 946       | 33,231    | 34,166  | 935       | 34,991           | 35,473  | 482       |
|               | Nuke             | 80,327    | 80,331  | 4            | 80,342    | 80,340  | (2)       | 80,249    | 80,245  | (4)       | 80,282           | 80,277  | (6)       |
|               | Peaker           | 323       | 178     | (145)        | 487       | 263     | (224)     | 857       | 587     | (270)     | 2,031            | 844     | (1,188)   |
|               | ST/G/O/D         | 2,184     | 557     | (1,627)      | 3,281     | 846     | (2,435)   | 5,434     | 1,649   | (3,785)   | 7,958            | 5,254   | (2,704)   |
|               | New CT           | -         | -       | -            | -         | -       | -         | 160       | 22      | (139)     | 1,527            | 391     | (1,136)   |
|               | New CC           | -         | -       | -            | -         | -       | -         | -         | -       | -         | -                | -       | · - ·     |
| COMED Sum     |                  | 113,641   | 112,407 | (1,235)      | 117,011   | 114,753 | (2,257)   | 123,192   | 119,683 | (3,509)   | 131,134          | 126,318 | (4,816)   |
| CPL           | cc               | 2,194     | 2,612   | 419          | 2,768     | 3,110   | 342       | 3,578     | 3,797   | 219       | 4,600            | 4,664   | 64        |
|               | Coal             | 35,098    | 35,242  | 143          | 36,736    | 36,913  | 177       | 37,687    | 37,814  | 127       | 39,110           | 39,209  | 99        |
|               | Hydro            | 949       | 949     | -            | 949       | 949     | -         | 949       | 949     | -         | 949              | 949     | -         |
|               | Nuke             | 24,491    | 24,491  | -            | 24,494    | 24,494  | -         | 24,476    | 24,476  | -         | 24,507           | 24,507  | -         |
|               | Other            | 2,511     | 2,511   | -            | 2,506     | 2,506   | -         | 2,508     | 2,513   | 5         | 2,506            | 2,506   | (1)       |
|               | Peaker           | 847       | 873     | 26           | 1,278     | 1,442   | 165       | 1,857     | 2,084   | 227       | 2,258            | 2,426   | 168       |
|               | New CT           | -         | -       | -            | -         | -       | -         | 853       | 647     | (206)     | <b>4</b> ,585    | 5,109   | 524       |
|               | New CC           | -         | -       | -            | -         | -       | -         | -         | -       | -         | -                | -       | -         |
| CPL Sum       |                  | 66,090    | 66,678  | 588          | 68,730    | 69,414  | 685       | 71,907    | 72,279  | 372       | 78,514           | 79,369  | 855       |
| DP&L          | Coal             | 18,106    | 18,260  | 155          | 18,920    | 19,091  | 171       | 19,957    | 20,202  | 245       | 20,794           | 20,903  | 109       |
|               | Other            | 45        | 45      | -            | 45        | 45      | -         | 45        | 45      | -         | 45               | 45      | -         |
|               | Peaker<br>New CT | 8         | -       | (8)          | 38        | 17      | (20)      | 150       | 162     | 13        | 334              | 208     | (126)     |
| DP&L Sum      |                  | 18,159    | 18,306  | 147          | 19,003    | 19,153  | 151       | 20,152    | 20,409  | 257       | 21,173           |         | -<br>(17) |

# Table A-29: Generation by Type and Pool (GWh), High Load

)

| Table A-29: Generation by | Type and | Pool | (GWh), | High | Load |
|---------------------------|----------|------|--------|------|------|
|                           |          |      |        |      |      |

|               |                  | ·                    | 2005    |              |           | 2007         |           | ·         | 2010    |            |              | 2014    |           |
|---------------|------------------|----------------------|---------|--------------|-----------|--------------|-----------|-----------|---------|------------|--------------|---------|-----------|
|               |                  |                      |         | Delta        |           |              | Delta     |           |         | Delta      |              |         | Delta     |
|               |                  |                      | Change  | (Change -    |           | Сһапде       | (Change - |           | Change  | (Change -  |              | Change  | (Change - |
| Capacity Pool | TYPE -           | Base Case            | Case    | Base)        | Base Case | Case         | Base)     | Base Case | Case    | Base)      | Base Case    | Case    | Base)     |
| DUKE          | CC               | 1,454                | 1,636   | 181          | 1,756     | 1,915        | 158       | 2,287     | 2,337   | 50         | 2,980        | 3,037   | 56        |
|               | Coal             | 50,666               | 50,859  | 193          | 52,325    | 52,551       | 226       | 53,456    | 53,593  | 137        | 54,821       | 54,889  | 67        |
|               | Hydro            | 4,265                | 4,265   | -            | 4,265     | 4,265        | -         | 4,265     | 4,265   | -          | 4,265        | 4,265   | -         |
|               | Nuke             | 53,021               | 53,021  | -            | 52,958    | 52,958       | -         | 53,031    | 53,031  | -          | 53,054       | 53,054  | -         |
|               | Other            | 57                   | 57      | -            | 56        | 56           | -         | 56        | 56      | -          | 57           | 57      | 0         |
|               | Peaker           | 980                  | 1,023   | 43           | 1,371     | 1,438        | 67        | 2,368     | 2,593   | 225        | 4,770        | 4,778   | 8         |
|               | PSH              | 3,789                | 3,807   | 17           | 3,579     | 3,595        | 16        | 3,292     | 3,312   | 20         | 2,447        | 2,440   | (7)       |
|               | ST/G/O/D         | 9                    | 10      | 2            | 9         | 10           | 1         | 13        | 13      | 0          | 15           | 18      | 2         |
|               | New CT           | -                    | -       | -            | 386       | 403          | 16        | 2,059     | 2,064   | 5          | 5,571        | 5,775   | 204       |
|               | New CC           | -                    | -       | -            | -         | -            | -         | -         | -       | -          | -            | -       | -         |
| DUKE Sum      |                  | 114,240              | 114,677 | 437          | 116,706   | 117,192      | 486       | 120,829   | 121,265 | 436        | 127,981      | 128,312 | 331       |
| GFL           | cc               | 64,622               | 64,809  | 187          | 68,828    | 68,960       | 132       | 73.812    | 73.848  | 36         | 79,783       | 79.862  | 79        |
|               | Coal             | 55,142               | 55,209  | 66           | 55,793    | 55.874       | 82        | 56,219    | 56,285  | 66         | 56,804       | 56.823  | 19        |
|               | HRM              | -                    | -       | -            | -         | _            | -         | · _       | -       | -          | -            | -       | -         |
|               | Hydro            | 214                  | 214     | -            | 214       | 214          | -         | 214       | 214     | -          | 214          | 214     | -         |
|               | Nuke             | 29,966               | 29,966  | -            | 29,896    | 29.896       | -         | 29,953    | 29,953  | -          | 29.885       | 29.885  | -         |
|               | Other            | 3,147                | 3,147   | -            | 3,150     | 3,150        | -         | 3,147     | 3.147   | -          | 3,147        | 3,147   | -         |
|               | Peaker           | 3,563                | 3,566   | 2            | 7,173     | 7,171        | (2)       | 6,424     | 6.476   | 52         | 4,883        | 4,892   | 9         |
|               | ST/G/O/D         | 42,002               | 42,123  | 121          | 44,295    | 44,363       | 68        | 46,349    | 46,363  | 14         | 50,247       | 50,260  | 12        |
|               | New CT           | -                    | -       | <del>.</del> | -         | -            | -         | 3,447     | 3,434   | (14)       | 10,032       | 10,100  | 68        |
|               | New CC           | -                    | -       | <del>.</del> | -         | -            | -         | 6,411     | 6,417   | 6          | 20,603       | 20.606  | 3         |
| GFL Sum       |                  | 198, <del>6</del> 57 | 199,035 | 377          | 209,349   | 209,629      | 280       | 225,978   | 226,138 | 160        | 255,600      | 255,790 | 190       |
| MISO E        | cc               | 6,314                | 6,410   | 96           | 8,816     | 9.201        | 385       | 14,889    | 15.224  | 335        | 22,470       | 22.570  | 101       |
|               | Coat             | 319,766              | 321,577 | 1,812        | 327,778   | 329,588      | 1,809     | 339,242   | 341,278 | 2.036      | 349,941      | 351,213 | 1,272     |
|               | HRM              | -                    | -       | -            | -         | -            | -         | -         | -       | -          | -            | -       | -         |
|               | Hydro            | 2,658                | 2,658   | -            | 2,658     | 2,658        | -         | 2,658     | 2,658   | -          | 2,658        | 2,658   | -         |
|               | Nuke             | 29,319               | 29,319  | -            | 29,323    | 29,323       | -         | 29,290    | 29,290  | -          | 29,334       | 29,334  | -         |
|               | Other            | 2,454                | 2,454   | -            | 2,455     | 2,455        | -         | 2,457     | 2,457   | -          | 2,454        | 2,455   | 1         |
|               | Peaker           | 695                  | 663     | (32)         | 1,122     | 1,143        | 21        | 2,199     | 2,289   | 90         | 4,976        | 4,843   | (133)     |
|               | PSH              | 5,229                | 5,232   | 3            | 5,085     | 5,076        | (10)      | 4,669     | 4.654   | (15)       | 4,025        | 3,999   | (27)      |
|               | ST/G/O/D         | 2,133                | 2,273   | 140          | 3,282     | 3,351        | 70        | 5,971     | 6,149   | 178        | 10,648       | 10.548  | (101)     |
|               | New CT<br>New CC | -                    | -       | -            | -         | -            | -         | -         | -       | -          | 1,891        | 1,901   | 10        |
| MISO E Sum    |                  | 368,567              | 370,586 | 2,019        | 380,520   | -<br>382,796 | 2,276     | 401,374   | 403,999 | -<br>2,625 | -<br>428,397 | 429,520 | 1,123     |

|               |          | 2005      |         |           | 2007      |         |           | 2010      |         |           | 2014      |         |           |
|---------------|----------|-----------|---------|-----------|-----------|---------|-----------|-----------|---------|-----------|-----------|---------|-----------|
|               |          |           |         | Delta     |           |         | Delta     |           |         | Delta     |           |         | Delta     |
|               |          |           | Change  | (Change - |
| Capacity Pool | TYPE -   | Base Case | Case    | Base)     |
| MIŠO W        | CC       | 9,163     | 9,411   | 248       | 11,217    | 11,299  | 82        | 15,298    | 15,358  | 60        | 19,876    | 19,948  | 72        |
|               | Coal     | 286,340   | 286,944 | 604       | 289,929   | 290,585 | 657       | 293,571   | 294,201 | 630       | 301,110   | 301,509 | 399       |
|               | HRM      | -         | -       | -         | -         | -       | -         | -         | -       | -         | -         | -       | -         |
|               | Hydra    | 15,458    | 15,458  | -         | 15,458    | 15,458  | -         | 15,458    | 15,458  | -         | 15,458    | 15,458  | -         |
|               | Nuke     | 56,845    | 56,845  | 0         | 56,919    | 56,924  | 5         | 56,805    | 56,812  | 7         | 56,886    | 56,883  | (2)       |
|               | Other    | 10,566    | 10,567  | 1         | 10,571    | 10,572  | 1         | 10,560    | 10,561  | 1         | 10,555    | 10,564  | 9         |
|               | Peaker   | 5,796     | 5,800   | 4         | 7,863     | 7,908   | 45        | 15,554    | 15,482  | (73)      | 13,696    | 14,000  | 304       |
|               | PSH      | 671       | 668     | (3)       | 678       | 685     | 8         | 688       | 686     | (2)       | 678       | 674     | (4)       |
|               | ST/G/O/D | 605       | 608     | 3         | 859       | 866     | 6         | 1,862     | 1,873   | 11        | 2,148     | 2,193   | 45        |
|               | New CT   | -         | -       | -         | -         | -       | -         | -         | -       | -         | 14,912    | 15,475  | 564       |
|               | New CC   | -         | -       | -         | -         | -       | -         | -         | -       | -         | -         | -       | -         |
| MISO W Sum    |          | 385,444   | 386,302 | 858       | 393,494   | 394,298 | 804       | 409,796   | 410,431 | 635       | 435,318   | 436,704 | 1,386     |
| ISO-NE        | сс       | 27,926    | 27,908  | (18)      | 30,153    | 29,989  | (165)     | 36,218    | 36,236  | 18        | 41,117    | 41,071  | (46)      |
|               | Coal     | 21,345    | 21,352  | 7         | 21,557    | 21,540  | (17)      | 21,862    | 21,859  | (2)       | 21,908    | 21,901  | (7)       |
|               | HRM      | -         | -       | -         | -         | -       | -         | -         | -       | -         | -         | -       | -         |
|               | Hydro    | 7,261     | 7,261   | -         | 7,261     | 7,261   | -         | 7,261     | 7,261   | -         | 7,261     | 7,261   | -         |
|               | Nuke     | 33,909    | 33,909  | -         | 33,883    | 33,882  | (1)       | 33,963    | 33,963  | -         | 33,979    | 33,979  | -         |
|               | Other    | 14,300    | 14,300  | -         | 14,314    | 14,314  | -         | 14,319    | 14,319  | -         | 14,309    | 14,309  | -         |
|               | Peaker   | -         | -       | -         | -         | -       | -         | -         | -       | -         | 0         | 1       | 1         |
|               | PSH      | 1,361     | 1,368   | 7         | 1,284     | 1,287   | 3         | 1,251     | 1,258   | 7         | 1,076     | 1,071   | (5)       |
|               | ST/G/O/D | 17,582    | 17,641  | 59        | 19,475    | 19,633  | 158       | 19,267    | 19,286  | 19        | 21,680    | 21,819  | 138       |
|               | New CT   | -         | -       | -         | -         | -       | -         | -         | -       | -         | -         | -       | -         |
|               | New CC   |           | -       | -         | -         | -       | -         | -         | -       | -         | -         | -       | -         |
| ISO-NE Şum    |          | 123,684   | 123,739 | 55        | 127,927   | 127,906 | (21)      | 134,140   | 134,181 | 42        | 141,331   | 141,412 | 81        |
| NYC           | CC       | 6,434     | 6,523   | 89        | 6,594     | 6,690   | 96        | 6,998     | 7,058   | 60        | 7,453     | 7,543   | 91        |
|               | Other    | 179       | 179     | -         | 179       | 179     | -         | 179       | 179     | -         | 179       | 179     | -         |
|               | Peaker   | 469       | 467     | (3)       | 355       | 361     | 6         | 486       | 480     | (6)       | 683       | 702     | 20        |
|               | ST/G/O/D | 18,867    | 19,044  | 176       | 19,819    | 19,990  | 171       | 21,006    | 21,164  | 158       | 22,319    | 22,503  | 184       |
|               | New CT   | -         | -       | -         | 45        | 45      | 1         | 104       | 106     | 2         | 221       | 225     | 4         |
|               | New CC   | -         | -       | -         | -         | -       | -         | -         | -       | -         | -         | -       | -         |
| NYC Sum       |          | 25,950    | 26,212  | 263       | 26,992    | 27,266  | 274       | 28,773    | 28,987  | 214       | 30,854    | 31,153  | 299       |
| NYL           | CC       | 1,483     | 1,492   | 9         | 1,527     | 1,526   | (0)       | 1,606     | 1,606   | 0         | 1,661     | 1,660   | (1)       |
|               | Other    | 988       | 988     | -         | 991       | 991     | -         | 987       | 987     | -         | 989       | 989     | -         |
|               | Peaker   | 211       | 208     | (3)       | 203       | 204     | 1         | 281       | 279     | (2)       | 430       | 428     | (2)       |

Table A-29: Generation by Type and Pool (GWh), High Load
|               |          | ··        | 2005    | ·                |           | 2007    |           |           | 2010    |                  |           | 2014               |                    |
|---------------|----------|-----------|---------|------------------|-----------|---------|-----------|-----------|---------|------------------|-----------|--------------------|--------------------|
|               |          |           | Change  | Delta<br>(Channa |           | Change  | Deita     |           | Change  | Delta<br>(Change |           | Change             | Delta<br>(Chango - |
| Canacity Rool | TYPE     | Bass Cass | Change  | (Change -        | Basa Casa | Change  | (Unange - | Bass Cass | Change  | (Change -        | Basa Cana | Case               | (Change -<br>Base) |
| Capacity POOL |          |           | 0 793   | Dasej            | Dase Case | 0 475   | Dase)     | 10 279    | 10 297  | Dasej            | 11 402    | 11 506             | Dabe)<br>15        |
|               | New CT   | 0,119     | 0,705   | -                | 3,423     | 3,473   | 40        | 10,278    | 10,207  | (1)              | 274       | 274                | (1)                |
|               | New CC   | -         | -       | -                | -         |         | -         | -         | -       | - (*)            |           | -                  |                    |
| NYL Sum       |          | 11,461    | 11,471  | 10               | 12,185    | 12,232  | 47        | 13,252    | 13,258  | 6                | 14,847    | 14,858             | 11                 |
| NYO           | cc       | 12,127    | 12,094  | (33)             | 13,178    | 13,027  | (151)     | 14,758    | 14,748  | (10)             | 17,427    | 17,342             | (85)               |
|               | Coal     | 25,891    | 25,700  | (190)            | 26,387    | 26,200  | (187)     | 27,074    | 26,870  | (204)            | 27,296    | 27,129             | (167)              |
|               | HRM      | -         | -       | -                | -         | -       | -         | -         | -       | -                | -         | -                  | -                  |
|               | Hydro    | 28,623    | 28,623  | -                | 28,623    | 28,623  | -         | 28,623    | 28,623  | -                | 28,623    | 28,623             | -                  |
|               | Nuke     | 37,819    | 37,817  | (2)              | 37,706    | 37,707  | 1         | 37,729    | 37,728  | (1)              | 37,706    | 37,710             | 4                  |
|               | Other    | 2,401     | 2,402   | 1                | 2,402     | 2,402   | -         | 2,402     | 2,402   | (0)              | 2,397     | 2,3 <del>9</del> 7 | (0)                |
|               | Peaker   | 3         | 3       | (1)              | 2         | 2       | 0         | 4         | 4       | (1)              | 25        | 23                 | (2)                |
|               | PSH      | 2,037     | 2,040   | 3                | 2,046     | 2,050   | 4         | 1,899     | 1,896   | (3)              | 1,806     | 1,815              | 9                  |
|               | ST/G/O/D | 9,704     | 9,734   | 30               | 10,919    | 11,141  | 222       | 11,658    | 11,753  | 95               | 13,416    | 13,415             | (0)                |
|               | New CT   | -         | -       | -                | -         | -       | -         | -         | -       | -                | 101       | 151                | 50                 |
|               | New CC   | -         | -       | -                | -         | -       | -         | -         | -       | -                |           | -                  | -                  |
| NYO Sum       |          | 118,604   | 118,413 | (192)            | 121,263   | 121,152 | (111)     | 124,147   | 124,024 | (123)            | 128,797   | 128,605            | (192)              |
| PJM           | CC       | 22,225    | 20,731  | (1,494)          | 26,386    | 25,068  | (1,318)   | 34,747    | 34,673  | (74)             | 46,545    | 45,939             | (605)              |
|               | Coal     | 194,000   | 190,797 | (3,203)          | 197,444   | 194,514 | (2,930)   | 202,406   | 200,211 | (2,195)          | 206,032   | 204,540            | (1,492)            |
|               | HRM      | -         | -       | -                | -         | -       | -         | -         | -       | -                | -         | -                  | -                  |
|               | Hydro    | 5,599     | 5,599   | -                | 5,599     | 5,599   | -         | 5,599     | 5,599   | -                | 5,599     | 5,599              | -                  |
|               | Nuke     | 117,388   | 117,388 | -                | 117,476   | 117,476 | -         | 117,393   | 117,393 | -                | 117,365   | 117,367            | 2                  |
|               | Other    | 6,902     | 6,902   | -                | 6,908     | 6,908   | -         | 6,904     | 6,904   | -                | 6,907     | 6,904              | (2)                |
|               | Peaker   | 619       | 665     | 45               | 1,249     | 1,305   | 56        | 1,857     | 2,132   | 275              | 2,947     | 3,937              | 990                |
|               | PSH      | 4,664     | 4,668   | 4                | 4,681     | 4,682   | 1         | 4,709     | 4,722   | 13               | 4,521     | 4,568              | 46                 |
|               | ST/G/O/D | 10,452    | 11,452  | 1,001            | 14,574    | 15,574  | 1,000     | 17,759    | 19,610  | 1,851            | 25,287    | 27,326             | 2,038              |
|               | Wind     | 339       | 332     | (7)              | 335       | 329     | (6)       | 333       | 329     | (4)              | 344       | 341                | (3)                |
|               | New CT   | -         | -       | -                | -         | -       | -         | -         | -       | -                | 1,240     | -                  | (1,240)            |
|               | New CC   | -         | -       | -                | -         | -       | -         | -         | -       | -                | -         | -                  | -                  |
| PJM Sum       |          | 362,187   | 358,534 | (3,653)          | 374,652   | 371,455 | (3,197)   | 391,707   | 391,573 | (134)            | 416,787   | 416,521            | (266)              |
| SCE&G         | CC       | 2,476     | 2,738   | 262              | 3,132     | 3,495   | 363       | 4,311     | 4,585   | 274              | 5,510     | 5,700              | 189                |
|               | Coal     | 36,508    | 36,660  | 153              | 37,705    | 37,812  | 107       | 38,514    | 38,600  | 86               | 39,282    | 39,328             | 46                 |
|               | Hydro    | 875       | 875     | -                | 875       | 875     | -         | 875       | 875     | -                | 875       | 875                | -                  |
|               | Nuke     | 7,611     | 7,611   | -                | 7,610     | 7,610   | -         | 7,609     | 7,609   | -                | 7,650     | 7,650              | -                  |
|               | Other    | 1,004     | 1,004   | -                | 1,007     | 1,007   | -         | 1,007     | 1,007   | -                | 1,005     | 1,005              | -                  |

#### Table A-29: Generation by Type and Pool (GWh), High Load

| Table A-29: Generation by Type and Pool (GWh), High Lo | ad |
|--------------------------------------------------------|----|
|--------------------------------------------------------|----|

| <u></u>       | <u> </u>                                  |           | 2005    | <u> </u>  |                 | 2007            |           |           | 2010    |           | ······································ | 2014    |            |
|---------------|-------------------------------------------|-----------|---------|-----------|-----------------|-----------------|-----------|-----------|---------|-----------|----------------------------------------|---------|------------|
|               |                                           |           | 2000    | Delta     |                 |                 | Delta     |           |         | Delta     |                                        |         | Delta      |
|               |                                           |           | Change  | (Change - |                 | Change          | (Change - |           | Change  | (Change - |                                        | Change  | (Change -  |
| Canacity Pool | TYPE -                                    | Base Case | Case    | Base)     | Base Case       | Case            | Base)     | Base Case | Case    | Base)     | Base Case                              | Case    | Base)      |
|               | Peaker                                    | 35        | 41      | 6         | 79              | 83              | . 4       | 128       | 143     | 15        | 55                                     | 74      | 19         |
|               | PSH                                       | 987       | 983     | (5)       | 912             | 898             | (13)      | 822       | 810     | (12)      | 565                                    | 572     | 7          |
|               | ST/G/O/D                                  | 25        | 27      | 2         | 65              | 69              | 4         | 105       | 102     | (3)       | 82                                     | 84      | 1          |
|               | New CT                                    | -         | -       | -         | -               | -               | -         | -         | -       | -         | 1,255                                  | 1,340   | 85         |
|               | New CC                                    | -         | -       | -         | -               | -               | -         | -         | -       | -         | -                                      | -       | -          |
| SCE&G Sum     |                                           | 49,522    | 49,940  | 418       | 51,383          | 51,848          | 465       | 53,372    | 53,732  | 360       | 56,279                                 | 56,627  | 348        |
| SETRANS F     | CC                                        | 22.051    | 23.961  | 1.910     | 28,225          | 30,078          | 1,853     | 40,635    | 42,679  | 2,045     | 58,235                                 | 59,217  | 982        |
|               | Coal                                      | 185,268   | 185 740 | 472       | 190.095         | 190,377         | 282       | 189,214   | 189,493 | 278       | 180,095                                | 180,186 | 91         |
|               | HRM                                       | -         | -       | -         | -               | -               | -         | -         | -       | -         | -                                      | -       | -          |
|               | Hydro                                     | 9.179     | 9.179   | -         | 9,179           | 9,179           | -         | 9,179     | 9,179   | -         | 9,179                                  | 9,179   | -          |
|               | Nuke                                      | 45,953    | 45.953  | -         | 46.039          | 46,039          | -         | 46,072    | 46,072  | -         | 46,029                                 | 46,029  | -          |
|               | Other                                     | 8.841     | 8.841   | -         | 8.851           | 8,851           | -         | 8,852     | 8,852   | (0)       | 8,842                                  | 8,842   | -          |
|               | Peaker                                    | 1.062     | 1.056   | (6)       | 2.581           | 2,603           | 21        | 4,268     | 4,219   | (49)      | 6,142                                  | 6,172   | 30         |
|               | PSH                                       | 430       | 430     | Ö         | 363             | 369             | 5         | 594       | 595     | 1         | 369                                    | 363     | (6)        |
|               | ST/G/O/D                                  | 4.888     | 5,044   | 156       | 5,396           | 5,523           | 127       | 6,345     | 6,401   | 56        | 7,022                                  | 7,073   | 51         |
|               | New CT                                    | -         | -,      | -         | -               | -               | -         | -         | -       | -         | 6,547                                  | 6,544   | (3)        |
|               | New CC                                    | -         | -       | -         | -               | -               | -         | -         | -       | -         | 3,072                                  | 3,102   | 30         |
| SETRANS E SI  | um en | 277,671   | 280,204 | 2,532     | 290,730         | 293,019         | 2,289     | 305,159   | 307,490 | 2,331     | 325,531                                | 326,706 | 1,175      |
| SETRANS W     | сс                                        | 36.277    | 35.252  | (1,025)   | 43,415          | 42,526          | (889)     | 55,230    | 54,154  | (1,076)   | 66,373                                 | 65,634  | (739)      |
|               | Coal                                      | 56.613    | 56,662  | 49        | 56,667          | 56,680          | 13        | 57,236    | 57,234  | (2)       | 57,830                                 | 57,834  | 5          |
|               | Hydro                                     | 581       | 581     | -         | 581             | 581             | -         | 581       | 581     | -         | 581                                    | 581     | -          |
|               | Nuke                                      | 38,950    | 38,950  | -         | 38,919          | 38,919          | -         | 39,054    | 39,054  | -         | 39,016                                 | 39,016  | -          |
|               | Other                                     | 1,606     | 1,606   | -         | 1,606           | 1,606           | -         | 1,606     | 1,606   | -         | 1,608                                  | 1,608   | -          |
|               | Peaker                                    | 671       | 662     | (9)       | ) 779           | 777             | (2)       | 1,298     | 1,326   | 27        | 1,809                                  | 1,793   | (15)       |
|               | ST/G/O/D                                  | 2,611     | 2,609   | (1)       | ) 3,637         | 3,678           | 40        | 6,936     | 7,144   | 208       | 13,428                                 | 13,659  | 231        |
|               | New CT                                    | -         | -       | -         | -               | -               | -         | +         | -       | -         | -                                      | -       | -          |
|               | New CC                                    | -         | -       | -         | -               | -               | -         | -         | -       | -         | -                                      | +       | -          |
| SETRANS W S   | Sum                                       | 137,309   | 136,323 | (986)     | ) 145,604       | 144,767         | (838)     | 161,942   | 161,099 | (843)     | 180,645                                | 180,126 | (519)      |
| SPP           | СС                                        | 30,338    | 30,438  | 100       | 36,786          | 36,962          | 177       | 48,337    | 48,630  | 293       | 61,446                                 | 61,718  | 272        |
|               | Coal                                      | 145,769   | 145,860 | 91        | 143,151         | 143,216         | 64        | 141,824   | 141,884 | 60        | 137,590                                | 137,587 | (3)        |
|               |                                           | 11 044    | 44 644  | -         | 11 041          | 11 044          | -         | 11 041    | -       | -         | 11 041                                 | 11 041  | _          |
|               | nyaro                                     | 0.250     | 0.250   | -         | 0.927           | 0 227           | · -       | 0 381     | 0 291   | -         | 9 3 3 7                                | 9 337   | , <u> </u> |
|               | Nuke                                      | 3,300     | 3,000   | -         | 9,007<br>11 757 | 3,337<br>11 959 | · -       | 11 245    | 11 2/5  | -         | 11 271                                 | 11 271  | -          |
|               | Ouler                                     | 11,247    | +1,247  | -         | 11,202          | 11,202          | . –       | 17,470    | 11,240  |           |                                        | ,       |            |

|               |                  |           | 2005    |                    | <u></u>            | 2007    |                    |           | 2010    |                    |           | 2014    |                    |
|---------------|------------------|-----------|---------|--------------------|--------------------|---------|--------------------|-----------|---------|--------------------|-----------|---------|--------------------|
|               |                  |           | Change  | Deita<br>(Change - |                    | Change  | Delta<br>(Change - |           | Change  | Delta<br>(Change - |           | Change  | Delta<br>(Change - |
| Capacity Pool | TYPE -           | Base Case | Case    | Base)              | Base Case          | Case    | Base)              | Base Case | Case    | Base)              | Base Case | Case    | Base)              |
|               | Peaker           | 413       | 427     | 14                 | 650                | 655     | 5                  | 1,914     | 1,852   | (62)               | 2,750     | 2,764   | 14                 |
|               | ST/G/O/D         | 4,851     | 4,935   | 83                 | 6,157              | 6,396   | 239                | 10,373    | 10,434  | 60                 | 17,014    | 17,145  | 130                |
|               | New CT           | -         | -       | -                  | -                  | -       | -                  | -         | -       | -                  | 442       | 448     | 6                  |
|               | New CC           | -         | -       | -                  | -                  | -       | -                  | -         | -       | -                  | -         | -       | -                  |
| SPP Sum       |                  | 213,017   | 213,305 | 288                | 218,375            | 218,859 | 484                | 234,116   | 234,467 | 351                | 250,890   | 251,309 | 418                |
| TVA           | сс               | 8,653     | 8,825   | 172                | 10,575             | 10,981  | 406                | 17,654    | 17,883  | 229                | 25,877    | 25,977  | 100                |
|               | Coal             | 104,738   | 104,892 | 154                | 108,067            | 108,243 | 176                | 109,319   | 109,409 | 91                 | 110,918   | 110,939 | 21                 |
|               | Hydro            | 19,852    | 19,852  | -                  | 19,852             | 19,852  | -                  | 19,852    | 19,852  | -                  | 19,852    | 19,852  | -                  |
|               | Nuke             | 44,740    | 44,740  | -                  | 44,738             | 44,738  | -                  | 44,713    | 44,713  | -                  | 44,655    | 44,655  | (0)                |
|               | Other            | 2,652     | 2,652   | -                  | 2,655              | 2,655   | -                  | 2,653     | 2,653   | -                  | 2,653     | 2,653   | (0)                |
|               | Peaker           | 287       | 305     | 18                 | 542                | 549     | 6                  | 1,239     | 1,248   | 10                 | 2,042     | 2,072   | 30                 |
|               | PSH              | 2,578     | 2,580   | 2                  | 2,727              | 2,727   | -                  | 2,706     | 2,699   | (7)                | 2,670     | 2,674   | 4                  |
|               | ST/G/O/D         | -         | -       | -                  | -                  | -       | -                  | 3         | 3       | -                  | 3         | 3       | (0)                |
|               | New CT           | -         | -       | -                  | -                  | -       | -                  | -         | -       | -                  | 1,753     | 1,808   | 54                 |
|               | New CC           | -         | -       | -                  | -                  | -       | -                  | -         | -       | -                  | -         | -       | -                  |
| TVA Sum       |                  | 183,501   | 183,847 | 346                | 189,157            | 189,745 | 588                | 198,139   | 198,461 | 322                | 210,423   | 210,633 | 210                |
| VAP           | CC               | 7,055     | 4,800   | (2,255)            | 8,800              | 6,309   | (2,491)            | 11,162    | 8,283   | (2,879)            | 15,449    | 12,252  | (3,197)            |
|               | Coal             | 41,112    | 39,681  | (1,432)            | 42,207             | 40,882  | (1,325)            | 43,521    | 42,650  | (871)              | 44,765    | 44,151  | (615)              |
|               | Hydro            | 1,192     | 1,192   | -                  | 1,192              | 1,192   | -                  | 1,192     | 1,192   | -                  | 1,192     | 1,192   | -                  |
|               | Nuke             | 26,364    | 26,364  | -                  | 26,24 <del>9</del> | 26,249  | -                  | 26,316    | 26,316  | -                  | 26,249    | 26,249  | -                  |
|               | Other            | 2,197     | 2,168   | (29)               | 2,336              | 2,325   | (11)               | 2,348     | 2,341   | (7)                | 2,370     | 2,362   | (8)                |
|               | Peaker           | 1,098     | 1,024   | (74)               | 1,486              | 1,400   | (86)               | 2,315     | 1,954   | (362)              | 2,731     | 2,499   | (232)              |
|               | PSH              | 2,500     | 2,500   | -                  | 2,500              | 2,500   | -                  | 2,817     | 2,817   | -                  | 2,818     | 2,818   | -                  |
|               | ST/G/O/D         | 5,638     | 4,878   | (760)              | 6,515              | 5,880   | (635)              | 7,608     | 7,097   | (511)              | 8,619     | 8,191   | (429)              |
|               | New CT<br>New CC | -         | -       | -                  | -                  | -       | -                  | 451       | -       | (451)              | 2,606     | 1,898   | (708)              |
| VAP Sum       |                  | 87,156    | 82,606  | (4,550)            | 91,284             | 86.737  | (4,548)            | 97,730    | 92.649  | (5,081)            | 106,800   | 101,611 | (5,188)            |

#### Table A-29: Generation by Type and Pool (GWh), High Load

#### Table A-30: Generation Cost (\$k), High Load

|                      |            | 2005       |           |                  | 2007       |           |            | 2010       | · · · · · · · · · · · · · · · · · · · |                  | 2014       |               |
|----------------------|------------|------------|-----------|------------------|------------|-----------|------------|------------|---------------------------------------|------------------|------------|---------------|
|                      |            |            | Delta     |                  |            | Delta     |            |            |                                       |                  |            |               |
|                      |            | Change     | (Change - |                  | Change     | (Change - |            | Change     | Delta (Change                         |                  | Change     | Delta (Change |
| <b>Capacity Pool</b> | Base Case  | Case       | Base)     | <b>Base Case</b> | Case       | Base)     | Base Case  | Case       | - Base)                               | <b>Base Case</b> | Case       | - Base)       |
| AEP                  | 2,144,573  | 2,226,788  | 82,215    | 2,175,404        | 2,245,632  | 70,228    | 2,353,124  | 2,428,550  | 75,426                                | 2,579,007        | 2,753,606  | 174,599       |
| COED                 | 1,189,850  | 1,110,059  | (79,791)  | 1,235,062        | 1,126,569  | (108,493) | 1,380,978  | 1,233,999  | (146,979)                             | 1,650,963        | 1,452,103  | (198,859)     |
| CPL                  | 1,012,142  | 1,033,292  | 21,150    | 1,054,118        | 1,078,016  | 23,898    | 1,187,803  | 1,200,919  | 13,116                                | 1,466,794        | 1,506,597  | 39,803        |
| DP&L                 | 349,677    | 350,954    | 1,277     | 341,363          | 343,352    | 1,989     | 379,726    | 386,085    | 6,359                                 | 416,230          | 413,610    | (2,619)       |
| DUKE                 | 1,178,378  | 1,190,219  | 11,841    | 1,233,939        | 1,247,844  | 13,904    | 1,420,263  | 1,436,235  | 15,972                                | 1,771,795        | 1,786,734  | 14,939        |
| GFL                  | 5,024,318  | 5,034,683  | 10,365    | 5,327,473        | 5,334,811  | 7,338     | 5,807,643  | 5,812,144  | 4,501                                 | 6,787,905        | 6,795,172  | 7,267         |
| MISO E               | 5,765,006  | 5,800,346  | 35,340    | 5,857,312        | 5,903,418  | 46,107    | 6,485,398  | 6,538,782  | 53,384                                | 7,416,760        | 7,430,092  | 13,332        |
| MISO W               | 4,557,034  | 4,574,338  | 17,304    | 4,708,783        | 4,723,090  | 14,307    | 5,266,119  | 5,270,964  | 4,845                                 | 6,063,481        | 6,112,092  | 48,612        |
| ISO-NE               | 2,583,826  | 2,583,887  | 62        | 2,643,879        | 2,639,984  | (3,895)   | 2,841,106  | 2,841,505  | 399                                   | 3,128,981        | 3,131,623  | 2,642         |
| NYC                  | 881,396    | 889,326    | 7,931     | 870,256          | 878,705    | 8,449     | 925,601    | 932,011    | 6,409                                 | 1,002,387        | 1,012,286  | 9,898         |
| NYL                  | 410,505    | 410,983    | 478       | 416,062          | 417,984    | 1,921     | 454,862    | 455,055    | 193                                   | 521,240          | 521,870    | 629           |
| NYO                  | 1,756,947  | 1,749,662  | (7,285)   | 1,766,646        | 1,761,792  | (4,853)   | 1,886,662  | 1,881,737  | (4,925)                               | 2,068,199        | 2,061,425  | (6,774)       |
| PJM                  | 5,302,495  | 5,231,085  | (71,410)  | 5,484,139        | 5,425,745  | (58,394)  | 6,093,667  | 6,135,571  | 41,905                                | 7,025,441        | 7 047,366  | 21,924        |
| SCE&G                | 848,664    | 862,232    | 13,567    | 866,379          | 880,433    | 14,054    | 933,026    | 943,703    | 10,677                                | 1,062,654        | 1,076,103  | 13,449        |
| SETRANS E            | 4,640,401  | 4,722,865  | 82,464    | 4,904,012        | 4,972,946  | 68,933    | 5,378,776  | 5,444,578  | 65,802                                | 6,261,722        | 6,293,860  | 32,138        |
| SETRANS W            | 2,437,053  | 2,400,814  | (36,239)  | 2,640,737        | 2,613,308  | (27,429)  | 3,108,879  | 3,086,356  | (22,523)                              | 3,680,816        | 3,667,319  | (13,497)      |
| SPP                  | 3,178,786  | 3,187,179  | 8,393     | 3,332,837        | 3,345,622  | 12,784    | 3,816,567  | 3,823,932  | 7,365                                 | 4,435,765        | 4,448,181  | 12,416        |
| TVA                  | 2,371,574  | 2,381,176  | 9,602     | 2,434,342        | 2,450,133  | 15,791    | 2,737,170  | 2,747,373  | 10,203                                | 3,157,283        | 3,164,881  | 7,598         |
| VAP                  | 1,452,510  | 1,302,389  | (150,122) | 1,533,235        | 1,387,915  | (145,321) | 1,738,333  | 1,558,351  | (179,982)                             | 2,085,664        | 1,897,900  | (187,764)     |
| Total                | 47,085,135 | 47,042,278 | (42,858)  | 48,825,979       | 48,777,298 | (48,681)  | 54,195,703 | 54,157,852 | (37,851)                              | 62,583,086       | 62,572,821 | (10,265)      |

|           | ······ | 2005   |           |       | 2007   |           |              | 2010   |           |       | 2014          |           |
|-----------|--------|--------|-----------|-------|--------|-----------|--------------|--------|-----------|-------|---------------|-----------|
|           |        |        | Delta     |       |        | Delta     |              |        | Delta     |       |               | Delta     |
| Capacity  | Base   | Change | (Change - | Base  | Change | (Change - | Base         | Change | (Change - | Base  | Change        | (Change - |
| Pool      | Case   | Case   | Base)     | Case  | Case   | Base)     | Case         | Case   | Base)     | Case  | Case          | Base)     |
| AEP       | 22.07  | 22.97  | 0.90      | 22.31 | 23.34  | 1.03      | 25.25        | 26.02  | 0.77      | 29.23 | <b>29</b> .31 | 80.0      |
| COED      | 21.76  | 21.87  | 0.11      | 22.06 | 22.11  | 0.05      | 24.58        | 24.74  | 0.15      | 28.41 | 28.18         | (0.23)    |
| CPL       | 29.19  | 29.75  | 0.56      | 30.38 | 31.18  | 0.80      | 33.72        | 34.54  | 0.82      | 37.48 | 38.54         | 1.05      |
| DP&L      | 22.02  | 22.47  | 0.45      | 22.05 | 22.71  | 0.66      | 24.48        | 25.41  | 0.93      | 28.33 | 28.50         | 0.16      |
| DUKE      | 29.22  | 29.78  | 0.56      | 30.55 | 31.29  | 0.75      | 33.74        | 34.35  | 0.61      | 37.50 | 38.21         | 0.70      |
| GFL       | 36.71  | 36.74  | 0.03      | 49.02 | 49.07  | 0.05      | 43.35        | 43.19  | (0.16)    | 38.82 | 39.11         | 0.29      |
| MISO E    | 23.29  | 23.47  | 0.19      | 23.56 | 23.82  | 0.26      | 26.09        | 26.32  | 0.24      | 29.96 | 30.07         | 0.11      |
| MISO W    | 25.56  | 25.66  | 0.10      | 26.35 | 26.46  | 0.12      | 34.34        | 34.13  | (0.22)    | 33.85 | 33.99         | 0.14      |
| ISO-NE    | 33.03  | 33.06  | 0.03      | 32.48 | 32.56  | 0.08      | 33.05        | 32.99  | (0.07)    | 34.11 | 34.00         | (0.11)    |
| NYC       | 35.24  | 35.36  | 0.12      | 33.32 | 33.36  | 0.04      | 34.57        | 34.61  | 0.04      | 37.40 | 37.67         | 0.27      |
| NYL       | 37.14  | 37.22  | 0.07      | 35.37 | 35.36  | (0.02)    | 36.64        | 36.60  | (0.04)    | 39.25 | 39.23         | (0.03)    |
| NYO       | 30.08  | 30.00  | (0.07)    | 29.49 | 29.38  | (0.11)    | 30.44        | 30.32  | (0.12)    | 31.79 | 31.65         | (0.14)    |
| PJM       | 27.68  | 27.49  | (0.19)    | 27.74 | 27.70  | (0.04)    | 30.07        | 30.22  | 0.15      | 33.20 | 34.77         | 1.57      |
| SCE&G     | 27.99  | 28.50  | 0.51      | 29.22 | 29.83  | 0.61      | 32.41        | 33.11  | 0.70      | 34.88 | 35.65         | 0.77      |
| SETRANS E | 29.40  | 29.50  | 0.10      | 30.29 | 30.40  | 0.11      | 32.35        | 32.38  | 0.03      | 35.57 | 35.61         | 0.03      |
| SETRANS W | 29.70  | 29.74  | 0.04      | 29.90 | 29.95  | 0.05      | 31.32        | 31.38  | 0.05      | 32.76 | 32.69         | (0.07)    |
| SPP       | 27.14  | 27.25  | 0.11      | 27.56 | 27.63  | 0.07      | 30.04        | 30.08  | 0.04      | 32.28 | 32.29         | 0.01      |
| TVA       | 26.77  | 26.90  | 0.13      | 27.12 | 27.27  | 0.14      | 29.69        | 29.84  | 0.14      | 32.81 | 32.81         | 0.00      |
| VAP       | 31.58  | 30.23  | (1.35)    | 32.38 | 31.05  | (1.33)    | 35.02        | 33.99  | (1.03)    | 38.43 | 38.69         | 0.27      |
| Total     | 28.11  | 28.16  | 0.06      | 29.20 | 29.30  | 0.10      | <u>31.79</u> | 31.83  | 0.04      | 33.68 | 33.96         | 0.29      |

Table A-31: Average Spot Prices (\$/MWh), High Load

#### **APPENDIX B: CAPACITY MODEL**

#### **B.1. Determining New Build Requirements**

The existing fleet of generation resources cannot meet future needs indefinitely. In order to forecast both future energy and capacity prices, CRA needed to project what new generation resources would be built, where, and when.

For the first year of the study period, 2005, CRA assumed that only those units that are under construction currently would be commercially available. New projects that have been halted were not included among the 2005 builds. Although additional projects might conceivably be tabled, other projects not counted may be completed by Summer 2005. Overall, we believe that this is a reasonable and conservative forecast of 2005 resources.

For subsequent years, we assumed that additional capacity resources are brought on-line to maintain required capacity reserves in each control zone.<sup>38</sup> We allowed trades of capacity between directly interconnected zones provided that two conditions were met. First, the imported capacity could not exceed the transfer capability between the two zones. Second, each zone was required to carry internally enough capacity to meet forecast peak load plus a 2.5 percent operating reserve requirement.

This possibility of capacity export means that the location of new builds is not determined unambiguously. In the SEARUC study, we allowed no capacity trading and, consequently, the need for and quantity of new capacity in each zone was deterministic. In this study, we used the following procedure to locate new capacity resources:

- 1. Build internally to meet load plus operating reserves.
- 2. Fully utilize trading from resource-long areas. For example, New York can import capacity either from New England or PJM East. New England, however, has no other export markets for its surplus capacity, and more than enough to meet New York's capacity shortfall until after PJM East itself becomes capacity short. PJM East resources, however, can sell to other markets. We therefore first meet New York's shortfall from New England capacity, before considering imports from PJM.

<sup>&</sup>lt;sup>38</sup> We modeled both MISO and SeTrans as having two separate areas, east and west, to reflect the geographic and electrical separation within those two areas. MISO East corresponds to those areas of MISO in ECAR; MISO West includes those parts in MAIN and MAPP. SeTrans is split between the Southern and Entergy areas. The New York Control Area was modeled consistent with its capacity market design as two sub-regions (New York City and Long Island) and an overall New York region.



3. When available capacity exports cannot meet remaining capacity requirements in interconnected markets, allocate capacity exports so as to equalize the internal capacity margin in each import market. To a first approximation, this procedure equalizes the expected returns to new generators in each affected area.

This departure from the method of the SEARUC study more accurately reflects the dynamics of observed capacity trading, especially in areas like PJM and other RTOs that have formal capacity markets. For example, New York currently obtains about ten percent of its total capacity from external resources. Such realities led CRA to adopt a more cross-regional view of capacity markets.

In the both the Base and Change Cases, we required that each control zone, including those of the New PJM Entrants, carry internally sufficient capacity to meet peak load plus operating reserve. This rule required new builds in Dominion and ComEd, as well as areas outside the Expanded PJM market. Additional capacity needed generically in PJM to meet the pool-wide capacity requirement was also sited in these two zones, since they had the lowest internal reserve margins among the PJM sub-areas and, therefore, could be expected to have higher prices for peaking units.

The critical difference between the Base Case and the Change Case in the capacity market is that, owing to the increased load diversity of the Expanded PJM market, the level of required reserves declines. In the Base Case, PJM (East and West) is modeled to hold a 17 percent capacity margin, consistent with current requirements. Following the integration of the New PJM Entrants, this requirement is lowered to 12.5 percent for the PJM (East and West) market area, resulting in an approximately 15 percent margin above coincident peak for the Expanded PJM area. This reduction in capacity requirements frees approximately 3,000 MW of resources that had been needed in PJM (East and West), making additional capacity available to other areas of the Expanded PJM, including Dominion. Other required capacity margins outside PJM (East and West) are assumed to be unchanged, so Dominion holds a 12.5 percent reserve requirement in both the Base and Change Cases, of which no more than 10 percentage points can be met with external capacity resources.<sup>39</sup>

A second difference between the two cases is that we modify the capacity export rule (#3 above) so that surplus capacity in one area of Expanded PJM is used first to meet capacity shortfalls in other areas of Expanded PJM. Only if Expanded PJM is collectively net long will any PJM zone export to a non-PJM zone, reflecting the higher transactions costs of selling external capacity. The practical effect of this change is to divert exports of capacity from AEP, that had been sold to CP&L, Duke, and TVA, are instead sold to Dominion, Commonwealth Edison and the current PJM companies.

See Testimony of Gregory J. Morgan, filed concurrently with this study.



The pattern of builds across the Eastern Interconnect used in this study is summarized in Table B-1.

| ]                | Base<br>Case | 2007<br>Change<br>Case | Difference | Base<br>Case | 2010<br>Change<br>Case | Difference | Base<br>Case | 2014<br>Change<br>Case | Difference |
|------------------|--------------|------------------------|------------|--------------|------------------------|------------|--------------|------------------------|------------|
| PJM              | 0            | 0                      | 0          | 0            | 0                      | 이          | 2,069        | 0                      | -2,069     |
| DVP              | 0            | 0                      | 0          | 310          | 0                      | -310       | 3,360        | 1,668                  | -1,692     |
| AEP              | 0            | 0                      | 0          | 0            | 0                      | o          | 0            | 0                      | 0          |
| DP&L             | 0            | 0                      | 0          | 0            | 0                      | 0          | 0            | 0                      | 0          |
| ComEd            | 0            | 0                      | 0          | 563          | 87                     | -476       | 4,407        | 2,250                  | -2,157     |
| CP&L             | 0            | 0                      | 0          | 763          | 498                    | -265       | 3,078        | 3,227                  | 149        |
| DUKE             | 846          | 846                    | 0          | 2,875        | 2,856                  | -19        | 6,870        | 7,128                  | 258        |
| SCE&G            | 0            | 0                      | o          | 0            | 0                      | o          | 1,621        | 1,621                  | 0          |
| MISO E           | 0            | 0                      | 0          | 0            | 0                      | 0          | 5,564        | 6,280                  | 716        |
| MISO W           | 0            | 0                      | 0          | 0            | 0                      | 0          | 8,285        | 9,085                  | 800        |
| SPP              | i 0          | 0                      | o          | 0            | 0                      | ol         | 1,020        | 1,020                  | 0          |
| SETRANS E        | 1 0          | 0                      | 0          | 0            | 0                      | 0          | 8,840        | 8,840                  | 0          |
| SETRANS W        | 0            | 0                      | 0          | 0            | 0                      | o          | 0            | 0                      | 0          |
| TVA              | 0            | 0                      | 0          | 0            | 0                      | o          | 2,410        | 2,944                  | 534        |
| GFL              | 0            | 0                      | 0          | 3,046        | 3,046                  | o          | 8,684        | 8,684                  | 0          |
| NEP              | 0            | 0                      | 0          | 0            | 0                      | 0          | 0            | 0                      | 0          |
| NYC              | 175          | 175                    | 0          | 271          | 271                    | 0          | 619          | 619                    | 0          |
| NYL              | 175          | 175                    | 0          | 307          | 307                    | 0          | 670          | 670                    | 0          |
| NYO              | 0            | 0                      | 0          | 0            | 0                      | o          | 368          | 368                    | 0          |
|                  |              |                        | 1          |              |                        | 1          |              |                        |            |
| Subtotal New PJM | 0            | 0                      | 0          | 873          | 87                     | -786       | 9,836        | 3,918                  | -5,918     |
| Subtotal Other   | 1,196        | 1,196                  | 0          | 7,262        | 6,978                  | -284       | 48,029       | 50,486                 | 2,457      |
| Total            | 1,196        | 1,1 <b>96</b>          | 0          | 8,135        | 7,065                  | -1,070     | 57,865       | 54,404                 | -3,461     |

### Table B-1: Pattern of New Capacity Builds by Region

Cumulative Additions, MW

## **B.2. Determining PJM Capacity Market Clearing Prices**

Under the current capacity market design, the quantity of capacity purchased by PJM is determined administratively, to reach a capacity margin based on engineering analyses. This approach tends to create prices that tip between one of two values:

If the system has more than enough capacity resources to meet the capacity reserve margin, the capacity price is set by the payment needed to keep existing resources from exiting. Specifically, the marginal unit needs to recover its avoidable fixed costs from its combined net revenues in the energy, ancillary services and capacity markets. Based on the MAPS runs for this study, we determined that the marginal PJM resource would expect to receive insignificant payments in the energy and ancillary service markets. Consequently, the market-clearing price for capacity, when PJM is



net long capacity, should be equal to the avoidable fixed costs of marginal capacity resources.<sup>40</sup> Based on previous CRA studies about PJM capacity, we estimate that this cost is \$20 per kilowatt-year. This level may be conservatively high, since observed capacity prices in PJM have frequently been below this level. Using a lower level for the cost of capacity during periods of surplus capacity would increase the benefits to customers from Dominion joining PJM.

The other possible state of the capacity markets is that there is an overall shortage of capacity. In order to attract new capacity resources, the capacity price must cover not merely the avoidable fixed costs of the facility, but the fully loaded cost of new entry net of margins the unit could receive in the energy and ancillary services markets. CRA considered, in each market that needed additional capacity resources, whether a combined-cycle unit or a simple gas turbine would require a lower capacity payment. Combined-cycle units have a higher capital cost but are more efficient, allowing them to operate profitable in more hours than a gas turbine. In most markets, including the Expanded PJM area, the extra energy margin that a combined-cycle unit could earn did not offset their higher capital charges. Consequently, the capacity market-clearing price was set to the levelized embedded cost of a new gas turbine, less expected net revenue from the energy and ancillary services markets (which were small). CRA estimated that this levelized cost in PJM is approximately \$50 per kilowatt-year, which is substantially in agreement with similar calculations other researchers have made for New York and New England.<sup>41</sup>

Stripped down to these basics, one might expect that the capacity prices can only be at one of two levels: a low price when there is sufficient capacity already installed (\$20/kW-year), or a high price when new entry is needed (\$50/kW-year). If, for example, in 2013 we foresaw the market as 10 MW deficient in the Base Case, but 10 MW in surplus in the Change Case, the simple "price tip-ping" model would suggest that the entire capacity purchases made by Dominion area should be repriced from \$50/kW-year to \$20/kW-year.

Such a knife-edge result does not, in our opinion, reasonably reflect the expected value of integrating capacity markets. There are many uncertain variables in our model, including the load forecast, the level of available capacity from each unit in the system,<sup>42</sup> and the development of

<sup>&</sup>lt;sup>42</sup> Instead of counting each resource at its faceplate capacity rating, PJM computes Available Capacity from a unit, which takes into account its recent historical forced outage rates.



<sup>&</sup>lt;sup>40</sup> This conclusion sets aside the sale of capacity to other control areas from PJM, which could allow scarcity pricing in other areas to raise the PJM capacity price. At this time, market rules for trading capacity between markets are insufficiently developed to allow full market integration and price formation across RTO seams. We chose, therefore, to model the PJM capacity market as a stand-alone market.

<sup>&</sup>lt;sup>41</sup> See "New York Independent Operator, Inc.'s Filing of Revisions to the ISO Market Administration and Control Area Service Tariff: ICAP Demand Curve," FERC Docket No. ER03-647-000 (March 2003), and "Compliance Filing of ISO New England, Inc.", FERC Docket No. ER03-563-030 (March 2004). The more recent of the two (New England's) proposes a capacity market design based on a \$54/kW-year capacity payment when the capacity market is in long-run balance.

demand-side capacity resources, that could turn a forecast capacity deficit into a surplus, or vice versa. To reflect these uncertainties about the state of the future capacity markets, we developed a simple probabilistic model to forecast capacity prices.

The model starts from the premise that capacity prices in the PJM auction will be set either at \$20/kW-year if there is a capacity surplus, or at \$50/kW-year otherwise. We then estimate the probability of each of these two states of the world, assuming that the capacity requirement is centered at our forecast value but has some uncertainty, with a normal random distribution. The forecast uncertainty was assumed to be 0.5 percent in 2003 and to increase by 0.2 percentage points in each subsequent year, so that the standard deviation in 2007 was taken to be 1.3 percent, and in 2014 to be 2.7 percent. These values, in our judgment, reasonably reflect the level of uncertainty intrinsic in long-term load forecasts.

Using this model, we compute the predicted capacity price as the probability-weighted average of the low-price (\$20) and high-price (\$50) outcomes. If, for example, installed capacity exactly equaled the forecast capacity requirement, there would be a 50 percent chance that the market would be deficient, and a 50 percent chance that the market would be in surplus. We would, therefore, assign a capacity price of \$35/kW-year (half of \$50 plus half of \$20). Table B-2 below shows the modeled capacity prices in PJM for each year of the study period.

#### **Table B-2: ICAP Prices**

(\$/kW-year)

|             | <u>2005</u> | <u>2006</u> | <u>2007</u> | <u>2008</u> | <u>2009</u> | <u>2010</u> | <u>2011</u> | <u>2012</u> | <u>2013</u> | <u>2014</u> |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Base Case   | \$21.54     | \$22.08     | \$22.63     | \$23.19     | \$23.77     | \$26.38     | \$37.30     | \$51.62     | \$61.57     | \$66.12     |
| Change Case | \$21.54     | \$22.08     | \$22.63     | \$23.19     | \$23.77     | \$24.50     | \$27.53     | \$37.17     | \$50.25     | \$60.34     |

An underlying assumption of this price formation methodology is the persistence of prices. Once the existing installed capacity is no longer sufficient to meet capacity requirements, new capacity is induced to enter through higher capacity prices. Economists refer to this higher price as a "trapping state;" once a market needs new capacity, the capacity price remains at the long-term marginal cost of capacity forever. In actual practice, however, we know that investment tends to occur in cycles, with the price correspondingly swinging through extremes. Attempting to model such complex market dynamics is beyond the scope of this study.

Further, we focus solely on the capacity clearing price for the overall PJM market, defined either with the current footprint in the Base Case or the Expanded PJM area in the Change Case. In lieu of an active capacity market in the Base Case, we chose capacity prices in the existing PJM market as the relevant proxy.



**CHARLES RIVER ASSOCIATES** 

ł

## **APPENDIX C: FINANCIAL MODEL DESCRIPTION**

#### C.1. Overview

The Financial Model is an Excel-based model that relies upon inputs from the MAPS model to measure changes in revenues and costs for North Carolina Retail Customers resulting from Dominion and the other New PJM Entrants joining PJM in 2005. Changes in revenues and costs are calculated by comparing the Change Case results in which the New PJM Entrants are a part of PJM to results from a Base Case (the "Base Results") in which they are not a part of PJM. Since the focus of this analysis is on the *change* in revenues and costs and not the absolute levels in the Base and Change Cases the analysis focuses primarily on *incremental* revenues and costs. As such, items that do not change from the Base Case to the Change Case are not included in the analysis.

The Financial Model measures changes in revenues and costs for North Carolina Retail Customers over a 10-year period commencing in 2005 and continuing through 2014. Annual results for each of the 10 years are calculated in addition to and a 10-year net present value (discounted to July 1, 2003<sup>43</sup>). The Financial Model relies on inputs from MAPS. MAPS simulates the operation of the electricity system in the Eastern Interconnect in the Base and Change Cases to derive hourly generation by unit, hourly unit generation production costs (fuel, variable O&M, start-up costs and emissions trading costs), hourly location-specific prices for each generation and load bus on the transmission system and hourly flows between interconnected control areas. For each case, MAPS model runs were conducted for 2005, 2007, 2010 and 2014. The remaining years in the analysis (2006, 2008, 2009, 2011, 2012 and 2013) are then interpolated from the MAPS model runs in the surrounding years.

#### C.2. MAPS Outputs Used in the Financial Model

All hourly generation, cost and price data in the Financial Model are outputs from the MAPS model. This data is post-processed using a SAS model to summarize and format the hourly data prior to its inclusion in the Financial Model. The following hourly outputs from the MAPS model are used in the Financial Model:

1. Hourly generation in MWh, separately calculated for Dominion-owned units, units under NUG contracts to Dominion, and other generation from units located in the Dominion control zone.

<sup>&</sup>lt;sup>43</sup> This date was set based on the parallel Virginia filing in VA SCC Docket No. PUE-2000-00551.



- 2. Hourly production costs, separately calculated for Dominion-owned units, units under NUG contracts to Dominion<sup>44</sup> and other non-merchant generator units located in the Dominion control zone.
- 3. Hourly weighted average Dominion energy price, calculated as the weighted average generation bus price of each generating unit in the Dominion control zone, weighted by each unit's generation in a given hour.<sup>45</sup>
- 4. Hourly load prices, there is a single load price within the Dominion control zone in each hour.
- 5. Hourly flows into and out of the Dominion control zone, separately calculated for each zone that is interconnected with Dominion.<sup>46</sup>
- 6. Hourly price differentials on flows into and out of the Dominion control zone, separately calculated for each zone that is interconnected with Dominion.

Additionally, annual capacity is an input into the Financial Model from the MAPS model, with separate annual capacity data for Dominion-owned capacity (including capacity under NUG contracts) and other non-merchant generator capacity located in the Dominion control zone.

### C.3. Other Inputs into the Financial Model

The Financial Model also relies upon a number of inputs that do not come from the MAPS model:

- PJM Administrative Charge, based on PJM budgeted costs and projected load, including the New PJM Entrants. Rates are \$0.43 per MWh in 2005, \$0.42 per MWh in 2006, \$0.41 per MWh in 2007, \$0.42 per MWh in 2008 and then held constant at \$0.42 per MWh in real dollars thereafter. See Table C-2.
- Wheeling Rates, based on off-peak Non-Firm OATT energy rates. Rates are as follows: Dominion (\$1.46 per MWh), AEP (\$1.95 per MWh), CP&L (\$1.23 per MWh) and PJM and other New PJM Entrants (\$1.50 per MWh). A rate of \$0.50 per

<sup>&</sup>lt;sup>46</sup> Interconnected areas with Dominion are CP&L, AEP, PJM East and PJM West.



<sup>&</sup>lt;sup>44</sup> Production costs for units under NUG contracts to Dominion are based on the contractual price for must-take units and the contractual fuel cost for dispatchable units, with relevant escalation factors.

<sup>&</sup>lt;sup>45</sup> Energy prices at hydro units were not included in the weighted average calculation in hours in which they were pumping rather than generating and thus had "negative" generation.

MWh is applied to all trades in off-peak hours.<sup>47</sup> These rates are all in 2002 dollars and apply to both the Base and Change Case. These rates are held constant through 2008 after which the rates grow with inflation.<sup>48</sup> See Table C-1.

- 3. Load Shares, shares of load by entity within the Dominion control zone are based on energy load forecasts for 2005 through 2012 (2013 and 2014 shares use the load forecast for 2012). Shares of 1CP load are based on actual 2001 load shares for each customer type. Dominion's share of Expanded PJM is based on estimated load in Expanded PJM in 2005.
- 4. ICAP Prices, ICAP prices for 2005, 2007, 2010 and 2014 are derived from a probabilistic ICAP model. The ICAP prices apply for the entire Dominion control zone. ICAP prices used in the analysis are \$20.00 per kW-year (in 2002 dollars) for 2005 through 2009 in both the Base and Change Cases. Beginning in 2010, ICAP prices rise above the \$20.00 per kW-year level, with greater increases in the Base Case compared to the Change Case. See Table B-2.
- 5. Ratemaking Framework, North Carolina Retail Customers are assumed to be assessed current base rates in 2005, and cost of service base rates thereafter. A cost-of-service Fuel Factor is assessed for North Carolina Retail Customers in all study years. Other Dominion customers are assumed to operate under cost of service Fuel Factors throughout the study period. Certain Dominion wholesale customers are assumed to transition to market pricing for energy at the beginning of the study period, January 1, 2005.
- 6. Inflation and Discount Rate, the assumed inflation rate is 2.5 percent per year and the discount rate used in all net present value calculations is 10.0 percent.

## C.4. Annual Calculations – North Carolina Retail Customers

#### **Fuel Factor Calculations**

The annual Fuel Factor calculation includes North Carolina Retail Customers' share of the following costs and credits:

<sup>&</sup>lt;sup>48</sup> This methodology was chosen to be consistent with the parallel study for Virginia and is immaterial to the study results.



<sup>&</sup>lt;sup>47</sup> Off-peak hours for purposes of this analysis include midnight to 6 am and 10 pm to midnight on Monday through Friday, and all day on Saturday and Sunday.

- 1. Unit Fuel, actual fuel costs for Dominion-owned units.
- 2. Post-1992 NUG Energy Charges, contract prices multiplied by actual hourly generation for must-take NUG contracts, plus contract fuel costs multiplied by actual hourly generation for dispatchable NUG contracts.
- 3. Sixty-one percent of Purchases for Load, includes imports and purchases from non-Dominion-owned generation inside the Dominion control zone (e.g., from merchants). In the Base Case, purchases are made at the prevailing spot wholesale energy price in the Dominion control zone. In the Change Case, purchases are made at the Dominion Load Zone LMP and offset by allocated FTRs (based on the percentage of purchases to total load) to compensate for any congestion costs incurred in these purchases. The purchase costs of imports also include a credit for trade savings that is assumed to be one-half of the price difference between the exporting and importing control areas less the prevailing wheeling rate (trade savings are discussed in more detail below).
- 4. Sales Cost Credit, credit for the cost of energy sales to non-Dominion load (*e.g.*, exports and sales to non-requirements wholesale customers). Calculated as the quantity of sales to non-Dominion load multiplied by the highest marginal cost of generation up to the quantity of sales to non-Dominion load.
- 5. Other, includes gas pipeline demand charges and nuclear decommissioning charges.
- 6. Fuel expenses were allocated to North Carolina Retail Customers using the North Carolina fuel allocation methodology

#### Items that Impact Base Rates

Other costs and credits that impact North Carolina retail base rates beginning in 2006 are North Carolina Retail Customers' share of the following items:

- 1. 39 percent of Purchases for Load, using the methodology described in the Fuel Factor calculation above.
- 2. Pre-1992 NUG Energy costs, using the methodology described in the Fuel Factor above for post-1992 NUG Energy.



- 3. In the Change Case, Congestion Charges in Base Rates, reflecting the difference in LMPs at the generation bus for the Dominion generating units and the zonal load LMP for Dominion load multiplied by the output of the Dominion generating units.
- 4. In the Change Case, the value of the FTRs (see discussion below) not passed through the Fuel Factor.
- 5. Market Capacity Purchases. Market Capacity Purchases are calculated by: 1) multiplying the annual peak load of Dominion by one plus the reserve margin, 2) subtracting the capacity of the Dominion generating units, 3) multiplying by the North Carolina Retail Customer demand share, and then 4) multiplying by the prevailing ICAP price.
- 6. PJM Administrative Fees, applies only to the Change Case, when Dominion is a part of PJM. Calculated as annual load multiplied by the PJM Administrative Charge. Fees for 2005 are deferred and recovered with interest in 2006.
- Non-fuel clause energy expenses were allocated to North Carolina Retail Customers based on the North Carolina energy allocation methodology. Demand related expenses were allocated to North Carolina Retail Customers based on the summer/winter peak and average allocation methodology.

## C.5. Key Assumptions

### **Allocation of Trade Savings**

Cross-seam trades occur because higher prices in one area attract lower cost generation. Such trades benefit the importer, which has access to lower priced generation than is available otherwise, and the exporter, which receives a higher price for its generation. Savings from these purchases and sales are allocated to the importer and exporter using a split-savings approach. In other words, 50 percent of the savings is allocated to the exporter and 50 percent is allocated to the importer.

As it pertains to Dominion, purchase savings on imports are measured using the price difference on contract flows between regions as determined in the MAPS model. The price difference reflects the higher price of generation in the importing area relative to the exporting area. The transmission charge of the exporter is subtracted from the price difference before the purchase savings are split.



Sales savings on exports are also measured using the price difference on contract flows. The transmission charge of Dominion is subtracted from the price difference before the sales savings are split.

Exports from the Dominion control zone are assumed to be from Dominion-owned generation and merchant generation. Generation owned by others within the Dominion control zone is assumed to generate only to meet their internal load and hence does not export. The split between Dominion-owned generation and merchant generation is based on their relative share of generation in each hour.

#### FTR Awards

In the Change Case when Dominion is part of PJM there is a presumption that Dominion and other load in the control area would be awarded FTRs to compensate for any congestion costs incurred in market energy purchases. PJM conducted a preliminary analysis that determined that the full quantity of FTRs from Dominion's generation units to its load could be awarded throughout the study period; that is, these FTRs were simultaneously feasible given existing FTR awards. PJM business rules allow Dominion, on behalf of its network customers, to request FTRs from resources to match its peak load in any given year. Since the total feasible set of FTRs exceeds this peak load, CRA assumed that Dominion would nominate those FTRs that were most valuable. In each modeled year (2005, 2007, 2010 and 2014), FTR nominations were scaled down for all units, with the exception of Bath County and Mount Storm, such that the total FTRs nominated equaled Dominion's peak load.



### **Input Assumptions**

This section includes tables showing relevant inputs.

| Table C-1 | : Transmission | Rates ( | Base and | Change | Cases) |
|-----------|----------------|---------|----------|--------|--------|
|-----------|----------------|---------|----------|--------|--------|

| Area          | Base Case Cha         | nge Case                        |
|---------------|-----------------------|---------------------------------|
| DVP           | \$1.46                | \$1.46 per MWh in 2002\$        |
| Classic PJM   | \$1.50                | NA per MWh in 2002\$            |
| New PJM       | NA                    | \$1.50 per MWh in 2002\$        |
| CP&L          | \$1.23                | \$1.23 per MWh in 2002\$        |
| Off-Peak      | \$0.50                | <b>\$0.50</b> per MWh in 2002\$ |
| Assumed to gr | row with inflation of | after 2008                      |

### Table C-2: PJM Administrative Charges

| 1                         | <u>2005</u> | <u>2006</u> | <u>2007</u> | <u>2008</u> |
|---------------------------|-------------|-------------|-------------|-------------|
| PJM Admin Charge (\$/MWh) | \$0.43      | \$0.42      | \$0.41      | \$0.42      |



| 1                         | 2005         | 2007          | 2010     | 2014             | -        | 2005             | 2007     | 2010     | 2014     |
|---------------------------|--------------|---------------|----------|------------------|----------|------------------|----------|----------|----------|
|                           | FTR MW       | FTR MW        | FTR MW   | FTR MW           |          | FTR MW           | FTR MW   | FTR MW   | FTR MW   |
| DVP Unit                  | Provided     | Provided      | Provided | Provided         | DVP Unit | Provided         | Provided | Provided | Provided |
| BATHCVAP                  | 1548.0       | 1548.0        | 1548.0   | 1548.0           | COVINGT5 | 101              | 106      | 113      | 123      |
| MTSTORM1                  | 545.0        | 545.0         | 545.0    | 545.0            | COVINGT6 | 10.1             | 10.6     | 11.5     | 12.3     |
| MTSTORM2                  | 545.0        | 545.0         | 545.0    | 545.0            | CHESTFD3 | 91.8             | 96.6     | 102.8    | 112.0    |
| MTSTORM3                  | 536.0        | 536.0         | 536.0    | 536.0            | CGNRICH2 | 81.8             | 86.0     | 91.6     | 00.7     |
| SURRY01                   | 708.4        | 744.9         | 793.3    | 864.0            | DARBYTO1 | 80.5             | 84.6     | 90.1     | 98.1     |
| SURRY02                   | 712.8        | 749.5         | 798.2    | 869.3            | DARBYTO2 | 80.5             | 84.6     | 90.1     | 98.1     |
| YORKTOW3                  | 717.2        | 754,1         | 803.1    | 874.6            | DARBYTO3 | 80.5             | 84.6     | 90.1     | 98.1     |
| CHESTFD6                  | 586.8        | 617.0         | 657.1    | 715.7            | DARBYTO4 | 80.5             | 84.6     | 90.1     | 98.1     |
| NTHBRANC                  | 67.3         | 70.8          | 75.4     | 82.1             | ROANOST1 | 19.7             | 20.7     | 22.0     | 24.0     |
| CLOVER02                  | 192.8        | 202.8         | 215.9    | 235.2            | APPOMAT1 | 33.2             | 34.9     | 37.2     | 40.5     |
| CLOVER01                  | 192.8        | 202.8         | 215.9    | 235.2            | KITTYGT1 | 24.5             | 25.7     | 27.4     | 29.9     |
| MECKLENI                  | 57.7         | 60.7          | 64.6     | 70.4             | KITTYGT2 | 24.5             | 25.7     | 27.4     | 29.9     |
| GASTONPD                  | 196.8        | 206.9         | 220.4    | 240.0            | DOSWECC1 | 324.6            | 341.3    | 363.5    | 395.9    |
| BREMOBL4                  | 139.9        | 147.1         | 156.7    | 170.7            | DOSWECC2 | 324.6            | 341.3    | 363.5    | 395.9    |
| PANDARCC                  | 173.2        | 182.1         | 193.9    | 211.2            | GRAVELN2 | 24.5             | 25.7     | 27.4     | 29.9     |
| ROANOKVP                  | 146.2        | 153.8         | 163,8    | 178.3            | CHESAP10 | 25.4             | 26.7     | 28.4     | 30.9     |
| LGEALTAV                  | 54.8         | 57.7          | 61.4     | 66.9             | CHESAPE7 | 25.4             | 26.7     | 28.4     | 30.9     |
| COMMONA1                  | 91.0         | 95.6          | 101.9    | 110.9            | CHESAPE8 | 25.4             | 26.7     | 28.4     | 30.9     |
| GORDONCC                  | 251.7        | 264.7         | 281.9    | 307.0            | CHESAPE9 | 25.4             | 26.7     | 28.4     | 30.9     |
| HOPEWECC                  | 346.0        | 363.8         | 387.4    | 422.0            | CHESAGTI | 16.6             | 17.5     | 18.6     | 20.3     |
| MULTITRI                  | 35.0         | 36.8          | 39.2     | 42.7             | CHESAGT2 | 15.7             | 16.6     | 17.6     | 19.2     |
| MULTITR2                  | 35.0         | 36.8          | 39.2     | 42.7             | CHESAGT4 | 15.7             | 16.6     | 17.6     | 19.2     |
| CHESAST4                  | 193.3        | 203.2         | 216.4    | 235.7            | CHESAPE6 | 15.7             | 16.6     | 17.6     | 19.2     |
| ROANOKPD                  | 84.0         | 88.3          | 94.0     | 102.4            | GRAVELNI | 14.9             | 15.6     | 16.6     | 18.1     |
| CHESTFD5                  | 272.9        | 286.9         | 305,6    | 332.8            | NTHNECK1 | 16.6             | 17.5     | 18.6     | 20.3     |
| BREMOBL3                  | 64.7         | 68.0          | 72.5     | 78. <del>9</del> | NTHNECK2 | 16.6             | 17.5     | 18.6     | 20.3     |
| DCBATTL2                  | 50.3         | 52.9          | 56.3     | 61.3             | NTHNECK3 | 16.6             | 17.5     | 18.6     | 20.3     |
| DCBATTL1                  | 50.3         | 52.9          | 56.3     | 61.3             | NTHNECK4 | 16.6             | 17.5     | 18.6     | 20.3     |
| BELLMEAD                  | 218.6        | 229.9         | 244.8    | 266.7            | DOSWELL1 | 149.6            | 157.2    | 167.5    | 182.4    |
| CHESAPE3                  | 141.7        | 149.0         | 158.7    | 172.8            | ALEXARL1 | 8.7              | 9.2      | 9.8      | 10.7     |
| CHESTFD8                  | 205.5        | 216.1         | 230.1    | 250.7            | ALEXARL2 | 8.7              | 9.2      | 9.8      | 10.7     |
| YORKTOW2                  | 150.4        | 158.2         | 168.4    | 183.5            | POSSUGT1 | 14.0             | 14.7     | 15.7     | 17.1     |
| CHESTFD7                  | 202.9        | 213.3         | 227,2    | 247.5            | POSSUGT2 | 14.0             | 14.7     | 15.7     | 17.1     |
| YORKTOWI                  | 142.6        | 1 <b>49.9</b> | 159.6    | 173.9            | POSSUGT3 | 14.0             | 14.7     | 15.7     | 17.1     |
| LGESOUTH                  | 54.8         | 57.7          | 61.4     | 66.9             | POSSUGT4 | 14.0             | 14.7     | 15.7     | 17.1     |
| CHESASTI                  | 97.1         | 102.1         | 108.7    | 118.4            | POSSUGT5 | 14.0             | 14.7     | 15.7     | 17.1     |
| CHESAST2                  | <b>97</b> .1 | 102.1         | 108.7    | 118.4            | POSSUGT6 | 14.0             | 14.7     | 15.7     | 17.1     |
| PORTSMO1                  | 47.2         | 49.7          | 52.9     | 57.6             | CAROLNE1 | 155.7            | 163.7    | 174.3    | 189.9    |
| CHESTFD4                  | 149.6        | 157.2         | 167.5    | 182.4            | CAROLNE2 | 155.7            | 163.7    | 174.3    | 189.9    |
| ROANOKVI                  | 39.4         | 41.5          | 44.2     | 48.1             | 195ENER1 | 69.1             | 72.6     | 77.4     | 84.3     |
| LOWMOORI                  | 15.7         | 16.6          | 17,6     | 19.2             | POSSUMP3 | <del>9</del> 1.8 | 96.6     | 102.8    | 112.0    |
| LOWMOOR2                  | 15.7         | 16.6          | 17.6     | 19.2             | BIRCHWOI | 211.8            | 222.7    | 237.2    | 258.3    |
| LOWMOOR3                  | 15.7         | 16.6          | 17.6     | 19.2             | FAUQUIC3 | 155.7            | 163.7    | 174.3    | 189.9    |
| LOWMOOK4                  | 15.7         | 16.6          | 17.6     | 19.2             | FAUQUICI | 155.7            | 163.7    | 174.3    | 189.9    |
| CONKICHI                  | 101.0        | 106.2         | 113.1    | 123.2            | FAUQUIC2 | 155.7            | 163.7    | 174.3    | 189.9    |
| CONHUPEW                  | 76.1         | 80.0          | 85.2     | 92.8             | FAUQUIC4 | 155.7            | 163.7    | 174.3    | 189.9    |
| ORAVELNO<br>ORAVELNO      | 80.5         | 84.6          | 90.1     | 98.1             | POSSUMP4 | 193.3            | 203.2    | 216.4    | 235.7    |
| CINA VELNA<br>CIDA VEL NA | 80.5<br>80.5 | 84.6          | 90.1     | 98.1<br>08.1     | NTHANNA2 | 709.0            | 745.4    | 793.9    | 864.6    |
| GRAVELNO<br>GRAVELNE      | 80.3<br>80.4 | 84.0          | 90,1     | 98.1<br>00.1     | NIMANNAI | 715,1            | 751.9    | 800.8    | 872.2    |
| COVINCE                   | 80.5         | 84.0          | 90.1     | 98.1<br>17.2     | POSSUMPS | 700.5            | 736.6    | 784.5    | 854.4    |
| COVINGT                   | 10.1         | 10.0          | 11.3     | 12.5             | russumps | 393.6            | 413.8    | 440.7    | 480.0    |
| COVINGT3                  | 10.1         | 10,0          | 11.3     | 12.3             |          |                  |          |          | 1        |
| COVINGT/                  | 10.1         | 10.0          | 11.5     | 12.3             | Totolo   | 10 744           | 11.124   | 11 661   | 12.40    |
| 0011014                   | 10.1         | 10.0          | 11.5     | 12.3             | TOTAIS   | 10,744           | 11,134   | 11,051   | 12,406   |

## Table C-3: Dominion FTR Quantities by MAPS Unit



## CHARLES RIVER ASSOCIATES

74

## APPENDIX D: DETAILED FINANCIAL RESULTS OF SENSITIVITY CASES

#### Table D-1: Annual Costs and Offsetting Revenues for North Carolina Retail Customers – Base Case (High Fuel Price Sensitivity Case)

(Millions of dollars; negative values are credits to cost)

| PV to Jul                           | y 1, 2003        |             |             |             |             |             |                  |             |             |             |             |
|-------------------------------------|------------------|-------------|-------------|-------------|-------------|-------------|------------------|-------------|-------------|-------------|-------------|
| North Carolina Retail               | <u>('05-'14)</u> | <u>2005</u> | <u>2006</u> | <u>2007</u> | <u>2008</u> | <u>2009</u> | <u>2010</u>      | <u>2011</u> | <u>2012</u> | <u>2013</u> | <u>2014</u> |
| Production/Generation Costs         |                  |             |             |             |             |             |                  |             |             |             |             |
| Fuel Factor Impacts:                |                  |             |             |             |             |             |                  |             |             |             |             |
| Energy Purchases - Fuel Factor      | 82.1             | 11.5        | 11.8        | 12.2        | 13.1        | 14.1        | 15.0             | 16.9        | 18.7        | 20.5        | 22.4        |
| Fuel Costs                          | 312.2            | 47.3        | 49.6        | 51.8        | 53.6        | 55.5        | 57.3             | 60.7        | 64.2        | 67.6        | 71.0        |
| "Other Fuel" Costs                  | 15.9             | 3.1         | 3.1         | 3.2         | 2.5         | 2.5         | 2.7              | 2.7         | 2.7         | 2.8         | 2.9         |
| NUG Energy - Fuel Factor            | 14.9             | 2.8         | 2.5         | 2.3         | 2.4         | 2.5         | 2.6              | 2.8         | 2.9         | 3.1         | 3.3         |
| Sub-Total Fuel Factor               | 425.2            | 64.7        | 67.1        | 69.5        | 71.6        | 74.5        | 77.6             | 83.0        | 88.6        | 94.1        | 99.6        |
| Base Rate Impacts:                  |                  |             |             |             |             |             |                  |             |             |             |             |
| NUG Energy - Base Rates             | 50.5             | 0.0         | 8.4         | 9.3         | 9.5         | 9.7         | 10.0             | 11.3        | 12.6        | 14.0        | 15.3        |
| Energy Purchases - Base Rates       | 46.4             | 0.0         | 7.6         | 7.8         | 8.4         | 9.0         | 9.6              | 10.8        | 12.0        | 13.1        | 14.3        |
| Sub-Total Base Rate Energy          | 96.9             | 0.0         | 15.9        | 17.0        | 17.9        | 18.7        | 19.6             | 22.1        | 24.6        | 27.1        | 29.6        |
| Purchased Power Capacity            | 16.0             | 0.0         | 0.5         | 1.0         | 1.4         | 1.5         | 2.5              | 4.1         | 6.6         | 8.9         | 10.7        |
| Total Prod/Gen Costs                | 538.1            | 64.7        | 83.6        | 87.6        | 90.9        | 94.7        | <del>99</del> .7 | 109.2       | 119.8       | 130.1       | 139.9       |
| Production Revenues                 |                  |             |             |             |             |             |                  |             |             |             |             |
| Fuel Factor Impacts:                |                  |             |             |             |             |             |                  |             |             |             |             |
| Sales Costs - Fuel Factor           | (11.4)           | (1.4)       | (1.9)       | (2.4)       | (2.3)       | (2.1)       | (2.0)            | (2.1)       | (2.2)       | (2.2)       | (2.3)       |
| Base Rate Impacts:                  |                  |             |             |             |             |             |                  |             |             |             |             |
| VOM on Sales - Base Rates           | (1.5)            | 0.0         | (0.3)       | (0.4)       | (0.4)       | (0.3)       | (0.3)            | (0.3)       | (0.3)       | (0.3)       | (0.3)       |
| Profit on Sales - Base Rates        | (0.9)            | 0.0         | (0.7)       | (0.1)       | (0.1)       | (0.1)       | (0.1)            | (0.1)       | (0.1)       | (0.1)       | (0.1)       |
| Sub-Total Base Rate Energy          | (2.4)            | 0.0         | (1.0)       | (0.4)       | (0.4)       | (0.4)       | (0.4)            | (0.4)       | (0.4)       | (0.4)       | (0.5)       |
| Capacity Sales                      | 0.0              | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0              | 0.0         | 0.0         | 0.0         | 0.0         |
| Total Production Revenue            | (13.8)           | (1.4)       | (2.9)       | (2.9)       | (2.7)       | (2.5)       | (2.4)            | (2.5)       | (2.6)       | (2.7)       | (2.8)       |
| Transmission Rights Revenues        |                  |             |             |             |             |             |                  |             |             |             |             |
| Transmission Rights Revenues (FTRs) | 0.0              | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0              | 0.0         | 0.0         | 0.0         | 0.0         |
| RTO Admin Fees                      |                  |             |             |             |             |             |                  |             |             |             |             |
| RTO Admin Fees                      | 0.0              | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0              | 0.0         | 0.0         | 0.0         | 0.0         |
| Costs to Customers                  | 524.3            | 63.3        | 80.7        | 84.7        | 88.2        | 92.2        | 97.3             | 106.8       | 117.2       | 127.5       | 137.2       |
| ***                                 |                  |             |             |             |             |             |                  |             |             |             | 1           |
| Fuel Factor                         | 413.8            | 63.3        | 65.2        | 67.1        | 69.4        | 72.4        | 75.6             | 80.9        | 86.4        | 91.9        | 97.3        |



# Table D-2: Annual Costs and Offsetting Revenues for North Carolina Retail Customers – Change Case (High Fuel Price Sensitivity Case)

(Millions of dollars; negative values are credits to cost)

| PV to Ju                                     | ıly 1, 2003      |             |             |             |              |             |             |             |             |             |             |
|----------------------------------------------|------------------|-------------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|
| North Carolina Retail                        | <u>('05-'14)</u> | <u>2005</u> | <u>2006</u> | <u>2007</u> | 2008         | <u>2009</u> | <u>2010</u> | <u>2011</u> | <u>2012</u> | <u>2013</u> | <u>2014</u> |
| Production/Generation Costs                  |                  |             |             |             |              |             |             |             |             |             |             |
| Fuel Factor Impacts:                         |                  |             |             |             |              |             |             |             |             |             |             |
| Energy Purchases - Fuel Factor               | 104.2            | 14.0        | 14.6        | 15.1        | 16.5         | 17.8        | 19.2        | 21.8        | 24.4        | 26.9        | 29.5        |
| Fuel Costs                                   | 292.0            | 43.7        | 46.0        | 48.2        | 50.0         | 51.9        | 53.7        | 57.1        | 60.5        | 63.9        | 67.3        |
| "Other Fuel" Costs                           | 15.9             | 3.1         | 3.1         | 3.2         | 2.5          | 2.5         | 2.7         | 2.7         | 2.7         | 2.8         | 2.9         |
| NUG Energy - Fuel Factor                     | 14.7             | 2.6         | 2.5         | 2.3         | 2.4          | 2.5         | 2.6         | 2.7         | 2.8         | 3.0         | 3.1         |
| Sub-Total Fuel Factor                        | 426.8            | 63.4        | 66.2        | 68.9        | 71.4         | 74.7        | 78.2        | 84.2        | 90.4        | 96.6        | 102.8       |
| Base Rate Impacts:                           |                  |             |             |             |              |             |             |             |             |             |             |
| NUG Energy - Base Rates                      | 39.3             | 0.0         | 6.9         | 7.5         | 7.6          | 7.7         | 7.8         | 8.6         | 9.5         | 10.3        | 11.1        |
| Energy Purchases - Base Rates                | 59.2             | 0.0         | 9.3         | 9.7         | 10.5         | 11.4        | 12.3        | 13.9        | 15.6        | 17.2        | 18.9        |
| VOM Reduction - Reduced Output               | (1.8)            | 0.0         | (0.5)       | (0.4)       | (0.4)        | (0.4)       | (0.4)       | (0.4)       | (0.3)       | (0.3)       | (0.3`       |
| Sub-Total Base Rate Energy                   | 96.7             | 0.0         | 15.7        | 16.7        | 17.7         | 18.7        | 19.7        | 22.2        | 24.7        | 27.2        | 29.7        |
| Purchased Power Capacity                     | 13.6             | 0.0         | 0.5         | 1.0         | 1.4          | 1.5         | 2.3         | 3.1         | 4.8         | 7.3         | 9.7         |
| Congestion - Base Rates                      | 37.0             | 0.0         | 7.0         | 7.2         | 7.6          | 8.0         | 8.3         | 8.3         | 8.2         | 8.2         | 8.1         |
| Total Prod/Gen Costs                         | 574.2            | 63.4        | 89.4        | 93.9        | 98.2         | 102.9       | 108.6       | 117.8       | 128.1       | 139.2       | 150.3       |
| Production Revenues                          |                  |             |             |             |              |             |             |             |             |             |             |
| Fuel Factor Impacts:                         |                  |             |             |             |              |             |             |             |             |             |             |
| Sales Costs - Fuel Factor                    | (8.7)            | (1.1)       | (1.2)       | (1.3)       | (1.4)        | (1.6)       | (1.7)       | (1.8)       | (1.9)       | (2.1)       | (2.2)       |
| Base Rate Impacts:                           |                  |             |             |             |              |             |             |             |             |             |             |
| VOM on Sales - Base Rates                    | (1.2)            | 0.0         | (0.2)       | (0.2)       | (0.2)        | (0.2)       | (0.2)       | (0.3)       | (0.3)       | (0.3)       | (0.4)       |
| Profit on Sales - Base Rates                 | (0.4)            | 0.0         | (0.0)       | (0.1)       | (0.1)        | (0.1)       | (0.1)       | (0.1)       | (0.1)       | (0.1)       | (0.1)       |
| Sub-Total Base Rate Energy                   | (1.6)            | 0.0         | (0.2)       | (0.3)       | (0.3)        | (0.3)       | (0.3)       | (0.4)       | (0.4)       | (0.5)       | (0.5)       |
| Capacity Sales                               | 0.0              | 0.0         | 0.0         | 0.0         | 0.0          | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         |
| Total Production Revenue                     | (10.3)           | (1.1)       | (1.5)       | (1.6)       | (1.7)        | (1.9)       | (2.0)       | (2.2)       | (2.4)       | (2.5)       | (2.7)       |
| Transmission Rights Revenues                 |                  |             |             |             |              |             |             |             |             |             |             |
| FTRs Attributable to Purchases - Fuel Factor | · (3.4)          | (0.5)       | (0.5)       | (0.5)       | (0.6)        | (0.6)       | (0.6)       | (0.7)       | (0.8)       | (0.8)       | (0.9)       |
| Other FTRs - Base Rates                      | (47.4)           | 0.0         | (9.2)       | (9.6)       | (9.8)        | (10.0)      | (10.3)      | (10.3)      | (10.4)      | (10.4)      | (10.5)      |
| Transmission Rights Revenues (FTRs)          | (50.8)           | (0.5)       | (9.7)       | (10.1)      | (10.4)       | (10.6)      | (10.9)      | (11.0)      | (11.1)      | (11.2)      | (11.4)      |
| RTO Admin Fees                               |                  |             |             |             |              |             |             |             |             |             |             |
| RTO Admin Fees                               | 10.2             | 0.0         | 3.8         | 1.8         | 1.7          | 1.8         | 1.8         | 1.8         | 1.9         | 1.9         | 1.9         |
| Costs to Customers                           | 523.2            | 61.8        | 82.1        | 84.0        | 87.8         | 92.1        | 97.4        | 106.4       | 116.5       | 127.4       | 138.2       |
| Fuel Factor                                  | 414.7            | 61.8        | 64.4        | 67.1        | <b>69</b> .4 | 72.6        | 75.9        | 81.7        | 87.7        | 93.7        | 99.7        |



CHARLES RIVER ASSOCIATES

76

#### Table D-3: Annual Costs and Offsetting Revenues for North Carolina Retail Customers – Change Case Minus Base Case (High Fuel Price Sensitivity Case)

(Millions of dollars; negative numbers are benefits)

| PV to Jul                                    | ly 1, 2003       |             |             |             |             |             |             |             |                |             |             |
|----------------------------------------------|------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|----------------|-------------|-------------|
| North Carolina Retail                        | <u>('05-'14)</u> | <u>2005</u> | <u>2006</u> | <u>2007</u> | <u>2008</u> | <u>2009</u> | <u>2010</u> | <u>2011</u> | <u>2012</u>    | <u>2013</u> | <u>2014</u> |
| Production/Generation Costs                  |                  |             |             |             |             |             |             |             |                |             |             |
| Fuel Factor Impacts:                         |                  |             |             |             |             |             |             |             |                |             |             |
| Energy Purchases - Fuel Factor               | 22.1             | 2.5         | 2.7         | 3.0         | 3.4         | 3.7         | 4.1         | 4.9         | 5.6            | 6.4         | 7.2         |
| Fuel Costs                                   | (20.3)           | (3.6)       | (3.6)       | (3.6)       | (3.6)       | (3.6)       | (3.6)       | (3.6)       | (3.7)          | (3.7)       | (3.8)       |
| "Other Fuel" Costs                           | 0.0              | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0            | 0.0         | 0.0         |
| NUG Energy - Fuel Factor                     | (0.3)            | (0.1)       | (0.1)       | 0.0         | 0.0         | 0.0         | 0.1         | (0.0)       | (0.1)          | (0.2)       | (0.3)       |
| Sub-Total Fuel Factor                        | 1.6              | (1.3)       | (0.9)       | (0.6)       | (0.2)       | 0.2         | 0.6         | 1.2         | 1.9            | 2.5         | 3.1         |
| Base Rate Impacts:                           |                  |             |             |             |             |             |             |             |                |             |             |
| NUG Energy - Base Rates                      | (11.2)           | 0.0         | (1.5)       | (1.8)       | (1.9)       | (2.0)       | (2.1)       | (2.6)       | (3.2)          | (3.7)       | (4.2)       |
| Energy Purchases - Base Rates                | 12.8             | 0.0         | 1.7         | 1.9         | 2.1         | 2.4         | 2.6         | 3.1         | 3.6            | <b>4</b> .1 | 4.6         |
| VOM Reduction - Reduced Output               | (1.8)            | 0.0         | (0.5)       | (0.4)       | (0.4)       | (0.4)       | (0.4)       | (0.4)       | (0.3)          | (0.3)       | (0.3)       |
| Sub-Total Base Rate Energy                   | (0.2)            | 0.0         | (0.2)       | (0.3)       | (0.1)       | 0.0         | 0.2         | 0.1         | 0.1            | 0.1         | 0.0         |
| Purchased Power Capacity                     | (2.3)            | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | (0.2)       | (1.1)       | (1. <b>8</b> ) | (1.6)       | (0.9)       |
| Congestion - Base Rates                      | 37.0             | 0.0         | 7.0         | 7.2         | 7.6         | 8.0         | 8.3         | 8.3         | 8.2            | 8.2         | 8.1         |
| Total Prod/Gen Costs                         | 36.1             | (1.3)       | 5.9         | 6.3         | 7.3         | 8.2         | 8.9         | 8.6         | 8.4            | 9.1         | 10.4        |
| Production Revenues                          |                  |             |             |             |             |             |             |             |                |             |             |
| Fuel Factor Impacts:                         |                  |             |             |             |             |             |             |             |                |             |             |
| Sales Costs - Fuel Factor                    | 2.7              | 0.2         | 0.7         | 1.1         | 0.8         | 0.6         | 0.3         | 0.2         | 0.2            | 0.2         | 0.1         |
| Base Rate Impacts:                           |                  |             |             |             |             |             |             |             |                |             |             |
| VOM on Sales - Base Rates                    | 0.3              | 0.0         | 0.1         | 0.2         | 0.1         | 0.1         | 0.0         | 0.0         | (0.0)          | (0.0)       | (0.0)       |
| Profit on Sales - Base Rates                 | 0.5              | 0.0         | 0.6         | 0.0         | 0.0         | (0.0)       | (0.0)       | (0.0)       | (0.0)          | (0.0)       | (0.0)       |
| Sub-Total Base Rate Energy                   | 0.8              | 0.0         | 0.7         | 0.2         | 0.1         | 0.1         | 0.0         | 0.0         | (0.0)          | (0.0)       | (0.1)       |
| Capacity Sales                               | 0.0              | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0            | 0.0         | 0.0         |
| Total Production Revenue                     | 3.5              | 0.2         | 1.4         | 1.3         | 1.0         | 0.6         | 0.3         | 0.2         | 0.2            | 0.1         | 0.0         |
| Transmission Rights Revenues                 |                  |             |             |             |             |             |             |             |                |             |             |
| FTRs Attributable to Purchases - Fuel Factor | (3.4)            | (0.5)       | (0.5)       | (0.5)       | (0.6)       | (0.6)       | (0.6)       | (0.7)       | (0.8)          | (0.8)       | (0.9)       |
| Other FTRs - Base Rates                      | (47.4)           | 0.0         | (9.2)       | (9.6)       | (9.8)       | (10.0)      | (10.3)      | (10.3)      | (10.4)         | (10.4)      | (10.5)      |
| Transmission Rights Revenues (FTRs)          | (50.8)           | (0.5)       | (9.7)       | (10.1)      | (10.4)      | (10.6)      | (10.9)      | (11.0)      | (11.1)         | (11.2)      | (11.4)      |
| RTO Admin Fees                               |                  |             |             |             |             |             |             |             |                |             | ł           |
| RTO Admin Fees                               | 10.2             | 0.0         | 3.8         | 1.8         | 1.7         | 1.8         | 1.8         | 1.8         | 1.9            | 1.9         | 1.9         |
| Costs to Customers                           | (1.0)            | (1.5)       | 1.4         | (0.7)       | (0.4)       | (0.0)       | 0.1         | (0.4)       | (0.7)          | (0.1)       | 1.0_        |
| Fuel Factor                                  | 0.9              | (1.5)       | (0.8)       | 0.0         | Ũ. I        | 0.2         | 0.2         | 0.8         | 1.3            | 1.9         | 2.4         |



# Table D-4: Annual Costs and Offsetting Revenues for North Carolina Retail Customers – Base Case (High Load Sensitivity Case)

(Millions of dollars; negative values are credits to cost)

| PV to Jul                           | y 1, 2003        |             |             |             |             |             |             |             |             |             |             |
|-------------------------------------|------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| North Carolina Retail               | <u>('05-'14)</u> | <u>2005</u> | <u>2006</u> | <u>2007</u> | <u>2008</u> | <u>2009</u> | <u>2010</u> | <u>2011</u> | <u>2012</u> | <u>2013</u> | <u>2014</u> |
| Production/Generation Costs         |                  |             |             |             |             |             |             |             |             |             |             |
| Fuel Factor Impacts:                |                  |             |             |             |             |             |             |             |             |             | 1           |
| Energy Purchases - Fuel Factor      | 76.3             | 10.2        | 10.7        | 11.1        | 12.0        | 12.9        | 13.9        | 15.9        | 17.9        | 19.9        | 21.9        |
| Fuel Costs                          | 300.5            | 47.0        | 48.7        | 50.4        | 51.9        | 53.3        | 54.7        | 57.6        | 60.5        | 63.3        | 66.2        |
| "Other Fuel" Costs                  | 15.9             | 3.1         | 3.1         | 3.2         | 2.5         | 2.5         | 2.7         | 2.7         | 2.7         | 2.8         | 2.9         |
| NUG Energy - Fuel Factor            | 15.3             | 2.9         | 2.6         | 2.3         | 2.4         | 2.5         | 2.6         | 2.8         | 3.1         | 3.3         | 3.5         |
| Sub-Total Fuel Factor               | 408.0            | 63.2        | 65.1        | 67.0        | 68.8        | 71.3        | 73.9        | 79.0        | 84.2        | 89.3        | 94.5        |
| Base Rate Impacts:                  |                  |             |             |             |             |             |             |             |             |             |             |
| NUG Energy - Base Rates             | 58.2             | 0.0         | 9.7         | 10.8        | 11.1        | 11.4        | 11.7        | 13.0        | 14.4        | 15.7        | 17.1        |
| Energy Purchases - Base Rates       | 43.4             | 0.0         | 6.8         | 7.1         | 7.7         | 8.3         | 8.9         | 10.2        | 11.5        | 12,7        | 14.0        |
| Sub-Total Base Rate Energy          | 101.6            | 0.0         | 16.5        | 17.9        | 18.8        | 19.7        | 20.5        | 23.2        | 25.8        | 28.5        | 31.1        |
| Purchased Power Capacity            | 23.3             | 0.0         | 1.6         | 2.1         | 2.4         | 2.5         | 3.7         | 5.9         | 9.0         | 11.8        | 13.9        |
| Total Prod/Gen Costs                | 532.9            | 63.2        | 83.2        | 87.0        | 89.9        | 93.4        | 98.1        | 108.0       | 119.0       | 129.7       | 139.5       |
| Production Revenues                 |                  |             |             |             |             |             |             |             |             |             |             |
| Fuel Factor Impacts:                |                  |             |             |             |             |             |             |             |             |             |             |
| Sales Costs - Fuel Factor           | (8.9)            | (1.6)       | (1.6)       | (1.6)       | (1.6)       | (1.5)       | (1.5)       | (1.5)       | (1.6)       | (1.6)       | (1.7)       |
| Base Rate Impacts:                  |                  |             |             |             |             |             |             |             |             |             |             |
| VOM on Sales - Base Rates           | (1.4)            | 0.0         | (0.3)       | (0.3)       | (0.3)       | (0.3)       | (0.2)       | (0.3)       | (0.3)       | (0.3)       | (0.3)       |
| Profit on Sales - Base Rates        | (0.6)            | 0.0         | (0.1)       | (0.1)       | (0.1)       | (0.1)       | (0.1)       | (0.1)       | (0.1)       | (0.2)       | (0.2)       |
| Sub-Total Base Rate Energy          | (1.9)            | 0.0         | (0.3)       | (0.4)       | (0.4)       | (0.4)       | (0.3)       | (0.4)       | (0.4)       | (0.5)       | (0.5)       |
| Capacity Sales                      | 0.0              | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         |
| Total Production Revenue            | (10.8)           | (1.6)       | (2.0)       | (2.0)       | (2.0)       | (1.9)       | (1.8)       | (1.9)       | (2.0)       | (2.1)       | (2.2)       |
| Transmission Rights Revenues        |                  |             |             |             |             |             |             |             |             |             |             |
| Transmission Rights Revenues (FTRs) | 0.0              | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         |
| RTO Admin Fees                      |                  |             |             |             |             |             |             |             |             |             |             |
| RTO Admin Fees                      | 0.0              | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         |
| Costs to Customers                  | 522.0            | 61.6        | 81.2        | 84.9        | 87.9        | 91.5        | 96.3        | 106.1       | 117.0       | 127.5       | 137.3       |
| Fuel Factor                         | 399.0            | 61.6        | 63.5        | 65.4        | 67.2        | 69.7        | 72.5        | 77.5        | 82.6        | 87.7        | 92.8        |



**CHARLES RIVER ASSOCIATES** 

78

# Table D-5: Annual Costs and Offsetting Revenues for North Carolina Retail Customers – Change Case (High Load Sensitivity Case)

(Millions of dollars; negative values are credits to cost)

| PV to Ju                                     | ly 1, 2003       |             |             |             |              |             |              |                     |                 |             |             |
|----------------------------------------------|------------------|-------------|-------------|-------------|--------------|-------------|--------------|---------------------|-----------------|-------------|-------------|
| North Carolina Retail                        | <u>('05-'14)</u> | <u>2005</u> | <u>2006</u> | <u>2007</u> | <u>2008</u>  | <u>2009</u> | <u>2010</u>  | <u>2011</u>         | <u>2012</u>     | <u>2013</u> | <u>2014</u> |
| Production/Generation Costs                  |                  |             | -           |             | _            |             |              | -                   |                 |             | _           |
| Fuel Factor Impacts:                         |                  |             |             |             |              |             |              |                     |                 |             |             |
| Energy Purchases - Fuel Factor               | 102.3            | 13.5        | 14.0        | 14.5        | 15.9         | 17.3        | 18.7         | 21.6                | 24.5            | 27.4        | 30.3        |
| Fuel Costs                                   | 281.5            | 43.3        | 45.3        | 47.2        | 48,6         | 50.0        | 51.3         | 54.2                | 57.1            | 60.0        | 63.0        |
| "Other Fuel" Costs                           | 15.9             | 3.1         | 3.1         | 3.2         | 2.5          | 2.5         | 2.7          | 2.7                 | 2.7             | 2.8         | 2.9         |
| NUG Energy - Fuel Factor                     | 14.7             | 2.7         | 2.5         | 2.3         | 2.4          | 2.5         | 2.6          | 2.7                 | 2.8             | 3.0         | 3.1         |
| Sub-Total Fuel Factor                        | 414.5            | 62.6        | 64.9        | 67.2        | 69,4         | 72.2        | 75.3         | 81.2                | 87.2            | 93.2        | 99.2        |
| Base Rate Impacts:                           |                  |             |             |             |              |             |              |                     |                 |             |             |
| NUG Energy - Base Rates                      | 43.7             | 0.0         | 7.6         | 8.3         | 8.4          | 8.6         | 8.8          | 9.7                 | 10.6            | 11.4        | 12.3        |
| Energy Purchases - Base Rates                | 58.3             | 0.0         | 8.9         | 9.3         | 10.2         | 11.0        | 11.9         | 13.8                | 15.6            | 17.5        | 19.4        |
| VOM Reduction - Reduced Output               | (1.9)            | 0.0         | (0.4)       | (0.4)       | (0.4)        | (0.4)       | (0.5)        | (0.4)               | (0.4)           | (0.3)       | (0.3)       |
| Sub-Total Base Rate Energy                   | 100.1            | 0.0         | 16.1        | 17.1        | 18.2         | 19.2        | 20.3         | 23.1                | 25.8            | 28.6        | 31.4        |
| Purchased Power Capacity                     | 20.2             | 0.0         | 1.6         | 2.1         | 2.4          | 2.5         | 3.4          | 4.3                 | 6.5             | 9.7         | 12.7        |
| Congestion - Base Rates                      | 33.7             | 0.0         | 5.5         | 5.9         | 6.3          | 6.7         | 7.2          | 7.8                 | 8.5             | 9.2         | 9.9         |
| Total Prod/Gen Costs                         | 568.5            | 62.6        | 88.1        | 92.3        | 96.2         | 100.7       | 106.1        | 116.4               | 128.0           | 140.7       | 153.1       |
| Production Revenues                          |                  |             |             |             |              |             |              |                     |                 |             |             |
| Fuel Factor Impacts:                         |                  |             |             |             |              |             |              |                     |                 |             |             |
| Sales Costs - Fuel Factor                    | (6.3)            | (1.1)       | (1.0)       | (1.0)       | (1.1)        | (1.3)       | (1.4)        | (1.3)               | (1.2)           | (1.1)       | (1.0)       |
| Base Rate Impacts:                           |                  |             |             |             |              |             |              |                     |                 |             |             |
| VOM on Sales - Base Rates                    | (1.0)            | 0.0         | (0.2)       | (0.2)       | (0.2)        | (0.2)       | (0.2)        | (0.2)               | (0.2)           | (0.2)       | (0.2)       |
| Profit on Sales - Base Rates                 | <u>(0.4)</u>     | 0.0         | (0.1)       | (0.1)       | (0.1)        | (0.1)       | (0.1)        | (0.1)               | (0.1)           | (0.1)       | (0.1)       |
| Sub-Total Base Rate Energy                   | (1.4)            | 0.0         | (0.2)       | (0.2)       | (0.3)        | (0.3)       | (0.4)        | (0.3)               | (0.3)           | (0.3)       | (0.3)       |
| Capacity Sales                               | 0.0              | 0.0         | 0.0         | 0.0         | 0.0          | 0.0         | 0.0          | 0.0                 | 0.0             | 0.0         | 0.0         |
| Total Production Revenue                     | (7.7)            | (1.1)       | (1.3)       | (1.2)       | (1.4)        | (1.6)       | (1.8)        | (1.6)               | (1.5)           | (1.4)       | (1.2)       |
| Transmission Rights Revenues                 |                  |             |             |             |              |             |              |                     |                 |             | l           |
| FTRs Attributable to Purchases - Fuel Factor | (3.2)            | (0.4)       | (0.4)       | (0.4)       | (0.5)        | (0.5)       | (0.5)        | (0.7)               | (0.8)           | (1.0)       | (1.1)       |
| Other FTRs - Base Rates                      | (41.2)           | 0.0         | (7.2)       | (7.8)       | (8.0)        | (8.2)       | (8.4)        | (9.1)               | (9.9)           | (10.7)      | (11.5)      |
| Transmission Rights Revenues (FTRs)          | (44.4)           | (0.4)       | (7.6)       | (8.2)       | (8.4)        | (8.7)       | (8.9)        | (9.8)               | (10.7)          | (11.7)      | (12.6)      |
| RTO Admin Fees                               |                  |             |             |             |              |             |              |                     |                 |             |             |
| RTO Admin Fees                               | 10.4             | 0.0         | 3.8         | 1.8         | 1.8          | 1.8         | 1.8          | 1.9                 | 1. <del>9</del> | 1.9         | 2.0         |
| Costs to Customers                           | 526.8            | 61.2        | 83.0        | 84.7        | 88.2         | 92.2        | 97.3         | 106.8               | 117.7           | 129.6       | 141.3       |
| ******                                       |                  | (1.2        | 17.5        | (5.0        | ( <b>7</b> 0 | 70.6        | <b>7</b> 2.2 | <b>7</b> 0 <b>7</b> | 05.0            | 01.0        |             |
| ruei ractor                                  | 405.0            | 61.2        | 63.5        | 65.9        | 67,8         | 70.5        | 73.3         | 79.2                | 85.2            | 91.2        | 97.1        |



.

## Table D-6: Annual Costs and Offsetting Revenues for North Carolina Retail Customers – Change Case Minus Base Case (High Load Sensitivity Case)

(Millions of dollars; negative numbers are benefits)

| PV to Ju                                     | ily 1, 2003      |       |             |             |             |              |              |              |        |              |              |
|----------------------------------------------|------------------|-------|-------------|-------------|-------------|--------------|--------------|--------------|--------|--------------|--------------|
| North Carolina Retail                        | <u>('05-'14)</u> | 2005  | <u>2006</u> | <u>2007</u> | <u>2008</u> | <u>200</u> 9 | <u>201</u> 0 | <u>201</u> 1 | 2012   | <u>201</u> 3 | <u>20</u> 14 |
| Production/Generation Costs                  |                  |       |             |             |             |              |              |              |        |              |              |
| Fuel Factor Impacts:                         |                  |       |             |             |             |              |              |              |        |              |              |
| Energy Purchases - Fuel Factor               | 26.0             | 3.3   | 3.3         | 3.4         | 3.9         | 4.3          | 4.8          | 5.7          | 6.6    | 7.4          | 8.3          |
| Fuel Costs                                   | (18.9)           | (3.7) | (3.5)       | (3.2)       | (3.3)       | (3.4)        | (3.4)        | (3.4)        | (3.3)  | (3.3)        | (3.2)        |
| "Other Fuel" Costs                           | 0.0              | 0.0   | 0.0         | 0.0         | 0.0         | 0.0          | 0.0          | 0.0          | 0.0    | 0.0          | 0.0          |
| NUG Energy - Fuel Factor                     | (0.6)            | (0.2) | (0.1)       | 0.0         | 0.0         | 0.0          | (0.0)        | (0.1)        | (0.2)  | (0.3)        | (0.4)        |
| Sub-Total Fuel Factor                        | 6.5              | (0.6) | (0.2)       | 0.2         | 0.6         | 1.0          | 1.3          | 2.2          | 3.0    | 3.9          | 4.7          |
| Base Rate Impacts:                           |                  |       |             |             |             |              |              |              |        |              |              |
| NUG Energy - Base Rates                      | (14.4)           | 0.0   | (2.0)       | (2.6)       | (2.6)       | (2.7)        | (2.8)        | (3.3)        | (3.8)  | (4.3)        | (4.8)        |
| Energy Purchases - Base Rates                | 14.9             | 0.0   | 2.1         | 2.2         | 2.5         | 2.8          | 3.1          | 3.6          | 4.2    | 4.8          | 5.3          |
| VOM Reduction - Reduced Output               | (1.9)            | 0.0   | (0.4)       | (0.4)       | (0.4)       | (0.4)        | (0.5)        | (0.4)        | (0.4)  | (0.3)        | (0.3)        |
| Sub-Total Base Rate Energy                   | (1.4)            | 0.0   | (0.4)       | (0.8)       | (0.6)       | (0.4)        | (0.3)        | (0.1)        | 0.0    | 0.1          | 0.3          |
| Purchased Power Capacity                     | (3.2)            | 0.0   | 0.0         | 0.0         | 0.0         | 0.0          | (0.3)        | (1.5)        | (2.5)  | (2.2)        | (1.2)        |
| Congestion - Base Rates                      | 33.7             | 0.0   | 5.5         | 5.9         | 6.3         | 6.7          | 7.2          | 7.8          | 8.5    | 9.2          | 9.9          |
| Total Prod/Gen Costs                         | 35.6             | (0.6) | 4.9         | 5.3         | 6.3         | 7.3          | 8.0          | 8.4          | 9.0    | 11.0         | 13.6         |
| Production Revenues                          |                  |       |             |             |             |              |              |              |        |              |              |
| Fuel Factor Impacts:                         |                  |       |             |             |             |              |              |              |        |              |              |
| Sales Costs - Fuel Factor                    | 2.6              | 0.6   | 0.6         | 0.7         | 0.5         | 0.3          | 0.0          | 0.2          | 0.4    | 0.6          | 0.7          |
| Base Rate Impacts:                           |                  |       |             |             |             |              |              |              |        |              |              |
| VOM on Sales - Base Rates                    | 0.4              | 0.0   | 0.1         | 0.1         | 0.1         | 0.1          | 0.0          | 0.0          | 0.1    | 0.1          | 0.2          |
| Profit on Sales - Base Rates                 | 0.1              | 0.0   | 0.0         | 0.0         | 0.0         | 0.0          | (0.0)        | 0.0          | 0.0    | 0.1          | 0.1          |
| Sub-Total Base Rate Energy                   | 0.5              | 0.0   | 0.1         | 0.2         | 0.1         | 0.1          | (0.0)        | 0.0          | 0.1    | 0.2          | 0.3          |
| Capacity Sales                               | 0.0              | 0.0   | 0.0         | 0.0         | 0.0         | 0.0          | 0.0          | 0.0          | 0.0    | 0.0          | 0.0          |
| Total Production Revenue                     | 3.2              | 0.6   | 0.7         | 0.9         | 0.6         | 0.3          | 0.0          | 0.3          | 0.5    | 0.8          | 1.0          |
| Transmission Rights Revenues                 |                  |       |             |             |             |              |              |              |        |              |              |
| FTRs Attributable to Purchases - Fuel Factor | (3.2)            | (0.4) | (0.4)       | (0.4)       | (0.5)       | (0.5)        | (0.5)        | (0.7)        | (0.8)  | (1.0)        | (1.1)        |
| Other FTRs - Base Rates                      | (41.2)           | 0.0   | (7.2)       | (7.8)       | (8.0)       | (8.2)        | (8.4)        | (9.1)        | (9.9)  | (10.7)       | (11.5)       |
| Transmission Rights Revenues (FTRs)          | (44.4)           | (0.4) | (7.6)       | (8.2)       | (8.4)       | (8.7)        | (8.9)        | (9.8)        | (10.7) | (11.7)       | (12.6)       |
| RTO Admin Fees                               |                  |       |             |             |             |              |              |              |        |              | ł            |
| RTO Admin Fees                               | 10.4             | 0.0   | 3.8         | 1.8         | 1.8         | 1.8          | 1.8          | 1.9          | 1.9    | 1. <b>9</b>  | 2.0          |
| Costs to Customers                           | 4.7              | (0.4) | 1. <b>9</b> | (0.2)       | 0.2         | 0.7          | 0.9          | 0.7          | 0.7    | 2.1          | 4.0          |
| Fuel Factor                                  | 5.9              | (0.4) | 0.0         | 0.5         | 0.6         | 0.7          | 0.8          | 1.7          | 2.6    | 3.5          | 4.3          |



# Table D-7: Annual Costs and Offsetting Revenues for North Carolina Retail Customers – Base Case (Bedington-Black Oak Case)

(Millions of dollars; negative values are credits to cost)

| PV to Jul                           | y 1, 2003 |       |             |             |       |             |             |                 |             |       |       |
|-------------------------------------|-----------|-------|-------------|-------------|-------|-------------|-------------|-----------------|-------------|-------|-------|
| North Carolina Retail               | ('05-'14) | 2005  | <u>2006</u> | <u>2007</u> | 2008  | <u>2009</u> | <u>2010</u> | <u>2011</u>     | <u>2012</u> | 2013  | 2014  |
| Production/Generation Costs         |           |       |             |             |       |             |             |                 |             |       |       |
| Fuel Factor Impacts:                |           |       |             |             |       |             |             |                 |             |       |       |
| Energy Purchases - Fuel Factor      | 78.1      | 11.5  | 11.9        | 12.4        | 12.9  | 13.4        | 13.9        | 15.4            | 16.9        | 18.4  | 19.9  |
| Fuel Costs                          | 278.0     | 42.7  | 44.3        | 45.9        | 47.6  | 49.2        | 50.9        | 54.0            | 57.0        | 60.1  | 63.1  |
| "Other Fuel" Costs                  | 15.9      | 3.1   | 3.1         | 3.2         | 2.5   | 2.5         | 2.7         | 2.7             | 2.7         | 2.8   | 2.9   |
| NUG Energy - Fuel Factor            | 14.5      | 2.6   | 2.4         | 2,2         | 2.3   | 2.4         | 2.5         | 2.7             | 2.9         | 3.1   | 3.3   |
| Sub-Total Fuel Factor               | 386.5     | 59.8  | 61.8        | 63.7        | 65.3  | 67.6        | 70.1        | 74.8            | 79.6        | 84.4  | 89.3  |
| Base Rate Impacts:                  |           |       |             |             |       |             |             |                 |             |       |       |
| NUG Energy - Base Rates             | 47.8      | 0.0   | 7.6         | 8.4         | 8.8   | 9.3         | 9.7         | 10.9            | 12.2        | 13.5  | 14.8  |
| Energy Purchases - Base Rates       | 43.9      | 0.0   | 7.6         | 7.9         | 8.3   | 8.6         | 8.9         | 9. <del>9</del> | 10.8        | 11.8  | 12.8  |
| Sub-Total Base Rate Energy          | 91.7      | 0.0   | 15.3        | 16.4        | 17.1  | 17.8        | 18.6        | 20.8            | 23.0        | 25.3  | 27.5  |
| Purchased Power Capacity            | 16.0      | 0.0   | 0.5         | 1.0         | 1.4   | 1.5         | 2.5         | 4.1             | 6.6         | 8.9   | 10.7  |
| Total Prod/Gen Costs                | 494.2     | 59.8  | 77.6        | 81.1        | 83.7  | 86.9        | 91.1        | <b>99.</b> 7    | 109.3       | 118.6 | 127.5 |
| Production Revenues                 |           |       |             |             |       |             |             |                 |             |       |       |
| Fuel Factor Impacts:                |           |       |             |             |       |             |             |                 |             |       |       |
| Sales Costs - Fuel Factor           | (7.9)     | (1.6) | (1.6)       | (1.6)       | (1.5) | (1.3)       | (1.1)       | (1.2)           | (1.2)       | (1.3) | (1.3) |
| Base Rate Impacts:                  |           |       |             |             |       |             |             |                 |             |       | (     |
| VOM on Sales - Base Rates           | (1.1)     | 0.0   | (0.3)       | (0.3)       | (0.2) | (0.2)       | (0.2)       | (0.2)           | (0.2)       | (0.2) | (0.2) |
| Profit on Sales - Base Rates        | (0.2)     | 0.0   | (0.0)       | (0.0)       | (0.0) | (0.0)       | (0.0)       | (0.0)           | (0.1)       | (0.1) | (0.1) |
| Sub-Total Base Rate Energy          | (1.3)     | 0.0   | (0.3)       | (0.3)       | (0.3) | (0.2)       | (0.2)       | (0.2)           | (0.2)       | (0.3) | (0.3) |
| Capacity Sales                      | 0.0       | 0.0   | 0.0         | 0.0         | 0.0   | 0.0         | 0.0         | 0.0             | 0.0         | 0.0   | 0.0   |
| Total Production Revenue            | (9.2)     | (1.6) | (1.9)       | (1.9)       | (1.7) | (1.5)       | (1.3)       | (1.4)           | (1.5)       | (1.5) | (1.6) |
| Transmission Rights Revenues        |           |       |             |             |       |             |             |                 |             |       |       |
| Transmission Rights Revenues (FTRs) | 0.0       | 0.0   | 0.0         | 0.0         | 0.0   | 0.0         | 0.0         | 0.0             | 0.0         | 0.0   | 0.0   |
| RTO Admin Fees                      |           |       |             |             |       |             |             |                 |             |       | ļ     |
| RTO Admin Fees                      | 0.0       | 0.0   | 0.0         | 0.0         | 0.0   | 0.0         | 0.0         | 0.0             | 0.0         | 0.0   | 0.0   |
| Costs to Customers                  | 485.1     | 58.2  | 75.7        | 79.2        | 82.0  | 85.4        | 89.8        | 98.3            | 107.8       | 117.1 | 125.8 |
| ****                                |           |       |             |             |       |             |             |                 |             |       | 1     |
| Fuel Factor                         | 378.6     | 58.2  | 60.2        | 62.1        | 63.8  | 66.3        | 69.0        | 73.6            | 78.4        | 83.2  | 87.9  |



# Table D-8: Annual Costs and Offsetting Revenues for North Carolina Retail Customers – Change Case (Bedington-Black Oak Case)

(Millions of dollars; negative values are credits to cost)

| PV to Ju                                      | ly 1, 2003       |             |              |             |             |             |             |             |              |              |       |
|-----------------------------------------------|------------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|--------------|--------------|-------|
| North Carolina Retail                         | <u>('05-'14)</u> | <u>2005</u> | <u>2006</u>  | <u>2007</u> | <u>2008</u> | <u>2009</u> | <u>2010</u> | <u>2011</u> | <u>201</u> 2 | <u>201</u> 3 | 2014  |
| Production/Generation Costs                   |                  |             |              |             |             |             |             |             |              |              |       |
| Fuel Factor Impacts:                          |                  |             |              |             |             |             |             |             |              |              |       |
| Energy Purchases - Fuel Factor                | 104.5            | 15.1        | 15.4         | 15.8        | 16.8        | 17.8        | 18.8        | 21.1        | 23.4         | 25,7         | 28.0  |
| Fuel Costs                                    | 255.0            | 38.4        | 40.4         | 42.5        | 44.0        | 45.4        | 46.9        | 49.6        | 52.4         | 55.2         | 57.9  |
| "Other Fuel" Costs                            | 15.9             | 3.1         | 3.1          | 3.2         | 2.5         | 2.5         | 2.7         | 2.7         | 2.7          | 2.8          | 2.9   |
| NUG Energy - Fuel Factor                      | 14.1             | 2.4         | 2.3          | 2.3         | 2.4         | 2.5         | 2.6         | 2.7         | 2.8          | 2.9          | 3.0   |
| Sub-Total Fuel Factor                         | 389,5            | 59.0        | 61.4         | 63.7        | 65.6        | 68.1        | 70.9        | 76.1        | 81.3         | 86.6         | 91.9  |
| Base Rate Impacts:                            |                  |             |              |             |             |             |             |             |              |              |       |
| NUG Energy - Base Rates                       | 33.5             | 0.0         | 5.8          | 6.2         | 6.4         | 6.7         | 6.9         | 7.5         | 8.2          | 8.8          | 9.4   |
| Energy Purchases - Base Rates                 | 58.8             | 0.0         | 9.9          | 10.1        | 10.7        | 11.4        | 12.0        | 13.5        | 15.0         | 16.4         | 17.9  |
| VOM Reduction - Reduced Output                | (2.9)            | 0.0         | (0.7)        | (0.6)       | (0.6)       | (0.6)       | (0.6)       | (0.6)       | (0.6)        | (0.6)        | (0.7) |
| Sub-Total Base Rate Energy                    | 89.4             | 0.0         | 1 <b>5.0</b> | 15.6        | 16.6        | 17.4        | 18.3        | 20.4        | 22.5         | 24.6         | 26.7  |
| Purchased Power Capacity                      | 13.6             | 0.0         | 0.5          | 1.0         | 1.4         | 1.5         | 2.3         | 3.1         | 4.8          | 7.3          | 9.7   |
| Congestion - Base Rates                       | 35.7             | 0.0         | 6.8          | 7.1         | 7.4         | 7.6         | 7.9         | 7.9         | 7.9          | 7.9          | 7.8   |
| Total Prod/Gen Costs                          | 528.2            | 59.0        | 83.7         | 87.5        | 90.9        | 94.7        | 99.5        | 107.4       | 116.5        | 126.3        | 136.1 |
|                                               |                  |             |              |             |             |             |             |             |              |              | - 1   |
| Production Revenues                           |                  |             |              |             |             |             |             |             |              |              |       |
| Fuel Factor Impacts:                          |                  |             |              |             |             |             |             |             |              |              |       |
| Sales Costs - Fuel Factor                     | (3.8)            | (0.5)       | (0.6)        | (0.6)       | (0.7)       | (0.7)       | (0.7)       | (0.8)       | (0.8)        | (0.8)        | (0.9) |
| Base Rate Impacts:                            |                  |             |              |             |             |             |             |             |              |              | ·     |
| VOM on Sales - Base Rates                     | (0.6)            | 0.0         | (0.1)        | (0.1)       | (0.1)       | (0.1)       | (0.1)       | (0.1)       | (0.1)        | (0.2)        | (0.2) |
| Profit on Sales - Base Rates                  | (0.2)            | 0.0         | (0.0)        | (0.0)       | (0.0)       | (0.0)       | (0.0)       | (0.0)       | (0.1)        | (0.1)        | (0.1) |
| Sub-Total Base Rate Energy                    | (0.8)            | 0.0         | (0.1)        | (0.1)       | (0.2)       | (0.2)       | (0.2)       | (0.2)       | (0.2)        | (0.2)        | (0.2) |
| Capacity Sales                                | 0.0              | 0.0         | 0.0          | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0          | 0.0          | 0.0   |
| Total Production Revenue                      | (4.5)            | (0.5)       | (0.7)        | (0.8)       | (0.8)       | (0.9)       | (0.9)       | (0.9)       | (1.0)        | (1.0)        | (1.1) |
| Tennemission Biehte Bevenuet                  |                  |             |              |             |             |             |             |             |              |              |       |
| ETDs Attributable to Durchases Evel Easter    | (2.7)            | (0.6)       | (0.6)        | (0.6)       | (0.6)       | (0.6)       | (0 T)       | (0.7)       | (0.7)        | (A 9)        | (0 P) |
| FIRS Attributable to Fulcilases - Fuel Factor | (3.7)            | (0.0)       | (0.0)        | (0.0)       | (0.0)       | (0.0)       | (0.7)       | (0.7)       | (0.7)        | (0.8)        | (0.0) |
| Uner FIRS - Dase Rates                        | (45.6)           | (0.6)       | (0.7)        | (9.1)       | (9.1)       | (9.2)       | (9.2)       | (9.1)       | (9.0)        | (0.7)        | (0.7) |
| Transmission Rights Revenues (FTRS)           | (40.0)           | (0.0)       | (9.5)        | (9.7)       | (9.7)       | (9.0)       | (9.9)       | (9.0)       | (9.8)        | (9.7)        | (9.7) |
| RTO Admin Fees                                |                  |             |              |             |             |             |             |             |              |              |       |
| RTO Admin Fees                                | 10.2             | 0.0         | 3.8          | 1.8         | 1.7         | 1.8         | 1.8         | 1.8         | 1.9          | 1.9          | 1.9   |
|                                               | •                |             |              |             |             |             |             |             |              |              |       |
| Costs to Customers                            | 487.2            | 57.8        | 77.5         | 78.8        | 82.1        | 85.8        | 90.5        | 98.5        | 107.6        | 117.5        | 127.3 |
| *****                                         |                  |             |              |             |             |             |             |             |              |              | i     |
| Fuel Factor                                   | 382.1            | 57.8        | 60.2         | 62.5        | 64.3        | 66.8        | 69.5        | 74.6        | <b>79.8</b>  | 85.0         | 90.2  |



### Table D-9: Annual Costs and Offsetting Revenues for North Carolina Retail Customers – Change Case Minus Base Case (Bedington-Black Oak Case)

(Millions of dollars; negative numbers are benefits)

| PV                                       | to July 1, 2003  |             |             |             |             |             |             |             |             |               | l           |
|------------------------------------------|------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------|-------------|
| North Carolina Retail                    | <u>('05-'14)</u> | <u>2005</u> | <u>2006</u> | <u>2007</u> | <u>2008</u> | <u>2009</u> | <u>2010</u> | <u>2011</u> | <u>2012</u> | <u>2013</u>   | <u>2014</u> |
| Production/Generation Costs              |                  |             |             |             |             |             |             |             |             |               |             |
| Fuel Factor Impacts:                     |                  |             |             |             |             |             |             |             |             |               |             |
| Energy Purchases - Fuel Factor           | 26.3             | 3.6         | 3.5         | 3.4         | 3.9         | 4.4         | 4.9         | 5.7         | 6.5         | 7.3           | 8.1         |
| Fuel Costs                               | (22.9)           | (4.3)       | (3.8)       | (3.4)       | (3.6)       | (3.8)       | (4.0)       | (4.3)       | (4.6)       | (4.9)         | (5.2)       |
| "Other Fuel" Costs                       | 0.0              | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0           | 0.0         |
| NUG Energy - Fuel Factor                 | (0.4)            | (0.2)       | (0.1)       | 0.0         | 0.0         | 0.0         | 0.0         | (0.0)       | (0.1)       | (0.2)         | (0.3)       |
| Sub-Total Fuel Factor                    | 3.0              | (0.9)       | (0.4)       | 0.0         | 0.3         | 0.6         | 0.8         | 1.3         | 1.7         | 2.2           | 2.6         |
| Base Rate Impacts:                       |                  |             |             |             |             |             |             |             |             |               |             |
| NUG Energy - Base Rates                  | (14.3)           | 0.0         | (1.8)       | (2.3)       | (2.4)       | (2.6)       | (2.8)       | (3.4)       | (4.1)       | (4.7)         | (5.4)       |
| Energy Purchases - Base Rates            | 14.9             | 0.0         | 2.2         | 2.1         | 2.5         | 2.8         | 3.1         | 3.6         | 4.1         | 4.7           | 5.2         |
| VOM Reduction - Reduced Output           | (2.9)            | 0.0         | (0.7)       | (0.6)       | (0.6)       | (0.6)       | (0.6)       | (0.6)       | (0.6)       | (0.6)         | (0.7)       |
| Sub-Total Base Rate Energy               | (2.3)            | 0.0         | (0.3)       | (0.7)       | (0.5)       | (0.4)       | (0.2)       | (0.4)       | (0.5)       | (0.7)         | (0.9)       |
| Purchased Power Capacity                 | (2.3)            | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | (0.2)       | (1.1)       | (1.8)       | (1. <b>6)</b> | (0.9)       |
| Congestion - Base Rates                  | 35.7             | 0.0         | 6.8         | 7.1         | 7.4         | 7.6         | 7.9         | 7.9         | 7.9         | 7.9           | 7.8         |
| Total Prod/Gen Costs                     | 34.0             | (0.9)       | 6.1         | 6.4         | 7.1         | 7.8         | 8.4         | 7.7         | 7.2         | 7.7           | 8.7         |
| Production Revenues                      |                  |             |             |             |             |             |             |             |             |               |             |
| Fuel Factor Impacts:                     |                  |             |             |             |             |             |             |             |             |               |             |
| Sales Costs - Fuel Factor                | 4.2              | 1.1         | 1.1         | 1.0         | 0.8         | 0.6         | 0.4         | 0.4         | 0.4         | 0.5           | 0.5         |
| Base Rate Impacts:                       |                  |             |             |             |             |             |             |             |             |               |             |
| VOM on Sales - Base Rates                | 0.5              | 0.0         | 0.2         | 0.2         | 0.1         | 0.1         | 0.0         | 0.0         | 0.1         | 0.1           | 0.1         |
| Profit on Sales - Base Rates             | 0.0              | 0.0         | 0.0         | 0.0         | (0.0)       | (0.0)       | (0.0)       | (0.0)       | 0.0         | 0.0           | 0.0         |
| Sub-Total Base Rate Energy               | 0.5              | 0.0         | 0.2         | 0.2         | 0.1         | 0.1         | 0.0         | 0.0         | 0.1         | 0.1           | 0.1         |
| Capacity Sales                           | 0.0              | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0         | 0.0           | 0.0         |
| Total Production Revenue                 | 4.6              | 1.1         | 1.3         | 1.2         | 0.9         | 0.7         | 0.4         | 0.4         | 0.5         | 0.5           | 0.6         |
| Transmission Rights Revenues             |                  |             |             |             |             |             |             |             |             |               |             |
| FTRs Attributable to Purchases - Fuel Fa | actor (3.7)      | (0.6)       | (0.6)       | (0.6)       | (0.6)       | (0.6)       | (0.7)       | (0.7)       | (0.7)       | (0.8)         | (0.8)       |
| Other FTRs - Base Rates                  | (43.0)           | 0.0         | (8.7)       | (9.1)       | (9.1)       | (9.2)       | (9.2)       | (9.1)       | (9.0)       | (8.9)         | (8.9)       |
| Transmission Rights Revenues (FTRs)      | (46.6)           | (0.6)       | (9.3)       | (9.7)       | (9.7)       | (9.8)       | (9.9)       | (9.8)       | (9.8)       | (9.7)         | (9.7)       |
| RTO Admin Fees                           |                  |             |             |             |             |             |             |             |             |               |             |
| RTO Admin Fees                           | 10.2             | 0.0         | 3.8         | 1.8         | 1.7         | 1.8         | 1.8         | 1.8         | 1.9         | 1.9           | 1.9         |
| Costs to Customers                       | 2.2              | (0.4)       | 1.8         | (0.4)       | 0.0         | 0.5         | 0.7         | 0.2         | (0.2)       | 0.4           | 1.5         |
| Fuel Factor                              | 3.5              | (0.4)       | 0.0         | 0.4         | 0.5         | 0.5         | 0.6         | 1.0         | 1.4         | 1.9           | 2.3         |



#### **APPENDIX E: COMPARISON TO SEARUC STUDY**

CRA and GE Power Systems Engineering Consulting on behalf of the Southeastern Association of Regulatory Utility Commissioners conducted the SEARUC study. That study examined the impacts of forming three RTOs in the southeast—SeTrans, GridSouth and GridFlorida. In designing and executing the study for Dominion North Carolina Power, CRA drew upon its experience of the SEARUC study to adapt and improve the SEARUC study's methodology to address the more focused questions relating to Dominion's applications to join PJM. This Appendix summarizes the SEARUC study methods and findings and discusses why particular methodological changes were made in this study for Dominion.

The SEARUC study assessed the short-run benefits of forming southeastern RTOs. While the financial models used in the SEARUC study and this study are quite different in scope and detail, both studies used similar GE-MAPS models and a trade-hurdle methodology to assess the effects on the physical operation of the system. A base case was calibrated to historical usage patterns of generation using hurdle rates that are similar to those in this study. In particular, the same \$10 per MWh hurdle rate was used for the unit-commitment phase of MAPS. The dispatch hurdle rate in the SEARUC study was about \$7-\$8 per MWh consisting of a \$5 per MWh rate to reflect trade impediments, a \$1 per MWh rate for line losses, and a \$1-\$2 per MWh transmission rate. This hurdle rate was pancaked in the SEARUC study. In this study for Dominion, the dispatch hurdle rate has been separated into a pancaked trade hurdle and a non-pancaked import hurdle. As such, the methodology used here is improved over that adopted in the SEARUC study.

The modeled implementation of RTOs in the SEARUC study was similar to that in this study. For example, the hurdle rates do not apply for trades within RTOs (except for line losses), but do impact trades that cross RTOs boundaries (or boundaries between control areas in the base case).

A key difference between the SEARUC study and this study is the financial model. The SEARUC study examined the total net benefits of each control zone and the collective net benefits across the Eastern Interconnection. That study did not address, however, the incidence of the costs or benefits on classes of stakeholders within a control zone, leaving unanswered the question of whether retail customers would receive net benefits. Given the number of utilities covered by the SEARUC study and the difficulty of accurately modeling state and federal regulatory nuances for each, the only practical approach for the SEARUC study was to fold all stakeholders in a control area together. In this study, focused as it is on the customers of a single utility, we were able to parse the effects of changes in the wholesale markets down to the level of changes in relevant parts of the retail rates, thus improving its relevance to regulators.

Both studies include several sensitivity cases, but they are focused on different questions. The SEARUC study examined several sensitivity cases, the most important of which assessed



## **Appendix E: Comparison to SEARUC Study**

alternative regulatory treatments of new investment in transmission and generation capacity. In this study, however, these are not relevant questions.

Consistent with FERC's Order 2003, the cost of new transmission investment in this study is assumed to be borne by those who benefit; moreover, there is no difference in how such costs are treated between the Base and Change Cases, and so there is no effect on the net benefit. Consequently, there was no need to conduct a sensitivity analysis of transmission funding.

The other major sensitivity examined in the SEARUC study was the level of merchant plants deciding to go forward. The Entergy-Southern Company area had about 24,000 MW of excess merchant capacity at the time of the study, much of which was not deliverable to load. Since the study, this level has been reduced slightly, but the remaining excess is still quite large. The uncertainty about the amount of such capacity that might decide to remain in the market versus withdrawing until a later date was addressed through a sensitivity case in which the assumed level of merchant plants was about 7,500 MW smaller. This assumption had a significant impact on the results, with benefits generally being smaller for the reduced level of merchant participation in the market. The regions of interest in this study, however, do not have the issues of a large overhang of deliverability-constrained capacity. As discussed in Appendix B-1, this study dealt carefully with the modeling issues of adding new capacity required for system reliability; the issue of excess regional capacity did not arise.

Capacity pricing is handled differently in the SEARUC model than in this present study. In the SEARUC study, the Change Case allowed greater exports of capacity from Entergy to Southern, thereby delaying the need to build new capacity in the eastern part of SeTrans. The SEARUC model did not include a capacity market, however; the benefit from reduced capacity requirements was valued as though all capacity were built in utilities' rate bases and paid for by native load under cost-of-service rates. Although this modeling choice was appropriate for SEARUC, it would not accurately reflect the likely benefits to North Carolina Retail Customers under the PJM market design, which does include an ICAP market. As discussed in Appendix B-2, capacity prices in PJM reflect the (expected) balance between capacity and load in PJM, so that the price serves as a signal for developers to build new generation needed to support local reliability. Moreover, the existence of active capacity markets in the mid-Atlantic and Northeast region dictated that we explicitly model capacity trading across regions, which was not modeled in the SEARUC study.

The sensitivity cases in this study, by contrast to the SEARUC study, bracket uncertainty with respect to two inputs to the physical model: fuel prices and energy demand. The results of these sensitivity cases provide useful information about the range of likely outcomes, which was absent from the SEARUC study.



Duminion Studdard Direct Ex. 2 E-22, Sub418 I/A PB 1/21/65

## Exhibit Stoddard-1

• . . . ·

.

• • • • •

Page 1 of 3

#### NORTH CAROLINA - BENEFITS AS PERCENTAGE OF COSTS (As Filed and Public Staff Cases)

|                                           | D3 /           | 2005      | 2007         | 2007         | 2000         | 2000             | 2010         | 2011              | 2012         | 2012        | 2014         |
|-------------------------------------------|----------------|-----------|--------------|--------------|--------------|------------------|--------------|-------------------|--------------|-------------|--------------|
| Annual Benetits (MINIS)                   | $\frac{PV}{1}$ | 2005      | 2000         | 2007         | 2008         | 2009             | 2010         | 2011              | 2012         | 2015        | <u>2014</u>  |
| Base Case                                 | (1.8)          | 0.4       | (1.9)        | 0.2          | (0.1)        | (0.5)            | (0.0)        | 0.0               | 0.5          | 0.0         | (0.9)        |
| High Fuel Price                           | 1.0            | 1.5       | (1.4)        | 0.7          | 0.4          | 0.0              | (0.1)        | 0.4               | 0.7          | 0.1         | (1.0)        |
| High Load                                 | (4.7)          | 0.4       | (1.9)        | 0.2          | (0.2)        | (0.7)            | (0.9)        | (0.7)             | (0.7)        | (2.1)       | (4.0)        |
| Bedington-Black Oak                       | (2.2)          | 0.4       | (1.8)        | 0.4          | (0.0)        | (0.5)            | (0.7)        | (0.2)             | 0.2          | (0.4)       | (1.5)        |
| Filed - 5% Cramdown                       | (3.7)          | 0.4       | (2.3)        | (0.2)        | (0.5)        | (0.9)            | (1.0)        | (0.4)             | 0.1          | (0.4)       | (1.4)        |
| Filed - 10% Cramdown                      | (5.6)          | 0.4       | (2.7)        | (0.6)        | (0.9)        | (1.3)            | (1.4)        | (0.8)             | (0.3)        | (0.8)       | (1.8)        |
| Low-Hurdle Base                           | (2.0)          | 0.2       | (2.0)        | 0.2          | (0.1)        | (0.5)            | (0.7)        | 0.0               | 0.5          | 0.1         | (0.8)        |
| Low-Hurdle Base - 5% Cramdown             | (3.9)          | , 0.2     | (2.3)        | (0.2)        | (0.5)        | (0.9)            | (1.1)        | (0.4)             | 0.1          | (0.3)       | (1.3)        |
| Low-Hurdle Base - 10% Cramdown            | (5.8)          | 0.1       | (2.7)        | 0.6          | (0.9)        | (1.3)            | (1.5)        | (0.8)             | (0.3)        | (0.8)       | (1.7)        |
| Expanded PIM Base                         | (4.1)          | 0.9       | (1.6)        | 0.4          | 0.1          | (0.2)            | (0.5)        | (0.9)             | $\dot{a}$    | à.ń         | 3.2          |
| Expanded PIM Base -5% Crandown            | (6.0)          | 0.9       | (1.0)        | 0.0          | (0.3)        | (0.6)            | (0.9)        | (14)              | (2.5)        | (3.5)       | (3.6)        |
| Expanded 15W Dase -10% Crandown           | (0.0)          | 0.9       | (2.0)        | (0.2)        | (0.7)        | (0.0)            | (0.2)        | (1.9)             | (2.0)        | (4.0)       | (4.1)        |
| Expanded FJM Base -1076 Crandown          | (7.3)          | 0.9       | (2.5)        | (0.5)        | (0.7)        | (1.0)            | (1.5)        | (1.0)             | (2.2)        | (2.2)       | (7.1)        |
| Low-Hurdle/Expand PJM                     | (4.8)          | 0.7       | (1.8)        | 0.5          | 0.0          | (0.5)            | (0.0)        | (1.1)             | (2.2)        | (3.2)       | (3.2)        |
| Low-Hurdle/Expand PJM -5% Cramdown        | (6.6)          | 0.7       | (2.1)        | (0.0)        | (0.4)        | (0.7)            | (1.0)        | (1.5)             | (2.0)        | (3.6)       | (3.7)        |
| Low-Hurdle/Expand PJM -10% Cramdown       | (8.5)          | 0.7       | (2.5)        | (0.4)        | (0.7)        | (1.1)            | (1.4)        | (1.9)             | (3.0)        | (4.0)       | (4.1)        |
| Base Rates in NC                          |                | \$0.05072 | per kW       |              |              |                  |              |                   |              |             |              |
| NC Retail Sales @ the Meter               |                | 3,836     | 3,911        | 3,891        | 3,686        | 3,748            | 3,816        | 3,901             | 3,984        | 4,063       | 4,142        |
| Base Rates x Sales (MM\$)                 |                | 194.6     | 198.4        | 197.4        | 186.9        | 190.1            | 193.5        | 197.9             | 202.1        | 206.1       | 210.1        |
| Real Destan Conta Dese Class (AD46)       | DU             | 2005      | 2006         | 2007         | 360.0        | 2000             | 2010         | 2011              | 2012         | 2012        | 2014         |
| Fuel Factor Costs - Base Case (MIMIS)     | <u>PV</u>      | 2005      | 2000         | 2007         | 2008         | 2009             | 2010         | 2011              | 2012         | 2013        | 2014         |
| Base Case                                 | 381.0          | 58.7      | 60.7         | 62.6         | 64.5         | 00.7             | 69.4         | /4.0              | /8./         | 83.4        | 88.2         |
| High Fuel Price                           | 413.8          | 63.3      | 65.2         | 67.1         | 69.4         | 72.4             | 75.6         | 80.9              | 86.4         | 91.9        | 97.3         |
| High Load                                 | 399.0          | 61.6      | 63.5         | 65.4         | 67.2         | 69.7             | 72.5         | 77.5              | 82.6         | 87.7        | 92.8         |
| Bedington-Black Oak                       | 378.6          | 58.2      | 60.2         | 62.1         | 63.8         | 66.3             | 69.0         | 73.6              | 78.4         | 83.2        | 87.9         |
| Low-Hurdle Base                           | 382.5          | , 58.6    | 60.7         | 62.7         | 64.5         | 67.0             | 69.7         | 74.4              | 79.3         | 84.1        | 89.0         |
| Expanded PJM Base                         | 382.8          | 59.2      | 61.0         | 62.8         | 64.5         | 67.1             | 69.8         | 74.3              | 79.0         | 83.7        | 88.3         |
| Low-Hurdle/Expand PJM                     | 383.5          | 59.2      | 61.1         | 62.9         | 64.7         | 67.2             | 69.9         | 74.5              | 79.2         | 84.0        | 88.7         |
| Total Costs (SMM)                         |                |           |              |              |              |                  |              |                   |              |             |              |
| Base Case                                 | 1 470 4        | 253.3     | 250.0        | 250.0        | 251.2        | 256.8            | 262.0        | 271.8             | 280.8        | 280.5       | 208.2        |
| Dase Case                                 | 1,77,77        | 255.5     | 239.0        | 233.3        | 251.2        | 220.0            | 260.2        | 271.0             | 200.0        | 207.0       | 207 4        |
|                                           | 1,512.2        | 237.9     | 203.0        | 204.4        | 250.5        | 202.3            | 209.2        | 2/0.0             | 200.J        | 277.9       | 202.0        |
| High Load                                 | 1,497.5        | 230.2     | 201.9        | 202.8        | 254.1        | 239.8            | 200.0        | 2/3.3             | 204.7        | 293.0       | 202.9        |
| Bedington-Black Uak                       | 1,477.0        | 252.8     | 258.5        | 259.5        | 250.8        | 236.4            | 262.5        | 2/1.5             | 280.5        | 289.2       | 298.0        |
| Low-Hurdle Base                           | 1,480.9        | 253.2     | 259.1        | 260.1        | 251.4        | 257.1            | 263.2        | 272.3             | 281.4        | 290.2       | 299.0        |
| Expanded PJM Base                         | 1,481.2        | 253.8     | 259.4        | 260.1        | 251.5        | 257.2            | 263.3        | 272.2             | 281.1        | 289.7       | 298.4        |
| Low-Hurdle/Expand PJM                     | 1,482.0        | 253.7     | 259.4        | 260.3        | 251.6        | 257.3            | 263.4        | 272.3             | 281.3        | 290.0       | 298.8        |
| Benefits as % of Total Cost               | PV             | 2005      | <u>2</u> 006 | <u>2</u> 007 | <u>2</u> 008 | <u>2009</u>      | <u>2</u> 010 | <u>2</u> 011      | <u>201</u> 2 | <u>2013</u> | <u>201</u> 4 |
| Base Case                                 | -0.12%         | 0.17%     | -0.75%       | 0.08%        | -0.05%       | -0.18%           | -0.24%       | 0.00%             | 0.18%        | 0.02%       | -0.31%       |
| High Fuel Price                           | 0.07%          | 0.60%     | 0.52%        | 0.27%        | 0.15%        | 0.02%            | -0.05%       | 0.13%             | 0.25%        | 0.03%       | -0.34%       |
| High Load                                 | -0.32%         | 0.16%     | -0.71%       | 0.09%        | -0.09%       | -0.27%           | -0 34%       | -0.24%            | -0.24%       | -0.70%      | -1.33%       |
| Bedington-Black Oak                       | -0.15%         | 0.15%     | -0.60%       | 0 14%        | -0.01%       | -0.18%           | -0 27%       | -0 07%            | 0.07%        | -0.14%      | -0.50%       |
| Filed 5% Cramdown                         | 0.1576         | 0.15%     | 0.00/        | 0.1470       | 0.0170       | 0.1070<br>0.240/ | 0.400/       | -0.0770<br>0.159/ | 0.0170       | 0.1470      | 0.36%        |
| Filed 109/ Cremdown                       | -0.2376        | 0.10%     | 1.020/       | -0.0770      | 0.2070       | 0.3470           | 0.550/       | 0.1370            | 0.0376       | 0.1370      | 0.4070       |
| rneu - 1076 Ciamuowii<br>Lour Hurilo Doco | -0.2070        | 0.13%     | -1.0370      | -0.2270      | -0.20%       | -U.+970          | -0.33%       | -0.30%            | -0.1270      | -0.2070     | -V.UU%       |
| Low-Hurdle Base                           | -0.14%         | 0.07%     | -0.70%       | 0.00%        | -0.00%       | -0.19%           | -0.20%       | 0.00%             | 0.19%        | 0.110       | -0.28%       |
| Low-Hurdle Base - 5% Cramdown             | -0.20%         | 0.00%     | -0.90%       | -0.08%       | -0.21%       | -0.33%           | -0.41%       | -0.13%            | 0.04%        | -0.11%      | -0.43%       |
| Low-Hurdle Base - 10% Cramdown            | -0.39%         | 0.05%     | -1.04%       | -0.22%       | -0.36%       | -0.50%           | -0.56%       | -0.30%            | -0.10%       | -0.26%      | -0.57%       |
| Expanded PJM Base                         | -0.27%         | 0.36%     | -0.62%       | 0.16%        | 0.05%        | -0.06%           | -0.18%       | -0.34%            | -0.73%       | -1.07%      | -1.07%       |
| Expanded PJM Base -5% Cramdown            | -0.41%         | 0.35%     | -0.76%       | 0.02%        | -0.11%       | -0.22%           | -0.33%       | -0.50%            | -0.88%       | -1.22%      | -1.22%       |
| Expanded PJM Base -10% Cramdown           | -0.54%         | 0.35%     | -0.90%       | -0.13%       | -0.26%       | -0.37%           | -0.49%       | -0.65%            | -1.03%       | -1.37%      | -1.37%       |
| Low-Hurdle/Expand PJM                     | -0.32%         | 0.29%     | -0.68%       | 0.13%        | 0.01%        | -0.11%           | -0.23%       | -0.39%            | -0.77%       | -1.09%      | -1.09%       |
| Low-Hurdle/Expand PJM -5% Cramdown        | -0.45%         | 0.28%     | -0.81%       | -0.01%       | -0.14%       | -0.26%           | -0.38%       | -0.54%            | -0.91%       | -1.24%      | -1.23%       |
| Low-Hurdle/Expand PJM -10% Cramdown       | -0.57%         | 0.27%     | -0.95%       | -0.16%       | -0.29%       | -0.42%           | -0.53%       | -0.69%            | -1.06%       | -1.39%      | -1.38%       |

ŗ

#### Exhibit Stoddard-1 Page 2 of 3

.

.

# NORTH CAROLINA - BENEFITS AS PERCENTAGE OF COSTS (With Joint Offer of Settlement)

|                                     |           |             | <b>2</b>    |             |               |             |             | 0011        | 0010        | 0010        | 2014        |
|-------------------------------------|-----------|-------------|-------------|-------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Annual Benefits (MM\$)              | <u>PV</u> | 2005        | <u>2006</u> | <u>2007</u> | 2008          | 2009        | 2010        | <u>2011</u> | 2012        | 2013        | 2014        |
| Base Case                           | 1.1       | 0.4         | 0.2         | 0.2         | (0.0)         | (0.1)       | (0.1)       | 0.5         | 1.0         | 0.4         | (0.0)       |
| High Fuel Price                     | 0.9       | 1.5         | 0.2         | 0.1         | (0.1)         | (0.3)       | (0.2)       | 0.2         | 0.5         | (0.2)       | (1.4)       |
| High Load                           | (1.8)     | 0.4         | 0.2         | 0.2         | (0.1)         | (0.3)       | (0.3)       | (0.1)       | (0.2)       | (1.0)       | (3.7)       |
| Bedington-Black Oak                 | 0.7       | 0.4         | 0.0         | 0.1         | (0.0)         | (0.2)       | (0.2)       | 0.4         | 0.9         | 0.4         | (0.6)       |
| Filed - 5% Cramdown                 | 0.9       | 0.4         | 0.1         | 0.2         | (0.0)         | (0.2)       | (0.1)       | 0.5         | 0.9         | 0.4         | (0.6)       |
| Filed - 10% Cramdown                | 0.8       | 0.4         | 0.1         | 0.1         | (0.1)         | (0.2)       | (0.2)       | 0.4         | 0.9         | 0.4         | (0.6)       |
| Low-Hurdle Base                     | 0.4       | 0.2         | 0.1         | 0.1         | (0.0)         | (0.1)       | (0.1)       | 0.4         | 0.8         | 0.1         | (1.0)       |
| Low-Hurdle Base - 5% Cramdown       | 0.3       | 0.2         | 0.1         | 0.1         | (0.0)         | (0.2)       | (0.1)       | 0.4         | 0.7         | 0.1         | (1.0)       |
| Low-Hurdle Base - 10% Cramdown      | 0.1       | 0.1         | 0.1         | 0.1         | (0.1)         | (0.2)       | (0.1)       | 0.3         | 0.7         | 0.1         | (1.1)       |
| Expanded PJM Base                   | (1.2)     | 0.9         | 0.5         | 0.4         | 0.2           | 0.2         | 0.1         | (0.4)       | (1.6)       | (2.7)       | (2.8)       |
| Expanded PJM Base -5% Cramdown      | (1.4)     | 0.9         | 0.5         | 0.4         | 0.2           | 0.1         | 0.0         | (0.5)       | (1.6)       | (2.7)       | (2.9)       |
| Expanded PJM Base -10% Cramdown     | (1.5)     | 0.9         | 0.5         | 0.4         | 0.2           | 0.1         | 0.0         | (0.5)       | (1.7)       | (2.8)       | (2.9)       |
| Low-Hurdle/Expand PJM               | (2.3)     | 0.7         | 0.4         | 0.3         | 0.1           | 0.1         | (0.0)       | (0.7)       | (1.9)       | (3.1)       | (3.4)       |
| Low-Hurdle/Expand PJM -5% Cramdown  | (2.5)     | 0.7         | 0.3         | 0.3         | 0.1           | 0.0         | (0.1)       | (0.7)       | (2.0)       | (3.2)       | (3.4)       |
| Low-Hurdle/Expand PJM -10% Cramdown | (2.6)     | 0.7         | 0.3         | 0.3         | 0.1           | 0.0         | (0.1)       | (0.7)       | (2.0)       | (3.2)       | (3.5)       |
| Base Rates in NC                    |           | \$0.05072 j | per kW      |             |               |             |             |             |             |             |             |
| NC Retail Sales @ the Meter         |           | '3,836      | 3,911       | 3,891       | 3,686         | 3,748       | 3,816       | 3,901       | 3,984       | 4,063       | 4,142       |
| Base Rates x Sales (MM\$)           |           | 194.6       | 198.4       | 197.4       | 1 <b>86.9</b> | 190.1       | 193.5       | 197.9       | 202.1       | 206.1       | 210.1       |
| Fuel Factor Costs - Base Case (MMS) | PV        | 2005        | 2006        | 2007        | 2008          | 2009        | 2010        | 2011        | 2012        | 2013        | 2014        |
| Base Case                           | 381.0     | 58.7        | 60.7        | 62.6        | 64.3          | 66.7        | 69.4        | 74.0        | 78.7        | 83.4        | 88.2        |
| High Fuel Price                     | 413.8     | 63.3        | 65.2        | 67.1        | 69.4          | 72.4        | 75.6        | 80.9        | 86.4        | 91.9        | 97.3        |
| High Load                           | 399.0     | 61.6        | 63.5        | 65.4        | 67.2          | 69.7        | 72.5        | 77.5        | 82.6        | 87.7        | 92.8        |
| Bedington-Black Oak                 | 378.6     | 58.2        | 60.2        | 62.1        | 63.8          | 66.3        | 69.0        | 73.6        | 78.4        | 83.2        | 87.9        |
| Low-Hurdle Base                     | 382.5     | 58.6        | 60.7        | 62.7        | 64.5          | 67.0        | 69.7        | 74.4        | 79.3        | 84.1        | 89.0        |
| Expanded PIM Base                   | 382.8     | 1 59.2      | 61.0        | 62.8        | 64.5          | 67.1        | 69.8        | 74.3        | 79.0        | 83.7        | 88.3        |
| Low-Hurdle/Expand PJM               | 383.5     | 59.2        | 61.1        | 62.9        | 64.7          | 67.2        | 69.9        | 74.5        | 79.2        | 84.0        | 88.7        |
|                                     |           |             |             |             |               |             |             |             |             |             |             |
| Total Costs (\$MM)                  |           |             |             |             |               |             |             |             |             |             |             |
| Base Case                           | 1,479.4   | 253.3       | 259.0       | 259.9       | 251.2         | 256.8       | 262.9       | 271.8       | 280.8       | 289.5       | 298.2       |
| High Fuel Price                     | 1,512.2   | 257.9       | 263.6       | 264.4       | 256.3         | 262.5       | 269.2       | 278.8       | 288.5       | 297.9       | 307.4       |
| High Load                           | 1,497.5   | 256.2       | 261.9       | 262.8       | 254.1         | 259.8       | 266.0       | 275.3       | 284.7       | 293.8       | 302.9       |
| Bedington-Black Oak                 | 1,477.0   | 252.8       | 258.5       | 259.5       | 250.8         | 256.4       | 262.5       | 271.5       | 280.5       | 289.2       | 298.0       |
| Low-Hurdle Base                     | 1,480.9   | 253.2       | 259.1       | 260.1       | 251.4         | 257.1       | 263.2       | 272.3       | 281.4       | 290.2       | 299.0       |
| Expanded PJM Base                   | 1,481.2   | 253.8       | 259.4       | 260.1       | 251.5         | 257.2       | 263.3       | 272.2       | 281.1       | 289.7       | 298.4       |
| Low-Hurdle/Expand PJM               | 1,482.0   | 253.7       | 259.4       | 260.3       | 251.6         | 257.3       | 263.4       | 272.3       | 281.3       | 290.0       | 298.8       |
| Benefits as % of Total Cost         | <u>PV</u> | <u>2005</u> | <u>2006</u> | <u>2007</u> | <u>2008</u>   | <u>2009</u> | <u>2010</u> | <u>2011</u> | <u>2012</u> | <u>2013</u> | <u>2014</u> |
| Base Case                           | 0.07%     | 0.17%       | 0.06%       | 0.07%       | 0.00%         | -0.06%      | -0.04%      | 0.19%       | 0.34%       | 0.16%       | -0.19%      |
| High Fuel Price                     | 0.06%     | 0.60%       | 0.08%       | 0.04%       | -0.04%        | -0.10%      | -0.09%      | 0.06%       | 0.16%       | -0.08%      | -0.46%      |
| High Load                           | -0.12%    | 0.16%       | 0.08%       | 0.06%       | -0.05%        | -0.13%      | -0.11%      | -0.04%      | -0.07%      | -0.55%      | -1.21%      |
| Bedington-Black Oak                 | 0.05%     | 0.15%       | 0.01%       | 0.05%       | -0.01%        | -0.08%      | -0.07%      | 0.16%       | 0.33%       | 0.14%       | -0.20%      |
| Filed - 5% Cramdown                 | 0.06%     | 0.16%       | 0.05%       | 0.06%       | -0.01%        | -0.06%      | -0.05%      | 0.17%       | 0.33%       | 0.14%       | -0.20%      |
| Filed - 10% Cramdown                | 0.05%     | 0.15%       | 0.04%       | 0.05%       | -0.02%        | -0.07%      | -0.06%      | 0.16%       | 0.32%       | 0.13%       | -0.21%      |
| Low-Hurdle Base                     | 0.03%     | 0.07%       | 0.06%       | 0.06%       | -0.01%        | -0.06%      | -0.04%      | 0.15%       | 0.27%       | 0.04%       | -0.33%      |
| Low-Hurdle Base - 5% Cramdown       | 0.02%     | 0.06%       | 0.05%       | 0.05%       | -0.02%        | -0.07%      | -0.05%      | 0.14%       | 0.26%       | 0.03%       | -0.34%      |
| Low-Hurdle Base - 10% Cramdown      | 0.01%     | 0.05%       | 0.04%       | 0.04%       | -0.03%        | -0.08%      | -0.06%      | 0.13%       | 0.25%       | 0.02%       | -0.35%      |
| Expanded PJM Base                   | -0.08%    | 0.36%       | 0.19%       | 0.15%       | 0.09%         | 0.06%       | 0.03%       | -0.16%      | -0.57%      | -0.93%      | -0.95%      |
| Expanded PJM Base -5% Cramdown      | -0.09%    | 0.35%       | 0.18%       | 0.14%       | 0.09%         | 0.05%       | 0.02%       | -0.17%      | -0.58%      | -0.94%      | -0.96%      |
| Expanded PJM Base -10% Cramdown     | -0.10%    | 0.35%       | 0.18%       | 0.14%       | 0.08%         | 0.04%       | 0.01%       | -0.18%      | -0.60%      | -0.95%      | -0.98%      |
| Low-Hurdle/Expand PJM               | -0.16%    | 0.29%       | 0.14%       | 0.12%       | 0.06%         | 0.02%       | -0.02%      | -0.24%      | -0.69%      | -1.08%      | -1.14%      |
| Low-Hurdle/Expand PJM -5% Cramdown  | -0.17%    | 0.28%       | 0.13%       | 0.11%       | 0.05%         | 0.01%       | -0.02%      | -0.25%      | -0.70%      | -1.09%      | -1.15%      |
| Low-Hurdle/Expand PJM -10% Cramdown | -0.18%    | 0.27%       | 0.12%       | 0.10%       | 0.04%         | 0.00%       | -0.03%      | -0.26%      | -0.71%      | -1.10%      | -1.16%      |

•

-

#### Exhibit Stoddard-1 Page 3 of 3 Incremental Change in NORTH CAROLINA - BENEFITS AS PERCENTAGE OF COSTS (With Joint Offer of Settlement)

.

.

| Annual Benefits (MM\$)              | <u>PV</u> | <u>2005</u> | <u>2006</u> | <u>2007</u> | <u>2008</u> | <u>2009</u> | <u>2010</u> | <u>2011</u> | <u>2012</u> | <u>2013</u> | <u>2014</u> |
|-------------------------------------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Base Case                           | 2.8       | 0.0         | 2.1         | (0.0)       | 0.1         | 0.3         | 0.5         | 0.5         | 0.4         | 0.4         | 0.4         |
| High Fuel Price                     | (0.2)     | , 0.0       | 1.6         | (0.6)       | (0.5)       | (0.3)       | (0.1)       | (0.2)       | (0.3)       | (0.3)       | (0.4)       |
| High Load                           | 2.9       | 0.0         | 2.1         | (0.1)       | 0.1         | 0.4         | 0.6         | 0.6         | 0.5         | 0.4         | 0.4         |
| Bedington-Black Oak                 | 2.9       | 0.0         | 1.8         | (0.2)       | (0.0)       | 0.3         | 0.5         | 0.6         | 0.7         | 0.8         | 0.9         |
| Filed - 5% Cramdown                 | 4.6       | 0.0         | 2.4         | 0.3         | 0.5         | 0.7         | 0.9         | 0.9         | 0.8         | 0.8         | 0.8         |
| Filed - 10% Cramdown                | 6.4       | 0.0         | 2.8         | 0.7         | 0.8         | 1.1         | 1.3         | 1.3         | 1.2         | 1.2         | 1.2         |
| Low-Hurdle Base                     | 2.4       | 0.0         | 2.1         | (0.0)       | 0.1         | 0.4         | 0.6         | 0.4         | 0.2         | 0.0         | (0.1)       |
| Low-Hurdle Base - 5% Cramdown       | 4.2       | 0.0         | 2.5         | 0.3         | 0.5         | 0.7         | 0.9         | 0.8         | 0.6         | 0.4         | 0.3         |
| Low-Hurdle Base - 10% Cramdown      | 5.9       | 0.0         | 2.8         | 0.7         | 0.8         | 1.1         | 1.3         | 1.2         | 1.0         | 0.8         | 0.6         |
| Expanded PJM Base                   | 2.8       | 0.0         | 2.1         | (0.0)       | 0.1         | 0.3         | 0.5         | 0.5         | 0.4         | 0.4         | 0.4         |
| Expanded PJM Base -5% Cramdown      | 4.6       | 0.0         | 2.4         | 0.3         | 0.5         | 0.7         | 0.9         | 0.9         | 0.8         | 0.8         | 0.8         |
| Expanded PJM Base -10% Cramdown     | 6.4       | 0.0         | 2.8         | 0.7         | 0.8         | 1.1         | 1.3         | 1.3         | 1.2         | 1.2         | 1.2         |
| Low-Hurdle/Expand PJM               | 2.4       | 0.0         | 2.1         | (0.0)       | 0.1         | 0.4         | 0.6         | 0.4         | 0.2         | 0.0         | (0.1)       |
| Low-Hurdle/Expand PJM -5% Cramdown  | 4.2       | 0.0         | 2.5         | 0.3         | 0.5         | 0.7         | 0.9         | 0.8         | 0.6         | 0.4         | 0.3         |
| Low-Hurdie/Expand PJM -10% Cramdown | 5.9       | 0.0         | 2.8         | 0.7         | 0.8         | 1.1         | 1.3         | 1.2         | 1.0         | 0.8         | 0.6         |
| Benefits as % of Total Cost         | <u>PV</u> | <u>2005</u> | <u>2006</u> | <u>2007</u> | <u>2008</u> | <u>2009</u> | <u>2010</u> | <u>2011</u> | <u>2012</u> | <u>2013</u> | <u>2014</u> |
| Base Case                           | 0.19%     | 0.00%       | 0.81%       | -0.01%      | 0.04%       | 0.13%       | 0.20%       | 0.18%       | 0.16%       | 0.14%       | 0.12%       |
| High Fuel Price                     | -0.01%    | 0.00%       | 0.60%       | -0.22%      | -0.19%      | -0.12%      | -0.04%      | -0.07%      | -0.09%      | -0.11%      | -0.12%      |
| High Load                           | 0.19%     | 0.00%       | 0.79%       | -0.03%      | 0.04%       | 0.14%       | 0.24%       | 0.21%       | 0.17%       | 0.15%       | 0.12%       |
| Bedington-Black Oak                 | 0.20%     | 0.00%       | 0.71%       | -0.08%      | -0.01%      | 0.10%       | 0.20%       | 0.23%       | 0.26%       | 0.28%       | 0.31%       |
| Filed - 5% Cramdown                 | 0.31%     | 0.00%       | 0.94%       | 0.13%       | 0.19%       | 0.27%       | 0.35%       | 0.32%       | 0.30%       | 0.28%       | 0.26%       |
| Filed - 10% Cramdown                | 0.43%     | ð.00%       | 1.07%       | 0.27%       | 0.34%       | 0.42%       | 0.49%       | 0.47%       | 0.44%       | 0.42%       | 0.39%       |
| Low-Hurdle Base                     | 0.16%     | 0.00%       | 0.82%       | -0.01%      | 0.05%       | 0.14%       | 0.22%       | 0.15%       | 0.08%       | 0.01%       | -0.05%      |
| Low-Hurdle Base - 5% Cramdown       | 0.28%     | 0.00%       | 0.95%       | 0.13%       | 0.19%       | 0.28%       | 0.36%       | 0.28%       | 0.21%       | 0.15%       | 0.08%       |
| Low-Hurdle Base - 10% Cramdown      | 0.40%     | 0.00%       | 1.07%       | 0.26%       | 0.33%       | 0.42%       | 0.50%       | 0.42%       | 0.35%       | 0.28%       | 0.22%       |
| Expanded PJM Base                   | 0.19%     | 0.00%       | 0.81%       | -0.01%      | 0.04%       | 0.13%       | 0.20%       | 0.18%       | 0.16%       | 0.14%       | 0.12%       |
| Expanded PJM Base -5% Cramdown      | 0.31%     | 0.00%       | 0.94%       | 0.13%       | 0.19%       | 0.27%       | 0.35%       | 0.32%       | 0.30%       | 0.28%       | 0.26%       |
| Expanded PJM Base -10% Cramdown     | 0.43%     | 0.00%       | 1.07%       | 0.27%       | 0.34%       | 0.42%       | 0.49%       | 0.47%       | 0.44%       | 0.42%       | 0.39%       |
| Low-Hurdle/Expand PJM               | 0.16%     | 0.00%       | 0.82%       | -0.01%      | 0.05%       | 0.14%       | 0.22%       | 0.15%       | 0.08%       | 0.01%       | -0.05%      |
| Low-Hurdle/Expand PJM -5% Cramdown  | 0.28%     | 0.00%       | 0.95%       | 0.13%       | 0.19%       | 0.28%       | 0.36%       | 0.28%       | 0.21%       | 0.15%       | 0.08%       |
| Low-Hurdle/Expand PJM -10% Cramdown | 0.40%     | 0.00%       | 1.07%       | 0.26%       | 0.33%       | 0.42%       | 0.50%       | 0.42%       | 0.35%       | 0.28%       | 0.22%       |

۲