Docket No. E-7, Sub 1146

S

I
§
¥
l‘\

OFFICIAL COPY

Apr 27 2018


clparker1
Typewritten Text
Docket No. E-7, Sub 1146


(] rg l.‘ k ene“ b
mma s HiEttica, He 12
\dm;" 'u-»d‘ TIEIBRrGEL
Rinse 7971,

s ol

s pres #

 Chaster Fitak, *h.3; FE,
Rt He (e vatired a'te mo:
g ane trainlig deys
met trsining In dee-
e

Pl

C ‘mﬂem 'w-
Al nigkie rersry

Autnoizetan i pilsinasay 1y

OMgARIERYET R tret nave bear Eare
Ly arransey Tha -

8 Brited o5 sk

Flratgeidian, U5

Y

L€ 34

f‘ m
w*@é‘ 4

CNES

OFFICIAL COPY

Apr 27 2018




If these parameters remain constant, then the estlmate of the average life
will be correct,

Given the proper combination of parameters, it is possible for the
CGompertz-Makeham equation to turn upward, so that the number of survi-
vors increases with age and, possibly, exceeds 100%. If the curve exceeds
100 for a short period, then turns downward, the common solution is to
set all points greater than 100% to 100%. If the curve takes in a continu-
ous, upward trend, the parameters must be adjusted.

NOTES

1. This treatment assumes retirements occur uniformly during the final age interval and
thut the life of the longest lived unit is ML + .5 years, If the life of the Jongest lived unit is
known, this value can be used as the end of the final age interval and can be used to calculate
the midpoint of the final interval.

2, The maximum life for this Iowa R2 curve is 9.0 vears. If the final age interval had
been deflined to be 8.5 to 9.0 years, the corresponding area would have been 0.21 percent-
yeurs, and the total area would have been 500.00 percent-years. See note 1.

Salvage
Concepts

AIVAGE can be divided into two compo-
nents: gross salvage and cost of retiring. Gross salvage is the value of a unit
retired from service resulting from its sale for scrap or reuse. Cost of
retiring, also called cost of removal, is the expense incurred to remove the
unit from service, including expenses necessary to return the environment
to an acceptable condition. Thus, ret salvage is the gross salvage less the
cost of retiring.

The original cost less net salvage is called the depreciable base. It
represents the capital consumed during the life of the unit and the amount
1o be recovered through depreciation. If the net salvage is positive, then the
capital consumed is less than the original cost. If the net salvage is negative,
the capital consumed is greater than the original cost.

When net salvage is zero or near zero, its effect on the depreciable base
is nil, However, industrial property exhibits a wide range of salvage, and
the effect of salvage on the annual accrual is often substantial. Examples of
property yielding positive salvage include land, which is generally assumed
to be fully recoverable; buildings and vehicles, which often have significant
resale value; and aluminum or copper wire, which has a gross salvage value
determined by the intrinsic value of the material, Utility poles and raiiroad
track are often reused, and if the accounting system defines a unit as retired
when it is removed from a location, its salvage is determined by its value
when it is installed in a new location. On the other hand, underground pipe
used for transportation or distribution of gas or water must first be discon-
nected and then may be filled and capped, or even removed from the
ground. These activities are costly because they require significant labor
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52 DEPRECIATION SYSTEMS

and heavy equipment, while the gross salvage is nil or negligible. The result
is a net salvage that is often both large and negative. Decommissioning
costs of & nuclear generating plant are a contemporary example of an in-
vestment with a significant negative net salvage.

Basic salvage concepts must be understood before either the analysis of
realized salvage or the forecasting of future salvage can be discussed. Most
of these concepts can be applied equally well to either gross salvage or cost
of removal, so the term salfvage is used generically to apply to net salvage,
gross salvage, or cost of retiring.

Property placed in service during the same year forms a vintage group.
The fraction of the vintage group remaining in service is a function of its
age and is described by a survivor curve. An underlying functional relation-
ship between the age at retirement and salvage is assumed. A formal devel-
opment of how salvage changes as property ages is necessary to understand
the effect of salvage on depreciation.

A salvage curve is the graph of the salvage ratio versus age. The sal-
vage ratio is the ratio of the salvage to the original cost of the retired unit.
The salvage received during any age interval is found by multiplying the
salvage ratio for that interval by the dollars retired during that interval. The
net salvage ratio is the gross salvage ratio less the cost of retiring salvage
ratio. - '

As one example of a salvage curve, consider property that is easily
removed from service and is still functional after retirement. Gross salvage
of early retirements will be high if the property is in good condition and the
technology is current, because the property will be valuable for sale or
reuse. Older retirements would be less valuable because, besides their added
wear, they would be competing for use with property that has a more
current technology. If the cost of retiring is assumed to be near zero, this
model would lead to a net salvage schedule where the salvage ratio is ini-
tially near one, but then decreases with age. This example could be ex-
panded to include retirements resulting from damage from an accident or
mechanical failure. Because of their physical condition, these units would
have a salvage ratio near zero and would lower the overall salvage ratio.

A salvage curve need not decrease with age. The gross salvage of scrap
copper, steel, or aluminum typically, because of inflation, increases with
age. A cost of retiring that is labor and equipment intensive is another
example of a salvage curve that, because of inflation, increases with age.
Because this element of salvage is a cost, the term “increases with age”
means the salvage becomes more negative with age. Retirement of a utility
pole is an example of an activity for which the hours required to remove the
pole might remain relatively constant, but the hourly labor rate, and there-
fore the cost of retirement, would increase as (he pole ages.

There are three reasons why it is important to consider salvage as a
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function of age, rather than simply using an overall average salvage. First,
though the average life (AL) procedure uses an accrual rate based on the
average net salvage, the equal life group (ELG) procedure uses the net
salvage associated with each equal life group (i.e., salvage by age). Second,
the calculated accumulated depreciation (CAD) model must reflect the
change in salvage with age if it is to approximate the accumulated provision
for depreciation. Because the CAD is the feedback measure used to deter-
mine the adequacy of the accumulated provision for depreciation, it is
important that the model used be as lifelike as possible. When the remain-
ing life method of adjustment is used, the amount to be recovered is found
by adjusting for the future salvage. These first two reasons show that re-
gardless of the system of depreciation used, both the average and the future
salvage are required. Finally, considering salvage as a function of age re-
sults in a more realistic model and therefore enhances understanding of the
depreciation process and aids in forecasting,

THE SALVAGE RATIO

One inherent characteristic of the salvage ratio is that the numerator
and denominator are measured in different units; the numerator is mea-
sured in dollars at the time of retirement, while the denominator is mea-
sured in dollars at the time of installation. Inflation is an economic fact of
life and although both numerator and denominator are measured in dol-
lars, the timing of the cash flows reflects different price levels. Consider the
pattern of installations and retirements illustrated in Figure 4.1 (see end of
chapter).

Two replacement cycles are represented. The installation cost of the
first unit is B dollars, it lasts K years, and has a net salvage of V dollars.
The salvage ratio of the first unit is SR(present) = V/B. If the cost of the
replacement when measured in constant dollars is equal to the cost of the
first unit, then the replacement cost measured in inflated dollars is B x (1
+ p)¥. The factor (1 + p)* is called the compound amount factor and
cquals the value of $1 after K years when the annual rate of inflation is p.
Suppose the life of the replacement unit is L years and during its life the
annual rate of inflation is f. Then the future salvage of the replacement is V
X (1 + f)}*. The salvage ratio of the replacement is SR(future) = V x (1 +
)"/B x (1 + p)*. If the past inflation rate p equals the future inflation rate
f, and if the life of the original equals that of the replacement, so that K
equals L, then the two inflation factors will be equal. The salvage ratio for
the replacement will equal V/B, unchanged from the original ratio.

This simple model illustrates two important characteristics of the sal-
vage ratio when the uninflated original cost and uninflated salvage remain
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54 DEPRECIATION SYSTEMS

constant. One is that a change in the inflation rate will cause a change in the
sulvage ratio. The other is that a change in service life will change the
salvage ratio.

The magnitude of the change in salvage ratio depends on p, f, K, and
l.. As an example, assume that the past inflation rate, p, has been 3%
during the past K years, that V/B = 10%, and that the life of the replace-
ment is also K years, Future salvage ratios are determined by the function
10% x [(1 4+ D*/(1 + p)*]. Table 4.1 (see end of chapter) shows future
sulvage ratios for different values of f, the inflation rate during the life of
the replacement, and different lives. Notice that if the inflation rate does
not change, then the salvage remains unchanged regardless of the life. But
il the inflation rate increases, the salvage ratio increases. The longer the life
and the greater the change in inflation rate, the more the future salvage
rutio deviates from the present 10% ratio. Also note the nonlinear relation-
ship between the salvage ratio and the variables f and K.

Table 4.1 uses future inflation rates that are equal to or greater than
the inflation rate during the life of the first unit. If a similar table is con-
structed using future inflation rates that are equal to or less than the infla-
tlon rate during the life of the first unit, then the salvage ratios will be equal
o or less than the 10% ratio experienced by the first unit.

Inflation does not affect all segments of the economy equally. The cost
ol construction, capital equipment, and labor can all increase at different
rutes. Because the cost of retiring is often labor and equipment intensive,
this element of salvage may be closely tied to indexes that reflect labor and
gquipment costs, Gross salvage values may be closely tied to used equip-
ment costs and are likely to inflate at a different rate than the cost of
retiring. Allowing for different inflation rates for capital equipment, gross
silvage, and cost of retiring requires modification to the model just pre-
sented,

Assume the inflation rates affecting the cost of replacing the first unit
und the gross salvage are equal and constant during the replacement cycle;
enll this rate h. Assume that the cost of retiring inflates at a different rate;
eadl this rate j. After L years the net salvage, V, will equal the (uninflated
pross salvage) x (1 + h)" — (uninflated cost of retiring) x (1 + j)t. We
cun use this model to find how the net salvage ratio is affected when these
two inflation rates differ.

As an example, assume that the current gross salvage ratio is 20% and
that the current cost of retiring ratio is 10%, so that the net salvage ratio is
20Ws — 10% or 10%. The future net salvage ratio will be the net salvage at
the end of the life of the replacement unit divided by the installed cost of
the replacement unit, or [20% x (1 + h)* = 10% x (1 + )'1/(1 + h)-
Asstme that h is 3% and that the lives of the initial unit and the replace-
ment unit both equal L years. Table 4.2 (see end of chapter) shows [uture
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salvage ratios for various values of L and j. Notice that as the difference
between h and j becomes larger, the cost of retiring increases faster than the
gross salvage. In our example, the cost of retiring catches and exceeds the
gross salvage for the larger values of j and the longer lives. The result is
negative net salvage.

The salvage ratio as a function of age and inflation rate can be mod-
eled using the equation (V/B) x (1 + p)*. Table 4.3 (see end of chapter)
shows that if the net salvage at time of installation remains constant except
for inflation, the observed salvage ratio will vary significantly with time,
For example, if the inflation rate was 6% and the salvage ratio at age zero
is equal to 10%, the salvage ratio at age 5 would be 13.38% and by age 20
would have increased to 32.07% simply because of inflation. Because the
value of the function (1 + p)* increases rapidly as A becomes large, the
factors for a large age (e.g., 40 years) are significantly greater than the 10%
initial value.

Recognition of the effect of inflation on salvage will influence the
analysis and forecasting of salvage. To find the effect of inflation, it is
necessary to understand and calculate the time value of money.

THE SALVAGE CURVE

A salvage curve has been defined as the graph of the salvage ratio as a
function of the life of the property. To calculate the average salvage ratio,
or the future average salvage ratio at any age, both the salvage curve and
the survivor curve must be known.

The net salvage curve is the gross salvage curve less the cost of retiring
curve. The method of calculating the average salvage ratio (ASR) is to
calculate a weighted average of the salvage ratios for each age interval as
shown below. '

ASR = E(salvage ratio) = T f(i)g(i) fort = 1,2.3, .« .., ME
where f(i) = the retirement frequency during age interval i and g(i) = the

silvage ratio during age interval, or the ratio evaluated at the midpoint of
interval i, where the age intervals and indexes i are defined as

| interval i x(i)
0 0.0 =< service life <0.5 .25
1 0.5 = service life <1.5 1.00
2 1.5 < service life <2.5 2.00
3 2.5 = service life <3.5 3.00
M1 ML, - .5 < service life <ML + .5 ML
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where x(i) = the midpoint of age interval i and ML = the maximum service
life.

The functions (i} and g(i) also can be described as continuous func-
tions and the equation written in integral form, but this offers little compu-
tational advantage. Discrete functions and the age intervals defined above
are consistent with the methods used to describe service life.

Two more measures of salvage are

RSR(i) = the realized salvage ratio at the start of age interval i
= T f(k)g(k) / £ f(k) forde = 1, 2,3, . . ¢ o B—1
FSR(i) = the future salvage ratio at the start of age interval i

It

Z f(kglk) / £ f(k) fork =i,i+1,i+2,...,ML

Suppose that the frequency curve and the salvage curve of a group of
property are as shown below. The units are retired at ages 0.23, 1, 2, or 3
years with corresponding salvage ratios of 15%, 10%, 5%, or 0%.

Retirement Frequency Curve Salvage Ratio Curve

f(0) = .20 g(0) = .15

f(1) = .30 g(l) = .10

f(2) = .40 g(2) = .05

f(3) = .10 g(3) = .00
Total = 1.00

The average salvage ratio is then calculated as
ASR Z f()e(d) fori = 1,2,3,4

(.20)(.15) + (.30)(.10) + (.40)(.05) + (.200) = 0.08 or

8.0%

I

Suppose it is the start of the age interval 1.5 to 2.5 years, so that the
index i equals 2. The realized salvage ratio at age 1.5 years, RSR(2), is
determined by salvage realized during the first two age intervals, so that.

RSR(2) = [(.20)(.15) + (.30)(.10)]/[.20 + .30]
FSR(2) = [(.40)(.05) + (.10)(.00)]/[.40 + .10]

0.12 or 12%
0.04 or 4%

I

Note that the weighted average of the realized and future salvage ratios
equals the average salvage ratio:

Weight for RSR(2) = .20 + .30 = ,50
Weight for FSR(2) = .40 + .10 = .50
Weighted average salvage = ASR = 50 x 12% + .50 x 4% = 8%,
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Table 4.4 (see end of chapter) shows the salvage calculations for an
Iowa R2 curve with a 5-year average life (R2-5). Column (c) is the percent
retired during the age interval and is found by subtracting successive points
on the survivor curve shown in column (b). Column (d) shows the average
salvage ratio during the age interval. Note that the salvage ratios in this
schedule increase with age.

The salvage observed during the age interval depends on both the
salvage per unit and the number of units retired. Column (e) is the product
of the salvage ratio and the fraction retired. It equals the salvage during the
age interval as a percent of the initial cost. During the age interval 2.5 to 3.5
years, the salvage equals 1.21% of the initial cost. The sum of these
amounts is the total salvage over the life of the group expressed as a percent
of the initial cost; this is the average salvage ratio, which is 13.46%.

Column (f) is the realized salvage ratio and represents the average that
would result if an observer recalculated the average salvage ratio at the start
of each age interval or each year. The average salvage at age 2.5 years
depends on the salvage during each of the preceding three age intervals.
The salvage during these intervals is summed to obtain 0.11% + 0.38% +
0.70% or 1.19%. This amount must be divided by the fraction retired by
that age, or I — 0.8913 or 0.1087, to obtain 1.19%/0.1087 or 10.92%. The
realized salvage ratio at the start of the second age interval equals the
average during the first age interval. As the age increases, the realized
salvage ratio approaches the average salvage ratio. At the end of the final
age interval the realized salvage ratio, 13.46%, equals the average salvage
ratio.

Column (g) is the future salvage ratio, or salvage expectancy, at the
start of each age interval. The future salvage ratio at any age is the average
salvage ratio observers would calculate if they recorded the salvage from
that time on. At age zero the future salvage ratio and the average salvage
ratio are equal because both averages include all future salvage ratios. At
nge 6.5 years, future salvage depends on the salvage during each of the
three remaining age intervals. The salvage during these intervals is summed
lo obtain 2.25% <+ 1.04% + 0.14% or 3.43%. This amount must be
divided by the future amount to be retired, which is the fraction in service
at age 6.5, or 22.32%, to obtain 3.43%/0.2232 or 15.37%. Because the
ratios in this salvage schedule increase with age, the future salvage ratios
nlso increase with age,

Al any time, the average of the realized and future salvage ratios will
equal the overall average salvage. At age 3.5 years, the weighted average of
the realized and future salvage ratios is 11.40% x (1 — .7901) + 14.01%
% (.7901) or 13.46%. Figure 4.2 (see end of chapter) is a graph of the
salvage ratio, future salvage ratio, and realized salvage ratio versus age.
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58 DEPRECIATION SYSTEMS

Salvage Schedule Models

A survivor curve must start at 100% and decrease monotonically to
zero, but there are no similar constraints for the salvage schedule. The
salvage curve can be either increasing or decreasing and need not be mono-
tonic. It need not start at 100% nor end at 0%, There are, however, several
basic models that approximate actual patterns and are therefore useful to
the analyst and forecaster. We will describe each first in constant dollars
and then add inflation. The curve with inflation represents the salvage
curve that would be constructed from observed data. The curve without
inflation shows the underlying model and is therefore useful when analyz-
ing salvage data.

The first model is a salvage ratio that, when measured in constant
dollars, remains constant. This model could reflect the gross salvage of
property whose major value is as scrap so that the gross salvage would
equal the intrinsic value of the material. It also could be applied to the cost
of retiring when the method of removal remains unchanged with time.
Table 4.5 (see end of chapter) shows a salvage curve with ratios equal to
10% at all ages. The survivor curve in column (b) is an Iowa R2-5. The
salvage curve is shown in column (c); all ratios are equal to 10%. Column
(d) is the product of the fraction retired during the age interval and the
salvage ratio shown in column (c}, and when these are summed the average
salvage is found to be 10%. Because the future salvage is needed when
calculating depreciation, the future salvage ratios are shown in column (¢).

Columns (f), (g), and (h) contain the inflated curves. The inflated ratio
is found by multiplying the corresponding, uninflated ratio by the com-
pound amount factor (1 + i)*°® where i is the inflation rate. The salvage
curve for the constant model with inflation increases exponentially with
age. The 6% inflation rate increases the average salvage ratio from 10% to
13.46% and the salvage ratio at the maximum life, 9 years, to 16.89%.
Figure 4.3 (see end of chapter) is a graph of these salvage ratios both with
and without inflation. Remember that the difference between the uninflated
and inflated salvage ratios increases with age. If an example using a survi-
vor curve with an average life longer than 5 years had been used, the
difference between the two ratios would be even larger.

The second model is one in which the salvage ratio decreases uniformly
with age. The linear model shown in Table 4.6 and Figure 4.4 (see end of
chapter) starts at 100% at age zero (and averages 97.37% during the first
age interval) and ends at 0% at age 9.5 years with a resulting annual de-
crease of 100%/9.5 or 10.53%. The initial value need not be 100%. Sup-
pose, for example, that 20% of the capitalized cost was installation cost. If
the property was removed immediately after installation, installation cost
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would be lost and, if the full price of the unit was recovered, the salvage
ratio would be 80%,

If the survivor curve is symmetrical, the average salvage ratio for the
constant dollars model will be the salvage ratio at the midpoint of the
curve, which here is the average of the initial and final salvage ratios.
Because the survivor curve is the right modal R2 curve, more weight is
given to early retirements and the average salvage is less than 350%.

The linear model with inflation also decreases, but in a nonlinear fash-
ion. The shape of the linear model with inflation depends on slope of the
line and the inflation rate. The constant model can be considered a special
case of the linear model.

The third model reflects an accelerated rate early in life. This model
would be particularly applicable to gross salvage when the value falls rap-
idly early in life and then decreases more slowly later in life. Property such
a5 automobiles and electronic equipment are examples that might follow
(his pattern. Several mathematical functions could be used to describe this
pattern, but a function similar to that used to calculate sum-of-years—digit
depreciation was chosen.

To obtain an accelerated curve, first identify the maximum life, ML,
and then sum the digits 1 +2 + 3 + ... + ML = (ML)(ML + 1)/2 = D.
MNext find the total amount by which the salvage ratio will decrease, which
is S(0) — S(ML). Then find the numerator of the rate for each age interval
i. For age interval 0 to 0.5 years, this is ML/2. For all other age intervals it
is ML — i 4+ 0.5. The annual decrease of salvage during age interval i is the
product of the total amount of decrease times (ML — i + .5)/D.

Table 4.7 (see end of chapter) shows the calculation of the average
salvage ratio curve using the accelerated model. The initial salvage ratio,
5(0), was chosen to equal 100% and the salvage ratio at the maximum life
was chosen to equal zero, so that S(ML) = 0%. The maximum life of the
R2-5 occurs during age interval i = 9, or during the age interval 8.5 — 9.5
years. The sum of digits 1 through 9 is 45, Column (b) shows the numerator
of the rate, which is L/2 = 9/2 = 4.5 for the first interval and 9 — (i +
().5) thereafter. The numerator decreases by 1 each year and the value dur-
ing the final age interval is always 0.5, Each year the salvage decreases by
an amount equal to the total decrease, 100%, times the weight in column
(b) divided by 45. During age interval 2.5 — 3.5 this amount is 100% x (9

- 3 4 0.5)/45 or 14,44%. Because the salvage at age zero is 100%, the
villue at the end of the first age interval, column (e), is 100% less the
decrease of (4.5/45) x 100% or 10%, or 90%. This amount is carried
forward to the start of the next age interval. The average salvage during the
nge interval is shown in column ().

Thble 4.8 (see end of chapter) shows the salvage ratios that would
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result if life characteristics are described by the Iowa R2-35 survivor curve
and the salvage shown in Table 4.7 is used; the table also shows the salvage
ratios with an inflation rate of 6% applied. Figure 4.5 (see end of chapter)
shows the salvage ratios without and with inflation plotted versus age.

Aged Data

Salvage curves reflecting historical salvage can be constructed from
aged retirement data using the same techniques used to develop life tables.
Because the forces affecting gross salvage and cost of retiring are often
independent, these two costs should be recorded, analyzed, and forecasted
separately. The net salvage is obtained by subtracting the cost of retiring
from the gross salvage.

The requirements for aged salvage data are similar to the requirements
for aged retirement data. As with aged retirement data, aged salvage data
can be organized in a matrix with rows designating placement years and
columns designating experience years.

Data from two sources are necessary to calculate the salvage curve for
a vintage group. One set of data is the total salvage dollars during each
experience year for the vintage under consideration. The salvage is either
the gross salvage or the cost of retiring, depending on which salvage curve
is being developed. The second set of data is the annual dollars retired
during each experience year of the vintage under consideration. The salvage
ratios are calculated directly from these data. The total salvage during the
year depends on both the total number of retirements per year and the
salvage per unit. The quotient of the total salvage divided by the original
cost of the retirements equals the salvage ratio for that experience year,

The first three rows in Table 4.9 (see end of chapter) show the gross
salvage, the cost of retiring, and the dollars retired from a 1982 vintage.
Remember that the retirements are measured in original cost dollars (i.e.,
1982 dollars), but the gross salvage and cost of retiring are measured in
experience-year dollars. The ratios are the salvage dollars divided by the
dollars retired for the same year. The survivor curve for this placement
group shows about 22% of the property installed in 1982 is still in service at
the end of 1988, so the resulting survivor curves do not reflect the complete
history of the vintage group.

Conversion to Constant Dollars

An observed salvage ratio is a ratio of dollars at time x < age over
dollars at time X, where x represents the year in which the property was
installed. This ratio of mixed dollurs often obscures underlying salvage
patterns. For example, in the constant model presented in the previous
section, the ratios were uniform only when mensured in constant dollars,
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and the shape of the inflated, or observed, curve concealed the uniform
pattern. The underlying patterns are also concealed in the linear and accel-
erated models. Conversion of the inflated ratios to ratios of constant, or
uninflated, dollars reveals the underlying model and is therefore of value to
the analyst.

The examples shown in Tables 4.5 through 4.9 assumed inflation at a
constant annual rate of 6%, A more accurate view would be that each year
is associated with a unique inflation factor and that the product of the
annual factors, rather than an average, should be used in the discounting or
adjusting process.

An important question centers on which inflation factor to use. Per-
haps the most common index is the consumer price index (CPI), which is
familiar because it reflects changes in the weighted price of goods and
services used by the typical U.S. consumer. It recognizes that different
segments of the economy, (e.g., health care, food, housing, energy) have
different rates of inflation and that the result is a weighted average of these.

It is desirable to obtain specialized indexes that reflect the inflation
rates in special segments of the economy, and in fact firms specialize in
estimating these factors, Different indexes may apply to gross salvage and
cost of retiring, and the appropriate index for gross salvage in one account
will generally differ from that of another account. Once the historical in-
dexes are obtained, they can be stored in the data base and updated each
year.

The matrix containing the salvage dollars can be adjusted to convert
all entries to a common year or reference point. Most indexes have a base
year at which the index is set to 1, and other years are measured in reference
to it.

Table 4.9 contains an example of salvage data. Suppose that during the
period 1982 to 1988 the annual inflation rate was 6%. Table 4.10 (see end of
chapter) shows the salvage values introduced in Table 4.9 converted to 1982
dollars, so that salvage and original cost are measured at the same price
level. The resulting salvage ratios now have the inflation removed. The
annual salvage dollars can be converted to 1982 dollars by dividing by the
factor (1 + .06)*“E. In 1985 the age is 3, and the factor is 1/(1.06)* = 1/
1.19 or 0.840. The observed gross salvage during 1985 was $768 and the
observed cost of retiring was $329; multiplying by 0.840 yields 1982 price
level values of $645 and $276 respectively.

The underlying patterns can now be seen more easily. Examine the
gross salvage ratio and observe that it is approximately linear and declines
by about 6% each year. With inflation removed, the cost of retiring ratio is
constant and equals 17%,

A first step in salvage analysis is to convert the observed dollars to
constant dollars. Then the constant dollar salvage curves can be examined
and fit to a model,
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Figure 4.1. A cash flow diagram of investment and salvage costs.
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Figure 4.2. A graph of the salvage ratios and the realized and future salvage
ratios versus age are for the data shown in Table 4.4,
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A graph of the salvage ratios shown in Table 4.5.
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Figure 4.4. A graph of the salvage ratios shown in Table 4.6,
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Table 4.2. Future salvage ratios as a func- (1 8
100 .0 tion of the cost of retiring in- ()
| flation rate, j, when p = 3%, the |
: current gross salvage = 20% of &) |
[ & first cost, and the present cost
= f of retiring = 10% of first cost, I |
Lo« n The life of the first unit equals dt I
7% 0 S the life of the replacement unit. —
-3 . : \\ ] E
o L % o L Inflation rate - j 18
= L % with inflatilon | (19
= - T Years 3% 6% 10% 12% 0O
o B I 7
L6 A =
Q. 2 B, | 5 10.00% 8. 46% 6.11% 4.80% I
© LN J 10 10.00% 6.67% L70% -3.11% ‘
B B e 20 10.00% 2.24% -17.25% -33.41%
© I~ \._\ 7 49 10.00% -11.53% -118.75% -265.25%
A L : o
25 i SN
L A S . \\ i [= =]
- =
- itholit iqflatfion \ 1 =
: "'u?fr\\h : Table 4.3. Salvage ratios as a fTunction of ™~
0.0 R e %éie and inflation rate when V/B = F:
D 1 2 3 4 s B 7 8 g 10 : w
Age - years Life Inflaticon rate - p E—
Years 3% 6% 10% 12%
Figure 4.5. A graph of the salvage ratios shown in Table 4.8. 5 B i R g,
5 11.59% 13.38% 16.11% 17.62%
10 13.44% 17.91% 25.94% 31.06%
20 18.06% 32.07% 67.27% 96 .46%
40 32.62% 102.86% 452 .59% 930.51%

Table 4.4. Calculation of average, realized, and future salvage ratios for
the salvage schedule shown in column (d) and with life charac-
teristics described by an Towa R2-5 surviver curve. The percent
surviving, realized salvage ratio, and future salvage ratio are
all shown at the start of the age interval.

Table 4.1. Future salvage ratios as a func-
tion of the future inflation rate,
f, and the life of the unit, K.

Constant rate w/inflation

The salvage ratio of the first Aga Percent Percent Salvage Weighted Realized Futurs Average |
unit is V/B = 10% and p, the annu- interval  survive retired ratio % ratio % salvage % salvage % salvage %

al rate of inflation during 1its {a) {b) (c) (d) {2) ) (ot ()

life, is 3%. The life of the first

unit equals the life of the re-
placement unit (i.e., K = L).

0. 0.5 100.00 .11 10.15 Rh .00 13.486 13.46

.- 1.5  98.89 3.56 10.60 .38 10.15 13.50 13.46

flati | f 1.6- 2.5  95.33 6.20 11,24 .70 10.49 13.61 13.46

K Inflation rate - ﬁ.b- 3.@ gg.$? 10.12 11.91 1.21 10.92  13.77  13.48

B 4, 5.31 12.62 1.93 11.40 14.01 12.46

Yaare 3% 8% 10% 12% 4.8. 5,6 63,70 20.80 13,38 2.72 11.91 14,34 13.46

6.5. 8.5 43,40  21.08 14,19 2.99 12.44 14.79 13.46

. ‘ T H.8- 7.5 27.82 14.99 15.04 2.25 12,91 15,37 13.46

5 10.00% 11, 64% 10. B0 16.20% 7.0 6.6 7.84 6.51 15.94 1.04 13.26 16.05 13.46
10 10.,00% 0, 0% 10, 40% 2d.11% n.6- 9.6 .82 B2 16,89 14 13,43 16.89 13.48 |

20 10.00% 17, rti% a7.2b% 50.41% 0.B8-10,8 0o 4 13 .46 . 13,46

a0 10.00% AR ] JOUL, 7l 206 . 26%
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Table 4.10. Gonversion of salvage in Table 4.9 to 1982 dollars, E
Experience year 8
82 83 B4 85 86 87 88 D E e C. a.t' O Iq 1
Gross 04 337 418 645 834 890 720 | : r l I ‘_t
salvage O
_—
Cost of 27 106 163 276 437 539 553 e r T ] L.
retiring S S LL
Annual 157 627 941 1568 2508 3135 3202 Q
retirements '
Gross salvage .60 .54 44 .41 .33 .28 22
ratio ’
Cost of retir- .17 Sy Nl + 18 T 3
ing ratioc L i 0
e
Net salvage .43 .37 .27 .23 .16 A .05 <
ratio o
fr - h
HE recovery of capital through depreciation ™
accruals may be thought of as a dynamic system. A system is an arrange- E_
ment of things that are connected to form a complete organization of =y

integrated parts. The state of the system at any time is defined by current
values of the characteristics that define the system. A dynamic system is
one where the state of the system depends on the history of the input
variables. To define and study a system is to better understand the system so
that more efficient methods of control can be designed to accomplish the
desired ends.

There are two methods of controlling a system. One is to select an
input and wait for the result or final output. If a different output is desired,
the input is changed and the new output is obtained. The other method of

. control is to select an initial input, monitor the process, and when neces-
) sary, alter the input to achieve the desired goal. The first method is called
an open control loop and the second a closed control loop. A necessary
g feature of the closed control loop is the feedback resulting from the moni-
toring of the system. A home heating system is a common and simple
example of a dynamic system with a closed feedback loop. The parts of the
system are a furnace and a thermostat. The thermostat monitors the room
temperature and creates feedback, in the form of electrical signals, when
the room temperature rises above or falls below the desired temperature.
The electrical signals turn the furnace off or on to achieve the desired goal,
n constant, predetermined room temperature.

Think of a depreciation accounting system as a dynamic system con-

trolled with a closed feedback loop. Estimates of life and salvage and the
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