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Abstract— Accurate near real time monitoring is needed for 

Distribution Management Systems (DMS), and power flow-based 

methods are commonly used in practice for this purpose. However, 

near real time power flow results are not always accurate because 

of the poor load estimation obtained through the bus load allocation 

(BLA) procedure used in this approach. This paper focuses on this 

issue and proposes a data analytics-based method to parse through 

data and identify factors/parameters that are significant and 

relevant to poor near real time power flow solution. The proposed 

method uses a Binary logistic regression method to identify these 

significant parameters for the feeders having poor BLA 

performance. Test results show that the significant parameters can 

help to pinpoint the cause(s) for poor BLA performance. 

Keywords— Distribution Management System (DMS), Logistic 

Regression, Bus Load Allocation (BLA), Machine Learning 

I. INTRODUCTION 

     Many utilities have recently started deploying a Distribution 

System State Estimator (DSSE) for providing situational 

awareness that is needed for applications such as voltage 

monitoring and control [1]. One of the methods used in practice 

is the power flow-based distribution system state estimation [2]. 

We will also call it near real time power flow (RTPF) in this 

paper.  In practice, RTPF is integrated with a Distribution 

Management System (DMS). Accurate RTPF results are critical 

to safely and efficiently operate the distribution system.  

One of the challenges in RTPF application is that only a 

limited number of actual measurements are available. Hence, a 

load estimation method is needed to provide an estimate for the 

load. This estimated load is then passed to a power flow program 

to obtain an estimate of node voltages. Since the power flow 

program depends on the estimated load, performance of RTPF 

(accuracy of voltage estimates) critically depends on the 

accuracy of the load estimate [3]. 

Another common issue that affects the performance of RTPF 

is the distribution system model used in the power flow program. 

Most commercial PF programs use detailed three phase circuit 

models. However, any error in the line models or other devices 

will have impact on the accuracy of the results. Hence, it 

becomes very challenging to detect and identify factors when the 

performance of the RTPF is not satisfactory. This is the problem 

we focused on in this paper.  

     We could not find any literature directly related to this 

practical problem. Most of the research and literature has been 

on the bad data detection and identification using state 

estimation [4]-[6]. The methods used for bad data detection will 

not be very effective for this problem given that there are only 

very limited real time measurements [7]. Furthermore, bad data 

detection considers only one snapshot/sample, and thus, it limits 

the ability to identify long term effects/behavior.   

We collaborated with our local utility, Duke Energy, to 

investigate the poor performance issues and develop a method to 

address them. Since load allocation is the critical component for 

RTPF, we first focused on the performance of this component, 

which is called the Bus load Allocation (BLA). Duke Energy 

engineers have observed that while BLA converges for most of 

the feeders, there are some feeders for which BLA does not 

converge on a consistent basis resulting in inaccurate power flow 

results, and existing methods of analysis regularly fail to 

determine the cause of the inaccuracy due to the size and 

complexity of the distribution system model, and the time-

consuming nature of circuit-by-circuit analysis. 

This paper focuses on this problem and proposes a 

methodology for identifying the factors that contribute to poor 

BLA performance on a given feeder.  

The proposed method has two steps. In the first step we adopt 

a binary regression-based method to check if there are some 

features associated with a given poorly performing feeder that 

makes the feeder different from good-performing feeders. We 

call these features distinguishing features/parameters.  In the 

second step, we perform a detailed analysis on the sample RTPF 

cases by using the significant parameters in order to further 

pinpoint the probable factors contributing to the poor 

performance on that feeder. 

 Section II introduces the proposed method. The results of a 

Case study are outlined in section III. Conclusions are given in 

section IV. 
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II. INDINTFYING FEATURES OF A FEEDER WITH POOR BLA

A. Bus Load Allocation for RTPF

As the first step of RTPF, a Bus Load Allocation (BLA)

procedure is used to obtain an initial estimation of load (kW and 

kVar for each load point/node for a given time of the day RTPF 

is run. A common method, considered in this paper, uses the 

“nominal load” values (which are based on historical data) for 

each load class as initial guess, and then scales them iteratively 

by using the real-time measurements from SCADA. In each 

iteration, a power flow is run first to get an estimate for the power 

flows that are monitored at certain locations on the feeder. The 

differences between the calculated values and the actual 

measurements are then calculated as mismatches for 

convergence check (to see if the load allocation is acceptable). If 

the difference is within a given tolerance, then BLA converges. 

If the tolerance is not reached, then the BLA scales the loads by 

using the mismatches [8]. The flowchart of the BLA process is 

given in Fig.1. 

Fig 1. RTPF Flowchart  

B. Parameter Selection

As indicated in the introduction, we focus on identifying the

factors that contribute to poor BLA performance on a given 

feeder most of the time. We will call such feeders “poor BLA 

feeders”. As a first step, we use a regression method to check if 

there are some features associated with a poor BLA feeder that 

makes the feeder different from good BLA feeders. 

     For regression analysis, we first select a set of 

features/parameters to use as input data. In selecting these 

parameters, we consider the parameters that will impact the BLA 

performance. Some of these relevant parameters related to the 

feeder are feeder characteristics (overhead and underground 

sections), loading level, load mix etc. We also consider the 

measurement data itself (feeder head power flow 

measurements).  

     The set of parameters selected based on the feedback from 

Duke Energy engineers are given in Table I. 

     For regression analysis, a sample data set needs to be 

collected from the DMS for a set of feeders. RTPF samples 

(which are called save cases) are taken from real feeders dated 

in 2020 from the sponsoring utility in a stratified manner. The 

samples should be cases from a diverse set of feeders that have 

good BLA performance as well as poor BLA performance on a 

consistent basis. 

TABLE I.  SET OF PARAMETERS 

1) Total Load (kW)
2) Total Load (kVar)
3) Total Residential Load (kW)
4) Total Residential Load (kVar)
5) Total Commercial Load (kW)
6) Total Commercial Load (kVar)
7) Total Industrial Load (kW)
8) Total Industrial Load (kVar)
9)  Distribution Transformer Loss (kW)
10)  Distribution Transformer Loss (kVar)
11)  Line Losses (kW) 
12)  Line Losses (kVar) 
13)  Shunt Capacitance (kVar)
14)  Cap Injection (kVar)
15)  Top of Feeder Measurement (kW)
16)  Top of Feeder Measurement (kVar)
17)  Total UG Cable Length (ft)

18) Total OH Line Length (ft)
19)  Total 1ph Load (kW)
20)  Total 1ph Load (kVar)
21) Total 2ph Load (kW)
22)  Total 2ph Load (kVar)
23)  Total 3ph Load (kW)
24)  Total 3ph Load (kVar)
25)  Number of Caps ON
26)  Number of Distribution Transformer
27)  Amp Flow Imbalance (%)
28)  Primary Meter Load (kW)
29)  Primary Meter Load (kVar)
30)  Phase A Maximum Volt Drop (V)
31)  Phase B Maximum Volt Drop (V)
32)  Phase C Maximum Volt Drop (V)
33)  Average Primary to Secondary Volt

Drop (V)

C. Identfying Distinguishing Parameters

The goal in this step is check whether the selected set of 

parameters are enough to differentiate a poor BLA feeder from 

a good BLA feeder. We adopted the Binary Logistic Regression 

for this purpose. Regression methods (which are supervised 

machine learning methods) aim at building a mathematical 

model that captures the relationship between the independent 

variables (in our case values of parameters as input data) and the 

observations (in our case whether BLA is converged or not for a 

given DMS save case as output data).  Hence, a properly selected 

regression method can help us verify that selected parameters 

can help us to differentiate/estimate if the BLA is mostly 

converging or not for a given feeder. In other words, logistic 

regression is a classification algorithm that predicts a binary 

outcome based on a series of independent variables.  Another 

main output of the logistic regression method is that it can 

pinpoint which of the parameters used are the so-called 

significant parameters; these are the parameters that contribute 

the most to the estimated outcome. In our case we used the binary 

logistic regression to extract the significant parameters rather 

than predicting the outcome although it is frequently used for 

prediction of binary outcome with given independent input 

variables. 

1) Binary Logistic Regression

     Binary Logistic Regression is a supervised machine learning 

algorithm that helps in binary classification (separating discrete 

values, such as Yes/No, Pass/Fail) on a set of observations. 

Logistic regression is a method that fits a regression curve, y = 

f(x) on a sample observations y and y is a categorical variable 

(Yes/No, Pass/Fail). Fig. 2 illustrates this approach.  
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Fig 2.   Logistic Regression 

     In the Logistic Regression model, we need to choose a 

logistic function [9]. The standard logistic function, for 

predicting the outcome of an observation given a predictor 

variable (X), is an s-shaped curve defined as:  

   𝑝(𝑋) =
𝑒𝑦

1+𝑒𝑦  (1) 

Where 𝑝(𝑋) is the probability of event to occur given X, and 

𝑦 = 𝛽0 + 𝛽1𝑋 . To fit the model (1), we use a method called

maximum likelihood [10]. 

     When we consider the problem of predicting a binary 

response using multiple predictors, the logistic function looks 

like:  

log (
𝑝(𝑋)

1−𝑝(𝑋)
) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑛𝑋𝑛   (2) 

The coefficients 𝛽1, 𝛽2, … , 𝛽𝑛  are unknown and must be

estimated based on the available data. We seek estimates 

for 𝛽1, 𝛽2, … , 𝛽𝑛  such that plugging these estimates into the

model for 𝑝(𝑋) yields a number close to 1 for all individuals 

which are converging, and a number close to 0 for all individuals 

which are not converging [10]. Probability threshold normally is 

taken as 0.5. We classify an element in one category or the other 

depending on whether its probability exceeds the probability 

threshold or not. 

2) Model Selection

     Running a regression model with too many variables 

especially with irrelevant ones will lead to a needlessly complex 

model.  

     It is often the case that some or many of the variables used in 

a multiple logistic regression model are in fact not associated 

with the response. Including such irrelevant variables leads to 

unnecessary complexity in the resulting model. Moreover, an 

enormous number of variables can lead to overfitting and high 

variance of the coefficient estimates for the logistic regression. 

Therefore, stepwise methods, which explore a far more restricted 

set of models, are attractive alternatives to best subset selection 

[10]. We can obtain a model that is more easily interpreted. 

Stepwise selection [10] can help to choose the variables to add.  

     Selection begins with a regression model which includes all 

candidate variables. Variables are then eliminated from the 

model one by one until all the variables remaining in the model 

exceed certain criteria. At each step, the variable showing the 

smallest improvement to the model is removed. In other words, 

at each step the variable that gives the greatest additional 

improvement to the fit is added to the model.  

     One criterion to select the optimal set of features is Akaike 

Information Criterion (AIC) [11].  The AIC is:  

 𝐴𝐼𝐶 = −2𝑙𝑜𝑔𝐿 + 2𝑘       (3) 

Where L is the likelihood of the candidate model given the data 

when evaluated at the maximum likelihood estimate, and k is the 

number of estimated parameters in the model. 

     This value is calculated for every candidate model after each 

variable elimination on the logistic regression model and the best 

model is the model with the smallest AIC [12,13]. AIC estimates 

the quality of each model relative to the other models and 

provides a single number score that can be used to determine 

which of the models is the best fit to the data. 

3) Identfying Significant Parameters of a Poor BLA Feeder

     We use the model obtained by using binary logistic regression 

to identify the features/parameters of a poor performing feeder. 

To illustrate the process, consider the logistic regression results 

of a sample feeder –named SB41- given below in Table II 

(details of this case is given in the next section). 

TABLE II.  THE SUMMARY OF LOGISTIC REGRESSION MODEL FOR SB41 

     These summary statistics provide us the estimated model 

parameters (intercept and coefficients betas), and statistics -

standard error, z-value, and p-value – for each model parameter. 

In the table, the estimate column gives the intercept (𝛽0) and the

coefficient estimates associated with each predictor variable. 

Std. error column provides the standard error of the coefficient 

estimates. Z value is the coefficient estimate divided by the 

standard error of the estimate. Z value is a measure of position 

that indicates the number of standard deviations a data value lies 

from the mean. The p-value corresponds to the z-statistic, and it 

is the likelihood of the calculated Z value. The smaller the p-

value, the more significant the estimate is. 

Since the smaller the p value the more significant the 

estimate is, table also show stars (*, **, ***) to indicate the 

significance level for each parameter according to p-value. We 

Docket No. E-7, Sub 1283 
Presson Exhibit 14



have used 0.01 significance level; in other words, we selected 

the parameters with two and three stars as “significant 

parameters” and thus get the following: 

1. Total Underground Cable Length

2. Total OH Line Length

3. Total Commercial Load kVar

4. Total Commercial Load kW

     We call these significant parameters the distinguishing 

parameters for this particular feeder with poor BLA 

performance. 

     To help assess the overall performance of the regression 

model we obtained, we use the confusion matrix based on the 

results. This confusion matrix is given in Table III. NC stands 

for non-converging feeder, and C stands for converging feeder. 

TABLE III.   CONFUSION MATRIX FOR SB41 

Predicted NC Predicted C 

Actual NC 3 1 

Actual C 0 122 

     From the Confusion Matrix, the accuracy of the model is 

99.2%, which indicates that the method performance is good. 

This good performance indicates that regression model can 

distinguish this poor BLA feeder from the other feeders with 

good BLA performance. Furthermore, significant/distinguishing  

parameters identified are most likely the parameters that 

distinguish this feeder from good BLA feeders.  

     A basic way to make use of these distinguishing parameters 

is to compare how different these parameters are between that of 

poor BLA feeders and good BLA feeders. To do this, average 

values of the significant parameters using poor BLA feeders are 

determined and compared to that of good BLA feeders. All the 

parameters given in percentages are normalized with respect to 

their nominal values. Table V shows this comparison. 

     Table V compares the average values of the distinguishing 

parameters of this feeder to that of the feeders with good BLA 

performance. As seen in the Table V, Total OH Line Length and 

Total UG Cable Length for feeder SB41 are substantially higher 

than average values of good BLA feeders. Total Commercial 

Loads are also substantially lower than average values of good 

BLA feeders. 

TABLE V.  AVERAGE VALIUES OF  PARAMETERS – SB41 

Distinguishing Parameters 

Good BLA 
Feeders 

Average 

Values 

SB41 Feeder 

Average Values 

Total OH Line Length % 86% 266% 

Total UG Cable Length % 85% 133% 

Total Commercial Load kVar % 21% 4.6% 

Total Commercial Load kW % 38% 21% 

     Note finally that the distinguishing parameters may not 

directly point to a cause or causes for the poor BLA performance 

on the feeder.  However, since the parameters are selected such 

that, they correlate to the difference between good and poor 

performance, we can use these distinguishing parameters to 

pinpoint the cause. This is illustrated in the next step. 

D. Case Analysis to Pinpoint the Causes

In this second step, the goal is to use the distinguishing

parameters we identified for a feeder with poor BLA 

performance to further pinpoint the cause(s) for this poor BLA 

convergence. This step involves looking into the save case data 

we have on the feeder more deeply in order to identify probable 

cause(s). This process will be illustrated in the following case 

study.  

III. CASE STUDY

     Sample data includes 440 RTPF samples (save cases) from 

the sponsoring utility. We have about 8-10 samples for each 

feeder. Sample save cases have mostly good BLA, and 4 feeders 

have poor BLA, which are SB41, SB51, SB52, and LA 45. 

  Distinguishing parameters are obtained for each poor BLA 

feeder with logistic regression method by fitting the sample data. 

We used 70% of consistent save cases for training to fit the 

model and test the model using the remaining 30% of the data. 

TABLE IV.    PARAMETER VALUES FOR SAVECASES OF SB41 

Save Case 
Day 

Total kW 
Load 

Total 

kVar 

Load 

Dist. Xmer 

Losses 

kVar wrt 
Total 

Load 

KVA (%) 

Line Losses 

kVar wrt 

Total OH 
Line 

Length 

(%) 

Cable and 

Line 

Capacitanc
e kVar wrt 

UG Cable 

Length (%) 

Total 

kVar 

Losses 

Total 

kVar 

Losses 
wrt Total 

Load 

KVA % 

Cap 

Injection 

kVar 

Top of 
Feeder 

Measur

ement 
kVar 

kVar Mismatch 

(Calculated – 

Measurement) 

Total kVar 
Load to 

be 

Allocated 
(Qaloc) 

3/17 4 pm 1314.76 121.35 18.1% 0.005% 0.10% 209.51 15.9% -1419.57 -1339 250.29 -128.9 

3/17 2 pm 1397.54 133.45 16.9% 0.005% 0.09% 209.34 14.9% -1412.2 -1311 241.59 -108.1 

5/24 11 am 1369.62 212.41 16.9% 0.006% 0.09% 207.38 15% -1393.94 -1130 155.85 56.56 

3/17 9 am 1962.12 183.66 12% 0.013% 0.09% 220.92 11.2% -1399.47 -1207 212.11 -28.45 

3/17 11 am 1771.23 148.09 13.3% 0.010% 0.09% 215.49 12.1% -1400.22 -1260 223.36 -75.27 

5/13 4 pm 988.33 125.76 23.9% 0.004% 0.10% 207.27 20.8% -1422.08 -1322 232.95 -107.2 

5/20 10 am 961.45 30.26 24.8% 0.004% 0.10% 206.87 21.5% -1262.57 -1272 246.56 -216 

4/24 4 pm 1510.74 162.35 15.7% 0.006% 0.09% 212.52 14% -1419.27 -1273 228.6 -66.25 

4/26 3 pm 961.25 155.35 24.5% 0.003% 0.10% 205.61 21.1% -158.69 -3 205.27 -49.92 

4/29 1 pm 1085.08 147.45 21.9% 0.004% 0.10% 209.19 19.1% -1428.05 -1284 212.59 -65.14 
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A. Feeder LA45

One of the poor BLA feeder is LA45, and the summary of the

logistic regression model for LA45 is given in Table VI. 

TABLE VI.  THE SUMMARY OF LOGISTIC REGRESSION MODEL FOR LA45 

     As the table shows, the distinguishing parameters for this 

feeder are primary meter size load and residential kVar load. 

Table VII compares the average values of these significant 

parameters between the two groups. These results indicate that 

LA45 feeder has one large industrial load (monitored by a 

primary meter), and very low residential load. Since the 

industrial load is monitored, BLA has only the small residential 

load to adjust to match the power flow measurement.  This is the 

main reason why BLA is not converging. 

TABLE VII.  AVERAGE VALIUES OF  PARAMETERS – LA45 

Distinguishing Parameters 

Good BLA 

Feeders 

Average 

Values 

LA45 Feeder 

Average 
Values 

Primary Meter Size kW Load % 3.06% 58.6% 

Total Residential Load kVar % 11.9% 1.3% 

B. Feeder SB41

The regression results obtained for feeder SB41 are given in

the previous section. As indicated before, the distinguishing 

parameters obtained are: 

1. Total Underground Cable Length

2. Total OH Line Length

3. Total Commercial Load kVar

4. Total Commercial Load kW

     For the next step of using these parameters to pinpoint the 

possible cause(s) for poor BLA performance, we first try to 

narrow down the cause to one of the main sources of errors: 

modeling issues, measurement errors, or algorithm issues with 

RTPF.  Given that real power load allocation is acceptable, we 

can assume that the main measurement at the feeder head is also 

acceptable. Therefore, we focus next to see if the data indicates 

any modeling issues.  

     When the BLA does not converge, it provides a detailed 

report as part of the output.  When we examine these reports from 

the save cases, we see that the reason for non-convergence for 

the cases is that there is too little reactive power (kVar) load to 

be allocated.     

     To help understand this issue, we first get an estimate of the 

total kVar load to be allocated to the loads using the DMS power 

flow results. Total kVar load to be allocated to the loads is 

estimated using the power balance as follows:  

𝑄𝑎𝑙𝑙𝑜𝑐 = 𝑄𝑜_𝑓𝑒𝑒𝑑𝑒𝑟 − 𝑄𝑙𝑜𝑠𝑠 − 𝑄𝑐𝑎𝑝  (4) 

Where 𝑄𝑜_𝑓𝑒𝑒𝑑𝑒𝑟  is the kVar measurement at feeder head,

𝑄𝑙𝑜𝑠𝑠 is total kVar loss, and  𝑄𝑐𝑎𝑝 is total capacitor injection. We

find that 𝑄𝑎𝑙𝑙𝑜𝑐  is a good indicator, as when 𝑄𝑎𝑙𝑙𝑜𝑐 is negative or

very low it means that there is not enough kVar to be allocated 

based on the kVar measurements. Some of the detailed data for 

SB41 is given Table IV. It shows that 𝑄𝑎𝑙𝑙𝑜𝑐 is quite negative for

all the save cases, and thus, it is clear that the BLA cannot adjust 

kVar of the loads given the pf constraints.   

TABLE VIII.   KVAR LOAD ADJUSTMENT BY BLA 

     To confirm this, we also examined how BLA adjusts the kVar 

load at each iteration. Table VIII show the results for the save 

case on March 17, 4pm. As seen in the table, BLA keeps 

decreasing the load kVar in order to reduce the mismatch, and it 

reaches the minimum kVar limit due the maximum power factor 

constraints (of 0.9995). The same convergence pattern is 

observed for other save cases for this feeder. These results 

clearly indicates that the issue in this case is related to the factors 

that contribute to the negative 𝑄𝑎𝑙𝑙𝑜𝑐 .

     To further pinpoint a cause, a more detailed data from the 

save cases for this feeder is used. Table IV shows that kVar 

losses with respect to total kVar load on this feeder are much 

higher than average value of good BLA feeders (7.8%). 

Furthermore, distribution transformer losses with respect to total 

kVar load are much higher for this feeder than the average value 

of good BLA feeders (8.3%). These observations indicate that 

one contributing factor is the high distribution transformer kVar 

losses, partly due to feeder being a long feeder (a distinguishing 

parameter) with mostly residential loads served by single phase 

transformers.  Interestingly, this contributing factor of too many 

single-phase distribution transformers is indirectly indicated by 

the distinguishing parameter of low commercial load on this long 

feeder. 

IV. CONCLUSION

     The results on an actual case study indicate that the proposed 

logistic regression-based method can be used to check if feeders 

with poor bus load allocation (BLA) have features that separate 

them from feeders with good BLA. Furthermore, the method can 

be used to identify the distinguishing parameters (that separate a 

Iteration No. Phase A Phase B Phase C 

1 488 263 652 

2 20.8 10.6 158.4 

3 16.1 9.1 86.3 

4 16.2 9.1 95.3 

5 16.2 9.1 95.9 
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poor BLA feeder from good BLA feeders) from the long list of 

parameters initially selected.  

     The results also illustrate the challenge associated with using 

the distinguishing parameters to pinpoint the cause for poor BLA 

performance on a given feeder, as the distinguishing parameters 

do not directly indicate the cause for poor BLA performance on 

a feeder. Therefore, the paper proposes a detailed analysis to 

pinpoint the cause(s) for a feeder with consistent poor BLA 

performance. The case study illustrates that the distinguishing 

parameters can help in this search in this second step. 
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