

Jack E. Jirak Associate General Counsel

Mailing Address: NCRH 20 / P.O. Box 1551 Raleigh, NC 27602

> o: 919.546.3257 f: 919.546.2694

jack.jirak@duke-energy.com

February 23, 2021

VIA ELECTRONIC FILING

Ms. Kimberley A. Campbell, Chief Clerk North Carolina Utilities Commission 4325 Mail Service Center Raleigh, North Carolina 27699-4300

RE: Duke Energy Carolinas, LLC's Fuel Charge Adjustment Proceeding Docket No. E-7, Sub 1250

Dear Ms. Campbell:

Enclosed for filing with the North Carolina Utilities Commission ("NCUC" or the "Commission") is the Application of Duke Energy Carolinas, LLC ("DEC") pursuant to N.C. Gen. Stat. § 62-133.2 and Commission Rule R8-55 relating to the fuel charge adjustments for electric utilities, together with the testimony and exhibits of Bryan L. Sykes, Kevin Y. Houston, John A. Verderame, Steve Immel and Steven D. Capps containing the information required in NCUC Rule R8-55.

Certain information contained in the exhibits of Mr. Capps and Mr. Verderame is a trade secret, and confidential, proprietary, and commercially sensitive information. For this reason, it is being filed under seal pursuant to N.C. Gen. Stat. § 132-1.2. Parties to the docket may contact the Company regarding obtaining copies pursuant to an appropriate confidentiality agreement.

Please contact me if you have any questions.

Respectfully submitted,

find

Jack E. Jirak

Enclosures cc: Parties of Record

CERTIFICATE OF SERVICE

I certify that a copy of Duke Energy Carolinas, LLC's Fuel Charge Adjustment Proceeding, in Docket No. E-7, Sub 1250, has been served by electronic mail, hand delivery or by depositing a copy in the United States mail, postage prepaid to parties of record.

This the 23rd day of February, 2021.

Jack E. Jirak Associate General Counsel Duke Energy Corporation P.O. Box 1551/NCRH 20 Raleigh, North Carolina 27602 (919) 546-3257 Jack.jirak@duke-energy.com

DUKE ENERGY CAROLINAS, LLC'S APPLICATION

Duke Energy Carolinas, LLC ("DEC," "Company," or "Applicant"), pursuant to North Carolina General Statutes ("N.C. Gen. Stat.") § 62-133.2 and North Carolina Utilities Commission ("NCUC" or the "Commission") Rule R8-55, hereby makes this Application to adjust the fuel and fuel-related cost component of its electric rates. In support thereof, the Applicant respectfully shows the Commission the following:

BEFORE THE NORTH CAROLINA UTILITIES COMMISSION

DOCKET NO. E-7, SUB 1250

)

)

)

)

)

1. The Applicant's general offices are located at 550 South Tryon Street,

Charlotte, North Carolina, and its mailing address is:

Application of Duke Energy Carolinas, LLC

Pursuant to G.S. 62-133.2 and NCUC Rule

R8-55 Relating to Fuel and Fuel-Related

Charge Adjustments for Electric Utilities

In the Matter of

Duke Energy Carolinas, LLC P. O. Box 1006 Charlotte, North Carolina 28201-1006

2. The names and addresses of Applicant's attorneys are:

Jack E. Jirak Associate General Counsel Duke Energy Corporation Post Office Box 1551/NCRH 20 Raleigh, North Carolina 27602 (919) 546-3257 Jack.jirak@duke-energy.com

Robert W. Kaylor Law Office of Robert W. Kaylor, P.A. 353 Six Forks Road, Suite 260 Raleigh, North Carolina 27609 (919) 828-5250 <u>bkaylor@rwkaylorlaw.com</u>

Copies of all pleadings, testimony, orders and correspondence in this proceeding should be served upon the attorneys listed above.

3. NCUC Rule R8-55 provides that the Commission shall schedule annual hearings pursuant to N.C. Gen. Stat. § 62-133.2 in order to review changes in the cost of fuel and fuel-related costs since the last general rate case for each utility generating electric power by means of fossil and/or nuclear fuel for the purpose of furnishing North Carolina retail electric service. Rule R8-55 schedules an annual cost of fuel and fuel-related costs adjustment hearing for DEC and requires that DEC use a calendar year test period (12 months ended December 31). Therefore, the test period used in this Application for these proceedings is the calendar year 2020.

4. In Docket No. E-7, Sub 1228, DEC's last fuel case, the Commission approved the following base fuel and fuel-related costs factors (excluding gross receipts tax and regulatory fee):

Residential -	1.6391 ¢ per kWh
Commercial -	1.8249 ¢ per kWh
Industrial -	1.9310 ¢ per kWh

5. In this Application, DEC proposes base fuel and fuel-related costs factors (excluding gross receipts tax and regulatory fee) of:

Residential -	1.4755¢ per kWh
Commercial -	1.7254¢ per kWh
Industrial -	1.7589¢ per kWh

The base fuel and fuel-related cost factors should be adjusted for the Experience Modification Factor ("EMF") by an increment/(decrement) (excluding gross receipts tax and regulatory fee) of:

Residential -(0.0259)¢ per kWhCommercial -(0.0207)¢ per kWhIndustrial -0.0770¢ per kWh

The base fuel and fuel-related costs factors should also be adjusted for the EMF interest (decrement) (excluding gross receipts tax and regulatory fee) of:

Residential -	(0.0040)¢ per kWh
Commercial -	(0.0032)¢ per kWh
Industrial -	0.0000¢ per kWh

This results in composite fuel and fuel-related costs factors (excluding gross receipts tax and regulatory fee) of:

Residential -	1.4456¢ per kWh
Commercial -	1.7015¢ per kWh
Industrial -	1.8359¢ per kWh

The new fuel factors would have an effective date of September 1, 2021.

6. The information and data required to be filed by NCUC Rule R8-55 is contained in the testimony and exhibits of Bryan L. Sykes, Kevin Y. Houston, John A. Verderame, Steve Immel and Steven D. Capps which are being filed simultaneously with this Application and incorporated herein by reference.

7. For comparison, in accordance with Rule R8-55(d)(1) and R8-55(e)(3),

base fuel and fuel-related costs factors were also calculated based on the most recent North American Electric Reliability Corporation ("NERC") five-year national weighted average nuclear capacity factor (91.95%) and projected period sales and the methodology used for fuel costs in DEC's last general rate case. These base fuel and fuel-related costs factors are:

NERC Average

Last General Rate Case

Residential -	1.4613¢ per kWh	1.4459¢ per kWh
Commercial -	1.7115¢ per kWh	1.6872¢ per kWh
Industrial -	1.8437¢ per kWh	1.8254¢ per kWh

WHEREFORE, Duke Energy Carolinas requests that the Commission issue an

order approving composite fuel and fuel-related costs factors (excluding gross receipts tax

and regulatory fee) of:

Residential -	1.4456¢ per kWh
Commercial -	1.7015¢ per kWh
Industrial -	1.8359¢ per kWh

Respectfully submitted this 23rd day of February, 2021.

By:

Jack E. Jirak Associate General Counsel Duke Energy Corporation Post Office Box 1551/NCRH 20 Raleigh, North Carolina 27602 Tel: (919) 546-3257 Jack.jirak@duke-energy.com

Robert W. Kaylor Law Office of Robert W. Kaylor, P.A. 353 Six Forks Road, Suite 260 Raleigh, North Carolina 27609 Tel: (919) 828-5250 <u>bkaylor@rwkaylorlaw.com</u> North Carolina State Bar No. 6237

ATTORNEYS FOR DUKE ENERGY CAROLINAS, LLC

VERIFICATION

STATE OF NORTH CAROLINA)	
)	DOCKET NO. E-7, SUB 1250
COUNTY OF MECKLENBURG)	

Byran L. Sykes, being first duly sworn, deposes and says:

That he is RATES MANAGER for DUKE ENERGY CAROLINAS, LLC, applicant in the above-titled action; that he has read the foregoing Application and knows the contents thereof; that the same is true except as to the matters stated therein on information and belief; and as to those matters, he believes it to be true.

Bryan L. Sykes

Signed and sworn to before me this day by Bryan Name of princip Date: $\lambda - S$ (Official Peggy Ho Notary's printed or type Ho Hon, Notary Public My commission expires: (2/22/202)

I signed this notarial certificate on 2-5-2021 according to the emergency video notarization requirements contained in G.S. 10B-25.

Notary Public location during video notarization: Wake County

Stated physical location of principal during video notarization: Mecklenburg County

BEFORE THE NORTH CAROLINA UTILITIES COMMISSION

DOCKET NO. E-7, SUB 1250

In the Matter of)	
Application of Duke Energy Carolinas, LLC)	DIRECT TESTIMONY
Pursuant to G.S. 62-133.2 and NCUC Rule)	OF BRYAN L. SYKES FOR
R8-55 Relating to Fuel and Fuel-Related)	DUKE ENERGY CAROLINAS, LLC
Charge Adjustments for Electric Utilities)	

Feb 23 2021

1

Q. PLEASE STATE YOUR NAME AND BUSINESS ADDRESS.

A. My name is Bryan L. Sykes. My business address is 550 South Tryon Street,
Charlotte, North Carolina.

4 Q. BY WHOM ARE YOU EMPLOYED AND IN WHAT CAPACITY?

5 A. I am Rates Manager for Duke Energy Carolinas, LLC ("DEC" or the
6 "Company").

7 Q. PLEASE SUMMARIZE YOUR EDUCATION AND PROFESSIONAL 8 QUALIFICATIONS.

9 I received my Bachelor of Science and Master of Science Degrees in Accounting A. 10 from East Carolina University. I am a certified public accountant licensed in the 11 State of North Carolina. I began my career in 2001 with Arthur Andersen, LLP 12 as a staff auditor. From 2001 until 2006 I held various roles in public accounting 13 firms, including Grant Thornton, LLP (successor to Arthur Andersen, LLP) and 14 subsequently PricewaterhouseCoopers, LLP. In 2006, I started at Progress 15 Energy, Inc. as a financial auditor and subsequently held a variety of positions in 16 the accounting organization before and after the merger with Duke Energy 17 Corporation in 2012. I joined the Rates Department in 2019 as Manager, Rates 18 and Regulatory Filings.

19 Q. PLEASE DESCRIBE YOUR DUTIES AS RATES MANAGER FOR 20 DEC.

A. I am responsible for providing regulatory support for retail rates, providing
guidance on DEC's fuel and fuel-related cost recovery application in North
Carolina, and its fuel cost recovery application in South Carolina.

1

2

Q. HAVE YOU PREVIOUSLY TESTIFIED BEFORE THE NORTH CAROLINA UTILITIES COMMISSION?

A. Yes. I provided testimony in Docket Nos. E-7, Sub 1231 and E-2, Sub 1254
regarding Duke Energy Carolinas, LLC and Duke Energy Progress, LLC's
compliance reports and applications for approval of their respective CPRE cost
recovery riders in 2020.

7 Q. ARE YOU FAMILIAR WITH THE ACCOUNTING PROCEDURES AND 8 BOOKS OF ACCOUNT OF DEC?

9 A. Yes. DEC's books of account follow the uniform classification of accounts
10 prescribed by the Federal Energy Regulatory Commission ("FERC").

11 Q. WHAT IS THE PURPOSE OF YOUR TESTIMONY?

A. The purpose of my testimony is to present the information and data required by North Carolina General Statutes ("N.C. Gen. Stat.") § 62-133.2(c) and (d) and Commission Rule R8-55, as set forth in Sykes Exhibits 1 through 6, along with supporting work papers. The test period used in supplying this information and data is the twelve months ended December 31, 2020 ("test period"), and the billing period is September 1, 2021 through August 31, 2022 ("billing period").

18 Q. WHAT IS THE SOURCE OF THE ACTUAL INFORMATION AND 19 DATA FOR THE TEST PERIOD?

A. Actual test period kilowatt hour ("kWh") generation, kWh sales, fuel-related
revenues, and fuel-related expenses were taken from DEC's books and records.
These books, records, and reports of DEC are subject to review by the appropriate
regulatory agencies in the three jurisdictions that regulate DEC's electric rates. In

1		addition, independent auditors perform an annual audit to provide assurance that,		
2		in all material respects, internal accounting controls are operating effectively and		
3		DEC's financial statements a	re accurate.	
4	Q.	WERE SYKES EXHIBITS	S 1 THROUGH 6 PREPARED BY YOU OR AT	
5		YOUR DIRECTION AND	UNDER YOUR SUPERVISION?	
6	A.	Yes, these exhibits were eith	er prepared by me or at my direction and under my	
7		supervision, and consist of th	e following:	
8		Exhibit 1: Summary Con	mparison of Fuel and Fuel-Related Costs Factors.	
9		Exhibit 2:		
10		Schedule 1:	Fuel and Fuel-Related Costs Factors - reflecting a	
11			93.21% proposed nuclear capacity factor and	
12			projected megawatt hour ("MWh") sales.	
13		Schedule 2:	Fuel and Fuel-Related Costs Factors - reflecting a	
14			93.21% nuclear capacity factor and normalized	
15			test period sales.	
16		Schedule 3:	Fuel and Fuel-Related Costs Factors - reflecting a	
17			91.95% North American Electric Reliability	
18			Corporation ("NERC") five-year national	
19			weighted average nuclear capacity factor for	
20			pressurized water reactors and projected billing	
21			period MWh sales.	

1		Exhibit 3:		
2			Page 1:	Calculation of the Proposed Composite Experience
3				Modification Factor ("EMF") rate.
4			Page 2:	Calculation of the EMF for residential customers.
5			Page 3:	Calculation of the EMF for general service/lighting
6				customers.
7			Page 4:	Calculation of the EMF for industrial customers.
8		Exhibit 4:	MWh S	ales, Fuel Revenue, and Fuel and Fuel-Related Expense,
9			as well a	as System Peak for the test period.
10		Exhibit 5:	Nuclear	Capacity Ratings.
11		Exhibit 6:	Decemb	per 2020 Monthly Fuel Reports.
12			1)	December 2020 Monthly Fuel Report required by NCUC
13				Rule R8-52.
14			2)	December 2020 Monthly Base Load Power Plant
15				Performance Report required by NCUC Rule R8-53.
16	Q.	PLEASE EX	PLAIN S	SYKES EXHIBIT 1.
17	А.	Sykes Exhibit	1 present	s a summary of fuel and fuel-related cost factors, including
18		the current fu	el and fue	el-related cost factors, the fuel and fuel-related cost factor
19		calculations a	s required	under Rule R8-55, and the proposed fuel and fuel-related
20		cost factors.		
21	Q.	WHAT FUE	EL AND	FUEL-RELATED COSTS FACTORS DOES DEC
22		PROPOSE F	OR INC	LUSION IN RATES FOR THE BILLING PERIOD?
23	A.	DEC propos	es fuel a	and fuel-related costs factors for residential, general

1	service/lighting, and industrial customers of 1.4456¢, 1.7015¢, and 1.8359¢ per
2	kWh, respectively, to be reflected in rates during the billing period. The factors
3	DEC proposes in this proceeding incorporate a 93.21% nuclear capacity factor as
4	testified to by Company witness Capps, projected fossil fuel costs as testified to
5	by Company witness Verderame, projected nuclear fuel costs as testified to by
6	Company witness Houston, and projected reagents costs as testified to by
7	Company witness Immel. The components of the proposed fuel and fuel-related
8	cost factors by customer class, as shown on Sykes Exhibit 1, are as follows:

	Residential	General	Industrial	Composite
Description	cents/kWh	cents/kWh	cents/kWh	cents/kWh
Total adjusted Fuel and Fuel Related Costs	1.4755	1.7254	1.7589	1.6414
EMF Increment (Decrement)	(0.0259)	(0.0207)	0.0770	(0.0033)
EMF Interest (Decrement)	(0.0040)	(0.0032)	-	(0.0029)
Net Fuel and Fuel Related Costs Factors	1.4456	1.7015	1.8359	1.6352

10

9

11 Q WHAT IS THE IMPACT TO CUSTOMERS' BILLS IF THE PROPOSED 12 FUEL AND FUEL-RELATED COSTS FACTORS ARE APPROVED BY 13 THE COMMISSION?

A. The proposed fuel and fuel-related costs factors will result in a 1.89% decrease
on customers' bills. The table below shows both the proposed and existing fuel
and fuel-related costs factors.

	Residential	General	Industrial	Composite
Description	cents/kWh	cents/kWh	cents/kWh	cents/kWh
Proposed Total Fuel Factor	1.4456	1.7015	1.8359	1.6352
Existing Total Fuel Factor	1.6391	1.8249	1.9310	1.7791
Decrease in Fuel Factor	(0.1935)	(0.1234)	(0.0951)	

17

18 Q. WHAT ARE THE KEY DRIVERS IMPACTING THE PROPOSED FUEL

1

AND FUEL-RELATED COSTS FACTORS?

A. The decrease in the proposed net fuel and fuel-related costs factors is primarily
driven by a \$2 million over-recovery in the current test period compared to a \$57
million under-recovery included in current rates. In addition, estimated system
fuel costs in the billing period are lower due to lower kilowatt-hour sales and lower
commodity prices.

7 Q. HOW DOES DEC DEVELOP THE FUEL FORECASTS FOR ITS 8 GENERATING UNITS?

9 A. For this filing, DEC used an hourly dispatch model in order to generate its fuel 10 forecasts. This hourly dispatch model considers the latest forecasted fuel prices, 11 outages at the generating units based on planned maintenance and refueling 12 schedules, forced outages at generating units based on historical trends, generating 13 unit performance parameters, and expected market conditions associated with 14 power purchases and off-system sales opportunities. In addition, the model 15 dispatches DEC's and DEP's generation resources via joint dispatch, which 16 optimizes the generation fleets of DEC and DEP for the benefit of customers.

Q. PLEASE EXPLAIN WHAT IS SHOWN ON SYKES EXHIBIT 2, SCHEDULES 1, 2, AND 3, INCLUDING THE NUCLEAR CAPACITY FACTORS.

A. Exhibit 2 is divided into three schedules. Schedule 1 sets forth system fuel costs
used in the determination of the prospective fuel and fuel-related costs. The
calculation uses the nuclear capacity factor of 93.21% and provides the forecasted
MWh sales for the billing period on which system generation and costs are based.

Forecasted generation and purchased power associated with the Company's CPRE Program, established by N.C. Gen. Stat § 62-110.8 and approved by this Commission in Docket No. E-7, Sub 1156, used to supply the Company's native load has been included in Exhibit 2. The purchased and generated power costs associated with this generation are included in the Company's Rider CPRE filing in Docket No. E-7, Sub 1247.

Schedule 2 also uses the proposed capacity factor of 93.21% along with
normalized test period kWh generation, as prescribed by NCUC Rule R8-55
(e)(3), which requires the use of the methodology adopted by the Commission in
DEC's last general rate case.

The capacity factor shown on Schedule 3 is prescribed in NCUC Rule R8-55(d)(1). The normalized five-year national weighted average NERC nuclear capacity factor is 91.95%. This capacity factor is based on the 2015 through 2019 data reported in the NERC Generating Unit Statistical Brochure for pressurized water reactors rated at and above 800 MWs. Projected billing period kWh generation was also used for Schedule 3 per NCUC Rule R8-55 (d)(1).

Page 2 of Exhibit 2, Schedules 1, 2, and 3 presents the calculation of the proposed fuel and fuel-related costs factors by customer class resulting from the allocation of renewable and cogeneration power capacity costs by customer class on the basis of peak demand, a proxy for the production plant allocator since the annual cost of service study is not available at the timing of filing. Page 3 of Exhibit 2, Schedules 1, 2, and 3 shows the allocation of system fuel costs to the North Carolina retail jurisdiction, and the calculation of DEC's proposed fuel and fuel-related costs factors for the residential, general service/lighting and industrial classes, exclusive of regulatory fee, using the uniform percentage average bill adjustment method.

1

2

3

4

5

6 Q. PLEASE SUMMARIZE THE METHOD USED TO ADJUST TEST 7 PERIOD KWH GENERATION IN SYKES EXHIBIT 2, SCHEDULES 2 8 AND 3.

9 A. The methodology used by DEC in its most recent general rate case for determining 10 generation mix is based upon generation dispatch modeling as used on Sykes 11 Exhibit 2, Schedule 1. For purposes of this filing, as a proxy for generation 12 dispatch modeling, Sykes Exhibit 2, Schedules 2 and 3 adjust the coal generation 13 produced by the dispatch model. For example, on Exhibit 2, Schedule 2, which is 14 based on the proposed capacity factor and normalized test period sales, DEC 15 decreased the level of coal generation to account for the difference between 16 forecasted generation and normalized test period generation. On Exhibit 2, 17 Schedule 3, which is based on the NERC capacity factor, DEC increased the level 18 of coal generation to account for the decrease in nuclear generation. The decrease 19 in nuclear generation results from assuming a 91.95% NERC nuclear capacity 20 factor compared to the proposed 93.21% nuclear capacity factor.

Q. SYKES EXHIBIT 3 SHOWS THE CALCULATION OF THE TEST PERIOD OVER/(UNDER) RECOVERY BALANCE AND THE EMF RATE. HOW DID FUEL EXPENSES COMPARE WITH FUEL

1

REVENUE DURING THE TEST PERIOD?

2 A. Sykes Exhibit 3, Pages 1 through 4, demonstrates that for the test period, DEC 3 experienced an over-recovery for the residential and general service/lighting 4 customer classes of \$6.0 million and \$4.8 million, respectively, and an under-5 recovery for the industrial customer class of \$8.9 million. There are two adjustments included in the calculation of the over-recovery balance at December 6 7 31, 2020. The first adjustment relates to the months of January 2020 through 8 March 2020, which were included in the fuel rate approved in the last fuel and 9 fuel-related cost recovery proceeding and are included for Commission review in 10 the current proceeding. The Company has excluded the amount of over-recovery 11 for the months of January 2020 through March 2020 that was included in the EMF 12 approved in Docket E-7, Sub 1228 when computing the proposed EMF factors. 13 For purposes of computing interest on amounts to be refunded to residential and 14 general service customers in this proceeding, a second adjustment is being made. 15 The Company has adjusted the over-recovery amount to exclude customer credits 16 for payments the Company received related to purchased power contract terms. 17 Such amounts are not considered a refund of amounts advanced by customers and

18 accordingly are not included in the computation of interest on over-recovery.

19 The over/(under) recovery amount was determined each month by 20 comparing the amount of fuel revenue collected for each class to actual fuel and 21 fuel-related costs incurred by class. The revenue collected is based on actual 22 monthly sales for each class. Actual fuel and fuel-related costs incurred were first 23 allocated to the NC retail jurisdiction based on jurisdictional sales, with

1 consideration given to any fuel and fuel-related costs or benefits that should be 2 directly assigned. The North Carolina retail amount is further allocated among 3 customer classes as follows: (1) capacity-related purchased power costs were 4 allocated among customer classes based on production plant allocators from 5 DEC's cost of service study and (2) all other fuel and fuel-related costs were 6 allocated among customer classes based on fixed allocation percentages 7 established in DEC's previous fuel and fuel-related cost recovery proceeding 8 based on the uniform percentage average bill adjustment method.

9 Q. PLEASE EXPLAIN SYKES EXHIBIT 4.

10 A. As required by NCUC Rule R8-55(e)(1) and (e)(2), Sykes Exhibit 4 sets forth test 11 period actual MWh sales, the customer growth MWh adjustment, and the weather 12 MWh adjustment. Test period MWh sales were normalized for weather using a 13 30-year period and adjusted for projected customer growth. Both of these 14 adjustments were determined using the methods approved for use in DEC's last 15 general rate case (Docket No. E-7, Sub 1146) and used in its last fuel proceeding. 16 Sykes Exhibit 4 also sets forth actual test period fuel-related revenue and fuel 17 expense on a total DEC basis and for North Carolina retail. Finally, Sykes Exhibit 18 4 shows the test period peak demand for the system and for North Carolina retail 19 customer classes.

20 Q. PLEASE EXPLAIN SYKES EXHIBIT 5.

A. Sykes Exhibit 5 sets forth the capacity ratings for each of DEC's nuclear units, in
compliance with Rule R8-55(e)(12).

1

2

Q. DO YOU BELIEVE DEC'S FUEL AND FUEL-RELATED COSTS INCURRED IN THE TEST YEAR ARE REASONABLE?

3 Yes. As shown on Sykes Exhibit 6, DEC's test year actual fuel and fuel-related A. 4 costs were 1.7305¢ per kWh. Key factors in DEC's ability to maintain lower fuel 5 and fuel-related rates for the benefit of customers include (1) its diverse generating portfolio mix of nuclear, coal, natural gas, and hydro; (2) lower natural gas prices; 6 7 (3) the high capacity factors of its nuclear fleet; and (4) fuel procurement strategies 8 that mitigate volatility in supply costs. Other key factors include the combination 9 of DEC's and DEP's respective skills in procuring, transporting, managing, and 10 blending fuels, procuring reagents and the increased and broader purchasing 11 ability of Duke Energy Corporation after its merger with Progress Energy, Inc., as 12 well as the joint dispatch of DEC's and DEP's generation resources. Company 13 witness Capps discusses the performance of DEC's nuclear generation fleet, and 14 Company witness Immel discusses the performance of the fossil and hydro fleet, 15 as well as the use of chemicals for reducing emissions. Company witness 16 Verderame discusses fossil fuel procurement strategies, and Company witness 17 Houston discusses DEC's nuclear fuel costs and procurement strategies.

Q. IN DEVELOPING THE PROPOSED FUEL AND FUEL-RELATED COSTS FACTORS, WERE THE FUEL COSTS ALLOCATED IN ACCORDANCE WITH N.C. GEN. STAT. § 62-133.2(A2)?

A. Yes, the costs for which statutory guidance is provided are allocated in compliance
with N.C. Gen. Stat. § 62-133.2(a2). These costs are described in subdivisions
(4), (5), (6), (10) and (11) of N.C. Gen. Stat. § 62-133.2(a1). Subdivisions (4),

1		(6), (10) and (11) address purchased power non-capacity costs. Subdivisions (5),
2		(6), (10) and (11) address purchased power capacity costs. The allocation methods
3		for these costs are as follows:
4		(a) Capacity-related purchased power costs in Subdivisions (5), (6), (10)
5		and (11) are allocated based upon peak demand, a proxy for the production plant
6		allocator since the annual cost of service study is not available at the timing of
7		filing from the latest annual cost of service study.
8		(b) Non-capacity related purchased power costs in Subdivisions (4), (6),
9		(10) and (11) are allocated in the same manner as all other fuel and fuel-related
10		costs, using a uniform percentage average bill adjustment method.
11	Q.	HOW ARE THE OTHER FUEL AND FUEL-RELATED COSTS
12		ALLOCATED FOR WHICH THERE IS NO SPECIFIC GUIDANCE IN
13		N.C. GEN. STAT. § 62-133.2(A2)?
14	A.	System costs are allocated to the NC retail jurisdiction based on jurisdictional
15		sales, with consideration given to any fuel and fuel-related costs or benefits that
16		should be directly assigned. Costs are further allocated among customer classes
17		using the uniform percentage average bill adjustment methodology in setting fuel
18		rates in this fuel proceeding. DEC proposes to use the same uniform percentage
19		average bill adjustment methodology to adjust its fuel rates to reflect a proposed
20		decrease in fuel and fuel-related costs as it did in its 2020 fuel and fuel-related cost
21		recovery proceeding in Docket No. E-7, Sub 1228.
22	Q.	PLEASE EXPLAIN THE CALCULATION OF THE UNIFORM
23		PERCENTAGE AVERAGE BILL ADJUSTMENT METHOD SHOWN

1

ON SYKES EXHIBIT 2, PAGE 3 OF SCHEDULES 1, 2, AND 3.

2 Sykes Exhibit 2, Page 3 of Schedule 1, shows DEC's proposed fuel and fuel-A. 3 related cost factors for the residential, general service/lighting and industrial 4 classes, exclusive of regulatory fee. The uniform bill percentage change of 5 (1.89%) was calculated by dividing the fuel and fuel-related cost decrease of 6 \$83,415,574 for North Carolina retail by the normalized annual North Carolina 7 retail revenues at current rates of \$4,419,603,081. The cost decrease of 8 \$83,415,574 was determined by comparing the total proposed fuel rate per kWh 9 to the total fuel rate per kWh currently being collected from customers and 10 multiplying the resulting decrease in fuel rate per kWh by projected North 11 Carolina retail kWh sales for the billing period. The proposed fuel rate per kWh 12 represents the rate necessary to recover projected period fuel costs for the billing 13 period (as computed on Sykes Exhibit 2, Schedule 1) and the proposed composite 14 EMF decrement rate (as computed on Sykes Exhibit 3, page 1). This results in a 15 uniform bill percentage change of (1.89)%. Sykes Exhibit 2, Page 3 of Schedules 16 2 and 3 uses the same calculation, but with the methodology as prescribed by 17 NCUC Rule R8-55(e)(3) and NCUC Rule R8-55(d)(1), respectively.

Q. HOW ARE SPECIFIC FUEL AND FUEL-RELATED COSTS FACTORS FOR EACH CUSTOMER CLASS DERIVED FROM THE UNIFORM PERCENT ADJUSTMENT COMPUTED ON SYKES EXHIBIT 2, PAGE

- 21 **3 OF SCHEDULES 1, 2, AND 3?**
- A. Sykes Exhibit 2, Page 3 of Schedules 1, 2, and 3 uses the same calculation, but
 with the methodology as prescribed by NCUC Rule R8-55(e)(3) and NCUC Rule

1		R8-55 (d)(1), respectively, with the breakdown shown on Sykes Exhibit 2, Page
2		2 of Schedules 2 and 3. The equal percent increase or decrease for each customer
3		class is applied to current annual revenues by customer class to determine a dollar
4		amount of increase or decrease for each customer class. The dollar increase or
5		decrease is divided by the period sales for each class (either projected billing
6		period or adjusted test period) to derive a cents per kWh increase or decrease. The
7		current total fuel and fuel-related cost factors for each class are increased or
8		decreased by the proposed cents per kWh increases or decreases to get the
9		proposed total fuel and fuel-related cost factors. The proposed total factors are
10		then separated into the prospective and EMF components by subtracting the EMF
11		components for each customer class (as computed on Sykes Exhibit 3, Page 2, 3,
12		and 4) to derive the prospective component for each customer class. This
13		breakdown is shown on Sykes Exhibit 2, Page 2 of Schedules 1, 2, and 3.
14	Q.	HAS DEC'S ANNUAL INCREASE IN THE AGGREGATE AMOUNT OF
15		THE COSTS IDENTIFIED IN SUBDIVISIONS (4), (5), (6), (10) AND (11)
16		OF N.C. GEN. STAT. § 62-133.2(a1) EXCEEDED 2.5% OF ITS NORTH
17		CAROLINA RETAIL GROSS REVENUES FOR THE TEST PERIOD?
18	A.	No. N.C. Gen. Stat. § 62-133.2(a2) limits the amount of annual increase in certain
19		purchased power costs identified in § 62-133.2(a1) that DEC can recover to 2.5%
20		of its North Carolina retail gross revenues for the preceding calendar year. The
21		amount recoverable in DEC's proposed rates for purchased power under the
22		relevant sections of N.C. Gen. Stat. § 62-133.2(a1) does not increase by more than

23 2.5% of DEC's gross revenues for its North Carolina retail jurisdiction for the test

1 period.

2	Q.	HAS DEC FILED WORKPAPERS SUPPORTING THE
3		CALCULATIONS, ADJUSTMENTS, AND NORMALIZATIONS AS
4		REQUIRED BY NCUC RULE R8-55(E)(11)?
5	A.	Yes. The work papers supporting the calculations, adjustments and
6		normalizations are included with the filing in this proceeding.
7	Q.	DOES THIS CONCLUDE YOUR PRE-FILED DIRECT TESTIMONY?

8 A. Yes, it does.

Duke Energy Carolinas, LLC North Carolina Annual Fuel and Fuel Related Expense Summary Comparison of Fuel and Fuel Related Cost Factors Test Period Ended December 31, 2020 Billing Period September 2021 - August 2022 Docket E-7, Sub 1250

Line #	Description	Reference	Residential cents/kWh	General cents/kWh	Industrial cents/kWh	Composite cents/kWh
	Current Fuel and Fuel Related Cost Factors (Approved Fuel Rider Docket No. E-7, Sub 1228)					
1	Approved Fuel and Fuel Related Costs Factors	Input	1.6027	1.7583	1.6652	1.6816
2	EMF Increment	Input	0.0364	0.0666	0.2658	0.0975
3	EMF Interest Decrement cents/kWh	Input	0.0000	0.0000	0.0000	0.0000
4	Approved Net Fuel and Fuel Related Costs Factors	Sum	1.6391	1.8249	1.9310	1.7791
	Fuel and Fuel Related Cost Factors Required by Rule R8-55					
5	Proposed Nuclear Capacity Factor of 93.21% and Normalized Test Period Sales	Exh 2 Sch 2 pg 2	1.4459	1.6872	1.8254	1.6255
6	NERC 5 Year Average Nuclear Capacity Factor of 91.95% and Projected Period Sales	Exh 2 Sch 3 pg 2	1.4613	1.7115	1.8437	1.6469
	Proposed Fuel and Fuel Related Cost Factors using Proposed Nuclear Capacity Factor of 93.21%					
7	Fuel and Fuel Related Costs excluding Purchased Capacity cents/kWh	Exh 2 Sch 1 pg 2	1.4394	1.6997	1.7368	1.6125
8	REPS Compliance and QF Purchased Power - Capacity cents/kWh	Exh 2 Sch 1 pg 2	0.0361	0.0257	0.0221	0.0289
9	Total adjusted Fuel and Fuel Related Costs cents/kWh	Sum	1.4755	1.7254	1.7589	1.6414
10	EMF Increment (Decrement) cents/kWh	Exh 3 pg 2, 3, 4	(0.0259)	(0.0207)	0.0770	(0.0033)
11	EMF Interest (Decrement) cents/kWh	Exh 3 pg 2, 3, 4	(0.0040)	(0.0032)	0.0000	(0.0029)
12	Net Fuel and Fuel Related Costs Factors cents/kWh	Sum	1.4456	1.7015	1.8359	1.6352

Note: Fuel factors exclude regulatory fee

Sykes Exhibit 1

Feb 23 2021

Duke Energy Carolinas, LLC North Carolina Annual Fuel and Fuel Related Expense Calculation of Fuel and Fuel Related Cost Factors Using: Proposed Nuclear Capacity Factor of 93.21% Test Period Ended December 31, 2020 Billing Period September 2021 - August 2022 Docket E-7, Sub 1250

			Generation	Unit Cost	Fuel Cost
Line #	Unit	Reference	(MWh)	(cents/kWh)	(\$)
			D	E	D * E = F
1	Total Nuclear	Workpaper 1	58,622,085	0.6057	355,077,645
2	Coal	Workpaper 3 & 4	18,691,906	2.3444	438,222,003
3	Gas CT and CC	Workpaper 3 & 4	22,065,718	2.2833	503,828,581
4	Reagents and Byproducts	Workpaper 9			25,707,869
5	Total Fossil	Sum	40,757,624		967,758,453
6	Hydro	Workpaper 3	4,030,270		
7	Net Pumped Storage	Workpaper 3	(2,872,983)		
8	Total Hydro	Sum	1,157,287		-
9	Solar Distributed Generation	Workpaper 3	367,302		-
		Line 1 + Line 5 + Line 8 +			
10	Total Generation	Line 9	100,904,299		1,322,836,098
11	Less Lee CC Joint Owners	Workpaper 3 & 4	(876,000)		(16,986,285)
12	Less Catawba Joint Owners	Workpaper 3 & 4	(14,848,200)		(89,940,492)
13	Fuel expense recovered through reimbursement	Workpaper 4			(6,522,205)
14	Net Generation	Sum Lines 10-13	85,180,099		1,209,387,117
15	Purchased Power	Workpaper 3 & 4	8,109,496	3.0679	248,794,545
16	JDA Savings Shared	Workpaper 5		_	7,856,711
17	Total Purchased Power		8,109,496		256,651,255
18	Total Generation and Purchased Power	Line 14 + Line 17	93,289,595	1.5715	1,466,038,372
19	Fuel expense recovered through intersystem sales	Workpaper 3 & 4	(1,789,852)	1.6030	(28,691,221)
20	Line losses and Company use	Line 22-Line 18-Line 19	(3,809,747)		-
21	System Fuel Expense for Fuel Factor	Lines 18 + 19 + 20			1,437,347,151
22	Projected System MWh Sales for Fuel Factor	Workpaper 7	87,689,996		87,689,996
23	Fuel and Fuel Related Costs cents/kWh	Line 21 / Line 22 / 10			1.6391

Note: Rounding differences may occur

OFFICIAL COPY

Duke Energy Carolinas, LLC North Carolina Annual Fuel and Fuel Related Expense Calculation of Fuel and Fuel Related Cost Factors Using: Proposed Nuclear Capacity Factor of 93.21% Test Period Ended December 31, 2020 Billing Period September 2021 - August 2022 Docket E-7, Sub 1250

Line #	Description	Reference	Residential	GS/Lighting	Industrial	Total
1	NC Projected Billing Period MWh Sales	Workpaper 7	21,803,077	24,128,419	12,036,241	57,967,737
<u>Calcula</u>	tion of Renewable and Cogeneration Purchased Power Capacity Rate by Class					<u>Amount</u>
2	Purchased Power for REPS Compliance - Capacity	Workpaper 4				\$ 13,866,978
3	QF Purchased Power - Capacity	Workpaper 4				11,169,971
4	Total of Renewable and QF Purchased Power Capacity	Line 2 + Line 3				\$ 25,036,948
5	NC Portion - Jursidicational % based on Peak Demand Allocator	Input				66.90%
6	NC Renewable and QF Purchased Power - Capacity	Line 4 * Line 5				\$ 16,749,046
7	Peak Demand Allocation Factors	Input	47.00%	37.09%	15.91%	100.00%
8	Renewable and QF Purchased Power - Capacity allocated on Peak Demand	Line 6 * Line 7	\$ 7,872,063	\$ 6,212,405 \$	2,664,577	\$ 16,749,046
9	Renewable and QF Purchased Power - Capacity cents/kWh based on Projected Billing Period Sales	Line 8 / Line 1 / 10	0.0361	0.0257	0.0221	0.0289
<u>Summa</u>	ry of Total Rate by Class					
10	Fuel and Fuel Related Costs excluding Purchased Power for REPS Compliance and QF Purchased Capacity cents/kWh	Line 15 - Line 11 - Line 13 - Line 14	1.4394	1.6997	1.7368	1.6125
11	REPS Compliance and QF Purchased Power - Capacity cents/kWh	Line 9	0.0361	0.0257	0.0221	0.0289
12	Total adjusted Fuel and Fuel Related Costs cents/kWh	Line 10 + Line 11	1.4755	1.7254	1.7589	1.6414
13	EMF Increment (Decrement) cents/kWh	Exh 3 pg 2, 3, 4	(0.0259)	(0.0207)	0.0770	(0.0033)
14	EMF Interest (Decrement) cents/kWh	Exh 3 pg 2, 3, 4	(0.0040)	(0.0032)	-	(0.0029)
15	Net Fuel and Fuel Related Costs Factors cents/kWh	Exh 2 Sch 1 Page 3	1.4456	1.7015	1.8359	1.6352

Note: Rounding differences may occur

Sykes Exhibit 2 Schedule 1 Page 2 of 3

Duke Energy Carolinas, LLC North Carolina Annual Fuel and Fuel Related Expense Calculation of Uniform Percentage Average Bill Adjustment by Customer Class Proposed Nuclear Capacity Factor of 93.21% Test Period Ended December 31, 2020 Billing Period September 2021 - August 2022 Docket E-7, Sub 1250

Line #	Rate Class	Projected Billing Period MWh Sales	Annual Revenue at Current rates	Allocate Fuel Costs Increase/(Decrease) to Customer Class	Increase/(Decrease) as % of Annual Revenue at Current Rates	Total Fuel Rate Increase/(Decrease)	Current Total Fuel Rate (including Capacity and EMF) E-7, Sub 1228	Proposed Total Fuel Rate (including Capacity and EMF)
		А	В	С	D	E	F	G
		Workpaper 7	Workpaper 8	Line 25 as a % of Column B	С/В	If D=0 then 0 if not then (C*100)/(A*1000)	Sykes Exhibit 1	E + F = G
1	Residential	21,803,077	\$ 2,235,509,347	\$ (42,192,996)	-1.89%	(0.1935)	1.6391	1.4456
2	General Service/Lighting	24,128,419	1,577,855,414	(29,780,438)	-1.89%	(0.1234)	1.8249	1.7015
3	Industrial	12,036,241	606,238,320	(11,442,140)	-1.89%	(0.0951)	1.9310	1.8359
4	NC Retail	57,967,737	\$ 4,419,603,081	\$ (83,415,574)	-1.89%			
:	Total Proposed Composite Fuel Rate:							
	Total Fuel Costs for Allocation	Workpaper 7 Exhibit 2 Sch 1 Page 2	\$ 1,441,525,237 25,036,948					

6	Total of Renewable and QF Purchased Power Capacity Exhibit 2 Sch 1, Page 2		_	25,036,948
7	System Other Fuel Costs	Line 5 - Line 6	\$	1,416,488,289
0	Adjusted Dusissted Customs MMA/h Cales for Fuel Faster	Merlmanny 7		07 040 050
8	Adjusted Projected System MWh Sales for Fuel Factor	Workpaper 7		87,848,058
9	NC Retail Projected Billing Period MWh Sales	Line 4		57,967,737
10	Allocation %	Line 9 / Line 8		65.99%
11	NC Retail Other Fuel Costs	Line 7 * Line 10	\$	934,740,622
12	NC Renewable and QF Purchased Power - Capacity	Exhibit 2 Sch 1, Page 2		16,749,046
13	NC Retail Total Fuel Costs	Line 11 + Line 12	\$	951,489,668
14	NC Retail Projected Billing Period MWh Sales	Line 4		57,967,737
15	Calculated Fuel Rate cents/kWh	Line 13 / Line 14 / 10		1.6414
16	Proposed Composite EMF Rate cents/kWh	Exhibit 3 Page 1		(0.0033)
17	Proposed Composite EMF Rate Interest cents/kWh	Exhibit 3 Page 1		(0.0029)
18	Total Proposed Composite Fuel Rate	Sum		1.6352
	Total Current Composite Fuel Rate - Docket E-7 Sub 1228:			
19	Current composite Fuel Rate cents/kWh	Sykes Exhibit 1		1.6816
20	Current composite EMF Rate cents/kWh	Sykes Exhibit 1		0.0975
21	Current composite EMF Interest Rate cents/kWh	Sykes Exhibit 1		0.0000
22	Total Current Composite Fuel Rate	Sum		1.7791
23	Increase/(Decrease) in Composite Fuel rate cents/kWh	Line 18 - Line 22		(0.1439)
24	NC Retail Projected Billing Period MWh Sales	Line 4		57,967,737
25	Increase/(Decrease) in Fuel Costs	Line 23 * Line 24 * 10	\$	(83,415,574)

Note: Rounding differences may occur

Sykes Exhibit 2 Schedule 1 Page 3 of 3 Duke Energy Carolinas, LLC North Carolina Annual Fuel and Fuel Related Expense Calculation of Fuel and Fuel Related Cost Factors Using: Proposed Nuclear Capacity Factor of 93.21% and Normalized Test Period Sales Test Period Ended December 31, 2020 Billing Period September 2021 - August 2022 Docket E-7, Sub 1250

Unit Cost **Fuel Cost** Generation (MWh) (cents/kWh) Line # Unit Reference (\$) D Ε D * E = F**Total Nuclear** Workpaper 1 58,622,085 0.6057 355,077,645 1 2 Coal Calculated 2.3444 17,565,881 411,822,928 3 Gas CT and CC Workpaper 3 & 4 22,065,718 2.2833 503,828,581 **Reagents and Byproducts** 4 Workpaper 9 25,707,869 39,631,599 5 **Total Fossil** Sum 941,359,378 6 Hydro Workpaper 3 4,030,270 7 Net Pumped Storage Workpaper 3 (2,872,983) 8 Total Hydro Sum 1,157,287 9 Solar Distributed Generation 367,302 Line 1 + Line 5 + Line 8 + 10 **Total Generation** Line 9 99,778,273 1,296,437,023 11 Less Lee CC Joint Owners Workpaper 3 & 4 (876,000) (16, 986, 285)12 Less Catawba Joint Owners Workpaper 3 & 4 (14, 848, 200)(89,940,492) 13 Fuel expense recovered through reimbursement Workpaper 4 (6,522,205) 14 Net Generation Sum 84,054,073 1,182,988,041 **Purchased Power** 15 Workpaper 3 & 4 8,109,496 248,794,545 16 JDA Savings Shared Workpaper 5 7,856,711 8,109,496 17 **Total Purchased Power** Sum 256,651,255 18 Total Generation and Purchased Power Line 14 + Line 17 92,163,570 1,439,639,297 19 Fuel expense recovered through intersystem sales Workpaper 3 & 4 (1,789,852) (28,691,221) 20 Line losses and Company use Line 22 - Line 19 - Line 18 (3,809,747)1,410,948,076 21 System Fuel Expense for Fuel Factor Lines 18 + 19 + 20 22 Normalized Test Period MWh Sales Exhibit 4 86,563,971 86,563,971 23 Fuel and Fuel Related Costs cents/kWh Line 21 / Line 22 / 10 1.6299 Note: Rounding differences may occur

Sykes Exhibit 2

Schedule 2

Page 1 of 3

Feb 23 2021

Duke Energy Carolinas, LLC North Carolina Annual Fuel and Fuel Related Expense Calculation of Fuel and Fuel Related Cost Factors Using: Proposed Nuclear Capacity Factor of 93.21% and Normalized Test Period Sales Test Period Ended December 31, 2020 Billing Period September 2021 - August 2022 Docket E-7, Sub 1250

Line #	Description	Reference	Residential	GS/Lighting	Industrial	Total
1	NC Normalized Test Period MWh Sales	Exhibit 4	23,329,575	23,102,975	11,570,060	58,002,609
<u>Calcula</u>	tion of Renewable Purchased Power Capacity Rate by Class					<u>Amount</u>
2	Purchased Power for REPS Compliance - Capacity	Workpaper 4				\$ 13,866,978
3	QF Purchased Power - Capacity	Workpaper 4			-	11,169,971
4 5	Total of Renewable and QF Purchased Power Capacity NC Portion - Jursidicational % based on Peak Demand Allocator	Line 2 + Line 3 Input			-	\$ 25,036,948 66.90%
6 7 8	NC Renewable and QF Purchased Power - Capacity Peak Demand Allocation Factors Renewable and QF Purchased Power - Capacity allocated on Peak Demand	Line 4 * Line 5 Input Line 6 * Line 7	47.00% \$ 7,872,063 \$	37.09% 6,212,405 \$	15.91% 2,664,577	\$ 16,749,046 100.00% \$ 16,749,046
9	Renewable and QF Purchased Power - Capacity cents/kWh based on Projected Billing Period Sales	Line 8 / Line 1 / 10	0.0337	0.0269	0.0230	0.0289
<u>Summa</u>	ry of Total Rate by Class					
10	Fuel and Fuel Related Costs excluding Purchased Power for REPS Compliance and QF Purchased Capacity cents/kWh	Line 15 - Line 11 - Line 13 - Line 14	1.4421	1.6842	1.7254	1.6028
11	REPS Compliance and QF Purchased Power - Capacity cents/kWh	Line 9	0.0337	0.0269	0.0230	0.0289
12	Total adjusted Fuel and Fuel Related Costs cents/kWh	Line 10 + Line 11	1.4758	1.7111	1.7484	1.6317
13	EMF Increment (Decrement) cents/kWh	Exh 3 pg 2, 3, 4	(0.0259)	(0.0207)	0.0770	(0.0033)
14	EMF Interest (Decrement) cents/kWh	Exh 3 pg 2, 3, 4	(0.0040)	(0.0032)	-	(0.0029)
15	Net Fuel and Fuel Related Costs Factors cents/kWh	Exh 2 Sch 2 Page 3	1.4459	1.6872	1.8254	1.6255

Note: Rounding differences may occur

Sykes Exhibit 2 Schedule 2 Page 2 of 3

Duke Energy Carolinas, LLC North Carolina Annual Fuel and Fuel Related Expense Calculation of Uniform Percentage Average Bill Adjustment by Customer Class Proposed Nuclear Capacity Factor of 93.21% and Normalized Test Period Sales Test Period Ended December 31, 2020 Billing Period September 2021 - August 2022 Docket E-7, Sub 1250

Line #		Rate Class	Normalized Test Period MWh Sales	Annual Revenue at Current rates	Allocate Fuel Costs Increase/(Decrease) to Customer Class	Increase/(Decrease) as % of Annual Revenue at Current Rates	Total Fuel Rate Increase/(Decrease)	Current Total Fuel Rate (including Capacity and EMF) E-7, Sub 1228	Proposed Total Fuel Rate (including Capacity and EMF)
			А	В	С	D	E	F	G
			Exhibit 4	Workpaper 8	Line 25 as a % of Column B	С / В	If D=0 then 0 if not then (C*100)/(A*1000)	Sykes Exhibit 1	E + F = G
1	Residential		23,329,575	\$ 2,235,509,347	\$ (45,064,232)	-2.02%	(0.1932)	1.6391	1.4459
2	General Service/Lighting		23,102,975	\$ 1,577,855,414	(31,806,998)	-2.02%	(0.1377)	1.8249	1.6872
3	Industrial		11,570,060	\$ 606,238,320	(12,220,778)	-2.02%	(0.1056)	1.9310	1.8254
4	NC Retail		58,002,609	\$ 4,419,603,081	\$ (89,092,008)				

Total Proposed Composite Fuel Rate:

5	Total Fuel Costs for Allocation	Workpaper 7a	\$	1,415,126,162
6	Total of Renewable and QF Purchased Power Capacity	Exhibit 2 Sch 2, Page 2		25,036,948
7	System Other Fuel Costs	Line 5 - Line 6	\$	1,390,089,213
8	Normalized Test Period System MWh Sales for Fuel Factor	Workpaper 7a		86,722,032
9	NC Retail Normalized Test Period MWh Sales	Exhibit 4		58,002,609
10	Allocation %	Line 9 / Line 8		66.88%
11	NC Retail Other Fuel Costs	Line 7 * Line 10	\$	929,691,666
12	NC Renewable and QF Purchased Power - Capacity	Exhibit 2 Sch 2, Page 2	Ŷ	16,749,046
13	NC Retail Total Fuel Costs	Line 11 + Line 12	\$	946,440,712
12		Lille II + Lille IZ	Ş	940,440,712
14	NC Retail Normalized Test Period MWh Sales	Line 9		58,002,609
15	Calculated Fuel Rate cents/kWh	Line 13 / Line 14 / 10		1.6317
16	Proposed Composite EMF Rate cents/kWh	Exhibit 3 Page 1		(0.0033)
17	Proposed Composite EMF Rate Interest cents/kWh	Exhibit 3 Page 1		(0.0029)
18	Total Proposed Composite Fuel Rate	Sum		1.6255
	Total Current Composite Fuel Rate - Docket E-7 Sub 1228:			
19	Current composite Fuel Rate cents/kWh	Sykes Exhibit 1		1.6816
20	Current composite EMF Rate cents/kWh	, Sykes Exhibit 1		0.0975
21	Current composite EMF Interest Rate cents/kWh	, Sykes Exhibit 1		0.0000
22	Total Current Composite Fuel Rate	Sum		1.7791
23	Increase/(Decrease) in Composite Fuel rate cents/kWh	Line 18 - Line 22		(0.1536)
24	NC Retail Normalized Test Period MWh Sales	Exhibit 4		58,002,609
25	Increase/(Decrease) in Fuel Costs	Line 23 * Line 24 * 10	\$	(89,092,008)

Note: Rounding differences may occur

Sykes Exhibit 2 Schedule 2 Page 3 of 3 **Duke Energy Carolinas, LLC** North Carolina Annual Fuel and Fuel Related Expense NERC 5 Year Average Nuclear Capacity Factor of 91.95% and Projected Period Sales Test Period Ended December 31, 2020 **Billing Period September 2021 - August 2022** Docket E-7, Sub 1250

Line #	Unit	Reference	Generation (MWh)	Unit Cost (cents/kWh)	Fuel Cost (\$)
			D	E	D * E = F
1	Total Nuclear	Workpaper 2	57,831,714	0.6057	350,290,320
2	Coal	Calculated	19,282,087	2.3444	452,058,499
3	Gas CT and CC	Workpaper 3 & 4	22,065,718	2.2833	503,828,581
4	Reagents and Byproducts	Workpaper 9	-	_	25,707,869
5	Total Fossil	Sum	41,347,805	_	981,594,949
6	Hydro	Workpaper 3	4,030,270		
7	Net Pumped Storage	Workpaper 3	(2,872,983)		
8	Total Hydro	Sum	1,157,287		
9	Solar Distributed Generation	Workpaper 3	367,302		
		Line 1 + Line 5 + Line 8 +			
10	Total Generation	Line 9	100,704,109		1,331,885,268
11	Less Lee CC Joint Owners	Workpaper 3 & 4	(876,000)		(16,986,285)
12	Less Catawba Joint Owners	Calculated	(14,648,010)		(88,727,875)
13	Fuel expense recovered through reimbursement	Workpaper 4			(6,522,205)
14	Net Generation	Sum	85,180,099		1,219,648,904
15	Purchased Power	Workpaper 3 & 4	8,109,496		248,794,545
16	JDA Savings Shared	Workpaper 5	-	-	7,856,711
17	Total Purchased Power	Sum	8,109,496		256,651,255
18	Total Generation and Purchased Power	Line 14 + Line 17	93,289,595		1,476,300,159
19	Fuel expense recovered through intersystem sales	Workpaper 3 & 4	(1,789,852)		(28,691,221)
20	Line losses and Company use	Line 22 - Line 19 - Line 18	(3,809,747)		-
21	System Fuel Expense for Fuel Factor	Lines 18 + 19 + 20			1,447,608,938
22	Projected System MWh Sales for Fuel Factor	Workpaper 7b	87,689,996		87,689,996
23	Fuel and Fuel Related Costs cents/kWh	Line 21 / Line 22 / 10			1.6508

Sykes Exhibit 2 Schedule 3 Page 1 of 3 OFFICIAL COPY

Note: Rounding differences may occur

Duke Energy Carolinas, LLC North Carolina Annual Fuel and Fuel Related Expense Calculation of Fuel and Fuel Related Cost Factors Using: NERC 5 Year Average Nuclear Capacity Factor of 91.95% and Projected Period Sales Test Period Ended December 31, 2020 Billing Period September 2021 - August 2022 Docket E-7, Sub 1250

Line #	Description	Reference	Residential	GS/Lighting	Industrial	Total
1	NC Projected Billing Period MWh Sales	Workpaper 7b	21,803,077	24,128,419	12,036,241	57,967,737
Calculat	tion of Renewable Purchased Power Capacity Rate by Class					<u>Amount</u>
2	Purchased Power for REPS Compliance - Capacity	Workpaper 4				\$ 13,866,978
3	QF Purchased Power - Capacity	Workpaper 4			_	11,169,971
4	Total of Renewable and QF Purchased Power Capacity	Line 2 + Line 3				\$ 25,036,948
5	NC Portion - Jursidicational % based on Peak Demand Allocator	Input			_	66.90%
6	NC Renewable and QF Purchased Power - Capacity	Line 4 * Line 5			_	\$ 16,749,046
7	Peak Demand Allocation Factors	Input	47.00%	37.09%	15.91%	100.00%
8	Renewable and QF Purchased Power - Capacity allocated on Peak Demand	Line 6 * Line 7	\$ 7,872,063	\$ 6,212,405 \$	2,664,577	\$ 16,749,046
9	Renewable and QF Purchased Power - Capacity cents/kWh based on Projected Billing Period Sales	Line 8 / Line 1 / 10	0.0361	0.0257	0.0221	0.0289
Summa	ry of Total Rate by Class					
10	Fuel and Fuel Related Costs excluding Purchased Power for REPS Compliance and QF Purchased Capacity cents/kWh	Line 15 - Line 11 - Line 13 - Line 14	1.4551	1.7097	1.7446	1.6242
11	REPS Compliance and QF Purchased Power - Capacity cents/kWh	Line 9	0.0361	0.0257	0.0221	0.0289
12	Total adjusted Fuel and Fuel Related Costs cents/kWh	Line 10 + Line 11	1.4912	1.7354	1.7667	1.6531
13	EMF Increment (Decrement) cents/kWh	Exh 3 pg 2, 3, 4	(0.0259)	(0.0207)	0.0770	(0.0033
14	EMF Interest (Decrement) cents/kWh	Exh 3 pg 2, 3, 4	(0.0040)	(0.0032)	-	(0.0029
15	Net Fuel and Fuel Related Costs Factors cents/kWh	Exh 2 Sch 3 Page 3	1.4613	1.7115	1.8437	1.6469

Note: Rounding differences may occur

Sykes Exhibit 2 Schedule 3 Page 2 of 3

Duke Energy Carolinas, LLC North Carolina Annual Fuel and Fuel Related Expense Calculation of Uniform Percentage Average Bill Adjustment by Customer Class NERC 5 Year Average Nuclear Capacity Factor of 91.95% and Projected Period Sales Test Period Ended December 31, 2020 Billing Period September 2021 - August 2022 Docket E-7, Sub 1250

	Rate Class	Projected Billing Period MWh Sales	Annual Revenue at Current rates	Allocate Fuel Costs Increase/(Decrease) to Customer Class	•	Total Fuel Rate Increase/(Decrease)	Current Total Fuel Rate (including Capacity and EMF) E-7, Sub 1228	Proposed Total Fuel Rate (including Capacity and EMF)
		А	В	С	C / B = D	E	F	G
				Line 25 as a % of Columr	ı	If D=0 then 0 if not then		
		Workpaper 7b	Workpaper 8	В	С/В	(C*100)/(A*1000)	Sykes Exhibit 1	E + F = G
1	Residential	21,803,077	\$ 2,235,509,347	\$ (38,762,432	2) -1.73%	(0.1778)	1.6391	1.4613
2	General Service/Lighting	24,128,419	\$ 1,577,855,414	\$ (27,359,096	5) -1.73%	(0.1134)	1.8249	1.7115
3	Industrial	12,036,241	\$ 606,238,320	\$ (10,511,820)) -1.73%	(0.0873)	1.9310	1.8437
4	NC Retail	57,967,737	\$ 4,419,603,081	\$ (76,633,348	3)			
	Total Proposed Composite Fuel Rate:							
5	Total Fuel Costs for Allocation	Workpaper 7b	\$ 1,451,787,024					
6	Total of Renewable and QF Purchased Power Capacity	Exhibit 2 Sch 3, Page 2	25,036,948					
7	System Other Fuel Costs	Line 5 - Line 6	\$ 1,426,750,076	_				
8	Adjusted Projected System MWh Sales for Fuel Factor	Workpaper 7b	87,848,058					
9	NC Retail Projected Billing Period MWh Sales	Line 4	57,967,737	_				
10	Allocation %	Line 9 / Line 8	65.99%					
	NC Retail Other Fuel Costs	Line 7 * Line 10	\$ 941,512,375					
	NC Renewable and QF Purchased Power - Capacity	Exhibit 2 Sch 3, Page 2	16,749,046	_				
13	NC Retail Total Fuel Costs	Line 11 + Line 12	\$ 958,261,421					
14	NC Retail Projected Billing Period MWh Sales	Line 4	57,967,737					
15	Calculated Fuel Rate cents/kWh	Line 13 / Line 14 / 10	1.6531					
	Proposed Composite EMF Rate cents/kWh	Exhibit 3 Page 1	(0.0033)					
	Proposed Composite EMF Rate Interest cents/kWh	Exhibit 3 Page 1	(0.0029)	<u>)</u>				
18	Total Proposed Composite Fuel Rate	Sum	1.6469					
	Total Current Composite Fuel Rate - Docket E-7 Sub 1228:							
19	Current composite Fuel Rate cents/kWh	Sykes Exhibit 1	1.6816					
20	Current composite EMF Rate cents/kWh	Sykes Exhibit 1	0.0975					
21	Current composite EMF Interest Rate cents/kWh	Sykes Exhibit 1	0.0000	_				
22	Total Current Composite Fuel Rate	Sum	1.7791					
23	Increase/(Decrease) in Composite Fuel rate cents/kWh	Line 18 - Line 22	(0.1322))				

57,967,737

\$ (76,633,348)

Line 4

Line 23 * Line 24 * 10

25 Increase/(Decrease) in Fuel Costs

24 NC Retail Projected Billing Period MWh Sales

Note: Rounding differences may occur

Sykes Exhibit 2 Schedule 3 Page 3 of 3

Duke Energy Carolinas, LLC North Carolina Annual Fuel and Fuel Related Expense Calculation of Experience Modification Factor - Proposed Composite Test Period Ended December 31, 2020 Billing Period September 2021 - August 2022 Docket E-7, Sub 1250

Fuel Cost

lncurred ¢/kWh

Fuel Cost Billed ¢/kWh (b)	NC Retail MWh Sales (c)	(0	Reported Dver)/ Under Recovery (d)
	4,799,050	\$	(7,772,097)
			(22,331,610)

Line		(a)	(b)	(c)		(d)
No.	Month					
1	January 2020			4,79	99,050 \$	(7,772,097)
2	February				52,515 \$	(22,331,610)
3	March				19,005 \$	(22,145,172)
4	April				09,531 \$	(19,263,780)
5	May				37,498 \$	(7,856,726)
6	June ⁽¹⁾				45,349 \$	3,557,928
7	July				81,134 \$	13,395,789
8	August				79,285 \$	8,998,515
9	September				43,265 \$	(11,722,010)
10	October				61,109 \$	884,018
11	November			4,70	68,317 \$	(13,335,325)
12	December ⁽¹⁾			4,1	15,807 \$	23,445,876
13	Total Test Period			55,53	11,864 \$	(54,144,594)
14	Adjustment to remove (Over)/Under R	ecovery - Janua	ry-March 2020 ⁽²⁾		\$	(52,248,875)
15	Adjusted (Over)/Under Recovery				\$	(1,895,719)
16	NC Retail Normalized Test Period MWh	Sales		Exhibit 4		58,002,609
17	Experience Modification Increment (D	ecrement) cent	s/kWh			(0.0033)
18	Adjusted (Over)/Under Recovery				\$	(1,895,719)
19	Adjustment to remove customer credit	s for purchased	power contract terms ⁽³⁾		\$	5,318
20	Amount of refund for interest computa	tion			\$	(1,890,402)
21	Annual Interest Rate					10%
22	Monthly Interest Rate					0.83%
23	Number of Months (August 15, 2020 - I	ebruary 28, 202	22)			18.5
24	Interest				\$	(1,664,640)
25	Experience Modification Increment (D	ecrement) cent	s/kWh			(0.0029)

⁽¹⁾ Prior period corrections not included in rate incurred but are included in over/(under) recovery total

⁽²⁾ January-March 2020 filed in fuel Docket E-7, Sub 1228 to update the EMF and included in current EMF rate. Included for Commission review in accordance with NC Rule R8-55(d)(3) but deducted from total (Over)/Under on Line 16.

⁽³⁾ Purchased power contract term collections not considered a refund of amounts advanced by customers, therefore have been excluded from the computation of interest.

Rounding differences may occur

Sykes Exhibit 3 Page 2 of 4

Duke Energy Carolinas, LLC North Carolina Annual Fuel and Fuel Related Expense Calculation of Experience Modification Factor - Residential Test Period Ended December 31, 2020 Billing Period September 2021 - August 2022 Docket E-7, Sub 1250

Line		Fuel Cost Incurred ¢/kWh (a)	Fuel Cost Billed ¢/kWh (b)	NC Retail MWH Sales (c)	Reported (Over)/ Under Recovery (d)	
#	Month	(a)	(6)	(0)		(u)
1	January 2020	1.4459	1.8127	2,021,126	\$	(7,413,792)
2	February	1.2613	1.8127	1,940,656	\$	(10,701,007)
3	March	1.2791	1.8127	1,693,572	\$	(9,037,706)
4	April	1.3789	1.8127	1,450,861	\$	(6,293,969)
5	May	1.6559	1.8127	1,342,790	\$	(2,105,593)
6	June ⁽¹⁾	1.8232	1.8127	1,700,445	\$	165,111
7	July	1.8123	1.8127	2,257,762	\$	(8,998)
8	August	1.7591	1.8127	2,353,392	\$	(1,262,025)
9	September	1.4671	1.7118	1,961,816	\$	(4,800,324)
10	October	1.8861	1.6027	1,361,181	\$	3,858,149
11	November	1.7168	1.6027	1,406,770	\$	1,604,755
12	December ⁽¹⁾	1.7373	1.6027	1,905,668	\$	2,811,210
13	Total Test Period			21,396,039	\$	(33,184,189)
14	Test Period Wtd Avg. ¢/kWh	1.6014	1.7576			
15	Adjustment to remove (Over)/Under	Recovery - Janua	ry-March 2020	D ⁽²⁾	\$	(27,152,504)
16	Adjusted (Over)/Under Recovery				\$	(6,031,685)
17	NC Retail Normalized Test Period MW	/h Sales	E	Exhibit 4		23,329,575
18	Experience Modification Increment (Decrement) cent	ts/kWh			(0.0259)
19	Adjusted (Over)/Under Recovery				\$	(6,031,685)
20	Adjustment to remove customer cred	lits for purchased	power contra	ct terms ⁽³⁾	\$	2,419
21	Amount of refund for interest compu	tation			\$	(6,029,266)
22	Annual Interest Rate					10%
23	Monthly Interest Rate					0.83%
24	Number of Months (August 15, 2020	- February 28, 20	22)			18.5
25	Interest				\$	(929,511)
26	Experience Modification Increment (Decrement) cent	ts/kWh			(0.0040)

Notes:

⁽¹⁾ Prior period corrections not included in rate incurred but are included in over/(under) recovery total

⁽²⁾ January-March 2020 filed in fuel Docket E-7, Sub 1228 to update the EMF and included in current EMF rate. Included for Commission review in accordance with NC Rule R8-55(d)(3) but deducted from total (Over)/Under on Line 17.

⁽³⁾ Purchased power contract term collections not considered a refund of amounts advanced by customers, therefore have been excluded from the computation of interest.

Rounding differences may occur

Duke Energy Carolinas, LLC North Carolina Annual Fuel and Fuel Related Expense Calculation of Experience Modification Factor - GS/Lighting Test Period Ended December 31, 2020 Billing Period September 2021 - August 2022 Docket E-7, Sub 1250

Line #	Month	Fuel Cost Incurred ¢/kWh (a)	Fuel Cost Billed ¢/kWh (b)	NC Retail MWh Sales (c)	(C	Reported Over)/ Under Recovery (d)
1		1.8136	1.9562	1,919,161	\$	(2 726 820)
	January 2020 February	1.5188	1.9562	1,919,161	ې \$	(2,736,820) (8,385,934)
2 3	March	1.4558	1.9562	1,771,910	ې \$	(8,865,883)
4	April	1.4000	1.9562	1,700,279	\$	(9,457,058)
5	May (1)	1.6578	1.9562	1,595,041	\$	(4,759,228)
6	June ⁽¹⁾	1.9960	1.9562	1,845,527	\$	724,468
7	July	2.2244	1.9562	2,167,855	\$	5,814,650
8	August	2.1618	1.9562	2,253,716	\$	4,633,072
9	September	1.6002	1.8611	2,126,565	\$	(5,550,013)
10	October	1.6495	1.7583	1,844,555	\$	(2,007,635)
11	November	1.3617	1.7583	2,116,483	\$	(8,394,817)
12	December ⁽¹⁾	2.7101	1.7583	1,459,697	\$	14,225,259
13	Total Test Period			22,718,144	\$	(24,759,939)
14	Test Period Wtd Avg. ¢/kWh	1.7897	1.9001			
15	Adjustment to remove (Over)/Under Recove	ery - January-March	ר 2020 ⁽²⁾			(19,988,636)
16	Adjusted (Over)/Under Recovery				\$	(4,771,302)
17	NC Retail Normalized Test Period MWh Sale	S	E	xhibit 4		23,102,975
18	Experience Modification Increment (Decrer	ment) cents/kWh				(0.0207)
19	Adjusted (Over)/Under Recovery				\$	(4,771,302)
20	Adjustment to remove customer credits for	purchased power o	contract terms ⁽	3)	\$	2,899
21	Amount of refund for interest computation				\$	(4,768,404)
22	Annual Interest Rate					10%
23	Monthly Interest Rate					0.83%
24	Number of Months (August 15, 2020 - Febru	iary 28, 2022)				18.5
25	Interest				\$	(735,129)
26	Experience Modification Increment (Decrer	ment) cents/kWh				(0.0032)

Sykes Exhibit 3 Page 3 of 4

Notes:

⁽¹⁾ Prior period corrections not included in rate incurred but are included in over/(under) recovery total

⁽²⁾ January-March 2020 filed in fuel Docket E-7, Sub 1228 to update the EMF and included in current EMF rate. Included for Commission review in accordance with NC Rule R8-55(d)(3) but deducted from total (Over)/Under on Line 17.

⁽³⁾ Purchased power contract term collections not considered a refund of amounts advanced by customers, therefore have been excluded from the computation of interest.

Rounding differences may occur

Duke Energy Carolinas, LLC North Carolina Annual Fuel and Fuel Related Expense Calculation of Experience Modification Factor - Industrial Test Period Ended December 31, 2020 Billing Period September 2021 - August 2022 Docket E-7, Sub 1250

Line		Fuel Cost Incurred ¢/kWh (a)	Fuel Cost Billed ¢/kWh (b)	NC Retail MWh Sales (c)	(C	Reported Over)/ Under Recovery (d)
#	Month	(-)	(-)	(-)		(-)
1	January 2020	2.1705	1.8935	858,763	\$	2,378,515
2	February	1.5672	1.8935	994,505	\$	(3,244,669)
3	March	1.4487	1.8935	953,523	\$	(4,241,584)
4	April	1.4843	1.8935	858,390	\$	(3,512,753)
5	May	1.7695	1.8935	799,666	\$	(991,906)
6	June (1)	2.1907	1.8935	899,377	\$	2,668,350
7	July	2.6878	1.8935	955,517	\$	7,590,138
8	August	2.4184	1.8935	1,072,177	\$	5,627,469
9	September	1.6538	1.7838	1,054,884	\$	(1,371,673)
10	October	1.5640	1.6652	955,373	\$	(966,497)
11	November	1.1395	1.6652	1,245,063	\$	(6,545,263)
12	December (1)	2.5964	1.6652	750,442	\$	6,409,407
13	Total Test Period			11,397,681	\$	3,799,534
14	Test Period Wtd Avg. ¢/kWh	1.8627	1.8242			
15	Adjustment to remove (Over)/Under	Recovery - January	-March 2020 ⁽²⁾		\$	(5,107,737)
16	Adjusted (Over)/Under Recovery				\$	8,907,271
17	NC Retail Normalized Test Period MV	Vh Sales	E	xhibit 4		11,570,060
18	Experience Modification Increment (Decrement) cents/l	KWh			0.0770

Notes:

⁽¹⁾ Prior period corrections not included in rate incurred but are included in over/(under) recovery total

⁽²⁾ January-March 2020 filed in fuel Docket E-7, Sub 1228 to update the EMF and included in current EMF rate. Included for Commission review in accordance with NC Rule R8-55(d)(3) but deducted from total (Over)/Under on Line 16.

Rounding differences may occur

Sykes Exhibit 3 Page 4 of 4

Duke Energy Carolinas, LLC North Carolina Annual Fuel and Fuel Related Expense Sales, Fuel Revenue, Fuel Expense and System Peak Test Period Ended December 31, 2020 Billing Period September 2021 - August 2022 Docket E-7, Sub 1250

Line #	Description	Reference	Т	otal Company	N	orth Carolina Retail	North Carolina Residential	North Carolina General Service/Lighting	North Carolina Industrial
		Exhibit 6 Schedule 1 (Line 4)							
1	Test Period MWh Sales (excluding inter system sales)	and Workpaper 11 (NC Retail)		82,983,046		55,511,864	21,396,039	22,718,144	11,397,681
2	Customer Growth MWh Adjustment	Workpaper 13 Pg 1		494,727		322,769	225,676	89,954	7,139
3	Weather MWh Adjustment	Workpaper 12		3,086,197		2,167,977	1,707,860	294,877	165,240
4	Total Normalized MWh Sales	Sum		86,563,971		58,002,609	23,329,575	23,102,975	11,570,060
5	Test Period Fuel and Fuel Related Revenue *		\$	1,571,170,278	\$	1,015,637,375			
6	Test Period Fuel and Fuel Related Expense *		\$	1,435,008,103	\$	961,492,783			
7	Test Period Unadjusted (Over)/Under Recovery	-	\$	(136,162,175)	\$	(54,144,594)			

		Summer Coincidental Peak (CP) kW
8	Total System Peak	17,438,327
9	NC Retail Peak	11,665,772
10	NC Residential Peak	5,482,921
11	NC General Service/Lighting Peak	4,326,963
12	NC Industrial Peak	1,855,888

* Total Company Fuel and Fuel-Related Revenue and Fuel and Fuel-Related Expense are determined based upon the fuel and fuel-related cost recovery mechanism in each of the company's jurisdictions.

Duke Energy Carolinas, LLC North Carolina Annual Fuel and Fuel Related Expense Nuclear Capacity Ratings Test Period Ended December 31, 2020 Billing Period September 2021 - August 2022 Docket E-7, Sub 1250

	Rate Case		
	Docket E-7, Sub	Fuel Docket E-7,	Proposed Capacity
Unit	1146	Sub 1228	Rating MW
Oconee Unit 1	847.0	847.0	847.0
Oconee Unit 2	848.0	848.0	848.0
Oconee Unit 3	859.0	859.0	859.0
McGuire Unit 1	1,158.0	1,158.0	1,158.0
McGuire Unit 2	1,157.6	1,157.6	1,157.6
Catawba Unit 1	1,160.1	1,160.1	1,160.1
Catawba Unit 2	1,150.1	1,150.1	1,150.1
Total Company	7,179.8	7,179.8	7,179.8

Sykes Exhibit 6

DECEMBER 2020 MONTHLY FUEL FILING

Line <u>No.</u>		December 2020	12 Months Ended December 2020
1	Fuel and fuel-related costs	\$ 139,993,351	\$ 1,435,984,896
2	MWH sales: Total system sales	6,362,066	84,193,171
3	Less intersystem sales	89,096	1,210,125
4	Total sales less intersystem sales	6,272,970	82,983,046
5	Total fuel and fuel-related costs (¢/KWH) (line 1/line 4)	2.2317	1.7305
6	Current fuel and fuel-related cost component (¢/KWH) (per Schedule 4, Line 7a Total)	1.6693	
_	Generation Mix (MWH): Fossil (by primary fuel type):		
7	Coal	1,371,448	14,738,937
8 9	Fuel Oil Natural Gas - Combined Cycle	8,702 1,016,660	64,807 14,333,589
10	Natural Gas - Combined Gycle Natural Gas - Combined Heat and Power	39	5,300
11	Natural Gas - Combustion Turbine	97,325	775,879
	Natural Gas - Steam	172,344	2,406,276
13	Biogas	2,622	25,709
14	Total fossil	2,669,140	32,350,497
15	Nuclear 100%	5,476,820	59,945,886
16	Hydro - Conventional	252,107	3,016,593
17	Hydro - Pumped storage	(48,524)	(505,461)
18	Total hydro	203,583	2,511,132
19	Solar Distributed Generation	10,105	148,719
20	Total MWH generation	8,359,648	94,956,234
21	Less joint owners' portion - Nuclear	1,413,968	15,631,285
22	Less joint owners' portion - Combined Cycle	82,982	1,319,907
23	Adjusted total MWH generation	6,862,698	78,005,042

Note: Detail amounts may not add to totals shown due to rounding.

DUKE ENERGY CAROLINAS DETAILS OF FUEL AND FUEL-RELATED COSTS

Docket No. E-7, Sub 1234

Fuel and fuel-related costs:	December 2020	12 Months Ended December 2020
0501110 coal consumed - steam	\$ 42,109,238	\$ 509,419,250
0501310 fuel oil consumed - steam	181,852	3,355,663
0501330 fuel oil light-off - steam	305,196	3,287,490
Total Steam Generation - Account 501	42,596,286	516,062,403
	12,000,200	010,002,100
Nuclear Generation - Account 518		
0518100 burnup of owned fuel	22,919,977	256,442,658
Other Generation - Account 547		
0547100, 0547124 - natural gas consumed - Combustion Turbine	3,854,899	26,580,246
0547100 - Combustion Turbine - credit for inefficient fuel cost	(45,980)	(100,388)
0547100 natural gas consumed - Steam	6,405,649	73,118,890
0547101 natural gas consumed - Combined Cycle	24,719,752	281,739,819
0547101 natural gas consumed - Combined Heat and Power	25,323	566,869
0547106 biogas consumed - Combined Cycle	141,294	1,388,864
0547200 fuel oil consumed - Combustion Turbine	876,617	2,063,581
Total Other Generation - Account 547	35,977,554	385,357,881
Reagents	1,608,993	17 555 510
Reagents (lime, limestone, ammonia, urea, dibasic acid, and sorbents)		17,555,512
Total Reagents	1,608,993	17,555,512
By-products		
Net proceeds from sale of by-products	1,169,523	7,934,796
Total By-products	1,169,523	7,934,796
Total Fossil and Nuclear Fuel Expenses		
Included in Base Fuel Component	104,272,333	1,183,353,250
Purchased Power and Net Interchange - Account 555		
Capacity component of purchased power (economic)	215,310	10,765,481
Capacity component of purchased power (renewables)	615,486	14,501,806
Capacity component of purchased power (PURPA)	256,193	6,762,310
Fuel and fuel-related component of purchased power	37,895,970	248,287,490
Total Purchased Power and Net Interchange - Account 555	38,982,959	280,317,087
Less:		
Fuel and fuel-related costs recovered through intersystem sales	3,152,653	26,840,359
Fuel in loss compensation	85,032	755,898
Solar Integration Charge	-	3,864
Lincoln CT marginal fuel revenue	13,953	75,020
Miscellaneous Fees Collected	10,300	10,300
Total Fuel Credits - Accounts 447 /456	3,261,938	27,685,441
Total Fuel and Fuel-related Costs	\$ 139,993,351	\$ 1,435,984,896
	+,000,001	, .,,,,

Notes: Detail amounts may not add to totals shown due to rounding. Report reflects net ownership costs of jointly owned facilities.

DUKE ENERGY CAROLINAS PURCHASED POWER AND INTERCHANCE SYSTEM REPORT - NORTH CAROLINA VIEW Purchased Power Purchased Power Economic Carolina Power Partners, LLC Carolina Power Partners, LLC Cherokee County Cogeneration Partners Cherokee County Cogeneration Partners DE Progress - Native Load Transfer Phywood Energy, LLC DE Progress - Native Load Transfer (Prior Period Adjust) DE Progress - Native Progress - Nati	Total \$ <th>Di Capacity Di Capacity 2 S 2 S 2 S 2 S 2 S 2 S 2 S 6 S 6 S 6 S 6 S 6 S 5 S 6 S 5 S 6 S 6 S 5 S 5 S 6 S 6 S 5 S 5 S 5 S 6 S 5 S 5 S 5 S 5 S 5 S 5 S 5 S 5 S 5 <</th> <th>DECEMBER 2020 DECEMBER 2020 city city 215,310 215,310 20,230 20,230 20,230 20,230 20,230 20,230 20,344 610,344 610,344 610,344 256,133 610,257</th> <th></th> <th>Fuel Non-capacity Fuel \$ 596.641 \$ 75.471 7.5471 17.470.658 \$ 2.139.555 \$ 2.139.555 \$ 2.139.555 \$ 2.139.555 \$ 2.139.555 \$ 2.147.683 \$ 2.241.693 \$ 140.7711 \$ 30.7711 \$ 30.7713 \$ 2.4648.415 \$ 2.4648.415 \$ 2.44.557 \$</th> <th>pacity Pacity Fuel-related \$ \$ \$ \$183,637 \$ \$381,459 \$ \$383,457 \$ \$383,647 \$ \$383,647 \$ \$133,657 \$ \$133,657 \$ \$1,856 \$ \$1,856 \$ \$1,20,390 \$ \$4,774,389 \$ \$4,774,389 \$ \$4,128,399 \$ \$4,128,399 \$ \$4,128,399 \$ \$4,128,399 \$ \$4,128,399 \$ \$4,128,399 \$ \$4,128,399 \$ \$4,128,399 \$ \$1,128,399 \$ \$1,128,399 \$ \$1,128,399 \$ \$1,128,399 \$ \$1,128,399 \$ \$1,128,399 \$ \$1,128,399 \$ \$1,128,399 \$ \$1,128,399</th>	Di Capacity Di Capacity 2 S 2 S 2 S 2 S 2 S 2 S 2 S 6 S 6 S 6 S 6 S 6 S 5 S 6 S 5 S 6 S 6 S 5 S 5 S 6 S 6 S 5 S 5 S 5 S 6 S 5 S 5 S 5 S 5 S 5 S 5 S 5 S 5 S 5 <	DECEMBER 2020 DECEMBER 2020 city city 215,310 215,310 20,230 20,230 20,230 20,230 20,230 20,230 20,344 610,344 610,344 610,344 256,133 610,257		Fuel Non-capacity Fuel \$ 596.641 \$ 75.471 7.5471 17.470.658 \$ 2.139.555 \$ 2.139.555 \$ 2.139.555 \$ 2.139.555 \$ 2.139.555 \$ 2.147.683 \$ 2.241.693 \$ 140.7711 \$ 30.7711 \$ 30.7713 \$ 2.4648.415 \$ 2.4648.415 \$ 2.44.557 \$	pacity Pacity Fuel-related \$ \$ \$ \$183,637 \$ \$381,459 \$ \$383,457 \$ \$383,647 \$ \$383,647 \$ \$133,657 \$ \$133,657 \$ \$1,856 \$ \$1,856 \$ \$1,20,390 \$ \$4,774,389 \$ \$4,774,389 \$ \$4,128,399 \$ \$4,128,399 \$ \$4,128,399 \$ \$4,128,399 \$ \$4,128,399 \$ \$4,128,399 \$ \$4,128,399 \$ \$4,128,399 \$ \$1,128,399 \$ \$1,128,399 \$ \$1,128,399 \$ \$1,128,399 \$ \$1,128,399 \$ \$1,128,399 \$ \$1,128,399 \$ \$1,128,399 \$ \$1,128,399
Carolina Power Partners, LLC DE Progress - Sha Available Capacity DE Progress - Sha Available Capacity Haywood Electric Macquarie Frengy, LLC. Macquarie Frengy, LLC Macquarie Tenergy, LLC Macquarie Tenergy, LLC Macquarie Tenergy, Indiance - Sales Southern Company Services, Inc. Generation Imbalance - Purchases Energy Imbalance - Sales Other Purchases Other Purchases		Ē	3,826 3,826 4,021 267,253 267,253	18,000 1,098 5,409 3,2,084 1,277 1,200 3,780 (8,729) (8,729) 14 92,254 \$	364,536 23,425 67,503 67,503 67,503 778,659 118,193 34,160 55,654 10,443 (278,165 1,431,026	

(6,673)

Ś

11,836 11,836

∽

ω

(10,000) 71,115 **61,115**

\$

156,356 233,064

θ

14,988 43,158 491,437 14,094

Not Fuel \$ Not Fuel-related \$

(6,673)

θ

26,079,441 \$ 11,471,406 \$ 4,285,824 1,034,072 5,319,897 (4,174,593) (800,181) (4,974,774) 1,204,685 \$ 711,873 42,903 754,776 (693,224) (33,340) (726,564) 2,138,914 (134,209) (134,209) \$ 7,508,569 1,210,914 8,719,483 (957,875) (8,319,652) 40,883,995 (7,361,777) ¢ **Total Purchased Power** Interchanges Out Other Catawba Joint Owners Catawba- Net Negative Generation WS Lee Joint Owner Total Interchanges Out <u>Interchanges In</u> Other Catawba Joint Owners WS Lee Joint Owner Total Interchanges In

75,566 21,840 85,913 1,723 (10,539) 356 **1,127,956**

41,283,826 s Net Purchases and Interchange Power

NOTE: Detail amounts may not add to totals shown due to rounding. CPRE purchased power amounts are recovered through the CPRE Rider.

Exhibit 6 Schedule 3 - Purchases Page 1 of 4

(157,694) (3,210,669)

1,383,151

26,424,564 \$ 11,471,406 \$

1,232,897 \$

2,004,705

ŝ

Feb 23 2021

(3,052,975)

3,222,745 176,842 3,399,586

1,194,234

Ś

DUKE ENERGY CAROLINAS INTERSYSTEM SALES* SYSTEM REPORT - NORTH CAROLINA VIEW

DECEMBER 2020

		Total	ö	Capacity	Z	Non-capacity		
Sales		÷		÷	ММ	Fuel \$	Noi	Non-fuel \$
Utilities: DE Progress - Emergency	⇔	100,774	Ŷ	·	1,180 \$	92,137	÷	8,638
Market Based: Macquarie Energy, LLC NCMPA PJM Interconnection, LLC.		- 106,134 (3)		- 87,500 -	- 270 -	2,699 20,014 -		(2,699) (1,381) (3)
Other: DE Progress - Native Load Transfer Benefit		297,225		ı		297.225		I
DE Progress - Native Load Transfer		2,809,592		,	85,741	2,691,167		118,425
Generation Imbalance		61,927		·	1,905	49,411		12,516
BPM Transmission		3,092		·				3,092
Total Intersystem Sales	÷	3,378,741	ŝ	87,500	\$ 960'68	3,152,653	\$	138,588

* Sales for resale other than native load priority.

NOTE: Detail amounts may not add to totals shown due to rounding.

Feb 23 2021

DUKE ENERGY CAROLINAS PURCHASED POWER AND INTERCHANGE SYSTEM REPORT - NORTH CAROLINA VIEW		Twelve Months Ended DECEMBER 2020	hs Ended R 2020			
Purchased Power	Total	Capacity		Non-capaci		Not Fuel \$
Economic Carolina Power Partners. LLC Cherckee County Cogeneration Partners Cube Yadkin Generation LLC Cherckee County Cogeneration Partners DE Progress - Native Load Transfer Penfold Adjust) DE Progress - Native Load Transfer Benefit Progress - Native Load Transfer Benefit Progress - Native Load Transfer Benefit Progress - Native Load Transfer Benefit DE Progress - Native Load Transfer Benefit DE Progress - Native Load Transfer Benefit Progress - Native Load Transfer Benefit DE Progress - Native Load Transfer Benefit Manual Transfer De Progress - Native Load Native Transfer De Progress - Native Nati	s 2 224 880 2 200.437 103.976, 135 100.976, 135 100.976, 135 100.976, 135 734 12.988 33.120 3.120 3.120 3.120 5.312 5.75, 882 559, 688 559, 688, 688, 688, 688, 688, 688, 688,	\$ 10,765,481	mWh 86,400 \$ 36,400 \$ 7,71406 7,719 5,911,217 2,240 2,240 196,775 196,775 196,775 196,775 196,775 198,775 193,742 193,742 193,742 193,742 2,400 25,481 23,086 25,481 23,086 25,481 23,086 25,481 23,086 25,481 23,086 25,481 23,086 25,481 23,086 25,481 23,086 22,481 23,086 22,481 23,086 240 25,481 23,086 240 25,481 23,086 240 25,481 23,086 240 25,481 23,086 240 25,481 23,756 240 25,481 23,756 240 25,481 23,756 23,481 23,756 23,481 23,756 23,481 23,749 23,481 23,556 23,491 23,749 23,491 23,556 23,491 23,749 24,749	Fuel F 1,356.872 \$ 1,356.872 \$ 1,356.872 \$ 1,356.872 \$ 1,356.872 \$ 1,356.872 \$ 2,55.471 \$ 12,955.440 \$ 126,346 \$ 250.943 \$ 11,333 \$ 46,546 \$ 1377.196 \$ 250.943 \$ 257.998 \$ 261.436 \$ 27.936 \$ 27.936 \$ 27.936 \$ 27.936 \$ 27.936 \$ 27.936 \$ 27.936 \$ 341.416 \$ 5.029 \$ 5.029 \$	Fuel-related \$ Not 867.508 867.508 1,725.555 4867.508 4,75.555 7.27 2,97.595 5.27 2,97.595 2.9,759 1,6,428 7.27 16,427 3.114,020 3,114,020 3.214,020 16,427 3.114,020 16,427 3.114,020 2,520 116,556 2,182 3.215 3,215 3.215 3,215 3.215 3,216 3.216	Not Fuel-related 5 5 245,126 5 245,126
REPS DERP - Purchased Power DERP - Net Metered Generation	\$ 70,245,371 966,899 56,012 \$ 71,268,282	\$ 14,411,272 90,534 10,243 \$ 14,512,049	1,145,873 \$ 16,567 1,297 1,163,736 \$	•••••• ••••	55,834,100 \$ 679,995 56,514,095 \$	196,370 45,769 242,139
HB889 PURPA Purchases CPRE - Purchased Power Qualifying Facilities Non-dispatchable / Other	\$ (2,244,000) 38,695,060 \$ 36,451,060	\$ 6,762,310 \$ 6,762,310	681,954 681,954 \$	ω ω '	\$ 30,908,248 30,908,248 \$	(2,244,000) 1,024,502 (1,219,498)
Carolina Power & Light (DE Progress) - Emergency Bue Ridge Electric Mambership Corp. Carolina Power Partners. LLC. DE Progress - As Available Capacity Exelon Generation Company, LLC. Hawwood Electric Macquale Energy, LLC. Macquale Energy, LLC. Macquale Energy, LLC. Macquale Energy, LLC. Macquale Energy, LLC. Macquale Energy, LLC. Macquale Rengy, LLC. Margan Stanley Capital Group NCEMO - Other NCEMO - Ateliability Pledmont Electric Membership Corp. Pledmont Electric Membership Corp. Pledmont Electric Membership Corp. Pledmont Electric Membership Corp. Pledmont Electric Membership Comparised Services. Inc. Generation Imbalance - Purchases Energy Imbalance - Sales Other Purchases Cother Purchases	 \$ 49,472 15,552,047 149,077 149,077 149,077 149,077 142,077 15,754,063 36,138 36,148 36,158 36,168 370,904 36,168 438 5,32,008,423 5,333,008,423 5,334,004<!--</td--><td>\$ 7,486,573 149,077 1,494,026 51,816 51,816 3,524,179 2 3,524,179 2 3,524,179 2 3,524,179 2 3,524,179 2 3,524,179 2 3,524,179 2 5 1,707,771 1,707,771 1</td><td>568 \$ 568 300 46,500 46,800 1,098 63,277 146,648 140,548 140,544 175 711 56,424 (1,450) (1,450) (1,450) 258 258 775 558 775 558 775 775 558 775 775 7</td><td>30,141 3680,359 3680,359 320,636 22,635 3,509,979 841,155 3,509,979 3,4,516 3,516 5,5165,516 5,516 5,516 5,516 5,516 5,516 5,5165,516 5,516 5,516,</td><td>ο ο .</td><td>19.271 2,353.015 588,604 188,604 537,784 537,784 537,784 121,825 1,118,333 1,1480 112,1825 1,123,333 1,1480 142,201 142,201 142,201 (59,55) (5</td>	\$ 7,486,573 149,077 1,494,026 51,816 51,816 3,524,179 2 3 ,524,179 2 5 1 ,707,771 1 ,707,771 1	568 \$ 568 300 46,500 46,800 1,098 63,277 146,648 140,548 140,544 175 711 56,424 (1,450) (1,450) (1,450) 258 258 775 558 775 558 775 775 558 775 775 7	30,141 3680,359 3680,359 320,636 22,635 3,509,979 841,155 3,509,979 3,4,516 3,516 5,5165,516 5,516 5,516 5,516 5,516 5,516 5,5165,516 5,516 5,516,	ο ο .	19.271 2,353.015 588,604 188,604 537,784 537,784 537,784 121,825 1,118,333 1,1480 112,1825 1,123,333 1,1480 142,201 142,201 142,201 (59,55) (5
Total Purchased Power	\$ 296,660,799	\$ 45,249,027	9,932,347 \$	137,708,214 \$	106,416,346 \$	7,287,211
Interchanges In Other Catawoa Joint Owners WS Lee Joint Owner Total Interchanges In	74,998,623 11,295,227 86,293,850		7,867,637 500,924 8,368,561	43,384,153 9,242,716 52,626,868		31,614,472 2,052,512 33,666,984
Interchanges Out Cherchanges Out Cherchandes ontin Owners Catawas – Net Negative Generation WS Lee Joint Owner WS Lee Joint Owner Total Interchanges Out Ret Purchases and Interchange Power NOTES. Detail amounts may not add to totals shown due to rounding. CPRE purchased power amounts are recovered through the CPRE Rider	(71, 597, 673) (188, 590) (19, 029, 429) (19, 029, 429) (19, 015, 692) (13, 138, 157 \$ 302, 138, 157 \$ 302, 1	(1,584,537) - - (1,584,537) \$ 43,664,490	(7,454,361) (9,707) (395,030) (7,659,098) (7,659,098) 10,441,810 \$	(41,125,471) (122,579) (7,208,892) (48,465,342) (48,465,342) (41,871,140 \$	- 106,416,346 \$	(28,887,665) (59,011) (18,00,537) (30,767,213) 10,186,982

Feb 23 2021

Twelve Months Ended DECEMBER 2020

		Total	Canacity	, T	2	Non-canacity	
Sales		с С	5 5		ЧМш	Fuel \$	Non-fuel \$
Utilities: DE Progress - Emergency	\$	125,188			2,322 \$	113,626 \$	11,563
SC Public Service Authority - Emergency SC Electric & Gas / Dominion Energy - Emergency		11,678 16,079			456 653	9,389 29,063	2,289 (12,984)
Market Based:							
Central Electric Power Cooperative, Inc.		5,546,611	\$ 4,8	4,809,000	23,372	694,954	42,657
EDF Trading Company		64,800			2,050	40,370	24,430
Evergy Kansas Central (BPM)		83,610			2,664	49,921	33,689
Exelon Generation Company, LLC.		29,085		,	1,680	27,783	1,302
Macquarie Energy, LLC		1,479,310			51,940	1,030,403	448,907
NCMPA		1,201,597	1,0	1,050,003	5,572	170,190	(18,597)
PJM Interconnection, LLC.		181,650		,	8,552	182,675	(1,025)
SC Electric & Gas / Dominion Energy		391,427		,	12,300	235,047	156,380
Southern Company		54,834			6,730	95,407	(40,573)
Tennesse Valley Authority		22,500		•	450	15,720	6,780
The Energy Authority		260,242		·	10,148	161,253	98,989
Other:							
DE Progress - Native Load Transfer Benefit		3,387,778		·	•	3,387,778	•
DE Progress - Native Load Transfer		21,570,376		,	1,062,405	20,142,840	1,427,536
Generation Imbalance		411,383		,	18,831	453,940	(42,557)
BPM Transmission		(195,265)		•		•	(195,265)
Total Intersystem Sales	÷	34,642,883	\$ 5,8	5,859,003	1,210,125 \$	26,840,359 \$	1,943,521

* Sales for resale other than native load priority.

NOTES: Detail amounts may not add to totals shown due to rounding.

Feb 23 2021

Duke Energy Carolinas (Over) / Under Recovery of Fuel Costs December 2020

Line No.			Residential	Commercial	Industrial	Total
0 0 7	Actual System kWh sales DERP Net Metered kWh generation Adjusted System kWh sales	Input Input L1 + L2				6,272,969,895 10,483,803 6,283,453,698
4 0 0	N.C. Retail kWh sales NC kWh sales % of actual system kWh sales NC kWh sales % of adjusted system kWh sales	hput L4 T / L1 L4 T / L3	1,905,668,087	1,459,697,098	750,442,212	4,115,807,397 65.61% 65.50%
7	Approved fuel and fuel-related rates (¢/kWh) 7a Billed rates by class (¢/kWh) 7b Billed fuel expense	Input Annually L7b * L4 / 100	1.6027 \$30,542,142	1.7583 \$25,665,854	1.6652 \$12,496,364	1.6693 \$68,704,360
8	Incurred base fuel and fuel-related (less renewable purchased power capacity) rates by class (¢/kWh) 8a Docket E-7, Sub 1228 allocation factor 9b. Subter incurred process	capacity) rates by class (¢/kWh) Input	35.85%	42.97%	21.18%	0120 EEO 0EO
	op bystern intoured expense 8c Incurred base fuel and fuel-related expense 8d Incurred base fuel rates by class (¢/kWh)	input L8b * L6 * 8a L8c / L4 * 100	\$32,774,892 1.7199	\$39,280,050 2.6910	\$19,366,012 2.5806	\$139,309,030 \$91,420,954 2.2212
6	Incurred renewable purchased power capacity rates by class (¢/kWh) 9a NC retail production plant % 9b Production plant allocation factors		45.45%	38.36%	16.20%	67.09% 100.00%
	ec experim incurred expense 9d Incurred renewable capacity expense 9e Incurred renewable capacity rates by class (¢/kWh)	input L9a * L9b * 9c (L9a * L9c) * L9b / L4 * 100	\$331,423 0.0174	\$279,724 0.0192	\$118,135 0.0157	\$1,000,303 \$729,282 0.0177
11 10	Total incurred rates by class (¢/kWh) Difference in ¢/kWh (incurred - billed) (Over) / under recovery [See footnote]	L8d + L9e L7a - L10 (L4 * L11) / 100	1.7373 0.1346 \$2,564,173	2.7101 0.9518 \$13,893,920	2.5964 0.9312 \$6,987,783	2.2389 0.5697 \$23,445,876
13 14	ш.,	Input L12+ L13	247,037 \$2,811,210	331,339 \$14,225,259	(578,376) \$6,409,407	0 \$23,445,876
15 16 17	Total system incurred expense Less: Jurisdictional allocation adjustment(s) Total Fuel and Fuel-related Costs per Schedule 2	L8b + L9c Input L15 + L16				\$140,656,039 662,688 \$139,993,351

Exhibit 6 Schedule 4 Page 1 of 2

Feb 23 2021

Duke Energy Carolinas (Over) / Under Recovery of Fuel Costs December 2020

Line. No.

18 (Over) / under recovery for each month of the current calendar year [See footnote]

			(Over)	Over) / Under Recovery		
Year 2020	Total 1	Total To Date	Residential	Commercial	Industrial	Total Company
January		(\$7,772,097)	(\$7,413,792)	(\$2,736,820)	\$2,378,515	(\$7,772,097)
February		(30,103,707)	(\$10,701,007)	(\$8,385,934)	(\$3,244,669)	(\$22,331,610)
March		(52,248,879)	(\$9,037,706)	(\$8,865,883)	(\$4,241,584)	(\$22,145,172)
April		(71,512,659)	(\$6,293,969)	(\$9,457,058)	(\$3,512,753)	(\$19,263,780)
May		(79,369,385)	(\$2,105,593)	(\$4,759,228)	(\$991,906)	(\$7,856,726)
_/1 June		(75,811,457)	\$165,111	\$724,468	\$2,668,350	\$3,557,928
		(62,415,668)	(\$8,998)	\$5,814,650	\$7,590,138	\$13,395,789
August		(53,417,153)	(\$1,262,025)	\$4,633,072	\$5,627,469	\$8,998,515
		(65,139,163)	(\$4,800,324)	(\$5,550,013)	(\$1,371,673)	(\$11,722,010)
_/2 October		(64,255,145)	\$3,858,149	(\$2,007,635)	(\$966,497)	\$884,018
		(\$77,590,470)	\$1,604,755	(\$8,394,817)	(\$6,545,263)	(\$13,335,325)
_/1 December		(\$54,144,594)	\$2,811,210	\$14,225,259	\$6,409,407	\$23,445,876
			(\$33,184,189)	(\$24,759,939)	\$3,799,534	(\$54,144,594)
Notes:	Notes:					
Ċ						

Detail amounts may not recalculate due to percentages presented as rounded.

Presentation of over or under collected amounts reflects a regulatory asset or liability. Over collections, or regulatory liabilities, are shown as negative amounts.

Under collections, or regulatory assets, are shown as positive amounts.

Includes prior period adjustments. Reflects a prorated rate and prorated allocation factor for periods in which the approved rates changed. 5,6 OFFICIAL COPY

Feb 23 2021

DUKE ENERGY CAROLINAS FUEL AND FUEL RELATED COST REPORT DECEMBER 2020

Exhibit 6 Schedule 5 Page 1 of 2

OFFICIAL COPY

Feb 23 2021

	DECEMBER 2020 (A)							Page 1 o		
Description	Buck	Dan Biyar	1.00	Clamaan	1.00	Lincoln	Lincoln	Mill	Deskinghom	
Description	Buck CC	Dan River CC	Lee CC	Clemson CHP	Lee Steam/CT	Lincoln CT	(Unit17) CT	Creek CT	Rockingham CT	
Cost of Fuel Purchased (\$)										
Coal Oil	-	-	-		-		-	-	-	
Gas - CC	\$10,899,040	\$4,337,175	\$10,892,051							
Gas - CHP Gas - CT				\$25,323	\$33,260	\$178,930	\$373,904	\$379,803	\$2,843,021	
Gas - Steam					\$33,200 264	\$176,930	φ373,904	\$379,003	\$2,043,021	
Biogas	395,748	(263)	-	* 05.000	* 22 524	A170.000		* 070.000	<u> </u>	
Total	\$11,294,788	\$4,336,912	\$10,892,051	\$25,323	\$33,524	\$178,930	\$373,904	\$379,803	\$2,843,021	
verage Cost of Fuel Purchased (¢/MBTU)										
Coal Oil		-			-	_	_	_	_	
Gas - CC	359.39	363.23	364.04							
Gas - CHP				4,841.94	600.00	070.44	240.00	004.44	201.00	
Gas - CT Gas - Steam					638.06 332.60	370.11	319.96	361.44	361.68	
Biogas	2,174.44	-	-							
Weighted Average	370.22	363.21	364.04	4,841.94	638.06	370.11	319.96	361.44	361.68	
ost of Fuel Burned (\$)										
Coal Oil - CC	-	-	-		-					
Oil - CC Oil - Steam/CT	-	-	-		\$0	4,736	-	694,987	176,893	
Gas - CC	\$10,899,040	\$4,337,175	\$10,892,051							
Gas - CHP Gas - CT				\$25,323	33,260	\$178,930	\$373,904	\$379,803	\$2,843,021	
Gas - Steam					264	<i>ф</i> 11 0,000	<i>Q010,001</i>	<i>Q010,000</i>	\$2,010,021	
Biogas Nuclear	395,748	(263)	-							
Total	\$11,294,788	\$4,336,912	\$10,892,051	\$25,323	\$33,524	\$183,667	\$373,904	\$1,074,791	\$3,019,914	
verage Cost of Fuel Burned (¢/MBTU) Coal					-					
Oil - CC										
Oil - Steam/CT	250.00	202.02	004.04		-	1,518.09	-	1,794.07	1,552.24	
Gas - CC Gas - CHP	359.39	363.23	364.04	4,841.94						
Gas - CT				.,	638.06	370.11	319.96	361.44	361.68	
Gas - Steam	2,174.44	-	-		332.60					
Biogas Nuclear	2,174.44	-	-							
Weighted Average	370.22	363.21	364.04	4,841.94	638.06	377.48	319.96	747.32	378.70	
Average Cost of Generation (¢/kWh)										
Coal		-	-		-	-	-			
Oil - CC Oil - Steam/CT	-	-	-		_	16.67	-	23.46	16.67	
Gas - CC	2.49	2.60	2.64		-	10.07	-	23.40	10.07	
Gas - CHP				65.60						
Gas - CT Gas - Steam					8.34	5.90	3.41	4.63	3.81	
Biogas	15.10	-	-							
Nuclear		0.00	0.04	05.00	000.50					
Weighted Average	2.57	2.60	2.64	65.60	209.52	6.00	3.41	9.62	3.99	
Burned MBTU's										
Coal Oil - CC					-					
Oil - Steam/CT					-	312	-	38,738	11,396	
Gas - CC	3,032,651	1,194,065	2,991,957							
Gas - CHP Gas - CT				523	5,213	48,345	116,859	105,081	786,050	
Gas - Steam					41	10,010	110,000	100,001	100,000	
Biogas	18,200	-	-							
Nuclear Total	3,050,851	1,194,065	2,991,957	523	5,254	48,657	116,859	143,819	797,446	
let Generation (mWh) Coal										
Oil - CC										
Oil - Steam/CT Gas - CC	436,836	- 167,022	- 412,802		-	28	-	2,963	1,061	
Gas - CHP	430,030	167,022	412,002	39	-					
Gas - CT					399	3,031	10,971	8,208	74,717	
Gas - Steam Biogas	2,622	_	_		(383)					
Nuclear 100%	2,022									
Hydro (Total System)										
Solar (Total System) Total	439,458	167,022	412,802	39	16	3,059	10,971	11,171	75,778	
	100,100	101,022			.5	0,000	. 0,071	,		
Cost of Reagents Consumed (\$)										
Ammonia	\$18,886	\$5,818	\$0							
Limestone	\$10,000	\$0,010	¢0							
Sorbents Urea										
Orea Re-emission Chemical										
Dibasic Acid										
Activated Carbon Lime (water emissions)										
Total	\$18,886	\$5,818	\$0							
1 otda		ψ0,010	φU							

 Notes:

 (A) Lincoln (Unit 17) fuel and fuel related costs represents pre-commercial generation during an extended testing and validation period.

 (B) Solar Net Generation (mWh) for the month of December includes pre-commercial 225 mWh for Gaston Solar and 621 mWh for Maiden Creek Solar. Detail amounts may not add to totals shown due to rounding.

 Data is reflected at 100% ownership.

 Schedule excludes in-transit and terminal activity.

 Cents/MBTU and cents/kWh are not computed when costs and/or net generation is negative.

 Re-emission chemical reagent expense is not recoverable in NC.

 Lime (water emissions) expense is not recoverable in SC fuel clause.

Exhibit 6 Schedule 5 Page 2 of 2

DUKE ENERGY CAROLINAS FUEL AND FUEL RELATED COST REPORT DECEMBER 2020

			DECI	EMBER 2020					Page 2 of 2
Description	Allen Steam S	Marshall Steam - Dual Fuel	Belews Creek Steam - Dual Fuel	Cliffside Steam - Dual Fuel	Catawba Nuclear	McGuire Nuclear	Oconee Nuclear	Current Month	Total 12 ME December 2020
Cost of Fuel Purchased (\$)					nuciedi	Tuolodi	Tauloa	#05 00 / -	AFO 1 00 1
Coal Oil	\$1,577,477 185,282	\$1,754,302 184,358	\$11,470,966 -	\$10,418,928 128,100				\$25,221,674 497,740	\$524,924,279 7,111,516
Gas - CC Gas - CHP								26,128,266 25,323	296,014,769 566,869
Gas - CT								3,808,918	26,479,858
Gas - Steam Biogas		658,574	920,601	4,826,210				6,405,649 395,485	73,118,890 3,886,168
Total	\$1,762,760	\$2,597,234	\$12,391,568	\$15,373,238				\$62,483,056	\$932,102,349
erage Cost of Fuel Purchased (¢/MBTU)									
Coal Oil	146.33	120.66	387.31	248.05 1,123.87				260.18 1,115.60	363.32 964.95
Gas - CC	1,111.33	1,114.19	-	1,123.07				360.47	291.63
Gas - CHP Gas - CT								4,841.94 363.61	900.44 293.34
Gas - Steam		361.83	356.40	366.63				364.63	296.70
Biogas Weighted Average	161.03	157.17	384.83					2,173.00 315.66	<u>2,121.55</u> 332.14
t of Fuel Burned (\$)									
Coal	3,571,288	\$22,581,995	\$1,720,310	\$14,235,645				\$42,109,238	\$509,419,250
Oil - CC Oil - Steam/CT	169,845	214,154	-	103,049				- 1,363,664	- 8,706,734
Gas - CC	,	,		,				26,128,266	296,014,769
Gas - CHP Gas - CT								25,323 3,808,918	566,869 26,479,858
Gas - Steam		658,574	920,601	4,826,210				6,405,649	73,118,890
Biogas Nuclear					\$10,059,697	\$9,693,332	\$11,290,556	395,485 31,043,585	3,886,168 348,551,598
Total	\$3,741,133	\$23,454,723	\$2,640,912	\$19,164,904	\$10,059,697	\$9,693,332	\$11,290,556	\$111,280,130	\$1,266,744,136
rage Cost of Fuel Burned (¢/MBTU)									
Coal Oil - CC	275.63	321.64	397.94	293.77				309.75	351.15 -
Oil - Steam/CT	1,025.94	1,080.66	-	999.12				1,403.93	1,155.30
Gas - CC Gas - CHP								360.47 4,841.94	291.63 900.44
Gas - CT		004.00	050.40					363.61	293.34
Gas - Steam Biogas		361.83	356.40	366.63				364.63 2,173.00	296.70 2,121.55
Nuclear Weighted Average	285.09	324.73	382.41	310.49	57.67 57.67	55.09 55.09	57.72 57.72	<u> </u>	<u>57.73</u> 143.14
	265.09	524.75	302.41	510.49	57.07	55.09	51.12	142.03	143.14
erage Cost of Generation (¢/kWh) Coal	3.00	3.21	7.14	2.72				3.07	3.46
Oil - CC Oil - Steam/CT	11.13	10.78	_	9.05				- 15.67	- 13.43
Gas - CC	11.10	10.70		0.00				2.57	2.07
Gas - CHP Gas - CT								3.72 3.91	3.04 3.41
Gas - Steam		3.36	3.44	3.82				3.72	3.04
Biogas Nuclear					0.57	0.55	0.58	15.09 0.57	15.12 0.58
Weighted Average	3.11	3.23	5.19	2.94	0.57	0.55	0.58	1.33	1.33
ned MBTU's									
Coal Oil - CC	1,295,699	7,020,964	432,300	4,845,845				13,594,808	145,073,739
Oil - Steam/CT	16,555	19,817	-	10,314				97,132	753,636
Gas - CC Gas - CHP								7,218,673 523	101,505,115 62,955
Gas - CT								1,061,547	9,026,942
Gas - Steam Biogas		182,011	258,305	1,316,385				1,756,742 18,200	24,644,417 183,176
Nuclear	1 949 954	7 000 700	800.005	6 470 511	17,442,554	17,596,486	19,560,447	54,599,487	603,725,817
Total	1,312,254	7,222,792	690,605	6,172,544	17,442,554	17,596,486	19,560,447	78,347,113	884,975,797
Generation (mWh) Coal	118,909	704,337	24,083	524,119				1,371,448	14,738,937
Oil - CC								-	-
Oil - Steam/CT Gas - CC	1,526	1,986	-	1,138				8,702 1,016,660	64,807 14,333,589
Gas - CHP								39	5,300
Gas - CT Gas - Steam		19,579	26,799	126,349				97,325 172,344	775,879 2,406,276
Biogas Nuclear 100%					1,750,957	1 771 959	1 05/ 514	2,622 5,476,820	25,709 59,945,886
Hydro (Total System)					1,700,957	1,771,352	1,954,511	203,583	2,511,132
Solar (Total System) Total	120,435	725,902	50,882	651,606	1,750,957	1,771,352	1,954,511	<u>10,105</u> (B 8,359,648	e) 148,719 94,956,234 (E
	120,400	120,002	50,002	001,000	1,100,001	1,771,002	1,004,011	0,000,040	0 - 7,000,20 -1
t of Reagents Consumed (\$)									
Ammonia	.		\$12,439	\$94,070				\$131,214	\$2,132,769
Limestone Sorbents	\$80,787 -	\$492,369 182,384	23,042	645,650				1,241,849 182,384	13,486,306 1,346,201
Urea	(1)	50,675						50,674	492,740
Re-emission Chemical Dibasic Acid	-	-	-	-				-	345,138 -
Activated Carbon	-	-						-	25,493
Lime (water emissions)	- 80,785	3,613 729,042	- \$35,481	\$739,721				<u>3,613</u> \$1,609,734	<u>91,162</u> \$17,919,809
	00,100	. 20,072	400,401	¢.00,721				+.,000,104	+,0.0,000

Notes: (A) Lincoln (Unit 17) fuel and fuel related costs represents pre-commercial generation during an extended testing and validation period.

(A) Lincoln (Unit 17) fuel and fuel related costs represents pre-commercial generation during an extended testing and validation period.
 (B) Solar Net Generation (mWh) for the month of December includes pre-commercial 225 mWh for Gaston Solar and 621 mWh for Maiden Creek Solar. Detail amounts may not add to totals shown due to rounding. Data is reflected at 100% ownership.
 Schedule excludes in-transit and terminal activity.
 Cents/MBTU and cents/kWh are not computed when costs and/or net generation is negative.
 Re-emission chemical reagent expense is not recoverable in NC.
 Lime (water emissions) expense is not recoverable in SC fuel clause.

CT CT CT CT Steam Steam Load Foad Load Foad Load Foad Load Foad Load Foad <thload foad<="" th=""> Load Foad <thload< th=""> <thload< th=""> <thload< th=""></thload<></thload<></thload<></thload>	mutuality c	Description	Buck	Dan River	Lee	Clemson	Lee	Lincoln	Lincoln (Unit17)	Mill Creek	Rockingham		Marshall	Belews Creek		Current Month	Total 12 ME December 2020
44.00 16.00 16.01 16.01 16.01 2.06,10 2.01,10 2.01,10 2.01,10 2.01,10 2.01,10 2.01,10 2.01,10 2.01,10 2.01,10 2.01,10 2.01,10 2.01,10 2.01,10 2.01,10 2.01,10<	41.00 61.00 61.01 62.05 2.06.10 2.01.10 2.01.10 2.01.10 2.01.10 2.01.10 2.01.10 2.01.1	Coal Data:	8	2 2	2 2 2	СНР	Steam/CT	cī	ст	СТ	CT	Steam	iteam - Dual Fuel 🗧	Steam - Dual Fuel	Steam - Dual Fuel		
24100 2330 65130 7547 37647 3	24.00 24.00 66.130 175.47 2460 66.73 75.47 2466 57.5 26.00 24.347 72.00 75.47 20.00 66.772 67.772 67.772 67.772 67.772 67.772 67.772 77.756 77.756 77.756 77	Beginning balance					,					186,382	960,652	674,515	423,558	2,245,107	2,127,823
35,000 20,300 7,300 6,500 0,600 6,600 6,600 6,600 6,600 6,600 6,600 6,600 6,600 206,670 2,006	35203 27.300 65.001 0.65.00 0.6	Tons received during period										24,160	13,819	165,159	175,477	378,615	5,798,126
1 1	4003 73,30 73,30 20,303 56,473 20 237 732 20 733 20,130 26,473 20 247 23 733 20,03 73,49 734 20,33 26,414 185 253 2 2 23 23 23 24,43 185 24,43 24,43 24,43 24,43 24,43 24,43 24,43 24,43 24,43 24,43 24,43 24,43 24,43 24,43 24,44 14,43 24,43 <td>Inventory adjustments</td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td>25,626</td> <td>47,206</td> <td>(46,502)</td> <td>(6,803)</td> <td>19,527</td> <td>18,845</td>	Inventory adjustments					,					25,626	47,206	(46,502)	(6,803)	19,527	18,845
12,105 7,030 7,588 39,200 209,577 20 9,65,161 40,108 4,00,08 2,501,05 10,401 6,49 14,44 145 2 - - - 2,301 2,432 25,309 5,49 5,00 6,49 5,146 146 146 2 - - - - 1,30 1,304 143 147 148 146 5,146 5,146 5,146 146 146 5,233,06 5,146 5,146 146,100 146,129 144 146 <td< td=""><td>12,105 7,0,30 7,5,62 30,20 2,065,57 7,0 9,06,561 401,061 2,09,016 2,09,025 100,442 2,443 144 142 2,00 - - - - 9,0142 2,442 6,649 144,149 142 2,00 - - - - 9,0142 2,442 6,039 7,049 144 142 144 142 144 146 147</td><td>Tons burned during period</td><td></td><td></td><td></td><td></td><td>'</td><td></td><td></td><td></td><td></td><td>54,063</td><td>281,367</td><td>17,310</td><td>201,962</td><td>554,702</td><td>5,856,247</td></td<>	12,105 7,0,30 7,5,62 30,20 2,065,57 7,0 9,06,561 401,061 2,09,016 2,09,025 100,442 2,443 144 142 2,00 - - - - 9,0142 2,442 6,649 144,149 142 2,00 - - - - 9,0142 2,442 6,039 7,049 144 142 144 142 144 146 147	Tons burned during period					'					54,063	281,367	17,310	201,962	554,702	5,856,247
2307 24,65 24,07 23,09 24,67 -	2307 2405 2407 2309 2407 1 40146 40048 206055 00042 24423 259 2409 2464 2 1 2 1 2 </td <td>Ending balance</td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td>182,105</td> <td>740,309</td> <td>775,862</td> <td>390,270</td> <td>2,088,547</td> <td>2,088,547</td>	Ending balance					,					182,105	740,309	775,862	390,270	2,088,547	2,088,547
965.561 40.103 4.200.08 2.362.05 100.42 2.4.20 9.36 16.902 16.41.41 9.6 2.200 - - - 0.004 2.4.20 2.8.35 109.902 16.441 9.6 2.200 - - - 0.004 2.4.20 2.8.425 104.902 16.441 9.6 2.200 - 2.0146 0.1.00 10.201 119.01 - 9.441 9.6 2.200 1.21 2.41 1.41 0.6 1.20 1.41 1.41 1.41 2.200 1.21 2.41 1.41 1.44 1.44 1.44 1.43 1.41 1.43 2.200 1.21 2.41 1.41 1.43 1.44 1.44 1.44 1.44 2.200 1.12.706 112.70 10.10.86 766.26 1.44 1.44 1.44 2.21 112.70 10.10.86 766.26 1.74 1.44 1.44 1.44 2.11 112.70 10.10.86 766.26 1.44 1.44 1.44 1.44 2.11 112.70 10.10.86 776.26 1.75 1.44 1.75 2.11 112.70	966.561 401.06 4.001.06 2.060.05 0.004.2 2.44.20 9.26.56 0.49.2 0.46.44 0.49 2.20 - - - 0.04.45 119.01 - 9.04 9.04 2.20 - - - 10.04.2 2.04.25 0.04.45 0.04.95 0.44.10 0.6 2.20 - - - 0 - 0.04.45 1.44.10 0.6 0.43.05 2.20 - - 2.14.45 1.12.90 1.12.9 2.14.45 1.12.90 1.12.	MBTUs per ton burned										23.97	24.95	24.97	23.99	24.51	24.77
968:561 401:66 4.00:16 2.940:05 10.042 2.94:25 0.03:65 16,445 17,145 17,145 17,145 17,145 17,145 17,145 17,145 17,145 17,145 1	966:561 40,106 2.304.05 100.42 2.34.25 103.01 2.364.65 103.46 5.3 103.46 5.3 103.46 5.3 103.46 5.3 103.46 5.3 103.46 5.3 103.46 5.3 103.46 5.3 103.46 5.3 103.46 5.3 103.46 5.3 103.46 5.3 103.46 5.3 103.46 5.3 103.46 5.3 103.46 5.3 103.46 5.3 103.46 103.	Cost of ending inventory (\$/ton)										73.92	80.26	99.38	70.49	84.98	84.98
986551 40166 2.00010 2.00425 10042 2.4.20 1.2.0 0.44.40 <th0.44.40< th=""> <th0.44.40< th=""> <th0.44.40< <="" td=""><td>980501 40160 220010 200025 100042 24.420 25.95 164.90 24.440 105. 2 -</td><td>Oil Data:</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th0.44.40<></th0.44.40<></th0.44.40<>	980501 40160 220010 200025 100042 24.420 25.95 164.90 24.440 105. 2 -	Oil Data:															
7 · · · 13901 · 85.68 33306 65. 2260 · · 20.445 0 480 · (6.647) (6.67) 6.67 2200 · · 20.457 0.1330 205.064 (6.47) 13.1 210 112 2.47 112 2.47 114.16 1.28 164.00 14.167 210 1121 2.47 1.43 206.573 266.425 0.136 14.167 13.1 217.15 112.12.06 10.106 750.66 . 75.58 269.500 17.201 9710.08 131.1 17.16 112.12.06 10.10.06 750.66 . <td< td=""><td>1 - - 10012 11901 - 0.3306 55330 53330 5533 2200 - 234425 101,23 2096 144,100 - 75,443 76585 5 210 121 247 217 143 128 144,100 134,797 141 210 121 247 214 149 128 144,100 134,797 141 211 121 01165 759268 144,100 128 144,100 134,797 141 47,415 112,706 101,665 75538 246,500 1,73001 9710,068 131,1 47,415 112,706 101,665 77,758 246,500 1,733001 9710,068 131,1 47,415 112,706 101,665 77,7538 246,500 1,733001 9710,068 131,1 47,415 112,706 114,700 8,347 4,352 14,388 14,388 14,388 14,388 14,388 14,</td><td>Beginning balance</td><td></td><td></td><td></td><td></td><td>725,202</td><td>9,685,581</td><td>401,963</td><td>4,200,018</td><td>2,936,025</td><td>100,642</td><td>234,223</td><td>92,835</td><td>164,992</td><td>18,541,481</td><td>18,531,066</td></td<>	1 - - 10012 11901 - 0.3306 55330 53330 5533 2200 - 234425 101,23 2096 144,100 - 75,443 76585 5 210 121 247 217 143 128 144,100 134,797 141 210 121 247 214 149 128 144,100 134,797 141 211 121 01165 759268 144,100 128 144,100 134,797 141 47,415 112,706 101,665 75538 246,500 1,73001 9710,068 131,1 47,415 112,706 101,665 77,758 246,500 1,733001 9710,068 131,1 47,415 112,706 101,665 77,7538 246,500 1,733001 9710,068 131,1 47,415 112,706 114,700 8,347 4,352 14,388 14,388 14,388 14,388 14,388 14,	Beginning balance					725,202	9,685,581	401,963	4,200,018	2,936,025	100,642	234,223	92,835	164,992	18,541,481	18,531,066
2.20 0 480 6.440 (6.647) (6 2.20 2.81,453 2.81,453 2.81,453 2.81,453 1.43 (6.647) (6 2.20 1.21 2.24 2.17 1.12 1.43 1.23 1.13 2.14 2.10 1.21 1.21 0.1,965 759,266 1.12 1.12 1.81,47797 1.14 47.415 11.2706 101,965 759,266 1.75 1.7538 2.89,500 1.273,001 9.710,063 1.31 47.415 11.2706 101,905 759,266 1.7538 2.89,500 1.273,001 9.710,063 1.31 47.415 11.2706 101,905 759,266 7.7766 49,347 3.21 1.7583 1.175 47.415 11.2706 101,905 7.706 2.14 1.7533 2.43,500 1.17583 1.17583 47.415 11.2766 17.746 4.34,50 1.77363 2.43,500 1.17583 1.17583 11.714 11.714 11.766 2.1069 3.62,20 1.17563 2.62,60 1.1756 11.714 11.774 11.774 12.1068 1.1774 12.1068 1.1756 <	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Gallons received during period	'					•	•		•	120,812	119,901		82,595	323,308	5,340,477
2200 12.10 14.160 1.2 14.160 1.6 10.00 14.1275 10.00 14.1275 10.00 14.1275 10.00 14.1275 10.00 14.1275 10.00 14.1276 10.00 14.1276 10.00 14.1276 10.00 14.1276 10.100 97.10.000 13.11 47.415 112.706 10.106 759.266 759.266 17.65.80 249.500 127.3001 97.10.005 131.1 47.415 112.106 10.106 759.266 77.765 249.500 127.3001 97.10.005 131.1 17.11 117.11 17.558 249.500 127.3001 97.10.005 117.156 117	2200 - 21,445 81,500 122,05 144,160 - 75,144 705,385 54,000 144,160 705,385 54,000 144,160	Miscellaneous adjustments	'	'						'	0	489		(9,364)	(8,443)	(16,647)	(261,532)
963321 01/93 39/8,73 2.84,555 101/28 2.94,560 1,37 1,40 1,42,75 1,01 47,415 112,706 101,065 759,266 7.75,583 249,500 1,273,001 9,710,083 131 47,415 112,706 101,065 759,266 7.75,583 249,500 1,273,001 9,710,083 131 47,415 112,706 101,065 759,266 77,763 249,500 1,273,001 9,710,083 131 4,710 101,065 759,266 77,766 40,347 30,212 153,362 7 17 1 1 1 1 1 2,4 1	9603.21 40168 3045.73 254.655 107.30 20064 63.471 164.000 18.12.75 18.1 47.415 112.06 10.065 759.266 1.42 1.42 1.42 1.42 1.43 2.17 2.14 1.57 2.14 1.57 2.14 1.57 2.14 1.57 2.14 1.57 2.14 1.57 2.14 1.57 2.14 1.57 2.14 1.57 2.14 1.57 2.14 1.57 2.14 1.57 1.51 2.14 1.57 2.14 1.57 2.14 1.57 2.14 1.57 1.57 1.51 1.55 1.55 1.55 1.55 1.75	Gallons burned during period		'				2,260		281,445	81,500	120,205	144,160		75,144	705,385	5,467,254
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ending balance	'				725,202	9,683,321	401,963	3,918,573	2,854,525	101,738	209,964	83,471	164,000	18,142,757	18,142,757
47.415 11.2706 101.056 759.266 176.538 246.500 1.273.001 9.710.088 131. 47.415 11.2706 101.065 750.266 175.538 246.500 1.273.001 9.710.088 131. 77.566 77.766 48.347 30.212 183.382 1 17.588 2 7 7 6.843 4.770 2.2391 2.6.70 2.7.961 7.7.588 2 1 7.588 2 1 7.588 2 1 7.588 2 2 1 7.588 2 2 1 7.588 2 2 1 7.588 2 2 2 2 2 2 1 7 2 1 7 2 2 2 2 1 1 7 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	47,415 112,706 101,805 759,266 176,538 249,500 1,273,001 9,71008 131,1 47,415 112,706 101,805 759,206 177,633 249,500 1,273,001 9,71008 131,6 47,415 112,706 17,753 249,500 1,273,001 9,71008 131,6 11,105 7,010 11,714 6,843 41,00 2,243 0,212 183,382 1 11,714 6,843 2,106 36,26 1,774 2,100 2,343 1,195 1 1 1 1 1 1,163 1,163 1	Cost of ending inventory (\$/gal)	'		,		1.87	2.10	1.21	2.47	2.17	1.42	1.49	1.28	1.37	2.14	2.14
47415 112706 01306 759.266 176.588 246.500 1,273.01 971008 131. 47415 112.706 101.805 759.266 176.588 246.500 1,273.01 9710.088 131. 77535 2 7 7 2 245.50 1,773.01 9710.08 131. 7 7 7 2 245.50 43.347 30.212 183.382 1 175.88 2 1 175.88 2 1	47.415 11.2706 10.805 759.266 17.65.58 249.500 1.273.001 9.710.008 131. 47.415 11.2706 101.805 759.266 17.76.58 249.500 1.273.001 9.710.08 131. 7.75 11.2706 17.76 46.347 30.212 183.382 1 1.77 1.77 1.776 46.347 30.212 183.382 1 1.77 1.774 12.100 6.4.347 30.212 183.382 1 1.774 1.776 46.347 30.212 183.382 1 1 1.774 12.100 6.84 -1.076 2.2423 1.1785 2.305 1 1.44.58 1.774 12.100 6.84 -1.1785 2.46.50 0.670 0 1 1.44.55 1.44.55 1.44.55 1.44.55 1.44.55 1.44.55 1.44.55 1.44.55 1.44.55 1.44.55 2.44.55 1.44.55 2.44.55 2.44.55 2.44.55 2.44.55 2.44.55	Natural Gas Data:															
47.415 112,706 101,005 739,266 175,86 245,00 1127,001 971,0038 1311 175,88 1 175,88 1 175,88 1 177,86 48,347 90,212 183,382 1 1771 (6,843) 4,700 (2,299) (2,670) 2 1771 (6,843) 24,23 (1,786 2,423 1,786 2,423 1,786 2,428 1,786 2,428 1,786 2,444 2,4	47.415 112.706 101.005 739.266 176.58 246.00 112701 9710.008 101.008 117.58 1 17.568 1 112.66 1 112.6	Beginning balance MCF received during period	2 929 844		2 900 531	508	5 107	47 415	112 706	101 805	759 266		176 538	249.500	1 273 001	9 710 083	131 051 615
17.58 17.76 48.347 30.212 183.322 1 17.71 (8.947 30.212 183.322 1 1.771 (8.947 30.212 183.322 1 1.771 (8.947 30.212 183.322 1 1.771 (8.947 30.212 183.322 1 1.771 (8.947 30.212 183.322 1 1.771 (8.947 30.212 183.322 1 1.771 (8.947 30.212 163.322 1 1.774 1.2.100 6.24 11.785 2.6.283 3 2.7064 58.22 52.423 16.128 16.4.43 1 2.7064 58.22 52.423 16.128 16.4.43 1 2.7064 58.22 40.69 36.92 4.4.43 1 1 1 2.8 4.5.4 4.0.69 36.92 4.4.42 1 1 3 1 1 3 3.8 2.7.064 38.22 4.0.29 36.32 4.4.42 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MCF burned during period	2.929.844		2.900.531	508	5.107	47.415	112.706	101.805	759.266		176,538	249.500	1.273.001	9.710.083	131.051,615
17,58 1 17,58 1 17,76 48,347 30,212 183,382 1 1771 (6,43) 4,70 (2,29) (2,670) 2 1771 (6,43) 4,70 (2,29) (2,670) 1 1 1771 (6,43) 4,70 (2,29) (2,670) 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ending balance															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Biogas Data:															
$\frac{1766}{177} = \frac{17.766}{17.766} = \frac{43.347}{43.347} = \frac{30.212}{30.212} = \frac{183.382}{183.382} = \frac{1}{2}$ $\frac{1.771}{1771} = \frac{(6.443)}{6.443} = \frac{4.700}{4.700} = \frac{(2.677)}{2.299} = \frac{2}{2}$ $\frac{1.774}{2.100} = \frac{(2.673)}{2.299} = \frac{2}{4.4.2} = \frac{1}{4.6.58}$ $\frac{1.177}{2.54} = \frac{1}{4.0.66} = \frac{36.92}{36.92} = \frac{4.4.42}{4.6.56} = \frac{1}{2.6}$ $\frac{1.134}{4.6.71}$ $\frac{1.134}{1.6.66} = \frac{1}{1.2}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Beginning balance MCF received during period	17 583													17 583	177 457
27,056 77,766 48,347 30,212 183,382 1 - - - - - - - 1,771 16,430 4,700 (2,290) (2,670) - - 1,771 12,100 6,43 4,700 (2,290) (2,670) - - 1,771 12,100 6,43 36,82 22,423 1 1,765 16,428 1 27,054 58,823 52,423 10,60 36,82 44,42 40,66 27,054 58,823 52,423 16,726 46,67 16,726 16,738 27,054 96,823 52,423 16,726 16,726 16,738 27,054 96,823 52,423 14,422 16,748 1 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,144 1,144 1,156 1,134 1,144 1,144 1,144 </td <td>27,056 77,766 48,347 30,212 183,382 1 - - - - - - - 1,771 (6,843) 4,700 (2,570) - - - 1,771 (6,843) 4,700 (2,570) - - - 1,771 (6,843) 4,700 (2,299) (2,670) - - 1,771 (6,843) 4,700 (2,299) (2,670) - - 2,703 58,22 52,423 11,786 2(4,288 1 2,704 58,823 52,423 16,128 164,288 1 2,705 58,823 52,423 16,128 164,288 2,704 40,69 36,92 44,42 166 1,834 - - - - 45,74 40,69 36,92 44,42 166 1,834 - - - - 1,844 - - - - 1,844 - - - - 1,844 - - - - 1,844 - - - - 2,944 - - -<!--</td--><td>MCF burned during period</td><td>17,583</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>17,583</td><td>177,457</td></td>	27,056 77,766 48,347 30,212 183,382 1 - - - - - - - 1,771 (6,843) 4,700 (2,570) - - - 1,771 (6,843) 4,700 (2,570) - - - 1,771 (6,843) 4,700 (2,299) (2,670) - - 1,771 (6,843) 4,700 (2,299) (2,670) - - 2,703 58,22 52,423 11,786 2(4,288 1 2,704 58,823 52,423 16,128 164,288 1 2,705 58,823 52,423 16,128 164,288 2,704 40,69 36,92 44,42 166 1,834 - - - - 45,74 40,69 36,92 44,42 166 1,834 - - - - 1,844 - - - - 1,844 - - - - 1,844 - - - - 1,844 - - - - 2,944 - - - </td <td>MCF burned during period</td> <td>17,583</td> <td></td> <td>17,583</td> <td>177,457</td>	MCF burned during period	17,583													17,583	177,457
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ending balance															
alidation period. $77,766$ $43,347$ $30,212$ $133,322$ $1,771$ $(6,43)$ $4,700$ $(2,2670)$ $(2,670)$ $1,774$ $12,100$ $(2,2,709)$ $(2,670)$ $(2,267)$ $(1,742)$ $1,714$ $(2,100)$ $(2,2,709)$ $(2,670)$ $(2,27054)$ $58,823$ $52,423$ $(6,128)$ $15,428$ 1 $(6,128)$ $15,4428$ 1 $(6,128)$ $15,4428$ 1 $(1,786)$ $(2,128)$ $1,54,29$ 1 $(1,816)$ $(2,128)$ $1,54,29$ 1 $(2,128)$ $1,54,29$ $(2,126)$ $(2,128)$ $1,54,29$ $(2,126)$ $(2,128)$ $(2,126)$ $(2,12$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Limestone Data:															
alidation period. 1.771 $(= 6.843)$ $= 4.700$ $(= 2.299)$ $(= 2.670)$ $= 1.774$ $= 12.100$ $= 5.4$ $= 1.768$ $= 2.6283$ $= 2.7054$ $= 5.823$ $= 5.2423$ $= 16.128$ $= 16.428$ $= 1.5442$ $= 1.544$ $= 1.5442$ $= 1.5444$ $= 1.5444$ $= 1.5444$ $= 1.5444$ $= $	aliation period. 1.771 (6.843) 4.700 (2.299) (2.670) (2.705) 4.700 (2.291) (2.670) (2.7054) 58.823 52.423 (6.128) $(154,428)$ 1 (156) (2.126)	Beginning balance										27,056	77,766	48,347	30,212	183,382	175,919
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tons received during period												•			
$\frac{1,774}{25,6} = \frac{12,100}{5,0,82} = \frac{6,24}{2,123} = \frac{11,785}{16,128} = \frac{26,283}{16,128} = \frac{27,243}{16,128} = \frac{17,428}{16,128} = \frac{16,428}{16,128} = \frac{16,128}{16,128} = \frac{16,128}{16,118} = \frac{10,118}{16,118} = \frac{10,118}{$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Inventory adjustments										1,771	(6,843)	4,700	(2,299)	(2,670)	
27,054 56,823 52,423 16,128 154,428 11 45,54 40,69 36,92 44,42 40,65 16,05 0.06 1,834 1,334 1,834 1,834 1,808 1,80	27.054 56.823 52.423 16.128 154.428 17 45.54 40.69 36.92 44.42 40.65 16.06 1.834 1.845 1.8	Tons consumed during period										1,774	12,100	624	11,785	26,283	311,176
45.54 40.69 36.92 44.2 40.65 065 40.61 10 0.65 10.65 10.61 12 0.05 10.05 10.61 12 0.05 10.05 10.61 1	45.54 40.69 36.92 44.2 40.65 0.65 40.64 40.65 40.65 40.65 40.65 40.65 40.65 40.65 1.334 1.334 1.334 1.334 1.334 1.334 1.334 1.334 1.334 1.336 1.308 1.	Ending balance										27,054	58,823	52,423	16,128	154,428	154,428
Ort Ending Total 12 December 2020 December 2020 1 1334 - - 2 - 1 1,808 1,808 1,808 455.71 4	Or Ending Total 12 December 2020 December 2020 1,834 - 2 - 26 1,908 1,86,71 4	Cost of ending inventory (\$/ton)										45.54	40.69	36.92	44.42	40.65	40.65
Ideation period. 1334 1334 2 1308 1,85,71 485,71	1;334 1;334 1;308 1;308 1;308 1;308															Otr Ending	
1,334 - 28 1,808 485.71 4 485.71 4	1,334 - 26 1,800 485.71 4 485.71 4	Ammonia Data:														December 2020	
26 1.808 4.85.71 4 4.85.71 4	26 1,808 1,805.11 4 465.71 4	Beginning balance	1,834													1,834	1,405
26 1.808 465.71 4 485.71 4	26 1.808 1.805 1.8	Tons received during period	'														2,738
1,808 485.71 4 485.71 a	1,808 485.71 4 485.71 adidation period.	Tons consumed during period	26													26	2,334
485.71 . 486.71 . alidaton period.	485.71 . 486.671 . 446.64	Ending balance	1,808													1,808	1,808
Notes: (A) Lincon (Unit 17) fuel and fuel related costs represents pre-commercial generation during an extended testing and validation period. Detail amounts may not add to totals shown due to rounding. Set submed second-transits francter mination activity.	Notes: (A) Lincoln (Unit 17) fuel and fuel related costs represents pre-commercial generation during an extended testing and validation period. Detail amounts may not add to totals shown due to rounding. Schedule excludes in-transit and teminal activity. Gals burned as received; therefore, inventory balances are not maintained.	Cost of ending inventory (\$/ton)	485.71													485.71	485.71
Notes: (A) Lincoln (Juit 17) fuel and fuel related costs represents pre-commercial generation during an extended testing and validation period. Edial amounts may rai dato to redard strown due to rounding. Schedule ser Pransit and termination control and account and the second and the second account account and the second account account and the second account acco	Notes: (A) Limonu (Unit 17) fuel and fuel related costs represents pre-commercial generation during an extended testing and validation period. Edit amounts may not add to totals shown due to rounding. Schedule excludes in-transit and terminal activity. Gas is burned as received; therefore, inventory balances are not maintained.																
Detail amounts may not add to totals shown due to rounding. Section excited as the entimetral activity. Section burned activity balances are not maintained.	Defail amounts may not add to tasis shown due to rounding. Schedule excludes in-transit and terminal activity. Gas is burned as received; therefore, inventory balances are not maintained.	<u>Notes:</u> (A) I incoln (I Init 17) fuel and fuel relate	ed costs repres	ents pre-comm	ercial generatio	n during an exter	nded testing and val	idation period									
Gostisburger scheder scheden in der der scheden s	ourieure explored merana entruy. Gas is burned as received; herefore, inventory balances are not maintained.	Detail amounts may not add to totals sh Schodula evoludes in transit and tarmin	nown due to rou	nding.	5	5	5	-									
		Gas is burned as received; therefore, in	nventory balanc	es are not mair	ttained.												

Exhibit 6 Schedule 6

OFFICIAL COPY

Feb 23 2021

DUKE ENERGY CAROLINAS ANALYSIS OF COAL PURCHASED DECEMBER 2020

STATION	ТҮРЕ	QUANTITY OF TONS DELIVERED	DELIVERED COST	DELIVERED COST PER TON
ALLEN	SPOT CONTRACT FIXED TRANSPORTATION / ADJUSTMENTS TOTAL	24,160 24,160	\$ - 1,516,810 0 1,516,810	\$- 62.78 - 62.78
BELEWS CREEK	SPOT CONTRACT FIXED TRANSPORTATION / ADJUSTMENTS	38,357 126,802	2,540,568 8,274,865 2,209	66.23 65.26
CLIFFSIDE	TOTAL SPOT CONTRACT FIXED TRANSPORTATION / ADJUSTMENTS TOTAL	<u> </u>	10,817,642 24,564 9,973,775 0 9,998,339	65.50 56.84 56.98
MARSHALL	SPOT CONTRACT FIXED TRANSPORTATION / ADJUSTMENTS TOTAL	13,819 - - - - - - - - - - - - - - - - - - -	853,067 27,580 49,600 930,247	61.73
ALL PLANTS	SPOT CONTRACT FIXED TRANSPORTATION / ADJUSTMENTS TOTAL	52,176 326,439 378,615	3,418,199 19,793,030 51,809 23,263,038	65.51 60.63 - \$ 61.44

DUKE ENERGY CAROLINAS ANALYSIS OF COAL QUALITY RECEIVED DECEMBER 2020

STATION	PERCENT MOISTURE	PERCENT ASH	HEAT VALUE	PERCENT SULFUR
ALLEN	6.26	12.74	12,212	0.91
BELEWS CREEK	7.13	9.90	12,480	1.26
CLIFFSIDE	9.20	7.48	12,451	1.78
MARSHALL	7.05	13.03	11,913	0.72

DUKE ENERGY CAROLINAS ANALYSIS OF OIL PURCHASED DECEMBER 2020

		ALLEN	CL	IFFSIDE	M	ARSHALL
VENDOR	Hi	ghTowers	Hi	ghTowers	Hi	ghTowers
SPOT/CONTRACT	(Contract	(Contract	(Contract
SULFUR CONTENT %		0		0		0
GALLONS RECEIVED		120,812		82,595		119,901
TOTAL DELIVERED COST	\$	185,282	\$	128,100	\$	184,358
DELIVERED COST/GALLON	\$	1.53	\$	1.55	\$	1.54
BTU/GALLON		138,000		138,000		138,000

Duke Energy Carolinas Power Plant Performance Data Twelve Month Summary

		Duke Energy Caronnas		i age i	
	Pov	wer Plant Performance I	Data		<u> </u>
		Twelve Month Summary	y		8
	J	January, 2020 - December, 202	20		
	NT 4	Nuclear Units			
Unit Name	Net Generation (mWh)	Capacity Rating (mW)	Capacity Factor (%)	Equivalent Availability (%)	FFIC
Oconee 1	6,859,973	847	92.20	90.88	ö
Oconee 2	7,670,158	848	102.97	99.99	
Oconee 3	7,012,136	859	92.93	91.89	
McGuire 1	9,434,118	1,158	92.75	90.65	
McGuire 2	9,612,830	1,158	94.50	93.32	2
Catawba 1	9,235,519	1,160	90.64	89.94	202
Catawba 2	10,121,151	1,150	100.19	99.78	2
					P P

OFFICIAL COPY

Feb 23 2021

Duke Energy Carolinas Power Plant Performance Data Twelve Month Summary January, 2020 through December, 2020 Combined Cycle Units

Unit Name		Net Generation (mWh)	Capacity Rating (mW)	Capacity Factor (%)	Equivalent Availability (%)
Buck CC	11	1,134,065	206	62.67	75.42
Buck CC	12	1,134,559	206	62.70	75.10
Buck CC	ST10	1,598,203	312	58.32	80.85
Buck CC	Block Total	3,866,827	724	60.80	77.67
Dan River CC	8	1,311,548	199	75.03	83.79
Dan River CC	9	1,297,690	199	74.24	83.04
Dan River CC	ST7	1,847,499	320	65.73	91.85
Dan River CC	Block Total	4,456,737	718	70.66	87.17
WS Lee CC	11	1,739,314	240	82.50	88.86
WS Lee CC	12	1,853,394	240	87.92	93.53
WS Lee CC	ST10	2,443,026	313	88.86	94.57
WS Lee CC	Block Total	6,035,734	793	86.65	92.53

Notes:

Data is reflected at 100% ownership.

[•] Units in commercial operation for the full month are presented. Pre-commercial or partial month commercial operations are not included.

OFFICIAL COP

Feb 23 2021

Duke Energy Carolinas Power Plant Performance Data Twelve Month Summary January, 2020 through December, 2020

Baseload Steam Units

Unit Name	Net Generation (mWh)	Capacity Rating (mW)	Capacity Factor (%)	Equivalent Availability (%)
Belews Creek 1	2,691,806	1,110	27.61	58.99
Belews Creek 2	2,649,126	1,110	27.17	64.73
Marshall 3	2,074,332	658	35.89	61.51
Marshall 4	2,202,419	660	37.99	65.19

Notes:

OFFICIAL COP

Feb 23 2021

Duke Energy Carolinas Power Plant Performance Data Twelve Month Summary January, 2020 through December, 2020

Intermediate Steam Units

Unit Name	Net Generation (mWh)	Capacity Rating (mW)	Capacity Factor (%)	Equivalent Availability (%)
Cliffside 6	4,194,682	849	56.25	79.37
Marshall 1	852,998	380	25.55	89.00
Marshall 2	956,682	380	28.66	89.62

Notes:

OFFICIAL COPY

Feb 23 2021

Duke Energy Carolinas Power Plant Performance Data Twelve Month Summary January, 2020 through December, 2020 Other Cycling Steam Units

Unit Name	è	Net Generation (mWh)	Capacity Rating (mW)	Capacity Factor (%)	Operating Availability (%)
Allen	1	7,133	167	0.49	81.63
Allen	2	11,024	167	0.75	94.17
Allen	3	57,542	270	2.43	95.94
Allen	4	238,290	267	10.16	95.80
Allen	5	205,583	259	9.04	88.47
Cliffside	5	1,064,746	546	22.20	69.22
Lee	3	-4,725	173	0.00	100.00

Notes:

Duke Energy Carolinas Power Plant Performance Data Twelve Month Summary January, 2020 through December, 2020 Combustion Turbine Stations

Station Name	Net Generation (mWh)	Capacity Rating (mW)	Operating Availability (%)
Clemson CHP	5,300	16	39.33
Lee CT	1,711	96	95.49
Lincoln CT	15,767	1,565	95.96
Mill Creek CT	70,332	756	99.68
Rockingham CT	656,571	895	88.88

Notes:

[•] Units in commercial operation for the full month are presented. Pre-commercial or partial month commercial operations are not included.

Duke Energy Carolinas Power Plant Performance Data

Twelve Month Summary

January, 2020 through December, 2020

Hydroelectric Stations

Hydro	electric Stations		
Station Name	Net Generation (mWh)	Capacity Rating (mW)	Operating Availability (%
Conventional Hydroelectric Stations:			
Bear Creek	33,970	9.5	72.33
Bridgewater	101,362	31.5	98.91
Cedar Cliff	14,360	6.8	64.07
Cedar Creek	195,060	45.0	66.54
Cowans Ford	345,561	324.0	95.00
Dearborn	167,286	42.0	86.33
Fishing Creek	236,761	50.0	86.00
Great Falls	-71	12.0	0.00
Keowee	111,177	152.0	96.63
Lookout Shoals	174,141	27.0	98.63
Mountain Island	227,649	62.0	64.49
Nantahala	281,167	50.0	91.68
Ninety-Nine Islands	80,306	15.2	76.52
Oxford	183,279	40.0	86.37
Queens Creek	6,292	1.4	93.68
Rhodhiss	119,034	33.4	98.18
Tennessee Creek	-12	9.8	0.00
Thorpe	118,015	19.7	99.49
Tuckasegee	5,018	2.5	66.71
Wateree	401,240	85.0	81.19
Wylie	214,998	72.0	69.12
Total Conventional Hydroelectric Stations:	3,016,593		
Pumped Storage Hydroelectric Stations:			
Gross Generation			
Bad Creek	1,602,907	1,360.0	67.95
Jocassee	1,138,239	780.0	81.85
Energy for Pumping			
Bad Creek	-2,004,346		
Jocassee	-1,242,261		
Net Generation			
Bad Creek	-401,439		

Jocassee

Notes:

• Units in commercial operation for the full month are presented. Pre-commercial or partial month commercial operations are not included.

-104,022

Exhibit 6 Schedule 10 Page 7 of 8

OFFICIAL COPY

Feb 23 2021

Duke Energy Carolinas Power Plant Performance Data Twelve Month Summary January, 2020 through December, 2020 Pre-commercial Combustion Turbine Stations

Note: The Power Plant Performance Data reports are limited to capturing data beginning the first full month a station is in commercial operation. During the months identified, Lincoln Unit 17 produced pre-commercial generation.

Station Name	Net Generation (mWh)	Capacity Rating (mW)	Operating Availability (%)
December 2020			
Lincoln Unit 17	10,971	n/a	n/a
November 2020			
Lincoln Unit 17	8,337	n/a	n/a
October 2020			
Lincoln Unit 17	11,198	n/a	n/a
September 2020			
Lincoln Unit 17	8,471	n/a	n/a
August 2020			
Lincoln Unit 17	-221	n/a	n/a
July 2020			
Lincoln Unit 17	-24	n/a	n/a
June 2020			
Lincoln Unit 17	1,805	n/a	n/a
May 2020			
Lincoln Unit 17	-657	n/a	n/a

Total

39,880

Notes:

Duke Energy Carolinas, LLC North Carolina Annual Fuel and Fuel Related Expense Proposed Nuclear Capacity Factor Billing Period September 2021 through August 2022 Docket E-7, Sub 1250

	Cat	awba 1	(Catawba 2	McGuire 1	McGuire 2	Oconee 1	Oconee 2	Oconee 3	Total
MWhs		9,330,730		9,921,566	9,278,272	9,189,043	7,233,820	6,758,803	6,909,851	58,622,085
Cost (Gross of Joint Owners)		6,313,089	\$		\$ 53,463,594		\$	\$ 40,167,441		\$ 355,077,645
, , , , , , , , , , , , , , , , , , ,	·	, ,		, ,			, ,			
\$/MWh		6.0352		6.2873	5.7622	5.7885	6.6878	5.9430	5.9604	
Avg \$/MWh				6.0571						
Cents per kWh				0.6057						
					Sept 2021 -					
					August 2022					
MDC										
CATA_UN01	Cataw			MW	1,160.0					
CATA_UN02	Cataw			MW	1,150.1					
MCGU_UN01	McGui			MW	1,158.0					
MCGU_UN02	McGu	re		MW	1,157.6					
OCON_UN01	Ocone	e		MW	847.0					
OCON_UN02	Ocone	е		MW	848.0					
OCON_UN03	Ocone	е		MW	859.0	<u>.</u>				
					7,179.7					
Hours In Year					8,760					
Generation GWhs										
CATA_UN01	Cataw	ba		GWh	9,331					
CATA_UN02	Cataw	ba		GWh	9,922					
MCGU_UN01	McGui	re		GWh	9,278					
MCGU_UN02	McGu	re		GWh	9,189					
OCON_UN01	Ocone			GWh	7,234					
OCON_UN02	Ocone	e		GWh	6,759					
OCON_UN03	Ocone	e		GWh	6,910					
					58,622	-				

93.21%

Proposed Nuclear Capacity Factor

Duke Energy Carolinas, LLC North Carolina Annual Fuel and Fuel Related Expense NERC 5 Year Average Nuclear Capacity Factor Billing Period September 2021 through August 2022 Docket E-7, Sub 1250

	Cataw	vba 1	Catawba 2	McGuire 1	McGuire 2	Oconee 1	Oconee 2	Oconee 3	Total
MM/hawith NEDC applied	0.7		0.216.407	0 270 004	0 276 500		C 802 C20	6 002 052	
MWhs with NERC applied	9,4	296,633	9,216,497	9,279,804	9,276,599	6,885,500	6,893,629	6,983,052	57,831,714
Hours		8760	8760	8760	8760	8760	8760	8760	8760
MDC		1160.1	1150.1	1158.0	1157.6	847.0	848.0	859.0	7179.8
Capacity factor		91.48%	91.48%	91.48%	91.48%	92.80%	92.80%	92.80%	91.95%
Cost	\$ 56,3	310,290 \$	55,824,898 \$	56,208,357	56,188,942 \$	41,705,906 \$	41,755,146 \$	42,296,781	\$ 350,290,320

Avg \$/MWh	
Cents per kWh	

6.0571 0.6057

	Capacity	NCF	Weighted
2015-2019	Rating	Rating	Average
Oconee 1	847.0	92.80	10.95%
Oconee 2	848.0	92.80	10.96%
Oconee 3	859.0	92.80	11.10%
McGuire 1	1158.0	91.48	14.75%
McGuire 2	1157.6	91.48	14.75%
Catawba 1	1160.1	91.48	14.78%
Catawba 2	1150.1	91.48	14.65%
-	7179.8		91.95%

Duke Energy Carolinas, LLC North Carolina Annual Fuel and Fuel Related Expense North Carolina Generation and Purchased Power in MWhs Billing Period September 2021 through August 2022 Docket E-7, Sub 1250

	Sept 2021 - August	
Resource Type	2022	
NUC Total (Gross)	58,622,085	
COAL Total	18,691,906	
Gas CT and CC total (Gross)	22,065,718	
Run of River	4,030,270	
Net pumped Storage	(2,872,983)	
Total Hydro	1,157,287	
Catawba Joint Owners	(14,848,200)	
Lee CC Joint Owners	(876,000)	
DEC owned solar	367,302	
Total Generation	,	85,180,099
Purchases for REPS Compliance	1,259,059	
Qualifying Facility Purchases - Non-REPS compliance	2,257,343	
Other Purchases	36,100	
Allocated Economic Purchases	371,115	
Joint Dispatch Purchases	4,185,880	
	8,109,496	
Total Generation and Purchased Power		93,289,595
Fuel Recovered Through Intersystem Sales	(1,789,852)	

rounding differences may occur

Duke Energy Carolinas, LLC North Carolina Annual Fuel and Fuel Related Expense Projected Fuel and Fuel Related Costs Billing Period September 2021 through August 2022 Docket E-7, Sub 1250

Resource Type	Sept 2021 - August 2022	
Nuclear Total (Gross)	\$ 355,077,645	
COAL Total	438,222,003	
Gas CT and CC total (Gross)	503,828,581	
Catawba Joint Owner costs	(89,940,492)	
CC Joint Owner costs Non-Economic Fuel Expense Recovered through Reimbursement	(16,986,285) (6,522,205)	
Reagents and gain/loss on sale of By-Products	25,707,869	Workpaper 9
Purchases for REPS Compliance - Energy Purchases for REPS Compliance - Capacity Purchases of Qualifying Facilities - Energy Purchases of Qualifying Facilities - Capacity Other Purchases JDA Savings Shared Allocated Economic Purchase cost Joint Dispatch purchases	62,808,851 13,866,978 53,822,291 11,169,971 2,586,674 7,856,711 11,091,651 93,448,130	Workpaper 5 Workpaper 5 Workpaper 6
Total Purchases Fuel Expense recovered through intersystem sales	(28,691,221)	Workpaper 5
Total System Fuel and Fuel Related Costs	\$ 1,437,347,151	

Duke Energy Carolinas, LLC North Carolina Annual Fuel and Fuel Related Expense **Projected Joint Dispatch Fuel Impacts** Billing Period September 2021 through August 2022 Docket E-7, Sub 1250

	Allocated Economic	conomic Purchase Cost Economic Sales Cost				Fuel Transfer Payment				JDA Savings Payment				
	DEP		DEC		DEP	DEC		DEP		DEC		DEP		DEC
9/1/2021	\$ 1,054,985	\$	1,489,274	\$	(122,675)	\$ (197,587)	\$	(3,762,312)	\$	3,762,312	\$	(217,149)	\$	217,149
10/1/2021	\$ 812,687	\$	1,199,637	\$	(74,159)	\$ (94,918)	\$	(7,376,689)	\$	7,376,689	\$	(1,612,598)	\$	1,612,598
11/1/2021	\$ 968,558	\$	721,584	\$	(159,041)	\$ (93,475)	\$	(14,155,044)	\$	14,155,044	\$	(3,467,413)	\$	3,467,413
12/1/2021	\$ 944,127	\$	232,432	\$	(406,595)	\$ (267,257)	\$	(9,163,715)	\$	9,163,715	\$	(625,497)	\$	625,497
1/1/2022	\$ 1,900,927	\$	2,723,940	\$	(1,113,145)	\$ (1,836,243)	\$	68,261	\$	(68,261)	\$	2,086,357	\$	(2,086,357)
2/1/2022	\$ 938,420	\$	1,350,167	\$	(608,729)	\$ (802,795)	\$	(499,296)	\$	499,296	\$	1,440,906	\$	(1,440,906)
3/1/2022	\$ 358,236	\$	246,158	\$	(286,289)	\$ (322,285)	\$	(5,264,225)	\$	5,264,225	\$	(508,772)	\$	508,772
4/1/2022	\$ 451,814	\$	346,300	\$	(220,333)	\$ (19,608)	\$	(8,735,414)	\$	8,735,414	\$	(1,848,386)	\$	1,848,386
5/1/2022	\$ 386,367	\$	562,877	\$	(194,707)	\$ (94,039)	\$	(6,413,312)	\$	6,413,312	\$	(1,011,472)	\$	1,011,472
6/1/2022	\$ 1,606,722	\$	448,861	\$	(172,585)	\$ (147,466)	\$	(5,686,849)	\$	5,686,849	\$	(731,894)	\$	731,894
7/1/2022	\$ 935,253	\$	647,767	\$	(218,665)	\$ (213,920)	\$	(5,407,444)	\$	5,407,444	\$	(1,418,613)	\$	1,418,613
8/1/2022	\$ 783,070	\$	1,122,655	\$	(114,647)	\$ (199,370)	\$	(2,649,832)	\$	2,649,832	\$	57,821	\$	(57,821)

Positive numbers represent costs to Rate Payers, Negative numbers represent removal of costs to ratepayers

Sent	21	- Aug	22
JUPL	~ -	7.05	~~

11,091,651

\$

rounding differences may occur

(4,288,963)

\$

\$

69,045,871 7,856,711 \$

\$ 93,448,130 Workpaper 6 - Transfer - Purchases

(24,402,258) Workpaper 6 - Transfer - Sales \$

\$ 69,045,871 Sept 21-Aug 22 Net Fuel Transfer Payment

\$ (24,402,258) Workpaper 6 - Transfer - Sales

\$ (4,288,963) Sept 21-Aug 22 Economic Sales Cost

\$ (28,691,221) Total Fuel expense recovered through intersystem sales

Duke Energy Carolinas, LLC North Carolina Annual Fuel and Fuel Related Expense **Projected Merger Payments** Billing Period September 2021 through August 2022 Docket E-7, Sub 1250

rounding differences may occur

					Purchase	Sale					Sale		Purchase
[Transfer Projection		Purchase Allocation Delta		Adjusted Transfer		Fossil Gen Cost		Pre-Net Payn		nents		
	PECtoDEC	DECtoPEC	PEC	DEC	PECtoDEC	DECtoPEC		PEC	DEC		PECtoDEC		DECtoPEC
9/1/2021	251,617	116,444	(16,971)	16,971	251,617	133,415	\$	23.22	\$ 15.60	\$	2,081,261	\$	5,843,573
10/1/2021	376,590	63,669	(3,893)	3,893	376,590	67,563	\$	22.20	\$ 14.58	\$	984,937	\$	8,361,626
11/1/2021	600,895	7,749	18,605	(18,605)	619,500	7,749	\$	23.00	\$ 12.20	\$	94,541	\$	14,249,585
12/1/2021	415,829	156,683	14,190	(14,190)	430,020	156,683	\$	25.97	\$ 12.79	\$	2,003,858	\$	11,167,572
1/1/2022	150,297	279,321	(23,059)	23,059	150,297	302,380	\$	27.95	\$ 14.12	\$	4,268,785	\$	4,200,524
2/1/2022	147,663	241,402	(22,785)	22,785	147,663	264,187	\$	26.96	\$ 13.18	\$	3,481,557	\$	3,980,853
3/1/2022	335,731	129,422	(1,475)	1,475	335,731	130,897	\$	21.25	\$ 14.28	\$	1,868,782	\$	7,133,007
4/1/2022	515,174	84,533	(4,391)	4,391	515,174	88,924	\$	19.71	\$ 15.96	\$	1,419,191	\$	10,154,604
5/1/2022	402,086	90,810	(9,503)	9,503	402,086	100,312	\$	19.77	\$ 15.31	\$	1,535,300	\$	7,948,612
6/1/2022	327,890	81,463	13,381	(13,381)	341,270	81,463	\$	20.42	\$ 15.73	\$	1,281,202	\$	6,968,052
7/1/2022	352,486	138,198	(4,362)	4,362	352,486	142,559	\$	22.01	\$ 16.50	\$	2,352,080	\$	7,759,524
8/1/2022	263,445	162,770	(18,986)	18,986	263,445	181,756	\$	21.56	\$ 16.67	\$	3,030,764	\$	5,680,597
Cart 24 Aug 22	4 4 2 0 7 0 2		(50.240)	50.240	4 4 9 5 9 9 9	4 (57 000				<i>~</i>	24 402 250	ć	02 440 420
Sept 21 - Aug 22	4,139,703	1,552,465	(59,249)	59,249	4,185,880	1,657,890				\$	24,402,258	Ş	93,448,130

Net Pre-Net Payments \$ 69,045,871 Feb 23 2021

Fall 2020 Forecast **Billed Sales Forecast** Sales Forecast

		Projected sales for the Billing Period	Remove impact of SC DERP Net Metered Generation	Adjusted Sales
North Carolina:				
	Residential	21,803,077		21,803,077
	General	23,889,192		23,889,192
	Industrial	12,036,241		12,036,241
	Lighting	239,227		239,227
	NC RETAIL	57,967,737	-	57,967,737
South Carolina:				
	Residential	6,549,429	102,353	6,651,782
	General	5,992,271	55,281	6,047,552
	Industrial	8,837,609	428	8,838,037
	Lighting	39,918	-	39,918
	SC RETAIL	21,419,227	158,062	21,577,289
Total Retail Sales				
	Residential	28,352,506	102,353	28,454,859
	General	29,881,464	55,281	29,936,744
	Industrial	20,873,850	428	20,874,278
	Lighting	279,145	-	279,145
	Retail Sales	79,386,965	158,062	79,545,026
	Wholesale	8,303,032	-	8,303,032
	Projected System MWH Sales for Fuel Factor	87,689,996	158,062	87,848,058
	NC as a percentage of total	66.11%		65.99%
	SC as a percentage of total	24.43%		24.56%
	Wholesale as a percentage of total	9.47%		9.45%
		100.00%		100.00%
	SC Net Metering allocation adjustment			
	Total projected SC NEM MWhs		158,062	
	Marginal fuel rate per MWh for SC NEM		\$ 26.43	
	Fuel benefit to be directly assigned to SC Retail	-	\$ 4,178,086	-
	System Fuel Expense	د	\$ 1.437.347.151	Sykes Exhibit 2 Schedule
	Fuel benefit to be directly assigned to SC Retai		\$ 4,178,086	
	Total Fuel Costs for Allocation	-		Sykes Exhibit 2 Schedul
				NC Retail

Reconciliation
Total system fuel expense from Sykes Exhibit 2 Schedule 1 Page 1
QF and REPS Compliance Purchased Power - Capacity
Other fuel costs
SC Net Metering Fuel Allocation adjustment
Jurisdictional fuel costs after adj.
Allocation to states/classes
Jurisdictional fuel costs
Direct Assignment of Fuel benefit to SC Retail
Total system actual fuel costs
QF and REPS Compliance Purchased Power - Capacity
Total system fuel expense from Sykes Exhibit 2 Schedule 1 Page 1

\$ 1,437,347,151 **\$ 951,489,668** Exh.2, Sch. 1 page 3, Line 13

16,749,046

65.99%

Customers

System

\$ 1,437,347,151

\$ 25,036,948 \$ 1,412,310,202

\$ 4,178,086 \$ 1,416,488,289

\$ (4,178,086)

25,036,948

1 Page 1 of 3

1 Page 3 of 3, L5

South Carolina Wholesale Retail 24.56% 9.45% \$ 1,416,488,289 \$ 934,740,622 \$ 133,858,143 \$ 347,889,524 \$ - \$ (4,178,086) \$ 1,412,310,202 \$ 934,740,622 \$ 133,858,143 \$ 343,711,437

66.90%

Duke Energy Carolinas, LLC North Carolina Annual Fuel and Fuel Related Expense Projected and Adjusted Projected Sales and Costs Proposed Nuclear Capacity Factor of 93.21% and Normalized Test Period Sales Billing Period September 2021 through August 2022 Docket E-7, Sub 1250

Fall 2020 Forecast

Billed Sales Forecast - Normalized Test Period Sales Sales Forecast - MWhs (000)

	Test Period Sales	Customer Growth Adjustment	Weather Adjustment	Remove impact of SC DERP Net Metered generation	Normalized Test Period Sales
NC RETAIL	55,511,864	322,769	2,167,977	-	58,002,610
SC RETAIL	19,994,535	92,599	710,925	158,062	20,956,121
Wholesale	7,476,647	79,360	207,295	-	7,763,302
Normalized System MWH Sales for Fuel Factor	82,983,046	494,727	3,086,197	158,062	86,722,032
NC as a percentage of total SC as a percentage of total Wholesale as a percentage of total	66.90% 24.09% 9.01% 100.00%				66.88% 24.16% 8.95% 100.00%
SC Net Metering allocation adjustment Total projected SC NEM MWhs Marginal fuel rate per MWh for SC NEM Fuel benefit to be directly assigned to SC Retail	-	158,062 \$ 26.43 \$ 4,178,086			
System Fuel Expense Fuel benefit to be directly assigned to SC Retail Total Fuel Costs for Allocation	-	\$ 4,178,086	Sykes Exhibit 2 Schedule Sykes Exhibit 2 Schedule	-	
Reconciliation Total system fuel expense from Sykes Exhibit 2 Schedule 2 Page 1 QF and REPS Compliance Purchased Power - Capacity Other fuel costs	, _	System \$ 1,410,948,076 \$ 25,036,948 \$ 1,285,011,127	NC Retail Customers	Wholesale	South Carolina Retail
Other fuel costs SC Net Metering Fuel Allocation adjustment Jurisdictional fuel costs after adj. Allocation to states/classes Jurisdictional fuel costs Direct Assignment of Fuel benefit to SC Retail	- -	 \$ 1,385,911,127 \$ 4,178,086 \$ 1,390,089,213 \$ 1,390,089,213 \$ (4,178,086) 	- 66.88% \$ 929,691,666	8.95% \$ 124,412,985 \$ -	
Total system actual fuel expense from Sykes Exhibit 2 Schedule 2 Page 1	; , 	\$ (4,178,088) \$ 1,385,911,127 25,036,948 \$ 1,410,948,076	16,749,046	\$ 124,412,985	

rounding differences may occur

Normalized Test Period Sales							
58,002,610							
20,956,121							
7,763,302							
86,722,032							
66.88%							
24.16%							
8.95%							

Duke Energy Carolinas, LLC North Carolina Annual Fuel and Fuel Related Expense Projected and Adjusted Projected Sales and Costs NERC 5 Year Average Nuclear Capacity Factor of 91.95% Billing Period September 2021 through August 2022 Docket E-7, Sub 1250

Fall 2020 Forecast **Billed Sales Forecast** Sales Forecast - MWhs (000)

		Projected sales for the Billing Period	Remove impact of SC DERP Net Metered generation	Adjusted Sales
North Carolina:				
	Residential	21,803,077		21,803,077
	General	23,889,192		23,889,192
	Industrial	12,036,241		12,036,241
	Lighting	239,227		239,227
	NC RETAIL	57,967,737	-	57,967,737
South Carolina:				
	Residential	6,549,429	102,353	6,651,782
	General	5,992,271	55,281	6,047,552
	Industrial	8,837,609	428	8,838,037
	Lighting	39,918	0	39,918
	SC RETAIL	21,419,227	158,062	21,577,289
Total Retail Sales				
	Residential	28,352,506	102,353	28,454,859
	General	29,881,464	55,281	29,936,745
	Industrial	20,873,850	428	20,874,278
	Lighting	279,145	-	279,145
	Retail Sales	79,386,964	158,062	79,545,026
	Wholesale	8,303,032	-	8,303,032
	Projected System MWh Sales for Fuel Factor	87,689,996	158,062	87,848,058
	NC as a percentage of total	66.11%		65.99%
	SC as a percentage of total	24.43%		24.56%
	Wholesale as a percentage of total	9.47%		9.45%
		100.01%		100.00%
	SC Net Metering allocation adjustment			
	Total projected SC NEM MWhs		158,062	
	Marginal fuel rate per MWh for SC NEM		\$ 26.43	_
	Fuel benefit to be directly assigned to SC Retail		\$ 4,178,086	
	System Fuel Expense		\$ 1,447,608,938	Sykes Exhibit 2 Schedule 3 Page
	Fuel benefit to be directly assigned to SC Retail		\$ 4,178,086	_
	Total Fuel Costs for Allocation		\$ 1,451,787,024	Sykes Exhibit 2 Schedule 3 Pag
	Reconciliation		System	NC Retail Customers
	Total system fuel expense from Sykes Exhibit 2 Schedule 3 Page 1		\$ 1,447,608,938	
	QF and REPS Compliance Purchased Power - Capacity	-	\$ 25,036,948	
	Other fuel costs		\$ 1,422,571,989	
	SC Net Metering Fuel Allocation adjustment		\$ 4,178,086	-
	Jurisdictional fuel costs after adj.		\$ 1,426,750,076	

Reconciliation	System	NC Retail Customers	Wholesale	South Carolina Retail
Total system fuel expense from Sykes Exhibit 2 Schedule 3 Page 1	\$ 1,447,608,938			
QF and REPS Compliance Purchased Power - Capacity	\$ 25,036,948			
Other fuel costs	\$ 1,422,571,989			
SC Net Metering Fuel Allocation adjustment	\$ 4,178,086			
Jurisdictional fuel costs after adj.	\$ 1,426,750,076			
Allocation to states/classes		65.99%	9.45%	24.56%
Jurisdictional fuel costs	\$ 1,426,750,076	\$ 941,512,375 \$	134,827,882	\$ 350,409,819
Direct Assignment of Fuel benefit to SC Retail	\$ (4,178,086)	\$	-	\$ (4,178,086)
Total system actual fuel costs	\$ 1,422,571,989	\$ 941,512,375 \$	134,827,882	\$ 346,231,732
QF and REPS Compliance Purchased Power - Capacity	25,036,948	16,749,046		
Total system fuel expense from Sykes Exhibit 2 Schedule 3 Page 1	\$ 1,447,608,938	\$ 958,261,421		-

rounding differences may occur

age 1 of 3 Page 3 of 3, Line 5

Exh. 2, Sch.3 page 3, Line 13

Duke Energy Carolinas, LLC North Carolina Annual Fuel and Fuel Related Expense Annualized Revenue Billing Period September 2021 through August 2022 Docket E-7, Sub 1250

	January 2021 Actuals				Normalized Sales	
		Revenue	kWh Sales	Cents/ kWh	Sykes Exhibit 4	Total Annualized Revenues
		(a)	(b)	(a)/(b) *100 = (c)	(d)	(c) * (d) * 10
Residential	\$	232,627,628.37	2,427,681,062	9.5823	23,329,575	\$ 2,235,509,347
General	\$	151,922,584.38	2,224,452,001	6.8297	23,102,975	\$ 1,577,855,414
Industrial	\$	59,399,180.48	1,133,633,489	5.2397	11,570,060	\$ 606,238,320
Total	\$	443,949,393.23	5,785,766,552		58,002,609	\$ 4,419,603,081

rounding differences may occur

Duke Energy Carolinas, LLC North Carolina Annual Fuel and Fuel Related Expense Projected Reagents and ByProducts Billing Period September 2021 through August 2022 Docket E-7, Sub 1250

Reagent and ByProduct projections

	Magnesium					Gypsum (Gain)/					le of By-Products
Date	Ammonia	Urea	Limestone	Hydroxide	Calcium Carbonate	Lime	Reagent Cost L	.oss Asl	h (Gain)/Loss Steam (Gain)/Loss	(Gain)/Loss
9/1/2021 \$	254,001 \$	58,683 \$	1,606,144 \$	5 153,447	\$ 92,068 \$	71,486 \$	2,235,829 \$	439,597 \$	(39,130) \$	(180,111) \$	220,355
10/1/2021 \$	175,836 \$	40,624 \$	1,111,877 \$	\$ 111,351	\$ 66,811 \$	71,486 \$	1,577,984 \$	290,188 \$	(5,710) \$	(177,793) \$	106,685
11/1/2021 \$	221,414 \$	51,154 \$	1,400,085 \$	\$ 126,904	\$ 76,142 \$	71,486 \$	1,947,185 \$	406,119 \$	(79,173) \$	(175,470) \$	151,477
12/1/2021 \$	280,366 \$	64,774 \$	1,772,861 \$	5 151,011	\$ 90,607 \$	71,486 \$	2,431,105 \$	523,636 \$	(101,577) \$	(173,288) \$	248,772
1/1/2022 \$	401,963 \$	92,867 \$	2,541,766 \$	5 202,788	\$ 121,673 \$	71,486 \$	3,432,543 \$	770,470 \$	(161,638) \$	(171,363) \$	437,470
2/1/2022 \$	383,066 \$	88,501 \$	2,422,272 \$	5 193,244	\$ 115,947 \$	71,486 \$	3,274,516 \$	746,552 \$	(176,072) \$	(169,522) \$	400,957
3/1/2022 \$	188,873 \$	43,636 \$	1,194,314 \$	5 112,076	\$ 67,246 \$	71,486 \$	1,677,631 \$	358,963 \$	(71,356) \$	(167,765) \$	119,842
4/1/2022 \$	107,105 \$	24,745 \$	677,266 \$	36,643	\$ 21,986 \$	71,486 \$	939,231 \$	202,655 \$	(10,545) \$	(166,307) \$	25,802
5/1/2022 \$	102,555 \$	23,694 \$	648,496 \$	36,188	\$ 21,713 \$	71,486 \$	904,131 \$	193,396 \$	(11,011) \$	(165,442) \$	16,943
6/1/2022 \$	159,812 \$	36,922 \$	1,010,553 \$	63,671	\$ 38,203 \$	71,486 \$	1,380,647 \$	303,841 \$	(29,602) \$	(164,681) \$	109,558
7/1/2022 \$	218,501 \$	50,481 \$	1,381,667 \$	90,984	\$ 54,590 \$	71,486 \$	1,867,709 \$	431,038 \$	(63,783) \$	(163,942) \$	203,314
8/1/2022 \$	211,283 \$	48,813 \$	1,336,022 \$	84,644	\$ 50,786 \$	71,486 \$	1,803,034 \$	415,929 \$	(57,573) \$	(163,207) \$	195,149
\$	2,704,776 \$	624,892 \$	17,103,321 \$	1,362,953	\$ 817,772 \$	857,831 \$	23,471,545 \$5,	,082,384 \$	(807,169)\$ ((2,038,892) \$	2,236,324
							Total Reagent	cost and Sale c	of By-products	\$	25,707,869

rounding differences may occur

Sykes Workpaper 9

COP√
OFFICIAL

Duke Energy Carolinas, LLC North Carolina Annual Fuel and Fuel Related Expense 2.5% Calculation Test Twelve Months Ended December 31, 2020 Billing Period September 2021 through August 2022 Docket E-7, Sub 1250

Line

No.	Description	Forecast \$	Collection \$	Total \$
	1 Amount in current docket	102,740,263	(4,999,624)	97,740,638
	2 Amount in Sub 1228, prior year docket	101,750,258	1,617,020	103,367,278
	3 Increase/(Decrease)	990,005	(6,616,645)	(5,626,640)
	4 2.5% of 2020 NC retail revenue of \$4,632,028,605			115,800,715
	Excess of purchased power growth over 2.5% of revenue			0
	E-7 Sub 1250			
/P 4	Purchases for REPS Compliance - Energy	62,808,851	65.99%	41,447,561
'P 4	Purchases for REPS Compliance - Capacity	13,866,978	66.90%	9,276,635
/P 4	Purchases	2,586,674	65.99%	1,706,946
/P 4	QF Energy	53,822,291	65.99%	35,517,330
/P 4	QF Capacity	11,169,971	66.90%	7,472,410
/P 4	Allocated Economic Purchase cost	11,091,651	65.99%	7,319,380
		155,346,415		102,740,263

E-7 Sub 1228			
Purchases for REPS Compliance	63,001,495	66.02%	41,593,587
Purchases for REPS Compliance Capacity	13,122,631	67.55%	8,863,980
Purchases	1,628,569	66.02%	1,075,181
QF Energy	56,445,045	66.02%	37,265,019
QF Capacity	12,285,396	67.55%	8,298,450
Allocated Economic Purchase cost	7,049,441	66.02%	4,654,041
	153,532,577		101,750,258

Sykes Workpaper 10

(over)/under

Duke Energy Carolinas, LLC North Carolina Annual Fuel and Fuel Related Expense 2.5% Calculation Test Twelve Months Ended December 31, 2020 Docket E-7, Sub 1250

2020 System KWH Sales - Sch 4, Adjusted NC Retail KWH Sales - Sch 4 NC Retail % of Sales, Adjusted (Calc)	Jan-20 7,193,812,94 4,799,050,11 66.7	3 4,852,514,770	Mar-20 6,557,632,220 4,419,004,658 67.39%	Apr-20 5,948,571,625 4,009,530,882 67.40%	May-20 5,649,816,171 3,737,497,506 66.15%	Jun-20 6,745,745,153 4,445,349,080 65.90%	Jul-20 8,113,658,335 5,381,133,760 66.32%	Aug-20 8,454,195,025 5,679,285,065 67.18%	Sep-20 7,632,668,505 5,143,265,080 67.38%	Oct-20 6,227,418,819 4,161,108,724 66.82%	Nov-20 7,077,137,814 4,768,316,561 67.38%	Dec-20 6,283,453,698 4,115,807,397 65.50%	12 ME 83,113,271,070 55,511,863,636 66.79%
NC retail production plant %	67.5	% 67.55%	67.55%	67.55%	67.55%	67.75%	67.75%	67.75%	67.75%	67.75%	67.75%	67.75%	67.71%
Fuel and Fuel related component of purchased power													
System Actual \$ - Sch 3 Fuel\$: System Actual \$ - Sch 3 Fuel-related\$; Economic Purchases System Actual \$ - Sch 3 Fuel-related\$; Purchased Power for REPS Compliance System Actual\$ - Sch 3 Fuel-related\$; SC DERP System Acutal \$ - Sch 3 Fuel-related\$; HB589 purpa Purchases	\$ 11,218,3 1,491,7 3,745,1 13,2 2,051,4	11,826,422.64,068,302.113,282	\$ 5,300,111 990,649 3,681,838 28,563 2,123,359	\$ 6,352,200 9 729,743 4,276,231 39,932 2,681,961	\$ 8,395,303 909,315 5,491,472 44,069 3,213,134	\$ 6,771,661 1,057,292 4,795,757 110,923 2,547,168	\$ 12,440,459 2,012,867 5,305,337 38,018 2,552,543	\$ 7,247,711 1,346,379 6,084,262 129,601 2,889,199	\$ 9,073,495 1,036,893 5,064,982 69,181 2,519,264	\$ 15,331,837 \$ 1,743,448 4,676,649 87,074 2,799,837	6,958,738 \$ 1,074,835 4,553,039 68,782 2,863,763	24,648,415 \$ 4,774,389 \$ 4,091,116 \$ 37,283 \$ 2,568,618 \$	126,346,007 18,994,003 55,834,101 679,999 30,908,248
Total System Economic & QF\$	18,519,97	8 20,613,684	12,124,520	14,080,067	18,053,293	15,282,801	22,349,224	17,697,152	17,763,815	24,638,845	15,519,157	36,119,821	232,762,358
<u>Less:</u> Native Load Transfers, Native Load Transfer Benefit & DE - Progress fees	\$ 9,403,9	52 \$ 10,746,417	\$ 3,681,146	\$ 5,959,074	\$ 8,211,008	\$ 5,694,556	\$ 12,728,156	\$ 6,086,984	\$ 8,789,272	\$ 15,071,913 \$	5,685,045 \$	21,638,297 \$	113,695,820
Total System Economic \$ without Native Load Transfers	\$ 9,116,02	6 \$ 9,867,267	\$ 8,443,374	\$ 8,120,993 \$	9,842,285	9,588,245	\$ 9,621,068	\$ 11,610,168	\$ 8,974,543	9,566,932 \$	9,834,112 \$	14,481,524 \$	119,066,539
NC Actual \$ (Calc)	\$ 6,081,37	4 \$ 6,623,322	\$ 5,689,753	\$ 5,473,813 \$	6,510,923	6,318,516	\$ 6,380,877	\$ 7,799,377	\$ 6,047,486 \$	6,392,544 \$	6,625,865 \$	9,485,733 \$	79,429,582
Billed rate (¢/kWh):	0.15	33 0.1533	0.1533	0.1533	0.1533	0.1533	0.1533	0.1533	0.1689	0.1689	0.1689	0.1689	
Billed \$:	\$ 7,356,94	4 \$ 7,438,905	\$ 6,774,334	\$ 6,146,611 \$	5 5,729,584	6,814,720	\$ 8,249,278	\$ 8,706,344	\$ 8,689,317 \$	5 7,030,008 \$	8,055,859 \$	6,953,473 \$	87,945,377
(Over)/ Under \$:	\$ (1,275,57	0) \$ (815,583)	\$ (1,084,581) \$	\$ (672,798) \$	5 781,339 \$	(496,204)	\$ (1,868,401)	\$ (906,967)	\$ (2,641,831) \$	637,464) \$	(1,429,993) \$	2,532,260 \$	(8,515,795)
Capacity component of purchased power													
System Actual \$ - Capacity component of Cherokee County Cogen Purchases System Actual \$ - Capacity component of Purchased Power for REPS Compliance System Actual \$ - Capacity component of HB589 Purpa QF purchases	\$ 430,61 645,3 264,2	5 680,159 75 306,973	573,260 236,219	641,154 277,976	778,381 283,502	1,399,512 625,715 204,320	2,302,254 1,125,235	\$ 3,229,644 2,743,308 1,384,219	2,223,872 1,116,138	1,950,062 1,010,084	637,418 297,176	215,310 \$ 610,344 \$ 256,193 \$	10,765,481 14,411,272 6,762,310
System Actual \$ - Capacity component of SC DERP System Actual \$ - Sch 2 pg 1 ANNUAL VIEW	1,80 \$ 1,342,10	•		6,569 \$ 1,141,008 \$	4,675 1,389,523	15,765 2,245,312	4,866 \$ 6,661,999	18,466 \$ 7,375,637	9,471 \$3,995,410	10,816 3,186,272 \$	8,919 1,158,823 \$	5,142 \$ 1,086,989 \$	<u> </u>
NC Actual \$ (Calc) (1)	\$ 906,55							\$ 4,996,760				736,399 \$	21,693,343

System Actual \$ - Capacity component of Cherokee County Cogen Purchases System Actual \$ - Capacity component of Purchased Power for REPS Compliance System Actual \$ - Capacity component of HB589 Purpa QF purchases System Actual \$ - Capacity component of SC DERP System Actual \$ - Sch 2 pg 1 ANNUAL VIEW	\$ 430,619 \$ 645,345 264,275 1,869 1,342,109 \$	430,619 \$ 680,159 306,973 1,868 1,419,619 \$	215,310 \$ 573,260 236,219 12,351 1,037,140 \$	215,310 \$ 641,154 277,976 6,569 1,141,008 \$	322,964 \$ 778,381 283,502 4,675 1,389,523 \$	1,399,512 \$ 625,715 204,320 15,765 2,245,312 \$	3,229,644 \$ 2,302,254 1,125,235 4,866 6,661,999 \$	3,229,644 \$ 2,743,308 1,384,219 18,466 7,375,637 \$	645,929 \$ 2,223,872 1,116,138 9,471 3,995,410 \$	215,310 \$ 1,950,062 1,010,084 10,816 3,186,272 \$	215,310 \$ 637,418 297,176 8,919 1,158,823 \$	215,310 \$ 610,344 \$ 256,193 \$ 5,142 \$ 1,086,989 \$	10,765,481 14,411,272 6,762,310 100,777 32,039,840
NC Actual \$ (Calc) (1)	\$ 906,558 \$	958,914 \$	700,560 \$	770,720 \$	938,585 \$	1,521,128 \$	4,513,293 \$	4,996,760 \$	2,706,763 \$	2,158,598 \$	785,065 \$	736,399 \$	21,693,343
Billed rate (¢/kWh):	0.0327	0.0327	0.0327	0.0327	0.0327	0.0327	0.0327	0.0327	0.0328	0.0328	0.0328	0.0328	
Billed \$:	\$ 1,570,139 \$	1,587,631 \$	1,445,797 \$	1,311,826 \$	1,222,823 \$	1,454,416 \$	1,760,583 \$	1,858,131 \$	1,686,991 \$	1,364,844 \$	1,564,008 \$	1,349,985 \$	18,177,174
(Over)/Under \$:	\$ (663,581) \$	(628,718) \$	(745,237) \$	(541,106) \$	(284,239) \$	66,712 \$	2,752,710 \$	3,138,628 \$	1,019,773 \$	793,755 \$	(778,942) \$	(613,586) \$	3,516,169
TOTAL (Over)/ Under \$:	\$ (1,939,151) \$	(1,444,300) \$	(1,829,818) \$	(1,213,904) \$	497,100 \$	(429,492) \$	884,309 \$	2,231,661 \$	(1,622,059) \$	156,290 \$	(2,208,936) \$	1,918,674 <u>\$</u>	(4,999,624)

Note: The billed rate for September and October are pro-rated based on number of billing days in cycle on new rate schedules.

(1) January - May NC actual capacity shown herein is adjusted to reflect use of 2019 production plant allocation factor. Actual true-up related to allocator was made as prior period adjustment in June 2020 of Schedule 4.

rounding differences may occur

Sykes Workpaper 10a

Duke Energy Carolinas, LLC North Carolina Annual Fuel and Fuel Related Expense 2.5% Calculation Test Twelve Months Ended December 31, 2019 Docket E-7, Sub 1250

2019 System KWH Sales - Sch 4, Adjusted NC Retail KWH Sales - Sch 4 NC Retail % of Sales, Adjusted (Calc)	5,021,	L 9 0,888,821 .,049,922 66.32%	Feb-19 7,430,788,664 5,026,972,376 67.65%	Mar-19 6,521,808,145 4,366,363,694 66.95%	Apr-19 6,367,436,322 4,263,829,687 66.96%	May-19 6,726,545,218 4,421,389,704 65.73%	Jun-19 7,552,455,357 5,029,188,554 66.59%	Jul-19 8,316,260,504 5,524,188,997 66.43%	Aug-19 8,548,800,472 5,710,820,956 66.80%	Sep-19 8,292,133,918 5,512,226,874 66.48%	Oct-19 7,019,132,212 4,692,561,973 66.85%	Nov-19 6,533,297,016 4,299,808,753 65.81%	Dec-19 7,161,497,356 4,774,119,609 66.66%	12 ME 88,041,044,005 58,642,521,099 66.61%
NC retail production plant %		67.56%	67.56%	67.56%	67.56%	67.75%	67.75%	67.75%	67.75%	67.75%	67.75%	67.75%	67.75%	67.72%
Fuel and Fuel related component of purchased power System Actual \$ - Sch 3 Fuel\$: System Actual \$ - Sch 3 Fuel-related\$; Economic Purchases System Actual \$ - Sch 3 Fuel-related\$; Purchased Power for REPS Compliance System Actual\$ - Sch 3 Fuel-related\$; SC DERP System Acutal \$ - Sch 3 Fuel-related\$; HB589 purpa Purchases	10,0 3,7	,687,311 \$ 050,079 283,437 102 367,422	57,492,154 \$ 26,532,896 4,116,642 14,377 1,711,969	14,514,026 \$ 2,706,430 3,779,240 8,659 1,557,910	14,125,368 \$ 4,264,779 5,137,202 21,097 2,135,075	6,227,781 \$ 908,542 5,251,425 25,363 2,259,422	7,986,019 \$ 640,701 5,598,653 30,158 2,837,912	9,392,534 \$ 1,230,088 5,193,633 22,270 2,660,982	5 7,209,102 1,129,642 5,586,738 26,481 2,749,375	\$ 18,620,321 \$ 1,974,692 5,216,879 26,351 2,583,768	13,793,051 \$ 1,539,252 4,899,454 26,014 2,605,902	15,085,734 \$ 2,340,043 4,069,122 17,072 2,204,650	17,891,442 \$ 2,634,380 \$ 3,963,969 \$ 15,590 \$ 2,090,407 \$	206,024,843 55,951,524 56,096,394 233,534 26,764,794
Total System Economic & QF\$	38,3	388,351	89,868,038	22,566,265	25,683,521	14,672,533	17,093,443	18,499,507	16,701,338	28,422,011	22,863,673	23,716,621	26,595,788	345,071,089
<u>Less:</u> Native Load Transfers, Native Load Transfer Benefit & DE - Progress fees	\$ 11,	,884,171 \$	71,766,352 \$	8,909,559 \$	10,043,093 \$	3,969,493 \$	6,657,925 \$	7,676,184 \$	5,446,589	\$ 17,997,075 \$	13,185,756 \$	12,864,226 \$	15,502,723 \$	185,903,146
Total System Economic \$ without Native Load Transfers	\$ 26,5	504,180 \$	18,101,686 \$	13,656,706 \$	15,640,428 \$	10,703,040 \$	10,435,518 \$	10,823,323 \$	11,254,749	\$ 10,424,936 \$	9,677,917 \$	10,852,395 \$	11,093,065 \$	159,167,943
NC Actual \$ (Calc)	\$ 17,5	577,699 \$	12,245,897 \$	9,143,192 \$	10,473,308 \$	7,035,158 \$	6,949,023 \$	7,189,539 \$	7,518,465	\$ 6,930,015 \$	6,470,063 \$	7,142,370 \$	7,395,049 \$	106,069,779
Billed rate (¢/kWh):		0.1922	0.1922	0.1922	0.1922	0.1922	0.1922	0.1922	0.1922	0.1759	0.1535	0.1533	0.1533	
Billed \$:	\$ 9,6	650,458 \$	9,661,841 \$	8,392,151 \$	8,195,081 \$	8,497,911 \$	9,666,100 \$	10,617,491 \$	10,976,198	\$ 9,696,007 \$	7,203,083 \$	6,591,607 \$	7,318,725 \$	106,466,653
(Over)/ Under \$:	\$ 7,9	927,242 \$	2,584,056 \$	751,041 \$	2,278,227 \$	(1,462,753) \$	(2,717,077) \$	(3,427,952) \$	(3,457,733)	\$ (2,765,992) \$	(733,020) \$	550,763 \$	76,323 \$	(396,874)
Capacity component of purchased power	_													

System Actual \$ - Capacity component of Cherokee County Cogen Purchases System Actual \$ - Capacity component of Purchased Power for REPS Compliance System Actual \$ - Capacity component of HB589 Purpa QF purchases System Actual \$ - Capacity component of SC DERP System Actual \$ - Sch 2 pg 1 ANNUAL VIEW	\$ 426,732 \$ 608,844 240,541 <u>32</u> 1,276,149 \$	426,732 \$ 738,655 314,914 4,343 1,484,644 \$	213,366 \$ 747,764 229,175 4,209 1,194,514 \$	213,366 \$ 827,415 301,405 5,850 1,348,036 \$	320,050 \$ 781,129 216,488 3,530 1,321,197 \$	1,386,879 \$ 817,587 298,037 4,199 2,506,702 \$	3,200,490 \$ 2,308,343 1,151,852 3,177 6,663,862 \$	3,200,490 \$ 2,605,889 1,312,758 3,738 7,122,875 \$	640,098 \$ 2,449,375 1,272,900 3,716 4,366,089 \$	213,366 \$ 2,179,103 1,184,456 3,670 3,580,594 \$	213,366 \$ 611,944 259,220 2,375 1,086,905 \$	213,366 \$ 591,922 \$ 187,603 \$ 2,168 \$ 995,058 \$	10,668,301 15,267,970 6,969,349 41,006 32,946,626
NC Actual \$ (Calc) (1)	\$ 862,169 \$	1,003,029 \$	807,016 \$	910,736 \$	895,069 \$	1,698,211 \$	4,514,555 \$	4,825,522 \$	2,957,887 \$	2,425,739 \$	736,343 \$	674,120 \$	22,310,397
Billed rate (¢/kWh):	0.0353	0.0353	0.0353	0.0353	0.0353	0.0353	0.0353	0.0353	0.0342	0.0327	0.0327	0.0327	
Billed \$:	\$ 1,773,631 \$	1,775,723 \$	1,542,370 \$	1,506,151 \$	1,561,807 \$	1,776,506 \$	1,951,359 \$	2,017,285 \$	1,886,955 \$	1,535,934 \$	1,406,799 \$	1,561,982 \$	20,296,502
(Over)/Under \$:	\$ (911,461) \$	(772,694) \$	(735,354) \$	(595,415) \$	(666,739) \$	(78,295) \$	2,563,196 \$	2,808,237 \$	1,070,932 \$	889,805 \$	(670,455) \$	(887,863) \$	2,013,895
TOTAL (Over)/ Under \$:	\$ 7,015,780 \$	1,811,363 \$	15,688 \$	1,682,813 \$	(2,129,491) \$	(2,795,372) \$	(864,756) \$	(649,496) \$	(1,695,060) \$	156,785 \$	(119,692) \$	(811,539) <u>\$</u>	1,617,020

Note: The billed rate for September and October are pro-rated based on number of billing days in cycle on new rate schedules.

(1) January - May NC actual capacity shown herein is adjusted to reflect use of 2018 production plant allocation factor. Actual true-up related to allocator was made as prior period adjustment in May 2019 of Schedule 4.

rounding differences may occur

Sykes Workpaper 10b

Duke Energy Carolinas, LLC North Carolina Annual Fuel and Fuel Related Expense Actual Sales by Jursidication - Subject to Weather Twelve Months Ended December 31, 2020 Docket E-7, Sub 1250

		_		MWhs			
Line <u>#</u>	Description	<u>Reference</u>	NORTH <u>CAROLINA</u>	SOUTH <u>CAROLINA</u>	TOTAL <u>COMPANY</u>	<u>% NC</u>	<u>% SC</u>
1	Residential	Company Records	21,396,039	6,566,946	27,962,984	76.52	23.48
2 3	Total General Service less Lighting and Traffic Signals	Company Records	22,718,144 262,966	5,231,956 50,594	27,950,100 313,560		
4	General Service subject to weather	-	22,455,178	5,181,362	27,636,541	81.25	18.75
5	Industrial	Company Records	11,397,681	8,195,633	19,593,314	58.17	41.83
6 7	Total Retail Sales Total Retail Sales subject to weather	1+2+5 1+4+5	55,511,864 55,248,898	19,994,535 19,943,941	75,506,399 75,192,839	73.48	26.52

This does not exclude Greenwood and includes the impact of SC DERP net metering generation

Duke Energy Carolinas, LLC North Carolina Annual Fuel and Fuel Related Expense Weather Normalization Adjustment Twelve Months Ended December 31, 2020 Docket E-7, Sub 1250

			Total	NC	RETAIL	SC	RETAIL
Line			Company	% То		% То	
#	Description	REFERENCE	MWh	Total	MWh	Total	MWh
1	<u>Residential</u> Total Residential		2,231,913	76.52	1,707,860	23.48	524,053
2	<u>General Service</u> Total General Service		362,925	81.25	294,877	18.75	68,048
3	<u>Industrial</u> Total Industrial		284,064	58.17	165,240	41.83	118,824
4	Total Retail	L1+ L2+ L3	2,878,902		2,167,977		710,925
5	Wholesale		207,295				
6	Total Company	L4 + L5	3,086,197		2,167,977	_	710,925

OFFICIAL COPY Feb 23 2021

Duke Energy Carolinas, LLC North Carolina Annual Fuel and Fuel Related Expense Weather Normalization Adjustment by Class by Month Twelve Months Ended December 31, 2020 Docket E-7, Sub 1250

_

	Residential	Commercial	Industrial
	TOTAL MWH	TOTAL MWH	TOTAL MWH
2020	ADJUSTMENT	ADJUSTMENT	ADJUSTMENT
JAN	372,371	57,492	-
FEB	481,279	42,012	32,140
MAR	50,667	-	-
APR	58,532	-	-
MAY	182,541	35,968	51,277
JUN	352,469	129,088	70,502
JUL	241,887	90,967	28,531
AUG	(64,182)	(25,605)	(12,663)
SEP	(101,503)	(50,296)	(24,943)
OCT	40,044	16,706	10,880
NOV	299,438	50,431	128,339
DEC	318,368	16,162	-
Total	2,231,913	362,925	284,064

Wholesale

	TOTAL MWH		
2020	ADJUSTMENT	Note:	The Resale customers include:
JAN	38,620	1	Concord ¹
FEB	25,594	2	Dallas
MAR	2,376	3	Forest City
APR	-	4	Kings Mountain ¹
MAY	12,541	5	Due West
JUN	32,517	6	Prosperity ²
JUL	24,554	7	Lockhart
AUG	(4,972)	8	Western Carolina University
SEP	(4,242)	9	City of Highlands
ОСТ	(1,717)	10	Haywood
NOV	43,289	11	Piedmont
DEC	38,735	12	Rutherford
		13	Blue Ridge
Total	207,295	14	Greenwood ¹

Sykes Workpaper 12 Page 2

2,878,902

Duke Energy Carolinas, LLC North Carolina Annual Fuel and Fuel Related Expense Customer Growth Adjustment to kWh Sales Twelve Months Ended December 31, 2020 Docket E-7, Sub 1250

OFFICIAL COPY

			NC Proposed KWH ¹	SC Proposed KWH	Wholesale Proposed KWH	
<u>Line</u>	Estimation Method ¹	Rate Schedule	Adjustment	Adjustment	Adjustment	Total Company
1	Regression	Residential	225,676,100	64,516,912		
2						
3		General Service (excluding lighting)	:			
4	Customer	General Service Small and Large	86,782,288	12,388,860		
5	Regression	Miscellaneous	535,920	517,444		
6		Total General	87,318,208	12,906,304		
7						
8		Lighting:				
9	Regression	T & T2 (GL/FL/PL/OL)2	2,624,981	1,258,859		
10	Regression	TS	10,497	(100,713)		
11		Total Lighting	2,635,478	1,158,146		
12						
13		Industrial:				
14	Customer	I - Textile	3,467,746	-		
15	Customer	I - Nontextile	3,671,273	14,017,455		
16		Total Industrial	7,139,019	14,017,455		
17						
18						
19		Total	322,768,805	92,598,817	79,359,686 WP 13-2	494,727,3

Notes:

¹Two approved methods are used for estimating the growth adjustment depending on the class/schedule:

"Regression" refers to the use of Ordinary Least Squares Regression

"Customer" refers to the use of the Customer by Customer approach.

² T and T2 were combined due to North Carolina's FL & GL schedules being merged into OL & PL during the 12 month period.

rounding differences may occur

Duke Energy Carolinas, LLC	Sykes Workpaper 13
North Carolina Annual Fuel and Fuel Related Expense	Page 2
Customer Growth Adjustment to kWh Sales-Wholesale	
Twelve Months Ended December 31, 2020	
Docket E-7, Sub 1250	

1.0378

Calculation of Customer Growth Adjustment to kWh Sales - Wholesale

Line <u>No.</u>	<u>Reference</u>	
1 Total System Resale (kWh Sales)	Company Records	8,857,220,265
2 Less Intersystem Sales	Schedule 1	1,210,124,770
3 Total kWh Sales Excluding Intersystem Sales	L1 - L2	7,647,095,495
4 Residential Growth Factor	Line 8	1.0378
5 Adjustment to kWhs - Wholesale	L3 * L4 / 100	79,359,686
6 Total System Retail Residential kWh Sales	Company Records	27,962,984,454
7 2020 Proposed Adjustment kWh - Residential (NC+SC)	WP 13 1	290,193,012

L7 / L6 * 100

"RAC001": CarolinasOperating Revenue Report

8 Percent Adjustment

BEFORE THE NORTH CAROLINA UTILITIES COMMISSION

DOCKET NO. E-7, SUB 1250

In the Matter of)	
Application of Duke Energy Carolinas, LLC)	DIRECT TESTIMONY OF
Pursuant to G.S. 62-133.2 and NCUC Rule)	JOHN A. VERDERAME FOR
R8-55 Relating to Fuel and Fuel-Related)	DUKE ENERGY CAROLINAS, LLC
Charge Adjustments for Electric Utilities)	

1 Q. PLEASE STATE YOUR NAME AND BUSINESS ADDRESS.

A. My name is John A. Verderame. My business address is 526 South Church Street,
 Charlotte, North Carolina 28202.

4 Q. BY WHOM ARE YOU EMPLOYED AND IN WHAT CAPACITY?

5 A. I am employed as Vice President, Fuels & Systems Optimization for Duke Energy 6 Corporation ("Duke Energy"). In that capacity, I lead the organization responsible 7 for the purchase and delivery of coal, natural gas, fuel oil, and reagents to Duke 8 Energy's regulated generation fleet, including Duke Energy Carolinas, LLC 9 ("Duke Energy Carolinas," "DEC," or the "Company") and Duke Energy 10 Progress, LLC ("DEP") (collectively, the "Companies"). In addition, I manage 11 the fleet's power trading, system optimization, energy supply analytics, and 12 contract administration functions.

Q. PLEASE SUMMARIZE YOUR EDUCATIONAL AND PROFESSIONAL EXPERIENCE.

15 A. I received a Bachelor of Arts degree in Economics from the University of 16 Rochester in 1983, and a Master's in Business Administration in Finance from 17 Rutgers University in 1985. I have worked in the energy industry for 19 years. 18 Prior to that, from 1986 to 2001, I was a Vice President in the United States 19 (US) Government Bond Trading Groups at the Chase Manhattan Bank and 20 Cantor Fitzgerald. My responsibilities as a US Government Securities Trader 21 included acting as the Firm's market maker in US Government Treasury 22 securities. I joined Progress Energy, in 2001, as a Real-Time Energy Trader. 23 My responsibilities as a Real-Time Energy Trader included managing the real-24 time energy position of the Progress Energy regulated utilities. In 2005, I was

promoted to Manager of the Power Trading group. My role as manager
 included responsibility for the short-term capacity and energy position of the
 Progress Energy regulated utilities in the Carolinas and Florida.

In 2012, upon consummation of the merger between Duke Energy Corp. and Progress Energy, Progress Energy became Duke Energy Progress and I was named Managing Director, Trading and Dispatch. As Managing Director, Trading and Dispatch I was responsible for Power and Natural Gas Trading and Generation Dispatch on behalf of Duke Energy's regulated utilities in the Carolinas, Florida, Indiana, Ohio, and Kentucky. I assumed my current position in November 2019.

11 Q. HAVE YOU TESTIFIED BEFORE THIS COMMISSION IN ANY PRIOR 12 PROCEEDING?

13 A. No.

14 Q. WHAT IS THE PURPOSE OF YOUR TESTIMONY IN THIS 15 PROCEEDING?

A. The purpose of my testimony is to describe DEC's fossil fuel purchasing practices,
provide actual fossil fuel costs for the period January 1, 2020 through December
31, 2020 ("test period") versus the period January 1, 2019 through December 31,
2019 ("prior test period"), and describe changes projected for the billing period of
September 1, 2021 through August, 31 2022 ("billing period").

Q. YOUR TESTIMONY INCLUDES THREE EXHIBITS. WERE THESE EXHIBITS PREPARED BY YOU OR AT YOUR DIRECTION AND UNDER YOUR SUPERVISION?

1 A. Yes. These exhibits were prepared at my direction and under my supervision, and 2 consist of Verderame Exhibit 1, which summarizes the Company's Fossil Fuel 3 Procurement Practices, Verderame Exhibit 2, which summarizes total monthly 4 natural gas purchases and monthly contract and spot coal purchases for the test 5 period and prior test period, and Verderame Confidential Exhibit 3, which 6 summarizes the annual fuels related transactional activity between DEC and 7 Piedmont Natural Gas Company, Inc. ("Piedmont") for spot commodity 8 transactions during the test period, as required by the Merger Agreement between 9 Duke Energy and Piedmont.

10 Q. PLEASE PROVIDE A SUMMARY OF DEC'S FOSSIL FUEL 11 PROCUREMENT PRACTICES.

A. A summary of DEC's fossil fuel procurement practices is set out in Verderame
Exhibit 1.

14 Q. HOW DOES DEC OPERATE ITS PORTFOLIO OF GENERATION 15 ASSETS TO RELIABLY AND ECONOMICALLY SERVE ITS 16 CUSTOMERS?

17 A. Both DEC and DEP utilize the same process to ensure that the assets of the 18 Companies are reliably and economically available to serve their respective 19 customers. To that end, both companies consider factors that include, but are not 20 limited to, the latest forecasted fuel prices, transportation rates, planned 21 maintenance and refueling outages at the generating units, generating unit 22 performance parameters, and expected market conditions associated with power 23 purchases and off-system sales opportunities in order to determine the most 24 economic and reliable means of serving their respective customers.

1 Q. PLEASE DESCRIBE THE COMPANY'S DELIVERED COST OF COAL

AND NATURAL GAS DURING THE TEST PERIOD.

2

3 A. The Company's average delivered cost of coal per ton for the test period was 4 \$90.53 per ton, compared to \$82.11 per ton in the prior test period, representing 5 an increase of approximately 10%. The cost of delivered coal includes an average 6 transportation cost of \$35.07 per ton in the test period, compared to \$28.33 per ton 7 in the prior test period, representing an increase of approximately 24% and also includes \$24.8 million in costs associated with the mitigation of coal contract 8 9 obligations related to COVID-19 load losses, as is described in more detail below. 10 The Company's average price of gas purchased for the test period was \$2.94 per 11 Million British Thermal Units ("MMBtu"), compared to \$3.40 per MMBtu in the 12 prior test period, representing a decrease of approximately 14%. The cost of gas 13 is inclusive of gas supply, transportation, storage and financial hedging.

DEC's coal burn for the test period was 5.9 million tons, compared to a coal burn of 8.1 million tons in the prior test period, representing a decrease of 28%. The Company's natural gas burn for the test period was 135.4 MMBtu, compared to a gas burn of 123.9 MMBtu in the prior test period, representing an increase of approximately 9%.

As a result of load reduction from the COVID-19 pandemic, extremely low natural gas prices, and mild winter weather, the Company experienced a significant shift in generation from coal to natural gas. The COVID-19 pandemic had an unprecedented and unanticipated impact on forecasted load in 2020, which in turn reduced coal demand and required inventory mitigation beyond the Company's typical no-cost mitigation measures. Influenced by the operational realities from the pandemic, DEC burned significantly less coal than anticipated, and customers benefited from greater utilization of lower-cost natural gas.

1

2

3

4 Given the reduction in actual and forecasted coal usage for the balance 5 of 2020, the Company was required to evaluate alternatives to reduce its coal 6 contract obligations for 2020 that exceeded its consumption and storage 7 capabilities. The Company exercised and exhausted its rights to flex down 8 contractual obligations, defer tons, and optimize off-site storage opportunities 9 at no additional cost to the customer in order to address the excess coal due to 10 significant declines in demand related to COVID-19 related shut-downs. After 11 exhausting all of its no-cost contract mitigation options, it was necessary to 12 determine whether to force run coal generation or continue to maximize 13 customers savings by burning natural gas while negotiating to buy out for the remaining balance of its excess 2020 coal obligations. 14 The Company 15 determined through its production cost analysis that pursuing contractual 16 buyouts would result in projected customer savings of approximately \$22 17 million as compared with force running coal generation.

18 Q. PLEASE DESCRIBE THE LATEST TRENDS IN COAL AND NATURAL 19 GAS MARKET CONDITIONS.

A. Coal markets continue to be distressed and there has been increased market volatility due to a number of factors, including: (1) deteriorated financial health of coal suppliers due to declining demand for coal stemming from accelerated coal retirements and overall declines in coal generation demand resulting from the impacts of COVID-19 economic shutdowns in 2020; (2) continued abundant

1 natural gas supply and storage resulting in lower natural gas prices, which has 2 lowered overall domestic coal demand; (3) uncertainty around proposed, imposed, 3 and stayed U.S. Environmental Protection Agency ("EPA") regulations for power 4 plants; (4) changing demand in global markets for both steam and metallurgical 5 coal; (5) uncertainty surrounding regulations for mining operations; (6) tightening 6 access to investor financing coupled with deteriorating credit quality is increasing 7 the overall costs of financing for coal producers; and, (7) corrections in production levels in an attempt to bring coal supply in balance with demand. 8

9 With respect to natural gas, the nation's natural gas supply has grown 10 significantly over the last several years and producers continue to enhance 11 production techniques, enhance efficiencies, and lower production costs. Natural 12 gas prices are reflective of the dynamics between supply and demand factors, and 13 in the short term, such dynamics are influenced primarily by seasonal weather 14 demand and overall storage inventory balances. While there continues to be 15 adequate natural gas production capacity to serve increased market demand, 16 pipeline infrastructure permitting and regulatory process approval efforts are 17 challenged due to increased reviews and interventions, which can delay and 18 change planned pipeline construction and commissioning timing. Specifically, 19 cancellation of the Atlantic Coast Pipeline which was terminated July 5, 2020 will 20 limit the Company's access to low cost natural gas resources.

21 Over the longer term planning horizon, natural gas supply is projected to 22 continue to increase while the pipeline infrastructure needed to move the growing 23 supply to meet demand related to power generation, liquefied natural gas exports 24 and pipeline exports to Mexico is highly uncertain.

Q. WHAT ARE THE PROJECTED COAL AND NATURAL GAS

CONSUMPTIONS AND COSTS FOR THE BILLING PERIOD?

1

2

3 A. DEC's current coal burn projection for the billing period is 6.9 million tons, 4 compared to 5.9 million tons consumed during the test period. DEC's billing 5 period projections for coal generation may be impacted due to changes from, but 6 not limited to, the following factors: (1) delivered natural gas prices versus the 7 average delivered cost of coal; (2) volatile power prices; and (3) electric demand. 8 While coal burns are projected to increase, they remain well below historic coal 9 burns due to coal to gas switching resulting from changes in the coal rail 10 transportation rate structure forecasted to go into effect April 1, 2021. Combining 11 coal and transportation costs, DEC projects average delivered coal costs of 12 approximately \$63.95 per ton for the billing period compared to \$90.53 per ton in 13 the test period. This includes an average projected total transportation cost of 14 \$26.67 per ton for the billing period, compared to \$35.07 per ton in the test period. 15 This projected delivered cost, however, is subject to change based on, but not 16 limited to, the following factors: (1) exposure to market prices and their impact on 17 open coal positions; (2) the amount of non-Central Appalachian coal DEC is able 18 to consume; (3) performance of contract deliveries by suppliers and railroads 19 which may not occur despite DEC's strong contract compliance monitoring 20 process; (4) changes in transportation rates; and (5) potential additional costs 21 associated with suppliers' compliance with legal and statutory changes, the effects 22 of which can be passed on through coal contracts.

DEC's current natural gas burn projection for the billing period is approximately 169.6 MMBtu, which is an increase from the 135.4 MMBtu

1 consumed during the test period. The net increase in DEC's overall natural gas 2 burn projections for the billing period versus the test period is primarily driven by 3 coal to gas switching as a result of the change in coal rail transportation rates that 4 are forecasted to go into effect April 1, 2021. While coal burns are projected to 5 increase, they remain well below historic coal burns. Increased gas burns are also 6 impacted by the inclusion of natural gas generation at Belews Creek Unit 2, and 7 Marshall Units 3 & 4 as a result of the dual fuel conversions being commercially 8 available over the course of the billing period, combined with lower forecasted 9 natural gas prices in the back half of the billing period. The current average 10 forward Henry Hub price for the billing period is \$2.86 per MMBtu, compared to 11 \$2.08 per MMBtu in the test period. Projected natural gas burn volumes will vary 12 based on factors such as, but not limited to, changes in actual delivered fuel costs 13 and weather driven demand.

14 Q. WHAT STEPS IS DEC TAKING TO MANAGE PORTFOLIO FUEL 15 COSTS?

16 A. The Company continues to maintain a comprehensive coal and natural gas 17 procurement strategy that has proven successful over the years in limiting average 18 annual fuel price changes while actively managing the dynamic demands of its 19 fossil fuel generation fleet in a reliable and cost effective manner. With respect to 20 coal procurement, the Company's procurement strategy includes: (1) having an 21 appropriate mix of term contract and spot purchases for coal; (2) staggering coal 22 contract expirations in order to limit exposure to forward market price changes; 23 and (3) diversifying coal sourcing as economics warrant, as well as working with 24 coal suppliers to incorporate additional flexibility into their supply contracts. The

- Feb 23 2021
- Company conducts spot market solicitations throughout the year to supplement term contract purchases, taking into account changes in projected coal burns and existing coal inventory levels.

1

2

3

4 The Company has implemented natural gas procurement practices that 5 include periodic Request for Proposals and shorter-term market engagement 6 activities to procure and actively manage a reliable, flexible, diverse, and 7 competitively priced natural gas supply. These procurement practices include 8 contracting for volumetric optionality in order to provide flexibility in responding 9 to changes in forecasted fuel consumption. Lastly, DEC continues to maintain a 10 short-term financial natural gas hedging plan to manage fuel cost risk for 11 customers via a disciplined, structured execution approach.

12 Lastly, DEC procures long-term firm interstate and intrastate 13 transportation to provide natural gas to their generating facilities. Given the 14 Company's limited amount of contracted firm interstate transportation, the 15 Company purchases shorter term firm interstate pipeline capacity as available 16 from the capacity release market. The Company's firm transportation ("FT") 17 provides the underlying framework for the Company to manage the natural gas 18 supply needed for reliable cost-effective generation. First, it allows the Company 19 access to lower cost natural gas supply from Transco Zone 3 and Zone 4 and the 20 ability to transport gas to Zone 5 for delivery to the Carolinas' generation fleet. 21 Second, the Company's FT allows it to manage intraday supply adjustments on 22 the pipeline through injections or withdrawals of natural gas supply from storage, 23 including on weekends and holidays when the gas markets are closed. Third, it 24 allows the Company to mitigate imbalance penalties associated with Transco

- pipeline restrictions, which can be significant. The Company's customers receive
 the benefit of each of these aspects of the Company's FT: access to lower cost gas
 supply, intraday supply adjustments at minimal cost, and mitigation of punitive
 pipeline imbalance penalties.
 Q. DOES THIS CONCLUDE YOUR PRE-FILED DIRECT TESTIMONY?
- 6 A. Yes, it does.
- 7

Duke Energy Carolinas, LLC Fossil Fuel Procurement Practices

<u>Coal</u>

- Near and long-term coal consumption is forecasted based on inputs such as load projections, fleet maintenance and availability schedules, coal quality and cost, non-coal commodity and emission prices, environmental permit and emissions constraints, projected renewable energy production, and wholesale energy imports and exports.
- Station and system inventory targets are developed to provide generational reliability, insulation from short-term market volatility, and adaptability to evolving coal production and transportation conditions. Inventories are monitored continuously.
- On a continuous basis, existing purchase commitments are compared with consumption and inventory requirements to determine changes in supply needs.
- All qualified suppliers are invited to participate in Request for Proposals to satisfy additional supply needs.
- Spot market solicitations are conducted on an on-going basis to supplement existing purchase commitments.
- Contracts are awarded based on the highest customer value, considering factors such as price, quality, transportation, reliability and flexibility.
- Delivered coal volume and quality are monitored against contract commitments. Coal and freight payments are calculated based on certified scale weights and coal quality analysis meeting ASTM standards as established by ASTM International.

<u>Gas</u>

- Near and long-term natural gas consumption is forecasted based on inputs such as load projections, commodity and emission prices, projected renewable energy production, and fleet maintenance and availability schedules.
- Physical procurement targets are developed to procure a cost effective and reliable natural gas supply.
- Natural gas supply is contracted utilizing a portfolio of long term, short term, spot market and physical call option agreements
- Short-term and long-term Requests for Proposals and market solicitations are conducted with potential suppliers, as needed, to procure the cost competitive, secure, and reliable natural gas supply, firm transportation, and storage capacity needed to meet forecasted gas usage.
- Short-term and spot purchases are conducted on an on-going basis to supplement term natural gas supply.
- On a continuous basis, existing purchases are compared against forecasted gas usage to determine changes in supply and transportation needs.
- Natural gas transportation for the generation fleet is obtained through a mix of longterm firm transportation agreements, and shorter-term pipeline capacity purchases.
- A targeted percentage of the natural gas fuel price exposure is managed via a rolling 60-month structured financial natural gas hedging program.

• Through the Asset Management and Delivered Supply Agreement between Duke Energy Carolinas, LLC ("DEC") and Duke Energy Progress, LLC implemented on January 1, 2103, DEC serves as the designated Asset Manager that procures and manages the combined gas supply needs for the combined Carolinas gas fleet.

<u>Fuel Oil</u>

- No. 2 fuel oil is burned primarily for initiation of coal combustion (light-off at steam plants) and in combustion turbines (peaking assets).
- All No. 2 fuel oil is moved via pipeline to applicable terminals where it is then loaded on trucks for delivery into the Company's storage tanks. Because oil usage is highly variable, the Company relies on a combination of inventory, responsive suppliers with access to multiple terminals, and trucking agreements to manage its needs. Replenishment of No. 2 fuel oil inventories at the applicable plant facilities is done on an "as needed basis" and coordinated between fuel procurement and station personnel.
- Formal solicitations for supply may be conducted as needed with an emphasis on maintaining a network of reliable suppliers at a competitive market price in the region of our generating assets.

DUKE ENERGY CAROLINAS Summary of Coal Purchases Twelve Months Ended December 31, 2020 & 2019 Tons

		Net Spot		
<u>Line</u>	_	Contract	Purchase and	<u>Total</u>
<u>No.</u>	<u>Month</u>	<u>(Tons)</u>	Sales(Tons)	<u>(Tons)</u>
1	January 2020	719,300	39,752	759,052
2	February	377,885	130,203	508,088
3	March	511,418	51,906	563,324
4	April	454,145	23,566	477,712
5	May	203,960	12,873	216,833
6	June	306,915	11,563	318,478
7	July	395,057	50,851	445,908
8	August	548,061	25,831	573,892
9	September	400,170	99,692	499,862
10	October	531,876	52,647	584,523
11	November	360,487	111,351	471,838
12	December	326,439	52,176	378,615
13	Total (Sum L1:L12)	5,135,713	662,411	5,798,125

Line

		<u>Net Spot</u>		
		Contract	Purchase and	<u>Total</u>
<u>No.</u>	<u>Month</u>	<u>(Tons)</u>	<u>Sales(Tons)</u>	<u>(Tons)</u>
14	January 2019	467,830	111,867	579,698
15	February	555,624	64,276	619,900
16	March	551,679	112,937	664,616
17	April	476,648	227,914	704,562
18	May	549,400	152,538	701,938
19	June	647,313	140,296	787,609
20	July	692,046	77,088	769,134
21	August	732,253	115,963	848,217
22	September	469,275	204,304	673,579
23	October	471,409	231,850	703,259
24	November	397,228	239,441	636,669
25	December	560,959	202,536	763,494
26	Total (Sum L14:L25)	6,571,664	1,881,010	8,452,675

DUKE ENERGY CAROLINAS Summary of Gas Purchases Twelve Months Ended December 31, 2020 & 2019 MBTUs

<u>Line</u> No.		MBTUs
<u>INU.</u>	<u>Month</u>	MDTUS
1	January 2020	13,098,158
2	February	13,151,481
3	March	13,043,284
4	April	6,893,840
5	Мау	10,414,617
6	June	9,651,972
7	July	13,975,803
8	August	12,871,773
9	September	11,262,855
10	October	11,076,024
11	November	9,927,112
12	December	10,055,686
13	Total (Sum L1:L12)	135,422,605
Line		
<u>No.</u>	<u>Month</u>	<u>MBTUs</u>
14	January 2019	11,540,233
15	February	11,895,973
16	March	8,829,116
17	April	7,309,473
18	May	12,448,810
19	June	10,195,827
20	July	12,505,061
21	August	12,104,186
22	September	12,459,839
23	October	8,409,940
24	November	5,772,711
25	December	10,423,250
26	Total (Sum L14:L25)	123,894,419

BEFORE THE NORTH CAROLINA UTILITIES COMMISSION

DOCKET NO. E-7, SUB 1250

In the Matter of)
Application of Duke Energy Carolinas, LLC)
Pursuant to G.S. 62-133.2 and NCUC Rule)
R8-55 Relating to Fuel and Fuel-Related)
Charge Adjustments for Electric Utilities)

JOHN A. VERDERAME CONFIDENTIAL EXHIBIT 3

FILED UNDER SEAL

FEBRUARY 23, 2021

BEFORE THE NORTH CAROLINA UTILITIES COMMISSION

DOCKET NO. E-7, SUB 1250

In the Matter of)	
Application of Duke Energy Carolinas, LLC)	DIRECT TESTIMONY OF
Pursuant to G.S. 62-133.2 and NCUC Rule)	KEVIN Y. HOUSTON FOR
R8-55 Relating to Fuel and Fuel-Related)	DUKE ENERGY CAROLINAS, LLC
Charge Adjustments for Electric Utilities)	

OFFICIAL COPY

1 Q. PLEASE STATE YOUR NAME AND BUSINESS ADDRESS.

A. My name is Kevin Y. Houston and my business address is 526 South Church
Street, Charlotte, North Carolina.

4 Q. BY WHOM ARE YOU EMPLOYED AND IN WHAT CAPACITY?

5 A. I am the Manager of Nuclear Fuel Supply for Duke Energy Carolinas, LLC
6 ("DEC" or the "Company") and Duke Energy Progress, LLC ("DEP").

7 Q. WHAT ARE YOUR PRESENT RESPONSIBILITIES AT DEC?

8 A. I am responsible for nuclear fuel procurement for the nuclear units owned and
9 operated by DEC and DEP.

10 Q. PLEASE SUMMARIZE YOUR EDUCATIONAL BACKGROUND AND 11 PROFESSIONAL EXPERIENCE.

12 A. I graduated from the University of Florida with a Bachelor of Science degree in 13 Nuclear Engineering, and from North Carolina State University with a Master's 14 degree in Nuclear Engineering. I began my career with the Company in 1992 as 15 an engineer and worked in Duke Energy's nuclear design group where I performed 16 nuclear physics roles. I assumed my current role having commercial 17 responsibility for purchasing uranium, conversion services, enrichment services, 18 and fuel fabrication services in 2012.

I have served as Chairman of the Nuclear Energy Institute's Utility Fuel
Committee, an association aimed at improving the economics and reliability of
nuclear fuel supply and use. I became a registered professional engineer in the
state of North Carolina in 2003.

1 Q. HAVE YOU FILED TESTIMONY OR TESTIFIED BEFORE THIS 2 COMMISSION IN ANY PRIOR PROCEEDING?

3 A. Yes. I filed testimony in the DEC fuel and fuel-related cost recovery proceedings
4 in Docket E-7, Sub 1228.

5 Q. WHAT IS THE PURPOSE OF YOUR TESTIMONY IN THIS
6 PROCEEDING?

- A. The purpose of my testimony is to (1) provide information regarding DEC's
 nuclear fuel purchasing practices, (2) provide costs for the January 1, 2020
 through December 31, 2020 test period ("test period"), and (3) describe changes
 forthcoming for the September 1, 2021 through August 31, 2022 billing period
 ("billing period").
- 12 Q. YOUR TESTIMONY INCLUDES TWO EXHIBITS. WERE THESE
 13 EXHIBITS PREPARED BY YOU OR AT YOUR DIRECTION AND
 14 UNDER YOUR SUPERVISION?
- A. Yes. These exhibits were prepared at my direction and under my supervision, and
 consist of Houston Exhibit 1, which is a Graphical Representation of the Nuclear
 Fuel Cycle, and Houston Exhibit 2, which sets forth the Company's Nuclear Fuel
 Procurement Practices.

19 Q. PLEASE DESCRIBE THE COMPONENTS THAT MAKE UP NUCLEAR 20 FUEL.

A. In order to prepare uranium for use in a nuclear reactor, it must be processed from
an ore to a ceramic fuel pellet. This process is commonly broken into four distinct

industrial stages: (1) mining and milling; (2) conversion; (3) enrichment; and (4) fabrication. This process is illustrated graphically in Houston Exhibit 1.

1

2

3 Uranium is often mined by either surface (*i.e.*, open cut) or underground 4 mining techniques, depending on the depth of the ore deposit. The ore is then sent 5 to a mill where it is crushed and ground-up before the uranium is extracted by 6 leaching, the process in which either a strong acid or alkaline solution is used to 7 dissolve the uranium. Once dried, the uranium oxide (" U_3O_8 ") concentrate – often referred to as yellowcake - is packed in drums for transport to a conversion 8 9 facility. Alternatively, uranium may be mined by in situ leach ("ISL") in which 10 oxygenated groundwater is circulated through a very porous ore body to dissolve 11 the uranium and bring it to the surface. ISL may also use slightly acidic or alkaline 12 solutions to keep the uranium in solution. The uranium is then recovered from the 13 solution in a mill to produce U_3O_8 .

14 After milling, the U_3O_8 must be chemically converted into uranium 15 hexafluoride ("UF₆"). This intermediate stage is known as conversion and 16 produces the feedstock required in the isotopic separation process.

17Naturally occurring uranium primarily consists of two isotopes, 0.7%18Uranium-235 ("U-235") and 99.3% Uranium-238. Most of this country's nuclear19reactors (including those of the Company) require U-235 concentrations in the 3-205% range to operate a complete cycle of 18 to 24 months between refueling21outages. The process of increasing the concentration of U-235 is known as22enrichment. Gas centrifuge is the primary technology used by the commercial23enrichment suppliers. This process first applies heat to the UF₆ to create a gas.

1 Then, using the mass differences between the uranium isotopes, the natural 2 uranium is separated into two gas streams, one being enriched to the desired level 3 of U-235, known as low enriched uranium, and the other being depleted in U-235, 4 known as tails.

5 Once the UF_6 is enriched to the desired level, it is converted to uranium 6 dioxide powder and formed into pellets. This process and subsequent steps of 7 inserting the fuel pellets into fuel rods and bundling the rods into fuel assemblies 8 for use in nuclear reactors is referred to as fabrication.

9 Q. PLEASE PROVIDE A SUMMARY OF DEC'S NUCLEAR FUEL 10 PROCUREMENT PRACTICES.

A. As set forth in Houston Exhibit 2, DEC's nuclear fuel procurement practices
involve computing near and long-term consumption forecasts, establishing
nuclear system inventory levels, projecting required annual fuel purchases,
requesting proposals from qualified suppliers, negotiating a portfolio of long-term
contracts from diverse sources of supply, and monitoring deliveries against
contract commitments.

For uranium concentrates, conversion, and enrichment services, long-term contracts are used extensively in the industry to cover forward requirements and ensure security of supply. Throughout the industry, the initial delivery under new long-term contracts commonly occurs several years after contract execution. DEC relies extensively on long-term contracts to cover the largest portion of its forward requirements. By staggering long-term contracts over time for these components of the nuclear fuel cycle, DEC's purchases within a given year consist of a blend of contract prices negotiated at many different periods in the markets,
which has the effect of smoothing out DEC's exposure to price volatility.
Diversifying fuel suppliers reduces DEC's exposure to possible disruptions from
any single source of supply. Due to the technical complexities of changing
fabrication services suppliers, DEC generally sources these services to a single
domestic supplier on a plant-by-plant basis using multi-year contracts.

7 Q. PLEASE DESCRIBE DEC'S DELIVERED COST OF NUCLEAR FUEL 8 DURING THE TEST PERIOD.

9 A. Staggering long-term contracts over time for each of the components of the
10 nuclear fuel cycle means DEC's purchases within a given year consist of a blend
11 of contract prices negotiated at many different periods in the markets. DEC
12 mitigates the impact of market volatility on the portfolio of supply contracts by
13 using a mixture of pricing mechanisms. Consistent with its portfolio approach to
14 contracting, DEC entered into several long-term contracts during the test period.

DEC's portfolio of diversified contract pricing yielded an average unit
cost of \$47.06 per pound for uranium concentrates during the test period,
representing a 4.6% increase from the prior test period.

A majority of DEC's enrichment purchases during the test period were delivered under long-term contracts negotiated prior to the test period. The staggered portfolio approach has the effect of smoothing out DEC's exposure to price volatility. The average unit cost of DEC's purchases of enrichment services during the test period decreased 9.6% to \$104.04 per Separative Work Unit.

23 Delivered costs for fabrication and conversion services have a limited

impact on the overall fuel expense rate given that the dollar amounts for these
purchases represent a substantially smaller percentage – 16% and 4%,
respectively, for the fuel batches recently loaded into DEC's reactors – of DEC's
total direct fuel cost relative to uranium concentrates or enrichment, which are
46% and 34%, respectively.

6 Q. PLEASE DESCRIBE THE LATEST TRENDS IN NUCLEAR FUEL 7 MARKET CONDITIONS.

A. Prices in the uranium concentrate markets have recently increased due to
production cutbacks; however, prices remain relatively low. Industry consultants
believe that production cutbacks have been warranted due to the previously
existing oversupply conditions and that market prices need to further increase in
the longer term to provide the economic incentive for the exploration, mine
construction, and production necessary to support future industry uranium
requirements.

Market prices for enrichment and conversion services have recently
increased primarily due to a reduction in available inventory supplies.

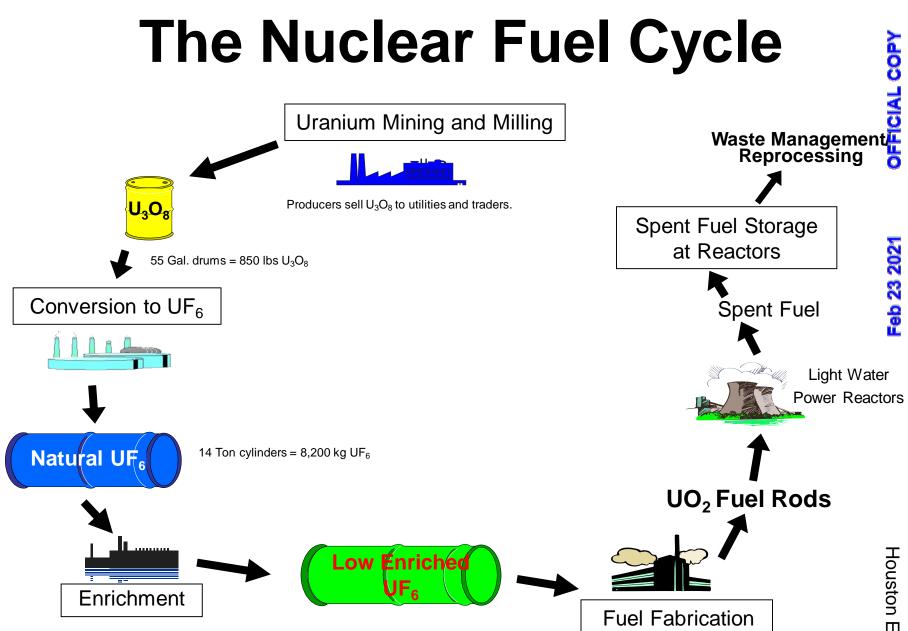
Fabrication is not a service for which prices are published; however,
industry consultants expect fabrication prices will continue to generally trend
upward.

20 Q. WHAT CHANGES DO YOU SEE IN DEC'S NUCLEAR FUEL COST IN 21 THE BILLING PERIOD?

A. Because fuel is typically expensed over two to three operating cycles (roughly
three to six years), DEC's nuclear fuel expense in the upcoming billing period will

be determined by the cost of fuel assemblies loaded into the reactors during the test period, as well as prior periods. The fuel residing in the reactors during the billing period will have been obtained under historical contracts negotiated in various market conditions. Each of these contracts contributes to a portion of the uranium, conversion, enrichment, and fabrication costs reflected in the total fuel expense.

7 The average fuel expense is expected to increase from 0.5814 cents per
8 kWh incurred in the test period, to approximately 0.6057 cents per kWh in the
9 billing period.


Q. WHAT STEPS IS DEC TAKING TO PROVIDE STABILITY IN ITS NUCLEAR FUEL COSTS AND TO MITIGATE PRICE INCREASES IN THE VARIOUS COMPONENTS OF NUCLEAR FUEL?

A. As I discussed earlier and as described in Houston Exhibit 2, for uranium concentrates, conversion, and enrichment services, DEC relies extensively on staggered long-term contracts to cover the largest portion of its forward requirements. By staggering long-term contracts over time and incorporating a range of pricing mechanisms, DEC's purchases within a given year consist of a blend of contract prices negotiated at many different periods in the markets, which has the effect of smoothing out DEC's exposure to price volatility.

Although costs of certain components of nuclear fuel are expected to increase in future years, nuclear fuel costs on a cents per kWh basis will likely continue to be a fraction of the cents per kWh cost of fossil fuel. Therefore, customers will continue to benefit from DEC's diverse generation mix and the strong performance of its nuclear fleet through lower fuel costs than would
 otherwise result absent the significant contribution of nuclear generation to
 meeting customers' demands.

4 Q. DOES THIS CONCLUDE YOUR PRE-FILED DIRECT TESTIMONY?

5 A. Yes, it does.

Houston Exhibit 1

Duke Energy Carolinas, LLC Nuclear Fuel Procurement Practices

The Company's nuclear fuel procurement practices are summarized below:

- Near and long-term consumption forecasts are computed based on factors such as: nuclear system operational projections given fleet outage/maintenance schedules, adequate fuel cycle design margins to key safety licensing limitations, and economic tradeoffs between required volumes of uranium and enrichment necessary to produce the required volume of enriched uranium.
- Nuclear system inventory targets are determined and designed to provide: reliability, insulation from market volatility, and sensitivity to evolving market conditions. Inventories are monitored on an ongoing basis.
- On an ongoing basis, existing purchase commitments are compared with consumption and inventory requirements to ascertain additional needs.
- Qualified suppliers are invited to make proposals to satisfy additional or future contract needs.
- Contracts are awarded based on the most attractive evaluated offer, considering factors such as price, reliability, flexibility and supply source diversification/portfolio security of supply.
- For uranium concentrates, conversion and enrichment services, long term supply contracts are relied upon to fulfill the largest portion of forward requirements. By staggering long-term contracts over time, the Company's purchases within a given year consist of a blend of contract prices negotiated at many different periods in the markets, which has the effect of smoothing out the Company's exposure to price volatility. Due to the technical complexities of changing suppliers, fabrication services are generally sourced to a single domestic supplier on a plant-by-plant basis using multi-year contracts.
- Spot market opportunities are evaluated from time to time to supplement long-term contract supplies as appropriate based on comparison to other supply options.
- Delivered volumes of nuclear fuel products and services are monitored against contract commitments. The quality and volume of deliveries are confirmed by the delivery facility to which the Company has instructed delivery. Payments for such delivered volumes are made after the Company's receipt of such delivery facility confirmations.

BEFORE THE NORTH CAROLINA UTILITIES COMMISSION

DOCKET NO. E-7, SUB 1250

In the Matter of)	
Application of Duke Energy Carolinas, LLC)	DIRECT TESTIMONY OF
Pursuant to G.S. 62-133.2 and NCUC Rule)	STEVEN D. CAPPS FOR
R8-55 Relating to Fuel and Fuel-Related)	DUKE ENERGY CAROLINAS, LLC
Charge Adjustments for Electric Utilities)	

1 Q. PLEASE STATE YOUR NAME AND BUSINESS ADDRESS.

A. My name is Steven D. Capps and my business address is 526 South Church Street,
Charlotte, North Carolina.

4 Q. BY WHOM ARE YOU EMPLOYED AND IN WHAT CAPACITY?

A. I am Senior Vice President of Nuclear Operations for Duke Energy Corporation
("Duke Energy") with direct executive accountability for Duke Energy's South
Carolina nuclear plants, including Duke Energy Carolinas, LLC's ("DEC" or the
"Company") Catawba Nuclear Station ("Catawba") in York County, South
Carolina, the Oconee Nuclear Station ("Oconee") in Oconee County, South
Carolina, and Duke Energy Progress, LLC's ("DEP") Robinson Nuclear Plant,
located in Darlington County, South Carolina.

12 Q. WHAT ARE YOUR PRESENT RESPONSIBILITIES AS SENIOR VICE 13 PRESIDENT OF NUCLEAR OPERATIONS?

A. As Senior Vice President of Nuclear Operations, I am responsible for providing
executive oversight for the safe and reliable operation of Duke Energy's three
South Carolina operating nuclear stations. I am also involved in the operations of
Duke Energy's other nuclear stations, including DEC's McGuire Nuclear Station
("McGuire") located in Mecklenburg County, North Carolina.

19 Q. PLEASE SUMMARIZE YOUR EDUCATIONAL BACKGROUND AND 20 PROFESSIONAL EXPERIENCE.

A. I hold a B.S. in Mechanical Engineering from Clemson University and have over
33 years of experience in the nuclear field in various roles with increasing
responsibilities. I joined Duke Energy in 1987 as a field engineer at Oconee.
During my time at Oconee, I served in a variety of leadership positions at the

1		station, including Senior Reactor Operator, Shift Technical Advisor, and
2		Mechanical and Civil Engineering Manager. In 2008, I transitioned to McGuire
3		as the Engineering Manager. I later became plant manager and was named Vice
4		President of McGuire in 2012. In December 2017, I was named Senior Vice
5		President of Nuclear Corporate for Duke with direct executive accountability for
6		Duke Energy's nuclear corporate functions, including nuclear corporate
7		engineering, nuclear major projects, corporate governance and operation support
8		and organizational effectiveness. I assumed my current role in October 2018.
9	Q.	HAVE YOU TESTIFIED OR SUBMITTED TESTIMONY BEFORE THIS
10		COMMISSION IN ANY PRIOR PROCEEDINGS?
11	A.	Yes. I provided testimony and appeared before the Commission in DEC's fuel
12		and fuel related cost recovery proceeding in Docket No. E-7, Sub 1163 and
13		provided testimony in DEC's fuel and fuel related cost recovery proceedings in

14 Docket No. E-7, Sub 1190 and Docket No. E-7, Sub 1228.

15 Q. WHAT IS THE PURPOSE OF YOUR TESTIMONY IN THIS 16 PROCEEDING?

A. The purpose of my testimony is to describe and discuss the performance of DEC's nuclear fleet during the period of January 1, 2020 through December 31, 2020 ("test period"). I provide information about refueling outages completed during the period and also discuss the nuclear capacity factor being proposed by DEC for use in this proceeding in determining the fuel factor to be reflected in rates during the billing period of September 1, 2021 through August 31, 2022 ("billing period").

1 Q. PLEASE DESCRIBE EXHIBIT 1 INCLUDED WITH YOUR 2 TESTIMONY.

A. Exhibit 1 is a confidential exhibit outlining the planned schedule for refueling
outages for DEC's nuclear units through the billing period. This exhibit represents
DEC's current plan, which is subject to adjustment due to changes in operational
and maintenance requirements.

7 Q. PLEASE DESCRIBE DEC'S NUCLEAR GENERATION PORTFOLIO.

8 A. The Company's nuclear generation portfolio consists of approximately 5,389
9 megawatts ("MWs") of generating capacity, made up as follows:

10	Oconee -	2,554 MWs
11	McGuire -	2,316 MWs
12	Catawba -	519 MWs ¹

13 The three generating stations summarized above are comprised of a total 14 of seven units. Oconee began commercial operation in 1973 and was the first 15 nuclear station designed, built, and operated by DEC. It has the distinction of 16 being the second nuclear station in the country to have its license, originally issued 17 for 40 years, renewed for up to an additional 20 years by the NRC. The license 18 renewal, which was obtained in 2000, extends operations to 2033, 2033, and 2034 19 for Oconee Units 1, 2, and 3, respectively.

20 McGuire began commercial operation in 1981, and Catawba began 21 commercial operation in 1985. In 2003, the NRC renewed the licenses for 22 McGuire and Catawba for up to an additional 20 years each. This renewal extends 23 operations until 2041 for McGuire Unit 1, and 2043 for McGuire Unit 2 and

¹ Reflects DEC's ownership of Catawba Nuclear Station.

Catawba Units 1 and 2. The Company jointly owns Catawba with North Carolina
 Municipal Power Agency Number One, North Carolina Electric Membership
 Corporation, and Piedmont Municipal Power Agency.

4 Q. WHAT ARE DEC'S OBJECTIVES IN THE OPERATION OF ITS 5 NUCLEAR GENERATION ASSETS?

6 A. The primary objective of DEC's nuclear generation department is to safely 7 provide reliable and cost-effective electricity to DEC's customers in North and 8 South Carolina. The Company achieves this objective by focusing on a number 9 of key areas. Operations personnel and other station employees receive extensive, 10 comprehensive training and execute their responsibilities to the highest standards 11 in accordance with detailed procedures that are continually updated to ensure best 12 practices. The Company maintains station equipment and systems reliably, and 13 ensures timely implementation of work plans and projects that enhance the 14 performance of systems, equipment, and personnel. Station refueling and 15 maintenance outages are conducted through the execution of well-planned, well-16 executed, and high-quality work activities, which ensure that the plant is prepared 17 for operation until the next planned outage.

18 Q. PLEASE DISCUSS THE PERFORMANCE OF DEC'S NUCLEAR FLEET 19 DURING THE TEST PERIOD.

A. The Company operated its nuclear stations in a reasonable and prudent manner
during the test period, providing approximately 63% of the total power generated
by DEC. During 2020, DEC's seven nuclear units collectively achieved a fleet
capacity factor of 95.05%, marking the 21st consecutive year in which DEC's
nuclear fleet exceeded a system capacity factor of 90%. With comprehensive and

successful Covid-19 mitigation protocols, the Company successfully executed
five refueling outages with no impact to schedule or planned scope. All refueling
outages were completed within budget and four of the five refueling outages
completed under the scheduled allocation. McGuire Unit 2 entered its 2020
refueling outage after completing a breaker-to-breaker continuous cycle run, and
Oconee Unit 2 established a new annual net generation record during 2020.

7 Q. HOW DOES DEC'S NUCLEAR FLEET COMPARE TO INDUSTRY 8 AVERAGES?

A. The Company's nuclear fleet has a history of performance that consistently
exceeds industry averages. The most recently published North American Electric
Reliability Council's ("NERC") Generating Unit Statistical Brochure ("NERC
Brochure") indicates an average capacity factor of 91.95% for the period 2015
through 2019 for comparable units. The Company's 2020 capacity factor of
95.05% and 2-year average² of 96.07% both exceed the NERC average of
91.95%.

16 Industry benchmarking efforts are a principal technique used by the 17 Company to ensure best practices, and Duke Energy's nuclear fleet continues to 18 rank among the top performers when compared to the seven-other large domestic 19 nuclear fleets using Key Performance Indicators ("KPIs") in the areas of personal 20 safety, radiological dose, capacity factor, forced loss rate, industry performance 21 index, and total operating cost. On a larger industry basis using early release data 22 for 2020 from the Electric Utility Cost Group, all three of DEC's nuclear plants 23 rank in the top quartile in total operating cost among the 56 U.S. operating nuclear

² This represents the simple average for the current and prior 12-month test periods.

plants. By continually assessing the Company's performance as compared with
 industry benchmarks, the Company continues to ensure the overall safety,
 reliability and cost-effectiveness of DEC's nuclear units.

4 The superior performance of DEC's nuclear fleet has resulted in 5 substantial benefits to customers. DEC's nuclear fleet has produced 6 approximately 47.1 million MWhs of additional, emissions-free generation over 7 the past 21 years (as compared with production at a capacity factor of 90%), which 8 is equivalent to an additional 9.8 months of output from DEC's nuclear fleet 9 (based on DEC's average annual generation for the same 21-year period). These 10 performance results demonstrate DEC's continuing success in achieving high 11 performance without compromising safety and reliability.

12 Q. WHAT IMPACTS A UNIT'S AVAILABILITY AND WHAT IS DEC'S 13 PHILOSOPHY FOR SCHEDULING REFUELING AND 14 MAINTENANCE OUTAGES?

A. In general, refueling, maintenance, and NRC required testing and inspections
impact the availability of DEC's nuclear system.

17 Prior to a planned outage, DEC develops a detailed schedule for the outage 18 and for major tasks to be performed, including sub-schedules for particular 19 activities. The Company's scheduling philosophy is to strive for the best possible 20 outcome for each outage activity within the outage plan. For example, if the "best ever" time an outage task was performed is 12 hours, then 12 hours becomes the 21 22 goal for that task in each subsequent outage. Those individual aspirational goals 23 are incorporated into an overall outage schedule. The Company then aggressively 24 works to meet, and measures itself against, that aspirational schedule. То

minimize potential impacts to outage schedules due to unforeseen maintenance
requirements, "discovery activities" (walk-downs, inspections, etc.) are scheduled
at the earliest opportunities so that any maintenance or repairs identified through
those activities can be promptly incorporated into the outage plan.

5 As noted, the schedule is utilized for measuring outage preparation and 6 execution and driving continuous improvement efforts. However, for planning 7 purposes, particularly with the dispatch and system operating center functions, 8 DEC also develops an allocation of outage time that incorporates reasonable 9 schedule losses. The development of each outage allocation is dependent on 10 maintenance and repair activities included in the outage, as well as major projects 11 to be implemented during the outage. Both schedule and allocation are set 12 aggressively to drive continuous improvement in outage planning and execution.

13 Q. HOW DOES DEC HANDLE OUTAGE EXTENSIONS AND FORCED 14 OUTAGES?

15 A. If an unanticipated issue that has the potential to become an on-line reliability 16 challenge is discovered while a unit is off-line for a scheduled outage and repair 17 cannot be completed within the planned work window, the outage is extended 18 when in the best interest of customers to perform necessary maintenance or repairs 19 prior to returning the unit to service. The decision to extend an outage is based on 20 numerous factors, including reliability risk assessments, system power demands, 21 and the availability of resources to address the emergent challenge. In general, if 22 an issue poses a credible risk to reliable operations until the next scheduled outage, 23 the issue is repaired prior to returning the unit to service. This approach enhances 24 reliability and results in longer continuous run times and fewer forced outages,

thereby reducing fuel costs for customers in the long run. In the event that a unit
is forced off-line, every effort is made to safely perform the repair and return the
unit to service as quickly as possible.

4 Q. DOES DEC PERFORM POST OUTAGE CRITIQUES AND CAUSE 5 ANALYSES FOR INTERNAL IMPROVEMENT EFFORTS?

A. Yes. DEC applies self-critical analysis to each outage and, using the benefit of
hindsight, identifies every potential cause of an outage delay or event resulting in
a forced or extended outage, and applies lessons learned to drive continuous
improvement. The Company also evaluates the performance of each function and
discipline involved in outage planning and execution to identify areas in which it
can utilize self-critical observation for improvement efforts.

12 Q. IS SUCH ANALYSES INTENDED TO ASSESS OR MAKE A 13 DETERMINATION REGARDING THE PRUDENCE OR 14 REASONABLENESS OF A PARTICULAR ACTION OR DECISION?

15 A. No. Given this focus on identifying opportunities for improvement, these critiques 16 and cause analyses are not intended to document the broader context of the outage 17 nor do they make any attempt to assess whether the actions taken were reasonable 18 in light of what was known at the time of the events in question. Instead, the 19 reports utilize hindsight (e.g., subsequent developments or information not known 20 at the time) to identify every potential cause of the incident in question. However, 21 such a review is quite different from evaluating whether the actions or decisions 22 in question were reasonable given the circumstances that existed at that time.

Feb 23 2021

1 Q. WHAT OUTAGES WERE REQUIRED FOR REFUELING AT DEC'S

NUCLEAR FACILITIES DURING THE TEST PERIOD?

2

3 A. There were five refueling outages completed during the test period: McGuire Unit 4 2, Oconee Unit 3, and Catawba Unit 1 in the spring of 2020, followed by McGuire 5 Unit 1 and Oconee Unit 1 in the fall. All five outages were completed within 6 budget, and all outage scope completion goals were met. The combined O&M 7 outage costs for the five refueling outages totaled \$132.9 million compared to the 8 combined budget for the five outages of \$136.4 million. Total days offline for 9 refueling during the test period totaled 146.9 days compared to a total scheduled 10 allocation of 151.5 days. Four of the five refueling outages were completed under 11 allocation. The McGuire Unit 1 refueling outage extended 4 days beyond 12 allocation.

13 After completing a continuous cycle run of 524.5 days, McGuire Unit 2 14 entered a spring refueling outage on March 21, 2020. In addition to refueling, 15 safety and reliability enhancing maintenance, inspections and testing were 16 completed. Maintenance work included the replacement of the 2D reactor coolant 17 pump seal, and preventive maintenance on the 2A nuclear service work pump, 2A 18 chemical and volume control motor, and 2A containment spray motor. Both the 19 2A and 2B component cooling heat exchangers were cleaned. Inspections on the 20 reactor vessel head, 2B low pressure turbine, and thrust bearings were completed. 21 After refueling, maintenance, and inspections and testing were completed, the unit 22 returned to service on April 13, 2020, for a total duration of 23.4 days compared 23 to a 25-day schedule allocation. The outage was accomplished with the lowest 24 dose in the station's history.

1 Oconee Unit 3 shut down for refueling on April 10, 2020. During the 2 outage, the unit's low-pressure turbines were replaced. Safety enhancements 3 included the replacement of the standby shutdown letdown line. Reliability 4 enhancements included the replacements of the 3A high pressure injection motor, 5 3B reactor building cooling unit motor, 3D1 heater drain pump and motor, 3B1 6 reactor coolant pump seal, and 20 air operated valve positioners. Preventive 7 maintenance was completed on the 3A and 3B feedwater pumps, main 8 transformer, 3TB switchgear and breaker, and the 3X8 load center. Inspections 9 and testing completed included radiography tests on the high-pressure injection 10 nozzle thermal sleeve and valves, condenser waterbox and discharge piping 11 inspections, and 3TC switchgear inspections. After refueling, maintenance, 12 testing and inspections completed, the unit returned to service on May 9, 2020. 13 The outage duration was 28.97 days compared to a schedule allocation of 34.5 14 days.

15 Catawba Unit 1 shut down on May 2, 2020 for refueling. In addition to 16 refueling activities, safety and reliability enhancements, testing and inspections 17 were completed. Replacement of the unit's low-pressure turbines were 18 completed. Other maintenance activities included replacement of the 1C reactor 19 coolant pump motor, replacement of the 1A, 1C, and 1D reactor coolant pump 20 seal packages, and replacement of the 1B reactor coolant charging pump motor. 21 The 1B component cooling water heat exchanger tubes were replaced with new 22 stainless-steel tubes. Volumetric inspection of the reactor vessel head and all head 23 welds, and inspections and testing of seven motor-control centers were completed. 24 After refueling, maintenance, inspections, and testing completed, the unit returned

1

2

to service on June 1, 2020, for a total duration of 30.2 days compared to a 31-day schedule allocation.

3 McGuire Unit 1 was removed from the grid on September 19, 2020 to 4 begin refueling. Along with routine refueling activities, safety and reliability 5 enhancements and inspections were completed. Reliability enhancements 6 completed during the refueling outage included replacement of the 1A reactor 7 coolant pump seal and the 1B1 component cooling pump motor. Valve work and 8 modifications completed included valve and valve actuator replacements in the 9 heater drain, safety injection, nuclear service water and station air systems. 10 Inspections completed included the reactor vessel 10-year in-service inspection, 11 material reliability program upper and lower internals inspection, and inspection 12 of the reactor coolant hot and cold leg nozzles. An 8-year reactor coolant pump 13 switchgear inspection and testing of the 1A engineered safety features was also 14 completed. The unit's turbine driven auxiliary feedpump turbine and 1C low 15 pressure turbine were also inspected. With the exception of duration, all outage 16 goals were met. The outage extended four days beyond the scheduled allocation 17 due to challenges with reactor vessel inspection equipment performance and an 18 emergent repair on a cold leg accumulator outlet check valve. Once work 19 activities, testing and inspections were completed, the unit returned to service on 20 October 21, 2020. The total outage duration was 32.1 days compared to a 28-day 21 scheduled allocation.

The fifth and final refueling outage executed during the test period began on October 16, 2020 when Oconee Unit 1 shutdown for refueling. In addition to refueling, safety and reliability enhancements, testing and inspections were

1 completed. Significant outage scope included the replacement of the unit's low-2 pressure turbine rotors, completing a multi-year project to replace the aging low-3 pressure turbines on all three Oconee units. The replacement of the low-pressure turbine rotors improves reliability, and reduces maintenance expense and 4 5 inspection requirements during future refueling outages. Other reliability 6 enhancements included replacement of the 1B1 reactor coolant pump motor, 1A1 7 and 1B2 reactor coolant pump seals, 1D2 heater drain pump and 1A high pressure 8 injection pump motor. Replacement of the unit 1 standby shutdown facility 9 reactor coolant letdown line also completed a multi-year station project; with this 10 work now completed on all three Oconee units. Electrical work completed 11 included main power relaying upgrade and preventive maintenance on the Unit 1 12 main transformer and various switchgear and breakers. Inspection activities 13 included steam generator Eddy Current and reactor vessel materials reliability 14 program inspections. After refueling, maintenance, inspections and testing 15 completed, the unit returned to service on November 18, 2020, for a total duration 16 of 32.2 days compared to a 33-day schedule allocation.

17 Q. WHAT CAPACITY FACTOR DOES DEC PROPOSE TO USE IN 18 DETERMINING THE FUEL FACTOR FOR THE BILLING PERIOD?

A. The Company proposes to use a 93.21% capacity factor, which is a reasonable
value for use in this proceeding based upon the operational history of DEC's
nuclear units and the number of planned outage days scheduled during the billing
period. This proposed percentage is reflected in the testimony and exhibits of
Company witness Sykes and exceeds the five-year industry weighted average

- capacity factor of 91.95% for comparable units as reported in the NERC Brochure
- 2 during the period of 2015 to 2019.

3 Q. DOES THIS CONCLUDE YOUR PRE-FILED DIRECT TESTIMONY?

4 A. Yes, it does.

1

BEFORE THE NORTH CAROLINA UTILITIES COMMISSION

DOCKET NO. E-7, SUB 1250

In the Matter of)
Application of Duke Energy Carolinas, LLC)
Pursuant to G.S. 62-133.2 and NCUC Rule)
R8-55 Relating to Fuel and Fuel-Related)
Charge Adjustments for Electric Utilities)

STEVEN D. CAPPS CONFIDENTIAL EXHIBIT 1

FILED UNDER SEAL

FEBRUARY 23, 2021

BEFORE THE NORTH CAROLINA UTILITIES COMMISSION

DOCKET NO. E-7, SUB 1250

In the Matter of)	
Application of Duke Energy Carolinas, LLC)	DIRECT TESTIMONY OF
Pursuant to G.S. 62-133.2 and NCUC Rule)	STEVE IMMEL FOR
R8-55 Relating to Fuel and Fuel-Related)	DUKE ENERGY CAROLINAS, LLC
Charge Adjustments for Electric Utilities)	

1 Q. PLEASE STATE YOUR NAME AND BUSINESS ADDRESS.

A. My name is Steve Immel and my business address is 526 South Church Street,
Charlotte, North Carolina.

4 Q. BY WHOM ARE YOU EMPLOYED AND IN WHAT CAPACITY?

5 A. I am employed by Duke Energy and am the Vice President ("VP") of Fleet
6 Transition Strategy.

7 Q. PLEASE DESCRIBE YOUR EDUCATIONAL AND PROFESSIONAL 8 BACKGROUND.

9 I graduated from the University of Kentucky with a Bachelor of Science degree A. 10 in Civil Engineering and a Masters of Business Administration from Queens 11 College. My career began with Duke Energy (d/b/a Duke Power) in 1980 as an 12 Associate Design Engineer. Since that time, I have held various roles of 13 increasing responsibility in corporate facilities, investment recovery, supply chain, 14 and operations areas, including the role of Hydro Manager; Station Manager at 15 Duke Energy Carolinas, LLC's ("DEC" or the "Company") Allen Steam Station 16 and then Marshall Steam Station. I was named VP of Duke Energy Indiana's 17 Midwest Regulated Operations in 2012 and VP of Outage and Project Services in 18 2014. In 2016, I was named to VP of Carolinas Coal Generation for the Company 19 and Duke Energy Progress, LLC. I assumed my current role in 2020.

20 Q. WHAT ARE YOUR CURRENT DUTIES AS VP OF FLEET 21 TRANSITION STRATEGY?

A. In this role, I am responsible for developing strategies to address various
 integrated resource plan ("IRP") scenarios and related plans for the
 Fossil/Hydro/Solar workforce.

1 Q. HAVE YOU TESTIFIED BEFORE THIS COMMISSION IN ANY PRIOR

2 **PROCEEDINGS**?

A. Yes. I testified before the North Carolina Utilities Commission on behalf of the
Company in its most recent general rate case in Docket No E-7, Sub 1214.

5 Q. WHAT IS THE PURPOSE OF YOUR TESTIMONY IN THIS 6 PROCEEDING?

7 The purpose of my testimony is to (1) describe DEC's Fossil/Hydro/Solar A. 8 generation portfolio and changes made since the 2020 fuel and fuel-related cost 9 recovery proceeding, as well as those expected in the near term, (2) discuss the 10 performance of DEC's Fossil/Hydro/Solar facilities during the test period of 11 January 1, 2020 through December 31, 2020 (the "test period"), (3) provide 12 information on significant Fossil/Hydro/Solar outages that occurred during the 13 test period, and (4) provide information concerning environmental compliance 14 efforts.

15 Q. PLEASE DESCRIBE DEC'S FOSSIL/HYDRO/SOLAR GENERATION 16 PORTFOLIO.

- A. The Company's Fossil/Hydro/Solar generation portfolio consists of
 approximately 15,043 megawatts ("MWs") of generating capacity, made up as
 follows:
- 20Coal-fired -6,764 MWs21Steam Natural Gas -170 MWs22Hydro -3,277 MWs23Combustion Turbines ("CT") -2,633 MWs24Combined Cycle Turbines ("CC")-2,116 MWs

1	Solar - 71 MWs	
2	Combined Heat and Power ("CHP") - 13 MWs	
3	The coal-fired assets consist of four generating stations with a total	of 13 units.
4	These units are equipped with emissions control equipment, including	ng selective
5	catalytic or selective non-catalytic reduction ("SCR" or "SNCR") equation	lipment for
6	removing nitrogen oxides ("NOx"), and flue gas desulfurization	("FGD" or
7	"scrubber") equipment for removing sulfur dioxide ("SO ₂ "). In add	ition, all 13
8	coal-fired units are equipped with low NO_x burners. The steam natura	ıl gas unit –
9	Lee Station ("Lee") Unit 3 – is considered to be a peaking unit.	
10	The Company has a total of 31 simple cycle CT units, of w	hich 29 are
11	considered the larger group providing approximately 2,549 MWs of	of capacity.
12	These 29 units are located at Lincoln, Mill Creek, and Rockingham S	tations, and
13	are equipped with water injection systems that reduce NO_x and/or have	ve low NO _x
14	burner equipment in use. The Lee CT facility includes two units	with a total
15	capacity of 84 MWs equipped with fast-start ability in support of DE	C's Oconee
16	Nuclear Station. The Company has 2,116 MWs of CC turbines, comp	rised of the
17	Buck CC, Dan River CC and W.S. Lee CC facilities. These facilities a	re equipped
18	with technology for emissions control, including SCRs, low NO_x b	urners, and
19	carbon monoxide/volatile organic compounds catalysts. The Compa	iny's hydro
20	fleet includes two pumped storage facilities with four units each that	at provide a
21	total capacity of 2,220 MWs, along with conventional hydro assets co	onsisting of
22	59 units providing approximately 1,057 MWs of capacity. The 71 M	Ws of solar
23	capacity are made up of 17 roof top solar sites providing 3 MWs	of relative
24	summer dependable capacity, the Mocksville solar facility providing	6 MWs of

relative summer dependable capacity, the Monroe solar facility providing 22 MWs of relative summer dependable capacity, Woodleaf solar facility providing 2 MWs of relative summer dependable capacity, Gaston solar facility providing 10 MW of relative summer dependable capacity and Maiden Creek solar facility providing 28 MW of relative summer dependable capacity. Finally, the Company has the Clemson CHP that provides 12.5 MW of capacity.

1

2

3

4

5

6

7 Q. WHAT CHANGES HAVE OCCURRED WITHIN THE 8 FOSSIL/HYDRO/SOLAR PORTFOLIO SINCE DEC'S 2019 FUEL AND 9 FUEL-RELATED COST RECOVERY PROCEEDING?

A. Marshall Unit 3 was upgraded in November 2020 to allow for co-fired operation,
allowing utilization of coal and natural gas. Gaston solar facility went into service
in December 2020 and will provide the DEC territory with 10 MW of capacity.
Maiden Creek solar facility went into service in January 2021 and will provide the
DEC territory with 28 MW of capacity. Bad Creek Unit 2 was upgraded in
October 2020, increasing the unit's capacity by 80 MWs.

16 Q. WHAT ARE DEC'S OBJECTIVES IN THE OPERATION OF ITS 17 FOSSIL/HYDRO/SOLAR FACILITIES?

A. The primary objective of DEC's Fossil/Hydro/Solar generation department is to
provide safe, reliable and cost-effective electricity to DEC's customers.
Operations personnel and other station employees are well-trained and execute
their responsibilities to the highest standards in accordance with procedures,
guidelines, and a standard operating model.

The Company complies with all applicable environmental regulations and
 maintains station equipment and systems in a cost-effective manner to ensure

1 reliability for customers. The Company also takes action in a timely manner to 2 implement work plans and projects that enhance the safety and performance of 3 systems, equipment, and personnel, consistent with providing low-cost power 4 options for DEC's customers. Equipment inspection and maintenance outages are 5 generally scheduled during the spring and fall months when customer demand is 6 reduced due to milder temperatures. These outages are well-planned and executed 7 in order to prepare the unit for reliable operation until the next planned outage in 8 order to maximize value for customers.

9 Q. WHAT IS HEAT RATE?

A. Heat rate is a measure of the amount of thermal energy needed to generate a given
amount of electric energy and is expressed as British thermal units ("Btu") per
kilowatt-hour ("kWh"). A low heat rate indicates an efficient fleet that uses less
heat energy from fuel to generate electrical energy.

14 Q. WHAT HAS BEEN THE HEAT RATE OF DEC'S COAL UNITS DURING 15 THE TEST PERIOD?

16 A. Over the test period, the average heat rate for DEC's coal fleet was 9,865 17 Btu/kWh. DEC's Rogers Energy Complex ("Cliffside"), Belews Creek Steam 18 Station ("Belews Creek"), and Marshall Steam Station ("Marshall") have 19 typically ranked as some of the most efficient coal-fired generating stations in the 20 nation, with heat rates of 9,519, Btu/kWh, 9,871 Btu/kWh, and 9,941 Btu/kWh, 21 respectively. For the test period, the Marshall units provided 35% of coal-fired 22 generation for DEC, with the Belews Creek units providing 31% and Cliffside 23 providing 31%.

1Q.HOWMUCHGENERATIONDIDEACHTYPEOF2FOSSIL/HYDRO/SOLARGENERATINGFACILITYPROVIDEFOR3THE TEST PERIOD AND HOW DOESDEC UTILIZEEACHTYPEOF4GENERATINGFACILITYTOSERVECUSTOMERS?

A. The Company's system generation totaled 95 million MW hours ("MWhs") for
the test period. The Fossil/Hydro/Solar fleet provided 35 million MWhs, or
approximately 37% of the total generation. As a percentage of the total
generation, 16% was produced from coal-fired stations and approximately 15%
from CC operations, 1% from CTs, 2.5% from hydro facilities, and 0.16% from
solar.

11 The Company's portfolio includes a diverse mix of units that, along with 12 additional nuclear capacity, allows DEC to meet the dynamics of customer load 13 requirements in a cost-effective manner. Additionally, DEC has utilized the Joint 14 Dispatch Agreement, which allows generating resources for DEC and DEP to be 15 dispatched as a single system to enhance dispatching by allowing DEC customers 16 to benefit from the lowest cost resources available. The cost and operational 17 characteristics of each unit generally determine the type of customer load situation 18 (e.g., base and peak load requirements) that a unit would be called upon, or 19 dispatched, to support.

20 Q. HOW DID DEC COST EFFECTIVELY DISPATCH ITS DIVERSE MIX

- 21 OF GENERATING UNITS DURING THE TEST PERIOD?
- A. The Company, like other utilities across the U.S., has experienced a change in the
 dispatch order for each type of generating facility due to continued favorable
 economics resulting from low pricing of natural gas. Further, the addition of new

1 CC units within the Carolinas' portfolio in recent years has provided DEC with 2 additional natural gas resources that feature state-of-the-art technology for 3 increased efficiency and significantly reduced emissions. These factors promote 4 the use of natural gas and provide real benefits in cost of fuel and reduced 5 emissions for customers.

6 Q. PLEASE DISCUSS THE OPERATIONAL RESULTS FOR DEC'S 7 FOSSIL/HYDRO/SOLAR FLEET DURING THE TEST PERIOD.

8 A. The Company's generating units operated efficiently and reliably during the test 9 The following key measures are used to evaluate the operational period. 10 performance depending on the generator type: (1) equivalent availability factor 11 ("EAF"), which refers to the percent of a given time period a facility was available 12 to operate at full power, if needed (EAF is not affected by the manner in which 13 the unit is dispatched or by the system demands; it is impacted, however, by 14 planned and unplanned (*i.e.*, forced) outage time); (2) net capacity factor ("NCF"), 15 which measures the generation that a facility actually produces against the amount 16 of generation that theoretically could be produced in a given time period, based 17 upon its maximum dependable capacity (NCF is affected by the dispatch of the 18 unit to serve customer needs); (3) equivalent forced outage rate ("EFOR"), which 19 represents the percentage of unit failure (unplanned outage hours and equivalent 20 unplanned derated¹ hours); a low EFOR represents fewer unplanned outages and 21 derated hours, which equates to a higher reliability measure; and (4) starting 22 reliability ("SR"), which represents the percentage of successful starts. For 2021,

¹ Derated hours are hours the unit operation was less than full capacity.

the Company is including another measure to assess plant reliability—equivalent
forced outage factor ("EFOF")—which quantifies the number of period hours in
a year during which the unit is unavailable because of forced outages and forced
deratings.

5 The following chart provides operation results, as well as results from the 6 most recently published North American Electric Reliability Council ("NERC") 7 Generating Availability Brochure ("NERC Brochure") representing the period 8 2015 through 2019 and is categorized by generator type. The NERC data reported 9 represents an average of comparable units based on capacity rating. The data in 10 the chart reflects DEC results compared to the NERC five-year averages.

Generator Type	Measure	Review	2015 - 2019	Nbr of Units	
		Period			
		DEC			
		Operational	NERC Average	Units	
		Results			
Coal-Fired Test Period	EAF	72.3%	76.5%		
	EFOR	15.1%	9.6%	705	
	EFOF	7.0%	n/a		
Coal-Fired Summer Peak	EAF	78.7%	n/a	n/a	
Total CC Average	EAF	86.1%	84.9%		
	NCF	73.1%	54.8%	350	
	EFOR	0.55%	4.9%		
	EFOF	0.48%	n/a		
Total CT Average	EAF	83.5%	86.9%	746	
	SR.	99.0%	98.4%	/40	
Hydro	EAF	77.4%	79.9%	1,060	

11

12 Q. PLEASE DISCUSS SIGNIFICANT OUTAGES OCCURRING AT DEC'S

13 FOSSIL/HYDRO/SOLAR FACILITIES DURING THE TEST PERIOD.

A. In general, planned maintenance outages for all fossil and larger hydro units are
scheduled for the spring and fall to maximize unit availability during periods of
peak demand. Most of these units had at least one small planned outage during
this test period to inspect and maintain plant equipment.

In the Spring 2020, Cliffside Unit 5 performed a boiler outage. The 1 2 primary purpose of the outage was to perform Mercury and Air Toxics Standards 3 ("MATS") boiler repairs, absorber recycle pump upgrade, turbine bearing 4 inspection and repairs, motor transformer replacement, and safety relief valves 5 inspection and repairs. Cliffside Unit 6 also performed a boiler outage. The 6 primary purpose of the outage was to perform MATS boiler repairs, turbine valve 7 inspections and repairs, and recirculating pump replacement. Marshall Unit 3 8 performed an outage to change out the burners for the Dual Fuel Optionality 9 ("DFO") conversion project. The outage was stopped for the COVID-19 10 pandemic. The work re-commenced with updated health and safety measures in 11 place. Belews Creek Unit 1 performed an outage to repair the High Pressure and 12 Low-Pressure hydrogen coolers. Rockingham CT Unit 3 and Unit 4 performed an 13 outage to install new exhaust stack silencers. Lincoln CT Unit 1 through Unit 8 14 had an outage to perform switchyard work to tie in Unit 17. Lincoln CT Unit 13 15 and Unit 14 had an outage to upgrade generator breaker relay for NERC 16 compliance.

17 In the Fall 2020, Rockingham CT Unit 5 performed an outage to conduct 18 a hot gas path inspection. Buck CC had an outage to perform steam turbine 19 inspections, valve upgrades, gas turbine generator inspections, and high energy 20 piping inspections. Marshall Unit 3 had an outage to install the remaining gas 21 piping for the DFO project, install flame monitoring equipment, and install gas 22 igniters. Marshall Unit 4 had an outage to install gas burners for DFO project, 23 control upgrades, and inspection of high energy piping. Allen Unit 1 had an outage 24 to inspect and repair turbine oil coolers.

1 Q. HOW DOES DEC ENSURE EMISSIONS REDUCTIONS FOR 2

ENVIRONMENTAL COMPLIANCE?

3 A. The Company has installed pollution control equipment in order to meet various 4 current federal, state, and local reduction requirements for NO_x and SO_2 5 emissions. The SCR technology that DEC currently operates on the coal-fired 6 units uses ammonia or urea for NO_x removal. The SNCR technology employed 7 at Allen Station and Marshall Units 1, 2 and 4 injects urea into the boiler for NO_x 8 removal. All DEC coal units have wet scrubbers installed that use crushed 9 limestone for SO₂ removal. Cliffside Unit 6 has a state-of-the-art SO₂ reduction 10 system that couples a wet scrubber (e.g., limestone) and dry scrubber (e.g.,11 quicklime). SCR equipment is also an integral part of the design of the Buck, Dan 12 River and Lee CC Stations in which aqueous ammonia is introduced for NO_x 13 removal.

14 Overall, the type and quantity of chemicals used to reduce emissions at the 15 plants varies depending on the generation output of the unit, the chemical 16 constituents in the fuel burned, and/or the level of emissions reduction 17 required. The Company is managing the impacts, favorable or unfavorable, as a 18 result of changes to the fuel mix and/or changes in coal burn due to competing 19 fuels and utilization of non-traditional coals. Overall, the goal is to effectively 20 comply with emissions regulations and provide the optimal total-cost solution for 21 the operation of the unit. The Company will continue to leverage new 22 technologies and chemicals to meet both present and future state and federal emission requirements including the MATS rule. MATS chemicals that DEC 23 24 uses when required to reduce emissions include, but may not be limited to,

activated carbon, mercury oxidation chemicals, and mercury re-emission
 prevention chemicals. Company witness Sykes provides the cost information for
 DEC's chemical use and forecast.

4 Q. DOES THIS CONCLUDE YOUR PRE-FILED DIRECT TESTIMONY?

5 A. Yes, it does.