

Evaluation, Measurement, and Verification Report for Virginia Electric and Power Company (Dominion Energy)

Case No. PUR-2020-00274 (Virginia) Docket No. E-22 Sub 604 (North Carolina)

PUBLIC VERSION VOLUME 4 OF 5

Date: June 15, 2022 Prepared by DNV Energy Insights USA Inc. (DNV)

Appendix F2 Technical Reference Manual (TRM) for Non-Residential Programs

Dominion Energy Virginia and North Carolina

Protocols to Track Demand-Side Management (DSM) Programs Resource Savings

Version 2021-Report

Prepared by DNV Energy Insights USA Inc. June 15, 2022

Table of Contents

1	NON-RESIDENTIAL LIGHTING SYSTEMS AND CONTROLS PROGRAM, DSM PHASE V	ʻII 1
1.1	Lighting End Use	1
1.1.1	Lighting Fixtures, Lamps, and Delamping	1
1.1.2 1.1.3	Occupancy Sensors and Daylight Controls Occupancy Sensors and Controls – Stairwell Integrated	6 9
1.1.4	Reach-In Unit Occupancy Sensor	12
2	NON-RESIDENTIAL HEATING AND COOLING EFFICIENCY PROGRAM, DSM PHASE V	II 17
2.1	Heating, Ventilation, and Air-Conditioning (HVAC) End Use	17
2.1.1	Unitary/Split Air Conditioning (AC) & Heat Pump (HP) Systems VAC Upgrade	17
2.1.2	Variable Refrigerant Flow Systems and Mini-Split Systems	22
2.1.3 2.1.4	Electric Chillers Variable Frequency Drives	26 30
2.1.5	Dual Enthalpy Air-side Economizers	37
3	NON-RESIDENTIAL WINDOW FILM PROGRAM, DSM PHASE VII	43
3.1	Building Envelope End Use	43
3.1.1	Window Film	43
4	NON-RESIDENTIAL SMALL BUSINESS IMPROVEMENT PROGRAM, DSM PHASE V	
4.1	Heating, Ventilation, and Air-Conditioning (HVAC) End Use	49
4.1.1 4.1.2	Duct Testing and Sealing Unitary/Split Air Conditioning, Heat Pump, and Chiller Tune-up	49 58
4.1.2	Refrigerant Charge Adjustment	63
4.1.4	Unitary/Split AC & HP Upgrade	67
4.1.5	Mini-split Heat Pump	67
4.1.6	Dual Enthalpy Air-side Economizer	67
4.1.7	Variable Frequency Drives	68
4.1.8	Programmable Thermostats	72
4.2 4.2.1	Lighting End Use Lighting, Fixtures, Lamps, and Delamping	75 75
4.2.2	Sensors and Controls	75
4.2.3	LED Exit Signs	76
4.3	Compressed Air End Use	80
4.3.1	Air Compressor Leak Repair	80
5	NON-RESIDENTIAL PRESCRIPTIVE PROGRAM, DSM PHASE VI	
5.1	Cooking End Use	84
5.1.1 5.1.2	Commercial Convection Oven Commercial Combination Oven	84 88
5.1.3	Commercial Fryer	95
5.1.4	Commercial Griddle	100
5.1.5	Commercial Hot Food Holding Cabinet	103
5.1.6	Commercial Steam Cooker	106
5.2	Heating, Ventilation, and Air-Conditioning (HVAC) End Use	112
5.2.1 5.2.2	Duct Testing and Sealing Unitary/Split Air Conditioning, Heat Pump, and Chiller Tune-up	112 113
5.2.3	Variable Speed Drives on Kitchen Exhaust Fan	113
5.3	Plug Load End Use	117
5.3.1	Smart Strip	117
5.4	Refrigeration End Use	118
5.4.1	Door Closer (Cooler and Freezer)	118
5.4.2	Door Gasket (Cooler and Freezer)	121

5.4.3 5.4.4 5.4.5	Commercial Freezers and Refrigerators Commercial Ice Maker Evaporator Fan Electronically Commutated Motor (ECM) Retrofit (Reach-In and Walk-in	125 128
5.4.5	Coolers and Freezers)	133
5.4.6	Evaporator Fan Control (Cooler and Freezer)	137
5.4.7	Floating Head Pressure Control	142
5.4.8	Low/Anti-Sweat Door Film	144
5.4.9	Refrigeration Night Cover	148
5.4.10	Refrigeration Coil Cleaning	151
5.4.11	Suction Pipe Insulation (Cooler and Freezer)	153
5.4.12	Strip Curtain (Cooler and Freezer)	156
5.4.13	Vending Machine Miser	159
6	NON-RESIDENTIAL DISTRIBUTED GENERATION PROGRAM, DSM PHASE II	. 163
7	NON-RESIDENTIAL SMALL MANUFACTURING PROGRAM, DSM PHASE VII	
7.1	Compressed Air End Use	165
7.1.1	Compressed Air Nozzle	165
7.1.2	Leak Repair	170
7.1.3	No-Loss Condensate Drain	173
7.1.4 7.1.5	Add Storage Heat-of-compression Dryer	177 181
7.1.5	Low Pressure-Drop Filter	186
7.1.7	VFD Air Compressor	189
7.1.8	Cycling Air Dryer	193
7.1.9	Dew Point Controls	199
7.1.10	Pressure Reduction	204
7.1.11	Downsized VFD Compressor	208
8 8.1.1	NON-RESIDENTIAL OFFICE PROGRAM, DSM PHASE VII Building Model Simulation Description	.213 213
8.2	Lighting End Use	220
8.2.1	Reduce Lighting Schedule by One Hour on Weekdays	220
8.3	Heating, Ventilation, and Air Conditioning (HVAC) End Use	220
8.3.1	0	220
8.3.2 8.3.3	HVAC Temperature Setback	221 221
8.3.4	HVAC Condensing Water Temperature Reset HVAC DAT Reset	221
8.3.5	HVAC Static Pressure Reset	222
8.3.6	HVAC VAV Minimum Flow Reduction	222
8.3.7	Dual Enthalpy Air-side Economizer	223
9	NON-RESIDENTIAL SMALL BUSINESS IMPROVEMENT ENHANCED PROGRAM, DSM PHASE VIII	. 224
9.1	Building Envelope End Use	225
9.1.1	Window Film Installation	225
9.2	Domestic Hot Water End Use	225
9.2.1	VFD on Hot Water Pump	225
9.3	HVAC End Use	225
9.3 9.3.1	Duct Testing & Sealing	225
9.3.1	Heat Pump Tune-up	225
9.3.3	Refrigerant Charge Correction	225
9.3.4	Heat Pump Upgrade	225
9.3.5	Dual Enthalpy Air-side Economizer	226
9.3.6	Programmable Thermostat	226
9.4	Lighting End Use	226
9.4.1	Lighting, Fixtures, Lamps, and Delamping	226

9.4.2	Sensors and Controls	226
9.4.3	LED Exit Signs	226
9.5	Plug-Load End Use	226
9.5.1	Vending Machine Miser	226
9.6	Refrigeration End Use	227
9.6.1	Refrigeration Variable Frequency Drives	227
9.6.2	Night Cover	229
9.6.3 9.6.4 9.6.5	Evaporator Fan Electronically Commutated Motor (ECM) Retrofit Evaporator Fan Motor Controls Door Closer	229 229 229 229
9.6.6	Anti-Sweat Heater Controls	229
9.6.7	Strip Curtain (Cooler and Freezer)	232
10	NON-RESIDENTIAL MIDSTREAM ENERGY EFFICIENCY PRODUCTS PROGRAM PHASE VIII	,
10.1 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 10.1.6	Cooking End Use Commercial Combination Oven Commercial Convection Oven Commercial Griddle Commercial Fryer Commercial Steam Cooker Commercial Hot Food Holding Cabinet	234 234 234 234 234 234 234 234
10.2	HVAC End Use	234
10.2.1	Unitary/Split HVAC, Package Terminal Air conditioners and Heat Pumps	234
10.2.2	Mini-split Systems	235
10.2.3	Electric Chiller	235
10.3	Refrigeration End Use	235
10.3.1	Commercial Freezers and Refrigerators	235
11	NON-RESIDENTIAL MULTIFAMILY PROGRAM, DSM PHASE VIII	
11.1	Building Envelope End Use	237
11.1.1	Air Sealing	237
11.1.2	Building Insulation/Drill & Fill Wall Insulation	237
11.2 11.2.1 11.2.2	Domestic Hot Water End Use Domestic Hot Water Pipe Insulation Water Heater Temperature Setback/Turndown	238 238 238 238
11.3 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5	Heating, Ventilation, and Air-Conditioning End Use HVAC Upgrade/ Unitary AC Heat Pump Tune-Up Duct Sealing ENERGY STAR [®] Room/Wall AC Units Smart Thermostat Installation	238 238 238 238 238 238 239
11.4	Lighting End Use	241
11.4.1	LED Lamps, Advanced Lighting, and Delamping	241
11.4.2	LED Exit Signs	241
11.4.3	Sensors and Controls	241
11.5	Plug-Load End Use	242
11.5.1	Clothes Dryer	242
11.5.2	Clothes Washer	242
11.6	Recreation Use	242
11.6.1	Two-Speed & Variable-Speed Pool Pump	242
12	NON-RESIDENTIAL NEW CONSTRUCTION PROGRAM, DSM PHASE VIII	246
12.1	Building Envelope	247
12.1.1	Optimal Choice of Vertical Fenestration	247

12.2 12.2.1	Heating, Ventilation, Air Conditioning High Efficiency and Variable Speed Chillers (Air-Cooled)	247 247
12.2.1	High Efficiency DX Cooling Equipment	247
12.2.3	High Efficiency and Variable Speed Packaged DX Cooling Equipment	247
12.2.4	High Efficiency Packaged Air-Source Heat Pumps	247
12.2.5	Demand Controlled Ventilation/CO2 Controls	247
12.2.6	VAV Dual-Max Controls (electric heat)	248
12.2.7	VAV Supply Air Temperature Reset (electric heat)	248
12.2.8	Chiller Controls	248
12.3	Plug Load	248
12.3.1	Supervisory Plug Load Management Systems	248
12.4	Lighting	249
12.4.1	High Performance Interior Lighting	249
12.4.2	LED Exterior Lighting	249
12.5	Building Simulation Description	249
12.5.1	Model Review	249
12.5.2	Impacts Estimation Approach	249
13	SUB-APPENDICES	253
13.1	Sub-Appendix F2-I: Cooling and Heating Degree Days and Hours	253
13.2	Sub-Appendix F2-II: Non-Residential HVAC Equivalent Full Load Hours	254
13.2.1	Annual Equivalent Full-Load Cooling Hours for Unitary Air Conditioners, Heat Pumps,	
	Chiller, VRF, Room/Wall AC and Mini-split Systems	255
13.2.2	Annual Equivalent Full-Load Heating Hours for Heat Pumps, VRFs, and Mini-split	057
10.0.0	Systems	257
13.2.3 13.2.4	Annual Hours of Use for Variable Frequency Drives Update Summary	260 261
13.3	Sub-Appendix F2-III: Non-Residential HVAC Equipment Efficiency Ratings	262
13.3.1	Cooling Efficiencies of Unitary Air Conditioners and Condensing Units	262
13.3.2	Efficiencies of Unitary and Applied Heat Pumps	264
13.3.3	Cooling Efficiencies of Variable Refrigerant Flow Air Conditioners and Heat Pumps	267
13.3.4 13.3.5	Cooling Efficiencies of Water Chilling Packages Heating Efficiencies of Systems with Central Chilled Water Plants	268 269
13.3.6	Update Summary	269
13.5	Sub-Appendix F2-IV: Non-Residential Lighting Factors: Annual Equivalent Hours, Coincide Factors and Waste Heat Factors	ence 270
13.5.1	Update Summary	273
13.6	Sub-Appendix F2-V: Non-Residential Commercial Kitchen Inputs	274
13.6.1	Update Summary	274
13.7	Sub-Appendix F2-VI: Non-Residential Compressed Air End Use Factors	276
13.7.1	Update Summary	277
13.8	Sub-Appendix F2-VII: Non-Residential Window Film Energy Saving Factors	278
13.8.1	Update Summary	299
13.9	Sub-Appendix F2-VIII: General Equations	300

List of Tables

1
2
3
4
6
6
7
8

Table 1-9. Effective Useful Life for Lifecycle Savings Calculations	
Table 1-10. Summary of Update(s)	9
Table 1-11. Input Values for Occupancy Sensors and Controls-Stairwell Integrated Measure	
Table 1-12. Effective Useful Life for Lifecycle Savings Calculations	
Table 1-13. Summary of Update(s)	12
Table 1-14. Input Values for Reach-In Unit Occupancy Sensors Savings Calculations	
Table 1-15. Effective Useful Life for Lifecycle Savings Calculations	
Table 1-16. Summary of Update(s)	15
Table 2-1. Non-Residential Heating and Cooling Efficiency Program Measure List (DSM VII)	17
Table 2-2. Programs that Offer this Measure	
Table 2-3. Input Values for Non-Residential HVAC Equipment	
Table 2-4. Effective Useful Life for Lifecycle Savings Calculations	
Table 2-5. Summary of Update(s)	
Table 2-6. Programs that Contain this Measure	
Table 2-7. Input Values for VRF Systems and Mini Split Systems	
Table 2-8. Effective Useful Life for Lifecycle Savings Calculations	
Table 2-9. Summary of Update(s)	.26
Table 2-10. Programs that Offer this Measure	
Table 2-11. Input Values for Non-Residential Electric Chillers	
Table 2-12. Effective Useful Life for Lifecycle Savings Calculations	
Table 2-13. Summary of Update(s)	
Table 2-14: Programs that Offer this Measure	
Table 2-15. Input Values for Non-Residential Variable Frequency Drives	
Table 2-16. Baseline Motor Efficiency	
Table 2-17. Default Fan Duty Cycle	
Table 2-18. Part Load Ratios by Control Type, Fan Type, and Flow Range	.30
Table 2-19. Average Baseline Part Load Ratios (PLRs) by Control Type, and Fan Type	.30
Table 2-20. Energy and Demand Savings Factors by Application	
Table 2-21. Effective Useful Life for Lifecycle Savings Calculations Table 2-22. Summary of Update(s)	.31
Table 2-22. Summary of Opdate(S)	
Table 2-24. Input Values for Economizer Repair Savings Calculations Table 2-25. Economizer Energy Savings Factors by Building Type	.30
Table 2-26. Effective Useful Life for Lifecycle Savings Calculations	.39
Table 2-20. Effective Oserul Effective Gavings Calculations	
Table 3-1. Programs that Offer this Measure	
Table 3-2. DOE and DNV Building Type Descriptions	
Table 3-3. Key Building Energy Modelling Parameters	
Table 3-4. Input Values for Solar Window Film	
Table 3-5. Effective Useful Life for Lifecycle Savings Calculations	46
Table 3-6. Summary of Update(s)	
Table 4-1. Non-Residential Small Business Improvement Program Measure List	48
Table 4-2. Programs that Offer this Measure	
Table 4-3. Input Values for Duct Sealing Savings Calculations	52
Table 4-4. Duct System Efficiency by Broad Building Type Categories	.55
Table 4-5. Duct System Efficiency Mapping to Building Type	.56
Table 4-6. Effective Useful Life for Lifecycle Savings Calculations	
Table 4-7. Summary of Update(s)	
Table 4-8. Programs that Offer this Measure	
Table 4-9. Input Variables for AC/HP/Chiller Tune-up Measure	
Table 4-10. Effective Useful Life for Lifecycle Savings Calculations	
Table 4-11. Summary of Update(s)	
Table 4-12. Programs that Offer this Measure	63
Table 4-13. Input Variables for Refrigerant Charge Adjustment	64
Table 4-14. Effective Useful Life for Lifecycle Savings Calculations	66
Table 4-15. Summary of Update(s)	
Table 4-16. Programs that Offer this Measure	
Table 4-17. Input Values for Non-Residential Variable Frequency Drives	
Table 4-18. Baseline Motor Efficiency	
-	

Table 4-19. Energy Savings and Demand Reduction Factors by Application	
Table 4-20. Effective Useful Life for Lifecycle Savings Calculations	
Table 4-21. Summary of Update(s)	
Table 4-22. Programs that Offer this Measure	
Table 4-23. Input Parameters for Programmable Thermostat Measure	
Table 4-24. Effective Useful Life for Lifecycle Savings Calculations	
Table 4-25. Summary of Update(s)	
Table 4-26. Programs that Offer this Measure	
Table 4-27. Input Values for LED Exit Sign Calculations Table 4-28. Effective Useful Life for Lifecycle Savings Calculations	//
Table 4-20. Enective Oseful Life for Lifecycle Savings Calculations	
Table 4-29. Summary of Opdate(s)	79
Table 4-30. Input variables for Air Compressor Lear Repair Measure	
Table 4-32. Summary of Update(s)	
Table 5-1. Non-Residential Prescriptive Program Measure List	
Table 5-2. Programs that Offer this Measure	
Table 5-3. Input Parameters for Convection Oven	
Table 5-4. Effective Useful Life for Lifecycle Savings Calculations	
Table 5-5. Summary of Update(s)	
Table 5-6. Programs that Offer this Measure	88
Table 5-7. Input Parameters for Commercial Electric Combination Ovens	90
Table 5-8. Effective Useful Life for Lifecycle Savings Calculations	
Table 5-9. Summary of Update(s)	
Table 5-10. Programs that Offer this Measure	96
Table 5-11. Input Parameters for Electric Commercial Fryer Measure	
Table 5-12. Effective Useful Life for Lifecycle Savings Calculations	
Table 5-13. Summary of Update(s)	
Table 5-14. Programs that Offer this Measure	
Table 5-15. Input Parameters for Commercial Griddle Measure	
Table 5-16. Effective Useful Life for Lifecycle Savings Calculations	
Table 5-17. Programs that Offer this Measure	
Table 5-18. Input Parameters for Hot Food Holding Cabinet Table 5-19. Effective Useful Life for Lifecycle Savings Calculations	
Table 5-19. Enective Oseful Energy Life for Energy Celevangs Calculations	
Table 5-20. Summary of Opdate(s)	
Table 5-22. Input Parameters for Commercial Steam Cooker Measure	
Table 5-23. Water Consumption Rate for the Baseline and Energy Efficient Equipment	
Table 5-24. Effective Useful Life for Lifecycle Savings Calculations	
Table 5-25. Summary of Update(s)	
Table 5-26. Input Parameters for VSD on Kitchen Fan(s)	.114
Table 5-27. Annual Hours of Use, Power, and Airflow Reductions due to VSD	.116
Table 5-28. Effective Useful Life for Lifecycle Savings Calculations	
Table 5-29. Summary of Update(s)	.116
Table 5-30. Effective Useful Life for Lifecycle Savings Calculations	.118
Table 5-31. Summary of Update(s)	
Table 5-32. Programs that Offer this Measure	.119
Table 5-33. Door Closer Gross Annual Electric Energy Savings and Gross Coincident Demand Reduction (per	
Table 5-34. Effective Useful Life for Lifecycle Savings Calculations	
Table 5-35. Summary of Update(s)	
Table 5-36. Input Values for Door Gasket Savings Calculations	.122
Table 5-37. Door Gasket Gross Annual Electric Energy and Gross Coincident Demand Reduction (per Linear Foo	
Table 5.39. Effective Licoful Life for Lifecycle Savinge Calculations	-
Table 5-38. Effective Useful Life for Lifecycle Savings Calculations Table 5-39. Summary of Undate(s)	
Table 5-39. Summary of Update(s) Table 5-40. Programs that Offer this Measure	
Table 5-40. Programs that other this Measure	
Table 5-41. Input Parameters for Commercial Freezers and Reingerator Measure	
Table 5-42. Calculated baseline Daily Energy Consumption from Volume, V	
	120

	Effective Useful Life for Lifecycle Savings Calculations	
Table 5-45. S	Summary of Update(s)	128
	nput Parameters for Commercial Ice Maker	
	Batch-Type Ice Machine Baseline Efficiencies	
Table 5-48. (Continuous-Type Ice Machine Baseline Efficiencies	130
	CEE Tier 2 Ice Machine Qualifying Efficiencies	
	Batch-Type ENERGY STAR [®] Ice Machine Qualifying Efficiencies	
	Continuous-Type ENERGY STAR® Ice Machine Qualifying Efficiencies	
	Effective Useful Life for Lifecycle Savings Calculations	
Table 5-53. \$	Summary of Update(s)	133
	Programs that Offer this Measure	
	nput Values for ECM Evaporator Savings Calculations	
	Total Deemed Savings for ECM Evaporator Fan Motor	
Table 5-57.	Effective Useful Life for Lifecycle Savings Calculations	136
	Summary of Update(s)	
	Programs that Offer this Measure	
	nput Values for Freezer and Cooler Evaporator Fan Controls Saving Calculations	
	Effective Useful Life for Lifecycle Savings Calculations	
Table 5-62: \$	Summary of Update(s)	142
	nput Values for Floating Head Pressure Control Savings Calculations	
	Floating-head Pressure Control Gross Annual Electric Energy Savings (per Horsepower)	
	Effective Useful Life for Lifecycle Savings Calculations	
	Summary of Update(s)	
Table 5-67. I	nput Parameters for Low/No-Sweat Door Film	145
Table 5-68.	Effective Useful Life for Lifecycle Savings Calculations	147
	Summary of Update(s)	
	Programs that Offer this Measure	
	nput Values for Refrigeration Night Cover Savings Calculations	
	Effective Useful Life for Lifecycle Savings Calculations	
	Summary of Update(s)	
	nput Values for Refrigeration Coil Cleaning Savings Calculations	
	Effective Useful Life for Lifecycle Savings Calculations	
	Summary of Update(s)	
	nput Values for Suction Pipe Insulation Savings Calculations	
	Suction Pipe Insulation Gross Annual Electric Energy Savings and Gross Coincident Demand Reduction	
	Foot)	
Table 5-79.	Effective Useful Life for Lifecycle Savings Calculations	155
	Summary of Update(s)	
	Programs that Offer this Measure	
Table 5-82. I	nput Values for Strip Curtain Savings Calculations	157
Table 5-83. \$	Strip Curtain Gross Annual Electric Energy Savings (per sq.ft.)	157
	Doorway Area Assumptions (sq.ft.)	
	Effective Useful Life for Lifecycle Savings Calculations	
Table 5-86. \$	Summary of Update(s)	159
Table 5-87.	Programs that Offer this Measure	160
	nput Values for Vending Miser Savings Calculations	
	Vending Miser Rated Kilowatts and Energy Savings Factors	
	Effective Useful Life for Lifecycle Savings Calculations	
	Summary of Update(s)	
	put Values for Non-Residential Distributed Generation Impact Analysis	
Table 6-2. S	ummary of Update(s)	164
	on-Residential Small Manufacturing Program Measure List	
Table 7-2. C	ompressed Air reduction for Engineered Nozzles	166
	put Values for Compressed Air Nozzles Savings Calculations	
	ffective Useful Life for Lifecycle Savings Calculations	
Table 7-5. S	ummary of Update(s)	169
	put Values for Leak Savings Calculations	
	ffective Useful Life for Lifecycle Savings Calculations	
Table 7-8. S	ummary of Update(s)	173

Table 7-9. Input Parameters for No-Loss Condensate Drain Savings Calculations	175
Table 7-10. Effective Useful Life for Lifecycle Savings Calculations1	176
Table 7-11. Summary of Update(s)1	177
Table 7-12. Input Parameters for Add Storage (5 gallon/cfm) Savings Calculations1	
Table 7-13. Effective Useful Life for Lifecycle Savings Calculations1	180
Table 7-14. Summary of Update(s)1	180
Table 7-15. Input Parameters for Heat of Compression Dryer1	
Table 7-16. Effective Useful Life for Lifecycle Savings Calculations 1	
Table 7-17. Summary of Update(s)1	186
Table 7-18. Input Parameters for Low Pressure Drop Filter Savings Calculations	188
Table 7-19. Effective Useful Life for Lifecycle Savings Calculations1	
Table 7-20. Summary of Update(s)1	189
Table 7-21. Input Values VSD Air Compressor Savings Calculations1	
Table 7-22. Effective Useful Life for Lifecycle Savings Calculations 1	193
Table 7-23. Summary of Update(s)1	193
Table 7-24. Input Parameters for Cycling Dryer1	
Table 7-25. Effective Useful Life for Lifecycle Savings Calculations	
Table 7-26. Summary of Update(s)1	198
Table 7-27. Input Parameters for Heat of Compression Dryer 2	
Table 7-28. Effective Useful Life for Lifecycle Savings Calculations	
Table 7-29. Summary of Update(s)	203
Table 7-30. Input Parameters for Pressure Reduction 2	
Table 7-31. Effective Useful Life for Lifecycle Savings Calculations	
Table 7-32. Summary of Update(s)	
Table 7-33. Input Values Downsized VSD Air Compressor Savings Calculations	210
Table 7-34. Effective Useful Life for Lifecycle Savings Calculations 2 7 10 7 10 10 10 11 12 13 14 15 16 17 18 19 10 10 10 10 10 11 12 12 13 14 14 15 15 16 17 17 17 17 18 17 16 17 17 18 18 19 10 10 10 10 10 10 10 10 10 10	
Table 7-35. Summary of Update(s)	212
Table 8-1. Non-Residential Office Program Measure List	
Table 8-2. Input Values for Office Buildings with Electric and Non-Electric Heating Fuels	215
Table 8-3. Energy Saving Factor (ESF) for 4-Story Office (Chilled Water, VAV) Measures by Weather Station, and Heating System Type, kWh/sq.ft	246
nearing System Type, kwinschit.	210
Table 8-4. Energy Saving Factor (ESF) for 4-Story Office (Chilled Water, CV) Measures by Weather Station, and	247
Heating System Type, kWh/sq.ft	<u> 1</u> 7
Table 6-5. Energy Saving Factor (ESF) for 4-StoryStory Onice (Fackage, VAV) measures by weather Station, and	210
Heating System Type, kWh/sq.ft	10 210
System Type, kWh/sq.ft2 Table 8-7. Effective Useful Life for Lifecycle Savings Calculations	
Table 8-8. Summary of Update(s)	
Table 8-9. Fan Curve Coefficients	
Table 9-1. Non-Residential Small Business Improvement Enhanced Program Measure List	
Table 9-2. Input Variables for Refrigeration Variable Frequency Drives	
Table 9-3. Effective Useful Life for Lifecycle Savings Calculations	
Table 9-4. Summary of Update(s)	
Table 9-5. Input Values for Anti-Sweat Heater Controls	
Table 9-6. Effective Useful Life for Lifecycle Savings Calculations 2	
Table 9-7. Summary of Update(s)	232
Table 10-1. Non-Residential Midstream Energy Efficiency Products Improvement Enhanced Program Measure List	-02
Table 11-1. Residential / Non-Residential Multifamily Program Measure List	
Table 11-2. Input Variables for Smart Thermostat Savings Calculations	
Table 11-3. Effective Useful Life for Lifecycle Savings Calculations	
Table 11-4. Summary of Update(s)	
Table 11-5. Input Variables for Two speed & Variable Speed Pool Pump Savings Calculations	
Table 11-6. Typical Energy Consumption of Pumps, Operating Hours and Coincidence Factor for Various Pump Siz	
Strategies and Pump Type	
Table 11-7. Effective Useful Life for Lifecycle Savings Calculations	
Table 11-8. Summary of Update(s)	
	245
Table 12-1. Non-Residential Small Business Improvement Enhanced Program Measure List	

Table 12-2. Non-Residential New Construction Measure Sequence for Modeling	
Table 12-3. Effective Useful Life for Lifecycle Savings Calculations	
Table 12-4. Summary of Update(s)	
Table 13-1. Base Temperatures by Sector and End Use	
Table 13-2. Reference Cooling and Heating Degree Days	
Table 13-3. Reference Cooling and Heating Degree Hours	.253
Table 13-4. Heat pump, Unitary AC, Chiller, VRF, Room/Wall AC, and Mini Split Equivalent Full-Load Cooling Hot	
for Non-Residential Buildings	.255
Table 13-5. Heat Pump, VRF, and Mini-split Equivalent Full Load Heating Hours for Non-Residential Buildings	
Table 13-6. Variable Frequency Drive Annual Hours of Use by Facility Type	
Table 13-7. Summary of Update(s)	.261
Table 13-8. Unitary Air Conditioners and Condensing Units - Minimum Efficiency	
Table 13-9. Unitary and Applied Heat Pumps - Minimum Efficiency	
Table 13-10. Variable Refrigerant Flow Air Conditioners and Heat Pumps - Minimum Efficiency	.267
Table 13-11. Water Chilling Packages–Minimum Efficiency	
Table 13-12. Electric Heating Efficiency Associated with Central Chilled Water Cooling Systems	.269
Table 13-13. Summary of Update(s)	.269
Table 13-14. Non-Residential Lighting Parameters by Exterior Lighting Type	.271
Table 13-15. Non-Residential Interior Lighting Parameters by Facility Type	.272
Table 13-16. Summary of Update(s)	
Table 13-17. Operational Hours by Building Type	
Table 13-18. Summary of Update(s)	
Table 13-19: Load Proportion and HOU Proportion Defaults by Load Range Bins	.276
Table 13-20. Input Variables Based on Type of Control	
Table 13-21. Coincidence Factor (CF) Based on Operating Schedule	
Table 13-22. Dryer constant values, based on base dryer type and percent load	
Table 13-23. Purge _{base} , based on dryer type	
Table 13-24. Summary of Update(s)	
Table 13-25. Energy Savings Factors for Reflective Window Film by Building Type and Window Orientation for	
Charlottesville, VA	.278
Table 13-26. Energy Savings Factors for Reflective Window Film by Facility Type and Window Orientation for	
Farmville, VA	.280
Table 13-27. Energy Savings Factors for Reflective Window Film by Facility Type and Window Orientation for	
Fredericksburg, VA	.282
Table 13-28. Energy Savings Factors for Reflective Window Film by Facility Type and Window Orientation for Nor	rfolk,
Table 13-29. Energy Savings Factors for Reflective Window Film by Facility Type and Window Orientation for	
Arlington, VA	.286
Table 13-30. Energy Savings Factors for Reflective Window Film by Facility Type and Window Orientation for	
Roanoke, VA	.288
Table 13-31. Energy Savings Factors for Reflective Window Film by Facility Type and Window Orientation for	
Sterling, VA	.290
Table 13-32. Energy Savings Factors for Reflective Window Film by Facility Type and Window Orientation for	
Richmond, VA	.292
Table 13-33. Energy Savings Factors for Reflective Window Film by Facility Type and Window Orientation for Rod	cky
Mount-Wilson, NC	•
Table 13-34: Energy Savings Factors for Reflective Window Film by Facility Type and Window Orientation for	
Elizabeth City, NC	.297
Table 13-35. Summary of Update(s)	.299

. . ..

1 NON-RESIDENTIAL LIGHTING SYSTEMS AND CONTROLS PROGRAM, DSM PHASE VII

The Non-Residential Lighting Systems and Controls Program is for DSM Phase VII. It has been offered in Virginia since 2019; it is not yet offered in North Carolina. The program provides incentives to non-residential customers who install new or retrofit existing lighting systems with more efficient lighting systems and/or install lighting sensors and controls.

Eligible measures defined under the Non-Residential Lighting Systems and Controls Program DSM Phase VII are shown in Table 1-1.

Table 1-1. Non-Residential	Lighting Systems and	Controls Program (DS	3M VII) Measure List

End Use	Measure	Legacy Program	Manual Section
	Lighting, Fixtures, Lamps, and Delamping including T8s, T5s, LEDs,	Retrofits & Delamping: Non- Residential Lighting Systems and Controls, DSM III	Section 1.1.1
	and CFLs	New Construction: none (new methodology for this program)	
Occup Stairw Senso	Occupancy Sensors & Controls	Non-Residential Lighting Systems and Controls, DSM III	Section 1.1.2
	Occupancy Sensors & Controls, Stairwell-integrated Occupancy Sensor	-	Section 1.1.3
	Reach-in Unit Occupancy Sensor	Non-Residential Lighting Systems and Controls, DSM III	Section 1.1.4

1.1 Lighting End Use

1.1.1 Lighting Fixtures, Lamps, and Delamping

1.1.1.1 Measure Description

This measure realizes energy savings by installing reduced wattage lamp/ ballast systems that have higher lumens per watt than existing systems. The savings estimation method is applied to lighting that involving T8, T5, LED, or CFL lamps/ ballasts. The baseline is assumed to be a Bulged Reflector (BR) lamp of a standard BR30-type.

The measure also covers delamping of existing lighting systems. Delamping includes removal of one or more lamps in a fixture (e.g., removing two lamps out of a four-lamp fixture) or removal of the entire fixture itself that results in either a reduced or eliminated connected load. Similar to lamp and fixture retrofit calculations, changes in load due to delamping are tracked through the difference between baseline and installed wattages. The baseline will vary with pre-existing characteristics.

Gross coincident demand reduction for delamping measures is included in PJM EE Resource nominations when reflectors or tombstones are installed since these are defined as persistent.

This measure is offered through various programs as listed in Table 1-2 and uses the impacts estimation approach described in this section. There are two methodologies described for this measure: 1) the retrofit/replace-on-

burnout/exit signs/exterior methodology (applies to all programs); and 2) the new construction methodology only applies to one program (shown in the table that follows).

Table 1-2.	Programs	that Offer	this	Measure
------------	----------	------------	------	---------

Program Name	Applications	Section
Non-Residential Lighting Systems and Controls Program, DSM Phase VII	Retrofit, Replace-on-burnout, Exit signs, Exterior, and New Construction	Section 1.1.1
Non-Residential Small Business Improvement Program, DSM Phase V		Section 4.2.1 (points to Section 1.1.1)
Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	Retrofit, Replace-on-burnout, Exit signs, and Exterior	Section 9.4.1 (points to Section 1.1.1)
Non-Residential Multifamily Program, DSM Phase VIII		Section 11.4.1 (points to Section 1.1.1)

1.1.1.2 Impacts Estimation Approach

Each application of this measure uses its own impacts estimation approach as described in the sub-sections that follow.

Retrofit/Replace-on-burnout/Exit signs/Exterior Lighting

Per measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \frac{(Qty_{base} \times watts_{base} - Qty_{ee} \times watts_{ee}) \times HOU \times WHF_e \times ISR}{1,000 W/kW}$$

Per measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \frac{(Qty_{base} \times watts_{base} - Qty_{ee} \times watts_{ee}) \times CF_{summer} \times WHF_{d,summer} \times ISR}{1,000 W/kW}$$

Per measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \frac{(Qty_{base} \times watts_{base} - Qty_{ee} \times watts_{ee}) \times CF_{winter} \times WHF_{d,winter} \times ISR}{1,000 W/kW}$$

New Construction Interior Lighting

Per measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \left(\frac{LPD_{base}}{LPD_{ee}} - 1\right) \times watts_{ee} \times Qty_{ee} \times HOU \times WHF_{e} \times ISR \times \frac{1 \ kW}{1,000 \ W}$$

Per measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta k W_{summer} = \left(\frac{LPD_{base}}{LPD_{ee}} - 1\right) \times watts_{ee} \times Qty_{ee} \times WHF_{d,summer} \times ISR \times CF_{summer} \times \frac{1 \ kW}{1,000 \ W}$$

Per measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \left(\frac{LPD_{base}}{LPD_{ee}} - 1\right) \times watts_{ee} \times Qty_{ee} \times WHF_{d,winter} \times ISR \times CF_{winter} \times \frac{1 \ kW}{1,000 \ W}$$

Where:

ΔkWh	= per measure gross annual electric energy savings
∆kW _{summer}	= per measure gross coincident summer peak demand reduction
∆kW _{winter}	= per measure gross coincident winter peak demand reduction
LPD _{base}	= baseline lighting power density
LPDee	= efficient lighting power density
Qty _{base}	= quantity of existing or baseline fixtures/lamps
Qty _{ee}	= quantity of installed energy-efficient (ee) fixtures/lamps
watts _{base}	= load of the existing or baseline fixture/lamp on a per unit basis
watts _{ee}	= load of installed energy-efficient (ee) fixture/lamps on a per unit basis
HOU	= annual operating hours of use for fixtures/lamps
WHFe	= waste heat factor to account for annual cooling savings from efficient lighting
WHF _{d,summ}	er = waste heat factor for summer peak demand to account for cooling savings from efficient
	lighting
WHF _{d,winter}	= waste heat factor for winter peak demand to account for heating penalty from efficient lighting
CFsummer	= summer coincidence factor
CFwinter	= winter coincidence factor
ISR	= in-service rate

1.1.1.3 Input Variables

Component	Туре	Value	Unit	Source(s)
Qty _{base}	Variable	See customer application	-	Customer application
Qtyee	Variable	See customer application	-	Customer application
watts _{base}	Variable	See customer application	watts	Customer application
wattsee	Variable	See customer application	watts	Customer application

NI	V
IN	V

Component	Туре	Value	Unit	Source(s)
LPD _{base} Variable		See Table 1-4	watt/sq.ft.	2015 Virginia Energy Conservation Code/IECC 2015 Section C405.4.2, Table C405.4.2(1) and Maryland/Mid- Atlantic TRM v. 10, p. 229
		Default=Other building type	watt/sq.ft.	Maryland/Mid-Atlantic TRM v10, p. 217, per ENERGY STAR ^{®1}
	Variable	See customer application	watt/sq.ft.	Customer application
CF _{summer}	Variable	For measures where the location is "Exit sign," "Stairwell," "Exterior light except garage," or "Garage," use Table 13-14 in	-	Maryland/Mid-Atlantic TRM v10, pp. 215, 243, 255, and 272 ²
CFwinter	Variable	Sub-Appendix F2-IV: Non- Residential Lighting Factors: Annual Equivalent Hours, Coincidence Factors and Waste Heat Factors.	-	Maryland/Mid-Atlantic TRM v10, pp. 215, 243, 255, and 272 ³
HOU	Variable	Treat "Exit sign" and "Stairwell" as "LED Exit Sign and '24/7' lights." Treat "Exterior light except garage"	hours, annual	Maryland/Mid-Atlantic TRM v10, pp. 215, 242, 254, 272, and 415- 416
WHFe	Variable	as "Outdoor LED and Roadway Lighting." Treat "Garage" as "LED "Parking	-	Maryland/Mid-Atlantic TRM v10, pp. 419-420
WHF _{d,summer}	Variable	Garage - Parking garage." For measures where the locations is "Interior light except exit light" use	-	Maryland/Mid-Atlantic TRM v10, pp. 419-420
WHF d,winter	Variable	Table 13-15 in Sub-Appendix F2-IV: Non- Residential Lighting Factors: Annual Equivalent Hours, Coincidence Factors and Waste Heat Factors.	-	Maryland/Mid-Atlantic TRM v10, pp. 419-420
ISR	Fixed	1.00	-	Maryland/Mid-Atlantic TRM v10, p. 218 ⁴

Table 1-4. Interior Lighting Power Allowances

Customer building type	LPD _{base} ⁵	
Education – Elementary and Middle School	0.87	

¹ LED exit sign default values come from an ENERGY STAR[®] report: "Save Energy, Money and Prevent Pollution with Light-Emitting Diode (LED) Exit Signs" at http://www.energystar.gov/ia/business/small business/led exitsigns techsheet.pdf (accessed 7/13/2018).

Jun 15 2022

Page 4

² The LED measures were grouped with other lighting applications' coincident factors based on their similar function or usage. LED downlights are assumed to be replacing CFL and T8 fixtures; LED or induction HE garage fixtures would be expected to replace PSMH in garage applications, and exterior LEDs replace exterior fixtures.

³ The LED measures were grouped with other lighting applications' coincident factors based on their similar function or usage. LED downlights are assumed to be replacing CFL and T8 fixtures; LED or induction HE garage fixtures would be expected to replace PSMH in garage applications, and exterior LEDs replace exterior fixtures.

⁴ Maryland/Mid-Atlantic TRM v.9, p. 319 footnote 737 EmPOWER Maryland DRAFT Final Impact Evaluation Report Evaluation Year 4 (June 1, 2012 – May 31, 2013) Commercial & Industrial Prescriptive & Small Business Programs, Navigant, March 31, 2014.

⁵ DNV mapped the building types with the building area types contained in IECC 2015 Section C405.4.2, Table C405.4.2(1).

Customer building type	LPD _{base} ⁵
Education – High School	0.87
Education – College and University	0.87
Food Sales - Grocery	1.26
Food Sales – Convenience Store	1.26
Food Sales – Gas Station Convenience Store	1.26
Food Service - Full Service	1.01
Food Service - Fast Food	0.90
Health Care - Inpatient	1.05
Health Care - Outpatient	0.90
Lodging – (Hotel, Motel and Dormitory)	0.87
Mercantile (Mall)	1.26
Mercantile (Retail, not mall)	1.26
Office – Small (<40,000 sq ft)	0.82
Office − Large (≥40,000 sq ft)	0.82
Other	1.17
Public Assembly	1.01
Public Order and Safety (Police and Fire Station)	0.87
Religious Worship	1.00
Service (Beauty, Auto Repair Workshop)	1.19
Warehouse and Storage	0.66

1.1.1.4 Default Savings

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

1.1.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 1-5.

Table 1-5. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program Name	Value	Units	Source(s)	
	Non-Residential Multifamily Program, DSM Phase VIII		years	Maryland/Mid-Atlantic TRM v10, p.	
VIII	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	15.00		219	
VII	Non-Residential Lighting Systems and Controls Program, DSM Phase VII	10.59	years	Program design assumptions (weighted average of measure lives	
v	Non-Residential Small Business Improvement Program, DSM Phase V	14.00	years	of all measures offered by program and their planned uptake)	

1.1.1.6 Source(s)

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 215–221, 241-243, 253-255, 271-272, 415-416, and 419-421, and the IECC 2015 Section C405.4.2.

1.1.1.7 Update Summary

Updates made to this section are described in Table 1-6. Summary of Update(s).

Version	Update Type	Description
	Source	Updated page numbers / version of the Maryland/Mid-Atlantic TRM v10 $$
2021	Input Table	Updated CF, HOU values
2021	Equation	Added coincident winter peak demand reduction equation
	New table	Effective Useful Life (EUL) by program
2020	None	No change
v10	New Measure	New section

Table 1-6. Summary of Update(s)

1.1.2 Occupancy Sensors and Daylight Controls

1.1.2.1 Measure Description

This measure defines the savings associated with installing at wall-, fixture-, or remote-mounted occupancy sensors that switch lights off or dim them after a brief delay when no occupants are detected or daylight conditions are sufficient. The baseline condition is lighting that is controlled with a manual switch.

This measure is offered through different programs listed in Table 1-7 and uses the impacts estimation approach described in this section.

Jun 15 2022

Page 6

Table 1-7. Programs that Offer this Measure

Program Name	Section
Non-Residential Lighting Systems and Controls Program, DSM Phase VII	Section 1.1.2
Non-Residential Small Business Improvement Program, DSM Phase V	Section 4.2.2 (points to Section 1.1.2)
Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	Section 9.4.2 (points to Section 1.1.2)
Non-Residential Multifamily Program, DSM Phase VIII	Section 11.4.3 (points to Section 1.1.2)

1.1.2.2 **Impacts Estimation Approach**

Per measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = watts_{connected} \times \frac{1 \ kW}{1,000 \ W} \times HOU \times ESF_e \times ISR \times WHF_e$$

Per measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = watts_{connected} \times \frac{1 \ kW}{1,000 \ W} \times ESF_d \times ISR \times WHF_{d,summer} \times CF_{summer}$$

Per measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = watts_{connected} \times \frac{1 \ kW}{1,000 \ W} \times ESF_d \times ISR \times WHF_{d,winter} \times CF_{winter}$$

Where:

ΔkWh = per measure gross annual electric energy savings
ΔkW_{summer} = per measure gross coincident summer peak demand reduction
ΔkW _{winter} = per measure gross coincident winter peak demand reduction
watts _{connected} = connected load on lighting sensor/control
HOU = hours of use per year
ESF _e = percentage of annual lighting energy saved by lighting control
ESF _d = percentage of lighting demand saved by lighting control
WHF _e = waste heat factor for energy to account for cooling savings from efficient lighting
WHF _{d,summer} = waste heat factor for demand to account for cooling savings from efficient lighting
WHF _{d,winter} = waste heat factor for demand to account for cooling savings from efficient lighting
CF _{summer} = summer coincidence factor
CF _{winter} = winter coincidence factor
ISR = in-service rate represents the proportion of rebated measures installed

1.1.2.3 Input Variables

Table 1-8. Input Values for Occ	upancy Sensors and (Controls Measure Savings
	Jupanoy concoro ana	Controlo mododro Curingo

Component	Туре	Value	Unit	Source(s)
wattsconnected	Variable	See customer application	watt	Customer application
НОИ	Variable	See Table 13-15 in Sub-Appendix F2-IV: Non- Residential Lighting Factors: Annual Equivalent Hours, Coincidence Factors and Waste Heat Factors	hours/ year	Maryland/Mid-Atlantic TRM v10, p. 222
ESFe	Fixed	0.28	-	Maryland/Mid-Atlantic TRM v10, pp. 222 and 225
ESFd	Variable	Occupancy sensor = 0.14 Daylight control = 0.28	-	Maryland/Mid-Atlantic TRM v10, pp. 223 and 225
CFsummer	Fixed	See Table 13-15 in Sub-Appendix F2-IV: Non- Residential Lighting Factors: Annual Equivalent Hours, Coincidence Factors and Waste Heat Factors	-	Maryland/Mid-Atlantic TRM v10, p. 223
CF _{winter}	Fixed	See Table 13-15 in Sub-Appendix F2-IV: Non- Residential Lighting Factors: Annual Equivalent Hours, Coincidence Factors and Waste Heat Factors	-	Maryland/Mid-Atlantic TRM v10, p. 223
WHF₀	Variable	See Table 13-15 in Sub-Appendix F2-IV: Non- Residential Lighting Factors: Annual Equivalent Hours, Coincidence Factors and Waste Heat Factors	-	Maryland/Mid-Atlantic TRM v10, pp. 419-421
		Default: 0.94		Assumes "Small Office" building type
WHF d,summer	Variable	See Table 13-15 in Sub-Appendix F2-IV: Non- Residential Lighting Factors: Annual Equivalent Hours, Coincidence Factors and Waste Heat Factors	-	Maryland/Mid-Atlantic TRM v10, pp. 419-421
		Default: 1.35		Assumes "Other" building type
WHF d,winter	Variable	See Table 13-15 in Sub-Appendix F2-IV: Non- Residential Lighting Factors: Annual Equivalent Hours, Coincidence Factors and Waste Heat Factors	-	Maryland/Mid-Atlantic TRM v10, pp. 419-421
		Default: 0.740		Assumes "Other" building type
ISR	Fixed	1.00	-	Maryland/Mid-Atlantic TRM v10, p. 223

1.1.2.4 Default Savings

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

1.1.2.5 Effective Useful Life

The effective useful life of this measure is provided in Table 1-9.

Table 1-9. Effective Useful Life for Lifect	vcle Savings Calculations
Table I di Elledare declai Elle ici Elled	yolo outlingo outoulutiono

DSM Phase	M Phase Program Name		Units	Source(s)	
VIII	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	10.00	years	Maryland/Mid-Atlantic TRM v10, p. 224	
	Non-Residential Multifamily Program, DSM Phase VIII			224	
v	Non-Residential Small Business Improvement Program, DSM Phase V	14.00	Vooro	Program design assumptions (weighted average of measure lives	
VII	Non-Residential Lighting Systems and Controls Program, DSM Phase VII	10.59	years	of all measures offered by program and their planned uptake)	

1.1.2.6 Source(s)

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 222-224, 225 – 227 and 419-421.

1.1.2.7 Update Summary

Updates made to this section are described in Table 1-10.

Table 1	-10.	Summary	of	Update(s)
---------	------	---------	----	-----------

Version	Update Type	Description	
	Source	Updated page numbers/version of the Maryland/Mid-Atlantic TRM v10	
Inputs Added daylight control inputs		Added daylight control inputs	
2021	Equation	Added coincident winter peak demand reduction equation	
	New table	Effective Useful Life (EUL) by program	
2020	None	No change	
v10	New Measure	New section	

1.1.3 Occupancy Sensors and Controls – Stairwell Integrated

1.1.3.1 Measure Description

This measure defines the savings associated with installing controls on existing features or installation of luminaires with integrated bi-level occupancy control in stairwells. The bi-level occupancy control technology allows for continuous lighting that maintains the code-mandated minimum illumination levels in stairwells when unoccupied

while also providing higher light levels when occupied. The baseline condition is interior-space lighting that provides continuous operation at high light levels, regardless of occupancy.

1.1.3.2 Impacts Estimation Approach

Gross annual electric energy savings are coincident demand reduction is calculated according to the following equation:

$$\Delta kWh = \left[\frac{Qty_{base} \times watts_{base}}{1,000 W/kW} - \left(\frac{Qty_{ee} \times watts_{ee}}{1,000 W/kW} \times (1 - ESF)\right)\right] \times HOU$$
$$ESF = F_{low} \times \left(1 - \frac{watts_{ee,low}}{watts_{ee}}\right)$$

Gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \left(\frac{Qty_{base} \times watts_{base} - Qty_{ee} \times watts_{ee}}{1,000 W/kW}\right) \times CF_{summer}$$

Gross coincident winter peak demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \left(\frac{Qty_{base} \times watts_{base} - Qty_{ee} \times watts_{ee}}{1,000 W/kW}\right) \times CF_{winter}$$

Where:

1.1.3.3 Input Variables

Component	Туре	Value	Unit	Source(s)
Qty _{base}	Variable	See customer application	-	Customer application
Qtyee	Variable	See customer application	-	Customer application
watts _{base}	Variable	See customer application	watts	Customer application
watts _{ee,low}	Variable	See customer application	watts	Customer application
wattsee	Variable	See customer application	watts	Customer application
Flow	Fixed	0.73	-	New York TRM 2019, p. 445
HOU	Fixed	8,760	hours/year	New York TRM 2019, p. 444
CF _{summer}	Fixed	1.00	-	New York TRM 2019, p. 444
CF _{winter}	Fixed	1.00	-	New York TRM 2019, p. 444 ⁶

Table 1-11. Input Values for Occupancy Sensors and Controls-Stairwell Integrated Measure

1.1.3.4 Default Savings

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

1.1.3.5 Effective Useful Life

The effective useful life of this measure is provided in Table 1-12.

Table 1-12. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program Name	Value	Units	Source(s)
VII	Non-Residential Lighting Systems and Controls Program, DSM Phase VII	10.59	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

1.1.3.6 Source(s)

The primary source for this deemed savings approach is the New York TRM 7, 2019, pp. 443-445.

1.1.3.7 Update Summary

Updates made to this section are described in Table 1-13.

⁶ The source TRM doesn't differentiate between winter and summer peak periods. Therefore, the summer CF is also applied to winter peak periods.

Table 1-13. Summary of Update(s)

Version	Update Type	Description		
	None	No change		
2021 Equation Added coincident winter pea		Added coincident winter peak demand reduction equation		
	New table	Effective Useful Life (EUL) by program		
2020	Equation	Modified the Δk Wh savings equation to incorporate the ESF and associated equation. This makes the calculation clearer and aligns with the reference TRM but does not change the result.		
v10	New Measure	New section		

1.1.4 Reach-In Unit Occupancy Sensor

1.1.4.1 Measure Description

This measure realizes energy savings by adding occupancy sensors to reach-in refrigerated case lighting. Occupancy sensors reduce energy usage by turning off lights when customers are not present. Savings and assumptions are based on the lighting load controlled by each occupancy sensor. The baseline condition is reach-in refrigerated case lighting that is controlled with a manual switch.

1.1.4.2 Impacts Estimation Approach

Per measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = Qty_{sensor} \times watts_{connected} \times \frac{1 \ kW}{1,000 \ W} \times HOU \times ESF_e \times ISR \times WHF_e$$

Per measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = Qty_{sensor} \times watts_{connected} \times \frac{1 \ kW}{1,000 \ W} \times ESF_d \times ISR \times WHF_{d,summer} \times CF_{summer}$$

Per measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = Qty_{sensor} \times watts_{connected} \times \frac{1 \ kW}{1,000 \ W} \times ESF_d \times ISR \times WHF_{d,winter} \times CF_{winter}$$

Where:

 $\begin{array}{ll} \Delta k Wh & = \mbox{ per measure gross annual electric energy savings} \\ \Delta k W_{\mbox{summer}} & = \mbox{ per measure gross summer peak coincident demand reduction} \\ \Delta k W_{\mbox{winter}} & = \mbox{ per measure gross winter peak coincident demand reduction} \end{array}$

Qtysensor

watts_{connected} = connected lighting load controlled by occupancy sensor = percentage of annual lighting energy saved by lighting control ESF_e ESF_d = percentage of lighting demand saved by lighting control WHF_{e} = Waste Heat Factor for Energy; represents the increased savings due to reduced waste heat from lights that must be rejected by the refrigeration equipment WHF_{d,summer} = Waste Heat Factor for Demand; represents the increased savings due to reduced waste heat from lights that must be rejected by the refrigeration equipment WHFd,winter = Waste Heat Factor for Demand; represents the increased savings due to reduced waste heat from lights that must be rejected by the refrigeration equipment HOU = hours of use per year CF_{summer} = summer peak coincidence factor

CF_{winter} = winter peak coincidence factor ISR = in-service rate is the percentage of rebated measures actually installed

= number of occupancy sensors installed

1.1.4.3 Input Variables

Table 1-14. Input Values for Reach-In Unit Occupancy Sensors Savings Calculations

Component	Туре	Value	Unit	Source(s)
		See customer application		Customer application
watts	Variable	Default = 38	watts	Same default as from LED case lighting measure watts for 5-foot lamp
Qtysensors	Variable	See customer application	-	Customer application
ESFe	Fixed	0.31	-	Efficiency Maine Commercial TRM 2019, Appendix D, Table 40 ⁷ , p. 173
ESFd	Fixed	0.14	-	Maryland/Mid-Atlantic TRM v10, p. 223
HOU	Variable	See Table 13-15 in Sub-Appendix F2-IV: Non- Residential Lighting Factors: Annual Equivalent Hours, Coincidence Factors and Waste Heat Factors	hours, annual	Maryland/Mid-Atlantic TRM v10, p. 222 ⁸
ISR	Fixed	1.00	-	Maryland/Mid-Atlantic TRM v10, p. 222
WHF₀	Fixed	Low Temp (-35°F1°F): 1.52 Med Temp (0°F - 30°F): 1.52 High Temp (31°F - 55°F): 1.41	-	Maryland/Mid-Atlantic TRM v10, p. 269

⁷ Maine TRM refers to "US DOE, "Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case Lighting." Refrigerated cases were metered for 12 days to determine savings from occupancy sensors. Assumes that refrigerated freezers and refrigerated coolers will see the same amount of savings from sensors. The nature of the savings is not explained. Showcase controls often keep a fixed number of lights on to reduce the "dark aisle" conditions. It is assumed that this value accounts for both reduction in operating hours and incremental reduction in power.

⁸ No default HOU was provided in the Maine TRM 2016.2. It refers to data collected from the application. Since this manual does not use customer application HOU data, a default was assigned using annual hours from the Maryland/Mid-Atlantic TRM v10.

Component	Туре	Value	Unit	Source(s)
WHF _{d, summer}	Fixed	Low Temp (-35°F1°F): 1.51 Med Temp (0°F - 30°F): 1.51 High Temp (31°F - 55°F): 1.40	-	Maryland/Mid-Atlantic TRM v10, p. 270
WHFd, winter	Fixed	Low Temp (-35°F1°F): 1.51 Med Temp (0°F - 30°F): 1.51 High Temp (31°F - 55°F): 1.40	-	Maryland/Mid-Atlantic TRM v10, p. 270 ⁹
CFsummer	Fixed	0.96	-	Maryland/Mid-Atlantic TRM v10, p. 270 ¹⁰
CFwinter	Fixed	0.96	-	Maryland/Mid-Atlantic TRM v10, p. 270 ¹¹

1.1.4.4 Default Savings

If the proper values are not supplied, a default savings may be applied using conservative input values.

The default per measure gross annual electric energy savings will be assigned according to the following calculations:

$$\Delta kWh = Qty_{sensor} \times \frac{watts}{1,000\frac{W}{kW}} \times HOU \times ESF_e \times ISR \times WHF_e$$

$$= 1 \times \frac{38 W}{1,000 \frac{W}{kW}} \times 7,272 \ hours \ \times 0.31 \times 1.00 \times 1.41$$

$$= 121 \, kWh$$

The default per measure gross summer peak coincident demand reduction will be assigned according to the following calculations:

$$\Delta kW_{summer} = Qty_{sensor} \times \frac{watts}{1,000\frac{W}{kW}} \times ESF_d \times ISR \times WHF_{d,summer} \times CF_{summer}$$

⁹ The source TRM doesn't differentiate between winter and summer WHFs. Therefore, the summer WHF is applied to the winter WHF.

¹⁰ Value for "grocery" building type from Mid-Atlantic TRM v.9, p. 270 footnote 579 "EmPOWER Maryland DRAFT Final Impact Evaluation Report Evaluation Year 4 (June 1, 2012 – May 31, 2013) Commercial & Industrial Prescriptive & Small Business Programs, Navigant, March 31, 2014."

¹¹ The source TRM doesn't differentiate between winter and summer peak periods. Therefore, the summer CF is applied to the winter CF.

DNV
=
$$1 \times \frac{38 W}{1,000 \frac{W}{kW}} \times 0.14 \times 1.00 \times 1.40 \times 0.96$$

= $0.007 \ kW$

The default per measure gross winter peak coincident demand reduction will be assigned according to the following calculations:

$$\Delta kW_{winter} = Qty_{sensor} \times \frac{watts}{1,000\frac{W}{kW}} \times ESF_d \times ISR \times WHF_{d,winter} \times CF_{winter}$$

$$= 1 \times \frac{38 W}{1,000 \frac{W}{kW}} \times 0.14 \times 1.00 \times 1.40 \times 0.96$$

$$= 0.007 \ kW$$

1.1.4.5 Effective Useful Life

The effective useful life of this measure is provided in Table 1-15.

Table 1-15. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program Name	Value	Units	Source(s)
VII	Non-Residential Lighting Systems and Controls Program, DSM Phase VII	10.59	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

1.1.4.6 Source(s)

The primary sources for this deemed savings approach are the Efficiency Maine TRM 2019, p. 173, and Maryland/Mid-Atlantic TRM v10, pp. 222-224 and 269-270.

1.1.4.7 Update Summary

Updates made to this section are described in Table 1-16.

Table 1-16. Summary of Update(s)

Version Update Type		Description		
2021	Source	Updated page numbers / version of the Maryland/Mid-Atlantic TRM v10		

Version	Update Type	Description
New table Effective Useful Life (EUL) by program		Effective Useful Life (EUL) by program
Equation A		Added gross winter peak demand reduction equation
2020	None	No change
v10	New Measure	New section

2 NON-RESIDENTIAL HEATING AND COOLING EFFICIENCY PROGRAM, DSM PHASE VII

The Non-Residential Heating and Cooling Efficiency program is offered in Virginia beginning July 1, 2019 and approved in North Carolina on November 13, 2019. The program provides incentives to non-residential customers to implement new and upgrade existing HVAC equipment to more efficient HVAC technologies.

Many types of HVAC systems are eligible as shown in Table 2-1.

Table 2-1. Non-Residential Heating	and Cooling Efficiency	Program Measure List (DSM VII)	
	g and ocoming Emerciney		,

End Use	ind Use Measure	
	Unitary/Split Air Conditioning (AC) & Heat Pump (HP) Systems	Section 2.1.1
	Variable Refrigerant Flow (VRF) & Mini-split Systems	Section 2.1.2
HVAC	Water- and Air-cooled Chillers	Section 2.1.3
	Variable Frequency Drive	Section 2.1.4
	Dual Enthalpy Air-side Economizer	Section 2.1.5

The algorithms to calculate heating, cooling, and demand reduction for each of these measures are described in this section.

2.1 Heating, Ventilation, and Air-Conditioning (HVAC) End Use

2.1.1 Unitary/Split Air Conditioning (AC) & Heat Pump (HP) Systems VAC Upgrade

2.1.1.1 Measure Description

This measure relates to the installation of new high-efficiency unitary/split HVAC units and heat pumps, variablerefrigerant flow (VRF), and mini-split units in place of standard efficiency unitary/split HVAC units. For the standard (baseline) efficiencies, refer to Table 13-8 and Table 13-9 in Sub-Appendix F2-III: Non-Residential HVAC Equipment Efficiency Ratings. The measure efficiencies are based on the installed unit's efficiency provided by the application. The measure savings include both heating and cooling electric energy savings.

This measure is offered through the various programs listed in Table 2-2 and uses the impacts estimation approach described in this section. (Not all programs offer all of the listed HVAC equipment types.)

Program Name	Section
Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII	Section 2.1.1
Non-Residential Small Business Improvement Program, DSM Phase V	Section 4.1.4
Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	Section 9.3.4
Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII	Section 10.2.1

Table 2-2. Programs that	t Offer this Measure
--------------------------	----------------------

Program Name	Section
Non-Residential Multifamily Program, DSM Phase VIII	Section 11.3.1

2.1.1.2 Impacts Estimation Approach

Algorithms and inputs to calculate heating, cooling savings, and demand reduction for unitary/split HVAC, package terminal AC, packaged terminal heat pump, variable refrigerant flow and mini-split systems are provided below. Gross annual electric energy savings and gross coincident demand reduction are calculated according to the equations following this section.

Cooling Energy Savings:

For heat pumps, and AC units <65,000 Btu/h, per measure, gross annual electric cooling energy savings are calculated according to the following equation:

$$\Delta kWh_{cool} = Size_{cool} \times \left[\frac{1}{SEER_{base}} - \frac{1}{SEER_{ee}}\right] \times EFLH_{cool} \times \frac{1 \ kBtuh}{1,000 \ Btuh}$$

For heat pumps and AC units ≥65,000 Btu/h, per measure, gross annual electric cooling energy savings are calculated according to the following equation:

$$\Delta kWh_{cool} = Size_{cool} \times \left[\frac{1}{IEER_{base}} - \frac{1}{IEER_{ee}}\right] \times EFLH_{cool} \times \frac{1 \ kBtuh}{1,000 \ Btuh}$$

For package terminal AC and HP units of all sizes, per measure, gross annual electric cooling energy savings are calculated according to the following equation:

$$\Delta kWh_{cool} = Size_{cool} \times \left[\frac{1}{EER_{base}} - \frac{1}{EER_{ee}}\right] \times EFLH_{cool} \times \frac{1 \ kBtuh}{1,000 \ Btuh}$$

Heating Energy Savings:

For heat pumps <65,000 Btu/h, per measure gross annual electric heating energy savings are calculated according to the following equation:

$$\Delta kWh_{heat} = Size_{heat} \times \left[\frac{1}{HSPF_{base}} - \frac{1}{HSPF_{ee}}\right] \times EFLH_{heat} \times \frac{1 \, kBtuh}{1,000 \, Btuh}$$

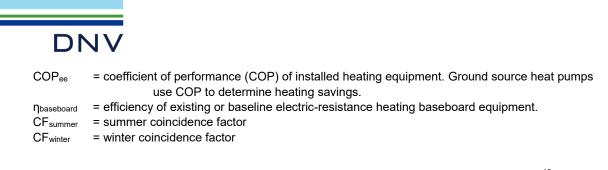
For heat pumps ≥65,000 Btu/h, and water-source heat pumps of all sizes, and package terminal HP units of all sizes, per measure gross annual electric heating energy savings are calculated according to the following equation:

$$\Delta kWh_{heat} = Size_{heat} \times \left[\frac{1}{COP}_{base} - \frac{1}{COP}_{ee}\right] \times EFLH_{heat} \times \frac{1W}{3.412Btuh} \times \frac{1kBtuh}{1,000Btuh}$$

Heating and cooling energy savings are added to calculate the per measure, gross annual electric energy savings as shown:

$$\Delta kWh = \Delta kWh_{cool} + \Delta kWh_{heat}$$

The per measure, gross coincident summer peak demand reduction is calculated according to the following equation:


$$\Delta kW_{summer} = Size_{cool} \times \left[\frac{1}{EER_{base}} - \frac{1}{EER_{ee}}\right] \times CF_{summer} \times \frac{1 \ kBtuh}{1,000 \ Btuh}$$

The per measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \frac{\Delta kWh_{heat}}{EFLH_{heat}} \times CF_{winter}$$

Where:

ΔkWh	= per measure gross annual electric energy savings
∆kWh _{cool}	= per measure gross annual electric cooling energy savings
ΔkWh_{heat}	= per measure gross annual electric heating energy savings
∆kW _{summer}	= per measure gross coincident summer peak demand reduction
ΔkW_{winter}	= per measure gross coincident winter peak demand reduction
$\Delta k W_{winter}$	= per measure gross summer peak coincident demand reduction
Sizecool	= equipment cooling capacity of installed unit
Size _{heat}	= equipment heating capacity of installed unit
SEER _{base}	= seasonal energy efficiency ratio (SEER) of the existing or baseline air conditioning equipment.
	It is used for heat pumps and AC units that are smaller than 65,000 Btu/h.
SEERee	= seasonal energy efficiency ratio (SEER) of the installed air conditioning equipment. It is used
	for heat pumps and AC units that are smaller than 65,000 Btu/h.
IEER _{base}	= integrated energy efficiency ratio (IEER) of the existing or baseline air conditioning equipment.
	IEER is a weighted average of a unit's efficiency at four load points: 100%, 75%,
	50%, and 25% of full cooling capacity. It is used for heat pumps and AC units that are
	65,000 Btu/h or larger.
IEERee	= integrated energy efficiency ratio (IEER) of the installed air conditioning equipment. IEER is a
	weighted average of a unit's efficiency at four load points: 100%, 75%, 50%, and 25%
	of full cooling capacity. It is used for heat pumps and AC units that are 65,000 Btu/h
	or larger.
	= equivalent full-load cooling hours
EFLH _{heat}	= equivalent full-load heating hours
EER _{base}	= energy efficiency ratio (EER) of existing or baseline air conditioning equipment. EER is used to
	analyze demand performance of heat pumps and AC units.
EERee	= energy efficiency ratio (EER) of installed air conditioning equipment. EER is used to analyze
	performance of heat pumps and AC units.
HSPFbase	= heating seasonal performance factor (HSPF) of existing or baseline heat pump. HSPF is used
	in heating savings for air source heat pumps.
HSPFee	= heating seasonal performance factor (HSPF) of installed heat pump. HSPF is used in heating
000	savings for air source heat pumps.
COP _{base}	= coefficient of performance (COP) of existing or baseline heating equipment. Ground source
	heat pumps use COP to determine heating savings.

For ground-source heat pumps, the baseline efficiency is assumed to be that of an air-source heat pump.¹² See Equation 1 and Equation 2 in Sub-Appendix F2-VIII: General Equations to convert between tons and Btu/h or kBtu/h, or vice versa.

In the event of a missing efficiency metric from an application, the equations provided in Sub-Appendix F2-VIII: General Equations may be used to estimate the missing efficiency using another application-provided efficiency metric.

2.1.1.3 Input Variables

Component	Туре	Value	Units	Source(s)
Size _{cool}	Variable	See customer application	Btu/h	Customer application
Sizeheat	Variable	See customer application ¹³ Default = Sizecool	Btu/h	Customer application
EFLH _{heat}	Variable	See Table 13-5 in Sub-Appendix F2-II: Non-Residential HVAC Equivalent Full Load Hours	hours, annual	Maryland/Mid-Atlantic TRM v10, p. 423
EFLH _{cool}	Variable	See Table 13-4 in Sub-Appendix F2-II: Non-Residential HVAC Equivalent Full Load Hours	hours, annual	Maryland/Mid-Atlantic TRM v10, p. 422
HSPF/SEER/ IEER/EER/ COP _{base}	Variable	See Table 13-8 and Table 13-9 in Sub-Appendix F2-III: Non-Residential HVAC Equipment Efficiency Ratings. If required efficiency value is not available, refer to Sub-Appendix F2- VIII: General Equations to convert the available efficiency value to the required efficiency value.	kBtu/k W-hour (except COP is dimens ion- less)	ASHRAE 90.1 2013, Table 6.8.1-1
HSPF/SEER/ IEER/EER/COPee	Variable	See customer application If required efficiency value is not available, refer to Sub-Appendix F2- VIII: General Equations to convert the available efficiency value to the required efficiency value.	kBtu/k W-hour (except COP is dimens ion- less)	Customer application

Table 2-3. Input Values for Non-Residential HVAC Equipment

¹² Although ASHRAE values reflect the Building Code minimum, savings are calculated using the efficiencies provided in Sub-Appendix F2-III: Non-Residential HVAC Equipment Efficiency Ratings. This is due to the Mid-Atlantic TRM 2020 assumption that the baseline technology—for residential ground source heat pump applications—is an air-cooled heat pump. (There is no corresponding commercial measure in the Mid-Atlantic TRM 2020.)

¹³ When customer-provided heating system size is <80% or >156% of customer-provided cooling system size, a default value will be used, instead. In such instances, it is assumed that the heating system size was incorrectly documented. The acceptable range is based on a review of the AHRI database across numerous manufacturers and heat pump types.

Component	Туре	Value	Units	Source(s)
CF _{summer}	Variable	Where baseline and installed system capacities differ, use installed system capacity to assign CF. Otherwise, use baseline system capacity to assign CF: < 135 kBtu/h = 0.588 ≥ 135 kBtu/h = 0.874	-	Maryland/Mid-Atlantic TRM v10, p. 291
CFwinter	Variable	Where baseline and installed system capacities differ, use installed system capacity to assign CF. Otherwise, use baseline system capacity to assign CF: < 135 kBtu/h = 0.588 < 135 kBtu/h = 0.874	-	Maryland/Mid-Atlantic TRM v10, p. 291 ¹⁴

2.1.1.4 Default Savings

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

2.1.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 2-4.

Table 2-4. Effective Useful Life for Lifect	vole Savings Calculations
Table 2-4. Effective Oberai Effective	ycie oavings oaiculations

DSM Phase	Program Name	Value	Units	Source(s)	
	Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII	15.00	years		
VIII	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII			Maryland/Mid-Atlantic TRM v10, p. 291	
	Non-Residential Multifamily Program, DSM Phase VIII				
	Non-Residential Small Business Improvement Program, DSM Phase V				
VII	Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII	15.00	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)	

OFFICIAL COPY

 $^{^{14}}$ The source TRM does not provide a winter CF. Therefore, the summer CF is applied to the winter CF.

2.1.1.6 Source(s)

The primary sources for this deemed savings approach are the ENERGY STAR[®] Air Source Heat Pump Calculator (2002 EPA), Maryland/Mid-Atlantic TRM v10, pp. 283-291 and 422-423, and ASHRAE 90.1 2013.

2.1.1.7 Update Summary

Updates made to this section are described in Table 2-5.

Version	Update Type	Description		
	Source	Updated page numbers / version of the Maryland/Mid-Atlantic TRM v10		
2021	Equation	Added coincident winter peak demand reduction equation		
	New table	Effective Useful Life (EUL) by program		
2020	Added size condition of <65,000 Btu/h and ≥65,000 Btu/h for determining which equation to use for ground-source heat pumps. Previously all ground-source heat pumps used equations with IEER and COP.			
	Source	Updated page numbers / version of the Mid-Atlantic TRM v.9		
v10	Input Variable	 Update to weather stations in North Carolina resulted in revised EFLHs for weather-sensitive measures Baseline efficiency levels were revised per update to ASHRAE 2013 in VA and NC 		

Table 2-5. Summary of Update(s)

2.1.2 Variable Refrigerant Flow Systems and Mini-Split Systems

2.1.2.1 Measure Description

This measure relates to installation of new high efficiency variable refrigerant flow (VRF) and new mini-split systems in place of standard efficiency air conditioners or heat pumps. For baseline VRF air conditioner, and heat pump efficiencies refer to Table 13-10 in Sub-Appendix F2-III: Non-Residential HVAC Equipment Efficiency Ratings The measure efficiency is based on the installed unit's efficiency. The measure approved savings applies only to the air cooled VRF AC, and air cooled VRF HP. Water source or ground source units are not included.

This measure is offered through different programs listed in Table 2-6, and uses the impacts estimation approach described in this section.

Table 2-6. Programs that Contain this Measure

Program Name	Section
Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII	Section 2.1.2
Non-Residential Small Business Improvement Program, DSM Phase V	Section 4.1.5

2.1.2.2 Impacts Estimation Approach

Algorithms and inputs to calculate heating, cooling, and gross coincident savings for variable refrigerant flow (VRF) systems and mini split systems are provided in this section. Gross annual electric energy savings and gross coincident demand reduction are calculated according to the equations following this section.

Cooling Energy Savings:

For VRF systems and mini-split systems <65,000 Btu/h, per measure, gross annual electric cooling energy savings are calculated according to the following equation:

$$\Delta kWh_{cool} = Size_{cool} \times \left[\frac{1}{SEER_{base}} - \frac{1}{SEER_{ee}}\right] \times EFLH_{cool} \times \frac{1 \ kBtuh}{1,000 \ Btuh}$$

For VRF systems ≥65,000 Btu/h, per measure gross annual electric cooling energy savings are calculated according to the following equation:

$$\Delta kWh_{cool} = Size_{cool} \times \left[\frac{1}{IEER_{base}} - \frac{1}{IEER_{ee}}\right] \times EFLH_{cool} \times \frac{1 \ kBtuh}{1,000 \ Btuh}$$

Heating Energy Savings:

For VRF and mini-split heat pump systems <65,000 Btu/h, per measure gross annual electric heating energy savings are calculated according to the following equation:

$$\Delta kWh_{heat} = Size_{heat} \times \left[\frac{1}{HSPF_{base}} - \frac{1}{HSPF_{ee}}\right] \times EFLH_{heat} \times \frac{1 \, kBtuh}{1,000 \, Btuh}$$

For VRF and mini-split heat pump systems ≥65,000 Btu/h, per measure gross annual electric heating energy savings are calculated according to the following equation:

$$\Delta kWh_{heat} = Size_{heat} \times \left[\frac{1}{COP}_{base} - \frac{1}{COP}_{ee}\right] \times EFLH_{heat} \times \frac{1 \ kW}{3,412 \ Btuh}$$

Heating and cooling energy savings are added to calculate the per measure gross annual electric energy savings:

$$\Delta kWh = \Delta kWh_{cool} + \Delta kWh_{heat}$$

The per measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = Size_{cool} \times \left[\frac{1}{EER_{base}} - \frac{1}{EER_{ee}}\right] \times CF_{summer} \times \frac{1 \ kBtuh}{1,000 \ Btuh}$$

The per measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \frac{\Delta kWh_{heat}}{EFLH_{heat}} \times CF_{winter}$$

Where:

∆kWh	= per measure gross annual electric energy savings
∆kWh _{cool}	= per measure gross annual electric cooling energy savings for mini split heat pump systems
∆kWh _{heat}	= per measure gross annual electric heating energy savings for mini split heat pump systems
∆kW _{summer}	= per measure gross coincident summer peak demand reduction
∆kW _{winter}	= per measure gross coincident winter peak demand reduction
Size _{cool}	= equipment cooling capacity of installed unit
Size _{heat}	= equipment heating capacity of installed unit
SEER _{base}	= seasonal energy efficiency ratio (SEER) of the existing or baseline equipment. SEER is used for units that are smaller than 65,000 Btu/h.
SEERee	= seasonal energy efficiency ratio (SEER) of the installed equipment. SEER is used for units that are smaller than 65,000 Btu/h.
IEER _{base}	= integrated energy efficiency ratio (IEER) of existing or baseline equipment. IEER is a weighted average of a unit's efficiency at four load points: 100%, 75%, 50%, and 25% of full cooling capacity. It is used for heat pumps and AC units that are 65,000 Btu/h or larger.
IEERee	= integrated energy efficiency ratio (IEER) of installed equipment. IEER is a weighted average of a unit's efficiency at four load points: 100%, 75%, 50%, and 25% of full cooling capacity. It is used for heat pumps and AC units that are 65,000 Btu/h or larger.
EFLHcool	= equivalent full load cooling hours
EFLH _{heat}	= equivalent full load heating hours
EER _{base}	= energy efficiency ratio (EER) of existing or baseline equipment
EERee	= energy efficiency ratio (EER) of installed equipment
HSPF _{base}	= heating seasonal performance factor (HSPF) of existing or baseline system
HSPFee	= heating seasonal performance factor (HSPF) of installed equipment
COP _{base}	= coefficient of performance (COP) of existing or baseline heating equipment
COPee	= coefficient of performance (COP) of installed heating equipment
CF _{summer}	= summer coincidence factor
CF _{winter}	= winter coincidence factor

To convert between EER, SEER, and IEER, see equations in Sub-Appendix F2-VIII: General Equations.

2.1.2.3 Input Variables

Table 2-7. Input Values for VRF Systems and Mini Split Systems

Component	Туре	Value	Units	Source(s)
Size _{cool}	Variable	See customer application	Btu/h	Customer application
Size _{heat}	Variable	See customer application ¹⁵ Default = Size _{cool}	Btu/h	Customer application
EFLH _{heat}	Fixed	See Table 13-5 in Sub-Appendix F2-II: Non-Residential HVAC Equivalent Full Load Hours	hours, annual	Maryland/Mid-Atlantic TRM v10, p. 423

¹⁵ When customer-provided heating system size is <80% or >156% of customer-provided cooling system size, a default value will be used, instead. In such instances, it is assumed that the heating system size was incorrectly documented. The acceptable range is based on a review of the AHRI database across numerous manufacturers and heat pump types.

Component	Туре	Value	Units	Source(s)
EFLH _{cool}	Fixed	See Table 13-4 in Sub-Appendix F2-II: Non-Residential HVAC Equivalent Full Load Hours	hours, annual	Maryland/Mid-Atlantic TRM v10, p. 422
HSPF/SEER/ EER/COP/ IEER _{base}	Variable	See Table 13-10 in Sub-Appendix F2-III: Non-Residential HVAC Equipment Efficiency Ratings If required efficiency value is not available, refer to Sub-Appendix F2-VIII: General Equations to convert the available efficiency value to the required efficiency value.	kBtu/kW- hour (except COP is dimension- less)	ASHRAE 90.1 2013, Table 68.1-1
HSPF/SEER/	Variable	See customer application ¹⁶	kBtu/kW-	Customer application
EER/COP/ IEERee		If required efficiency value is not available, refer to Sub-Appendix F2-VIII: General Equations to convert the available efficiency value to the required efficiency value.	hour (except COP is dimension- less)	
CF _{summer}	Fixed	Where baseline and install system capacity vary, use install system capacity to assign CF. Otherwise, use baseline system capacity to assign CF. < 135 kBtu/h = 0.588 ≥ 135 kBtu/h = 0.874	-	Maryland/Mid-Atlantic TRM v10, p. 295
CFwinter	Variable	Where baseline and installed system capacities differ, use installed system capacity to assign CF. Otherwise, use baseline system capacity to assign CF: < 135 kBtu/h = 0.588 ≥ 135 kBtu/h = 0.874	-	Maryland/Mid-Atlantic TRM v10, p. 295 ¹⁷

2.1.2.4 Default Savings

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

2.1.2.5 Effective Useful Life

The effective useful life of this measure is provided in Table 2-8.

DSM Phase	Program Name	Value	Units	Source(s)
VII	Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII	15.00	years	Program design assumptions (weighted average of measure lives

¹⁶ When missing either the IPLV or the full load value, use Equation 4 in Sub-Appendix F2-VIII: General Equations, as relevant.

 $^{^{17}}$ The source TRM does not provide a winter CF. Therefore, the summer CF is applied to the winter CF.

DSM Phase	Program Name	Value	Units	Source(s)
V	Non-Residential Small Business Improvement Program, DSM Phase V	14.00		of all measures offered by program and their planned uptake)

2.1.2.6 Source(s)

The primary sources for this deemed savings approach are the Maryland/Mid-Atlantic TRM v10, pp. 292-295 and 422-423, and ASHRAE 90.1-2013.

2.1.2.7 Update Summary

Updates made to this section are described in Table 2-9.

Table	2-9.	Summary	of U	pdate(s)
IUNIO	~ ~.	Cannary		paaro	<u>~</u> ,

Version	Update Type	Description
	Source	Updated page numbers / version of the Maryland/Mid-Atlantic TRM
2021	Equation	Added coincident winter peak demand reduction equation
	New table	Effective Useful Life (EUL) by program
2020	Equation	Added size condition of <65,000 Btu/h and \geq 65,000 Btu/h for determining which equation to use for ground-source heat pumps. Previously all ground-source heat pumps used equations with IEER and COP.
	Source	Updated page numbers / version of the Maryland/Mid-Atlantic TRM
V10	Input Variable	 Update to weather stations in North Carolina resulted in revised EFLHs for weather-sensitive measures Baseline efficiency levels were revised per update to ASHRAE 2013 in VA and NC

2.1.3 Electric Chillers

2.1.3.1 Measure Description

This measure relates to the installation of a new high-efficiency electric water chilling package (either water- or aircooled types) in place of a standard efficiency electric water chilling package. For the baseline chiller efficiencies, refer to Table 13-11 of Sub-Appendix F2-III: Non-Residential HVAC Equipment Efficiency Ratings for the 2013 ASHRAE-90.1 specified minimum efficiencies. The installed chiller efficiency is taken from the customer application.

This measure is offered through different programs listed in Table 4-2 and uses the impacts estimation approach described in this section.

Table 2-10. Programs that Offer this Measure

Program Name	Section
Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII	Section 2.1.3

2.1.3.2 Impacts Estimation Approach

Water-cooled Chillers

Per measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = Size_{ee} \times \left[\frac{kW}{ton_{base,IPLV}} - \frac{kW}{ton_{ee,IPLV}}\right] \times EFLH_{cool}$$

Per measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = Size_{ee} \times \left[\frac{kW}{ton_{base,full\,load}} - \frac{kW}{ton_{ee,full\,load}}\right] \times CF_{summer}$$

This measure does not have gross coincident winter peak demand reduction.

Air-cooled Chillers

Per measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = Size_{ee} \times \left[\frac{12 \, kBtuh/ton}{EER_{base,IPLV}} - \frac{12 \, kBtuh/ton}{EER_{ee,IPLV}}\right] \times EFLH_{cool}$$

Per measure, gross coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = Size_{ee} \times \left[\frac{12 \, kBtuh/ton}{EER_{base,full \, load}} - \frac{12 \, kBtuh/ton}{EER_{ee,full \, load}}\right] \times CF_{summer}$$

This measure does not provide gross coincident winter peak demand reduction.

Where:

 ΔkWh
 = per measure gross annual electric energy savings

 ΔkW_{summer}
 = per measure gross coincident demand reduction

 Size_{ee}
 = cooling capacity of the installed chiller system

 EER_{base,IPLV}, kW/ton_{base,IPLV} = chiller system baseline efficiency at integrated part load value (IPLV), in

 kW/ton (for kW/ton_{base,IPLV}) assigned based on installed system capacity

 EER_{ee,IPLV}, kW/ton_{ee,IPLV} = chiller system installed efficiency at integrated part load value (IPLV)

 EFLH_{cool}
 = equivalent full load hours of cooling

 EER_{base,full load}, kW/ton_{base,full load} = chiller system baseline efficiency at full load

 EER_{ee,full load}, kW/ton_{base,full load} = chiller system installed efficiency at full load

 CF_{summer}
 = summer peak coincidence factor

Jun 15 2022

2.1.3.3 Input Variables

Table 2-11	. Input Values	for Non-Residential	Electric Chillers
------------	----------------	---------------------	--------------------------

Component	Туре	Value	Unit	Source(s)
Sizeee	Variable	See customer application	ton	Customer application
kW/ton _{base,full-load}	Fixed	See Table 13-11 of Sub- Appendix F2-III: Non-Residential HVAC Equipment Efficiency Ratings	kW/ton	ASHRAE 90.1 2013, Table 6.8.1-3
kW/ton _{base,IPLV}	Fixed	See Table 13-11 of Sub- Appendix F2-III: Non-Residential HVAC Equipment Efficiency Ratings	kW/ton	ASHRAE 90.1 2013, Table 6.8.1-3
kW/tonee,full-load	Variable	See customer application ¹⁸	kW/ton	Customer application
kW/ton _{ee,IPLV}	Variable	See customer application ¹⁸	kW/ton	Customer application
		See customer application ¹⁹		Customer Application
EER _{base,} full load	Variable	Default: See Table 13-11 of Sub- Appendix F2-III: Non-Residential HVAC Equipment Efficiency Ratings	kBtu/kW	ASHRAE 90.1-2013, Table 6.8.1-3
		See customer application ¹⁹		Customer Application
EER _{base} , IPLV	Variable	Default: See Table 13-11 Sub-Appendix F2-III: Non- Residential HVAC Equipment Efficiency Ratings	kBtu/kW	ASHRAE 90.1-2013, Table 6.8.1-3
EERee, full load	Variable	See customer application ¹⁹	kBtu/kW	Customer application
EERee, IPLV	Variable	See customer application ¹⁹	kBtu/kW	Customer application
EFLH _{cool}	Variable	See Table 13-4 in Sub-Appendix F2-II: Non-Residential HVAC Equivalent Full Load Hours	hours, annual	Maryland/Mid-Atlantic TRM v10, adjusted for ten locations in VA and NC, based on TMY3 cooling degree days data.
CF _{summer}	Fixed	0.923	-	Maryland/Mid-Atlantic TRM v10, p. 304

Note that some jurisdictions, such as New Jersey, provide a fixed estimate of full-load cooling hours, while others provide several estimates of cooling hours based on factors such as facility type, chiller type, chiller efficiency, or weather region. This TRM follows a similar approach as used in Mid Atlantic TRM in that the full load cooling hours of chillers are assigned by building type. As per Table 13-11 of Sub-Appendix F2-III: Non-Residential HVAC Equipment Efficiency Ratings, the water chilling efficiency requirement from ASHRAE 90.1-2010, presents two paths of compliance for water-cooled chillers. Path A is intended for those project sites where the chiller application is primarily operating at full-load conditions during its annual operating period. Path B is intended for those project sites where the chiller application is primarily operating at part-load conditions during its annual operating period.

¹⁸ When missing either the IPLV or the full load value, use Equation 8 in Sub-Appendix F2-VIII: General Equations, as relevant.

¹⁹ When missing either the IPLV or the full load value, use Equation 4 in Sub-Appendix F2-VIII: General Equations, as relevant.

Compliance with the code-specified minimum efficiency can be achieved by meeting the requirement of either Path A or Path B. However, both full-load and IPLV levels must be met to fulfill the requirements of Path A or Path B.

For applications in the Virginia and North Carolina regions, chillers are expected to operate primarily at full-load conditions for a significant portion of their operating period. Therefore, the Path A efficiency is used for the baseline.

2.1.3.4 Default Savings

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

2.1.3.5 Effective Useful Life

The effective useful life of this measure is provided in Table 2-12.

Table 2-12 Effective	Useful Life for Life	ecycle Savings Calculations
TADIE Z-12. LITECTIVE	OSCIULTIE IOL LIE	cycle Savings Calculations

DSM Phase	Program Name	Value	Units	Source(s)
VIII	Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII	23.00	years	Maryland/Mid-Atlantic v10, p. 304
VII	Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII	15.00	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

2.1.3.6 Source(s)

The primary sources for this deemed savings approach are the Maryland/Mid-Atlantic TRM v10, pp. 302-305 and 422 and ASHRAE 90.1-2013, Table 6.8.1-3 - Water Chilling Packages - Efficiency Requirements.

2.1.3.7 Update Summary

Updates made to this section are described in Table 2-13.

Table 2-13. Summary of Update(s)

Version	Update Type	Description
2021	Source	Updated page numbers / version of the Maryland/Mid-Atlantic TRM
2021	New table	Effective Useful Life (EUL) by program
2020	None	No change
	Source	Updated page numbers / version of the Maryland/Mid-Atlantic TRM
v10	Input Variable	 Update to weather stations in North Carolina resulted in revised EFLHs for weather-sensitive measures Baseline efficiency levels were revised per update to ASHRAE 2013 in VA and NC

2.1.4 Variable Frequency Drives

2.1.4.1 Measure Description

This measure defines savings that result from installing a variable frequency drive (VFD) control on a HVAC motor with application to supply fans, return fans, exhaust fans, cooling tower fans, chilled water pumps, condenser water pumps, and hot water pumps. The HVAC application must also have a variable load and proper controls in place: feedback control loops to fan/pump motors and variable air volume (VAV) boxes on air-handlers.

The algorithms and inputs to calculate energy and demand reduction for VFDs are provided below. The baseline equipment fan/pump type should be determined from the program application, if available. Otherwise, the minimum savings factors will be applied. For all known types, the energy savings calculations will include the following baseline applications:

HVAC Fans

- Airfoil / Backward-Inclined (AF / BI) Fan
- Airfoil / Backward-Inclined w/Inlet Guide Vanes (AF / BI IGV) Fan
- Forward Curved (FC) Fan
- Forward Curved w/Inlet Guide Vanes (FC IGV) Fan
- Unknown (Default)

HVAC Pumps

- Chilled Water Pump (CHW Pump)
- Condenser Water Pump (CW Pump)
- Hot Water Pump (HW Pump)
- Unknown (Default)

This measure is offered through different programs listed in Table 2-2, and uses the impacts estimation approach described in this section. However, the savings methodology is different for the Non-Residential Small Business Improvement program, described in Section 4.1.7.

Table 2-14: Programs that Offer this Measure

Program Name	Section
Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII	Section 2.1.4
Non-Residential Small Business Improvement Program, DSM Phase V	Section 4.1.7
Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	Section 9.3.4

2.1.4.2 Impacts Estimation Approach

Per measure, gross annual electric energy savings are calculated according to the following equations:

HVAC Fans:

$$\Delta kWh_{fan} = \frac{hp \ x \ 0.746 \ x \ LF}{\eta} \times HOU \times \Delta LR$$

$$\Delta LR = \sum_{0\%}^{100\%} FF \times (PLR_{base} - PLR_{ee})$$

HVAC Pumps:

$$\Delta kWh_{pump} = \frac{hp \ x \ 0.746 \ x \ LF}{\eta} \times \ HOU \times \ ESF$$

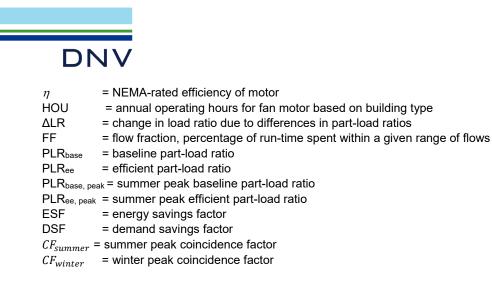
Per measure, gross coincident summer peak demand reduction is calculated according to the following equation: HVAC Fans:

$$\Delta k W_{fan,summer} = \frac{hp \ x \ 0.746 \ x \ LF}{\eta} \times \left(PLR_{base,peak} - PLR_{ee,peak} \right) = 0$$

HVAC Pumps:

$$\Delta k W_{pump,summer} = \frac{hp \ x \ 0.746 \ x \ LF}{\eta} \times \ CF_{summer} \times \ DSF$$

Per measure, gross coincident winter peak demand reduction is calculated according to the following equation: HVAC Fans:


$$\Delta k W_{fan,winter} = \frac{hp \ x \ 0.746 \ x \ LF}{\eta} \times \left(PLR_{base,peak} - PLR_{ee,peak} \right) = 0$$

HVAC Pumps:

$$\Delta kW_{pump,winter} = \frac{hp \ x \ 0.746 \ x \ LF}{\eta} \times \ CF_{winter} \times \ DSF$$

Where:

ΔkWh	= per measure gross annual electric energy savings
∆kW _{summer}	= per measure gross coincident summer peak demand reduction
ΔkW_{winter}	= per measure gross coincident winter peak demand reduction
hp	= motor horsepower
LF	= motor load factor (%) at fan design airflow rate or pump design flowrate

2.1.4.3 Input Variables

Component	Туре	Value	Unit	Source(s)
hp	Variable	See customer application	horsepower	Customer application
LF	Variable	See customer application	-	Customer application
		Default: 0.65	-	Maryland/Mid-Atlantic TRM v10, p. 297
η	Variable	See customer application	-	Customer application
		Default see Table 2-16. Baseline Motor Efficiency	-	NEMA Standards Publication Condensed MG 1-2007
FF	Fixed	0.524 per Table 2-17	-	Maryland/Mid-Atlantic TRM v10, p. 297
PLR _{base}	Variable	See customer application	-	Maryland/Mid-Atlantic TRM
		Default = 0.53 per Table 2-19. forward-curved fan with outlet dampers at FF=0.524	_	v10, p. 298
PLR _{base} , peak	Fixed	1.00	-	DNV engineering judgement
PLRee	Fixed	See customer application	-	Customer application
		Default: 0.30 ²⁰ per Table 2-19. for VFD with duct Static Pressure Controls at FF=0.524	_	Maryland/Mid-Atlantic TRM v10, p. 299
PLR _{ee, peak}	Fixed	1.00	-	DNV engineering judgement
ESF	Variable	See Table 2-20	-	Maryland/Mid-Atlantic TRM v10, p. 301
DSF	Variable	See Table 2-20	-	Maryland/Mid-Atlantic TRM v10, p. 301
HOU	Variable	See Table 13-6 in Sub-Appendix F2-II: Non-Residential HVAC Equivalent Full Load Hours	hours, annual	Maryland/Mid-Atlantic TRM v10, pp. 299-301
CF _{summer}	Fixed	0.55 for pump applications	-	Maryland/Mid-Atlantic TRM v10, p. 299

²⁰ Corresponds to the approximate PLR for 'VFD with Duct Static Pressure Controls' from Table 2-18. at the average FF of 52.4% from Table 2-17.

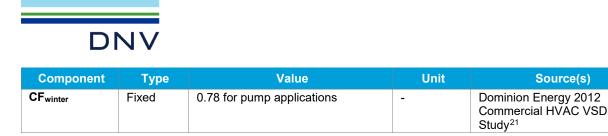


Table 2-16 provides the baseline motor efficiencies that are consistent with the minimum federal accepted motor efficiencies provided by the National Electrical Manufacturers Association (NEMA).²²

Table 2-16. Baseline Motor Efficiency ²	3
--	---

Horsepower (hp)	η
1	0.855
1.5	0.865
2	0.865
3	0.895
5	0.895
7.5	0.917
10	0.917
15	0.924
20	0.930
25	0.936
30	0.936
40	0.941
50	0.945

Horsepower (hp)	η
60	0.950
75	0.954
100	0.954
125	0.954
150	0.958
200	0.962
250	0.962
300	0.962
350	0.962
400	0.962
450	0.962
500	0.962

Table 2-17 provides the assumed proportion of time that fans operate within ten ranges of airflow rates, relative to the design airflow rate (cfm).

Table 2-17. Default Fan Duty	Cycle	
Airflow Range (% of design cfm)	Airflow Fraction (FF), Percent of Time in Flow Range	Average Flow Range (% of design cfm)
0% - 10%	0.0%	
10% - 20%	1.0%	
20% - 30%	5.5%	52.4%
30% - 40%	15.5%	
40% - 50%	22.0%	

.

²¹ The source TRM does not provide a winter CF. Therefore, the results from Dominion Energy's 2012 Commercial VSD Loadshape study to calculate winter CF.

²² Refer to NEMA Standards Publication "Condensed MG 1-2011 - Information Guide for General Purpose Industrial AC Small and Medium Squirrel-Cage Induction Motor Standards" and Table 52 'Full-Load Efficiencies for 60 Hz NEMA Premium Efficiency Electric Motors Rated 600 Volts or Less (Random Wound)' in said standard.

23 NEMA Standards Publication Condensed MG 1-2011 - Information Guide for General Purpose Industrial AC Small and Medium Squirrel-Cage Induction Motor Standards. Assumed Totally Enclosed Fan-Cooled (TEFC), Premiums Efficiency, 1800 RPM (4 Pole).

Airflow Range (% of design cfm)	Airflow Fraction (FF), Percent of Time in Flow Range	Average Flow Range (% of design cfm)
50% - 60%	25.0%	
60% - 70%	19.0%	
70% - 80%	8.5%	
80% - 90%	3.0%	
90% - 100%	0.5%	

Table 2-18. provides the part-load ratios (PLRs) that vary with fan control types and air flow range.

Table 2-18. Part Load Ratios by Control Type, Fan Type, and Flow Range

					Airflow R	ange (per	cent of des	sign cfm)			
Control Type	Fan Type(s)	0% - 10%	10% - 20%	20% - 30%	30% - 40%	40% - 50%	50% - 60%	60% - 70%	70% - 80%	80% - 90%	90% - 100%
No Control or Bypass Damper	All	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Discharge Dampers	All	0.46	0.55	0.63	0.70	0.77	0.83	0.88	0.93	0.97	1.00
Outlet Damper	BI, AF	0.53	0.53	0.57	0.64	0.72	0.80	0.89	0.96	1.02	1.05
Inlet Damper Box	All	0.56	0.60	0.62	0.64	0.66	0.69	0.74	0.81	0.92	1.07
Inlet Guide Vane	BI, AF	0.53	0.56	0.57	0.59	0.60	0.62	0.67	0.74	0.85	1.00
Inlet Vane Dampers	All	0.38	0.40	0.42	0.44	0.48	0.53	0.60	0.70	0.83	0.99
Outlet Damper	FC	0.22	0.26	0.30	0.37	0.45	0.54	0.65	0.77	0.91	1.06
Eddy Current Drives	All	0.17	0.20	0.25	0.32	0.41	0.51	0.63	0.76	0.90	1.04
Inlet Guide Vane	FC	0.21	0.22	0.23	0.26	0.31	0.39	0.49	0.63	0.81	1.04
VFD with Duct Static Pressure Controls	All	0.09	0.10	0.11	0.15	0.20	0.29	0.41	0.57	0.76	1.01
VFD with Low/No Duct Static Pressure Controls (<1" w.g.)	All	0.05	0.06	0.09	0.12	0.18	0.27	0.39	0.55	0.75	1.00

Fan types include: Bi=Backward Inclined fan; AF=Airfoil Fan; and FC=Forward-Curved fan.

Table 2-19 displays the average part-load ratios calculated using the flow fractions from Table 2-17, and the part-load values across flow ranges from Table 2-18.

Table 2-19. Average Baseline Part Load Ratios (PLRs) by Control Type, and Fan Type

Case	Control Type	Fan Type(s)	Weighted Average PLR
	Outlet Damper	Airfoil (AF) or Backward Inclined (BI)	0.78
		Forward Curved (FC) or Unknown	0.53
	Discharge Damper	All	0.81
	Inlet Damper Box	All	0.70
Baseline	Inlet Guide Vane	Airfoil (AF) or Backward Inclined (BI)	0.64
		Forward Curved (FC) or Unknown	0.40
	Inlet Vane Damper	All	0.54
	Eddy Current Drive	All	0.50
	No Control or Bypass Damper	All	1.00
	VFD with Duct Static Pressure Controls	All	0.30
Efficient	VFD with Low/No Duct Static Pressure Controls (<1" w.g.)	All	0.28

Table 2-20. Energy and Demand Savings Factors by Application

VFD Applications ²⁴	ESF	DSF
Chilled Water Pump	0.633	0.460
Hot Water Pump	0.652	0.000
Unknown/Other Pump (Average) ²⁵	0.643	0.230

2.1.4.4 Default Savings

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

2.1.4.5 Effective Useful Life

The effective useful life of this measure is provided in Table 2-21.

²⁴ Mid-Atlantic TRM 2020, p. 301.

 $^{^{25}}$ Assigned for pumps not specifically in this table, such as condenser water pump.

Table 2-21. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program Name	Value	Units	Source(s)		
	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	15.00	Veere	Maryland/Mid-Atlantic TRM v10, p.		
VIII	Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII	15.00	years	301		
VII	Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII	15.00	Veero	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)		
v	Non-Residential Small Business Improvement Program, DSM Phase V	14.00	years			

2.1.4.6 Source(s)

The primary sources for this deemed savings approach Maryland/Mid-Atlantic TRM v10, pp. 296-301.

2.1.4.7 Update Summary

Updates made to this section are described in Table 2-22.

Table 2-22. Summary of Update(s)

Version	Update Type	Description	
Source Updated page numbers / version of the Maryland/ 2021 New table Effective Useful Life (EUL) by program		Updated page numbers / version of the Maryland/Mid-Atlantic TRM	
		Effective Useful Life (EUL) by program	
	Equation	Added gross winter peak demand reduction equation	
2020	None	Added efficient cases of control strategies to clarify assumptions. No change to resulting savings.	
v10	Source	Updated page numbers / version of the Maryland/Mid-Atlantic TRM	

2.1.5 Dual Enthalpy Air-side Economizers

2.1.5.1 Measure Description

Non-Residential Heating and Cooling Efficiency Program

This measure involves the installation of a dual-enthalpy economizer to provide free cooling during the appropriate ambient conditions. Dual-enthalpy economizers are used to control a ventilation system's outside-air intake in order to reduce a facility's total cooling load. The economizer operation controls the outside air and return air flow rates by monitoring the outside air temperature (sensible heat) and humidity (latent heat) and provides free cooling in place of mechanical cooling. This reduces the load on the mechanical cooling system and lowers the operating hours. This measure applies only to retrofits or newly-installed cooling units with a factory-installed "dual-enthalpy" economizer

controller. The baseline condition is the existing HVAC system without economizer. The efficient condition is the HVAC system with functioning dual enthalpy economizer control(s).

Non-Residential Small Business Improvement Program

In addition to the measure scope description in Non-Residential Heating and Cooling Efficiency Program above, this program also includes repair of existing dual-enthalpy economizer. This measure is offered through the programs listed in Table 2-23 and uses the impacts estimation approach described in this section.

Table 2-23. Programs that Offer this Measure

Program Name	Section
Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII	Section 2.1.5
Non-Residential Small Business Improvement Program, DSM Phase V	Section 4.1.6
Non-Residential Office Program, DSM Phase VII	Section 8.3.7
Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	Section 9.3.5

2.1.5.2 Impacts Estimation Approach

Per measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = Size_{cool} \times ESF$$

Per measure, gross summer and winter coincident demand reduction is assumed to be zero because an economizer will typically not operate during the peak period.²⁶ Hence,

$$\Delta k W_{summer} = \Delta k W_{winter} = 0$$

Where:

 ΔkWh
 = per measure gross annual electric energy savings

 ΔkW_{summer}
 = per measure gross summer peak coincident demand reduction

 ΔkW_{winter}
 = per measure gross winter peak coincident demand reduction

 Size_{cool}
 = HVAC system cooling capacity

 ESF
 = annual energy savings factor for the installation of dual enthalpy economizer control

2.1.5.3 Input Variables

Component	Туре	Value	Unit	Source(s)
Sizecool	Variable	See customer application	tons Customer application	
ESF	Variable	See Table 2-25	kWh/ton	Maryland/Mid-Atlantic TRM v10, p. 314

²⁶ Maryland/Mid-Atlantic TRM v10, p. 313.

Table 2-25. Economizer Energy Savings Factors by Building Type²⁷

	Energy Savings Factors (kWh/ton)										
Building Type	Baltimore, MD	Richmond, VA	Norfolk, VA	Roanoke, VA	Sterling, VA	Arlington, VA	Charlottes- ville, VA	Farmville, VA	Fredericksb urg, VA	Elizabeth City, NC	Rocky Mount, NC
Education: ²⁸ College and University, High School, – Elementary and Middle School	39	46	51	35	35	48	34	41	43	56	43
Food Sales: ²⁹ Grocery, ³⁰ Convenience Store, Gas Station Convenience Store	57	67	75	51	51	70	50	59	63	82	63
Food Service: ³¹ Full Service,	29	34	38	26	26	36	26	30	32	41	32
Food Service: Fast Food ³²	37	43	49	33	33	46	33	39	41	53	41

 ²⁷ Maryland/Mid-Atlantic TRM v10, p. 314 lists savings factor for installation of dual enthalpy economizer. Mid Atlantic TRM does not have savings factor for VA or NC, therefore Baltimore, MD savings factors are scaled to determine those for Richmond, VA and Rocky Mount-Wilson/Elizabeth City, NC values using the CDD provided in Sub-Appendix F2-I: Cooling and Heating Degree Days and Hours. For example, VA and NC values are calculated from Baltimore, MD savings factors and degree days (DD-65°F = CDD) using TMY3 data.
 ²⁸ All education building types are mapped to savings factors for the "Primary School" building type listed in the Maryland/Mid-Atlantic TRM v10, p. 314.

²⁹ All food sales, and service (beauty, auto repair workshop) building types are mapped to savings factors for the "Small Retail" building type listed in the Maryland/Mid-Atlantic TRM v10, p. 314.

³⁰ Food-sales-grocery and mercantile (mall) building are mapped to the "Big Box Retail" building type listed in the Maryland/Mid-Atlantic TRM v10, p. 314.

³¹ All general food service and food service-full service building types are mapped to savings factors for the "Full Service Restaurant" building type listed in the Maryland/Mid-Atlantic TRM v10, p. 314.

³² Food service – fast food building types are mapped to savings factors for the "Fast Food" building type in the Maryland/Mid-Atlantic TRM v10, p. 314.

Energy Savings Factors (kWh/ton)											
Building Type	Baltimore, MD	Richmond, VA	Norfolk, VA	Roanoke, VA	Sterling, VA	Arlington, VA	Charlottes- ville, VA	Farmville, VA	Fredericksb urg, VA	Elizabeth City, NC	Rocky Mount, NC
Mercantile (Retail, not mall) ³³	57	67	75	51	51	70	50	59	63	82	63
Mercantile (mall)	57	67	75	51	51	70	50	59	63	82	63
Office: Small (<40,000 sq.ft.) ³⁴ and Large (≥ 40,000 sq.ft.)	57	67	75	51	51	70	50	59	63	82	63
Public Assembly	25	29	33	23	22	31	22	26	28	36	28
Religious Worship	6	7	8	5	5	7	5	6	7	9	7
Other ³⁵ : Lodging (Hotel, Motel and Dormitory), Health Care (Outpatient, Inpatient) Public Order and Safety (Police and Fire Station)	57	67	75	51	51	70	50	59	63	82	63
Service (Beauty, Auto Repair	57	67	75	51	51	70	50	59	63	82	63

³³ Mercantile (retail, not mall) building types in are mapped to savings factors for the "Small Retail" building type in the Maryland/Mid-Atlantic TRM v10, p. 314.

³⁴ Office – small (< 40,000 sqft) and office – large (>= 40,000 sqft) building types are mapped to savings factors for the "Small Office" building types in the Maryland/Mid-Atlantic TRM v10, p. 314.

³⁵ Other, lodging – (hotel, motel and dormitory), health care-outpatient, healthcare-inpatient, public order and safety (police and fire station) building types are mapped to the "Other" building type in the Maryland/Mid-Atlantic TRM v10, p. 314.

		Energy Savings Factors (kWh/ton)										
Building Type	Baltimore, MD	Richmond, VA	Norfolk, VA	Roanoke, VA	Sterling, VA	Arlington, VA	Charlottes- ville, VA	Farmville, VA	Fredericksb urg, VA	Elizabeth City, NC	Rocky Mount, NC	
Workshop)												
Warehouse and Storage	2	2	3	2	2	2	2	2	2	3	2	

2.1.5.4 Default Savings

If the proper values are not supplied, a default savings may be applied using conservative input values. Default hours of use will be taken from the above chart if the building type is available.

The default gross coincident demand reduction is zero.

2.1.5.5 Effective Useful Life

The effective useful life of this measure is provided in Table 2-26.

Table 2-26. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program Name	Value	Units	Source(s)		
VIII	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	10.00	years	Mid-Atlantic TRM 2020, p. 313		
VII	Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII	15.00		Program design assumptions		
VII	Non-Residential Office Program, DSM Phase VII	7.00	years	(weighted average of measure lives of all measures offered by program		
v	Non-Residential Small Business Improvement Program, DSM Phase V	14.00		and their planned uptake)		

2.1.5.6 Source(s)

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 313-314.

2.1.5.7 Update Summary

Updates made to this section are described in Table 2-27.

Table 2-27. Summary of Update(s)

Version	Update Type Description			
	Source	Updated page numbers / version of the Maryland/Mid-Atlantic TRM		
2024	Input Variable	Expanded weather stations		
2021	New table	Effective Useful Life (EUL) by program		
	Equation	Added gross winter peak demand reduction equation		
2020	None	No change		
	Source	Updated page numbers / version of the Maryland/Mid-Atlantic TRM		
v10	Input Variable	Updated weather stations in North Carolina		

3 NON-RESIDENTIAL WINDOW FILM PROGRAM, DSM PHASE VII

The Non-Residential Window Film Program provides incentives to non-residential customers to install reflective window film on existing windows in order to reduce the solar heat gain through the affected windows. The program has been offered in Virginia beginning August 1, 2014 and in North Carolina beginning January 1, 2015.

3.1 Building Envelope End Use

3.1.1 Window Film

3.1.1.1 Measure Description

This measure applies to window film installed on existing windows to reduce the solar heat gain through the affected window. Because the window film reduces solar heat gain, cooling loads are often reduced leading to mechanical cooling savings. For the same reason, heating load may also increase leading to mechanical heating penalties.

Windows facing any orientation are eligible. The film must a SHGC equal to or less than 0.5.36

This measure applies to window film installed on the exterior side of existing non-residential single pane or double pane windows. Savings are calculated per square foot of north, south, east, and west facing windows.

This measure is offered through different programs listed in Table 3-1, and uses the impacts estimation approach described in this section.

Table 3-1. Programs that Offer this Measure

Program Name	Section
Non-Residential Window Film Program, DSM Phase VII	Section 3.1.1
Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	Section 9.1.1

3.1.1.2 Impacts Estimation Approach

The window film installation measure savings calculations utilize savings factors developed using OpenStudio[™] and EnergyPlus[™] software simulations of prototypical building models. The prototype building models were sourced from the DOE Commercial Reference Buildings within OpenStudio. Two building types, the public assembly and public safety and health buildings, were developed by DNV, as these building types were not included in the DOE Commercial Reference Buildings. The prototype models were modified for various heating equipment types. All models were based on ASHRAE 90.1-2004 building energy code and ASHRAE climate zone 4A.

Savings factors are calculated as the difference in simulated energy consumption between the baseline models and the efficient models. An efficient model is created for windows facing each orientation. This is done by changing the window properties to the efficient case in a given orientation, to isolate the effects of installing window film on each orientation, on the building energy consumption. DNV modeled an array of different building types, to represent the

³⁶ DSM Phase VII Non-Residential Window Film Program design assumptions.

varying types of customers who may participate in this program. DNV encountered three modeling scenarios, related to where windows are installed on the prototypical baseline models:

- 1. There are prototype models where there are windows on all four walls. In these cases, the efficient models are run with window film applied to each individual window orientation, to isolate its impact on energy consumption.
- 2. In some of the prototype models there are windows only on one orientation. In these cases, the model was rotated by 90 degrees for each orientation in the efficient model, to isolate the effects of the window film installation on that orientation.
- 3. Some prototype models did not have windows in the North orientation. In these cases, savings are set to zero as the savings are relatively small compared to the other orientations and the quantity of windows in these building types with north facing windows will likely be relatively small.

Table 3-2 provides building descriptions and the HVAC heating type assumptions depending on the heating fuel type.

Building Type	Total Floor Area (sq.ft.)	No. floors	Gas Heating HVAC system	Electric Heating HVAC system	Note
Quick service restaurant	2,500	1	Packaged AC w/ gas furnace	Packaged HP	No north-facing windows; north facing savings factors were not estimated
Full service restaurant	5,500	1	Packaged AC w/ gas furnace	Packaged HP	No north-facing windows; north facing savings factors were not estimated
Hospital	241,351	5	CHW/HW plant w/ VAV & HW reheat	PTHP & DOAS w/ HW coils	
Outpatient healthcare			HW & electric	Packaged VAV w/ electric reheat	
Large Hotel			CHW/HW plant w/ 4-pipe FC	PTHP & Packaged HPs	
Small Office	5,500	1	Packaged AC w/ gas furnace	Packaged HP	
Large Office	498,588	12	CHW/HW plant w/ VAV & HW reheat	WSHP	
Primary School	73,960	1	Packaged VAV w/ HW reheat	Packaged VAV w/ electric reheat	
Secondary School	210,887	2	CHW/HW plant w/ VAV & HW reheat	WSHP	
Stand-alone retail	24,962	1	Packaged AC w/ gas furnace	Packaged HP	Original model has only east- facing windows. Models were rotated to estimate savings for all cardinal directions
Strip Mall	22,500	1	Packaged AC w/ gas furnace	Packaged HP	Original model has only east- facing windows. Models were rotated to estimate savings for all cardinal directions
Public Assembly	28,024	2	Packaged AC w/ HW coils	Packaged HP	Developed by DNV

Building	Total Floor	No.	Gas Heating	Electric Heating	Note
Type	Area (sq.ft.)	floors	HVAC system	HVAC system	
Public Order and Safety	8,734	2	Packaged AC w/ HW reheat	Packaged HP	Developed by DNV

Models are run for various locations throughout Dominion Energy's service territory using typical meteorological year 3 (TMY3) data—and modification of a few key window parameters.³⁷ The assumed values for key parameters affected by addition of window film to single and double pane windows are provided in Table 3-3.

Table 3-3. Key Building Energy Modelling Parameters

Window Variable	Window Type	Baseline Value	Source(s) ³⁸	Efficient Value	Source(s) ³⁸
U-Factor	Single Pane	1.23	DEER (1978-2001)	1.23	DEER (1978-2001)
0-Factor	Double Pane	0.77	DEER (1993-2001)	0.77	DEER (1993-2001)
SHGC	Single Pane	0.82	DEER (1978-2001)	0.40	Program requirement
3000	Double Pane	0.61	DEER (1993-2001)	0.40	Program requirement

The savings factors are listed per square foot of reflective window film area for each building type and window orientation in Table 13-25 to Table 13-33. Savings factors differ based on the number of panes within affected windows (single or double) and the heating fuel type of the building (electric or non-electric). Per measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = SqFt_{orientation} \times ESF_{orientation}$$

Per measure, gross coincident summer and winter peak demand reduction is negligible for this measure

Where:

 ΔkWh = per measure gross annual electric energy savings SqFt_{orientation} = area of window film for each window orientation of a retrofitted building ESF_{orientation} = annual energy savings factor

3.1.1.3 Input Variables

Table 3-4. Input Values for Solar Window Film

Component	Туре	Value	Unit	Source(s)
SqFtorientation	Variable	See customer application	sq.ft.	Customer application

³⁷ See Sub-Appendix I: Cooling and Heating Degree Days and Hours for a description of the weather stations selected for this document.

³⁸ Building vintage ranges defined in DEER, <u>www.deeresources.com</u>.

Component	Туре	Value	Unit	Source(s)
ESForientation	Variable	See Table 13-25 to Table 13-33 in Sub-Appendix F2-VII: Non- Residential Window Film Energy Saving Factors	kWh/sq.ft.	DOE 2.2 energy modeling software

3.1.1.4 Default Savings

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

3.1.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 3-5

Table 3-5. Effective Useful Life for Lifecycle Savings Calculations

	SM nase	Program Name	Value	Units	Source(s)
V	/111	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	10.00		New York TRM 2019 v.7, p. 770 ³⁹
\	VII	Non-Residential Window Film Program, DSM Phase VII	10.00	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

3.1.1.6 Source(s)

The deemed savings for this measure are determined by using prototypical building energy models defined by California's 2008 Database for Energy Efficient Resources (DEER)⁴⁰ and modified to represent program-specific window characteristics for ten cities across Dominion Energy's service territory in Virginia and North Carolina (eight locations in Virginia and two in North Carolina).

3.1.1.7 Update Summary

Updates made to this section are described in Table 3-6

Table 3-6. Summary of Update(s)

Version	Update Type	Description	
	New table	Effective Useful Life (EUL) by program	
2021	Input Variable	Updated per-square-foot savings using new building models and revised weather stations	

³⁹ California DEER 2014, GlazDaylt-WinFilm

⁴⁰ http://www.energy.ca.gov/deer/

Version	Update Type	Description	
2020	None	No change	
v10	Input Variable	Updated per-square-foot savings for buildings in North Carolina based on revised weather stations	

4 NON-RESIDENTIAL SMALL BUSINESS IMPROVEMENT PROGRAM, DSM PHASE V

Dominion's Non-Residential Small Business Improvement Program provides small business owners incentives to use Dominion-approved contractors to provide many of the measures already provided through existing legacy programs that typically target non-residential building owners: Non-Residential Heating and Cooling Efficiency program and the Non-Residential Lighting Systems and Controls program. In addition, four retrocommissioning measures are provided. Program measures are summarized in Table 4-1.

According to the program terms and conditions, as of June 2017, to be eligible to participate in this program, Dominion Energy Virginia non-residential customers must be of a privately-owned business with five or fewer locations that has not exceeded monthly demand threshold of 100 kW three or more times in the past 12 months, has not opted out of participation, is responsible for the electric bill and is the owner of the facility or reasonably able to secure permission to complete measures. Once a customer participates in the program and receive a rebate, they cannot opt out for three years following the year of participation.

Prior to June 1, 2017, the Small Business Improvement Program delivered refrigeration measures to Virginia customers, but stopped per an SCC ruling.⁴¹

End Use	Measure	Manual Section
	Duct Testing & Sealing	Section 4.1.1
	Unitary/Split AC, HP, and Chiller Tune-up	Section 4.1.2
	Refrigerant Charge Correction	Section 4.1.3
HVAC	Unitary/Split AC & HP Upgrade	Section 4.1.4
	Mini-split Heat Pump	Section 2.1.2
	Dual Enthalpy Air-side Economizer	Section 2.1.5
	Variable Frequency Drive	Section 4.1.7
	Programmable Thermostat	Section 4.1.8
	Lighting, Fixtures, Lamps, and Delamping	Section 1.1.1
Lighting	Sensors & Controls	Section 1.1.2
	LED Exit Signs	Section 4.2.3
Other	Compressed Air Leak Repair	Section 4.3.1

⁴¹ As of June 1, 2017, refrigeration measures ceased to be offered through this program as a result of the ruling in Virginia SCC Case No. PUE-2016-00111 issued and effective on the same date.

4.1 Heating, Ventilation, and Air-Conditioning (HVAC) End Use

4.1.1 Duct Testing and Sealing

4.1.1.1 Measure Description

This measure provides building owners incentives to use Dominion-approved, duct-sealing contractors to reduce conditioned-air leakage to unconditioned spaces by the following steps: 1) test non-residential duct systems for air leakage, 2) seal the ducts using an aerosol-based product, and then 3) test the sealed duct systems for air leakage to confirm that sealing the ducts reduced the air-leakage rate.

Eligible ductwork is connected to a unitary HVAC system or a heat pump and occurs within an unconditioned plenum space or between an insulated, finished ceiling and a roof surface. Based on DNV's judgment, this measure is applicable to ductwork at unitary and chiller-cooled systems.

This measure is offered through different programs listed in Table 4-2, and uses the impacts estimation approach described in this section.

Table 4-2. Programs that Offer this Measure

Program Name	Section
Non-Residential Small Business Improvement Program, DSM Phase V	Section 4.1.1
Non-Residential Prescriptive Program, DSM Phase VI	Section 5.2.1
Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	Section 9.3.1
Non-Residential Multifamily Program, DSM Phase VIII	Section 11.3.3

4.1.1.2 Impacts Estimation Approach

For all system types, per measure gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \Delta kWh_{cool} + \Delta kWh_{heat}$$

Duct Testing and Sealing on Unitary Systems, Air Source Heat Pumps, and AC Units

Per measure, gross annual electric cooling and heating energy savings are calculated according to the following equations.

For unitary-system heat pumps and AC units of Size_{cool} < 65,000 Btu/h:

$$\Delta kWh_{cool} = Size_{cool} \times \frac{12\frac{kBtuh}{ton}}{SEER} \times EFLH_{cool} \times \left(1 - \frac{\bar{n}_{dist,base}}{\bar{n}_{dist,ee}}\right)_{cool}$$

For unitary-system heat pumps of Size_{heat} < 65,000 Btu/h:

$$\Delta kWh_{heat} = Size_{heat} \times \frac{1}{HSPF} \times EFLH_{heat} \times \left(1 - \frac{\bar{n}_{dist,base}}{\bar{n}_{dist,ee}}\right)_{heat}$$

For unitary-system heat pumps and AC units of Size_{cool} ≥ 65,000 Btu/h,:

$$\Delta kWh_{cool} = Size_{cool} \times \frac{12\frac{kBtuh}{ton}}{IEER} \times EFLH_{cool} \times \left(1 - \frac{\bar{n}_{dist,base}}{\bar{n}_{dist,ee}}\right)_{cool}$$

For unitary-system heat pumps of Size_{heat} \ge 65,000 Btu/h:

$$\Delta kWh_{heat} = Size_{heat} \times \frac{1}{COP \times 3.412 \frac{Btuh}{W}} \times EFLH_{heat} \times \left(1 - \frac{\bar{n}_{dist,base}}{\bar{n}_{dist,ee}}\right)_{heat}$$

Per measure, gross coincident summer peak demand reduction is calculated according to the following equation:

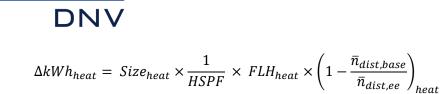
$$\Delta kW_{summer} = Size_{cool} \times \frac{12\frac{kBtuh}{ton}}{EER} \times \left(1 - \frac{n_{dist,pk,base}}{n_{dist,pk,ee}}\right) \times CF_{summer}$$

Per measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = Size_{heat} \times \frac{1}{EER} \times \left(1 - \frac{n_{dist,pk,base}}{n_{dist,pk,ee}}\right) \times CF_{winter}$$

Duct Testing and Sealing on Chiller Systems

Water-cooled chiller systems, cooling savings:


$$\Delta kWh_{cool} = Size_{cool} \times \frac{kW}{ton_{IPLV}} \times EFLH_{cool} \times \left(1 - \frac{\bar{n}_{dist,base}}{\bar{n}_{dist,ee}}\right)_{cool}$$

Air-cooled chiller systems, cooling savings:

$$\Delta kWh_{cool} = Size_{cool} \times \frac{12\frac{kBtuh}{ton}}{EER_{IPLV}} \times EFLH_{cool} \times \left(1 - \frac{\bar{n}_{dist,base}}{\bar{n}_{dist,ee}}\right)_{cool}$$

Chiller systems with non-electric heating fuel will not have heating savings. For chiller systems with electric heating, savings are calculated as follows:

Chiller system with electric heating system < 65,000 Btu/h:

Chiller system with electric heating system \geq 65,000 Btu/h:

$$\Delta kWh_{heat} = Size_{heat} \times \frac{1}{COP \times 3.412 \frac{Btuh}{W}} \times EFLH_{heat} \times \left(1 - \frac{\bar{n}_{dist,base}}{\bar{n}_{dist,ee}}\right)_{heat}$$

The per measure gross coincident summer peak demand reduction is calculated according to the following equations: Duct Testing and Sealing on Water-Cooled Chiller Systems:

$$\Delta k W_{summer} = Size_{cool} \times \frac{kW}{ton_{full \, load}} \times \left(1 - \frac{\bar{n}_{dist, peak, base}}{\bar{n}_{dist, peak, ee}}\right) \times CF_{summer}$$

Duct Testing and Sealing on Air-Cooled Chiller Systems:

$$\Delta kW_{summer} = Size_{cool} \times \frac{12\frac{kBtuh}{ton}}{EER_{full \ load}} \times \left(1 - \frac{\bar{n}_{dist, peak, base}}{\bar{n}_{dist, peak, ee}}\right) \times CF_{summer}$$

Chiller systems with non-electric heating fuel will not have gross coincident winter peak demand reductions. For chiller systems with electric heating, savings are calculated as follows:

Air-cooled or water-cooled chiller system with electric resistance < 65,000 Btu/h:

$$\Delta kW_{winter} = Size_{heat} \times \frac{1}{HSPF} \times \left(1 - \frac{\bar{n}_{dist,base}}{\bar{n}_{dist,ee}}\right)_{heat} \times CF_{winter}$$

Air-cooled or water-cooled chiller system with electric resistance ≥ 65,000 Btu/h:

$$\Delta kW_{winter} = Size_{heat} \times \frac{1}{COP \times 3.412 \frac{Btuh}{W}} \times \left(1 - \frac{\bar{n}_{dist,base}}{\bar{n}_{dist,ee}}\right)_{heat} \times CF_{winter}$$

Where:

ΔkWh	= per measure gross annual electric energy savings
ΔkW_{summe}	<i>r</i> = per measure summer peak gross coincident demand reduction
$\Delta k W_{winter}$	= per measure winter peak gross coincident demand reduction
Sizecool	= system cooling capacity in tons, based on nameplate data
Sizeheat	= system heating capacity in kBtu/h, based on nameplate data
SEER	= seasonal energy efficiency ratio (SEER). It is used for heat pumps and AC units that are
	smaller than 65,000 Btu/h.

	NV
IEER	= integrated energy efficiency ratio (IEER) of a unit's efficiency at four load points: 100%,
	50%, and 25% of full cooling capacity. It is used for heat pumps and AC units to 65,000 Btu/h or larger.
HSPF	= heating seasonal performance factor (HSPF) of existing heat pump. HSPF is used in he savings for air-source heat pumps.
COP	= coefficient of performance (heating)
<i>n</i> _{dist.base.c}	cool = duct system average seasonal efficiency of baseline (pre-sealing) cooling system
	heat = duct system average seasonal efficiency of baseline (pre-sealing) heating system
	p_l = duct system average seasonal efficiency of efficient (post-sealing) cooling system
	a_{t} = duct system average seasonal efficiency of efficient (post-sealing) heating system
	\bar{n}_{base} = duct system efficiency of baseline system, under peak conditions (equal to $\bar{n}_{dist,base,col}$
	$_{ee}$ = duct system efficiency of efficient system, under peak conditions (equal to $\bar{n}_{dist,ee,cool}$)
	a = energy efficiency ratio (EER) of air-cooled chillers at full-load conditions.
EERIPLV	
<u>kW</u> ton _{IPLV}	= energy efficiency of water-cooled chiller system at integrated part load value (IPLV)
<u>kW</u> tonfull load	a energy efficiency of water
-cooled cl	hiller system at full load
EFLH _{cool}	5 1 ()
EFLH _{heat}	5 1 ()
CF _{summer}	
CF _{winter}	= winter peak coincidence factor
TRF	= thermal regain factor

In the event of a missing efficiency metric from an application, the equations provided in Sub-Appendix F2-VIII: General Equations may be used to estimate the missing efficiency using another application-provided efficiency metric.

4.1.1.3 Input Variables

Component	Туре	Value	Unit	Source(s)
Size _{cool}	Variable	See customer application	tons of cooling capacity (per unit)	Customer application
Sizeheat	Variable	See customer application ⁴²	kBtu/h (per unit)	Customer application
SIZeheat		Default = Size _{cool} x 12 kBtu/ton		
		See customer application ⁴³	Btu/W-hr (COP is dimension -less)	Customer application
SEER/IEER/EER /COP/HSPF		Default: See Table 13-8, Table 13-9 and Table 13-12 in Sub-Appendix F2-III: Non-Residential HVAC Equipment Efficiency Ratings based on equipment type		ASHRAE 90.1-2013

⁴² When customer-provided heating system size is <80% or >156% of customer-provided cooling system size, a default value will be used, instead. In such instances, it is assumed that the heating system size was incorrectly documented. The acceptable range is based on a review of the AHRI database across numerous manufacturers and heat pump types.

Jun 15 2022

⁴³ The customer provided efficiency values are reviewed for reasonability. If the efficiency value is outside acceptable bounds the applicable default value is applied. The bounds were determined from a review of the AHRI database. Bounds are as follows: 9.90 < SEER < 46.2, 7.92 < EER < 22.11, 8.10 < IEER < 34.82, 8.82 < CEER < 16.50, 5.85 < HSPF < 15.07, 2.70 < COP < 15.01.</p>

Component	Туре	Value	Unit	Source(s)	
		See customer application		Customer application	
kW/ton _{full load}	Variable	Default: see Table 13-11 in Sub- Appendix F2-III: Non-Residential HVAC Equipment Efficiency Ratings based on equipment type	kW/ton	ASHRAE 90.1-2013	
		See customer application		Customer application	
kW/ton _{IPLV}	Variable	Default: see Table 13-11 in Sub- Appendix F2-III: Non-Residential HVAC Equipment Efficiency Ratings based on equipment type	kW/ton	ASHRAE 90.1-2013	
		See customer application ⁴³		Customer application	
EER _{full} load	Variable	Default: see Table 13-11 in Sub- Appendix F2-III: Non-Residential HVAC Equipment Efficiency Ratings based on equipment type	Btu/W-h	ASHRAE 90.1-2013	
		See customer application ⁴³		Customer application	
EERIPLV	Variable	Default: see Cooling Efficiencies of Water Chilling Packages Table 13-11 in Sub-Appendix F2-III: Non-Residential HVAC Equipment Efficiency Ratings based on equipment type	kBtu/kW-h	ASHRAE 90.1-2013	
		See customer application		Customer application	
$\overline{n}_{dist, base, cool}$	Variable	Default: No insulation, 30% leakage.	percent	New York TRM 2018, p. 242	
$\overline{n}_{dist,base,heat}$	Variable	See customer application along with Table 4-4 and Table 4-5	percent	Customer application	
		Default: No insulation, 30% leakage		New York TRM 2018, p. 242	
$\overline{n}_{dist,ee,cool}$	Variable	See customer application along with Table 4-4 and Table 4-5	percent	Customer application	
		Default: No insulation, 15% leakage	•	New York TRM 2018, p. 242	
$\overline{n}_{dist.ee.heat}$	Variable	See customer application along with Table 4-4 and Table 4-5	percent	Customer application	
		Default: No insulation, 15% leakage		New York TRM 2018, p. 242	
n dist,peak,base	Variable	See customer application along with Table 4-4 and Table 4-5	percent	Customer application	
		Default: No insulation, 30% leakage		New York TRM 2018, p. 242	
n _{dist,peak,ee}	Variable	See customer application along with Table 4-4 and Table 4-5	percent	Customer application	
		Default: No insulation, 15% leakage		New York TRM 2018, p. 242	
EFLH _{heat}	Fixed	See Table 13-5 in Sub-Appendix F2-II: Non-Residential HVAC Equivalent Full Load Hours	hours, annual	Maryland/Mid-Atlantic TRM v10, p. 423	
	Fixed	See Table 13-4 in Sub-Appendix F2-II: Non-Residential HVAC Equivalent Full Load Hours	hours, annual	Maryland/Mid-Atlantic TRM v10, p. 422	

Component	Туре	Value	Unit	Source(s)
CF _{summer}	Fixed	Where baseline and installed system capacities differ, use installed system capacity to assign CF. Otherwise, use baseline system capacity to assign CF: < 135 kBtu/h = 0.588 ≥ 135 kBtu/h = 0.874	-	Maryland/Mid-Atlantic TRM v10, p. 291 ⁴⁴
CF _{winter}		Where baseline and installed system capacities differ, use installed system capacity to assign CF. Otherwise, use baseline system capacity to assign CF: < 135 kBtu/h = 0.588 ≥ 135 kBtu/h = 0.874	-	Maryland/Mid-Atlantic TRM v10, p. 291 ⁴⁵

The New York TRM provides values for duct system efficiency for uninsulated ducts and ducts with R-6 insulation for four building types: assembly buildings, fast-food restaurants, full-service restaurant, and small retail. The average column in Table 4-4 is a simple average of the four building types. The values for R-2, R-4 and R-8 insulation have been calculated by scaling the results using an engineering relationship of the effectiveness of increasing R-values (non-linear).

The manual provides efficiencies for only five leakage-rate bins: 8%, 15%, 20%, 25%, and 30%. In preparation for receiving duct leakage percentages that do not match these specific values, DNV used a linear regression to model duct system efficiency as a function of leakage proportion. The coefficients from this model were used to compute duct system efficiency for any leakage value between 0% and 50%.

⁴⁴ The New York TRM 2018 provides a CF with no specific source as a placeholder. Therefore, the same CFs are applied as used for other HVAC measure using the Maryland/Mid-Atlantic TRM v10.

⁴⁵ The Maryland/Mid-Atlantic TRM v10 does not provide a winter CF. Therefore, the summer CF is applied to the winter CF.

Table 4-4. Duct System Efficiency by Broad Building Type Categories⁴⁶

Duct Total Duct System Leakage R-Value				Last Lood Postaurant		Full So Resta		Small	Retail	Average	
Leakage	R-value	Heating	Cooling	Heating	Cooling	Heating	Cooling	Heating	Cooling	Heating	Cooling
8%	Uninsulated	0.857	0.922	0.766	0.866	0.797	0.854	0.614	0.838	0.759	0.870
15%	Uninsulated	0.829	0.908	0.734	0.853	0.765	0.845	0.581	0.827	0.727	0.858
20%	Uninsulated	0.810	0.897	0.714	0.844	0.743	0.837	0.559	0.818	0.707	0.849
25%	Uninsulated	0.793	0.886	0.693	0.834	0.721	0.829	0.538	0.809	0.686	0.840
30%	Uninsulated	0.776	0.873	0.675	0.823	0.701	0.820	0.520	0.799	0.668	0.829
8%	R-2	0.877	0.954	0.821	0.906	0.845	0.904	0.691	0.885	0.808	0.912
15%	R-2	0.846	0.938	0.780	0.889	0.807	0.893	0.648	0.871	0.770	0.898
20%	R-2	0.826	0.926	0.754	0.878	0.781	0.884	0.619	0.861	0.745	0.887
25%	R-2	0.807	0.913	0.729	0.865	0.755	0.874	0.593	0.850	0.721	0.875
30%	R-2	0.789	0.899	0.707	0.852	0.732	0.864	0.570	0.839	0.699	0.863
8%	R-4	0.886	0.970	0.848	0.925	0.869	0.929	0.729	0.908	0.833	0.933
15%	R-4	0.855	0.952	0.802	0.907	0.827	0.917	0.681	0.893	0.791	0.917
20%	R-4	0.833	0.940	0.774	0.894	0.799	0.908	0.649	0.883	0.764	0.906
25%	R-4	0.814	0.926	0.747	0.881	0.772	0.897	0.621	0.871	0.738	0.893
30%	R-4	0.795	0.911	0.723	0.867	0.748	0.885	0.594	0.859	0.715	0.881
8%	R-6	0.896	0.986	0.875	0.945	0.893	0.954	0.767	0.931	0.858	0.954
15%	R-6	0.863	0.967	0.825	0.925	0.848	0.941	0.714	0.915	0.813	0.937
20%	R-6	0.841	0.954	0.794	0.911	0.818	0.931	0.679	0.904	0.783	0.925
25%	R-6	0.821	0.939	0.765	0.896	0.789	0.919	0.648	0.891	0.756	0.911
30%	R-6	0.801	0.924	0.739	0.881	0.763	0.907	0.619	0.879	0.731	0.898
8%	R-8	0.901	0.994	0.889	0.955	0.905	0.967	0.786	0.943	0.870	0.965
15%	R-8	0.867	0.974	0.836	0.934	0.858	0.953	0.731	0.926	0.823	0.947
20%	R-8	0.845	0.961	0.804	0.919	0.827	0.943	0.694	0.915	0.793	0.935
25%	R-8	0.825	0.946	0.774	0.904	0.798	0.930	0.662	0.901	0.764	0.920
30%	R-8	0.804	0.930	0.747	0.888	0.771	0.918	0.631	0.889	0.738	0.906

OFFICIAL COPY

⁴⁶ NY TRM 2019, Appendix H. Distribution Efficiencies, pp. 681–686. New York City values are used for heating and cooling efficiencies for different building types. This table represent more R-Values and total duct leakage (%) than the reference table and for those cases, regression analysis was performed to obtain the respective heating and cooling duct system efficiencies.

Table 4-5. Duct System Efficiency Mapping to Building Type⁴⁷

Building Type	Associated Duct System Efficiency Building Type
Education Education – College and University Education – High School Education – Elementary and Middle School Health Care – inpatient Health Care – outpatient Lodging – (Hotel, Motel, and Dormitory) Office – Small (< 40,000 sq ft) Office – Large (≥ 40,000 sq ft) Other Warehouse and Storage	Average
Food Sales Food Sales – Gas Station Convenience Store Food Sales – Convenience Store Food Sales – Grocery Mercantile (Retail, not Mall) Mercantile (Mall) Service (Beauty, Auto Repair Workshop)	Small Retail
Food Service Food Service – Fast Food Food Service – Other	Fast Food Restaurant
Food Service – Restaurant Food Service – Full Service	Full Service Restaurant
Public Assembly Public Order and Safety (Police and Fire Station) Religious Worship	Assembly Building

4.1.1.4 Default Savings

If the proper values are not supplied, a default savings may be applied using conservative input values. Default hours of use will be taken from the above chart if the building type is available.

4.1.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-6

DSM Phase	Program Name	Value	Units	Source(s)	
VIII	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	18.00	vears	New York TRM 2019, p. 772	
	Non-Residential Multifamily Program, DSM Phase VIII	-			

 ⁴⁷ Where "Building Type" does not clearly map to "Associated Duct System Efficiency Building Type," "Associated Duct System Efficiency Building Type is assigned to most conservative type." Full building type list was consolidated to map directly to 2003 U.S. DOE CBECS building types. Full building type list from Maryland/Mid-Atlantic TRM. Original sources: Connecticut Program Savings Document for 2012 Program Year (September 2011), pp. 219-220. http://www.clenergyinfo.com/2012%20CT%20Program%20Savings%20Documentation%20FINAL.pdf. 2003 US DOE CBECS building type definitions. http://www.eia.gov/emeu/cbecs/building_types.html.

DSM Phase	SM Phase Program Name		Units	Source(s)
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives
V Non-Residential Small Business Improvement Program, DSM Phase V		14.00	years	of all measures offered by program and their planned uptake)

4.1.1.6 Source(s)

The primary sources for this deemed savings approach is the New York TRM 2018, pp. 241-244, New York TRM 2019, pp. 681-686, Maryland/Mid-Atlantic TRM v10, pp. 422-423, and ASHRAE 90.1-2013.

4.1.1.7 Update Summary

Updates made to this section are described in Table 4-7.

Version	Update Type	Description
	Source	Updated page numbers / version of the Maryland/Mid-Atlantic TRM
2021	New table	Effective Useful Life (EUL) by program
	Equation	Added gross winter peak demand reduction equation
2020	Equation	Added size condition of <65,000 Btu/h and ≥65,000 Btu/h for determining which equation to use for ground-source heat pumps. Previously all ground-source heat pumps used equations with IEER and COP efficiency metrics.
	Source	Updated page numbers / version of the New York TRM
v10	Input Variable	Update to weather stations in North Carolina resulted in revised EFLHs for weather-sensitive measures Equipment efficiency levels were revised per update to ASHRAE 2013 in VA and NC
	Default Savings	Default savings modified due to changes to Sub-Appendix F2- III: Non- Residential HVAC Equipment Efficiency Ratings

Table 4-7. Summary of Update(s)

4.1.2 Unitary/Split Air Conditioning, Heat Pump, and Chiller Tune-up

4.1.2.1 Measure Description

This measure involves tuning up packaged air conditioning units, heat pump units (both air and ground source), and air- and water-cooled cooled chillers at small commercial and industrial sites. All HVAC applications other than space cooling and heating—such as process cooling—are ineligible for this measure.

For the Small Business Improvement Program, this measure is separated from the Refrigerant Charge Adjustment retrocommissioning measure. However, this measure is also offered by the Commercial Non-Residential Prescriptive Program in which case, the tune-up and the refrigerant charge adjustment steps are combined into a single measure.

This measure is offered through different programs listed in Table 4-8, and uses the impacts estimation approach described in this section.

Table 4-8. Programs that Offer this Measure

Program Name	Section
Non-Residential Small Business Improvement Program, DSM Phase V	Section 4.1.2
Non-Residential Prescriptive Program, DSM Phase VI	Section 5.2.2
Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	Section 9.3.2
Non-Residential Multifamily Program, DSM Phase VIII	Section 11.3.2

4.1.2.2 Impacts Estimation Approach

Algorithms and inputs to calculate heating, cooling savings, and demand reduction for unitary/split HVAC and package terminal AC system tune-ups are provided below. Gross annual electric energy savings and gross coincident demand reduction are calculated according to the equations following this section.

Per measure gross annual electric energy savings are calculated by combining the cooling and heating energy savings according to the following equation:

$$\Delta kWh = \Delta kWh_{cool} + \Delta kWh_{heat}$$

Cooling Energy Savings

For heat pumps and AC units <65,000 Btu/h, the per measure gross annual electric cooling energy savings are calculated as follows:

$$\Delta kWh_{cool} = Size_{cool} \times \frac{12 \ kBtuh/ton}{SEER} \times \ EFLH_{cool} \times \ TUF$$

For heat pumps and AC units ≥65,000 Btu/h, the per measure gross annual electric cooling energy savings are calculated as follows:

$$\Delta kWh_{cool} = Size_{cool} \times \frac{12 \ kBtuh/ton}{IEER} \times \ EFLH_{cool} \times \ TUF$$

For air- and water-cooled chillers:

 $\Delta kWh_{cool} = Size_{cool} \times IPLV \times EFLH_{cool} \times TUF$

Heating Energy Savings

For heat pumps <65,000 Btu/h, the per measure gross annual electric heating energy savings are calculated as follows:

$$\Delta kWh_{heat} = Size_{heat} \times \frac{1}{HSPF} \times EFLH_{heat} \times TUF$$

For heat pumps ≥65,000 Btu/h the per measure gross annual electric heating energy savings are calculated as follows:

$$\Delta kWh_{heat} = Size_{heat} \times \frac{1}{COP \times 3.412 Btuh/W} \times EFLH_{heat} \times TUF$$

For AC units and air- and water-cooled chillers, there are no per measure gross annual electric heating energy savings:

$$\Delta kWh_{heat} = 0$$

Per measure gross coincident demand reduction is calculated according to the following equation for air-conditioning and heat pump systems and chillers:

$$\Delta kW_{summer} = Size_{cool} \times \frac{12 \ kBtuh/ton}{EER} \times CF_{summer} \times TUF$$

Per measure gross coincident demand reduction is calculated according to the following equation for air-conditioning and heat pump systems and chillers:

$$\Delta kW_{winter} = \frac{\Delta kWh_{heat}}{EFLH_{heat}} \times CF_{winter}$$

Where:

ΔkWh	= per measure gross annual electric energy savings
∆kW _{summer}	= per measure gross summer peak coincident demand reduction
ΔkW_{winter}	= per measure gross winter peak coincident demand reduction
ΔkWh_{cool}	= per measure gross annual electric cooling energy savings
ΔkWh_{heat}	= per measure gross annual electric heating energy savings
Sizecool	= tons of cooling capacity of equipment

DN	V				
Ce _{heat} =	booting consoity of	fogu	uinmont if	uinmont if annliaghla	uinment if englischle
nout		-		uipment, if applicable. ency ratio (SEER) of the in	ency ratio (SEER) of the installed air con
	for heat	oumps	and AC	and AC units that are sr	and AC units that are smaller than 65
ER =					cy ratio (IEER) of the existing or base
		•		•	ed average of a unit's efficiency at fo f full cooling capacity. It is used for h
	65,000 E				
	equivalent full load	•			
	equivalent full load	•			
_V =		shown as			ed part load value (IPLV) of chillers EER _{IPLV} ; for water-cooled chillers,
IF =	rate of energy effi	iency imp	rover	rovement due to tun	rovement due to tune-up
:R =		atio of air-o t full load c		-	conditioning and heat pump system onditions.
SPF =	-			ce factor (HSPF) of e	ce factor (HSPF) of existing heat p ce heat pumps.
)P =				f existing heating equ ng savings.	f existing heating equipment. Grou ng savings.
summer =	summer coincider	ce factor			
	winter coincidence				

4.1.2.3 Input Variables

Table 4-9. Input Variables for AC/HP/Chiller Tune-up Measure

Component	Туре	Value	Units	Source(s)
Sizecool	Variable	See customer application	tons of cooling capacity	Customer application
		See customer application ⁴⁸		Customer application
Sizeheat	Variable Default for HPs: 12 x Size _{cool}		kBtu/h	
EFLH _{cool}	Variable	Refer to Sub-Appendix F2-II: Non- Residential HVAC Equivalent Full Load Hours ACs, HPs, & Chillers: Table 13-4	hours, annual	Maryland/Mid-Atlantic TRM v10, p. 422
EFLH _{heat}	Variable	Refer to Sub-Appendix F2-II: Non- Residential HVAC Equivalent Full Load Hours HPs: Table 13-5	hours, annual	Maryland/Mid-Atlantic TRM v10, p. 423

⁴⁸ When customer-provided heating system size is <80% or >156% of customer-provided cooling system size, a default value will be used, instead. In such instances, it is assumed that the heating system size was incorrectly documented. The acceptable range is based on a review of the AHRI database across numerous manufacturers and heat pump types.

Component	Туре	Value	Units	Source(s)
HSPF/SEER/IEER/ EER/COP	Variable	See customer application ⁴⁹	kBtu/kW-hour (except COP is dimensionless)	Customer application
		Refer to Sub-Appendix F2-III: Non-Residential HVAC Equipment Efficiency Ratings ACs & HPs: Table 13-9 Chillers: Table 13-11		ASHRAE 90.1-2013
IPLV	Variable	See customer application	Btu/W for air- cooled chillers; kW/ton for water- cooled chillers	Customer application
		Refer to Sub-Appendix F2-III: Non-Residential HVAC Equipment Efficiency Ratings Chillers: Table 13-11		ASHRAE 90.1-2013
RCA_Done ⁵⁰	Boolean	See customer application	True/False	Customer application
TUF	Variable	If RCA was not done: ACs: 0.023 HPs: 0.028 Chillers: 0.050 If RCA was also done (only for Commercial Non-Residential Prescriptive Program): ACs: 0.050 HPs: 0.050 Chillers: 0.050	-	Maryland/Mid-Atlantic TRM v10, p. 316, California Impact Evaluation of 2013-14 Commercial Quality Maintenance Programs, ⁵¹ and Wisconsin Focus on Energy 2020 TRM, pp. 957-959.
CFsummer	Variable	Use system capacity to assign CF: < 11.5 tons = 0.588 ≥ 11.5 tons = 0.874	-	Maryland/Mid-Atlantic TRM v10, p. 316
CFwinter	Variable	Use system capacity to assign CF: < 11.5 tons = 0.588 ≥ 11.5 tons = 0.874	-	Maryland/Mid-Atlantic TRM v10, p. 316 ⁵²

4.1.2.4 Default Savings

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

4.1.2.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-10

⁵¹ California Public Utilities Commission (2016). Impact Evaluation of 2013-14 Commercial Quality Maintenance Programs (HVAC3), <u>www.calmac.org/publications/HVAC3ImpactReport_0401.pdf</u>. While these proportions were not provided in the report, DNV analyzed the same supporting data—though owned by the CPUC and not publicly available—used to produce the tables provided on pages BB-2 and BB-3 of Appendix BB of the report. Whereas the tables provided in Appendix BB were aggregated by program, DNV aggregated the raw data by HVAC-system type to determine appropriate TUF values. This analysis showed that for packaged air-conditioning systems, an average of 54.7% of the overall tune-up savings were attributable to the RCA treatment; for packaged heat pump systems, 44.7% of the overall tune-up savings were attributable to the RCA treatment.

⁵² The source TRM does not provide a winter CF. Therefore, the summer CF is applied to the winter CF.

⁴⁹ The customer provided efficiency values are reviewed for reasonability. If the efficiency value is outside acceptable bounds the applicable default value is applied. The bounds were determined from a review of the AHRI database. Bounds are as follows: 9.90 < SEER < 46.2, 7.92 < EER < 22.11, 8.10 < IEER < 34.82, 8.82 < CEER < 16.50, 5.85 < HSPF < 15.07, 2.70 < COP < 15.01.</p>

⁵⁰ RCA_Done is only relevant to the Non-Residential Prescriptive Program; it is neither collected nor used for the Small Business Improvement Program because Refrigerant Charge Adjustment is a separate measure.

Table 4-10. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program Name	Value	Units	Source(s)
VIII	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	5.00	years	Maryland/Mid-Atlantic TRM v10, p. 316
	Non-Residential Multifamily Program, DSM Phase VIII			
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30		Program design assumptions (weighted average of measure lives
V	Non-Residential Small Business Improvement Program, DSM Phase V	14.00	years	of all measures offered by program and their planned uptake)

4.1.2.6 Source(s)

The primary sources for this deemed savings approach include the ASHRAE 90.1-2013, Maryland/Mid-Atlantic TRM v10, pp. 315-316, pp. 422-423, the California Impact Evaluation of 2013-14 Commercial Quality Maintenance Programs,⁵¹ and the Wisconsin Focus on Energy TRM 2020, pp. 957-959.

4.1.2.7 Update Summary

Updates made to this section are described in Table 4-11.

Table 4-11. S	Summary of	Update(s)
---------------	------------	-----------

Version	Update Type	Description
	Source	Updated page numbers and versions of the Maryland/Mid-Atlantic TRM and Wisconsin TRM
2021	Equation	Added gross winter peak demand reduction equation
	New table	Effective Useful Life (EUL) by program
2020	Equation	Added size condition of <65,000 Btu/h and ≥65,000 Btu/h for determining which equation to use for ground-source heat pumps. Previously all ground-source heat pumps used equations with IEER and COP efficiency metrics.
	Source	Updated page numbers and versions of references to: Maryland/Mid-Atlantic TRM Wisconsin Focus on Energy TRM Clarified citation and footnote of CPUC's Impact Evaluation for 2013-14 (HVAC3)
v10	Input Variable	For HPs at which RCA was not performed, revised Tune-up Factor (TUF) value from 0.027 to 0.028 Update to weather stations in North Carolina resulted in revised EFLHs for weather-sensitive measures Baseline efficiency levels were revised per update to ASHRAE 2013 in VA and NC

4.1.3 Refrigerant Charge Adjustment

4.1.3.1 Measure Description

This measure involves adjusting the amount of refrigerant charge at air conditioners and heat pumps for packaged and split systems at small commercial and industrial sites. All HVAC applications other than space cooling and heating—such as process cooling—are ineligible for this measure.

This measure is offered through different programs listed in Table 4-12, and uses the impacts estimation approach described in this section.

Table 4-12. Programs that Offer this Measure

Program Name	Section
Non-Residential Small Business Improvement Program, DSM Phase V	Section 4.1.3
Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	Section 9.3.3

4.1.3.2 Impacts Estimation Approach

Algorithms and inputs to calculate cooling, heating and demand reduction for unitary/split air-conditioning and heating pump systems that receive refrigerant charge adjustments are provided below. Gross annual electric energy savings are calculated according to the equations that follow.

Cooling Energy Savings

For heat pumps and AC units <65,000 Btu/h, the per measure gross annual electric cooling energy savings are calculated according to the following equation:

$$\Delta kWh_{cool} = Size_{cool} \times \frac{12 \ kBtuh/ton}{SEER} \times EFLH_{cool} \times RCF$$

For heat pumps and AC units ≥65,000 Btu/h, the per measure gross annual electric cooling energy savings are calculated according to the following equation:

$$\Delta kWh_{cool} = Size_{cool} \times \frac{12 \ kBtuh/ton}{IEER} \times EFLH_{cool} \times RCF$$

Heating Energy Savings

For heat pump units <65,000 Btu/h, the per measure gross annual electric heating energy savings are calculated according to the following equation:

$$\Delta kWh_{heat} = Size_{heat} \times \frac{1}{HSPF} \times EFLH_{heat} \times RCF$$

For heat pump units ≥65,000 Btu/h, the per measure gross annual electric heating energy savings are calculated according to the following equation:

$$\Delta kWh_{heat} = Size_{heat} \times \left(\frac{1}{COP \times 3.412 Btuh/W}\right) \times EFLH_{heat} \times RCF$$

Cooling and heating savings are added to calculate the per measure gross annual electric energy savings as follows:

 $\Delta kWh = \Delta kWh_{cool} + \Delta kWh_{heat}$

Per measure, gross coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = Size_{cool} \times \frac{12 \ kBtuh/ton}{EER} \times RCF \times CF_{summer}$$

Per measure, gross coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \frac{\Delta kWh_{heat}}{EFLH_{heat}} \times CF_{winter}$$

Where,

ΔkWh	= per measure gross annual electric energy savings
ΔkW	= per measure gross coincident demand reduction
∆kWh _{cool}	= per measure gross annual electric cooling energy savings
∆kWh _{heat}	= per measure gross annual electric heating energy savings
Size _{cool}	= Unit capacity for cooling
Size _{heat}	= Unit capacity for heating
EER	= Energy Efficiency Ratio (EER) at full load
SEER	= seasonal energy efficiency ratio (SEER) of the installed air conditioning equipment. It is used
	for heat pumps and AC units that are smaller than 65,000 Btu/h.
IEER	= integrated energy efficiency ratio (IEER) of the existing or baseline air conditioning equipment.
	IEER is a weighted average of a unit's efficiency at four load points: 100%, 75%,
	50%, and 25% of full cooling capacity. It is used for heat pumps and AC units that are
	65,000 Btu/h or larger.
HSPF	= Heating Seasonal Performance Factor
COP	= Coefficient of Performance (heating)
EFLH _{cool}	= Equivalent Full Load Hours for cooling
EFLHheat	= Equivalent Full Load Hours for heating
RCF	= Refrigerant Charge Factor
CF	= Demand Coincidence Factor

4.1.3.3 Input Variables

Table 4-13. Input Variables for Refrigerant Charge Adjustment

Component	Туре	Value	Units	Source(s)
Size _{cool}	Variable	See customer application	tons (cooling capacity)	Customer application

Component	Туре	Value	Units	Source(s)
Size _{heat}	Variable	See customer application ⁵³ Default: = Size _{cool} x 12 kBtu/h /ton	kBtu/h	Customer application
EFLH _{cool}	Variable	See Table 13-4 in Sub- Appendix F2-II: Non- Residential HVAC Equivalent Full Load Hours	hours, annual	Maryland/Mid-Atlantic TRM v10, p. 422
EFLH _{heat}	Variable	See Table 13-5 in Sub- Appendix F2-II: Non- Residential HVAC Equivalent Full Load Hours	hours, annual	Maryland/Mid-Atlantic TRM v10, p. 423
		See customer application ⁵⁴		Customer application
EER/SEER	Variable	See Table 13-8 and Table 13- 9 in Sub-Appendix F2-III: Non- Residential HVAC Equipment Efficiency Ratings	Btu/W-hr	ASHRAE 90.1 2013
		See customer application ⁵⁴		Customer application
HSPF/COP	Variable	See Table 13-9 in Sub- Appendix F2-III: Non- Residential HVAC Equipment Efficiency Ratings	Btu/W-hr (for HSPF); COP is -	ASHRAE 90.1 2013
RCF ⁵⁵	Variable	AC units: 0.027 HP units: 0.022	-	Maryland/Mid-Atlantic TRM v10, p. 315 and California 2013-2014 Evaluation Report ⁵⁶
CF _{summer}	Variable	Use system capacity to assign CF as follows: < 11.25 tons = 0.588 ≥ 11.25 tons = 0.874	-	Maryland/Mid-Atlantic TRM v10, p. 316
CF _{winter}	Variable	Use system capacity to assign CF as follows: < 11.25 tons = 0.588 ≥ 11.25 tons = 0.874	-	Maryland/Mid-Atlantic TRM v10, p. 316 ⁵⁷

⁵³ When customer-provided heating system size is <80% or >156% of customer-provided cooling system size, a default value will be used, instead. In such instances, it is assumed that the heating system size was incorrectly documented. The acceptable range is based on a review of the AHRI database across numerous manufacturers and heat pump types.

⁵⁴ The customer provided efficiency values are reviewed for reasonability. If the efficiency value is outside acceptable bounds the applicable default value is applied. The bounds were determined from a review of the AHRI database. Bounds are as follows: 9.90 < SEER < 46.2, 7.92 < EER < 22.11, 8.10 < IEER < 34.82, 8.82 < CEER < 16.50, 5.85 < HSPF < 15.07, 2.70 < COP < 15.01.</p>

⁵⁵ RCF values were calculated utilizing the AC Tune-Up measure in the Maryland/Mid-Atlantic TRM v10 and electric savings due to coil cleaning and refrigerant charge adjustments found via extensive literature review.

⁵⁶ California Public Utilities Commission (2016). Impact Evaluation of 2013-14 Commercial Quality Maintenance Programs (HVAC3), <u>www.calmac.org/publications/HVAC3ImpactReport_0401.pdf</u>. While these proportions were not provided in the report, DNV analyzed the same supporting data—though owned by the CPUC and not publicly available—used to produce the tables provided on pages BB-2 and BB-3 of Appendix BB of the report. Whereas the tables provided in Appendix BB were aggregated by program, DNV aggregated the raw data by HVAC-system type to determine appropriate TUF values. This analysis showed that for packaged air-conditioning systems, an average of 54.7% of the overall tune-up savings were attributable to the RCA treatment; for packaged heat pump systems, 44.7% of the overall tune-up savings were attributable to the RCA treatment.

 $^{^{57}}$ The source TRM does not provide a winter CF. Therefore, the summer CF is applied to the winter CF.

4.1.3.4 Default Savings

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

4.1.3.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-14.

DSM Phase	Program Name	Value	Units	Source(s)
VIII	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	5.00	years	Maryland/Mid-Atlantic TRM v10, p. 316
V	Non-Residential Small Business Improvement Program, DSM Phase V	14.00	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

4.1.3.6 Source(s)

The primary sources for this deemed savings approach include the ASHRAE 90.1-2013, Maryland/Mid-Atlantic TRM v10, pp. 315 - 316 and 422-423 as well as the California 2013-14 Impact Evaluation Report, pp. BB-2 to BB-3.

4.1.3.7 Update Summary

Updates made to this section are described in Table 4-15.

Table 4-15.	Summary	/ of U	pdate(s)
-------------	---------	--------	----------

Version	Update Type	Description
2021	Source	Updated page number(s)/version of the Maryland/Mid-Atlantic TRM
	Equation	Added gross winter peak demand reduction equation
	New Table	Effective Useful Life (EUL) by program
2020	Equation	Added size condition of <65,000 Btu/h and ≥65,000 Btu/h for determining which equation to use for ground-source heat pumps. Previously all ground-source heat pumps used equations with IEER and COP efficiency metrics.
v10	Source	Updated page number(s)/version of Maryland/Mid-Atlantic TRM Clarified citation footnote of CPUC report
	Input Variable	Update to weather stations in North Carolina resulted in revised EFLHs for weather-sensitive measures Equipment efficiency levels were revised per update to ASHRAE 2013 in VA and NC

4.1.4 Unitary/Split AC & HP Upgrade

This measure is also offered through the Non-Residential Heating and Cooling Efficiency program. The savings approach is described in Section 2.1.1.

4.1.5 Mini-split Heat Pump

This measure is also offered through the Non-Residential Heating and Cooling Efficiency program. The savings approach is described in Section 2.1.2.

4.1.6 Dual Enthalpy Air-side Economizer

This measure is also offered through the Non-Residential Heating and Cooling Efficiency program. The savings approach is described in Section 2.1.5.

4.1.7 Variable Frequency Drives

4.1.7.1 Measure Description

This measure defines savings that result from installing a variable frequency drive (VFD) control on a HVAC motor with application to supply fans, return fans, exhaust fans, cooling tower fans, chilled water pumps, condenser water pumps, and hot water pumps. The HVAC application must also have a variable load and proper controls in place: feedback control loops to fan/pump motors and variable air volume (VAV) boxes on air-handlers.

The algorithms and inputs to calculate energy and demand reduction for VFDs are provided below. The baseline equipment fan/pump type should be determined from the program application, if available. Otherwise, the minimum savings factors will be applied. This measure is also delivered through the Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII as indicated in section 2.1.4. That program uses a different savings methodology.

For all known types, the energy savings calculations will include the following baseline applications:

Fans

- Constant Volume (CV) Fan
- Airfoil / Backward-Inclined (AF / BI) Fan
- Airfoil / Backward-Inclined w/Inlet Guide Vanes (AF / BI IGV) Fan
- Forward Curved (FC) Fan
- Forward Curved w/Inlet Guide Vanes (FC IGV) Fan
- Unknown (Default)

Pumps

- Chilled Water Pump (CHW-Pump)
- Condenser Water Pump (CW-Pump)
- Hot Water Pump (HW-Pump)
- Unknown (Default)

This measure is offered through different programs listed in Table 4-16. The Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII, uses a different method than the impacts estimation approach described in this section.

Table 4-16. Programs that Offer this Measure

Program Name	Section
Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII	Section 2.1.4
Non-Residential Small Business Improvement Program, DSM Phase V	Section 4.1.7

4.1.7.2 Impacts Estimation Approach

Per measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \frac{hp \ x \ 0.746 \ x \ LF}{\eta} \times HOU \times ESF$$

Per measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \frac{hp \ x \ 0.746 \ x \ LF}{\eta} \times CF_{summer} \times DRF$$

Per measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \frac{hp \ x \ 0.746 \ x \ LF}{\eta} \times CF_{winter} \times DRF$$

Where:

ΔkWh	= per measure gross annual electric energy savings
∆kW _{summer}	= per measure gross coincident summer peak demand reduction
ΔkW_{winter}	= per measure gross coincident winter peak demand reduction
HP	= motor rated horsepower
LF	= motor load factor (%) at fan design airflow rate or pump design flowrate
η	= NEMA-rated efficiency of motor
HOU	= annual hours of use
ESF	= energy savings factor
DRF	= demand reduction factor
CF _{summer}	= summer peak coincidence factor
CFwinter	= winter peak coincidence factor

4.1.7.3 Input Variables

Component	Туре	Value	Unit	Source(s)
НР	Variable	See customer application	horsepower	Customer application
LF	Fixed	0.65	-	Maryland/Mid-Atlantic TRM v10, p. 297
η	Variable	Default see Table 2-16. Baseline Motor Efficiency	-	NEMA Standards Publication Condensed MG 1-2007

Component	Туре	Value	Unit	Source(s)
ESF	Variable	Default see Table 4-19	-	Mid-Atlantic TRM 2015 p. 370; Mid-Atlantic TRM v10, p. 301
DRF	Variable	Default see Table 4-19	-	Mid-Atlantic TRM 2015 p. 370; Mid-Atlantic TRM v10, p. 301
HOU	Variable	See Table 13-6 in Sub-Appendix F2-II: Non-Residential HVAC Equivalent Full Load Hours	hours, annual	Maryland/Mid-Atlantic TRM v10, pp. 299-301
CF _{summer}	Variable	0.28 for fan applications 0.55 for pump applications	-	Mid-Atlantic TRM 2015 p. 370; Maryland/Mid-Atlantic TRM v10, p. 299
CF _{winter}	Variable	0.28 for fan applications 0.55 for pump applications	-	Mid-Atlantic TRM 2015 p. 370; Maryland/Mid-Atlantic TRM v10, p. 299 ⁵⁸

Table 4-18 provides the baseline motor efficiencies that are consistent with the minimum federal accepted motor efficiencies provided by the National Electrical Manufacturers Association (NEMA).⁵⁹

Horsepower (hp)	η
1	0.855
1.5	0.865
2	0.865
3	0.895
5	0.895
7.5	0.917
10	0.917
15	0.924
20	0.930
25	0.936
30	0.936
40	0.941
50	0.945

Horsepower (hp)	η
60	0.950
75	0.954
100	0.954
125	0.954
150	0.958
200	0.962
250	0.962
300	0.962
350	0.962
400	0.962
450	0.962
500	0.962

 $^{^{58}}$ The source TRM does not provide a winter CF. Therefore, the summer CF is applied to the winter CF.

⁵⁹ Refer to NEMA Standards Publication Condensed MG 1-2007 - Information Guide for General Purpose Industrial AC Small and Medium Squirrel-Cage Induction Motor Standards and Table 52 'Full-Load Efficiencies for 60 Hz NEMA Premium Efficiency Electric Motors Rated 600 Volts or Less (Random Wound)' in the above mentioned NEMA Standard.

⁶⁰ NEMA Standards Publication Condensed MG 1-2007 - Information Guide for General Purpose Industrial AC Small and Medium Squirrel-Cage Induction Motor Standards. Assumed Totally Enclosed Fan-Cooled (TEFC), Premiums Efficiency, 1800 RPM (4 Pole).

Table 4-19 provides the energy savings and demand reduction factors by the application and the baseline control types.

VFD Applications	ESF	DRF
Unknown VFD (Minimum) ⁶¹	0.123	0.039
HVAC Fan VFD Savings Factors ⁶²		
Constant Volume	0.717	0.466
Airfoil / Backward Inclined (AF/BI-Fan)	0.475	0.349
Airfoil / Backward Inclined w/Inlet Guide Vanes (AF/BI IGV-Fan)	0.304	0.174
Forward Curved (FC-Fan)	0.240	0.182
Forward Curved w/Inlet Guide Vanes (FC IGV-Fan)	0.123	0.039
Unknown Fan (Average)	0.372	0.242
HVAC Pump VFD Savings Factors ⁶³	· · · ·	
Chilled Water Pump	0.633	0.460
Hot Water Pump	0.652	0.000
Unknown/Other Pump (Average) ⁶⁴	0.643	0.230

4.1.7.4 Default Savings

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

4.1.7.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-20.

DSM Phase	Program Name	Value	Units	Source(s)
VIII	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	15.00		Maryland/Mid-Atlantic TRM v10, p. 301
VII	Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII	15.00	years	Program design assumptions (weighted average of measure lives
V	Non-Residential Small Business Improvement Program, DSM Phase V	14.00		of all measures offered by program and their planned uptake)

⁶¹ Assigned for applications such as compressors, based on DNV research and judgement.

Jun 15 2022

⁶² Mid-Atlantic TRM 2015, p. 370

⁶³ Maryland/Mid-Atlantic TRM v10, p. 301.

⁶⁴ Assigned for pumps not specifically listed in this table, such as condenser water pump.

4.1.7.6 Source(s)

The primary sources for this deemed savings approach are Mid-Atlantic TRM 2015, pp. 367-371 (for fans) and Maryland/Mid-Atlantic TRM v10, pp. 296-301 (for pumps).

4.1.7.7 Update Summary

Updates made to this section are described in Table 4-21.

Version	Update Type	Description
2021	Source	Updated page numbers / version of the Maryland/Mid-Atlantic TRM
	Equation	Added gross winter peak demand reduction equation
	New Table	Effective Useful Life (EUL) by program
2020	Section	Moved methodology from the retired Non-Residential Heating and Cooling Efficiency Program DSM III Section to this section.
v10	Source	Updated page numbers / version of the Mid-Atlantic TRM
	HOU	Update to weather stations in North Carolina resulted in revised HOUs for weather-sensitive measures
	Clarification	Clarified that this methodology is only used for measures implemented during DSM Phase III

Table 4-21. Summary of Update(s)

4.1.8 Programmable Thermostats

4.1.8.1 Measure Description

This measure involves the installation of programmable thermostats⁶⁵ for cooling and/or heating systems in spaces with no existing setback control. The programmable thermostat shall set back the temperature setpoint during unoccupied periods. The savings will be realized from reducing the system usage during unoccupied times. The baseline operation of the HVAC units is assumed to be in continuous ON mode during the unoccupied period with fans cycling to maintain the occupied-period temperature setpoints.

This measure is offered through different programs listed in Table 4-22 and uses the impacts estimation approach described in this section.

Program Name	Section
Non-Residential Small Business Improvement Program, DSM Phase V	Section 4.1.8
Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	Section 9.3.6

⁶⁵ Non-communicating thermostats are not eligible for the demand response programs.

4.1.8.2 Impacts Estimation Approach

AC Units

Per measure, gross annual electric energy savings are calculated according to the following equation for units <65,000 Btu/h:

$$\Delta kWh = \left[Size_{cool} \times \left(\frac{12}{SEER}\right) \times EFLH_{cool} \times ESF_{cool}\right]$$

Per measure, gross annual electric energy savings are calculated according to the following equation for units ≥65,000 Btu/h:

$$\Delta kWh = \left[Size_{cool} \times \left(\frac{12}{IEER}\right) \times EFLH_{cool} \times ESF_{cool}\right]$$

Per measure, gross coincident summer peak demand reduction is considered to be zero since space conditioning equipment typically operates at maximum capacity during peak periods. There are no gross coincident winter peak demand reduction as AC units.

$$\Delta k W_{summer} = 0$$
$$\Delta k W_{winter} = 0$$

Heat Pumps


Per measure, gross annual electric energy savings are calculated according to the following equation for units <65,000 Btu/h:

$$\Delta kWh = \left[Size_{cool} \times \left(\frac{12}{SEER}\right) \times EFLH_{cool} \times ESF_{cool}\right] + \left[Size_{heat} \times EFLH_{heat} \times \left(\frac{1}{HSPF}\right) \times ESF_{heat}\right]$$

Per measure, gross annual electric energy savings are calculated according to the following equation for units ≥65,000 Btu/h:

$$\begin{aligned} \Delta kWh &= \left[Size_{cool} \times \left(\frac{12}{IEER}\right) \times EFLH_{cool} \times ESF_{cool}\right] \\ &+ \left[Size_{heat} \times EFLH_{heat} \times \left(\frac{1}{3.412 \times COP}\right) \times ESF_{heat}\right] \end{aligned}$$

Per measure, gross coincident demand reduction is considered to be zero since space-conditioning equipment typically operates at maximum capacity during peak periods.

4.1.8.3 Input Variables

Table 4-23. Input Parameters for Programmat	ble Thermostat Measure
---	------------------------

Component	Туре	Value	Units	Source(s)
Size _{cool}	Variable	See customer application	tons of cooling capacity	Customer application
Ci-c	Variable	See customer application		Customer application
Sizeheat		Default ⁶⁶ = Size _{cool} x 12 kBtu/h / ton	kBtu/h	
EFLH _{heat}	Variable	See Table 13-5 in Sub-Appendix F2-II: Non-Residential HVAC Equivalent Full Load Hours	hours, annual	Maryland/Mid-Atlantic TRM v10, p. 423
EFLH _{cool}	Variable	Refer to Table 13-4 in Sub-Appendix F2- II: Non-Residential HVAC Equivalent Full Load Hours	hours, annual	Maryland/Mid-Atlantic TRM v10, p. 422
	IEER Variable	See customer application ⁶⁷	kBtu/kW-hour	Customer application
SEER/IEER		See Table 13-8 and Table 13-9 in Sub- Appendix F2-III: Non-Residential HVAC Equipment Efficiency Ratings		ASHRAE 90.1 2013, Table 6.8.1-1 and Table 6.8.1B
		See customer application ⁶⁷	kBtu/kW-hour	Customer application
HSPF/COP	Variable	See Table 13-9 in Sub-Appendix F2-III: Non-Residential HVAC Equipment Efficiency Ratings	(except COP is dimensionless)	ASHRAE 90.1 2013, Table 6.8.1-1 and Table 6.8.1-2
ESF _{cool}	Fixed	0.090	-	NY TRM 2018, p. 263
ESF _{heat}	Fixed	0.068	-	NY TRM 2018, p. 263

4.1.8.4 Default Savings

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

4.1.8.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-24.

⁶⁶ When customer-provided heating system size is <80% or >156% of customer-provided cooling system size, a default value will be used, instead. In such instances, it is assumed that the heating system size was incorrectly documented. The acceptable range is based on a review of the AHRI database across numerous manufacturers and heat pump types.

⁶⁷ The customer provided efficiency values are reviewed for reasonability. If the efficiency value is outside acceptable bounds the applicable default value is applied. The bounds were determined from a review of the AHRI database. Bounds are as follows: 9.90 < SEER < 46.2, 7.92 < EER < 22.11, 8.10 < IEER < 34.82, 8.82 < CEER < 16.50, 5.85 < HSPF < 15.07, 2.70 < COP < 15.01.</p>

Table 4-24. Effective Useful Life for Lifecycle Savings Calculations

	DSM Phase	Program Name	Value	Units	Source(s)
	VIII	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	11.00	years	New York TRM 2018, p. 264
	v	Non-Residential Small Business Improvement Program, DSM Phase V	14.00	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

4.1.8.6 Source(s)

The primary source for this deemed savings approach is the ASHRAE 90.1-2013, New York TRM 2018, pp. 262-264, and Maryland/Mid-Atlantic TRM v10, pp. 422-423.

4.1.8.7 Update Summary

Updates made to this section are described in Table 4-25.

Table 4-25. Summary of Update(s)

Version	Update Type	Description		
2021	Source	Updated page numbers / version of the Mid-Atlantic TRM		
	New Table	Effective Useful Life (EUL) by program		
2020	None	No change		
v10 Source		Updated page numbers / version of the New York TRM		
	Input Variable	 Update to weather stations in North Carolina resulted in revised EFLHs for weather-sensitive measures Equipment efficiency levels were revised per update to ASHRAE 2013 in VA and NC 		

4.2 Lighting End Use

4.2.1 Lighting, Fixtures, Lamps, and Delamping

This measure is also offered through the Non-Residential Lighting Systems and Controls program. The savings approach is described in Section 1.1.1.

4.2.2 Sensors and Controls

This measure is also offered through the Non-Residential Lighting Systems and Controls program. The savings approach is described in Section 1.1.2.

4.2.3 LED Exit Signs

4.2.3.1 Measure Description

This measure realizes energy savings by installing an exit sign that is illuminated with light emitting diodes (LED). This measure should be limited to retrofit installations.

This measure is offered through different programs listed in Table 4-26, and uses the impacts estimation approach described in this section.

Table 4-26. Programs that Offer this Measure

Program Name	Section
Non-Residential Small Business Improvement Program, DSM Phase V	Section 4.2.3
Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	Section 9.4.3
Non-Residential Multifamily Program, DSM Phase VIII	Section 11.4.2

4.2.3.2 Impacts Estimation Approach

Per measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \frac{(Qty_{base} \times watts_{base} - Qty_{ee} \times watts_{ee})}{1,000 W/kW} \times HOU \times WHF_e \times ISR$$

Per measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \frac{(Qty_{base} \times watts_{base} - Qty_{ee} \times watts_{ee})}{1,000 W/kW} \times WHF_{d,summer} \times CF_{summer} \times ISR$$

Per measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \frac{(Qty_{base} \times watts_{base} - Qty_{ee} \times watts_{ee})}{1,000 W/kW} \times WHF_{d,winter} \times CF_{winter} \times ISR$$

Where:

∆kWh	= per measure gross annual electric energy savings
∆kW _{summe}	r = per measure gross coincident summer peak demand reduction
ΔkW_{winter}	= per measure gross coincident winter peak demand reduction
watts _{base}	= connected load of the baseline exit sign
wattsee	= connected load of the efficient exit sign
Qty _{base}	= number of baseline exit signs
Qtyee	= number of efficient exit signs
HOU	= average hours of use per year
WHFe	= waste heat factor for energy to account for cooling savings from efficient lighting

 $WHF_{d,summer}$ = waste heat factor for demand to account for cooling savings from efficient lighting $WHF_{d,winter}$ = waste heat factor for demand to account for heating savings from efficient lighting CF_{summer} = summer peak coincidence factor

CF_{winter} = winter peak coincidence factor

ISR = in-service rate, the percentage of rebated measures actually installed

4.2.3.3 Input Variables

Component	Туре	Value	Unit	Source(s)
Qty _{base}	Variable	See customer application	-	Customer application
Qtyee	Variable	See customer application	-	Customer application
		Default: equal to Qty _{base}		
watts _{base}	Variable	See customer application	watts	Customer application
		Default: 16 W		Maryland/Mid-Atlantic TRM v10, p. 215, ENERGY STAR ⁶⁸
wattsee	Variable	See customer application	watts	Customer application
		Default: 5 W LED		Maryland/Mid-Atlantic TRM v10, p. 314, ENERGY STAR
HOU	Fixed	8,760	hours, annual	Maryland/Mid-Atlantic TRM v10, p. 215
WHF₀	Variable	See Table 13-15 in Sub-Appendix F2-IV: Non-Residential Lighting Factors: Annual Equivalent Hours, Coincidence Factors and Waste Heat Factors Default savings assumed as lighting condition as Unconditioned space, WHFe=1.0	-	Maryland/Mid-Atlantic TRM v10, p. 215
WHF _{d,summer}	Variable	See Table 13-15 in Sub-Appendix F2-IV: Non-Residential Lighting Factors: Annual Equivalent Hours, Coincidence Factors and Waste Heat Factors Default savings assumed as lighting condition as Unconditioned space, WHFe=1.0	-	Maryland/Mid-Atlantic TRM v10, p. 216

Jun 15 2022

⁶⁸ LED exit sign default values come from an ENERGY STAR[®] report: Save Energy, Money and Prevent Pollution with Light-Emitting Diode (LED) Exit Signs:<u>http://www.energystar.gov/ia/business/small_business/led_exitsigns_techsheet.pdf</u> (accessed 7/13/2018).

Jun 15 2022

Component Type Value		Value	Unit	Source(s)
WHF _{d,winter}	Variable	See Table 13-15 in Sub-Appendix F2-IV: Non-Residential Lighting Factors: Annual Equivalent Hours, Coincidence Factors and Waste Heat Factors Default savings assumed as lighting condition as Unconditioned space, WHFe=1.0	-	Maryland/Mid-Atlantic TRM v10, p. 216
CF _{summer}	Fixed	1.0	-	Maryland/Mid-Atlantic TRM v10, p. 216 ⁶⁹
CFwinter	Fixed	1.0	-	Maryland/Mid-Atlantic TRM v10, p. 216 ⁷⁰
ISR	Fixed	1.0	-	Maryland/Mid-Atlantic TRM v10, p. 215 ⁷¹

Note that the coincidence factor (CF) is 1 for this measure since exit signs are on continuously, including during the entirety of the peak period.

4.2.3.4 Default Savings

If the proper values are not supplied, a default savings may be applied using conservative input values. The default per measure gross annual electric energy savings will be assigned according to the following calculation:

$$\Delta kWh = \frac{(Qty_{base} \times watts_{base} - Qty_{ee} \times watts_{ee})}{1,000 W/kW} \times HOU \times WHF_e \times ISR$$
$$= \frac{(1 \times 16 W - 1 \times 5 W)}{1,000 W/kW} \times 8,760 hour \times 1.0 \times 1.0$$
$$= 96.4 kWh$$

The default per measure gross coincident summer peak demand reduction is calculated using the following calculation:

$$\Delta kW_{summer} = \frac{(Qty_{base} \times watts_{base} - Qty_{ee} \times watts_{ee})}{1,000 W/kW} \times WHF_{d,summer} \times CF_{summer} \times ISR$$

$$=\frac{(1\times16W-1\times5W)}{1,000W/kW}\times1.0\times1.0\times1.0$$

⁶⁹ Efficiency Vermont Technical Reference Manual 2009-55, December 2008.

⁷⁰ Ibid.

⁷¹ EmPOWER Maryland DRAFT Final Impact Evaluation Report Evaluation Year 4 (June 1, 2012 – May 31, 2013) Commercial & Industrial Prescriptive & Small Business Programs, Navigant, March 31, 2014.

 $= 0.011 \, kW$

The default per measure gross coincident demand reduction is calculated using the following calculation:

$$\Delta kW_{winter} = \frac{(Qty_{base} \times watts_{base} - Qty_{ee} \times watts_{ee})}{1,000 W/kW} \times WHF_{d,winter} \times CF_{winter} \times ISR$$
$$= \frac{(1 \times 16 W - 1 \times 5 W)}{1,000 W/kW} \times 1.0 \times 1.0 \times 1.0$$
$$= 0.011 kW$$

4.2.3.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-28.

Table 4-28. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program Name	Value	Units	Source(s)
	Non-Residential Multifamily Program, DSM Phase VIII	5.00	years	Maryland/Mid-Atlantic TRM v10, p. 216
VIII	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII			
v	Non-Residential Small Business Improvement Program, DSM Phase V	14.00	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

4.2.3.6 Source(s)

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 215-216.

4.2.3.7 Update Summary

Updates made to this section are described in Table 4-29.

Table 4-29.	Summar	y of Update(s)
-------------	--------	----------------

Version	Update Type	Description
2021	Source	Updated page numbers / version of the Mid-Atlantic TRM
	Equation	Added gross winter peak demand reduction equation
	New Table	Effective Useful Life (EUL) by program

Jun 15 2022

Version	Update Type	Description
2020	None	No change
v10	Source	Updated page numbers / version of the Mid-Atlantic TRM

4.3 Compressed Air End Use

4.3.1 Air Compressor Leak Repair

4.3.1.1 Measure Description

This measure realizes energy savings by repairing compressed air leaks. Reducing the amount of air leaked in the compressed air system reduces the load on the compressors and thereby saving energy.

This measure is offered in the Non-Residential Small Manufacturing Program, DSM Phase VII in Section 7.1.2 but uses a different methodology. That program uses site-specific equipment and operating conditions for determining the system efficiency. The savings for this program uses deemed values for the system efficiency.

4.3.1.2 Impacts Estimation Approach

Per measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = hp \times LF \times \frac{cfm}{hp} \times (Leak_{base} - Leak_{ee}) \times \frac{kW}{cfm} \times HOU$$

Per measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta k W_{summer} = \frac{\Delta k W h \times C F_{summer}}{H O U}$$

Per measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\Delta k W_{winter} = \frac{\Delta k W h \times C F_{winter}}{H O U}$$

Where:

∆kWh	= per measure gross annual electric energy savings
ΔkW_{summer}	= per measure gross coincident summer peak demand reduction
ΔkW_{winter}	= per measure gross coincident winter peak demand reduction
hp	= rated horsepower
LF	= load factor of air compressor
cfm/hp	= compressed airflow rate per air compressor motor horsepower
Leak _{base}	= baseline percentage of compressed air produced that is leaked
Leakee	= energy-efficient percentage of compressed air produced that is leaked
kW/cfm	= energy consumed for each cubic foot of compressed air per minute produced
HOU	= annual hours of operation

= summer coincidence factor of air compressor $\mathsf{CF}_{\mathsf{summer}}$ = winter coincidence factor of air compressor CFwinter

4.3.1.3 **Input Variables**

Table 4-30. Input Variables for Air Compressor Leak Repair Measure

Component	Туре	Value	Units	Source(s)
hp	Variable	See customer application	hp	Customer application
LF	Variable	See customer application	-	Customer application
cfm/hp	Variable	See customer application	cfm/hp	Customer application
Leak _{base}	Variable	See customer application	-	Customer application
Leakee	Variable	See customer application	-	Customer application
kW/cfm	Fixed	0.17	kW/cfm	Michigan Energy Measure Database ⁷²
HOU	Fixed	6,240	hours, annual	Michigan Energy Measure Database 2018 ⁷³
CF _{summer}	Fixed	0.865	-	Michigan Energy Measure Database 2018 ⁷⁴
CF _{summer}	Fixed	0.865	-	Michigan Energy Measure Database 2018 ⁷⁵

4.3.1.4 **Default Savings**

There are no default savings for this measure because the savings are dependent on the change in the percent air leaked, the system capacity and load factor.

Effective Useful Life 4.3.1.5

The effective useful life of this measure is provided in Table 4-31.

DSM Phase	Program Name	Value	Units	Source(s)
v	Non-Residential Small Business Improvement Program, DSM Phase V	14.00	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

⁷² Michigan Energy Measure Database 2018, at http://www.michigan.gov/mpsc, Document "FES-I20 Compressed Air Leak Survey and Repair Michigan 11282017.doc," August 317, p. 1. ⁷³ Ibid.

⁷⁴ Ibid.

⁷⁵ The source TRM does not provide a winter CF. Therefore, the summer CF is applied to the winter CF.

4.3.1.6 Source(s)

The primary source for this deemed savings approach is the Michigan Energy Measure Database 2018, at http://www.michigan.gov/mpsc, Document "FES-I20 Compressed Air Leak Survey and Repair Michigan 11282017.doc," August 317.

4.3.1.7 Update Summary

Updates made to this section are described in Table 4-32.

Table 4-32	Summary	of Update(s)
------------	---------	--------------

Version	Update Type	Description
2021 New Table Effective Useful Life (EUL) by program		Effective Useful Life (EUL) by program
	Equation	Added gross winter peak demand reduction equation
2020	None	No Change
v10	None	No Change

5 NON-RESIDENTIAL PRESCRIPTIVE PROGRAM, DSM PHASE VI

Dominion's Non-Residential Prescriptive Program provides qualifying business owners incentives to use pursue one or more of the qualified energy efficiency measures through a local, participating contractor in Dominion's contractor network. To qualify for this program, the customer must be responsible for the electric bill and must be the owner of the facility or reasonably able to secure permission to complete the measures. All program measures are summarized in Table 5-1

End Use	Measure	Manual Section		
Cooking	Commercial Convection Oven	Section 5.1.1		
	Commercial Combination Oven	Section 5.1.2		
	Commercial Fryer	Section 5.1.3		
	Commercial Griddle			
	Commercial Hot Food Holding Cabinet	Section 5.1.5		
	Commercial Steam Cooker	Section 5.1.6		
HVAC	Duct Testing & Sealing	Section 4.1.1		
	Unitary/Split AC/HP Tune-up	Section 4.1.2		
	Variable Speed Drives on Kitchen Fan	Section 5.2.3		
Plug Load	Smart Strip	Section 5.3.1		
Refrigeration	Door Closer	Section 5.4.1		
	Door Gasket	Section 5.4.2		
	Commercial Freezers and Refrigerators – Solid Door	Section 5.4.3		
	Commercial Ice Maker	Section 5.4.4		
	Evaporator Fan ECM Retrofit	Section 5.4.5		
	Evaporator Fan Control	Section 5.4.6		
	Floating Head Pressure Control	Section 5.4.7		
	Low/No-sweat Door Film	Section 5.4.8		
	Refrigeration Night Cover	Section 5.4.9		
Refrigerator Coil Cleaning		Section 5.4.10		
	Suction Pipe Insulation (Cooler & Freezer)	Section 5.4.11		
	Strip Curtain (Cooler & Freezer)	Section 5.4.12		
	Vending Machine Miser	Section 5.4.13		

Table 5-1. Non-Residential Prescriptive Program Measure List

5.1 Cooking End Use

5.1.1 Commercial Convection Oven

5.1.1.1 Measure Description

This measure involves the installation of an ENERGY STAR[®] qualified commercial convection oven. Commercial convection ovens that are ENERGY STAR[®] certified have higher heavy load cooking efficiencies and lower idle energy rates making them more efficient than standard models.

The baseline equipment is assumed to be a standard efficiency convection oven with a heavy-load efficiency of 65% for full-size electric ovens (i.e., a convection oven that can accommodate full-size sheet pans measuring 18 x 26 x 1inch) and 68% for half-size electric ovens (i.e., a convection oven that can accommodate half-size sheet pans measuring 18 x 13 x 1-inch).

This measure is offered through different programs listed in Table 5-2, and uses the impacts estimation approach described in this section.

Table 5-2. Programs that Offer this Measure

Program Name	Section
Non-Residential Prescriptive Program, DSM Phase VI	Section 5.1.1
Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII	Section 10.1.2

5.1.1.2 Impacts Estimation Approach

The baseline annual electric energy consumption is calculated as follows:

$$kWh_{base} = \left[lb_{daily} \times \frac{E_{conv}}{\eta_{base}} + kW_{base,idle} \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{base}} \right) \right] \times Days$$

The efficient annual electric energy consumption is calculated as follows:

$$kWh_{ee} = \left[lb_{daily} \times \frac{E_{conv}}{\eta_{ee}} + kW_{ee,idle} \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{ee}} \right) \right] \times Days$$

Per measure, gross annual electric energy savings are calculated using the following equations:

 $\Delta kWh = kWh_{base} - kWh_{ee}$

Per measure, gross coincident summer peak demand reduction is calculated using the following equation:

$$\Delta k W_{summer} = \frac{\Delta k W h}{(Hours_{daily} \times Days)} \times CF_{summer}$$

DNV Energy Insights USA Inc.

Jun 15 2022

Per measure, gross coincident winter peak demand reduction is calculated using the following equation:

$$\Delta kW_{winter} = \frac{\Delta kWh}{(Hours_{daily} \times Days)} \times CF_{winter}$$

where:

∆kWh	= per measure gross annual electric energy savings
∆kW _{summer}	= per measure gross coincident summer peak demand reduction
∆kW _{winter}	= per measure gross coincident winter peak demand reduction
hours _{daily}	= average daily operating hours
Econv.	= ASTM Energy to Food; the amount of energy absorbed by food during convection cooking
Ib daily	= pounds of food cooked per day
days	= annual days of operation
η_{base}	= baseline equipment cooking energy efficiency
η_{ee}	 efficient equipment cooking energy efficiency
kW _{base,idle}	= baseline equipment idle energy rate
kW _{ee,idle}	= efficient equipment idle energy rate
PC _{base}	= baseline equipment production capacity
PCee	 efficient equipment production capacity
CF _{summer}	= summer peak coincidence factor
CFwinter	= winter peak coincidence factor

5.1.1.3 Input Variables

Table 5-3. Input Parameters	for Convection Oven
-----------------------------	---------------------

Component	Туре	Value	Units	Source(s)
	Variable	See customer application		Customer application
Hours _{daily}		For defaults see Table 13-17 in Sub-Appendix F2-V: Non- Residential Commercial Kitchen Inputs	hours, daily	Maryland/Mid-Atlantic TRM v10, p. 383
		See customer application		Customer application
Days	Variable	Variable For defaults see Table 13-17 in Sub-Appendix F2-V: Non- Residential Commercial Kitchen Inputs		Maryland/Mid-Atlantic TRM v10, p. 383
	Variable	See customer application	lb, daily	Customer application
Ib _{daily}		Default: 100		Maryland/Mid-Atlantic TRM v10, p. 383
Econv	Econv Fixed 0.0732		kWh/lb	Maryland/Mid-Atlantic TRM v10, p. 383
PC _{base}	Variable	Half Size: 45 Full Size: 90	lb/hour	Maryland/Mid-Atlantic TRM v10, p. 383
η_{base}	Variable	Half Size: 0.68 Full Size: 0.65	-	Maryland/Mid-Atlantic TRM v10, p. 383
kW _{base,idle} Variable Half Size: 1.03 Full Size: 2.00		kW	Maryland/Mid-Atlantic TRM v10, p. 383	

Jun 15 2022

Component	Туре	Value	Units	Source(s)
kW _{ee,idle}	kW _{ee,idle} Variable Half Size: 1.00 Full Size: 1.60		kW	Maryland/Mid-Atlantic TRM v10, p. 382
PCee	Variable	Half Size: 50 Full Size: 90	lb/hour	Maryland/Mid-Atlantic TRM v10, p. 383
η_{ee}	Variable	Half Size: 0.71 Full Size: 0.71	-	Maryland/Mid-Atlantic TRM v10, p. 383
CF _{summer}	Fixed	1.0	-	Maryland/Mid-Atlantic TRM v10, p. 384 ⁷⁶
CF _{winter}	Fixed	1.0	-	Maryland/Mid-Atlantic TRM v10, p. 384 ⁷⁶

5.1.1.4 Default Savings

If the proper values are not supplied, a default savings may be applied using conservative input values. The default gross annual electric energy savings for a half size convection oven will be assigned as follows:

$$kWh_{base} = \left[lb_{daily} \times \frac{E_{conv}}{\eta_{base}} + kW_{base,idle} \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{base}} \right) \right] \times Days$$
$$= \left[100 \ lb \times \frac{0.0732 \ kW/lb}{0.68} + 1.03 \ kW \times \left(13.1 \ hr - \frac{100 \ lb/day}{45 \ lb/hr} \right) \right] \times 307 \ days$$

$$= 6,744 \, kWh$$

$$kWh_{ee} = \left[lb_{daily} \times \frac{E_{conv}}{\eta_{ee}} + kW_{ee,idle} \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{ee}} \right) \right] \times Days$$
$$= \left[100 \ lb \times \frac{0.0732 \ kW/lb}{0.71} + 1.00 \ kW \times \left(13.1 \ hr - \frac{100 \ lb/day}{50 \ lb/hr} \right) \right] \times 307 \ days$$
$$= 6,572 \ kWh$$

$$\Delta kWh = kWh_{base} - kWh_{ee}$$
$$= 6,744 \, kWh - 6,572 \, kWh$$

$$= 172 \, kWh$$

⁷⁶ No specific study of commercial kitchen equipment coincident peak demand savings is available. In the absence of this information, a simple average demand value is used: Annual energy savings divided by the total annual hours of operation and the coincidence factor is 1.0.

The default gross coincident summer peak demand reduction is calculated using the following calculation:

$$\Delta kW_{summer} = \frac{\Delta kWh}{(Hours_{daily} \times Days)} \times CF_{summer}$$
$$= \frac{172 \ kWh}{(13.1 \ hr \times 307 \ day)} \times 1.0$$
$$= 0.043 \ kW$$

The default gross coincident winter peak demand reduction is calculated using the following calculation:

$$\Delta kW_{winter} = \frac{\Delta kWh}{(Hours_{daily} \times Days)} \times CF_{winter}$$
$$= \frac{172 \, kWh}{(13.1 \, hr \times 307 \, day)} \times 1.0$$

$$= 0.043 \, kW$$

5.1.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 5-4.

Table 5-4. Effective Useful Life for Lifecycle Savings Calculations

D	SM Phase Program Name		Value	Units	Source(s)
	VIIINon-Residential Midstream Energy Efficiency Products Program, DSM Phase VIIIVINon-Residential Prescriptive Program, DSM Phase VI		12.00	years	Maryland/Mid-Atlantic TRM v10, p. 385
			6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

5.1.1.6 Source(s)

The primary sources for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 382-385.

5.1.1.7 Update Summary

Updates made to this section are described in Table 5-5.

Table 5-5. Summary of Update(s)

Version	Update Type	Description
2021	Source	Updated page numbers / version of the Mid-Atlantic TRM
	Input variable	Updated Hour _{daily} and Days values and default customer building type
	Equation	Added equation for coincident winter peak demand reduction
	New Table	Effective Useful Life (EUL) by program
2020 None No		No change
v10	Source	Updated page numbers / version of the Mid-Atlantic TRM
	Input variable	Clarified default assumption values

5.1.2 Commercial Combination Oven

5.1.2.1 Measure Description

This measure involves the installation of an ENERGY STAR[®] qualified combination oven. A combination oven is a convection oven that includes the added capability to inject steam into the oven cavity and typically offers at least three distinct cooking modes. This measure applies to time of sale opportunities. The baseline equipment is assumed to be a typical standard efficiency electric combination oven.

This measure is offered through different programs listed in Table 5-6, and uses the impacts estimation approach described in this section.

Table 5-6. Programs that Offer this Measure

Program Name	Section
Non-Residential Prescriptive Program, DSM Phase VI	Section 5.1.1
Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII	Section 10.1.1

5.1.2.2 Impacts Estimation Approach

The baseline annual electric energy consumption is calculated as follows:

$$kWh_{base,conv} = \left[lb_{daily} \times \frac{E_{conv}}{\eta_{base,conv}} + kW_{base,conv,idle} \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{base,conv}} \right) \right] \\ \times (1 - PCT_{steam}) \times Day$$

DNV $kWh_{base,steam} = \left[lb_{daily} \times \frac{E_{steam}}{\eta_{base,steam}} + kW_{base,steam,idle} \\ \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{base,steam}} \right) \right] \times PCT_{steam} \times Days$

 $kWh_{base} = kWh_{base,conv} + kWh_{base,steam}$

The efficient annual electric energy consumption is calculated as follows:

$$kWh_{ee,conv} = \left[lb_{daily} \times \frac{E_{conv}}{\eta_{ee,conv}} + kW_{ee,conv,idle} \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{ee,conv}} \right) \right] \\ \times (1 - PCT_{steam}) \times Days$$

$$kWh_{ee,steam} = \left[lb_{daily} \times \frac{E_{steam}}{\eta_{ee,steam}} + kW_{ee,steam,idle} \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{ee,steam}} \right) \right] \\ \times PCT_{steam} \times Days$$

$$kWh_{ee} = kWh_{ee,conv} + kWh_{ee,steam}$$

Per measure, gross annual electric energy savings are calculated using the following equation:

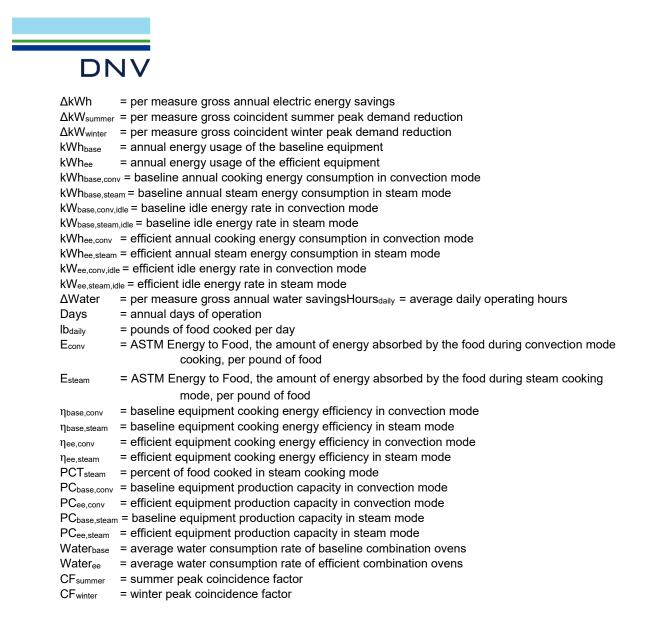
$$\Delta kWh = kWh_{base} - kWh_{ee}$$

Per measure, gross coincident summer peak demand reduction is calculated using the following equation:

$$kW_{summer} = \frac{\Delta kWh}{(Hours_{daily} \times Days)} \times CF_{summer}$$

Per measure, gross coincident winter peak demand reduction is calculated using the following equation:

$$kW_{winter} = \frac{\Delta kWh}{(Hours_{daily} \times Days)} \times CF_{winter}$$


Per measure, gross annual water savings are calculated according to the following equation.

$$\Delta Water = (Water_{base} - Water_{ee}) \times Hours_{dailv} \times PCT_{steam} \times Days$$

Where:

DNV Energy Insights USA Inc.

Jun 15 2022

5.1.2.3 Input Variables

Component	Туре	Value	Units	Source(s)
		See customer application		Customer application
Hours _{daily} Variable		For defaults see Table 13-17 in Sub-Appendix F2-V: Non- Residential Commercial Kitchen Inputs	hours, daily	Maryland/Mid-Atlantic TRM v10, p. 387
		See customer application		Customer application
Days	Variable	For defaults see Table 13-17 in Sub-Appendix F2-V: Non- Residential Commercial Kitchen Inputs	days, annual	Maryland/Mid-Atlantic TRM v10, p. 387

Table 5-7. Input Parameters for Commercial Electric Combination Ovens

D	N	V

Component	Туре	Value	Units	Source(s)
		See customer application	pounds,	Customer application
Ib _{daily}	Variable	Default: 200	daily	Maryland/Mid-Atlantic TRM v10, p. 387
		See customer application		Customer application
PCT _{steam}	Variable	Default: 0.50	-	Maryland/Mid-Atlantic TRM v10, p. 387
	Variable	See customer application		Maryland/Mid-Atlantic TRM v10, p.
F C I conv	Vallable	Default: 0.50	-	387
E _{conv}	Fixed	0.0732	kWh/lb	Maryland/Mid-Atlantic TRM v10, p. 387
Esteam	Fixed	0.0308	kWh/lb	Maryland/Mid-Atlantic TRM v10, p. 387
PC _{base,conv}	Variable	<15 pans: 79 ≥15 pans: 166	lb/hr	Maryland/Mid-Atlantic TRM v10, p. 387
PC _{base,steam}	Variable	<15 pans: 126 ≥15 pans: 295	lb/hr	Maryland/Mid-Atlantic TRM v10, p. 387
ηbase,conv	Fixed	0.72	-	Maryland/Mid-Atlantic TRM v10, p. 387
$\eta_{\text{base,steam}}$	base,steam Fixed 0.49		-	Maryland/Mid-Atlantic TRM v10, p. 387
kWbase,conv,idle	Variable	able <15 pans: 1.320 ≥15 pans: 2.280		Maryland/Mid-Atlantic TRM v10, p. 387
kW _{base,steam,idle}	Variable	<15 pans: 5.260 ≥15 pans: 8.710	kW	Maryland/Mid-Atlantic TRM v10, p. 387
kWee,conv,idle ⁷⁷	Variable	<15 pans: 1.299 ≥15 pans: 2.099	kW	Maryland/Mid-Atlantic TRM v10, p. 387
kWee,steam,idle ⁷⁸	Variable	<15 pans: 1.970 ≥15 pans: 3.300	kW	Maryland/Mid-Atlantic TRM v10, p. 387
PC _{ee,conv}	PC _{ee,conv} Variable <15 pans: 119 ≥15 pans: 201		lb/hr	Maryland/Mid-Atlantic TRM v10, p. 387
PC _{ee,steam}	PC _{ee,steam} Variable <15 pans: 177 ≥15 pans: 349		lb/hr	Maryland/Mid-Atlantic TRM v10, p. 387
η _{ee,conv}	Fixed	0.76	-	Maryland/Mid-Atlantic TRM v10, p. 387
ηee,steam	Fixed	0.55	-	Maryland/Mid-Atlantic TRM v10, p. 387
Water _{base}	Fixed	40.0	gal/ hr	Ohio TRM 2010, p. 260 ⁷⁹

⁷⁷ Maryland/Mid-Atlantic TRM v10 provided an equation for calculating this value based on number of pans, as follows: =0.080 x Number of pans + 0.4989. To establish fixed kW values for efficient equipment, DNV reviewed the list of qualifying ENERGY STAR[®] electric combination ovens and determined the mode for the number of pans: 10 pans is the mode for units having <15 pans (11 of 27 models or 41%); and 20 pans is the mode of capacity for units having ≥15 pans (5 of 7 models or 70%). These modes were used to calculate the kW values for <15 pans and ≥15 pans, respectively.</p>

⁷⁸ Maryland/Mid-Atlantic TRM v10 provided an equation for calculating this value based on number of pans, as follows: = 0.133 x Number of pans + 0.64. To establish fixed kW values for efficient equipment, the list of qualifying ENERGY STAR[®] electric combination ovens was reviewed to determine t the mode for the number of pans: 10 pans is the mode for units having <15 pans (11 of 27 models or 41%); and 20 pans is the mode of capacity for units having ≥15 pans (5 of 7 models or 70%). These modes were used to calculate the kW values for <15 pans and ≥15 pans, respectively.</p>

⁷⁹ Ohio TRM Revised Edition, 2013. Food Service Technology Center (FSTC), based on assumption that baseline ovens use water at an average rate of 40 gal/hr while the efficient models use water at an average rate of 20 gal/hr.

Jun 15 2022

Component	Туре	Value	Units	Source(s)
Wateree	Fixed	20.0	gal/ hr	Ohio TRM 2010, p. 260 ⁸⁰
CF _{summer}	Fixed	1.0	-	Maryland/Mid-Atlantic TRM v10, p. 387 ⁸¹
CFwinter	Fixed	1.0	-	Maryland/Mid-Atlantic TRM v10, p. 387 ⁸¹

5.1.2.4 Default Savings

If the proper values are not supplied, a default savings may be applied using conservative input values. The default efficient annual electric energy consumption will be as follows for <15 pans:

$$kWh_{base,conv} = \left[lb_{daily} \times \frac{E_{conv}}{\eta_{base}} + kW_{base,conv,idle} \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{base,conv}} \right) \right] \\ \times (1 - PCT_{steam}) \times Days$$
$$= \left[200 \ lb \times \frac{0.0732 \ kWh/lb}{0.72} + 1.320 \ kW \times \left(13.1 \ hr - \frac{200 \ lb}{79 \ lb/hr} \right) \right] \\ \times (1 - 0.50) \times 307 \ days$$
$$= 5,263 \ kWh$$
$$kWh_{base,steam} = \left[lb_{daily} \times \frac{E_{steam}}{m} + kW_{base,steam,idle} \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{base}} \right) \right]$$

$$= \left[200 \ lb \times \frac{0.0308 \ kWh/lb}{0.49} + 5.260 \ kW \times \left(13.1 \ hr - \frac{200 \ lb}{126 \ lb/hr} \right) \right]$$
$$\times 0.50 \times 307 \ days$$

$$= 11,225 \, kWh$$

 $kWh_{base} = kWh_{base,conv} + kWh_{base,steam}$

⁸⁰ Ibid

⁸¹ No specific study of commercial kitchen equipment coincident peak demand savings is available. In the absence of this information, a simple average demand value is used: Annual energy savings divided by the total annual hours of operation and the coincidence factor is 1.0.

 $= 5,263 \, kWh + \, 11,225 \, kWh$

 $= 16,488 \, kWh$

The efficient annual electric energy consumption is calculated as follows:

$$kWh_{ee,conv} = \left[lb_{daily} \times \frac{E_{conv}}{\eta_{ee,conv}} + kW_{ee,conv,idle} \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{ee,conv}} \right) \right]$$
$$\times (1 - PCT_{steam}) \times Days$$
$$= \left[200 \ lb \times \frac{0.0732 \ kWh/lb}{0.76} + 1.299 \ kW \times \left(13.1 \ hr - \frac{200 \ lb}{119 \ lb/hr} \right) \right]$$
$$\times (1 - 0.50) \times 307 \ days$$

$$= 5,234 \, kWh$$

$$kWh_{ee,steam} = \left[lb_{daily} \times \frac{E_{steam}}{\eta_{ee,steam}} + kW_{ee,steam,idle} \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{ee,steam}} \right) \right] \\ \times PCT_{steam} \times Days$$

$$= \left[200 \ lb \times \frac{0.0308 \ kWh/lb}{0.55} + 1.970 \ kW \times \left(13.1 \ hr - \frac{200 \ lb}{177 \ lb/hr} \right) \right] \\ \times 0.50 \times 307 \ days$$

$$= 5,339 \, kWh$$

$$kWh_{ee} = kWh_{ee,conv} + kWh_{ee,steam}$$
$$= 5,234 kWh + 5,339 kWh$$
$$= 10,573 kWh$$

Per measure, gross annual electric energy savings are calculated using the following equation:

$$\Delta kWh = kWh_{base} - kWh_{ee}$$

$$= 16,488 \ kWh - 10,573 \ kWh$$

DNV Energy Insights USA Inc.

Jun 15 2022

 $= 5,915 \, kWh$

Per measure, gross coincident summer peak demand reduction is calculated using the following equation:

$$\Delta kW_{summer} = \frac{\Delta kWh}{Hours_{daily} \times Days} \times CF_{summer}$$
$$= \frac{5,915 \ kWh}{13.1 \ hr \times 307 \ days} \times 1.0$$
$$= 1.47 \ kW$$

Per measure, gross coincident winter peak demand reduction is calculated using the following equation:

$$\Delta kW_{winter} = \frac{\Delta kWh}{Hours_{daily} \times Days} \times CF_{winter}$$
$$= \frac{5,915 \ kWh}{13.1 \ hr \times 307 \ days} \times 1.0$$
$$= 1.47 \ kW$$

Per measure, gross annual water savings are calculated according to the following equation.

$$\Delta Water = (Water_{base} - Water_{ee}) \times PCT_{steam} \times Hours_{daily} \times Days$$
$$= (40 - 20)gal/hr \times 0.5 \times 13.1 hr \times 307 days$$
$$= 40,217 \text{ gallons}$$

5.1.2.5 Effective Useful Life

The effective useful life of this measure is provided in Table 5-8.

Table 5-8. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program Name	Value	Units	Source(s)
VIII	Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII	12.00	years	Maryland/Mid-Atlantic TRM v10, p. 389

DSM Phase	Program Name	Value	Units	Source(s)
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

5.1.2.6 Source(s)

The primary sources for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, p. 383 and pp. 386-389.

5.1.2.7 Update Summary

Updates made to this section are described in Table 5-9.

Table 5-9. Summary of Update(s)

Version	Update Type	Description		
2021	Source	Updated page numbers / version of the Mid-Atlantic TRM		
	Input Variable	 Updated Hour_{daily} and Days values based on the customer building type Added Water_{base} and Water_{ee} constants for water savings calculation 		
	Equation	Added equation for coincident winter peak demand reductionAdded gross annual water savings equation		
	Default Savings	Added default gross annual water savings value		
	New Table	Effective Useful Life (EUL) by program		
2020	None	No change		
v10	Source	Updated page numbers / version of the Mid-Atlantic TRM		
	Equation	Added Qty to savings equations		
	Input Variable	Updated Hours _{daily,} Days, kW _{ee,conv,idle} , and kW _{ee,steam,idle} value		

5.1.3 Commercial Fryer

5.1.3.1 Measure Description

This measure involves the installation of an ENERGY STAR[®] qualified electric commercial fryer. Commercial fryers with the ENERGY STAR[®] designation offer shorter cook times and higher production rates through advanced burner and heat exchanger designs. Further, fry-pot insulation reduces standby losses resulting in a lower idle energy rate. This measure applies to both standard-size and large-vat fryers.

The baseline equipment is assumed to be a standard efficiency electric fryer with a heavy load efficiency of 75% for standard sized equipment and 70% for large vat equipment.⁸²

This measure is offered through different programs listed in Table 5-10, and uses the impacts estimation approach described in this section.

Program Name	Section
Non-Residential Prescriptive Program, DSM Phase VI	Section 5.1.3
Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII	Section 10.1.4

5.1.3.2 Impacts Estimation Approach

The baseline per measure gross annual electric energy usage is calculated using the following equation:

$$kWh_{base} = \left[lb_{daily} \times \frac{E_{fry}}{\eta_{base}} + kW_{base,idle} \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{base}} \right) \right] \times Days$$

Similarly, the efficient per measure gross annual electric energy usage is calculated using the following equation:

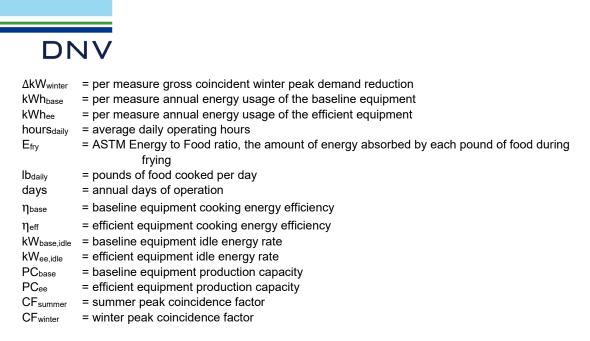
$$kWh_{ee} = \left[lb_{daily} \times \frac{E_{fry}}{\eta_{ee}} + kW_{ee,idle} \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{ee}} \right) \right] \times Days$$

Per measure, gross annual energy savings are calculated using the following equation:

 $\Delta kWh = kWh_{base} - kWh_{ee}$

Per measure, gross coincident summer peak demand reduction is calculated using the following equation:

$$\Delta kW_{summer} = \frac{\Delta kWh}{(Hours_{daily} \times Days)} \times CF_{summer}$$


Per measure, gross coincident winter peak demand reduction is calculated using the following equation:

$$\Delta k W_{winter} = \frac{\Delta k W h}{(Hours_{daily} \times Days)} \times CF_{winter}$$

Where:

 ΔkWh = per measure gross annual electric energy savings ΔkW_{summer} = per measure gross coincident summer peak demand reduction Jun 15 2022

⁸² Standard fryers measure 12-18 in. wide and have a shortening capacity of 25-65 lb; large fryers measure 18-24-in. wide and have a shortening capacity greater than 50 lb.

5.1.3.3 Input Variables

Component	Туре	Value	Units	Source(s)
	Variable	See customer application		Customer application
Hours _{daily}		Default: Standard fryer: 16 Large-vat fryer: 12	hours, daily	Maryland/Mid-Atlantic TRM v10, p. 371
E _{fry}	Fixed	0.10	67 kWh/lb	Maryland/Mid-Atlantic TRM v10, p. 371
	Variable	See customer application		Customer application
Ib _{daily}		Default: 150	lb, daily	Maryland/Mid-Atlantic TRM v10, p. 371
	Variable	See customer application	days,	Customer application
Days		Default: 365	annual	Maryland/Mid-Atlantic TRM v10, p. 371
ηbase	Variable	Standard fryer: 0.75 Large-vat fryer: 0.70	-	Maryland/Mid-Atlantic TRM v10, p. 371
kW _{base,idle}	Variable	Standard fryer: 1.05 Large-vat fryer: 1.35	kW	Maryland/Mid-Atlantic TRM v10, p. 371
PC _{base}	Variable	Standard fryer: 65 Large-vat fryer: 100	lb/hr	Maryland/Mid-Atlantic TRM v10, p. 371
η_{ee} Variable Standard fryer: 0.83 Large-vat fryer: 0.80		-	Maryland/Mid-Atlantic TRM v10, p. 371	
kW _{ee,idle}	Variable	Standard fryer: 0.80 Large-vat fryer: 1.10	kW	Maryland/Mid-Atlantic TRM v10, p. 371
PCee	Variable	Standard fryer: 70 Large-vat fryer: 110	lb/hr	Maryland/Mid-Atlantic TRM v10, p. 371

Jun 15 2022

Component	Туре	Value	Units	Source(s)
CF _{summer}	Fixed	1.0	-	Maryland/Mid-Atlantic TRM v10, p. 371 ⁸³
CFwinter	Fixed	1.0	-	Maryland/Mid-Atlantic TRM v10, p. 371 ⁸³

5.1.3.4 Default Savings

If the proper values are not supplied, a default savings may be applied using conservative input values. The default per measure gross annual electric energy savings will be assigned according to the following calculation (assuming for a standard fryer):

$$kWh_{base} = \left[lb_{daily} \times \frac{E_{fry}}{\eta_{base}} + kW_{base,idle} \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{base}} \right) \right] \times Days$$

$$= \left[150 \ lb \times \frac{0.167 \ kW/lb}{0.75} + 1.05 \ kW \times \left(16 \ hr - \frac{150 \ lb/day}{65 \ lb/hr} \right) \right] \times 365 \ days$$

$$= 17,439 \ kWh$$

$$kWh_{ee} = \left[lb_{daily} \times \frac{E_{fry}}{\eta_{ee}} + kW_{ee,idle} \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{base}} \right) \right] \times Days$$

$$= \left[150 \ lb \times \frac{0.167 \ kW/lb}{0.83} + 0.80 \ kW \times \left(16 \ hr - \frac{150 \ lb/day}{70 \ lb/hr} \right) \right] \times 365 \ days$$

$$= 15,062 \ kWh$$

$$\Delta kWh = kWh_{base} - kWh_{ee}$$
$$= 17,439 \, kWh - 15,062 \, kWh$$
$$= 2,377 \, kWh$$

The default per measure gross coincident summer peak demand reduction is calculated using the following calculation:

⁸³ No specific study of commercial kitchen equipment coincident peak demand savings is available. In the absence of this information, a simple average demand value is used: Annual energy savings divided by the total annual hours of operation and the coincidence factor is 1.0.

OFFICIAL COPY

DNV

$$\Delta kW_{summer} = \frac{\Delta kWh}{(Hours_{daily} \times Days)} \times CF_{summer}$$

$$= \frac{2,377 \, kWh}{(16 \, hr \times 365 \, days)} \times 1.0$$

$$= 0.407 \, kW$$

The default per measure gross coincident winter peak demand reduction is calculated using the following calculation:

$$\Delta kW_{winter} = \frac{\Delta kWh}{(Hours_{daily} \times Days)} \times CF_{winter}$$
$$= \frac{2,377 \, kWh}{(16 \, hr \times 365 \, days)} \times 1.0$$
$$= 0.407 \, kW$$

5.1.3.5 Effective Useful Life

The effective useful life of this measure is provided in Table 5-12.

Table 5-12. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase Program Name		Value	Units	Source(s)
VIII	Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII	12.00	years	Maryland/Mid-Atlantic TRM v10, p. 372
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

5.1.3.6 Source(s)

The primary sources for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 370-372.

5.1.3.7 Update Summary

Updates made to this section are described in Table 5-13.

Table 5-13. Summary of Update(s)

Version	Update Type	Description	
2021 Source U		Updated page numbers / version of the Mid-Atlantic TRM	
	Equation	Added equation for coincident winter peak demand reduction	
	New Table	Effective Useful Life (EUL) by program	
2020 None No change v10 Source Updated page numbers / version of the Mid-Atlantic		No change	
		Updated page numbers / version of the Mid-Atlantic TRM	

5.1.4 Commercial Griddle

5.1.4.1 Measure Description

This measure involves the installation of an ENERGY STAR[®] qualified commercial griddle. ENERGY STAR[®] qualified commercial griddles have higher cooking energy efficiency and lower idle energy rates than standard equipment. The result is more energy being absorbed by the food compared with the total energy use, and less wasted energy when the griddle is in standby mode. This measure applies to only 10-sq.ft. commercial griddles due to Dominion Energy program requirements.

The baseline equipment is assumed to be a standard-efficiency electric griddle with a cooking-energy efficiency of 65%.

This measure is offered through different programs listed in Table 5-14, and uses the impacts estimation approach described in this section.

Table 5-14. Programs that Offer this Measure

Program Name	Section
Non-Residential Prescriptive Program, DSM Phase VI	Section 5.1.4
Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII	Section 10.1.3

5.1.4.2 Impacts Estimation Approach

Per measure, gross annual electric energy savings are calculated using the following equations:

$$\Delta kWh = kWh_{base} - kWh_{ee}$$

where,

$$kWh_{base} = \left[lb_{daily} \times \frac{E_{griddle}}{\eta_{base}} + kW_{base,idle} \times SqFt \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{base} \times SqFt} \right) \right]$$

$$\times Days$$

and

$$kWh_{ee} = \left[lb_{daily} \times \frac{E_{griddle}}{\eta_{ee}} + kW_{ee,idle} \times SqFt \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{ee} \times SqFt} \right) \right] \times Days$$

Per measure, gross coincident summer peak demand reduction is calculated using the following equation:

$$\Delta kW_{summer} = \frac{\Delta kWh}{(Hours_{daily} \times Days)} \times CF_{summer}$$

Per measure, gross coincident winter peak demand reduction is calculated using the following equation:

$$\Delta kW_{winter} = \frac{\Delta kWh}{(Hours_{daily} \times Days)} \times CF_{winter}$$

Where:

∆kWh	= per measure gross annual electric energy savings
ΔkW_{summer}	= per measure gross coincident summer peak demand reduction
ΔkW_{winter}	= per measure gross coincident winter peak demand reduction
kWh _{base}	= per measure annual energy usage of the baseline equipment
kWhee	= per measure annual energy usage of the efficient equipment
SqFt	= surface area of griddle
Hoursdaily	= average daily operating hours
Egriddle	= ASTM Energy to Food ratio, the amount of energy absorbed by each pound of food during
	griddling
Ib daily	= pounds of food cooked per day
Days	= annual days of operation
η_{base}	= baseline equipment cooking energy efficiency
η_{ee}	= efficient equipment cooking energy efficiency
$kW_{\text{base,idle}}$	= baseline equipment idle energy rate
$kW_{\text{ee,idle}}$	= efficient equipment idle energy rate
PC _{base}	= baseline equipment production capacity
PCee	= efficient equipment production capacity
CF _{summer}	= summer peak coincidence factor
CF_{winter}	= winter peak coincidence factor

5.1.4.3 Input Variables

Component	Туре	Value	Units	Source(s)
	Variable	See customer application		Customer application
Ib _{daily}		Default: 100	lb, daily	Maryland/Mid-Atlantic TRM v10, p. 380
SqFt	Variable	See customer application	sq.ft.	Customer application

Component	Туре	Value	Units	Source(s)
		See customer application		Customer application
Hours _{daily}	Variable	For defaults see Table 13-17 in Sub-Appendix F2-V: Non- Residential Commercial Kitchen Inputs		Maryland/Mid-Atlantic TRM v10, p. 380 ⁸⁴ , for default the Dominion Energy 2020 Commercial Energy Survey Appendix B, p.3 weighted average of building types is used
		See customer application		Customer application
Days	Variable	For defaults see Table 13-17 in Sub-Appendix F2-V: Non- Residential Commercial Kitchen Inputs	days, annual	Maryland/Mid-Atlantic TRM v10, p. 38084, for default the Dominion Energy 2020 Commercial Energy Survey Appendix B, p.3 weighted average of building types is used
Egriddle	Fixed	0.139	kWh/lb	Maryland/Mid-Atlantic TRM v10, p. 380
PC _{base}	Fixed	5.83	lb/hr/sq.ft.	Maryland/Mid-Atlantic TRM v10, p. 380
η _{base}	Fixed	0.65	-	Maryland/Mid-Atlantic TRM v10, p. 380
kW base,idle	Fixed	0.40	kW/sq.ft.	Maryland/Mid-Atlantic TRM v10, p. 380
kW _{ee,idle}	Fixed	0.32	kW/sq.ft.	Maryland/Mid-Atlantic TRM v10, p. 380
PCee	Fixed	6.67	lb/hr/sq.ft.	Maryland/Mid-Atlantic TRM v10, p. 380
η _{ee}	Fixed	0.70	-	Maryland/Mid-Atlantic TRM v10, p. 380
CF _{summer}	Fixed	1.0	-	Maryland/Mid-Atlantic TRM v10, p. 380 ⁸⁵
CF _{winter}	Fixed	1.0	-	Maryland/Mid-Atlantic TRM v10, p. 380 ⁸⁵

5.1.4.4 Default Savings

There are no default savings for this measure. Applicant will need to provide the surface area of the griddle in square feet, for savings to be calculated. Default values are provided for most other input parameters.

5.1.4.5 Effective Useful Life

The effective useful life of this measure is provided in Table 5-16.

⁸⁴ Maryland/Mid-Atlantic TRM v. 10 uses customer application values for hours and days with a default provided. For consistency with commercial convection oven the same hours and days are used for his measure.

⁸⁵ No specific study of commercial kitchen equipment coincident peak demand savings is available. In the absence of this information, a simple average demand value is used: Annual energy savings divided by the total annual hours of operation and the coincidence factor is 1.0.

Table 5-16. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program Name	Value	Units	Source(s)
VIII	Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII	12.00	years	Maryland/Mid-Atlantic TRM v10, p. 379
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

5.1.4.6 Source(s)

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 379-381.

5.1.4.7 Update Summary

Updates made to this section are described in Table 5-11.

Version	Update Type	Description	
2021	2021 Source Updated page numbers / version of the Mid-Atlantic TRM		
	Equation	Added equation for coincident winter peak demand reduction	
	New Table	Effective Useful Life (EUL) by program	
2020	None No change		
v10	Source	Updated page numbers / version of the Mid-Atlantic TRM	

Table 5-11. Summary of Update(s)

5.1.5 Commercial Hot Food Holding Cabinet

5.1.5.1 Measure Description

This measure involves installing an ENERGY STAR[®] qualified commercial hot food holding cabinet. The installed equipment will incorporate better insulation, reducing heat loss, and may also offer additional energy saving devices such as magnetic door gaskets, auto-door closures, or Dutch doors. The insulation of the cabinet also offers better temperature uniformity within the cabinet from top to bottom. This means that qualified hot food holding cabinets are more efficient at maintaining food temperature while using less energy.

The baseline equipment is assumed to be a standard efficiency hot food holding cabinet.

This measure is offered through different programs listed in Table 5-17, and uses the impacts estimation approach described in this section.

Table 5-17. Programs that Offer this Measure

Program Name	Section
Non-Residential Prescriptive Program, DSM Phase VI	Section 5.1.5
Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII	Section 10.1.6

5.1.5.2 Impacts Estimation Approach

Per measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \frac{(watts_{base,idle} - watts_{ee,idle})}{1,000 W/kW} \times Hours_{daily} \times Days$$

Per measure, gross coincident summer peak demand reduction is calculated according to the following equation:

 $\Delta kW_{summer} = \frac{\left(watts_{base,idle} - watts_{ee,idle}\right)}{1,000 \ W/kW} \times CF_{summer}$

Per measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \frac{\left(watts_{base,idle} - watts_{ee,idle}\right)}{1,000 \ W/kW} \times CF_{winter}$$

Where:

5.1.5.3 Input Variables

Component	Туре	Value	Units	Source(s)
wattS _{base,idle}	Variable	40 x Vol ⁸⁶	watts	Maryland/Mid-Atlantic TRM v10, p. 377

⁸⁶ Vol = the internal volume of the holding cabinet (ft³) = volume of installed unit

Jun 15 2022

Component	Туре	Value	Units	Source(s)
watts _{ee,idle}	Variable	Vol < 13: $21.5 \times Vol + 0.0$ $13 \le Vol < 28:$ $2.0 \times Vol + 254.0$ Vol $\ge 28:$ $3.8 \times Vol + 203.5$	watts	Maryland/Mid-Atlantic TRM v10, p. 377
		See customer application		Customer application
Days	Variable	For defaults see Table 13-17 in Sub- Appendix F2-V: Non-Residential Commercial Kitchen Inputs		Maryland/Mid-Atlantic TRM v10, p. 380 ⁸⁷ , for default the Dominion Energy 2020 Commercial Energy Survey Appendix B, p.3 weighted average of building types is used
		See customer application		Customer application
Hours _{daily}	Variable	For defaults see Table 13-17 in Sub- Appendix F2-V: Non-Residential Commercial Kitchen Inputs	hours, daily	Maryland/Mid-Atlantic TRM v10, p. 380 ⁸⁷ , for default the Dominion Energy 2020 Commercial Energy Survey Appendix B, p.3 weighted average of building types is used
CFsummer	Fixed	1.0	-	Maryland/Mid-Atlantic TRM v10, p. 377 ⁸⁸
CFwinter	Fixed	1.0	-	Maryland/Mid-Atlantic TRM v10, p. 377 ⁸⁸

5.1.5.4 Default Savings

There are no default savings for this measure. Applicant will need to provide the baseline and efficient idle wattage or the volume of the holding cabinet for savings to be calculated.

5.1.5.5 Effective Useful Life

The effective useful life of this measure is provided in Table 5-19.

Table 5-19. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program Name	Value	Units	Source(s)
VIII	Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII	12.00	years	Maryland/Mid-Atlantic TRM v10, p. 378
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

⁸⁷ Maryland/Mid-Atlantic TRM v. 10 uses customer application values for hours and days with a default provided. For consistency with commercial convection oven the same hours and days for this measure.

⁸⁸ No specific study of commercial kitchen equipment coincident peak demand savings is available. In the absence of this information, a simple average demand value is used: Annual energy savings divided by the total annual hours of operation and the coincidence factor is 1.0.

Jun 15 2022

5.1.5.6 Source(s)

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 377-378.

5.1.5.7 Update Summary

Updates made to this section are described in Table 5-20.

Table 5-20.	Summary of Update(s)	

Version	Update Type	Description			
2021	Source	Updated page numbers / version of the Mid-Atlantic TRM			
	Equation Added equation for coincident winter peak demand reduction				
	New Table	Effective Useful Life (EUL) by program			
2020	None	No change			
v10	Source	Updated page numbers / version of the Mid-Atlantic TRM			

5.1.6 Commercial Steam Cooker

5.1.6.1 Measure Description

This measure involves an ENERGY STAR[®] qualified commercial steam cookers. Energy efficient steam cookers that have earned the ENERGY STAR[®] label offer shorter cook times, higher production rates, and reduced heat loss due to better insulation and a more efficient steam-delivery system.

The baseline condition assumes a standard efficiency, electric boiler-style steam cooker.

This measure is offered through different programs listed in Table 5-21, and uses the impacts estimation approach described in this section.

Table 5-21. Prog	grams that	Offer this	Measure
------------------	------------	------------	---------

Program Name	Section
Non-Residential Prescriptive Program, DSM Phase VI	Section 5.1.6
Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII	Section 10.1.5

5.1.6.2 Savings Estimation

Per measure, gross annual electric energy savings are calculated using the following equations:

$$kWh_{base,steam} = lb_{daily} \times \frac{E_{steam}}{\eta_{base}} \times Days$$

DNV

$$kWh_{base,idle} = \left[(1 - PCT_{steam}) \times kW_{base,idle} + PCT_{steam} \times PC_{base} \times Qty_{pans} \right] \times \left(\frac{E_{steam}}{\eta_{base}} \right] \times \left(Hours_{daily} - \frac{lb_{daily}}{Qty_{pans} \times PC_{base}} \right) \times Days$$

$$kWh_{base} = kWh_{base,steam} + kWh_{base,idle}$$

$$kWh_{ee,steam} = lb_{daily} \times \frac{E_{steam}}{\eta_{ee}} \times Days$$

$$\begin{split} kWh_{ee,idle} &= \left[(1 - PCT_{steam}) \times kW_{ee,idle} + PCT_{steam} \times PC_{ee} \times Qty_{pans} \times \frac{E_{steam}}{\eta_{ee}} \right] \\ &\times \left(Hours_{daily} - \frac{lb_{daily}}{Qty_{pans} \times PC_{ee}} \right) \times Days \end{split}$$

$$kWh_{ee} = kWh_{ee,steam} + kWh_{ee,idle}$$

$$\Delta kWh = kWh_{base} - kWh_{ee}$$

Per measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta k W_{summer} = \frac{\Delta k W h}{Hours_{daily} \times Days} \times CF_{summer}$$

Per measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \frac{\Delta kWh}{Hours_{daily} \times Days} \times CF_{winter}$$

Per measure, gross annual water savings is calculated according to the following equation:

$$\Delta Water = (GPH_{base} - GPH_{ee}) \times Hours_{daily} \times Days$$

Where:

 $\begin{array}{ll} \Delta k Wh & = \mbox{ per measure gross annual electric energy savings} \\ \Delta k W_{\mbox{summer}} & = \mbox{ per measure gross coincident summer peak demand reduction} \\ \Delta k W_{\mbox{winter}} & = \mbox{ per measure gross coincident winter peak demand reduction} \end{array}$

OFFICIAL COPY

Jun 15 2022

Jun 15 2022

kWh _{base}	= the annual energy usage of the baseline equipment
kWhee	= the annual energy usage of the efficient equipment
kWh _{base,ste}	am = baseline daily cooking energy consumption
kWh _{base,idle}	a = baseline daily idle energy consumption
∆Water	= per measure gross annual water savings
Hours _{daily}	= average daily operating hours
Esteam	 ASTM Energy to Food (kWh/lb); the amount of energy absorbed by each pound of food during steaming
Ib _{daily}	= pounds of food cooked per day
Days	= annual days of operation
PCT _{steam}	= percent of time in constant steam mode
Qty _{pans}	= number of pans per unit
η_{base}	= baseline equipment cooking energy efficiency
η_{ee}	= efficient equipment cooking energy efficiency
kW _{base,idle}	= baseline equipment idle energy rate
$kW_{\text{ee,idle}}$	= efficient equipment idle energy rate
PC _{base}	= baseline equipment production capacity
PCee	= efficient equipment production capacity
GPH _{base}	= water consumption rate of baseline equipment
GPHee	= water consumption rate of efficient equipment
CF _{summer}	= summer peak coincidence factor
CF _{winter}	= winter peak coincidence factor

5.1.6.3 Input Variables

Table 5-22	. Input Parame	ters for Comm	ercial Steam C	ooker Measure
------------	----------------	---------------	----------------	---------------

Component	Туре	Value	Units	Source(s)
		See customer application		Customer application
Hours _{daily}	Variable	For defaults see Table 13-17 in Sub-Appendix F2-V: Non- Residential Commercial Kitchen Inputs	hours, daily	Maryland/Mid-Atlantic TRM v10, p. 380 ⁸⁹ , for default the Dominion Energy 2020 Commercial Energy Survey Appendix B, p.3 weighted average of building types is used
		See customer application		Customer application
Days	Variable	For defaults see Table 13-17 in Sub-Appendix F2-V: Non- Residential Commercial Kitchen Inputs		Maryland/Mid-Atlantic TRM v10, p. 380 ⁹⁰ , for default the Dominion Energy 2020 Commercial Energy Survey Appendix B, p.3 weighted average of building types is used
		See customer application		Customer application
Ib _{daily}	Variable	Default: 100	lb, daily	Maryland/Mid-Atlantic TRM v10, p. 374
Qty pans	Variable	See customer application	pans	Customer application

⁸⁹ Maryland/Mid-Atlantic TRM v. 10 uses customer application values for hours and days with a default provided. For consistency with commercial convection oven the same hours and days for his measure.

⁹⁰ Maryland/Mid-Atlantic TRM v. 10 uses customer application values for hours and days with a default provided. For consistency with commercial convection oven the same hours and days for his measure.

Component	Туре	Value	Units	Source(s)
		Default: 3 ⁹¹		Maryland/Mid-Atlantic TRM v10, p. 374
E _{steam}	Fixed	0.0308	kWh/lb	Maryland/Mid-Atlantic TRM v10, p. 374
PC _{base}	Fixed	23.3	lb/hr, per pan	Maryland/Mid-Atlantic TRM v10, p. 375
ηbase	Variable	Boilerless and Steam generator: 0.30 Boiler-based: 0.26	-	Maryland/Mid-Atlantic TRM v10, p. 374 ⁹²
		Default = Boiler-based: 0.26		
kW base,idle	Variable	Boilerless and Steam generator: 1.20 Boiler-based: 1.00	kW	Maryland/Mid-Atlantic TRM v10, p. 375 ⁹²
		Default = Boiler-based: 1.00		
kW ee,idle	Variable	3 pans: 0.40 4 pans: 0.53 5 pans: 0.67 6+ pans: 0.80	kW	Maryland/Mid-Atlantic TRM v10, p. 375
		Default = 3 pans: 0.40		
PCee	Fixed	16.7	lb/hr, per pan	Maryland/Mid-Atlantic TRM v10, p. 375
η_{ee}	Fixed	0.50	-	Maryland/Mid-Atlantic TRM v10, p. 374
PCT _{steam}	Fixed	0.40	-	Maryland/Mid-Atlantic TRM v10, p. 374
GPH _{base}	Variable	See Table 5-23	gal/hr	Maryland/Mid-Atlantic TRM v10, p. 376
GPHee	Variable	See Table 5-23	gal/hr	Maryland/Mid-Atlantic TRM v10, p. 376
CF _{summer}	Fixed	1.0	-	Maryland/Mid-Atlantic TRM v10, p. 374 ⁹³
CFwinter	Fixed	1.0	-	Maryland/Mid-Atlantic TRM v10, p. 374 ⁹³

Table 5-23. Water Consumption Rate for the Baseline and Energy Efficient Equipment

Parameter		Baseline Model	Energy Efficient Model			
	No. of Pans	All	Steam Generator	Boiler Based (default)	Boiler less	
GPH	All	40	15	10	3	3

 ⁹¹ Assigned default of 3 pans based on the most conservative of the kW_{ee,idle} options.
 ⁹² For boilerless efficient units the steam generator baseline is applied. The source TRM doesn't include boilerless as an option for the base unit, however this type more closely matches the steam generator type.

⁹³ No specific study of commercial kitchen equipment coincident peak demand savings is available. In the absence of this information, a simple average demand value is used: Annual energy savings divided by the total annual hours of operation and the coincidence factor is 1.0.

5.1.6.4 Default Savings

If the proper values are not supplied, a default savings may be applied assuming boiler-based steam generation. The default per measure, gross annual electric energy savings will be assigned according to the following equations:

$$kWh_{base,steam} = lb_{daily} \times \frac{E_{steam}}{\eta_{base}} \times Days$$
$$= 100 \ lb \times \frac{0.0308 \ kWh/lb}{0.26} \times 307 \ days$$

$$= 3,637 \, kWh$$

$$kWh_{base,idle} = \left[(1 - PCT_{steam}) \times kW_{base,idle} + PCT_{steam} \times PC_{base} \times Qty_{pans} \times \frac{E_{steam}}{\eta_{base}} \right] \times \left(Hours_{daily} - \frac{lb_{daily}}{Qty_{pans} \times PC_{base}} \right) \times Days$$
$$= \left[(1 - 0.40) \times 1.20 \ kW + 0.40 \times 23.3 \ \frac{lb}{hr} \times 3 \ pans \times \frac{0.0308 \ kWh/lb}{0.26} \right] \times \left(13.1 \ hr - \frac{100 \ lb}{3 \ pans} \times 23.3 \ lb/hr} \right) \times 307 \ days$$

$$= 8,543 \, kWh$$

$$kWh_{ee,steam} = lb_{daily} \times \frac{E_{steam}}{\eta_{ee}} \times Days$$
$$= 100 \ lb \times \frac{0.0308 \ kWh/lb}{0.50} \times 307 \ days$$

$$= 1,891 \, kWh$$

$$\begin{split} kWh_{ee,idle} &= \left[(1 - PCT_{steam}) \times kW_{ee,idle} + PCT_{steam} \times PC_{ee} \times Qty_{pans} \times \frac{E_{steam}}{\eta_{ee}} \right] \\ &\times \left(Hours_{daily} - \frac{lb_{daily}}{Qty_{pans} \times PC_{ee}} \right) \times Days \end{split}$$

DNV $= \left[(1 - 0.40) \times 0.4 \, kW + 0.40 \times 16.7 \, \frac{lb}{hr} \times 3 \, pans \times \frac{0.0308 \, kWh/lb}{0.50} \right] \times \left(13.1 \, hr - \frac{100 \, lb}{3 \, pans \times 16.7 \, lb/hr} \right) \times 307 \, days$ $= 1,010 \, kWh$ $\Delta kWh = kWh_{base steam} + kWh_{base idle} - \left(kWh_{as steam} + kWh_{as idle} \right)$

$$\Delta kWh = kWh_{base,steam} + kWh_{base,idle} - (kWh_{ee,steam} + kWh_{ee,idle})$$

= (3,637 kWh + 8,543 kWh) - (1,891 kWh + 1,010 kWh)
= 9,279 kWh

Per measure, gross coincident summer peak demand reduction is calculated using the following equation:

$$\Delta kW_{summer} = \frac{\Delta kWh}{Hours_{daily} \times Days} \times CF_{summer}$$
$$= \frac{9,279 \, kWh}{(13.1 \, hr/day \, \times \, 307 \, days)} \times 1.0$$
$$= 2.31 \, kW$$

Per measure, gross coincident winter peak demand reduction is calculated using the following equation:

$$\Delta kW_{winter} = \frac{\Delta kWh}{Hours_{daily} \times Days} \times CF_{summer}$$
$$= \frac{9,279 \, kWh}{(13.1 \, hr/day \, \times \, 307 \, days)} \times 1.0$$
$$= 2.31 \, kW$$

Per measure, gross annual water savings are calculated according to the following equation:

$$\Delta Water = (GPH_{base} - GPG_{ee}) \times Hours_{daily} \times Days$$
$$= (40 - 10) \times 13.1 \times 307$$

= 120,651 gallons

5.1.6.5 Effective Useful Life

The effective useful life of this measure is provided in Table 5-24.

Table 5-24. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	DSM Phase Program Name		Units	Source(s)
VIII Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII		12.00	years	Maryland/Mid-Atlantic TRM v10, p. 376
VII	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

5.1.6.6 Source(s)

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 373-376.

5.1.6.7 Update Summary

Updates made to this section are described in Table 5-25.

Table 5-25. Summary of L	Jpdate(s)
--------------------------	-----------

Version	Update Type	Description			
2021	Source	Updated page numbers / version of the Mid-Atlantic TRM			
	Equation	 Added equation for coincident winter peak demand reduction Added gross annual water savings equation 			
	Input Variable	Added GPHbase and GPHee for water savings calculation			
	New Table	Effective Useful Life (EUL) by program			
2020	None	No change			
v10	Source	Updated page numbers / version of the Mid-Atlantic TRM			
Input Variable Updated PC _{ee} value		Updated PC _{ee} value			

5.2 Heating, Ventilation, and Air-Conditioning (HVAC) End Use

5.2.1 Duct Testing and Sealing

This measure is also provided by the Non-Residential Small Business Improvement Program. The savings are determined using the methodology described in Section 4.1.1.

Jun 15 2022

5.2.2 Unitary/Split Air Conditioning, Heat Pump, and Chiller Tune-up

This measure is also provided by the Non-Residential Small Business Improvement Program. The savings are determined using the methodology described in Section 4.1.2.

5.2.3 Variable Speed Drives on Kitchen Exhaust Fan

5.2.3.1 Measure Description

This measure involves installing variable speed drives at commercial kitchen exhaust fans so that the fan motor speed matches the demand. The baseline condition is the manual on/off switch and magnetic relay or motor starter for commercial kitchen hoods. The baseline assumes that the fan operates at full speed while in operation.

This measure involves retrofitting a variable-speed drive (VSD) controller at an existing kitchen exhaust fan with a make-up-air fan. The measure includes optical and temperature sensors to detect the level of cooking activity and modulate the speed of the exhaust-air fan accordingly. The optical and temperature sensor(s) are typically located either in the collar of or the inlet to the exhaust-fan hood. The kitchen hood exhaust fans are modulated automatically to vary the exhaust airflow rate and make-up (ventilation) air by adjusting the exhaust and make-up air fan speeds.

The total measure energy savings includes the energy savings resulted from fan power reduction during part load operation as well as a decrease in heating and cooling requirement of make-up air. The measure also provides cooling and heating savings for the make-up air if the existing kitchen system(s) supplies conditioned make-up air through a dedicated make-up air unit. If the supplied make-up air is not conditioned, no heating and cooling savings are provided. Furthermore, the measure does not approve heating savings from gas-fired make-up-air units.

This measure is meant for the kitchen hood exhaust flow control only. The exhaust system from kitchen dishwashers is not included in this measure.

5.2.3.2 Impacts Estimation Approach

Per measure, gross annual electric energy savings for the exhaust fan are calculated according to the following equation:

$$\Delta kWh_{EF} = hp_{EF} \times LF_{EF} \times \frac{0.746}{\eta_{EF}} \times HOU \times \Delta Power_{EF}$$

If the make-up air is conditioned, then the cooling and heating savings are calculated according to the following equations:

$$\Delta kWh_{cool} = SqFt_{Kitchen} \times \frac{cfm}{SqFt} \times OF_{EF} \times \Delta cfm_{EF} \times CDD \times \frac{24 \times 1.08}{3,412 \times COP_{MUAccool}}$$

$$\Delta kWh_{heat} = SqFt_{Kitchen} \times \frac{cfm}{SqFt} \times OF_{EF} \times \Delta cfm_{EF} \times HDD \times \frac{24 \times 1.08}{3,412 \times COP_{MUA_{heat}}}$$

If make-up air is <u>not</u> conditioned, then the cooling and heating savings equal zero.

 $\Delta kWh_{cool} = \Delta kWh_{heat} = 0$

Per measure, gross annual electric energy savings are calculated according to the following equation:

 $\Delta kWh = \Delta kWh_{EF} + \Delta kWh_{cool} + \Delta kWh_{heat}$

There are no gross coincident summer and winter peak demand reduction:

 $\Delta k W_{summer} = 0 \ k W$

 $\Delta k W_{winter} = 0 \ k W$

Where:

∆kWh	 per measure gross annual electric energy savings for cooling the make-up air per measure gross annual electric energy savings for heating the make-up air per measure gross annual electric energy savings per measure gross coincident summer peak demand reduction per measure gross coincident winter peak demand reduction total motor horsepower of exhaust fan(s)
η _{EF}	
HOU	
$\Delta Power_{EF}$	= proportional exhaust fan power reduction due to VFD
SqFt _{Kitcher}	$_n$ = floor area of kitchen
<u>cfm</u> SqFt	= exhaust airflow rate per square foot of kitchen floor area
OF_{EF}	= oversize ratio of exhaust fan system
Δcfm_{EF}	= proportional exhaust fan airflow reduction due to VFD
CDD	= cooling degree days
$COP_{MUA_{coo}}$	$_{l}$ = coefficient of performance of cooling component of make-up air system
HDD	= heating degree days
$COP_{MUA_{hea}}$, = coefficient of performance of heating component for make-up air system
0.746	e conversion factor for horsepower to kilowatt
3,412	= conversion factor for Btu/h to kilowatt-hour
24	= conversion factor for day to hour
1.08	= sensible heat factor for air, Btuh/cfm/°F

5.2.3.3 Input Variables

Table 5-26. Input Parameters for VSD on Kitchen Fan(s)

Component	Туре	Value		Units	Source(s)
hp _{EF}	Variable	See customer application		hp	Customer application
LFEF	Fixed		90%	-	New Jersey Clean Energy Program Protocols to Measure Resource Savings: Revisions to FY2020 Protocols, p. 117

Component	Туре	Value	Units	Source(s)
ηεγ	Variable	See customer application	-	Customer application
		Default: See Table 2-16. Baseline Motor Efficiency based on hp _{EF}	-	See Table 2-16. Baseline Motor Efficiency in Section 2.1.4
HOU	Variable	See customer application	hours,	Customer application
		Default: See Table 5-27 that follows	annual	New Jersey Clean Energy Program Protocols to Measure Resource Savings: Revisions to FY2020 Protocols, p. 118
$\Delta \mathbf{Power}_{\mathbf{EF}}$	Variable	See Table 5-27 that follows	-	New Jersey Clean Energy Program Protocols to Measure Resource Savings: Revisions to FY2020 Protocols, p. 118
SqFt _{Kitchen}	Variable	See customer application	sq.ft.	Customer application
cfm SqFt	Fixed	0.7	cfm/sq.ft.	ASHRAE 62.1-2013, Table 6.5 – for Kitchen -Commercial
OFEF Fixed 1.4		-	New Jersey Clean Energy Program Protocols to Measure Resource Savings: Revisions to FY2020 Protocols, p. 117	
∆cfm _{EF}	Variable See Table 5-27 that follows		-	New Jersey Clean Energy Program Protocols to Measure Resource Savings: Revisions to FY2020 Protocols, p. 118
CDD	CDD Variable See Sub-Appendix F2-I: Cooling and Heating Degree Days and Hours		Cooling Degree Days	
HDD Variable See Sub-Appendix F2-I: Cooling and Heating De		See Sub-Appendix F2-I: Cooling and Heating Degree Days and Hours	Heating Degree Days	
MUA _{cool}	Boolean	See customer application	True/False	Customer application
		See customer application		Customer application
COP _{MUA_{cool}}	Variable	Default: 3.0	-	New Jersey Clean Energy Program Protocols to Measure Resource Savings 2020, p. 117
MUA _{electricheat}	Boolean	See customer application	True/False	Customer application
		See customer application		Customer application
COP_{MUA_{heat}}	Variable	Default: 3.0	-	New Jersey Clean Energy Program Protocols to Measure Resource Savings 2020, p. 117

Table 5-27. Annual Hours of Use, Power, and Airflow Reductions due to VSD⁹⁴

Facility Type	Annual Hours of Use (hours)	Proportion of Power Reduction ($\Delta Power_{EF}$)	Proportion of Airflow Reduction (Δcfm_{EF})
Campus	5,250	0.568	0.295
Lodging	8,736	0.618	0.330
Restaurant	5,824	0.552	0.295
Supermarket	5,824	0.597	0.320
Other	5,250	0.584	0.310

5.2.3.4 Default Savings

If the proper input variables are not supplied, no default savings will be given.

5.2.3.5 Effective Useful Life

The effective useful life of this measure is provided in Table 5-28.

Table 5-28. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program Name	Value	Units	Source(s)
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

5.2.3.6 Source(s)

The primary source for this deemed savings approach include the New Jersey Clean Energy Program Protocols to Measure Resource Savings 2020, pp. 116-119.

5.2.3.7 Update Summary

Updates made to this section are described in Table 5-29.

Version	Update Type	Description		
2021	Source	Updated page numbers / version of the New Jersey Clean Energy Program Protocols to Measure Resource Savings		
	Equation	Removed peak coincident demand reduction equation as the source TRM does not attribute peak savings to this measure.		
	New Table	Effective Useful Life (EUL) by program		

⁹⁴ New Jersey Clean Energy Program Protocols to Measure Resource Savings: Revisions to FY2019 Protocols, pg. 106

Version	Update Type	Description
2020 None No change		No change
v10	Source	Updated page numbers / version of the New Jersey Clean Energy Program Protocols to Measure Resource Savings
	Input Variable	Update to weather stations in North Carolina resulted in revised CDDs/HDDs for weather-sensitive measures

5.3 Plug Load End Use

5.3.1 Smart Strip

5.3.1.1 Measure Description

This measure realizes energy savings by installing a "smart-strip" plug outlet in place of a standard "power strip." Smart strip devices are designed to automatically turn-off connected loads when those devices are not in use, therefore minimizing energy losses caused by phantom loads.

The baseline condition is a standard "power strip". This strip is simply a "plug multiplier" that allows the user to plug in multiple devices using a single wall outlet. Additionally, the baseline unit has no ability to control power flow to the connected devices.

5.3.1.2 Impacts Estimation Approach

Per measure, gross annual electric energy savings are assigned per unit as follows:

 $\Delta kWh = 26.9 \, kWh^{95}$

Per measure, gross coincident summer and winter peak demand reduction is assigned no reduction, as follows:

 $\Delta k W_{summer} = 0 \ k W$

 $\Delta k W_{winter} = 0 \ k W$

Where:

 $\begin{array}{ll} \Delta k Wh & = \mbox{ per measure gross annual electric energy savings} \\ \Delta k W_{\mbox{summer}} & = \mbox{ per measure gross coincident summer peak demand reduction} \\ \Delta k W_{\mbox{winter}} & = \mbox{ per measure gross coincident winter peak demand reduction} \end{array}$

⁹⁵ Energy & Resource Solutions (ERS) 2013. Emerging Technologies Research Report; Advanced Power Strips for Office Environments prepared for the Regional Evaluation, Measurement, and Verification Forum facilitated by the Northeast Energy Efficiency Partnerships." Assumes savings consistent with the 20W threshold setting for the field research site demonstrating higher energy savings (of two available sites). ERS noted that the 20 W threshold may be unreliable due to possible inaccuracy of the threshold setting in currently available units. It is assumed that future technology improvements will reduce the significance of this issue. Further, savings from the site with higher average savings was adopted (26.9 kWh versus 4.7 kWh) acknowledging that investigations of APS savings in other jurisdictions have found significantly higher savings. For example, Northwest Power and Conservation Council, Regional Technical Forum. 2011. "Smart Power Strip Energy Savings Evaluation" found average savings of 145 kWh.

5.3.1.3 Effective Useful Life

The effective useful life of this measure is provided in Table 5-30.

Table 5-30. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program Name	Value	Units	Source(s)
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

5.3.1.4 Source(s)

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 368-369.

5.3.1.5 Update Summary

Updates made to this section are described in Table 5-31.

Table	5-31.	Summary	of	Update(s)
-------	-------	---------	----	-----------

Version	Update Type	Description	
2021 Source		Updated page numbers / version of the Mid-Atlantic TRM	
	New Table	Effective Useful Life (EUL) by program	
2020	Source	Updated page numbers / version of the Mid-Atlantic TRM	

5.4 Refrigeration End Use

5.4.1 Door Closer (Cooler and Freezer)

5.4.1.1 Measure Description

This measure realizes energy savings by installing an auto-closer on main doors to walk-in coolers or freezers, or by installing an automatic, hydraulic-type door closer on glass-reach-in doors to coolers or freezers. This measure consists of installing a door closer where none existed before. Gross annual electric energy savings are gained when an auto-closer installation reduces the infiltration of warmer outside air into a cooler or freezer environment.

Savings assume that an auto-closer reduces warm air infiltration on average by 40% and the walk-in coolers and freezer doors have effective strip curtains.⁹⁶ To simulate the reduction, the main door open time is reduced by 40%. For walk-in coolers and freezers, savings are calculated with the assumption that strip curtains that are 100% effective are installed on the doorway.

⁹⁶ Tennessee Valley Authority TRM 2018, p. 127 -128. Original sources: California Database for Energy Efficiency Resources, www.deeresources.com (DEER 2008), and San Diego Gas & Electric work paper WPSDGENRRN0110 Rev 0, August 17, 2012, "Auto-Closers for Main Cooler of Freezer Doors."

This measure is offered through different programs listed in Table 5-32, and uses the impacts estimation approach described in this section.

Table 5-32. Programs that Offer this Measure

Program Name	Section	
Non-Residential Prescriptive Program, DSM Phase VI	Section 5.4.1	
Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	Section 9.6.5	

5.4.1.2 Impacts Estimation Approach

Per measure, gross annual electric energy savings are assigned according to the refrigeration unit type and temperature setting:

Cooler Doors:

 $\Delta kWh = \Delta kWh_{cooler}$

Freezer Doors:

 $\Delta kWh = \Delta kWh_{freezer}$

Per measure, gross coincident summer peak demand reduction is assigned according to the refrigeration unit type and temperature setting:

Cooler Doors:

 $\Delta k W_{summer} = \Delta k W_{cooler}$

Freezer Doors:

 $\Delta k W_{summer} = \Delta k W_{freezer}$

Per measure, gross coincident winter peak demand reduction is assigned according to the refrigeration unit type and temperature setting:

Cooler Doors:

 $\Delta k W_{winter} = \Delta k W_{cooler}$

Freezer Doors:

 $\Delta k W_{winter} = \Delta k W_{freezer}$

Where:

 $\label{eq:lambda} \begin{array}{ll} \Delta k W h & = \mbox{ per measure gross annual electric energy savings} \\ \Delta k W_{\mbox{summer}} & = \mbox{ per measure gross coincident summer peak demand reduction} \end{array}$

 $\begin{array}{ll} \Delta k W_{winter} & = \mbox{ per measure gross coincident winter peak demand reduction} \\ \Delta k W_{cooler} & = \mbox{ annual electric energy savings for main cooler doors} \\ \Delta k W_{cooler} & = \mbox{ coincident demand reduction for main cooler doors} \\ \Delta k W_{freezer} & = \mbox{ annual electric energy savings for main freezer doors} \\ \Delta k W_{freezer} & = \mbox{ coincident demand reduction for main freezer doors} \\ \end{array}$

5.4.1.3 Input Variables

Table 5-33. Door Closer Gross Annual Electric Energy Savings and Gross Coincident Demand Reduction (per	
Closer) ⁹⁷	

Definition of the Hust Trues	Location	Walk-In		Reach-In	
Refrigeration Unit Type		ΔkWh	∆kW ⁹⁸	ΔkWh	∆kW ⁹⁸
	Richmond	43.9	0.0050	102	0.0116
	Norfolk	43.5	0.0050	101	0.0115
	Roanoke	42.4	0.0048	98	0.0112
	Sterling	42.3	0.0048	98	0.0112
Cooler	Arlington	42.3	0.0048	98	0.0112
(31°F to 55°F)	Charlottesville	42.7	0.0049	99	0.0113
	Farmville	44.8	0.0051	104	0.0119
	Fredericksburg	43.3	0.0049	101	0.0115
	Elizabeth City	43.1	0.0049	100	0.0114
	Rocky Mount	43.6	0.0050	101	0.0116
	Richmond	172.7	0.0197	439	0.0501
	Norfolk	170.2	0.0194	433	0.0494
	Roanoke	165.8	0.0189	422	0.0481
	Sterling	167.2	0.0191	425	0.0486
Freezer	Arlington	167.2	0.0191	425	0.0486
(-35°F to 30 °F)	Charlottesville	167.5	0.0191	426	0.0486
	Farmville	176.4	0.0201	449	0.0512
	Fredericksburg	171.8	0.0196	437	0.0499
	Elizabeth City	168.4	0.0192	428	0.0489
	Rocky Mount	171.4	0.0196	436	0.0498

5.4.1.4 Default Savings

In the event of incomplete data, make the following conservative assumptions:

⁹⁷ Methodology from Tennessee Valley Authority TRM 2018, pp. 127-129, was used. Savings were revised using the TMY3 weather data for Dominion Energy service territory locations.

⁹⁸ The source TRM calculates coincident kW as the kWh savings divided by 8,760 hours. This implies that the demand reduction is the same in all periods. This is the best information available. Therefore, the same coincident peak demand reduction for summer and winter periods.

- If the door type is missing, assume it is a walk-in door type.
- If the refrigeration system type is missing, assume it is a high-temperature cooler.

5.4.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 5-34.

Table 5-34. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase Program Name		Value	Units	Source(s)
VIII	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	8.00	years	Tennessee Valley Authority TRM 2018, p. 128
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

5.4.1.6 Source(s)

The primary source for this deemed savings approach is the Tennessee Valley Authority TRM 2018, pp. 127-129.

5.4.1.7 Update Summary

Updates made to this section are described in Table 5-35.

Version	Update Type	Description		
2021	New Table	Effective Useful Life (EUL) by program		
	Inputs	Added large office building type and expanded to 10 weather stations		
	Equation	Added equation for coincident winter peak demand reduction		
2020	None	No change		
v10 Source		Updated page numbers / version of the Tennessee Valley Authority TRM		
	Default Savings	Default savings were adjusted due to change of weather stations in North Carolina (from Charlotte to Elizabeth City and Rocky Mount-Wilson)		

Table 5-35. Summary of Update(s)

5.4.2 Door Gasket (Cooler and Freezer)

5.4.2.1 Measure Description

This measure realizes energy savings by replacing worn-out gaskets with new gaskets on refrigerator or freezer doors to reduce heat loss caused by air infiltration.

5.4.2.2 Impacts Estimation Approach⁹⁹

Per measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \frac{\Delta kWh}{ft} \times L$$

Per measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta k W_{summer} = \frac{\Delta k W}{ft} \times L$$

Per measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\Delta k W_{winter} = \frac{\Delta k W}{ft} \times L$$

Where:

ΔkWh	= per measure gross annual electric energy savings
ΔkW_{summer}	= per measure gross coincident summer peak demand reduction
ΔkW _{winter}	= per measure gross coincident winter peak demand reduction
∆kWh/ft	= gross annual electric energy savings per linear foot
∆kW/ft	= gross coincident demand reduction per linear foot
L	= length of gasket applied

5.4.2.3 Input Variables

Component	Туре	Value	Unit	Source(s)
∆kWh/ft	Variable	See Table 5-37	kWh/ft	Tennessee Valley Authority TRM 2018, p. 123.
∆kW/ft	Variable	See Table 5-37	kW/ft	Tennessee Valley Authority TRM 2018, p. 123. ¹⁰⁰
	See customer appl	See customer application	feet	Customer application
L	variable	Variable Default = 15		DNV engineering judgment

⁹⁹ Electric energy and demand reduction for this measure are based on modeled results found in the Tennessee Valley Authority TRM 2018, which based its model assumptions and equations on 3 sources: the California Database for Energy Efficiency Resources, www.deeresources.com (DEER 2008), the 2009 Southern California Edison Company- WPSCNRRN0004.1 - Door Gaskets for Glass Doors of Walk-In Coolers work paper, and the 2009 Southern California Edison Company- WPSCNRRN0001.1 - Door Gaskets for Main Door of Walk-in Coolers and Freezers work paper.

¹⁰⁰ The source TRM calculates coincident kW as the kWh savings divided by 8,760 hours. This implies that the demand reduction is the same in all periods. This is the best information available. Therefore, the same coincident peak demand reduction for summer and winter periods.

Table 5-37. Door Gasket Gross Annual Electric Energy and Gross Coincident Demand Reduction (per Linear Foot) ¹⁰¹

Refrigeration Type	ΔkWh/ ft	∆kW/ft
Freezer (-35°F to 30°F)		
Walk-In Door	29.5	0.0036
Reach-In Glass Door	22.2	0.0025
Cooler (31°F to 55°F)		
Walk-In Door	9.3	0.0011
Reach-In Glass Door	3.4	0.0004

5.4.2.4 Default Savings

If the proper values are not supplied, a default savings may be applied using conservative input values assuming a reach-in, glass-door cooler.

The default per measure, gross annual electric energy savings per unit cooler/freezer will be assigned according to the following calculation:

$$\Delta kWh = \frac{\Delta kWh}{ft} \times L$$
$$= 3.4 \frac{kWh}{ft} \times 15 ft$$
$$= 51.0 kWh$$

The default per measure, gross coincident summer peak demand savings per unit cooler/freezer will be assigned according to the following calculation:

$$\Delta kW_{summer} = \frac{\Delta kW}{ft} \times L$$
$$= 0.0004 \frac{kW}{ft} \times 15 ft$$

Jun 15 2022

¹⁰¹ Tennessee Valley Authority 2018, p. 123 – 124, methodology was used. TMY3 weather data was applied for Richmond, VA and Charlotte, NC. The difference between these locations was less than 1%. Richmond values are applied for all locations across Dominion Energy service territory as the variance is negligible across locations..

 $= 0.006 \, kW$

The default per measure, gross coincident winter peak demand savings per unit cooler/freezer will be assigned according to the following calculation:

$$\Delta kW_{winter} = \frac{\Delta kW}{ft} \times L$$
$$= 0.0004 \frac{kW}{ft} \times 15 ft$$

$$= 0.006 \, kW$$

5.4.2.5 Effective Useful Life

The effective useful life of this measure is provided in Table 5-38.

Table 5-38. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program Name	Value	Units	Source(s)
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

5.4.2.6 Source(s)

The primary source for this deemed savings approach is the Tennessee Valley Authority TRM 2018, pp. 123-124.

5.4.2.7 Update Summary

Updates made to this section are described in Table 5-39.

Table 5-39. Summary of Update(s)

Version	Update Type	Description	
2024	New Table	Effective Useful Life (EUL) by program	
2021	Equation	Added equation for coincident winter peak demand reduction	
2020	Source	No Change	
v10	Source	Updated page numbers / version of the Tennessee Valley Authority TRM	

5.4.3 Commercial Freezers and Refrigerators

5.4.3.1 Measure Description

This measure involves the installation of an ENERGY STAR[®] qualified commercial freezer or refrigerator. These models are designed for warm commercial kitchen environments with frequent door opening. Qualifying equipment utilize a variety of energy-efficient components such as ECM fan motors, hot gas anti-sweat heaters, or high efficiency compressors. Qualifying equipment must not exceed the maximum daily kWh values determined by the volume, door type, and configuration specified by Version 4.0 specifications that went into effect March 2017.

This measure is offered through different programs listed in Table 5-40, and uses the impacts estimation approach described in this section.

Table 5-40.	Programs	that	Offer this	s Measure
10010 0 101	ogranno		•	/ mououro

Program Name	Section
Non-Residential Prescriptive Program, DSM Phase VI	Section 5.4.3
Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII	Section 10.3.1

5.4.3.2 Impacts Estimation Approach

Per measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = (kWh_{base} - kWh_{ee}) \times Days$$

Per measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta k W_{summer} = \left(\frac{\Delta k W h}{EFLH}\right) \times C F_{summer}$$

Per measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\Delta k W_{winter} = \left(\frac{\Delta k W h}{EFLH}\right) \times C F_{winter}$$

Where:

∆kWh	= per measure gross annual electric energy savings
ΔkW_{summer}	= per measure gross coincident summer peak demand reduction
ΔkW_{winter}	= per measure gross coincident winter peak demand reduction
kWh _{base}	= daily energy consumption of the baseline equipment
kWh _{ee}	= daily energy consumption of the efficient equipment
Days	= days per year
EFLH	= equivalent full load hours of equipment
CF _{summer}	= summer peak coincidence factor
CFwinter	= winter peak coincidence factor

5.4.3.3 Input Variables

Table 5-41. Input Parameters for Commercial Freezers and Refrigerator Measure

Component	Туре	Value	Units	Source(s)	
kWh _{base}	Variable	See Table 5-42	kWh	Federal Standards, Energy Efficiency Program for Certain Commercial and Industrial Equipment, title 10, sec. 431.66 (2013) ¹⁰²	
kWhee	Variable	See Table 5-43	kWh	ENERGY STAR [®] Certified- commercial-refrigerators-and- freezers ¹⁰³	
Days	Fixed	365	days, annual	Constant	
EFLH Fixed		5,858	hours, annual	Maryland/Mid-Atlantic TRM v10, pp. 335 and 339 ¹⁰⁴	
CF _{summer}	Fixed	0.77	-	Maryland/Mid-Atlantic TRM v10, pp. 335 and 339 ¹⁰⁵	
CFwinter	Fixed	0.77	-	Maryland/Mid-Atlantic TRM v10, pp. 335 and 339 ¹⁰⁶	
Volume	Variable	See customer application	cubic feet	Customer application	

Table 5-42. Calculated Baseline Daily Energy Consumption from Volume, V

Equipment Type	Refrigerator Energy, kWh	Freezer Energy, kWh	
Vertical Closed			
Solid Door	= 0.050 x V + 1.360	= 0.220 x V + 1.380	
Transparent	= 0.100 x V + 0.860	= 0.290 x V + 2.950	
Horizontal Closed			
Solid Door	= 0.050 x V + 0.910	= 0.060 x V + 1.120	
Transparent	= 0.060 x V + 0.370	= 0.080 x V + 1.230	

Table 5-43. Calculated Efficient Unit Daily Energy Consumption from Volume

Equipment Type and Volume (ft ³)	Refrigerator Energy, kWh	Freezer Energy, kWh		
Vertical Closed				

¹⁰² The Maryland/Mid-Atlantic TRM v10 references the federal standards, but the actual values used do not match. Since the baseline daily kWh is greater than required by code, it is assumed that they have been modified per program design.

Jun 15 2022

¹⁰³ Values are provided in ENERGY STAR[®] Certified Commercial Refrigerators and Freezers List as the "Energy Use (Daily Energy Consumption)(kWh/day)" downloadable list can be found here: https://www.energystar.gov/productfinder/product/certified-commercial-refrigerators-and-freezers/results

¹⁰⁴ Original source is cited as: Efficiency Vermont Technical Reference User Manual No. 2013-82.5, August 2013; Derived from Washington Electric Coop data by West Hill Energy Consultants.

¹⁰⁵ Derived from Itron eShapes, using 8,760 hourly data by end use for Upstate New York. This was combined with full load hour assumptions used for efficiency measures to account for diversity of equipment usage within the peak period hours.

¹⁰⁶ The Maryland/Mid-Atlantic TRM v10 only provides summer peak CF. Without winter peak CF value available, the summer peak CF is applied.

Equipment Type and Volume (ft ³)	Refrigerator Energy, kWh	Freezer Energy, kWh					
Solid Door	Solid Door						
V < 15 ft ³	=0.022 x V + 0.970	=0.210 x V + 0.900					
15 ≤ V < 30 ft ³	=0.066 x V + 0.310	=0.120 x V + 2.248					
$30 \le V < 50 \text{ ft}^3$	=0.040 x V + 1.090	=0.285 x V - 2.703					
V ≥ 50 ft ³	=0.024 x V + 1.890	=0.142 x V + 4.445					
Transparent Door							
V < 15 ft ³	=0.095 x V + 0.445	=0.232 x V + 2.360					
15 ≤ V < 30 ft ³	=0.050 x V + 1.120	=0.232 x V + 2.360					
$30 \le V < 50 \text{ ft}^3$	=0.076 x V + 0.340	=0.232 x V + 2.360					
V ≥ 50 ft ³	=0.105 x V - 1.111	=0.232 x V + 2.360					
Horizontal Closed							
Solid or Transparent Door							
All Volumes	=0.050 x V + 0.280	=0.057 x V + 0.550					

5.4.3.4 Default Savings

This measure does not have default savings.

5.4.3.5 Effective Useful Life

The effective useful life of this measure is provided in Table 5-44.

Table 5-44. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Phase Program Name		Units	Source(s)	
VIII	Non-Residential Midstream Energy VIII Efficiency Products Program, DSM Phase VIII		years	Mid-Atlantic TRM 2020, p. 335	
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)	

5.4.3.6 Source(s)

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 334–341.

5.4.3.7 Update Summary

Updates made to this section are described in Table 5-45.

OFFICIAL COPY

Table 5-45. Summary of Update(s)

Version	Update Type	Description	
2021	Source	Updated page numbers / version of the Mid-Atlantic TRM	
	Equation	Added equation for coincident winter peak demand reduction	
	New Table	Effective Useful Life (EUL) by program	
2020	None	No change	
v10	Source	Updated page numbers / version of the Mid-Atlantic TRM	
	Input Variable	Updated CF value	

5.4.4 Commercial Ice Maker

5.4.4.1 Measure Description

This measure involves high-efficiency ice makers meeting ENERGY STAR[®] or CEE Tier 2 ice maker requirements. The measure applies to batch type (also known as cube type) and continuous type (also known as flake or nugget type) equipment. The equipment includes ice-making head (without storage bin), self-contained, or remote-condensing units. ENERGY STAR[®] ice makers are limited to only air-cooled units while CEE Tier 2 standards address water-cooled units. The baseline for each type of ice maker is the corresponding Federal standard for the same technology.

5.4.4.2 Impacts Estimation Approach

Per measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \left(\frac{kWh_{base} - kWh_{ee}}{100 \ lb}\right) \times H_{rated} \times DC \times Days$$

Per measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta k W_{summer} = \frac{\Delta k W h}{8,760 \ hours} \times C F_{summer}$$

Per measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\Delta k W_{winter} = \frac{\Delta k W h}{8.760 \ hours} \times C F_{winter}$$

Where:

∆kWh	= per measure gross annual electric energy savings
ΔkW_{summer}	= per measure gross coincident summer peak demand reduction
ΔkW_{winter}	= per measure gross coincident winter peak demand reduction
kWh _{base}	= energy consumption per 100 lb of ice produced by the baseline equipment

- kWh_{ee} = energy consumption per 100 lb of ice produced by the new equipment
- H_{rated} = manufacturer-rated daily harvest rate of equipment
- DC = duty cycle of ice machine
- Days = number of days per year
- CF_{summer} = summer peak coincidence factor
- CF_{winter} = winter peak coincidence factor

5.4.4.3 Input Variables

Table 5-46. Input Parameters for Commercial Ice Maker

Component	Туре	Value	Units	Source(s)
kWh _{base}	Variable	Batch-type: See Table 5-47 Table 5-47. Batch- Type Ice Machine Baseline Efficiencies Continuous-type: see Table 5-48	kWh/ 100- Ib of ice	Federal Standards 80 FR 4645 ¹⁰⁷
kWhee	Variable CEE Tier 2 Water-cooled: see Table 5-49 Variable Air-cooled: ENERGY STAR® batch-type: see Table 5-50 ENERGY STAR® continuous-type: see Table 5-51 If ice machine type is unknown and water cooled: Default = cube or nugget If ice machine is ENERGY STAR® and water-cooled ¹¹⁰ : Default = CEE Tier 2 Water-cooled = cube or nugget		CEE Tier 2 ¹⁰⁸ and ENERGY STAR ^{®109} lists of qualifying equipment	
Hrated	Variable	See customer application	pound, daily	From application
DC	Fixed	0.5	-	Arkansas TRM 2019 Volume 8.1 p. 498 ¹¹¹
Days	Fixed	365	days, annual	Arkansas TRM 2019 Volume 8.1 p. 498
CF _{summer}	Fixed	1.0	-	Arkansas TRM 2019 Volume 8.1 p. 498 ¹¹²
CF _{winter}	Fixed	1.0	-	Arkansas TRM 2019 Volume 8.1 p. 498 ¹¹²

¹⁰⁷ The standards are available here: <u>https://www.regulations.gov/document?D=EERE-2010-BT-STD-0037-0137</u>. Batch type ice maker efficiencies are on p. 5-4 and continuous type baseline efficiency levels are on p. 5-9.

¹⁰⁸ Currently qualifying ice makers meet CEE requirements effective 7/01/2011. Qualifying equipment is updated quarterly, available here:

https://library.cee1.org/content/commercial-kitchens-ice-machines-qualifying-product-list. ¹⁰⁹ Currently qualifying ice makers meet ENERGY STAR[®] Version 3.0 program requirements effective January 28, 2018. The list of qualifying equipment can be found here: <u>https://www.energystar.gov/productfinder/product/certified-commercial-ice-machines/results</u>.

¹¹⁰ ENERGY STAR[®] does not include water-cooled ice makers. If both of these are indicated to be true on the application, it is assumed the equipment type is CEE Tier-2 water-cooled.

¹¹¹ Per Arkansas TRM, this value was selected based on the most conservative value from a collection of sources including TRMs in Vermont, Pennsylvania, Ohio, Wisconsin, and Missouri.

¹¹² Per Arkansas TRM, this value was selected based on building types and lighting CFs. There is limited information about the specific load profile of ice makers. No winter CF is provided so summer CF is used.

Table 5-47. Batch-Type Ice Machine Baseline Efficiencies¹¹³

Ice Machine Type	Type of Cooling	Harvest Rate (Ib/day)	kWh _{base} (kWh/100-lb ice)
		< 300	6.880 – 0.00550 x H _{rated}
		≥ 300 and < 850	5.800 – 0.00191 x H _{rated}
	Water	≥ 850 and < 1,500	4.420 – 0.00028 x H _{rated}
		≥ 1,500 and < 2,500	4.000
Ice-Making Head		≥ 2,500 and < 4,000	4.000
		< 300	10.000 – 0.01233 x H _{rated}
	A :	≥ 300 and < 800	7.055 – 0.00250 x H _{rated}
	Air	≥ 800 and < 1,500	5.550 – 0.00063 x H _{rated}
		≥ 1,500 and < 4,000	4.610
Remote-Condensing w/o Remote	Air	≥ 50 and < 1,000	7.970 – 0.00342 x H _{rated}
Compressor		≥ 1,000 and < 4,000	4.590
Remote-Condensing w/ Remote	note _{Air}	< 942	7.970 – 0.00342 x H _{rated}
Compressor		≥ 942 and < 4,000	4.790
	Water	< 200	9.500 – 0.00342 x H _{rated}
Self-Contained		≥ 200 and < 2,500	5.700
		≥ 2500 and < 4,000	5.700
	Air	< 110	14.790 – 0.04690 x H _{rated}
		≥ 110 and < 200	12.420 – 0.02533 x H _{rated}
		≥ 200 and < 4,000	7.350

Table 5-48. Continuous-Type Ice Machine Baseline Efficiencies

Ice Machine Type	Type of Cooling	Harvest Rate (Ib/day)	kWh _{base} (kWh/100-lb ice)
	Water	< 801	6.48 – 0.00267 x H _{rated}
		≥ 801 and < 2,500	4.34
Les Making Lland		≥ 2,500 and < 4,000	4.34
Ice-Making Head	Air	< 310	9.19 – 0.00629 x H _{rated}
		≥ 310 and < 820	8.23 – 0.00320 x H _{rated}
		≥ 820 and < 4,000	5.61
Remote-Condensing w/o remote	A :	< 800	9.70 – 0.00580 x H _{rated}
compressor	Air	≥ 800 and < 4,000	5.06
Remote-Condensing w/ remote compressor	Air	< 800	9.90 – 0.00580 x H _{rated}
		≥ 800 and < 4,000	5.26

¹¹³ 10 CFR Part 431 Subpart H, Automatic Commercial Ice Makers. 77 FR 1591. January 11, 2012. New minimum requirements effective January 28, 2018.

Ice Machine Type	Type of Cooling	Harvest Rate (Ib/day)	kWh _{base} (kWh/100-lb ice)	
Self-Contained	Water	< 900	7.60 – 0.00302 x H _{rated}	
		≥ 900 and < 2,500	4.88	
		≥ 2,500 and < 4,000	4.88	
	Air	< 200	14.22 – 0.03000 x H _{rated}	
		≥ 200 and < 700	9.47 – 0.00624 x H _{rated}	
		≥ 700 and < 4,000	5.10	

Table 5-49. CEE Tier 2 Ice Machine Qualifying Efficiencies¹¹⁴

Ice Type ¹¹⁵	Type of Cooling	Harvest Rate (Ib/day)	kWhee (kWh/100-lb ice)	
Cube or Nugget (default)		< 175	10.6 – 0.0241 x H _{rated}	
	Water	≥ 175 and < 450	7.1 – 0.0062 x H _{rated}	
	water	≥ 450 and < 1,000	4.7 – 0.0011 x H _{rated}	
		≥ 1,000	3.7 – 0.0002 x H _{rated}	
Flake Type	\\/otor	< 1,000	4.8 – 0.0017 x H _{rated}	
	Water	≥ 1,000	3.2	

Table 5-50. Batch-Type ENERGY STAR® Ice Machine Qualifying Efficiencies¹¹⁶

Ice Machine Type	Type of Cooling	Harvest Rate (lb/day)	kWhee (kWh/100-lb ice)
	Air	< 300	9.20 – 0.01134 x H _{rated}
Ice-Making Head		≥ 300 and < 800	6.49 – 0.0023 x H _{rated}
		≥ 800 and < 1,500	5.11 – 0.00058 x H _{rated}
		≥ 1,500 and ≤ 4,000	4.24
Remote-Condensing (with and without Remote Compressor)	A :	< 988	7.17 – 0.00308 x H _{rated}
	AI	≥ 988 and ≤ 4,000	4.13
Self-Contained	Air	< 110	12.57 – 0.0399 x H _{rated}

¹¹⁴ CEE Requirements don't differentiate between continuous or batch type ice machines, requirements are found here:

https://library.cee1.org/system/files/library/4280/CEE_Ice_Machines_Spec_Final_Effective_01Jul2011_-_updated_July_7_2015.pdf

¹¹⁵ CEE Ice machine types are cube (self-contained), Nugget (ice-making head) and flake (ice-making head). The application determines if the equipment is self-contained or ice-making head. However, the application does not differentiate between flake or nugget ice making head. Flake ice machine types make up a low percent of the CEE Tier 2 models and typically used for specific applications. Therefore, cube or nugget ice machine type is used as the default for CEE Tier 2 water cooled ice makers.

¹¹⁶ Currently qualifying ice makers meet ENERGY STAR[®] Version 3.0 program requirements effective January 28, 2018. The list of qualifying equipment can be found here: <u>https://www.energystar.gov/productfinder/product/certified-commercial-ice-machines/results</u>. The current requirements are found here: https://www.energystar.gov/products/commercial_food_service_equipment/commercial_ice_makers/key_product_criteria

Jun 15 2022

Ice Machine Type	Type of Cooling	Harvest Rate (Ib/day)	kWhee (kWh/100-lb ice)
		≥ 110 and < 200	10.56 – 0.0215 x H _{rated}
		≥ 200 and ≤ 4,000	6.25

Table 5-51. Continuous-Type ENERGY STAR[®] Ice Machine Qualifying Efficiencies¹¹⁷

Ice Machine Type	Type of Cooling	Harvest Rate (Ib/day)	kWhee (kWh/100-lb ice)
		< 310	7.90 – 0.005409 x H _{rated}
Ice-Making Head	Air	≥ 310 and < 820	7.08 – 0.002752 x H _{rated}
		≥ 820 and ≤ 4,000	4.82
Remote-Condensing (with and without Remote Compressor)	Air	< 800	7.76 – 0.00464 x H _{rated}
		≥ 800 and ≤ 4,000	4.05
Self-Contained	Air	< 200	12.37 – 0.0261 x H _{rated}
		≥ 200 and < 700	8.24 – 0.005429 x H _{rated}
		≥ 700 and ≤ 4,000	4.44

5.4.4.4 Default Savings

If the proper values are not available, some values have defaults savings. However, there are no default savings for this measure as some values are needed to calculate savings.

5.4.4.5 Effective Useful Life

The effective useful life of this measure is provided in Table 5-52.

Table 5-52. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program Name	Value	Units	Source(s)
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

5.4.4.6 Source(s)

The primary source for this deemed savings approach is the Arkansas TRM 2019 Version 8.1, pp. 495–498.

¹¹⁷ Ibid

5.4.4.7 Update Summary

Updates made to this section are described in Table 5-53.

Table 5-53. Summary of Update(s)

Version	Update Type	Description
2021	Source	Updated page numbers / version of the Arkansas TRM
	Equation	Added equation for coincident winter peak demand reduction
	New Table	Effective Useful Life (EUL) by program
2020	Source	Clarified which kWh _{ee} values to use for conflicts between CEE Tier 2, ENERGY STAR [®] , for air-cooled and water-cooled units
		Clarified CEE Tier 2 ice machine types and assigned default to cube or nugget ice machine types (not collected by the current Non-Residential Prescriptive Program)
v10	Source	Updated page numbers of the Arkansas TRM
Equation		Updated equation

5.4.5 Evaporator Fan Electronically Commutated Motor (ECM) Retrofit (Reach-In and Walk-in Coolers and Freezers)

5.4.5.1 Measure Description

The measure replaces the baseline shaded-pole (SP), evaporator-fan motors with electronically-commuted motors (ECMs). The baseline motors run 24 hour/day, seven day/week (24/7) and have no controls.

Evaporator fans circulate air in refrigerated spaces by drawing air across the evaporator coil and into the space. Fans are found in both reach-in and walk-in coolers and freezers. Energy and demand savings for this measure are achieved by reducing motor operating power. Additional savings come from refrigeration interactive effects. Because electronically-commutated motors (ECMs) are more efficient and use less power, they introduce less heat into the refrigerated space compared to the baseline motors and result in a reduction in cooling load on the refrigeration system.

This measure is offered through different programs listed in Table 5-54, and uses the impacts estimation approach described in this section.

Table 5-54. Programs that Offer this Measure

Program Name	Section
Non-Residential Prescriptive Program, DSM Phase VI	Section 5.4.5
Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	Section 9.6.3

5.4.5.2 Impacts Estimation Approach

Per measure, gross annual electric energy savings are calculated according to the following equation:

DNV $\Delta kWh = \frac{(watts_{base} - watts_{ee})}{1,000 W/kW} \times \% ON \times HOU \times WHF_{e}$

Per measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \frac{(watts_{base} - watts_{ee})}{1,000 W/kW} \times WHF_d \times CF_{summer}$$

Per measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \frac{(watts_{base} - watts_{ee})}{1,000 W/kW} \times WHF_d \times CF_{winter}$$

If the application shows that the rated wattage of existing/baseline evaporator fan motor, W_{base} , is less than rated wattage of electronically commutated evaporator fan motor, W_{ee} , then it is assumed that the baseline motor was replaced with a larger energy efficient motor. In such instances, the default values for these variables—provided in Table 5-55—are to be used.

Where:

ΔkW_{summer} = per measure gross coincident summer peak demand reduction ΔkW_{winter} = per measure gross coincident summer peak demand reduction	
AkW	
Akwwinter – per measure gross concident summer peak demand reduction	
wattsbase = rated wattage of existing/baseline evaporator fan motor	
wattsee = rated wattage of electronically commutated evaporator fan motor	
%ON = duty cycle (effective run time) of controlled evaporator-fan motors	
HOU = annual operating hours	
WHF _e = Waste Heat Factor for Energy; represents the increased savings due to reduced waste heat	
from motors that must be rejected by the refrigeration equipment	
WHF _d = Waste Heat Factor for Demand; represents the increased savings due to reduced waste heat	
from motors that must be rejected by the refrigeration equipment	
CF _{summer} = summer peak demand Coincidence Factor	
CF _{winter} = winter peak demand Coincidence Factor	

5.4.5.3 Input Variables

Component	Туре	Value	Unit	Source(s)
		See customer application		Customer application
watts _{base}	Variable	Defaults: See Table 5-56	watts	Wisconsin TRM 2020, p. 795
		See customer application		Customer application
wattsee	Variable	Defaults: See Table 5-56	watts	Wisconsin TRM 2020, p. 795
%ON	Variable	Uncontrolled: 0.978 ON/OFF Control: 0.636	-	Maryland/Mid-Atlantic TRM v10, p. 349

 Table 5-55. Input Values for ECM Evaporator Savings Calculations

Jun 15 2022

Component	Туре	Value		Unit	Source(s)	
		Multispeed Control/ Unknown (default): 0.692				
нои	Fixed		8,760	hours, annual	Maryland/Mid-Atlantic TRM v10, p. 346	
WHFe	Variable	Low Temp (-35°F1°F): 1.76 Med Temp (0°F - 30°F): 1.76 High Temp (31°F - 55°F): 1.38)°F): 1.76		Maryland/Mid-Atlantic TRM v10, p. 347	
		Default: 1.38				
WHFd	Variable	Low Temp (-35°F1°F): 1.76 Med Temp (0°F - 30°F): 1.76 High Temp (31°F - 55°F): 1.38	emp (0°F - 30°F): 1.76		Maryland/Mid-Atlantic TRM v10, p. 347	
		Default: 1.38				
CF _{summer}	Fixed		0.978	-	Maryland/Mid-Atlantic TRM v10, p. 349 ¹¹⁸	
CFwinter	Fixed		0.978	-	Maryland/Mid-Atlantic TRM v10, p. 349 ¹¹⁹	

Table 5-56. Total Deemed Savings for ECM Evaporator Fan Motor

System Type	Motor size	watts _{base}	wattsee	Source
Walk-In Cooler	<1/20 hp	79.38	26.64	Wisconsin TRM 2020, pp. 795-796
Walk-In Cooler	1/20 - 1 hp	211.66	71.04	Wisconsin TRM 2020, pp. 795-796
Walk-In Cooler or unknown (default)	Unknown (default) ¹²⁰	151.19	50.74	Wisconsin TRM 2020, pp. 795-796
Walk-In Freezer	<1/20 hp	90.70	30.44	Wisconsin TRM 2020, pp. 795-796
Walk-In Freezer	1/20 - 1 hp	244.22	81.97	Wisconsin TRM 2020, pp. 795-796
Walk-In Freezer	Unknown (default) ¹²¹	188.95	63.42	Wisconsin TRM 2020, pp. 795-796
Reach-In Cooler	<1/20 hp or 1/20 - 1 hp	31.00	12.00	Maryland/Mid-Atlantic TRM v10, p. 346
Reach-In Freezer	<1/20 hp or 1/20 - 1 hp	31.00	12.00	Maryland/Mid-Atlantic TRM v10, p. 346

5.4.5.4 Default Savings

If the proper values are not supplied, a default savings may be applied using conservative input values. Accordingly, the default per measure, gross annual electric energy savings will be assigned according to the following calculation:

¹¹⁸ Maryland/Mid-Atlantic TRM v10, p. 347. Coincidence factors developed by dividing the PJM Peak Savings for EF Motors and Controls from Table 47 by the product of the average ECM wattage per rated horsepower (0.758 kW/hp) and the Waste Heat Factor for Demand. Note: the CF was adjusted to 0.978 (percent on), for uncontrolled evaporator fan motors. The Mid-Atlantic TRM has a CF greater than one, because it is calculated relative to the wattage of the post-retrofit ECM motor as opposed to the existing SP motor.

¹¹⁹ Maryland/Mid-Atlantic TRM v10, p. 347. Winter coincidence factors were not provided in source TRM. Similar to summer CF, the Note: the CF referenced load shape study does not provide winter peak reduction relative to the change in baseline and ECM power. Instead, the reduction is provided in terms of the ECM wattage. There isn't enough information provided to determine the winter CF. Therefore, the percentage on is used as an approximation.

¹²⁰ Applied the Wisconsin TRM 2020 weighted average of all of the motors surveyed, 45.7% <1/20 hp and 54.3% 1/20 – 1 hp.

 $^{^{121}}$ Applied the Wisconsin TRM 2020 weighted average of all of the motors surveyed, 36.0% < 1/20 hp and 64.0% 1/20 - 1 hp.

DNV $\Delta kWh = \frac{(watts_{base} - watts_{ee})}{1,000 W/kW} \times \%ON \times HOU \times WHF_e$ $= \frac{(31 W - 12 W)}{1,000 W/kW} \times 0.978 \times 8,760 hours \times 1.38$ = 225 kWh

The default per measure, gross coincident summer peak demand reduction will be assigned according to the following calculation:

$$\Delta kW_{summer} = \frac{(watts_{base} - watts_{ee})}{1,000 W/kW} \times WHF_d \times CF_{summer}$$
$$= \frac{(31 W - 12 W)}{1,000 W/kW} \times 1.38 \times 0.978$$
$$= 0.026 kW$$

The default per measure, gross coincident winter peak demand reduction will be assigned according to the following calculation:

$$\Delta kW_{winter} = \frac{(watts_{base} - watts_{ee})}{1,000 W/kW} \times WHF_d \times CF_{winter}$$
$$= \frac{(31 W - 12 W)}{1,000 W/kW} \times 1.38 \times 0.978$$
$$= 0.026 kW$$

5.4.5.5 Effective Useful Life

The effective useful life of this measure is provided in Table 5-57.

Table 5-57. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program Name	Value	Units	Source(s)
VIII	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	15.00	years	Maryland/Mid-Atlantic TRM v10, p. 347

DSM Phase	Program Name	Value	Units	Source(s)
VI	Non-Residential Prescriptive Program	6.30	years	Program design assumptions (weighted average of EULs across all measures offered by program and their planned uptake)

5.4.5.6 Source(s)

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 346-347 and Wisconsin TRM 2020, pp. 394-397.

5.4.5.7 Update Summary

Updates made to this section are described in Table 5-58.

Table 5-58. Summary of Update(s)

Version	Update Type	Description			
2021	Source	Updated page numbers / version of the Mid-Atlantic TRM			
Input Variable		 Updated values of wattsbase, wattsee Added default values for Walk-in Coolers and Freezers with unknown motor size Replaced DCevap with %ON and updated values 			
	Equation	Added equation for coincident winter peak demand reduction			
	New Table	Effective Useful Life (EUL) by program			
2020	None	No change			
v10	Input Variable	Deleted a conversion factor, CW _{rated} , as it was not needed			
	Source	Updated page numbers / version of the Mid-Atlantic TRM and Wisconsin TRM			

5.4.6 Evaporator Fan Control (Cooler and Freezer)

5.4.6.1 Measure Description

This measure realizes energy savings by installing evaporator controls for reach-in or walk-in coolers and freezers. Typically, evaporator fans run constantly (24 hours per day, 365 days per year) to provide cooling when the compressor is running, and to provide air circulation when the compressor is not running. This measure saves energy by cycling the fan off or reducing fan speed when the compressor is not running. This results in a reduction in fan energy usage and a reduction in the refrigeration load resulting from the reduction in heat given off by the fan.

This approach applies to reach-in or walk-in freezers and refrigerator units; it is not applicable to refrigerated warehouses or other industrial refrigeration applications.

This measure is offered through different programs listed in Table 5-59, and uses the impacts estimation approach described in this section.

Program Name	Section
Non-Residential Prescriptive Program, DSM Phase VI	Section 5.4.6
Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	Section 9.6.4

5.4.6.2 Impacts Estimation Approach

Per measure, gross annual electric energy savings are calculated using the following equation:

$$\Delta kWh = hp \times \frac{kW}{hp} \times (\%On_{base} - \%On_{ee}) \times HOU \times WHF_e$$

Per measure, gross coincident summer peak demand reduction is calculated using the following equation:

$$\Delta kW_{summer} = hp \times \frac{kW}{hp} \times WHF_d \times CF_{summer}$$

Per measure, gross coincident winter peak demand reduction is calculated using the following equation:

$$\Delta k W_{winter} = hp \times \frac{kW}{hp} \times W HF_d \times CF_{winter}$$

Where:

ΔkWh	= per measure gross annual electric energy savings
ΔkW_{summer}	= per measure gross coincident summer peak demand reduction
ΔkW_{winter}	= per measure gross coincident winter peak demand reduction
hp	= rated hp of evaporator fan motors connected to control
kW/hp	= evaporative fan connected load per rated horsepower
%On _{base}	= duty cycle of the uncontrolled evaporator fan
%On _{ee}	= duty cycle of the controlled evaporator fan
HOU	= annual hours of use
WHFe	= Waste Heat Factor for Energy; represents the increased savings due to reduced waste heat
	from motors that must be rejected by the refrigeration equipment
WHFd	= Waste Heat Factor for Demand; represents the increased savings due to reduced waste heat
	from motors that must be rejected by the refrigeration equipment
CF _{summer}	= summer peak demand Coincidence Factor
CF _{winter}	= winter peak demand Coincidence Factor

5.4.6.3 Input Variables

Table 5-60. Input Values for Freezer and Cooler Evaporator Fan Controls Saving Calculations

Component	Туре	Value	Unit	Source(s)
		See customer application		Customer application
hp	Variable	Default: If system is walk-in: 1/15 hp If system is reach-in: 1/62 hp	hp	Maryland/Mid-Atlantic TRM v10, p. 348 ¹²²
kW/hp	Variable	Single-speed: 2.088 kW/hp Multi-speed: 0.758 kW/hp	kW/hp	Maryland/Mid-Atlantic
		Default: 0.758 kW/hp		TRM v10, p. 348
%On _{base}	Fixed	0.978	-	Maryland/Mid-Atlantic TRM v10, p. 348
%Onee	Variable	Single-speed (on/off controls): 0.636 Multi-speed: 0.692	-	Maryland/Mid-Atlantic TRM v10, p. 349
		Default: 0.692		
HOU	Fixed	8,760	hours, annual	Maryland/Mid-Atlantic TRM v10, p. 349
WHFe	Variable	Low Temp (-35°F to -1°F): 1.76 Med Temp (0°F - 30°F): 1.76 High Temp (31°F - 55°F): 1.38	-	Maryland/Mid-Atlantic TRM v10, p.349
		Default: 1.38		
WHFd	Variable	Low Temp (-35°F1°F): 1.76 Med Temp (0°F - 30°F): 1.76 High Temp (31°F - 55°F): 1.38	-	Maryland/Mid-Atlantic TRM v10, p. 349
		Default: 1.38		-,
CF _{summer} Fixed Single-speed (on/off controls): 0.11 Multi-speed: 0.31		-	Maryland/Mid-Atlantic TRM v10, p. 349 ¹²³	
CF _{winter} Fixed Single-speed (on/off controls): 0.12 Multi-speed: 0.31		-	Maryland/Mid-Atlantic TRM v10, p. 349 ¹²⁴	

5.4.6.4 Default Savings

If the proper values are not supplied, a default savings may be applied using conservative input values.

The default per measure, gross annual electric energy savings for a high-temperature walk-in and reach-in coolers with a multi-speed evaporator motor will be assigned according to the following calculation, respectively:

¹²² Default value not provided in Mid-Atlantic TRM, however the original source is the Commercial Refrigeration Loadshape Project NEEP 2015, p. 5, finds that the average new ECM motor is rated at 1/15 hp. This majority of motors studied were installed in walk-in cases. Therefore, 1/15 hp or 50 W is the default for walk-in applications. Default size for reach-in cases is the smallest motor sizes identified in this study, 1/62 hp or 12 W

¹²³ The Maryland/Mid-Atlantic TRM references the Commercial Refrigeration Loadshape Project NEEP 2015 for the summer CF. The CFs are calculated and separated out for single-speed and multispeed summer CFs.

¹²⁴ The Maryland/Mid-Atlantic TRM does not provide a winter CF. The referenced Commercial Refrigeration Loadshape Project NEEP 2015 is used to calculate winter CF.

DNV

Walk-in

$$\Delta kWh = hp \times \frac{kW}{hp} \times (\%On_{base} - \%On_{ee}) \times HOU \times WHF_e$$
$$= \frac{1}{15}hp \times 0.758 \frac{kW}{hp} \times (0.978 - 0.692) \times 8,760 \text{ hours} \times 1.38$$
$$= 175 \text{ kWh}$$

Reach-in

$$\Delta kWh = hp \times \frac{kW}{hp} \times (\%On_{base} - \%On_{ee}) \times HOU \times WHF_e$$
$$= \frac{1}{62}hp \times 0.758 \frac{kW}{hp} \times (0.978 - 0.692) \times 8,760 \text{ hours} \times 1.38$$
$$= 42 \text{ kWh}$$

The corresponding default per measure, gross coincident demand reduction for walk-in and reach-in coolers will be assigned according to the following calculation, respectively:

Walk-In

$$\Delta kW_{summer} = hp \times \frac{kW}{hp} \times WHF_d \times CF_{summer}$$
$$= \frac{1}{15}hp \times 0.758 \frac{kW}{hp} \times 1.38 \times 0.26$$
$$= 0.018 kW$$
$$\Delta kW_{winter} = hp \times \frac{kW}{hp} \times WHF_d \times CF_{winter}$$
$$= \frac{1}{15}hp \times 0.758 \frac{kW}{hp} \times 1.38 \times 0.26$$
$$= 0.018 kW$$

Reach-in

$$\Delta kW_{summer} = hp \times \frac{kW}{hp} \times WHF_d \times CF_{summer}$$
$$= \frac{1}{62}hp \times 0.758 \frac{kW}{hp} \times 1.38 \times 0.26$$
$$= 0.0042 \, kW$$
$$\Delta kW_{winter} = hp \times \frac{kW}{hp} \times WHF_d \times CF_{winter}$$
$$= \frac{1}{62}hp \times 0.758 \frac{kW}{hp} \times 1.38 \times 0.26$$
$$= 0.0042 \, kW$$

5.4.6.5 Effective Useful Life

The effective useful life of this measure is provided in Table 5-61.

Table 5-61. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	M Phase Program Name		Units	Source(s)
VIII	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	10.00	years	Maryland/Mid-Atlantic TRM v10, p. 349
VI	Non-Residential Prescriptive Program, DSM Phase VI)	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

5.4.6.6 Source(s)

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 348-349.

5.4.6.7 Update Summary

Updates made to this section are described in Table 5-62

Table 5-62: Summary of Update(s)

Version	Update Type	Description		
2021	Source	Updated page numbers / version of the Mid-Atlantic TRM		
	Input variable	Updated hp values		
	Default Calculation	Updated default calculation		
	Equation	Added equation for coincident winter peak demand reduction		
	New Table	Effective Useful Life (EUL) by program		
2020	None	No change		
v10 Source Updated page numbers / version of the Mid-Atlantic TRM		Updated page numbers / version of the Mid-Atlantic TRM		
	Input Variable	 Clarified kW/hp, WHFe, and WHFd default assumptions for values Updated hp, %Onbase and %Onee values 		

5.4.7 Floating Head Pressure Control

5.4.7.1 Measure Description

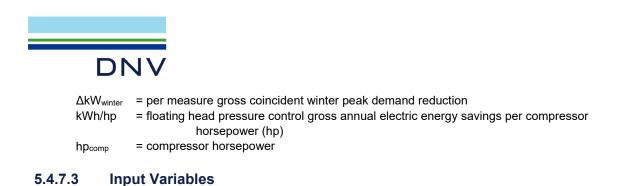
This measure realizes energy savings by adjusting the head-pressure setpoint in response to different outdoor temperatures. Without controls, the head-pressure setpoint is based on the design conditions regardless of the actual condenser operating conditions. By installing the floating-head pressure controller, the head-pressure setpoint is adjusted based on outside-air temperature. When conditions allow, the compressor operates at a lower discharge-head pressure, resulting in compressor energy savings.

5.4.7.2 Impacts Estimation Approach

Per measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \frac{kWh}{hp} \times hp_{comp}$$

Per measure, gross coincident summer peak and winter peak demand reduction is zero¹²⁵, as shown in the following equations:


$$\Delta k W_{summer} = 0$$
$$\Delta k W_{winter} = 0$$

Where:

 ΔkWh = per measure gross annual electric energy savings ΔkW_{summer} = per measure gross coincident summer peak demand reduction

¹²⁵ Gross coincident demand savings are zero since savings are realized during off-peak periods. No demand reduction is expected from this measure.

Jun 15 2022

Table 5-63. Input Values for Floating Head Pressure Control Savings Calculations

Component	Туре	Value	Unit	Source(s)	
		See Table 5-64	kWh/	Maine Commercial TRM v2020.4, p. 95	
kWh/hp	Variable	Default = 509 (High Temperature, Scroll Compressor)	horsepower/ year		
hp _{comp}	Variable	See customer application.	horsepower	Customer application	
1 Pcomp	Vanabie	Default = 5	noisepower	Vermont TRM 2015, p. 132 ¹²⁶	

Table 5-64. Floating-head Pressure Control Gross Annual Electric Energy Savings (per Horsepower)¹²⁷

	Electric Savings (kWh/hp/year)					
Compressor Type	Low Temperature (-35°F to -1°F) (Temp _{ref} -20°F SST)	Medium Temperature (0°F to 30°F) (Temp _{ref} 20°F SST)	High Temperature (31°F to 55°F) (Temp _{ref} 45°F SST)			
Standard Reciprocating	695	727	657			
Discus	607	598	694			
Scroll	669	599	509			

5.4.7.4 Default Savings

If the proper values are not supplied, a default savings may be applied using conservative input values.

The default gross annual electric energy savings will be assigned according to the following calculation:

$$\Delta kWh = \frac{kWh}{hp} \times hp_{comp}$$

$$= 509 \ \frac{kWh}{hp} \times 5 \ hp$$

$$= 2,545 \, kWh$$

¹²⁶ Vermont TRM 2015, p. 132. Assumes "5 HP compressor data used, based on average compressor size."

¹²⁷ Efficiency Maine Commercial TRM v2020.4, Table 16 – Floating Head Pressure Control kWh Savings per Horsepower, p. 95.

The default gross coincident summer peak demand reduction will be assigned according to the following calculation:

 $\Delta k W_{summer} = 0$

The default gross coincident winter peak demand reduction will be assigned according to the following calculation:

 $\Delta k W_{winter} = 0$

5.4.7.5 Effective Useful Life

The effective useful life of this measure is provided in Table 5-65.

Table 5-65. Effective Useful Life for Lifecycle Savings Calculations

DSM Phas	e Program Name	Value	Units	Source(s)
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

5.4.7.6 Source(s)

The primary source for this deemed savings approach is the Maine Commercial TRM v2020, pp. 94-95. Additionally, the Vermont TRM 2015, p. 132, was used to estimate the default compressor size.

5.4.7.7 Update Summary

Updates made to this section are described in Table 5-66.

Version	Update Type	Description
2021	Source Updated page number / version of the Maine Commercial TRM	
	New Table	Effective Useful Life (EUL) by program
2020	None	No change
v10	Source	Updated page numbers / version of the Maine Commercial TRM

Table 5-66. Summary of Update(s)

5.4.8 Low/Anti-Sweat Door Film

5.4.8.1 Measure Description

This measure involves the installation of window film on the doors of refrigerated cooler and freezer cases. Anti-sweat film prevents condensation from forming and collecting on refrigerated case doors. This measure saves energy by allowing anti-sweat heaters to be deactivated permanently. Typically, anti-sweat door heaters (ASDH) are installed on

the glass itself to raise the surface temperature and prevent condensation from collecting on the glass. However, the low/anti-sweat door film eliminates the need for these heaters.¹²⁸ Note that this measure does not affect frame heaters.

The savings methodology borrows from that of ASDH controls. The baseline condition for this measure is refrigerated case doors with operational ASDH, with or without controls. The measure case is door film with no ASDHs in use. Refrigerated case doors without ASDH are not allowed under this measure. Door size is assumed to be 12.5 sq.ft. based on program design assumptions.

5.4.8.2 Impacts Estimation Approach

Per measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = kW_{ASDH} \times DC \times HOU \times WHF_{e}$$

Per measure, gross coincident summer peak demand reduction is assigned as follows:

$$\Delta kW_{summer} = kW_{ASDH} \times DC \times WHF_d \times CF_{summer}$$

Per measure, gross coincident winter peak demand reduction is assigned as follows:

$$\Delta k W_{winter} = k W_{ASDH} \times DC \times W H F_d \times C F_{winter}$$

Where:

ΔkWh	= per measure, gross annual electric energy savings
ΔkW_{summer}	= per measure, gross coincident summer peak demand reduction
ΔkW_{winter}	= per measure, gross coincident winter peak demand reduction
kWasdh	= rated power of the existing ASDH
DC	= duty cycle (effective run time) of the existing ASDH based on existing controls
HOU	= annual operating hours
WHFe	= Waste Heat Factor represents the increased gross annual electric savings due to reduced heat
	from ASDH that must be rejected by the refrigeration equipment
WHFd	= Waste Heat Factor represents the increased gross coincident demand reduction due to
	reduced heat from ASDH that must be rejected by the refrigeration equipment
CF _{summer}	= summer peak Coincidence Factor
CFwinter	= winter peak Coincidence Factor

5.4.8.3 Input Variables

Component	Туре	Value	Units	Source(s)
		See customer application	kW	Customer application
KWASDH	Variable	Default: 0.13		Maryland/Mid-Atlantic TRM v10, p. 344 ¹²⁹

¹²⁸ In some cases, ASDHs may not be deactivated altogether, but their controls are modified to drastically lower the dew-point setpoint thereby reducing the duration of heater operation. In these cases, it is assumed that the duration of heater operation is negligible.

¹²⁹ Original source: Cadmus. 2015. Commercial Refrigeration Loadshape Project. Lexington, MA.

Component	Туре	Value	Units	Source(s)	
DC	Variable	No controls: 0.907 On/Off controls: 0.589 Micropulse controls: 0.428	-	Maryland/Mid-Atlantic TRM v10, p. 344	
		Default: 0.428	-	Maryland/Mid-Atlantic TRM v10, p. 345	
HOU	Fixed	8,760	hours, annual	Maryland/Mid-Atlantic TRM v10, p. 345	
WHFe	Variable	Low Temp (-35°F1°F): 1.50 Med Temp (0°F - 30°F): 1.50 High Temp (31°F - 55°F): 1.25	-	Maryland/Mid-Atlantic TRM v10, p. 345	
		Default: 1.25			
WHFd	Variable	Low Temp (-35°F1°F): 1.50 Med Temp (0°F - 30°F): 1.50 High Temp (31°F - 55°F): 1.25	-	Maryland/Mid-Atlantic TRM v10, p. 345	
		Default: 1.25			
	Variable	Freezer (Low/Med Temp) case: On/Off controls: 0.21 Micropulse: 0.30 No controls: 1.00	-	Maryland/Mid-Atlantic TRM v10, pp. 345 ¹³⁰ . Without heater controls, uniform load throughout year is assumed.	
05		Default for freezer case: 0.21			
CF _{summer}		Refrigerated (High Temp) case: On/Off controls: 0.25 Micropulse: 0.36 No controls: 1.00			
		Default for refrigerated case: 0.25	-		
		Freezer (Low/Med Temp) case: On/Off controls: 0.20 Micropulse: 0.29 No controls: 1.00		Maryland/Mid-Atlantic TRM v10, pp. 345 ¹³¹ . Without heater controls, uniform load throughout year is assumed.	
CE.	Veriable	Default for freezer case: 0.20			
CF _{winter}	Variable	Refrigerated (High Temp) case: On/Off controls: 0.24 Micropulse: 0.35 No controls: 1.00			
		Default for refrigerated case: 0.24			

5.4.8.4 **Default Savings**

When the application does not have information about the ASDH control type, it is assumed to have micropulse controls. When the temperature range and the case type are also unknown, the case is assumed to be a hightemperature, refrigerated case.

Accordingly, the default per measure gross annual energy savings are as follows:

Jun 15 2022

Page 146

¹³⁰ Coincidence factors developed by dividing the PJM Summer Peak Savings for ASDH Controls from Table 52 of the original source by the product of the

 ¹³¹ Applied the same methodology that Maryland/Mid-Atlantic TRM v10, p. 345 uses for summer CF and applied to the winter peak values provided by Cadmus.
 ²⁰¹⁵ Commercial Refrigeration Loadshape Project

$$\Delta kWh = kW_{ASDH} \times DC \times HOU \times WHF_{e}$$
$$= 0.13 \ kW \times 0.428 \times 8,760 \ hours \times 1.25$$
$$= 609.3 \ kWh$$

And the default per measure, gross coincident summer peak demand reduction is:

$$\Delta kW_{summer} = kW_{ASDH} \times DC \times WHF_d \times CF_{summer}$$
$$= 0.13 \ kW \times 0.428 \times 1.25 \times 0.25$$
$$= 0.017 \ kW$$

And the default per measure, gross coincident winter peak demand reduction is:

$$\Delta kW_{winter} = kW_{ASDH} \times DC \times WHF_d \times CF_{winter}$$
$$= 0.13 \ kW \times 0.428 \times 1.25 \times 0.24$$
$$= 0.017 \ kW$$

5.4.8.5 Effective Useful Life

The effective useful life of this measure is provided in Table 5-68.

Table 5-68. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program Name	Value	Units	Source(s)
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

5.4.8.6 Source(s)

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 344–345. The method was adapted from the ASDH controls methodology.

5.4.8.7 Update Summary

Updates made to this section are described in Table 5-69.

Table 5-69. Summary of Update(s)

Version	Update Type	Description	
2021	Source	Ce Updated page number / version of the Mid-Atlantic TRM	
	Equation	Added equation for coincident winter peak demand reduction	
	New Table	Effective Useful Life (EUL) by program	
2020	None	No change	
v10	Source Updated page numbers / version of the Mid-Atlantic TRM		
	Clarified WHF_e and WHF_d default assumption values		

5.4.9 Refrigeration Night Cover

5.4.9.1 Measure Description

This measure realizes energy savings by installing a cover to minimize the energy losses associated with top opencase refrigeration units. Walk-in units are not included in this measure. The cover is used during hours which the business is closed. The baseline equipment is a refrigerated case without a night cover.

This measure is offered through different programs listed in Table 5-70, and uses the impacts estimation approach described in this section.

Table 5-70. Programs that Offer this Measure

Program Name	Section
Non-Residential Prescriptive Program, DSM Phase VI	Section 5.4.9
Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	Section 9.6.2

5.4.9.2 Impacts Estimation Approach

Per measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \frac{load}{\frac{12,000 Btuh}{ton}} \times \frac{3.516 \, kW/ton}{COP} \times L \times ESF \times HOU$$

Per measure, gross coincident summer and winter peak demand reduction is zero,¹³² as shown in the following equations:

$$\Delta k W_{summer} = 0$$

¹³² Mid-Atlantic TRM 2020, p. 343. Assumed that continuous covers are deployed at night; therefore, no demand savings occur during the peak period.

 $\Delta k W_{winter} = 0$

Where:

∆kWh	= per measure gross annual electric energy savings
∆kW _{summer}	 per measure gross coincident demand reduction
∆kW _{winter}	= per measure gross coincident demand reduction
load	= average refrigeration load per linear foot of refrigerated case without night covers deployed
L	= linear feet of covered refrigerated case
COP	= coefficient of performance of refrigerated case
ESF	= energy savings factor; reflects the percentage reduction in refrigeration load due to the
	deployment of night covers
HOU	= annual hours of use

5.4.9.3 **Input Variables**

Table 5-71. Input Values for Refrigeration Night Cover Savings Calculations

Component	Туре	Value	Unit	Source(s)
		See customer application.	Btu/hour/	Customer application
load	Fixed	Default = 1,500	feet	Maryland/Mid-Atlantic TRM v10, p. 342 ¹³³
	Variable	See customer application.		Customer application
L	variable	Default = 6	feet	DNV judgment
COP ¹³⁴	Fixed	2.20	-	Maryland/Mid-Atlantic TRM v10, p. 342
ESF ¹³⁵	Fixed	0.09	-	Maryland/Mid-Atlantic TRM v10, p. 342
HOU	Fixed	8,760	hours, annual	Maryland/Mid-Atlantic TRM v10, p. 343

5.4.9.4 **Default Savings**

If the proper values are not supplied, a default savings may be applied using conservative input values.

The default gross annual electric energy savings will be assigned according to the following calculation:

$$\Delta kWh = \frac{load}{\frac{12,000 Btu/hour}{ton}} \times L \times \frac{3.516 kW/ton}{COP} \times ESF \times HOU$$

Jun 15 2022

 ¹³³ Mid-Atlantic 2020, p. 342. Original source: Davis Energy Group, Analysis of Standard Options for Open Case Refrigerators and Freezers, May 11, 2004.
 (accessed on 7/7/2010.). <u>http://www.energy.ca.gov/appliances/2003rulemaking/documents/case_studies/CASE_Open_Case_Refrig.pdf.</u>
 ¹³⁴ Kuiken et al, Focus on Energy Evaluation, Business Programs: Deemed Savings Manual V1.0, KEMA, March 22, 2010.

¹³⁵ Mid-Atlantic TRM 2020, p. 342. Original source: Effects of the Low Emissivity Shields on Performance and Power Use of a Refrigerated Display Case, Southern California Edison, August 8, 1997. (accessed on July 7, 2010). <u>http://www.sce.com/NR/rdonlyres/2AAEFF0B-4CE5-49A5-8E2C-3CE23B81F266/0/AluminumShield_Report.pdf</u>. Characterization assumes covers are deployed for six hours per day.

DNV

$$=\frac{1,500\frac{Btu}{hour}/feet}{12,000\frac{Btu}{hour}/ton} \times \frac{3.516 \, kW/ton}{2.2} \times 6 \, feet \times 0.09 \times 8,760 \, hours$$

 $= 945.0 \, kWh$

The default gross coincident summer and winter peak demand reduction will be assigned as follows:

$$\Delta k W_{summer} = 0$$

 $\Delta k W_{winter} = 0$

5.4.9.5 Effective Useful Life

The effective useful life of this measure is provided in Table 5-72.

Table 5-72. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program Name	Value	Units	Source(s)
Non-Residential Small BusinessVIIIImprovement Enhanced Program, DSM Phase VIII		5.00	years	Maryland/Mid-Atlantic TRM v10, p. 343
VI Non-Residential Prescriptive Program, DSM Phase VI		6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

5.4.9.6 Source(s)

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 342-343.

5.4.9.7 Update Summary

Updates made to this section are described in Table 5-73.

Version	Update Type	Description	
2021	Source	Updated page numbers / version of the Maryland/Mid-Atlantic TRM v10	
	New Table	Effective Useful Life (EUL) by program	
2020	None	No change	
v10	Source	Updated page numbers / version of the Mid-Atlantic TRM	
	Default Savings	Corrected mistaken default annual energy savings	

Table 5-73. Summary of Update(s)

5.4.10 Refrigeration Coil Cleaning

5.4.10.1 Measure Description

This measure realizes energy savings by cleaning the condenser coils on reach-in and walk-in coolers and freezers. Eligible units will have 25% fouling or greater based on visual inspection. This measure may only receive energy savings and demand reduction when combined with the floating head pressure measure.

5.4.10.2 Impacts Estimation Approach

Per measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \frac{load}{12,000 \frac{BTU/h}{ton}} \times \frac{3.156 \frac{kW}{ton}}{COP} \times HOU \times ESF$$

Per measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \frac{load}{12,000 \frac{BTU/h}{ton}} \times \frac{3.156 \frac{kW}{ton}}{COP} \times DRF_{summer}$$

Per measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \frac{load}{12,000 \frac{BTU/h}{ton}} \times \frac{3.156 \frac{kW}{ton}}{COP} \times DRF_{winter}$$

Where:

ΔkWh	= per measure gross annual energy savings
∆kW _{summer}	= per measure gross coincident summer peak demand reduction
ΔkW_{summer}	= per measure gross coincident summer peak demand reduction
load	= total capacity of condensers (BTU per hour)
COP	= coefficient of performance of refrigeration equipment
ESF	= savings factor attributable to coil cleaning for annual energy
DRFsummer	= savings factor attributable to coil cleaning for summer peak demand reduction
DRFwinter	= savings factor attributable to coil cleaning for winter peak demand reduction
HOU	= annual hours of use

5.4.10.3 Input Variables

Component	Туре	Value	Unit	Source(s)
load	Variable	See customer application	Btu/h	Customer application
СОР	Variable	Low Temp (-35°F – -1°F): 1.30 Med Temp (0°F – 30°F): 1.30 High Temp (31°F – 55°F): 2.51	-	Pennsylvania TRM V3, 2019, p. 155
НО	Variable	Low Temp (-35°F1°F): 6,370 Med Temp (0°F - 30°F): 6,370 High Temp (31°F - 55°F): 6,173	hours, annual	Calculated duty cycle using weather factor, defrost factor, and capacity factor ¹³⁶
ESF	Fixed	0.048	-	Qureshi and Zubair (2011) ¹³⁷
DRF _{summer}	Fixed	0.022	-	Qureshi and Zubair (2011) ¹³⁸
DRF _{winter}	Fixed	0.022	-	Qureshi and Zubair (2011) ¹³⁹

Table 5-74. Input Values for Refrigeration Coil Cleaning Savings Calculations

5.4.10.4 Default Savings

If the proper values are not supplied, no default savings will be awarded for this measure.

5.4.10.5 Effective Useful Life

The effective useful life of this measure is provided in Table 5-75.

DSM Phase	Program Name	Value	Units	Source(s)
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

5.4.10.6 Source(s)

The primary sources for this deemed savings approach are the Pennsylvania TRM V3, 2019, p.155 and the technical paper titled, "Performance degradation of a vapor compression refrigeration system under fouled conditions."¹³⁷

¹³⁶ The duty cycle is calculated using the same method as is used by TVA 2016 TRM for refrigeration measures. For coolers, a defrost factor of 0.995, a capacity factor of 0.87, and a weather factor of 0.84 is assumed. For freezers, a defrost factor of 0.90, a capacity factor of 0.87, a and weather factor of 0.90 is assumed.

¹³⁷ Qureshi B.A. and Zubair S.M., "Performance degradation of a vapor compression refrigeration system under fouled conditions." International Journal of Refrigeration 24 (2011), p. 1016 – 1027. Figure 2-(a). Assumes a weighting of refrigerant types of 80% R-134 and 20% R-404.

¹³⁸ Ibid.

¹³⁹ The source study for this measure does not provide a winter DRF. Therefore, the summer DRF is applied.

5.4.10.7 Update Summary

Updates made to this section are described in Table 5-76.

Table 5-76. Summary of Update(s)

Version	Update Type	Description
2021 Source Updated page numbers		Updated page numbers / version of the Pennsylvania TRM
	Input Value	Updated COP value
	Equation	Added equation for coincident winter peak demand reduction
New Table Effective Useful Life (EUL) by program		Effective Useful Life (EUL) by program
2020	None	No Change
V10	None	No Change

5.4.11 Suction Pipe Insulation (Cooler and Freezer)

5.4.11.1 Measure Description

This measure realizes energy savings by installing insulation on existing bare suction lines (lines that run from evaporator to compressor) that are located outside of the refrigerated space.

5.4.11.2 Impacts Estimation Approach

Per measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \frac{\Delta kWh}{ft} \times L$$

Per measure, gross coincident summer and winter peak demand reduction are calculated according to the following equation:

$$\Delta k W_{summer} = \frac{\Delta k W}{ft} \times L$$

$$\Delta k W_{winter} = \frac{\Delta k W}{ft} \times L$$

Where:

∆kWh	= per measure gross annual electric energy savings
ΔkW_{summer}	= per measure gross coincident demand reduction
ΔkW_{winter}	= per measure gross coincident demand reduction
∆kWh/ft	= gross annual electric energy savings per linear foot
∆kW/ft	= gross coincident demand reduction per linear foot
L	= length of insulation applied in linear feet

5.4.11.3 **Input Variables**

Table 5-77. In	put Values fo	r Suction Pipe	Insulation Sav	ings Calculations
	put vuluoo lo	i ouolion i ipe		ingo ouloulutiono

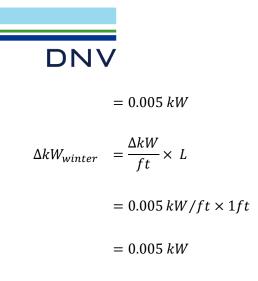
Component	Туре	Value	Unit	Source(s)
∆kWh/ft	Wh/ft Variable See Table 5-78		kWh/feet	Pennsylvania TRM V3, 2019, p. 178
∆kW/ft	Variable	See Table 5-78	kW/feet	Pennsylvania TRM V3 2019, p. 178 ¹⁴⁰
L	See cus	See customer application	fact	Customer application
	Variable	Default = 1	feet	Per unit savings

Table 5-78. Suction Pipe Insulation Gross Annual Electric Energy Savings and Gross Coincident Demand
Reduction (per Linear Foot) ¹⁴¹

Refrigeration Type	∆kWh/year·ft	ΔkW/ft
Low Temperature (-35°F1°F)	85.5	0.016
Medium Temperature (0°F - 30°F)	85.5	0.016
High Temperature (31°F - 55°F)	24.8	0.005

5.4.11.4 **Default Savings**

If the proper values are not supplied, a default savings value may be applied using conservative input values.


The default per measure, gross annual electric energy savings will be assigned according to the following calculation:

$$\Delta kWh = \frac{\Delta kWh/year}{ft} \times L$$
$$= 24.8 \, kWh/ft \times 1 \, foot$$
$$= 24.8 \, kWh$$

The default per measure, gross coincident demand reduction will be assigned according to the following calculation:

$$\Delta kW_{summer} = \frac{\Delta kW}{ft} \times L$$
$$= 0.005 \, kW/ft \times 1ft$$

 ¹⁴⁰ The source TRM only provides summer peak demand reduction. Therefore, the summer CF is applied to the winter CF.
 141 Pennsylvania TRM V3 2019, p. 178, original source: Southern California Edison Company, "Insulation of Bare Refrigeration Suction Lines", Work Paper WPSCNRRN0003.

5.4.11.5 Effective Useful Life

The effective useful life of this measure is provided in Table 5-79.

Table 5-79. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program Name	Value	Units	Source(s)
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

5.4.11.6 Source(s)

The primary source for this deemed savings approach is the Pennsylvania TRM V3 2019, pp. 177–178.

5.4.11.7 Update Summary

Updates made to this section are described in Table 5-80.

Table 5-80. Summary of Update(s)

Version	Update Type	Description	
2021	Source	 Updated page numbers / version of the Pennsylvania TRM Updated footnote 	
	Input Values	Update annual electric energy savings per linear foot (Δ kWh/ft) and coincident demand reduction per linear foot (Δ kW/ft)	
	Equation	Added equation for coincident winter peak demand reduction	
	New Table	Effective Useful Life (EUL) by program	
2020	None	No change	
v10	Source	Updated footnote	

5.4.12 Strip Curtain (Cooler and Freezer)

5.4.12.1 Measure Description

The measure realizes energy savings by installing strip curtains on walk-in coolers and freezers. Strip curtains reduce the refrigeration load by minimizing infiltration of non-refrigerated air into the refrigerated space of walk-in coolers or freezers. Strip curtains are assumed to be operational only during building operating hours. When buildings are not operational, coolers and freezers doors will be closed.

This measure is offered through different programs listed in Table 5-81, and uses the impacts estimation approach described in this section.

Table 5-81. Programs that Offer this Measure

Program Name	Section
Non-Residential Prescriptive Program, DSM Phase VI	Section 5.4.12
Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	Section 9.6.7

5.4.12.2 Impacts Estimation Approach

Per measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = kWh/ft^2 \times Area$$

Per measure, gross coincident summer peak demand reductions are calculated according to the following equation:

$$\Delta kW_{summer} = \frac{\Delta kWh}{HOU} \times CF_{summer}$$

Per measure, gross coincident winter peak demand reductions are calculated according to the following equation:

$$\Delta k W_{winter} = \frac{\Delta k W h}{HOU} \times C F_{winter}$$

Where:

5.4.12.3 Input Variables

Table 5-82. Input Values for Strip Curtain Savings Calculations

Component	Туре	Value	Unit	Source(s)	
∆kWh/sq.ft.	n/sq.ft. Variable See Table 5-83 kWh/sq.ft		Variable	kWh/sq.ft	Pennsylvania TRM V3, 2019, p. 167
-		Default = 19	•	Assume convenience store, Cooler	
Area	Variable	See Table 5-84	sq.ft.	Pennsylvania TRM V3, 2019, p. 168	
		Default = 21	- 4	Assume convenience store	
HOU	Fixed	8,760	hours, annual	Wisconsin TRM 2019, p. 822	
CF _{summer}	Fixed	1.0		Wisconsin TRM 2019, p. 822142	
CF _{summer}	Fixed	1.0		Wisconsin TRM 2019, p. 822142	

Table 5-83. Strip Curtain Gross Annual Electric Energy Savings (per sq.ft.)

Туре		Annual Electric Energy Savings per Square Foot (ΔkWh/sq.ft.)
Grocery	Cooler	123
Glocely	Freezer	535
Convenience	Cooler	19
Store	Freezer	31
Restaurant	Cooler	24
Restaurant	Freezer	129
Refrigerator	Cooler	410

Table 5-84. Doorway Area Assumptions (sq.ft.)

Туре		Doorway Area (sq.ft.)
Greecer	Cooler	21
Grocery	Freezer	21
Convenience	Cooler	21
Store	Freezer	21
Destaurant	Cooler	21
Restaurant	Freezer	21
Refrigerator	Cooler	120

¹⁴² The Wisconsin TRM 2019 does not provide summer or winter CFs. However, the equation for peak demand is kWh savings divided by annual hours implying a CF of 1.0.

5.4.12.4 Default Savings

The default per measure, gross annual electric energy savings will be assigned—assuming the strip curtains were installed at a cooler within a convenience store for the baseline conditions—according to the following calculation:

$$\Delta kWh = kWh/ft^2 \times Area$$
$$= 19 kWh/ft^2 \times 21 ft^2$$
$$= 399 kWh$$

The default per measure, gross coincident summer peak demand reduction will be assigned according to the following calculation:

$$\Delta kW_{summer} = \frac{\Delta kWh}{HOU} \times CF_{summer}$$
$$= \frac{231 \, kWh}{8,760 \, hours} \times 1.0$$
$$= 0.046 \, kW$$

The default per measure, gross coincident winter peak demand reduction will be assigned according to the following calculation:

$$\Delta kW_{winter} = \frac{\Delta kWh}{HOU} \times CF_{winter}$$
$$= \frac{231 \, kWh}{8,760 \, hours} \times 1.0$$
$$= 0.046 \, kW$$

5.4.12.5 Effective Useful Life

The effective useful life of this measure is provided in Table 5-85.

Table 5-85. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program Name	Value	Units	Source(s)
VIII	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	4.00	years	Wisconsin TRM 2020, p. 821

DNV

DSM Phase	Program Name	Value	Units	Source(s)
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

5.4.12.6 Source(s)

The primary source for this deemed savings approach is the Pennsylvania TRM V3, 2019, pp. 166-168 and Wisconsin TRM 2020, p. 822.

5.4.12.7 Update Summary

Updates made to this section are described in Table 5-86.

Table 5-86. Summary of Update(s)

Version	Update Type	Description	
2021	Source	Updated page numbers / version of the Pennsylvania TRM and Wisconsin TRM	
	Input Value	Updated Area and ∆kWh/sq.ft.	
	Equation	Added equation for coincident winter peak demand reduction	
	Default Savings	Updated default savings	
	New Table	Effective Useful Life (EUL) by program	
2020	None	No change	
v10	Source	Updated page numbers / version of the Pennsylvania TRM	
	Equation	Updated equations	

5.4.13 Vending Machine Miser

5.4.13.1 Measure Description

This measure realizes energy savings by installing vending misers that control the vending machine lighting and refrigeration systems power consumption of distributed closed-door cases. Miser controls power down these systems during periods of inactivity while ensuring that the product stays cold. Qualifying machines include glass front refrigerated coolers, non-refrigerated snack vending machines, and refrigerated beverage vending machines, but this measure does not apply to ENERGY STAR[®] vending machines that have built-in internal controls or distributed open door cases.

This measure is offered through different programs listed in Table 5-87, and uses the impacts estimation approach described in this section.

Jun 15 2022

Table 5-87. Programs that Offer this Measure

Program Name	Section
Non-Residential Prescriptive Program, DSM Phase VI	Section 5.4.13
Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	Section 9.5.1

5.4.13.2 Impacts Estimation Approach

Per measure gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = kW_{rated} \times HOU \times ESF$$

Per measure, gross coincident summer peak demand reductions are calculated according to the following equation:

$$\Delta kW_{summer} = \frac{\Delta kWh}{HOU} \times CF_{summer}$$

Per measure, gross coincident winter peak demand reductions are calculated according to the following equation:

$$\Delta k W_{winter} = \frac{\Delta k W h}{HOU} \times C F_{winter}$$

Where:

ΔkWh	= per measure gross annual electric energy savings
ΔkW _{summer}	= per measure gross coincident summer peak demand reduction
ΔkW_{winter}	= per measure gross coincident winter peak demand reduction
kW _{rated}	= rated kilowatts of connected equipment
HOU	= annual hours of use
ESF	= energy savings factor
CF _{summer}	= summer coincidence factor
CFwinter	= winter coincidence factor

5.4.13.3 Input Variables

Component	Туре	Value	Unit	Source(s)
	Variable	See customer application	kW	Customer application
kWrated		Default: Non-Refrigerated Snack Vending Machine (see Table 5-89)		Massachusetts e-TRM 2019- 2021, p. 595
ESF	Variable	See Table 5-89	-	Massachusetts e-TRM 2019- 2021, p. 595
HOU	Fixed	8,760	hours, annual	Massachusetts e-TRM 2019- 2021, p. 595

Table 5-88. Input Values for Vending Miser Savings Calculations

Component	Туре	Value	Unit	Source(s)
CF _{summer}	Fixed	1.0		Massachusetts e-TRM 2019- 2021, p. 595 ¹⁴³
CF _{summer}	Fixed	1.0		Wisconsin TRM 2019, p. 822143

Table 5-89. Vending Miser Rated Kilowatts and Energy Savings Factors¹⁴⁴

Equipment Type	kW _{rated} (kW)	ESF
Refrigerated Beverage Vending Machine	0.400	0.46
Non-Refrigerated Snack Vending Machine	0.085	0.46
Glass Front Refrigerated Cooler	0.460	0.30

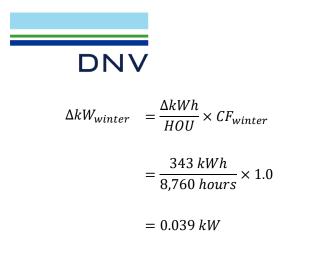
5.4.13.4 Default Savings

If the proper values are not supplied, a default savings may be applied using conservative input values.

The default, per measure gross annual electric energy savings will be applied according to the following calculation:

$$\Delta kWh = kW_{rated} \times HOU \times ESF$$
$$= 0.085 \, kW \times 8,760 \, hours \times 0.46$$
$$= 343 kWh$$

The default, per measure, gross coincident summer peak demand reduction will be applied according to the following calculation:


$$\Delta kW_{summer} = \frac{\Delta kWh}{HOU} \times CF_{summer}$$
$$= \frac{343 \ kWh}{8,760 \ hours} \times 1.0$$
$$= 0.039 \ kW$$

The default, per measure, gross coincident winter peak demand reduction will be applied according to the following calculation:

Jun 15 2022

¹⁴³ The Massachusetts TRM does not provide summer or winter CFs. However, the equation for peak demand is kWh savings divided by annual hours implying a CF of 1.0.

¹⁴⁴ Massachusetts TRM 2019-2021 Plan Version, p. 595-597; <u>https://www.masssavedata.com/Public/TechnicalReferenceLibrary</u> (accessed on April 18, 2012).

5.4.13.5 Effective Useful Life

The effective useful life of this measure is provided in Table 5-90.

DS	M Phase	Program Name	Value	Units	Source(s)
	VIII	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	5.00	years	Massachusetts e-TRM 2019-2021, p. 596
	VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

5.4.13.6 Source(s)

The primary source for this deemed savings approach is the Massachusetts e-TRM 2019-2021, pp. 595-597.

5.4.13.7 Update Summary

Updates made to this section are described in Table 5-91.

Table 5-91. Summary of Update(s)

Version	Update Type	Description
2021	Source	Updated page numbers / version of the Massachusetts TRM
	Equation	Added equation for coincident winter peak demand reduction
	New Table	Effective Useful Life (EUL) by program
2020	None	No change
v10	Source	Verified no changes to page numbers / version of the Massachusetts TRM

6 NON-RESIDENTIAL DISTRIBUTED GENERATION PROGRAM, DSM PHASE II

The Non-Residential Distributed Generation (NRDG) Program is designed to reduce peak demand for the Company. During a Distributed Generation Program dispatch event, large non-residential customers are incentivized to transfer their electrical demand from the grid to a distributed on-site resource. A third-party contractor installs, monitors and operates the distributed equipment controls.

Participants and the implementation contractor are notified 30 minutes in advance of an NRDG dispatch event by email or telephone. The number of dispatched sites, and the beginning and ending event-hours varies by event. The program operates 12 months a year, but annual event-hours are limited per the terms of the program.

6.1.1.1 Measure Description

The impacts from the non-residential DG program are calculated by measuring the amount of aggregate and sitelevel kW generated by a distributed resource. The most important performance indicator is the program realization rate. The methodology for calculating the realization rate is presented below. A customer is compliant with the terms of the program if their average event-based generated kW, calculated monthly, is at least 95% of enrolled and committed kW.

6.1.1.2 Impacts Estimation Approach

At the site and interval level, the ex-post impact is defined as the measured kW generated by the distributed resource. Dispatched generation is the amount of electricity requested by the company during a non-residential DG event. The sources of dispatched generation and enrolled dispatchable supply can be found in Table 6-1.

6.1.1.3 Realization Rate

The program realization rate for a given dispatch event (j) is the sum of measured generation (kW) from called participants (i) for the interval divided by the sum of dispatched generation for called participants.

 $Realization Rate_{j} = \frac{\sum_{i} Measured Generation (kW)}{\sum_{i} Dispatched Generation (kW)}$

Program performance is tracked by aggregating measured generation and dispatched generation by event interval and day. Event-day plots facilitate the analysis of realization rate patterns for the entire program.

6.1.1.4 Input Variables

Table 6-1. Input Values for Non-Residential Distributed Generation Impact Analysis
--

Variable	Value	Unit	Source
Measured generation	Metered site data	kW	Dominion Energy
Dispatched generation	Event-based resource requested by Dominion Energy	kW	Dominion Energy
Enrolled dispatchable generation	Per program terms, fixed per site	kW	Dominion Energy

6.1.1.5 Default Savings

Default savings will not be credited to a non-residential DG customer for unmeasured generation.

6.1.1.6 Effective Useful Life

The effective useful life of this measure is 1.00 years since demand reductions do not persist. The demand reductions are associated with the participation and events of each year.

6.1.1.7 Source(s)

DNV developed the non-residential DG evaluation methodology according to standard EM&V protocols. 145

6.1.1.8 Update Summary

Updates made to this section are described in Table 6-2.

Table 6-2. Summary of Update(s)

Version	Update Type	Description
2021	None	No change
2020	None	No change
v10	None	No change

¹⁴⁵ Miriam L. Goldberg & G. Kennedy Agnew. Measurement and Verification for Demand Response, National Forum on the National Action Plan on Demand Response, <u>https://www.ferc.gov/industries/electric/indus-act/demand-response/dr-potential/napdr-mv.pdf</u>.

7 NON-RESIDENTIAL SMALL MANUFACTURING PROGRAM, DSM PHASE VII

The Non-Residential Small Manufacturing Program provides qualifying business owners incentives to pursue one or more of the qualified energy efficiency measures through a local, participating contractor in Dominion Energy's contractor network. To qualify for this program, the customer must be responsible for the electric bill and must be the owner of the facility or reasonably able to secure permission to complete the measures. All program measures are summarized in Table 7-1.

End Use	Measure	Legacy Program	Manual Section
Compressed Air	Compressed Air Nozzles	N/A	Section 7.1.1
	Leak Repair	Non-Residential Small Business Improvement Program	Section 7.1.2
	No Loss Drains		Section 7.1.3
	Add Storage (5 gal/cfm)		Section 7.1.4
	Heat of Compression Dryer		Section 7.1.5
	Low Pressure-drop Filter		Section 7.1.6
	VSD Air Compressor	N/A	Section 7.1.7
	Cycling Refrigerant Dryer		Section 7.1.8
	Dewpoint Controls		Section 7.1.9
	Pressure Reduction		Section 7.1.10
	Downsized VFD Compressor		Section 7.1.11

Table 7-1. Non-Residential	Small Manufacturing	Program Measure List
	oman manaraotaring	ji rogram modouro Eloc

7.1 Compressed Air End Use

This section describe each measure and how energy and demand impacts are calculated. Due to the interactivity of the measures and the complexity of compressed air systems, savings are calculated in project-level spreadsheets. These spreadsheets are provided by the program implementer and reviewed by DNV. The in-depth reviews will verify that the appropriate baseline assumptions, operating hours, inputs and calculations are used. The savings calculations and inputs shown in this section are inline with the implementer calculations.

7.1.1 Compressed Air Nozzle

7.1.1.1 Measure Description

This measure realizes energy savings by replacing standard air nozzles with engineered air nozzles. Nozzles are used in industrial processes to deliver jets of compressed air to remove debris or liquid, cool parts, eject parts from conveyors, or to perform other manufacturing functions. Standard nozzles use 100% compressed air to perform these tasks whereas engineered nozzles use compressed air to entrain ambient air, thereby halving the compressed-air

usage. Engineered nozzles provide the same force and functionality as standard nozzles, but use less compressed air and, therefore, less energy.

Qualifying nozzles may use no more compressed air, at 80 psig, than the maximum flowrates shown in Table 7-2.

Nozzle Diameter (inch)	Flow Rate reduction at 80 psig (scfm)
1/8	11
1/4	29
5/16	56
1/2	140

Table 7-2. Compressed Air reduction for Engineered Nozzles

7.1.1.2 Impacts Estimation Approach

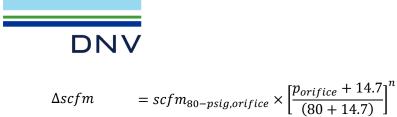
Per measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \left[scfm_{base} \times \left(\frac{kW}{scfm}\right)_{base} - scfm_{ee} \times \left(\frac{kW}{scfm}\right)_{ee}\right] \times Use \times HOU$$

The system air flow and loading values are calculated using the following equations:

 $scfm_{base} = scfm_{rated} \times Load_{base}$

$$scfm_{ee} = scfm_{base} - \Delta scfm$$


$$Load_{ee} = \frac{scfm_{ee}}{scfm_{rated}}$$

If the system air flow and loading values are calculated using the following equations:

$$scfm_{ee} = scfm_{base} - \Delta scfm$$

$$Load_{ee} = \frac{scfm_{ee}}{scfm_{rated}}$$

To determine the reduction in flow rate from the standard to engineered nozzles, the following conditions and equations are used:

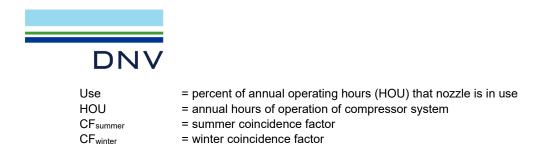
Per measure, gross coincident demand reduction is calculated according to the following equation:

$$\left(\frac{kW}{scfm}\right)_{base} = \frac{hp \times 1.1 \times 0.746}{0.945 \times \eta_{VFD}} \times \frac{\left(X_2 \times Load_{base}^2 + X_1 \times Load_{base} + C\right)}{scfm_{base}}$$

$$\left(\frac{kW}{2}\right) = hp \times 1.1 \times 0.746 \quad \left(X_2 \times Load_{ce}^2 + X_1 \times Load_{ce} + C\right)$$

$$\left(\frac{kW}{scfm}\right)_{ee} = \frac{hp \times 1.1 \times 0.746}{0.945 \times \eta_{VFD}} \times \frac{\left(X_2 \times Load_{ee}^2 + X_1 \times Load_{ee} + C\right)}{scfm_{ee}}$$

Per measure, gross summer peak coincident demand reduction is calculated according to the following equation:


$$\Delta kW_{summer} = \left[scfm_{base} \times \left(\frac{kW}{cfm}\right)_{base} - scfm_{ee} \times \left(\frac{kW}{cfm}\right)_{ee}\right] \times Use \times CF_{summer}$$

Per measure, gross winter peak coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \left[scfm_{base} \times \left(\frac{kW}{cfm}\right)_{base} - scfm_{ee} \times \left(\frac{kW}{cfm}\right)_{ee}\right] \times Use \times CF_{winter}$$

Where:

ΔkWh	= per measure gross annual electric energy savings
∆kW _{summer}	= per measure gross summer peak coincident demand reduction
∆kW _{winter}	= per measure gross winter peak coincident demand reduction
hp	= trim compressor rated horsepower
scfm _{rated}	= trim compressor rated flow rate
scfm _{base}	= base trim compressor operating flow
scfmee	= efficient trim compressor operating flow
∆scfm	= reduction in trim compressor operating flow
Qty	= quantity of nozzles
scfm _{80-psig, nozzle}	= reduction in nozzle flow rate at 80 psig
Load _{base}	= average percent of rated flow for base trim compressor
Load _{ee}	= average percent of rated flow for base trim compressor with one engineered
	nozzle in operation
kW/scfm _{base}	= base trim compressor operating performance
kW/scfm _{ee}	 efficient trim compressor operating performance
Porifice	= pressure at the nozzle
n	= flowrate pressure adjustment coefficient
Dia	= diameter of nozzle
η_{VFD}	= VFD efficiency
X ₂	= coefficient
X ₁	= coefficient
С	= constant

7.1.1.3 Input Variables

Table 7-3. Input Values for Compressed Air Nozzles Savings Calculations

Component Type Value		Unit	Source(s)	
scfm _{rated}	Variable	See customer application	scfm	Customer application
scfm _{80-psig} , nozzle	Variable	See Table 7-2	scfm	IL TRM V8.0 Vol. 2, 2020, p. 574
•		See customer application Default = 0.60		Customer application
Load _{base}	Variable			Engineering estimate
Qty	Variable	See customer application	-	Customer application
Porifice	Variable	See customer application	psig	Customer application
n	Fixed	1.0	-	Engineering estimate
Dia	Variable	See customer application	inches	Customer application
ηνεσ	Variable	See Table 13-20 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors	-	Engineering estimate, only applicable if the control type is VFD
X ₂	Variable	See Table 13-20 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
X ₁	Variable	See Table 13-20 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
с	Variable	See Table 13-20 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
	Variable	See customer application		Customer application
Use		Default = 0.05	-	Minnesota TRM V3.1, 2020, pp. 451
	Variable	See customer application	hours.	Customer application
HOU		Default = 6,240	annual	Minnesota TRM V3.1, 2020, pp. 451
CF _{summer}	Variable	See Table 13-21 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors	-	Illinois TRM V8.0 Volume 2, 2020, pp. 575

Component	Туре	Value	Unit	Source(s)
		Default =0.59		Default based on single shift (8/5) operating schedule from IL TRM V8.0 Volume 2, 2020, pp. 575
CE .	CF winter Variable	See Table 13-21 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors		Illionois TRM V8.0 Volume 2, 2020, pp. 575 ¹⁴⁶
CF winter		Default =0.59		Default based on single shift (8/5) operating schedule from IL TRM V8.0 Volume 2, 2020, pp. 575

7.1.1.4 Default Savings

If the necessary values are not available, some values have defaults savings. However, there are no default savings for this measure as some values are essential to calculate savings.

7.1.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 7-4.

DSM Phase	Program Name	Value	Units	Source(s)
VII	Non-Residential Small Manufacturing Program, DSM Phase VII	12.24	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

7.1.1.6 Source(s)

The system performance (kW/scfm) relies on performance curves for various control types as provided by Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004. Other sources include the IL TRM v.8.0 Vol.2 2020, pp. 573-575 and MN TRM v3.1 2020, pp. 450-452.

7.1.1.7 Update Summary

Updates made to this section are described in Table 7-5.

Updates in Version	Update Type	Description
2021	Source	Updated page numbers / version of the IL TRM and MN TRM

Table 7-5. Summary of Update(s)

¹⁴⁶ The source TRM does not differentiate between winter and summer peak periods. Therefore, DNV applied the same CF for summer and winter peak periods.

Updates in Version	Update Type	Description	
	Table	Updated scfm _{80-psig} ,values based on nozzle size	
	 Variable Added Nozzle Quantity Added flowrate pressure adjustment coefficient Added pressure at the nozzle portifice 		
	New Table	Effective Useful Life (EUL) by program	
	Equation	 Added gross winter peak demand reduction equation Added condition capping the maximum scfm reduction of nozzles to 50% of the total system baseline scfm. Added clarification to Δscfm that the pressure is the pressure at the nozzle, not the system pressure 	
2020	None	No change	
v10	New Measure	New section	

7.1.2 Leak Repair

7.1.2.1 Measure Description

This measure realizes energy savings by repairing compressed air leaks. Reducing the amount of air leaked in the compressed air system reduces the load on the compressors and thereby saves energy.

Qualifying leaks must be identified, estimated, and tagged by a compressed-air professional.

This measure is offered in the Non-Residential Small Business Improvement Program, DSM Phase V in Section 4.3.1 but uses a different methodology. That program uses a deemed value for system efficiency. This program uses site-specific equipment and operating conditions to determine the system efficiency.

7.1.2.2 Impacts Estimation Approach

Per measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \left(scfm_{base} \times \left(\frac{kW}{scfm}\right)_{base} - scfm_{ee} \times \left(\frac{kW}{scfm}\right)_{ee}\right) \times HOU$$

The baseline system air flow is calculated using the following equation:

 $scfm_{base} = scfm_{rated} \times Load_{base}$

The efficient system air flow and loading values are calculated using the following equations:

DNV $scfm_{ee} = scfm_{base} - \sum_{i=1}^{n} \Delta scfm_i$

$$Load_{ee} = \frac{scfm_{ee}}{scfm_{rated}}$$

The baseline and efficient system operating performances are calculated using the following equations:

$$\left(\frac{kW}{scfm}\right)_{base} = \frac{hp \times 1.1 \times 0.746}{0.945 \times \eta_{VFD}} \times \frac{\left(X_2 \times Load_{base}^2 + X_1 \times Load_{base} + C\right)}{scfm_{base}}$$
$$\left(\frac{kW}{scfm}\right)_{ee} = \frac{hp \times 1.1 \times 0.746}{0.945 \times \eta_{VFD}} \times \frac{\left(X_2 \times Load_{ee}^2 + X_1 \times Load_{ee} + C\right)}{scfm_{ee}}$$

Per measure, gross summer peak coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \left(scfm_{base} \times \left(\frac{kW}{cfm}\right)_{base} - scfm_{ee} \times \left(\frac{kW}{cfm}\right)_{ee}\right) \times CF_{summer}$$

Per measure, gross winter peak coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \left(scfm_{base} \times \left(\frac{kW}{cfm}\right)_{base} - scfm_{ee} \times \left(\frac{kW}{cfm}\right)_{ee}\right) \times CF_{winter}$$

Where:

∆kWh	= per measure gross annual electric energy savings						
∆kW _{summ}	ΔkW_{summer} = per measure gross summer peak coincident demand reduction						
ΔkW_{winte}	ΔkW_{winter} = per measure gross winter peak coincident demand reduction						
hp	= trim compressor rated horsepower						
scfm _{rated}	= trim compressor rated flow rate						
scfm _{base}	= baseline trim compressor operating flow						
scfm _{ee}	 efficient trim compressor operating flow 						
∆scfm	 efficient trim compressor operating flow reduction 						
Load _{base}	= average percent of rated flow for base trim compressor						
Loadee	= average percent of system flow after leaks are repaired						
kW/cfm _{bas}	e = baseline system operating performance						
kW/cfmee =	= efficient system operating performance						
ηvfd	= VFD efficiency						
X ₂	= coefficient						
X 1	= coefficient						
С	= constant						
HOU	= annual hours of operation of compressor system						
CF _{summer}	= summer coincidence factor						
CF_{winter}	= winter coincidence factor						

OFFICIAL COPY

7.1.2.3 Input Variables

Table 7-6. Input Values for Leak Savings Calculations

Component	Component Type Value		Units	Sources
hp	Variable	See customer application	hp	See customer application
scfm _{rated}	Variable	See customer application	scfm	See customer application
ΔSCFM	Variable	See customer application	-	See customer application
η vfd	Variable	See Table 13-20 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors	-	Engineering estimate; only applicable for VFD-controlled compressors
X2	Variable	See Table 13-20 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
X 1	Variable	See Table 13-20 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
C Variable Variable Variable See Table 13-20 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors		-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004	
	Veriable	See customer application	hours,	See customer application
HOU	Variable	Default=6,240 ann		MN TRM V3.1, 2020, p. 451
CFsummer	Variable	See Table 13-21 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors	-	IL TRM V8.0 Volume 2, 2020, pp. 575
		Default =0.59		Default based on single shift (8/5) operating schedule from IL TRM V8.0 Volume 2, 2020, p. 575
CF _{winter}	Variable	See Table 13-21 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors		IL TRM V8.0 Volume 2, 2020, p. 575 ¹⁴⁷
		Default =0.59		Default based on single shift (8/5) operating schedule from IL TRM V8.0 Volume 2, 2020, p. 575

¹⁴⁷ The source TRM doesn't differentiate between winter and summer peak periods. Therefore, the summer CF is applied to the winter CF.

7.1.2.4 Default Savings

If the proper values are not available, some values have defaults savings. However, there are no default savings for this measure as some values are needed to calculate savings.

7.1.2.5 Effective Useful Life

The effective useful life of this measure is provided in Table 7-7.

Table 7-7. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program Name	Value	Units	Source(s)
VII	Non-Residential Small Manufacturing Program, DSM Phase VII	12.24	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

7.1.2.6 Source(s)

The system performance (kW/scfm) relies on performance curves for various control types as provided by Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004. Other sources include the IL TRM V8.0 Vol. 2, 2020, pp. 573-575 and MN TRM V3.1, 2020, pp. 450-452.

7.1.2.7 Update Summary

Updates made to this section are described in Table 7-8.

Version	Update Type	Description		
2021	Source Updated page numbers / version of the IL TRM and MN TRM Table Updated scfm _{80-psig} ,values based on nozzle size			
New Table Effective Useful Life (EUL) by program Equation Added gross winter peak demand reduction		Effective Useful Life (EUL) by program		
		Added gross winter peak demand reduction equation		
2020	Input	Added default value for hours of use		
v10	New Measure	New section		

Table 7-8. Summary of Update(s)

7.1.3 No-Loss Condensate Drain

7.1.3.1 Measure Description

This measure involves the installation of a no-loss condensate drain on a compressed-air line. Timed drains open the drain at regular periods for a set amount of time. After timed drains open to drain the condensate, they allow compressed air to leak. Typically, these drains are set for the worst-case conditions resulting in a significant amount

Jun 15 2022

of wasted compressed air. No-loss drains use sensors to assess when the drain should open and for how long. This eliminates the loss of compressed air when the drain purges. Energy is saved by reducing the load on the compressed-air system.

Qualifying drains are no-loss drains that do not vent compressed air when draining condensate.

7.1.3.2 Impacts Estimation Approach

Per measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \left(scfm_{base} \times \left(\frac{kW}{scfm}\right)_{base} - scfm_{ee} \times \left(\frac{kW}{scfm}\right)_{ee}\right) \times HOU$$

To determine the reduction in flow rate from the leak repair, the following equation is used:

$$\Delta scfm = scfm_{100-psig,orifice} \times \left(\frac{p+14.7}{(100+14.7)}\right)^n$$

The baseline system air flow is calculated using the following equation:

$$scfm_{base} = scfm_{rated} \times Load_{base}$$

The efficient system air flow and loading values are calculated using the following equations:

$$scfm_{ee} = scfm_{base} - \Delta scfm$$

$$Load_{ee} = \frac{scfm_{ee}}{scfm_{rated}}$$

The base and efficient system operating performances are calculated by the following equations:

$$\left(\frac{kW}{scfm}\right)_{base} = \frac{hp \times 1.1 \times 0.746}{0.945 \times \eta_{VFD}} \times \frac{\left(X_2 \times Load_{base}^2 + X_1 \times Load_{base} + C\right)}{scfm_{base}}$$
$$\left(\frac{kW}{scfm}\right)_{ee} = \frac{hp \times 1.1 \times 0.746}{0.945 \times \eta_{VFD}} \times \frac{\left(X_2 \times Load_{ee}^2 + X_1 \times Load_{ee} + C\right)}{scfm_{ee}}$$

Per measure, gross summer peak coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \left(scfm_{base} \times \left(\frac{kW}{scfm}\right)_{base} - scfm_{ee} \times Qty \times \left(\frac{kW}{scfm}\right)_{ee}\right) \times CF_{summer}$$

Per measure, gross summer peak coincident demand reduction is calculated according to the following equation:

DNV

$$\Delta kW_{winter} = \left(scfm_{base} \times \left(\frac{kW}{scfm}\right)_{base} - scfm_{ee} \times Qty \times \left(\frac{kW}{scfm}\right)_{ee}\right) \times CF_{winter}$$

Where:

∆kWh	= gross annual electric energy savings her= per measure gross summer peak coincident demand reduction
	r_r = per measure gross summer peak coincident demand reduction
hp	
scfm _{rated}	•
scfm _{base}	
	= efficient trim compressor operating flow
∆scfm	
scfm _{100-psi}	_{g, drain} = reduction in flow rate at 100 psig
n	= flowrate pressure adjustment coefficient
Load _{base}	= percent of trim compressor load with standard drains
Loadee	= percent of trim compressor load with no loss drains
kW/scfm _{ba}	ase = baseline system operating performance
kW/scfm _E	E = efficient system operating performance
р	= system operating pressure
ηvfd	= VFD efficiency
X2	= coefficient
X 1	= coefficient
С	= constant
HOU	= annual hours of operation of compressor system
	= summer coincidence factor
CF_{winter}	= winter coincidence factor
W 111001	

7.1.3.3 Input Variables

Table 7-9. Input Parameters for No-Loss Condensate Drain Savings Calculations

Component	Туре	Value	Units	Source
Qty	Variable	See customer application	-	Customer application
hp	Variable	See customer application	hp	Customer application
scfm _{rated}	Variable	See customer application	scfm	Customer application
scfm100-psig,drain	Fixed	3.0	scfm	IL TRM v.8.0 Vol. 2 2020, p. 571
n	Fixed	1.0	-	Engineering estimate
Load _{base}	Variable	See customer application; Default = 0.60	-	Customer application Engineering estimate
р	Variable	See customer application	psig	Customer application
ηνεσ	Variable	See Table 13-20 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors	-	Engineering estimate, only applicable for VFD-controlled compressors

Component	Туре	Type Value		Source
X2	Variable	See Table 13-20 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
X1	Variable	See Table 13-20 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
С	Variable	See Table 13-20 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
	Variable	See customer application	hours,	See customer application
HOU		Default=6,240	annual	MN TRM v 3.1 2020, p. 451
CFsummer	A F Variable E	See Table 13-21 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors	_	IL TRM v 8.0 Volume 2 2020, p. 575
		Default =0.59		Default based on single shift (8/5) operating schedule from IL TRM v 8.0 Volume 2 2020, p. 575
CFwinter	Appendix F2-VI: Non	See Table 13-21 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors		IL TRM v 8.0 Volume 2 2020, p. 575 ¹⁴⁸
		Default =0.59		Default based on single shift (8/5) operating schedule from IL TRM v 8.0 Volume 2 2020, p. 575

7.1.3.4 Default Savings

If the proper values are not available, some values have defaults savings. However, there are no default savings for this measure as some values are needed to calculate savings.

7.1.3.5 Effective Useful Life

The effective useful life of this measure is provided in Table 7-10.

Table 7-10. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program Name	Value	Units	Source(s)
VII	Non-Residential Small Manufacturing Program, DSM Phase VII	12.24	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

¹⁴⁸ The source TRM doesn't differentiate between winter and summer peak periods. Therefore, the summer CF is applied to the winter CF.

Jun 15 2022

7.1.3.6 Source(s)

The system performance (kW/scfm) relies on performance curves for various control types as provided by Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004.Other sources include the IL TRM V8.0 Vol.2, 2020, pp. 573-575 and MN TRM V3.1, 2020, pp. 450-452.

7.1.3.7 Update Summary

Updates made to this section are described in Table 7-11.

Version	Update Type	Description	
2021	Source Updated page numbers / version of the IL TRM and MN TRM		
	New Table	Table Effective Useful Life (EUL) by program	
	Equation	Added gross winter peak demand reduction equation	
2020	Equation	 Added η_{VFD} to the kW/scfm equations. Removed quantity from the Δscfm equation 	
	Inputs	Added default operating hours	
v10	New Measure	New section	

Table 7-11. Summary of Update(s)

7.1.4 Add Storage

7.1.4.1 Measure Description

This measure involves adding an air receiver with a flow controller on a load/no-load compressor system. Load/noload compressors transition gradually from loaded to unloaded operation. Using storage and a flow controller the compressor has reduced cycling from loaded to unloaded operation. With fewer cycles the compressor spends less time transitioning, saving energy. The baseline case for savings is the existing storage capacity per cfm, which is expected to be 1 or 2 gallon/cfm.

Qualifying storage is at least 5 gallons of storage capacity per CFM capacity. This measure is eligible for load/no-load compressor systems.

7.1.4.2 Impacts Estimation Approach

Per measure, gross annual electric energy savings are calculated per compressed air system according to the following equation:

$$\Delta kWh = scfm \times \left[\left(\frac{kW}{scfm} \right)_{base} - \left(\frac{kW}{scfm} \right)_{ee} \right] \times HOU$$

The baseline system air flow and is calculated using the following equation:

$$scfm = scfm_{rated} \times Load$$

The baseline and efficient system operating performance values are calculated by the following equations:

$$\left(\frac{kW}{scfm}\right)_{base} = \frac{hp \times 1.1 \times 0.746}{0.945} \times \frac{\left(X_{2,base} \times Load^2 + X_{1,base} \times Load + C_{base}\right)}{scfm}$$
$$\left(\frac{kW}{scfm}\right)_{ee} = \frac{hp \times 1.1 \times 0.746}{0.945} \times \frac{\left(X_{2,ee} \times Load^2 + X_{1,ee} \times Load + C_{ee}\right)}{scfm}$$

Per measure, gross summer peak coincident demand reduction is calculated per compressed air system according to the following equation:

$$\Delta k W_{summer} = scfm_{base} \times \left[\left(\frac{kW}{scfm} \right)_{base} - \left(\frac{kW}{scfm} \right)_{ee} \right] \times CF_{summer}$$

Per measure, gross summer peak coincident demand reduction is calculated per compressed air system according to the following equation:

$$\Delta kW_{winter} = scfm_{base} \times \left[\left(\frac{kW}{scfm} \right)_{base} - \left(\frac{kW}{scfm} \right)_{ee} \right] \times CF_{winter}$$

Where:

= per measure gross annual electric energy savings ∆kWh ΔkW_{summer} = per measure gross summer peak coincident demand reduction ΔkW_{winter} = per measure gross winter peak coincident demand reduction scfm = trim compressor operating flow kW/scfm_{base} = base trim compressor operating performance kW/scfmee = efficient trim compressor operating performance scfm_{rated} = trim compressor rated flow rate scfm_{rated} = trim compressor rated flow rate = compressor rated horsepower¹⁴⁹ hp Load = average operating airflow rate percent of full load conditions of trim compressor $X_{2,base}$ = coefficient = coefficient X_{1,base} = constant C_{base} = coefficient X_{2,ee} = coefficient X_{1,ee} Cee = constant HOU = annual hours of operation of compressor system = summer coincidence factor CF_{summer} CF_{winter} = winter coincidence factor

Jun 15 2022

¹⁴⁹ With multiple fully loaded compressors, and only one part loaded unit, the horsepower and capacity (cfm) relate to the horsepower and capacity of the partly loaded compressor.

7.1.4.3 Input Variables

Component Type		Value	Units	Source
hp	Variable	See customer application	hp	Customer application
scfm _{rated}	Variable	See customer application	See customer application scfm	
Land) (a si a la la	See customer application		Customer application
Load	Variable	Default = 0.60		Engineering estimate
X _{2,base}	Variable	See Table 13-20 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
X _{1,base}	Variable	See Table 13-20 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
C _{base}	Variable	See Table 13-20 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
X _{2,ee}	Variable	See Table 13-20 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
X _{1,ee}	Variable	ariable See Table 13-20 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors		Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
Cee Variable Variable Variable Variable See Table 13-20 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors		Appendix F2-VI: Non- Residential Compressed Air	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
HOU	Variable	See customer application	hours	See customer application
	Valiable	Default=6,240	nours	MN TRM v 3.1 2020, p. 451
05	Variable	See Table 13-21 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors	_	IL TRM v 8.0 Volume 2 2020, p. 575
CF _{summer}		Default =0.59		Default based on single shift (8/5) operating schedule from IL TRM v 8.0 Volume 2 2020, p. 575

Component	Туре	Value	Units	Source
05		See Table 13-21 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors		IL TRM v 8.0 Volume 2 2020, p. 575 ¹⁵⁰
CFwinter	Variable	Default =0.59		Default based on single shift (8/5) operating schedule from IL TRM v 8.0 Volume 2 2020, p. 575

7.1.4.4 Default Savings

If the proper values are not available, some values have defaults savings. However, there are no default savings for this measure as some values are needed to calculate savings.

7.1.4.5 Effective Useful Life

The effective useful life of this measure is provided in Table 7-13.

Table 7-13. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program Name	Value	Units	Source(s)
VII	Non-Residential Small Manufacturing Program, DSM Phase VII	12.24	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

7.1.4.6 Source(s)

The system performance (kW/scfm) relies on performance curves for various control types as provided by Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004. Other sources include the IL TRM V8.0 Vol.2, 2020, pp. 573-575 and MN TRM V3.1, 2020, pp. 450-452.

7.1.4.7 Update Summary

Updates made to this section are described in Table 7-14.

Version	Update Type	Description		
2021	Source	Updated page numbers / version of the IL TRM and MN TRM		
	New Table	Effective Useful Life (EUL) by program		
	Equation	Added gross winter peak demand reduction equation		
2020	Inputs	Added default operating hours and CF value		

¹⁵⁰ The source TRM doesn't differentiate between winter and summer peak periods. Therefore, the summer CF is applied to the winter CF.

Version	Update Type	Description
v10	New Measure	New section

7.1.5 Heat-of-compression Dryer

7.1.5.1 Measure Description

This measure replaces a standard purge-desiccant dryer with a heat-of-compression dryer. Standard desiccant dryers use compressed air to purge moisture from the desiccant. These dryers can use a significant amount of a system's rated compressed air capacity for drying. Heat-of-compression dryers, however, utilize the waste heat from the compressed air to recharge (dry) the desiccant. This saves energy by reducing the need to use compressed air for drying. The baseline is a standard purge desiccant dryer.

The installed equipment is a rotating drum or twin tower desiccant dryer that utilizes the heat of compression from the air compressor to regenerate the desiccant material.

7.1.5.2 Impacts Estimation Approach

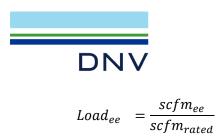
Per dryer, the gross annual electric energy savings are calculated according to the following equation:

$$\begin{split} \Delta kWh &= \left[scfm_{base} \times \left(\frac{kW}{scfm}\right)_{base} + kW_{heater,base} + kW_{blower,base} \right. \\ &+ kW_{refrig,base} - \left(1 + PSF \times (p_{base} - p_{ee})\right) \left(scfm_{ee} + \left(\frac{kW}{scfm}\right)_{ee}\right)\right] \times HOU \end{split}$$

To determine the reduction in airflow rate due to the new dryer type, the following equation is used:

 $scfm_{reduced} = scfm_{dryer, rated, base} \times Purge_{base} - scfm_{dryer, rated, ee} \times Purge_{ee}$

The baseline airflow rate and loading is calculated using the following equations:


 $scfm_{base} = scfm_{rated} \times Load_{base}$

$$Load_{dryer,base} = \frac{scfm_{base}}{scfm_{dryer,rated,base}}$$

The efficient system air flow and loading is calculated using the following equations:

$$scfm_{ee} = scfm_{base} - scfm_{reduced}$$

DNV Energy Insights USA Inc.

The base and efficient system operating performance values are calculated by the following equations:

$$\left(\frac{kW}{scfm}\right)_{base} = \frac{hp \times 1.1 \times 0.746}{0.945 \times \eta_{VFD}} \times \frac{\left(X_2 \times Load_{base}^2 + X_1 \times Load_{base} + C\right)}{scfm_{base}}$$
$$\left(\frac{kW}{scfm}\right)_{ee} = \frac{hp \times 1.1 \times 0.746}{0.945 \times \eta_{VFD}} \times \frac{\left(X_2 \times Load_{ee}^2 + X_2 \times Load_{ee} + C\right)}{scfm_{ee}}$$

The load due to each component is calculated using the following equations:

$$kW_{blower,base} = \frac{hp_{blower,base} \times 0.8 \times 0.746}{0.957}$$

 $kW_{heater,base} = kW_{heater,base} \times Use_{heater,base}$

$$kW_{refrig,base} = kW_{refrig,base,rated} \times (R_1 \times Load_{dryer,base} + K)$$

Per dryer, the gross summer coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \left[scfm_{base} \times \left(\frac{kW}{scfm}\right)_{base} + kW_{heater,base} + kW_{blower,base} + kW_{refrig,base} - \left(1 + PSF \times (p_{base} - p_{ee})\right) \right((scfm_{ee}) \times \left(\frac{kW}{scfm}\right)_{ee} \right) \right] \times CF_{summer}$$

Per dryer, the gross summer coincident demand reduction is calculated according to the following equation:

Jun 15 2022

DNV

Where:

ΔkWh = per measure gross annual electric energy savings ΔkW_{summer} = per measure gross summer peak coincident demand reduction ΔkW_{winter} = per measure gross winter peak coincident demand reduction hp = trim compressor rated horsepower scfm_{rated} = trim compressor rated flow = base trim compressor operating flow scfm_{base} = efficient trim compressor operating flow scfmee scfm_{reduced} = average reduction in flow resulting from replacing base dryer scfmdryer, rated, base = base dryer rated flow scfm_{dryer, rated, ee} = efficient cycling dryer rated flow Typedryer,base = baseline dryer type Purge_{base} = purge percent of base dryer Purge_{ee} = purge percent of EE dryer Load_{base} = average percent of rated flow for trim compressor Loaddryer base = average operating proportion of baseline dryer rated airflow = average operating percent of trim compressor rated flow with the heat of compression dryer Loadee kW_{heater,base} = average operating kW of the baseline heater kW_{blower,base} = average operating kW of the baseline blower kW_{refrig,base} = average operating kW of the baseline refrigerated dryer hpblower.base = rated hp of blower in baseline drver Useheater,base = proportion of operating time that heater is in use kWrefrig,base,rated = the rated kW of the baseline dryer R₁ = coefficient Κ = coefficient kW/scfm_{base} = baseline system operating performance kW/scfmee = efficient system operating performance = system operating pressure of baseline system p_{base} = system operating pressure of efficient system pee PSF = pressure savings factor = VFD efficiency η_{VFD} = coefficient X_2 X_1 = coefficient С = constant HOU = annual hours of use *CF_{summer}* = summer coincidence factor

 $\Delta kW_{winter} = \left[scfm_{base} \times \left(\frac{kW}{scfm}\right)_{base} + kW_{heater,base} + kW_{blower,base}\right]$

 $\times \left(\frac{kW}{scfm}\right)_{oo}\right) \times CF_{winter}$

 $+kW_{refrig,base} - (1 + PSF \times (p_{base} - p_{ee})) \Big((scfm_{ee}) \Big)$

 CF_{winter} = winter coincidence factor

7.1.5.3 Input Variables

Table 7-15. Input Parameters for Heat of Compression Dryer

Component	Туре	Value	Units	Sources
hp	Variable	See customer application	hp	Customer application
scfm _{rated} Variable See customer application		scfm	Customer application	
scfm _{dryer,rated,base}	Variable	see customer application	scfm	Customer application
scfmdryer,rated ee	Variable	see customer application	scfm	Customer application
Purgebase	Variable	See Table 13-23 in Sub-Appendix F2-VI: Non-Residential Compressed Air End Use Factors	-	Desiccant purge rates are from: Dryer Selection for Compressed Air Systems, Compressed Air Challenge, 1999. no purge for other dryer types
Purgeee	Fixed	0.02	-	Engineering estimate
Land	Variable	See customer application		Customer application
Load _{base}	Variable	Default = 0.60	-	Engineering estimate
hpblower,base	Variable	See customer application (for blower purge and heated blower purge, only)	hp	Customer application
kWheater,base	Variable	See customer application (for heated blower purge and heated desiccant dryer types, only)	kW	Customer application
Use heater,base	Variable	Assigned by baseline blower type: heated blower purge = 0.75 heated desiccant dryer = 1.00	-	Based on engineering judgment
kW refrig,rated,base Variab		See customer application, only applicable to: Non-cycling Refrigerated Cycling Refrigerated VFD Refrigerated Digital Scroll Refrigerated	kW	Customer application
R ₁	Variable	See Table 13-22 in Sub-Appendix F2-VI: Non-Residential Compressed Air End Use Factors for refrigerated dryers, only	-	Compressed Air Challenge, Cycling Refrigerated Air Dryers - Are Savings Significant
K Variable See Table 13-22 in Sub-Append F2-VI: Non-Residential		Compressed Air End Use Factors	-	Compressed Air Challenge, Cycling Refrigerated Air Dryers - Are Savings Significant
Pbase	Variable	See customer application	psig	Customer application
Pee	Dee Variable See customer application		psig	Customer application
PSF Fixed		0.005	1/psig	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
η _{VFD} See Table 13-20 in Sub-Appendix γVFD Variable F2-VI: Non-Residential Compressed Air End Use Factors Compressed Air End Use Factors		-	Engineering estimate; only applicable if the control type is a VFD	

Component	Туре	Value	Units	Sources
X ₂	X2 See Table 13-20 in Sub-Appendix F2-VI: Non-Residential F2-VI: Non-Residential Compressed Air End Use Factors F2-VI		-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
X 1	Variable	See Table 13-20 in Sub-Appendix F2-VI: Non-Residential Compressed Air End Use Factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
с	See Table 13-20 in Sub-Appendix		-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
ноц	Variable	See customer application	hours,	See customer application
HOU		Default=6,240	annual	MN TRM v 3.1 2020, p. 451
		See Table 13-21 in Sub-Appendix F2-VI: Non-Residential Compressed Air End Use Factors	-	IL TRM v 8.0 Volume 2 2020, p. 575
CF _{summer}	Fixed	Default =0.59		Default based on single shift (8/5) operating schedule from IL TRM v 8.0 Volume 2 2020, p. 575
	Variable	See Table 13-21 in Sub-Appendix F2-VI: Non-Residential Compressed Air End Use Factors		IL TRM v 8.0 Volume 2 2020, p. 575 ¹⁵¹
CFwinter		Default =0.59		Default based on single shift (8/5) operating schedule from IL TRM v 8.0 Volume 2 2020, p. 575

7.1.5.4 Default Savings

There are no default savings for this measure as site-specific values are required to calculate savings.

7.1.5.5 Effective Useful Life

The effective useful life of this measure is provided in Table 7-16.

Table 7-16. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program Name	Value	Units	Source(s)
VII	Non-Residential Small Manufacturing Program, DSM Phase VII	12.24	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

¹⁵¹ The source TRM doesn't differentiate between winter and summer peak periods. Therefore, the summer CF is applied to the winter CF.

Jun 15 2022

7.1.5.6 Source(s)

The system performance (kW/scfm) relies on performance curves for various control types as provided by Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004. Other sources include the IL TRM v.8.0 Vol.2 2020, pp. 573-575, MN TRM v3.1 2020, pp. 450-452 and Dryer Selection for Compressed Air Systems, Compressed Air Challenge, 1999.

7.1.5.7 Update Summary

Updates made to this section are described in Table 7-17.

Version	Update Type	Description		
2021	Source	Updated page numbers / version of the IL TRM and MN TRM		
	Equation	Added gross winter peak demand reduction equation		
	New Table	Effective Useful Life (EUL) by program		
2020	Input	 Changed CF from fixed value to allow for more than one production shift Added default operating hours 		
v10	New Measure	New section		

Table 7-17. Summary of Update(s)

7.1.6 Low Pressure-Drop Filter

7.1.6.1 Measure Description

This measure involves replacing standard coalescing filters with low pressure-drop filters. Filters are used to remove contaminants from the compressed air system and protect equipment. Filters induce a static pressure drop and require increased air pressure setpoints to overcome the pressure drop. By replacing standard filters with low pressure drop filters, the pressure setpoint can be reduced at the discharge to realize energy savings. Only positive-displacement compressors (rotary-screw and reciprocating) are eligible for this measure because lowering discharge pressure will result in approximately 0.5% drop in power for every 1-psig reduction of discharge pressure setpoint.¹⁵² Furthermore, qualifying filters have a rated pressure drop of 1 psig or less. Centrifugal compressors are ineligible for this measure because they require compressor-specific performance curves to accurately calculate savings.

7.1.6.2 Savings Estimation

Per measure, gross annual electric energy savings are calculated per filter according to the following equation:

$$\Delta kWh = scfm_{base} \times \left(\frac{kW}{scfm}\right)_{base} \times PSF \times \Delta p \times HOU$$

The baseline airflow is calculated using the following equation:

DNV Energy Insights USA Inc.

¹⁵² "Fundamentals of Compressed Air Systems", Compressed Air Challenge, 2004

 $scfm_{base} = scfm_{rated} \times Load_{base}$

The base system operating performance is calculated using the following equation:

$$\left(\frac{kW}{scfm}\right)_{base} = \frac{hp \times 1.1 \times 0.746}{0.945 \times \eta_{VFD}} \times \frac{\left(X_2 \times Load_{base}^2 + X_1 \times Load_{base} + C\right)}{scfm_{base}}$$

The change in pressure due to the new filter is calculated using the following equation:

$$\Delta p = MIN(p_{base} - p_{ee}, \Delta p_{max})$$

Per measure, gross coincident summer peak demand reduction is calculated per filter according to the following equation:

$$\Delta kW_{summer} = scfm_{base} \times \left(\frac{kW}{scfm}\right)_{base} \times PSF \times \Delta p \times CF_{summer}$$

Per measure, gross coincident winter peak demand reduction is calculated per filter according to the following equation:

$$\Delta kW_{winter} = scfm_{base} \times \left(\frac{kW}{scfm}\right)_{base} \times PSF \times \Delta p \times CF_{winter}$$

Where:

∆kWh	= per measure, gross annual electric energy savings
∆kW _{summer}	= per measure, gross coincident summer peak demand reduction
∆kW _{winter}	= per measure, gross coincident winter peak demand reduction
hp	= compressor rated horsepower
0 _{base}	= base pressure setpoint
Pee	= system operating pressure after pressure reduction
Δр	= the change in pressure setpoint
∆p _{max}	= the maximum pressure reduction attributed to low pressure filter
scfm _{rated}	= trim compressor rated flow
scfm _{base}	= base trim compressor operating flow
Load _{base}	= average percent of rated flow for trim compressor
kW/scfm _{bas}	ee = base system operating performance
PSF	= pressure savings factor
η _{VFD}	= VFD efficiency
X 2	= coefficient
X 1	= coefficient
С	= constant
HOU	= annual hours of use
CF _{summer}	= summer coincidence factor
CF _{winter}	= winter coincidence factor

7.1.6.3 Input Variables

Table 7-18. Input Parameters for Low Pressure Drop Filter Savings Calculations

Component	Туре	Value	Units	Sources
Pbase	Variable	See customer application	psig	Customer application
pee	Variable	See customer application	psig	Customer application
Δp _{max}	Fixed	ed 5		Assumed maximum amount of pressure reduction that can be attributed to measure (difference between base filter pressure reduction and low PD filter)
hp	Variable	See customer application	hp	See customer application
scfm _{rated}	Variable	See customer application	scfm	Customer application
Lood	Variable	See customer application		Customer application
Load _{base}	variable	Default = 0.60	-	Engineering estimate
PSF	Fixed	0.005	1/psig	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
η_{VFD}	Variable	See Table 13-20 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors	-	Engineering estimate, only applicable if the control type is VFD
X ₂	See Table 13-20 in Sub-		-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
X 1	Variable	ble See Table 13-20 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors		Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
C Variable See Table 13-20 in Sub- Appendix F2-VI: Non- Residential Compressed Air		Appendix F2-VI: Non-	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
) /	See customer application	h	See customer application
HOU	Variable	Default=6,240	hours	MN TRM v 3.1 2020, p. 451
CFsummer	_{nmer} Variable	See Table 13-21 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors	_	IL TRM v 8.0 Volume 2 2020, p.575
-		Default =0.59		Default based on single shift (8/5) operating schedule from IL TRM v 8.0 Volume 2 2020, p. 575
CFwinter	Variable	See Table 13-21 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors		IL TRM v 8.0 Volume 2 2020, p. 575 ¹⁵³
		Default =0.59		Default based on single shift (8/5) operating schedule from IL TRM v 8.0 Volume 2 2020, p. 575

¹⁵³ The source TRM doesn't differentiate between winter and summer peak periods. Therefore, the summer CF is applied to the winter CF.

Jun 15 2022

7.1.6.4 Default Savings

If the proper values are not available, some values have defaults savings. However, there are no default savings for this measure as some values are needed to calculate savings.

7.1.6.5 Effective Useful Life

The effective useful life of this measure is provided in Table 7-19.

Table 7-19. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program Name	Value	Units	Source(s)
VII	Non-Residential Small Manufacturing Program, DSM Phase VII	12.24	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

7.1.6.6 Source

The system performance (kW/scfm) relies on performance curves for various control types as provided by Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004. The IL TRM v.8.0, Vol. 2. 2020, p. 575 and MN TRM v 3.1 2020, p. 451 is also referenced.

7.1.6.7 Update Summary

Updates made to this section are described in Table 7-20.

Table 7-20.	Summary	of Update(s)
-------------	---------	--------------

Version	Update Type	Description
2021 Source Updated page numbers / version of the		Updated page numbers / version of the IL TRM and MN TRM
	New Table	Effective Useful Life (EUL) by program
Equation A		Added winter peak coincident demand reduction equation
2020InputsAdded default operating houv10New MeasureNew section		Added default operating hours
		New section

7.1.7 VFD Air Compressor

7.1.7.1 Measure Description

This measure installs an air compressor with variable frequency drive replacing an existing air compressor without a variable frequency drive. Variable frequency drives control the output airflow rate by varying the electrical frequency to the compressor motor. Inlet modulation with unloading, load/no-load, and centrifugal compressor systems vary the

Jun 15 2022

compressor capacity by physically changing the compressor operation. Variable frequency drive controls have much higher part-load efficiencies than the standard control types, thus saving energy under part-load conditions. Typical air compressors spend a small percent of the operation at or near full-load conditions.

The qualifying equipment is an air compressor with a variable frequency drive. If this is installed as a replacement for an existing compressor, the compressor should be the same rated hp capacity as the existing compressor. Base-load units that serve multi-compressor systems do not qualify.

7.1.7.2 Impacts Estimation Approach

Per measure, gross annual electric energy savings are calculated per VFD-controlled compressor according to the following equation:

$$\Delta kWh = \sum_{bin=1}^{7} scfm_{bin} \times \left(\left(\frac{kW}{scfm} \right)_{base, bin} - \left(\frac{kW}{scfm} \right)_{ee, bin} \right) \times HOU_{bin} \times HOU$$

The bin flow rate is calculated using the following equation:

$$scfm_{bin} = scfm_{rated} \times Load_{bin}$$

The base and efficient system operating performance is calculated by the following equations:

$$\left(\frac{kW}{scfm}\right)_{base, bin} = \frac{hp \times 1.1 \times 0.746}{0.945 \times \eta_{VFD}} \times \frac{\left(X_{2, base} \times Load_{bin}^2 + X_{1, base} \times Load_{bin} + C_{base}\right)}{scfm_{bin}}$$

$$\left(\frac{kW}{scfm}\right)_{ee, bin} = \frac{hp \times 1.1 \times 0.746}{0.945 \times \eta_{VFD}} \times \frac{\left(X_{2,ee} \times Load_{bin}^2 + X_{1,ee} \times Load_{bin} + C_{ee}\right)}{scfm_{bin}}$$

Gross coincident summer peak demand reduction is calculated per VFD-controlled compressor according to the following equation:

$$\Delta kW_{summer} = \sum_{bin=1}^{7} scfm_{bin} \times \left[\left(\frac{kW}{scfm} \right)_{base, bin} - \left(\frac{kW}{scfm} \right)_{ee, bin} \right] \times HOU_{bin} \times CF_{summer}$$

Gross coincident winter peak demand reduction is calculated per VFD-controlled compressor according to the following equation:

DNV

$\Delta kW_{winter} = \sum_{bin=1}^{7} scfm_{bin} \times \left[\left(\frac{kW}{scfm} \right)_{base, bin} - \left(\frac{kW}{scfm} \right)_{ee, bin} \right] \times HOU_{bin} \times CF_{winter}$

Where:

∆kWh	= per measure gross annual electric energy savings
ΔkW_{summer}	= per measure, gross coincident summer peak demand reduction
ΔkW_{winter}	= per measure, gross coincident winter peak demand reduction
hp	= trim compressor rated horsepower
scfm _{rated}	= trim compressor rated flow rate
scfm _{bin}	= flow rate of bin
loadbin	= percent of rated flow of base trim compressor for each bin
kW/scfm _{bas}	se,bin = base trim compressor operating performance for each bin
kW/scfmee	bin = ee trim compressor operating performance for each bin
η_{VFD}	= VFD efficiency
X _{2,base}	= coefficient
X _{1, base}	= coefficient
Cbase	= constant
Cee	= constant
X _{2,ee}	= coefficient
X _{1,ee}	= coefficient
HOU	= annual hours of use
HOU _{bin}	= percent of operating hours compressor operates at corresponding load
CF _{summer}	= summer coincidence factor
<i>CF_{winter}</i>	= winter coincidence factor

7.1.7.3 Input Variables

Table 7-21. Input Values VSD Air Compressor Savings Calculations

Component	Component Type Value		Units	Sources
hp	Variable	See customer application	hp	Customer application
scfm _{rated}	Variable	See customer application	scfm	Customer application
load _{bin}	Variable	are provided by the customer ranges, from 100% to 40%,		Average percent of bin definition, bins are 10% load ranges, from 100% to 40%, 30% assumed for <40% bin (bin 7)
η_{VFD}	Fixed	0.98	-	Engineering estimate
X2, baseVariableSee Table 13-20 in Sub-Appendix F2- VI: Non-Residential Compressed Air End Use Factors		-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004	
See Table 13-20 in Sub-Appendix F2-		-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004	

Component	Туре	Value	Units	Sources
C _{base}	Variable	See Table 13-20 in Sub-Appendix F2- VI: Non-Residential Compressed Air End Use Factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
X _{2, ee}	Fixed	VFD = 0	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
Х1, ее	Fixed	VFD = 0.95	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
Cee	Fixed	VFD = 0.05	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
нои	Variable	See customer application	hour,	Customer application
100	Valiable	Default=6,240	annual	MN TRM v 3.1 2020, p. 451
	Variable	See customer application	-	Customer application; sum of HOU _{bins} must equal 1.00
HOUbin		For default see Table 13-19 in Sub- Appendix F2-VI: Non-Residential Compressed Air End Use Factors. The Load _{bins} are the median load range of each bin. The HOU _{bin} values are provided by the customer application and should total 1.00. If these values are unknown the defaults are used.		Engineering judgement
	Variable	See Table 13-21 in Sub-Appendix F2- VI: Non-Residential Compressed Air End Use Factors		IL TRM v 8.0 Volume 2 2020, p. 575
CF _{summer}		Default =0.59	-	Default based on single shift (8/5) operating schedule from IL TRM v 8.0 Volume 2 2020, p. 575
		See Table 13-21 in Sub-Appendix F2- VI: Non-Residential Compressed Air End Use Factors		IL TRM v 8.0 Volume 2 2020, p. 575 ¹⁵⁴
CF _{winter}	Variable	Default =0.59] -	Default based on single shift (8/5) operating schedule from IL TRM v 8.0 Volume 2 2020, p. 575

7.1.7.4 Default Savings

If the proper values are not available, some values have defaults savings. However, there are no default savings for this measure as some values are needed to calculate savings.

7.1.7.5 Effective Useful Life

The effective useful life of this measure is provided in Table 7-22.

¹⁵⁴ The source TRM doesn't differentiate between winter and summer peak periods. Therefore, the summer CF is applied to the winter CF.

Table 7-22. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program Name	Value	Units	Source(s)
VII	Non-Residential Small Manufacturing Program, DSM Phase VII	12.24	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

7.1.7.6 Source(s)

The system performance (kW/scfm) relies on performance curves for various control types as provided by Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004.Other sources include the IL TRM v.8.0, Vol. 2. 2020, p. 575 and MN TRM v 3.1 2020, p. 451.

7.1.7.7 **Update Summary**

Updates made to this section are described in Table 7-23.

T	Table 7-23. Summary of Update(s)						
	Version	Update Type	Description				
	2021	Source	Updated page numbers / version of the IL TRM and MN TRM				
		Equation	Added gross winter peak demand reduction equation				
		New Table	Effective Useful Life (EUL) by program				
	2020	Inputs	Added default operating hours				
	v10	New Measure	New section				

T

Cycling Air Dryer 7.1.8

7.1.8.1 **Measure Description**

This measure replaces an existing standard refrigerated air dryer with a new cycling air dryer. Standard non-cycling refrigerated air dryers run their refrigerant compressors continuously regardless of the need. This wastes energy by running when the compressed air does not need to be dried. This occurs when the ambient conditions are cooler and drier than the design conditions. Cycling dryers operate only when the compressed air needs to be dried.

The cycling dryer must either be a thermal-mass dryer, a VFD-controlled dryer, or a digital scroll-compressor dryer that modulates to match load.

7.1.8.2 Impacts Estimation Approach

Per measure, gross annual electric energy savings are calculated according to the following equation:

DNV $\Delta kWh = \left[scfm_{base} \times \left(\frac{kW}{scfm}\right)_{base} + kW_{heater} + kW_{blower} + kW_{refrig} - scfm_{ee} \times \left(\frac{kW}{scfm}\right)_{ee} - kW_{dryer, ee}\right] \times HOU$

To determine the reduction in flow rate due to the new dryer type, the following equation is used:

$$scfm_{reduced} = scfm_{base\,dryer,rated} \times Purge_{base}$$

The baseline air flow and loading is calculated using the following equations:

 $scfm_{system,base} = scfm_{system, rated} \times Load_{system, base}$

 $scfm_{base} = scfm_{rated} \times Load_{base}$

$$Load_{system,base} = \frac{scfm_{system, rated} - scfm_{rated} + scfm_{rated} \times Load_{base}}{scfm_{system, rated}}$$

 $Load_{dryer,base} = \frac{scfm_{system, base}}{scfm_{base dryer, rated}}$

The efficient system air flow and loading is calculated using the following equations:

$$scfm_{ee} = scfm_{base} - scfm_{reduced}$$

$$Load_{ee} = \frac{scfm_{ee}}{scfm_{rated}}$$

$$Load_{dryer,ee} = \frac{scfm_{ee}}{scfm_{ee} dryer, rated}$$

The base and efficient system operating performance is calculated by the following equations:

$$\left(\frac{kW}{scfm}\right)_{base} = \frac{hp \times 1.1 \times 0.746}{0.945 \times \eta_{VFD}} \times \frac{\left(X_2 \times Load_{base}^2 + X_1 \times Load_{base} + C\right)}{scfm_{base}}$$

DNV $\left(\frac{kW}{scfm}\right)_{ee} = \frac{hp \times 1.1 \times 0.746}{0.945 \times \eta_{VFD}} \times \frac{(X_2 \times Load_{ee}^2 + X_1 \times Load_{ee} + C)}{scfm_{ee}}$

The load due to each component is calculated using the following equations:

$$kW_{blower} = \frac{hp_{blower} \times 0.8 \times 0.746}{0.957}$$

 $kW_{heater} = kW_{heater,rated} \times Utilization_{heater}$

$$kW_{refrig} = kW_{refrig,rated} \times (R_{1,base} \times Load_{dryer,base} + K_{base})$$

$$kW_{dryer,ee} = kW_{dryer,rated,ee} \times (R_{1,ee} \times Load_{dryer,ee} + K_{ee})$$

Per measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\begin{split} \Delta k W_{summer} &= \left[scfm_{base} \times \left(\frac{kW}{scfm} \right)_{base} + k W_{heater} + k W_{blower} + k W_{refrig} - scfm_{ee} \right. \\ & \left. \times \left(\frac{kW}{scfm} \right)_{ee} - k W_{dryer, ee} \right] \times CF_{summer} \end{split}$$

Per measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\begin{split} \Delta k W_{winter} &= \left[scfm_{base} \times \left(\frac{kW}{scfm} \right)_{base} + k W_{heater} + k W_{blower} \right. \\ &+ k W_{refrig} - scfm_{ee} \times \left(\frac{kW}{scfm} \right)_{ee} - k W_{dryer, \ ee} \right] \times C F_{winter} \end{split}$$

Where:

= per measure gross annual electric energy savings ΔkWh ΔkW_{summer} = per measure, gross coincident summer peak demand reduction ΔkW_{winter} = per measure, gross coincident winter peak demand reduction hp = trim compressor rated horsepower scfm_{rated} = trim compressor rated flow scfm_{system,rated} = system rated flow scfm_{base} = base trim compressor operating flow scfm_{system,base} = base system operating flow = EE trim compressor operating flow scfmee scfm_{reduced} = average reduction in flow resulting from replacing base dryer scfmbase dryer rated = base dryer rated flow scfmee drver rated = EE cycling drver rated flow Purgebase = purge percent of base dryer

OFFICIAL COPY

Load _{base}	= average percent of rated flow for trim compressor
Load _{system,}	base = average percent of rated flow for system
Loaddryer ba	use = average operating percent of base dryer rated flow
Load _{dryer} ,ee	e = average operating percent of EE dryer rated flow
Loadee	= average operating percent of EE dryer rated flow
kW _{heater}	= average operating kW of the base heater
kWblower	= average operating kW of the base blower
kW _{refrig}	= average operating kW of the base refrigerated dryer
kWdryer, ee	= average operating kW of the base refrigerated dryer
hp _{blower}	= blower rated hp of base dryer
kWrated heate	_{er} = heater rated kW of base dryer
Utilization	neater = heater operation time
kWrated refrig	I = the rated kW of the base dryer
kWrated dryer	_{r,ee} = the rated kW of the EE dryer
R _{1,base}	= coefficient
K _{base}	= coefficient
R _{1,ee}	= coefficient
K _{ee}	= coefficient
kW/scfm _{ba}	se = base system operating performance
kW/scfm _{ee}	 efficient system operating performance
η_{VFD}	= VFD efficiency
X ₂	= coefficient
X 1	= coefficient
С	= constant
HOU	= annual hours of use
CF _{summer}	= summer coincidence factor
CF_{winter}	= winter coincidence factor

7.1.8.3 Input Variables

Table 7-24. Input Parameters for Cycling Dryer

Component	Туре	Value	Units	Sources
hp	Variable	See customer application	hp	See customer application
scfm _{rated}	Variable	See customer application	scfm	See customer application
scfm _{system,rated}	Variable	See customer application	scfm	See customer application
scfm _{base,dryer,rated}	Variable	See customer application	scfm	See customer application
scfm _{ee,dryer,rated}	Variable	See customer application	scfm	See customer application
Purge _{base}	Variable	See Table 13-23 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors		Desiccant purge rates are from: Dryer Selection for Compressed Air Systems, Compressed Air Challenge, 1999 No purge for other dryer types
Load _{base}	ase Variable	See customer application,	-	See customer application
		Default = 60%	_	Engineering estimate
hpblower	Variable	See customer application, only applicable to blower purge and heated blower purge	hp	See customer application

Component	Туре	Value	Units	Sources
kW heater,rated	Variable	See customer application, only applicable to heated blower purge and heated desiccant dryer types	kW	See customer application
Utilization _{heater}	Variable	Assigned by base blower type: heated blower purge = 0.75 heated desiccant dryer = 1.0	-	Heated desiccant dryer operates continuously, heated blower purge is based on engineering judgment
kWrefrig,rated	Variable	See customer application, only applicable to blower purge and heated blower purge dryer types	kW	See customer application
kW _{ee,dryer} ,rated	Variable	See customer application, only applicable to blower purge and heated blower purge dryer types	kW	See customer application
R _{1, base}	Variable	See Table 13-22 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors	-	Compressed Air Challenge, Cycling Refrigerated Air Dryers - Are Savings Significant
K _{base}	Variable	See Table 13-22 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors	-	Compressed Air Challenge, Cycling Refrigerated Air Dryers - Are Savings Significant
R _{1, ee}	Variable	See Table 13-22 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors	-	Compressed Air Challenge, Cycling Refrigerated Air Dryers - Are Savings Significant
Kee	Variable	See Table 13-22 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors	-	Compressed Air Challenge, Cycling Refrigerated Air Dryers - Are Savings Significant
X ₂	Variable	See Table 13-20 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
X 1	Variable	See Table 13-20 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
C	Variable	See Table 13-20 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
HOU	Variable	See customer application	hours,	See customer application
		Default=6,240	annual	MN TRM v 3.1 2020, p. 451
CF _{summer}	mmer Fixed	See Table 13-21 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors	-	IL TRM v 8.0 Volume 2 2020, p. 575
		Default =0.59		Default based on single shift (8/5) operating schedule from IL TRM v 8.0 Volume 2 2020, p. 575

Component	Туре	Value	Units	Sources
CFwinter	Variable	See Table 13-21 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors	-	IL TRM v 8.0 Volume 2 2020, p. 575 ¹⁵⁵
		Default =0.59		Default based on single shift (8/5) operating schedule from IL TRM v 8.0 Volume 2 2020, p. 575

7.1.8.4 Default Savings

If the proper values are not available, some values have defaults savings. However, there are no default savings for this measure as some values are needed to calculate savings.

7.1.8.5 Effective Useful Life

The effective useful life of this measure is provided in Table 7-25.

Table 7-25. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program Name	Value	Units	Source(s)
VII	Non-Residential Small Manufacturing Program, DSM Phase VII	12.24	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

7.1.8.6 Source(s)

The system performance (kW/scfm) relies on performance curves for various control types as provided by Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004, and Cycling Refrigerated Air Dryers - Are Savings Significant, Compressed Air Challenge. Other sources include the IL TRM v.8.0, Vol. 2. 2020, p 575 and MN TRM v 3.1 2020, p. 451

7.1.8.7 Update Summary

Updates made to this section are described in Table 7-26.

Table 7-26. Summary of Update(s)

Version	Update Type	Description
2021	Source	Updated page numbers / version of the IL TRM and MN TRM
Equation Added gross winter peak demand reduction equation		Added gross winter peak demand reduction equation
	New Table	Effective Useful Life (EUL) by program
2020	Inputs	Added default operating hours
v10	New Measure	New section

¹⁵⁵ The source TRM doesn't differentiate between winter and summer peak periods. Therefore, the summer CF is applied to the winter CF.

7.1.9 Dew Point Controls

7.1.9.1 Measure Description

Typical desiccant dryers use compressed air to purge moisture from the desiccant. Standard desiccant dryer purge rates are fixed. Timer controls rotate the chambers of desiccant for recharging at a fixed rate determined based on the design conditions of the compressed air system, i.e., full load airflow and humid ambient conditions. Most systems operate at loads near the design conditions for only short periods of time. This measure is to install dew point controls that recharge desiccant only when the chamber is saturated. This is done by measuring the dew point of the dried air. This measure saves energy by limiting the compressed air purged to the amount needed to regenerate the desiccant.

Qualifying equipment must be installed on a twin tower desiccant dryer overriding fixed timer regeneration control and must use dew point based controls.

7.1.9.2 Impacts Estimation Approach

Per measure, gross annual electric energy savings are calculated per dryer controlled according to the following equation:

$$\begin{aligned} \Delta kWh &= \left[scfm_{base} \times \left(\frac{kW}{scfm}\right)_{base} + kW_{heater} + kW_{blower} - scfm_{ee} \right. \\ &\times \left(\frac{kW}{scfm}\right)_{ee} - kW_{blower,\ ee} - kW_{heater,ee}\right] \times HOU \end{aligned}$$

The reduction in airflow due to the new controls is calculated using the following equation:

$$scfm_{reduced} = scfm_{base\ dryer,rated} \times Purge_{base} - (scfm_{base,dryer,rated} \times Purge_{base} \times Load_{base,dryer}) \times (1 - Time)$$

The baseline air flow and loading are calculated using the following equations:

$$Load_{system,base} = \frac{scfm_{system, rated} - scfm_{rated} + scfm_{rated} \times Load_{base}}{scfm_{system, rated}}$$

 $scfm_{system,base} = scfm_{system, rated} \times Load_{system, base}$

 $Load_{dryer,base} = \frac{scfm_{system, base}}{scfm_{dryer,rated}}$

Jun 15 2022

$$scfm_{base} = scfm_{rated} \times Load_{base}$$

The efficient air flow and loading are calculated using the following equation:

$$scfm_{ee} = scfm_{base} - scfm_{reduced}$$

$$Load_{ee} = \frac{scfm_{ee}}{scfm_{rated}}$$

The base and efficient system operating performance is calculated by the following equations:

$$\left(\frac{kW}{scfm}\right)_{base} = \frac{hp \times 1.1 \times 0.746}{0.945 \times \eta_{VFD}} \times \frac{\left(X_2 \times Load_{base}^2 + X_1 \times Load_{base} + C\right)}{scfm_{base}}$$
$$\left(\frac{kW}{scfm}\right)_{ee} = \frac{hp \times 1.1 \times 0.746}{0.945 \times \eta_{VFD}} \times \frac{\left(X_2 \times Load_{ee}^2 + X_1 \times Load_{ee} + C\right)}{scfm_{ee}}$$

Where the kW load due to each component is calculated using the following equations:

Per measure, gross coincident summer peak demand reduction is calculated per dryer controlled according to the following equation:

$$\Delta kW_{summer} = \left[scfm_{base} \times \left(\frac{kW}{scfm}\right)_{base} + kW_{heater} + kW_{blower} - scfm_{ee} \times \left(\frac{kW}{scfm}\right)_{ee} - kW_{blower, ee} - kW_{heater, ee}\right] \times CF_{summer}$$

Per measure, gross coincident winter peak demand reduction is calculated per dryer controlled according to the

DNV

Where:

ΔkWh = per measure gross annual electric energy savings
ΔkW_{summer} = per measure, gross coincident summer peak demand reduction
ΔkW _{winter} = per measure, gross coincident winter peak demand reduction
hp = trim compressor rated horsepower
scfm _{rated} = trim compressor rated flow
scfm _{system,rated} = system rated flow
scfm _{base} = baseline trim compressor operating flow
scfm _{system,base} = baseline system operating flow
scfm _{reduced} = average reduction in flow resulting from dewpoint controls
scfm _{base dryer,rated} = baseline dryer rated flow
scfmee = energy-efficient trim compressor operating flow
Purgebase = purge percent of baseline dryer
Load _{base} = average percentage of rated flow for trim compressor
Load _{system,base} = average percentage of rated flow for baseline system
Load _{dryer,base} = average operating percentage of base dryer rated flow
Load _{ee} = average operating percentage of trim compressor rated flow with dewpoint control dryer
Time = proportion of time reduction due to dew-point controls
kWheater, base = average operating kW of the baseline heater
kW _{blower, base} = average operating kW of the baseline blower
kW _{heater,ee} = average operating kW of the energy-efficient heater
kW _{blower, ee} = average operating kW of the energy-efficient blower
hp _{blower} = blower rated hp of baseline dryer
kW _{rated heater} = heater rated kW of baseline dryer
Utilization _{heater} = heater operation time
kW/scfm _{base} = base system operating performance
kW/scfmee = energy-efficient system operating performance
η _{VFD} = VFD efficiency
X2 = coefficient
X1 = coefficient
C = constant
HOU = annual hours of use
<i>CF_{summer}</i> = summer coincidence factor

 $\Delta kW_{winter} = \left[scfm_{base} \times \left(\frac{kW}{scfm}\right)_{base} + kW_{heater} + kW_{blower} - scfm_{ee} \times \left(\frac{kW}{scfm}\right)_{ee}\right]$

 $-kW_{blower, ee} - kW_{heater, ee}$ $\times CF_{winter}$

 CF_{winter} = winter coincidence factor

7.1.9.3 Input Variables

Component	Туре	Value	Units	Sources
hp	Variable	See customer application	hp	See customer application
scfm _{rated}	Variable	See customer application	scfm	See customer application
scfm _{system} , rated	Variable	See customer application	scfm	See customer application

Component Type Value		Value	Units	Sources
scfm _{base,dryer,rated}	Variable	See customer application	scfm	See customer application
Purge _{base}	Variable	See Table 13-23 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors	-	Desiccant purge rates are from: Dryer Selection for Compressed Air Systems, Compressed Air Challenge, 1999. no purge for other dryer types
Load _{base}	Variable	See customer application,	-	See customer application
		Default = 0.60		Engineering estimate
Time	Fixed	0.25	-	Assumed, low RH during winter months
hpblower	Variable	See customer application, only applicable to blower purge and heated blower purge	hp	See customer application
kW rated heater	Variable	See customer application, only applicable to heated blower purge and heated desiccant dryer types	kW	See customer application
Utilizationheater Variable Assigned by base blower type: heated blower purge = 0.75 heated desiccant dryer = 1.0		-	Heated desiccant dryer operates continuously, heated blower purge is based on engineering judgment	
ηνεσ	ην _{FD} Variable See Table 13-20 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors		-	engineering estimate, only applicable if the control type is VFD
X2 Variable See Table 13-20 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors		-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004	
X1	Variable See Table 13-20 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors		-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
с	Variable Variable See Table 13-20 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors		-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
НО	Variable	See customer application	hours,	See customer application
		Default = 6,240	annual	MN TRM v 3.1 2020, p. 451
CFsummer	Fixed	See Table 13-21 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors	-	IL TRM v 8.0 Volume 2 2020, p. 575
		Default =0.59		Default based on single shift (8/5) operating schedule from IL TRM v 8.0 Volume 2 2020, p. 575

Jun 15 2022

Component	Туре	Value	Units	Sources
CFwinter	Variable	See Table 13-21 in Sub- Appendix F2-VI: Non- Residential Compressed Air End Use Factors		IL TRM v 8.0 Volume 2 2020, p. 575 ¹⁵⁶
		Default =0.59		Default based on single shift (8/5) operating schedule from IL TRM v 8.0 Volume 2 2020, p. 575

7.1.9.4 Default Savings

If the proper values are not available, some values have defaults savings. However, there are no default savings for this measure as some values are needed to calculate savings.

7.1.9.5 Effective Useful Life

The effective useful life of this measure is provided in Table 7-28.

Table 7-28. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program Name	Value	Units	Source(s)
VII	Non-Residential Small Manufacturing Program, DSM Phase VII	12.24	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

7.1.9.6 Source(s)

The system performance (kW/scfm) relies on performance curves for various control types as provided by Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004. Other sources include the IL TRM v.78.0, Vol. 2. 2020, p 575, MN TRM v 3.1 2020, p. 451, Dryer Selection for Compressed Air Systems, Compressed Air Challenge, 1999.

7.1.9.7 Update Summary

Updates made to this section are described in Table 7-29.

Table 7-2	9. Summary	of Update(s)
-----------	------------	--------------

Version	Update Type	Description
2021	Source	Updated page numbers / version of the IL TRM and MN TRM
	Equation Added gross winter peak demand reduction equation	
	New Table	Effective Useful Life (EUL) by program
2020	Inputs	Added default operating hours

¹⁵⁶ The source TRM doesn't differentiate between winter and summer peak periods. Therefore, the summer CF is applied to the winter CF.

Jun 15 2022

Version	Update Type	Description
v10	New Measure	New section

7.1.10 Pressure Reduction

7.1.10.1 Measure Description

This measure is for reducing the pressure setpoint of a compressed air system. Pressure setpoints are often set higher than is needed to ensure that serviced equipment is able to maintain the pressure requirements. Air compressors require more power to produce the same cfm at a higher pressure. Reducing this pressure setpoint saves energy. Additionally, there is a reduction in uncontrolled flow resulting from reducing the pressure setpoint.

This measure requires that the pressure reduction must take place at the compressor rather than at a downstream pressure regulator. This measure is only applicable to positive displacement compressors (rotary screw and reciprocating compressors); centrifugal compressors are excluded, because they require compressor-specific performance curves to accurately calculate savings.

7.1.10.2 Impacts Estimation Approach

Per measure, gross annual electric energy savings are calculated per compressed air system according to the following equations:

$$\Delta kWh = \Delta kWh_{artificial} + \Delta kWh_{pressure}$$

$$\Delta kWh_{artificial} = \left(scfm_{base} \times \left(\frac{kW}{scfm}\right)_{base} - (scfm_{ee}) \times \left(\frac{kW}{scfm}\right)_{ee}\right) \times HOU$$

$$\Delta kWh_{pressure} = \left(scfm_{ee} \times \left(\frac{kW}{scfm}\right)_{ee} \times PSF \times \Delta p\right) \times HOU$$

To determine the reduction in flow rate from the change to the pressure set-point, the following equation is used:

$$scfm_{reduced} = \left(scfm_{base} \times scfm_{artificial}\right) - \left(scfm_{base} \times scfm_{artificial}\right) \\ \times \left(\frac{(p_{ee} + 14.7)}{(p_{base} + 14.7)}\right)^{n}$$

The baseline system air flow is calculated using the following equation:

$$scfm_{base} = scfm_{rated} \times Load_{base}$$

The efficient system air flow and loading and is calculated using the following equations:

DNV

$$scfm_{ee} = scfm_{base} - scfm_{reduced}$$

$$Load_{ee} = \frac{scfm_{base} - scfm_{reduced}}{scfm_{rated}}$$

The baseline and efficient system operating performances are calculated using the following equations:

$$\left(\frac{kW}{scfm}\right)_{base} = \frac{hp \times 1.1 \times 0.746}{0.945 \times \eta_{VFD}} \times \frac{\left(X2 \times Load_{base}^2 + X1 \times Load_{base} + C\right)}{scfm_{base}}$$
$$\left(\frac{kW}{scfm}\right)_{ee} = \frac{hp \times 1.1 \times 0.746}{0.945 \times \eta_{VFD}} \times \frac{\left(X2 \times Load_{ee}^2 + X1 \times Load_{ee} + C\right)}{scfm_{ee}}$$

Per measure, gross coincident summer peak demand reduction is calculated per compressed air system according to the following equations:

$$\Delta kW_{summer} = \left(\Delta kW_{artificial} + \Delta kW_{pressure}\right) \times CF_{summer}$$
$$\Delta kW_{artificial} = \left(scfm_{base} \times \left(\frac{kW}{scfm}\right)_{base} - (scfm_{ee}) \times \left(\frac{kW}{scfm}\right)_{ee}\right)$$
$$\Delta kW_{pressure} = \left(scfm_{ee} \times \left(\frac{kW}{scfm}\right)_{ee} \times PSF \times \Delta p\right)$$

Per measure, gross coincident winter peak demand reduction is calculated per compressed air system according to the following equation:

$$\Delta k W_{winter} = (\Delta k W_{artificial} + \Delta k W_{pressure}) \times C F_{winter}$$

Where:

ΔkWh = per measure gross annual electric energy savings ΔkW_{summer} = per measure, gross coincident summer peak demand reduction ΔkW_{winter} = per measure, gross coincident winter peak demand reduction $\Delta kWh_{artificial}$ = gross annual electric energy savings resulting from artificial load reduction ΔkWh_{pressure}= gross annual electric energy savings resulting from pressure reduction $\Delta kW_{artificial}$ = gross annual average demand reduction resulting from artificial load reduction $\Delta kW_{pressure}$ = gross annual average demand reduction s resulting from pressure reduction Δp = the pressure reduction = base system operating pressure of base system **p**base = efficient system operating pressure of efficient system pee PSF = pressure savings factor

n	= flowrate pressure adjustment coefficient
hp	= compressor system rated horsepower
scfm _{rated}	= compressor rated flow rate
scfm _{base}	= base compressor operating flow
scfmee	= efficient trim compressor operating flow
scfmartificial	= percent compressed air artificial demand
scfmreduced	= efficient compressor operating flow
Load _{base}	= average percent of rated flow for base system
Load _{ee}	= average percent of rated flow for efficient system
kW/scfm _{ba}	se = base system operating performance
kW/scfm _{ee}	 efficient system operating performance
η_{VFD}	= VFD efficiency
X2	= coefficient
X1	= coefficient
С	= constant
HOU	= annual hours of operation of compressor system
CF _{summer}	= summer coincidence factor
CF_{winter}	= winter coincidence factor

7.1.10.3 Input Variables

Table 7-30. Input Parameters for Pressure Reduction

Component	Туре	Value	Units	Sources
Pbase	Variable	See customer application	psig	Customer application
pee	Variable	See customer application	psig	Customer application
Δр	Variable	The lesser of the difference between customer application p _{base} and p _{ee} or 10	psig	Customer application values and capped at 10 psig reduction
PSF	Fixed	0.005	1/psig	"Fundamentals of Compressed Air Systems", Compressed Air Challenge, 2004
n	Fixed	1.0	-	Engineering estimate
hp	Variable	See customer application	hp	Customer application
scfm _{rated}	Variable	See customer application	scfm	Customer application
scfmartificial	Fixed	0.30	-	"Fundamentals of Compressed Air Systems", Compressed Air Challenge, 2004
Lood	Variable	See customer application		Customer application
Load _{base}		Default = 0.60	-	Engineering estimate
ηνεd	Variable	See Table 13-20 in Sub-Appendix F2-VI: Non-Residential Compressed Air End Use Factors	-	Engineering estimate, only applicable if the control type is VFD
X 2	Variable	See Table 13-20 in Sub-Appendix F2-VI: Non-Residential Compressed Air End Use Factors	-	"Fundamentals of Compressed Air Systems", Compressed Air Challenge, 2004
X 1	Variable	See Table 13-20 in Sub-Appendix F2-VI: Non-Residential Compressed Air End Use Factors	- "Fundamentals of Compressed Air Systems", Compressed Air Challer	

Component	Туре	Value	Units	Sources
с	Variable See Table 13-20 in Sub-Appendix Variable F2-VI: Non-Residential - Compressed Air End Use Factors -		"Fundamentals of Compressed Air Systems", Compressed Air Challenge, 2004	
ноц	Variable	See customer application	hours,	Customer application
HOU	variable	Default=6,240	annual	MN TRM v 3.1 2020, p. 451
CE	Variable	See Table 13-21 in Sub-Appendix F2-VI: Non-Residential Compressed Air End Use Factors		IL TRM v 8.0 Volume 2 2020, p. 575
CF _{summer}		Default =0.59	_	Default based on single shift (8/5) operating schedule from IL TRM v 8.0 Volume 2 2020, p. 575
CFwinter	Variable	See Table 13-21 in Sub-Appendix F2-VI: Non-Residential Compressed Air End Use Factors	_	IL TRM v 8.0 Volume 2 2020, p. 575 ¹⁵⁷
		Default =0.59		Default based on single shift (8/5) operating schedule from IL TRM v 8.0 Volume 2 2020, p. 575

7.1.10.4 Default Savings

This measure does not have default savings. The savings depend on the rated power and system pressures before and after implementing this measure. However, there are defaults for other variables.

7.1.10.5 Effective Useful Life

The effective useful life of this measure is provided in Table 7-31.

Table 7-31. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	e Program Name	Value	Units	Source(s)
VII	Non-Residential Small Manufacturing Program, DSM Phase VII	12.24	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

7.1.10.6 Source(s)

The system performance (kW/scfm) relies on performance curves for various control types as provided by Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004.Other sources include the IL TRM v78.0, Vol. 2. 2020, p. 575 and the MN TRM v3.1 2020, p. 451.

7.1.10.7 Update Summary

Updates made to this section are described in Table 7-32.

¹⁵⁷ The source TRM doesn't differentiate between winter and summer peak periods. Therefore, the summer CF is applied to the winter CF.

Table 7-32. Summary of Update(s)

Version	Update Type	Description	
2021	Source	Updated page numbers / version of the IL TRM and MN TRM	
	Equation	 Added gross winter peak demand and summer peak demand reduction equations Modified ΔkWh equation to fix error in calculation by separating into separate terms of ΔkWh_{artificial} and ΔkWh_{pressure} for clarity 	
	Table	Effective Useful Life (EUL) by program	
2020	Inputs	Added default operating hours	
v10	New Measure	New section	

7.1.11 Downsized VFD Compressor

7.1.11.1 Measure Description

This measure installs an air compressor with variable frequency drive (VFD) replacing a larger air compressor without VFD controls. Air compressors can be oversized and, hence, never operate near their rated capacity. Variable frequency drives control the output airflow rate by varying the electrical frequency to the compressor motor. Standard control types such as inlet valve modulation with unloading, load/unload, and centrifugal compressor systems vary the compressor capacity by physically changing the compressor operation. Variable frequency drive controls have much better part-load efficiencies than standard control types, thus saving energy under part load conditions. Additionally, energy is saved by installing a smaller compressor that still meets system airflow requirements.

The qualifying equipment is an air compressor with a variable frequency drive and replaces an existing compressor of larger size without variable frequency drive controls. It is assumed that the typical size reduction is one standard size. Base load units that serve multi-compressor systems do not qualify.

7.1.11.2 Impacts Estimation Approach

Per measure, gross annual electric energy savings are calculated per VFD-controlled compressor according to the following equation:

$$\Delta kWh = \sum_{bin=1}^{7} scfm_{bin} \times \left[\left(\frac{kW}{scfm} \right)_{base, bin} - \left(\frac{kW}{scfm} \right)_{ee, bin} \right] \times HOU_{bin} \times HOU$$

The airflow and load of each bin is calculated using the following equations:

$$scfm_{bin} = scfm_{rated,base} \times Load_{base,bin}$$

$$Load_{ee, bin} = \frac{scfm_{bin}}{scfm_{rated, ee}}$$

 $scfm_{bin} = scfm_{rated,base} \times Load_{base,bin}$

 $Load_{ee, bin} = \frac{scfm_{bin}}{scfm_{rated, ee}}$

The base and efficient system operating performance (of each bin) is calculated by the following equations:

$$\left(\frac{kW}{scfm}\right)_{base, bin} = \frac{hp_{base} \times 1.1 \times 0.746}{0.945} \times \frac{\left(X_{2,base} \times Load_{base, bin}^2 + X_{1,base} \times Load_{base, bin} + C_{base}\right)}{scfm_{bin}}$$

$$\frac{\left(\frac{kW}{scfm}\right)_{ee, bin}}{0.945 * \times \eta_{VFD}} \times \frac{\left(X_{2,ee} \times Load_{ee, bin}^2 + X_{1,ee} \times Load_{ee, bin} + C_{ee}\right)}{scfm_{bin}}$$

Per measure, gross coincident summer peak demand reduction is calculated per VFD-controlled compressor according to the following equation:

$$\Delta kW_{summer} = \sum_{bin=1}^{7} scfm_{bin} \times \left[\left(\frac{kW}{cfm} \right)_{base,bin} - \left(\frac{kW}{cfm} \right)_{ee,bin} \right] \times HOU_{bin} \times CF_{summer}$$

Per measure, gross coincident winter peak demand reduction is calculated per VFD-controlled compressor according to the following equation:

$$\Delta kW_{winter} = \sum_{bin=1}^{7} scfm_{bin} \times \left[\left(\frac{kW}{cfm} \right)_{base,bin} - \left(\frac{kW}{cfm} \right)_{ee,bin} \right] \times HOU_{bin} \times CF_{winter}$$

Where:

DNV

kW/scfm_{eebin} = efficient trim compressor operating performance for each bin

η_{VFD}	= VFD efficiency
$X_{2,\text{base}}$	= coefficient
X _{1,base}	= coefficient
C _{base}	= constant
X _{2,ee}	= coefficient
X _{1,ee}	= coefficient
Cee	= constant
HOU	= annual hours of use
HOUbin	= proportion of operating hours compressor at corresponding load
CF _{summer}	= summer peak coincidence factor
CFwinter	= winter peak coincidence factor

7.1.11.3 Input Variables

Component	Туре	Value	Units	Sources	
hp _{base}	Variable	See customer application	hp	See customer application	
scfm _{rated, base}	Variable	See customer application	scfm	See customer application	
hp _{ee}	Variable	See customer application	hp	See customer application	
scfm _{rated, ee}	Variable	See customer application	scfm	See customer application	
Load _{base, bin}	Fixed	For default see Table 13-19 in Sub- Appendix F2-VI: Non-Residential Compressed Air End Use Factors. The Load _{bins} are the median load range of each bin. The HOU _{bin} values are provided by the customer application and should total 1.00. If these values are unknown the defaults are used.	-	Average percent of bin definition, bins are 10% load ranges, from 100% to 40%, 30% assumed for <40% bin (bin 7)	
X _{2,base}	Variable	See Table 13-20 in Sub-Appendix F2- VI: Non-Residential Compressed Air End Use Factors	-	"Fundamentals of Compressed Air Systems", Compressed Air Challenge, 2004	
X _{1,base}	Variable	See Table 13-20 in Sub-Appendix F2- VI: Non-Residential Compressed Air End Use Factors	-	"Fundamentals of Compressed Air Systems", Compressed Air Challenge, 2004	
C _{base} Variabl		See Table 13-20 in Sub-Appendix F2- VI: Non-Residential Compressed Air End Use Factors	-	"Fundamentals of Compressed Air Systems", Compressed Air Challenge, 2004	
ηνεd	Fixed	0.98	-	Engineering estimate	
X _{2,EE}	Fixed	VFD = 0	-	"Fundamentals of Compressed Air Systems", Compressed Air Challenge, 2004	
X _{1,EE}	Fixed	VFD = 0.95	-	"Fundamentals of Compressed Air Systems", Compressed Air Challenge, 2004	

Component	Туре	Value	Units	Sources
Cee	Fixed	VFD = 0.05	-	"Fundamentals of Compressed Air Systems", Compressed Air Challenge, 2004
ноц	Variable	See customer application	hours,	See customer application
noo	variable	Default=6,240	annual	MN TRM v 3.1 2020, p. 451
		See customer application		Customer application
HOUbin	Variable	For default see Table 13-19 in Sub- Appendix F2-VI: Non-Residential Compressed Air End Use Factors. The Load _{bins} are the median load range of each bin. The HOU _{bin} values are provided by the customer application and should total 1.00. If these values are unknown the defaults are used.	-	Engineering assumption
CFsummer	Variable	See Table 13-21 in Sub-Appendix F2- VI: Non-Residential Compressed Air End Use Factors	-	IL TRM v 8.0 Volume 2 2020, p. 575
		Default =0.59		Default based on single shift operating schedule
CFwinter		See Table 13-21 in Sub-Appendix F2- VI: Non-Residential Compressed Air End Use Factors		IL TRM v 8.0 Volume 2 2020, p. 575 ¹⁵⁸
		Default =0.59		Default based on single shift (8/5) operating schedule ¹⁴⁶

7.1.11.4 Default Savings

This measure does not have default savings. The savings depend on the rated power. However, some variables have default values.

7.1.11.5 Effective Useful Life

The effective useful life of this measure is provided in Table 7-34.

Table 7-34. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program Name	Value	Units	Source(s)
VII	Non-Residential Small Manufacturing Program, DSM Phase VII	12.24	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

¹⁵⁸ The source TRM doesn't differentiate between winter and summer peak periods. Therefore, the summer CF is applied to the winter CF.

7.1.11.6 Source(s)

The system performance (kW/scfm) relies on performance curves for various control types as provided by Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004.Other sources include the IL TRM v.78.0, Vol. 2. 2020, p 575, MN TRM v 3.1 2020, p. 451.

7.1.11.7 Update Summary

Updates made to this section are described in Table 7-35.

Version	Update Type	Description		
2021 Source Updated page numbers / version of the IL TRM and MN TRM Equation Added gross winter peak demand reduction equation				
2020	Inputs	Added default operating hours		
v10	New Measure	New section		

Table 7-35. Summary of Update(s)

8 NON-RESIDENTIAL OFFICE PROGRAM, DSM PHASE VII

The Non-Residential Office Program (provides qualifying business owners incentives to pursue one or more of the qualified energy efficiency measures through a local, participating contractor in Dominion Energy's contractor network. To qualify for this program, the customer must be responsible for the electric bill and must be the owner of the facility or reasonably able to secure permission to complete the measures. All program measures are summarized in Table 8-1.

End Use	Measure	Legacy Program	Manual Section
Lighting	Reduce Lighting Schedule by One Hour on Weekdays	N/A	Section 8.2.1
	HVAC Unit Scheduling		Section 8.3.1
	HVAC Temperature Setback	-	Section 8.3.2
	HVAC Condensing Water Temperature Reset	N/A	Section 8.3.3
HVAC	HVAC DAT Reset	N/A	Section 8.3.4
HVAC	HVAC Static Pressure Reset		Section 8.3.5
	HVAC VAV Minimum Flow Reduction	-	Section 8.3.6
	Dual Enthalpy Air-side Economizer	Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII	Section 2.1.5

Table 8-1. Non-Residential Office Program Measure List

Except for the Dual Enthalpy Air-side Economizer measure (Section 8.3.7), analyses for all of the measure savings are based on building model simulations.

8.1.1 Building Model Simulation Description

Measures that utilize the building model simulation approach are described in this section. The U.S. Department of Energy (DOE) reference building "Large Office" with code vintage defined as ASHRAE 90.1-2004 is used as the basis for the baseline and installed case building models.¹⁵⁹ Current energy code in Virginia is 2015 IECC and ASHRAE 90.1-2013 with amendments.¹⁶⁰ It is DNV's expert engineering judgement that buildings and systems from the 2004 vintage would be appropriate candidates for the retro-commissioning measures in this program because the end-use systems being retro-commissioned in this program are generally assumed to be functioning properly but aged and should benefit from re-programming controls.

For smaller buildings the DOE Commercial Large Office Reference building was scaled down to a 4-story building.

There are baseline and efficient building models for each measure case. Energy savings are calculated using these models and simulated using TMY3 weather data for selected weather stations in Virginia and North Carolina.

Jun 15 2022

¹⁵⁹ U.S. Department of Energy. Office of Energy Efficiency & Renewable Energy. Commercial Reference Buildings. <u>https://www.energy.gov/eere/buildings/commercial-reference-buildings</u>, accessed on 08/03/2021

¹⁶⁰ U.S. Department of Energy. Office of Energy Efficiency & Renewable Energy. Building Energy Codes Program. Virginia. <u>https://www.energycodes.gov/status/states/virginia</u>, accessed on 08/03/2021

Jun 15 2022

8.1.1.1 Building Models

The baseline energy model is derived from DOE's Commercial Large Office Reference Building. That model assumes a baseline annual energy consumption of 24.35 kWh/sq.ft. and 0.08 therm/sq.ft. Electricity usage includes a data center that is typical of such buildings along with typical interior equipment load. The reference building is a large office (12-stories plus a basement totaling 498,600 sq.ft. or 38,350 sq.ft./floor).

For those program participant buildings smaller than this, DOE's Commercial Large Office Reference Building was also scaled down to a 4-story building from simulations of the large building, as is standard practice in building energy simulation modelling. The reference 12-story building model was modified by removing eight of the interior floors— thereby reducing the building to four stories plus a basement data center. In fact, the interior floors of the 12-story DOE reference model were modelled using the EnergyPlus™ engine—developed by DOE—with floors "multipliers" which means that the simulator itself was scaling results for the interior floors. The 4-story models were further modified by changing the said floors multipliers from ten to two. This 4-story model totaled 191,764 sq.ft. gross with about 150,000 sq.ft. in the above-ground floors subject to controls improvements.

There are three different models for HVAC system types representing the most likely HVAC systems to be encountered in small offices. The HVAC system types include: packaged VAV, chilled water VAV, and chilled water CV. Additionally, the heating fuel type is considered for each of these systems where the options are either electric or non-electric.

Scaling of results can be used to predict savings for medium to large multi-story office buildings. Loads on HVAC systems in offices tend to be dominated less by shell or envelop loads (e.g., passive stored heat) than internal loads such as occupants, lighting, and plug-load waste heat. Small buildings with relatively large exterior surface areas compared to floor area (or larger sprawling buildings with only one or two floors) would not be modeled as well by scaling these results. On the other hand, small buildings would rarely be heated and cooled by VAV air-handlers with central hot water and chilled water plants.

The basement includes an 8,400-sq.ft. data center (e.g., server rooms) and each floor includes its own small 390sq.ft. data center (e.g., IT closet). The unoccupied basement areas (41,500 sq.ft.) are not included in the savings factors (i.e., kWh/sq.ft. and kW/sq.ft.) calculations provided in the sections that follow. Savings factors are normalized with a building area of 457,100 sq.ft. for the large office model and 153,400 sq.ft. for the 4-story models.

Each measure has an efficient model. The efficient building models were created by modifying the baseline energy models in ways that the measure is intended to operate. This is done by modifying the applicable setpoints and schedules for each measure, in just the end-use building systems that are affected by the energy efficient measure.

8.1.1.2 Impacts Estimation Approach

Modeled savings are calculated by subtracting the energy consumption of the efficient model from the baseline model, for each weather station. The savings are divided by the applicable model building floor area sq.ft. to produce the applicable energy savings factors used to calculate customer-specific gross savings. For each record, energy savings factors are multiplied against the customer-specific building floor area to calculate the customer-specific gross savings.

Per measure, gross annual electric energy savings are calculated according to the following equation:

Per measure, gross coincident summer and winter peak demand reduction is assigned as zero because these measures have a negligible demand reduction as shown below:

 $\Delta k W_{summer} = 0$

$$\Delta k W_{winter} = 0$$

Where:

∆kWh	= per measure gross annual electric energy savings
ΔkW	= per measure gross coincident demand reduction
Area	= floor area of the building
ESF	= annual energy savings factor per square foot based on measure, building type, weather station,
	and heating system type

8.1.1.3 Input Variables

Table 8-2. Input Values for Office	Buildings with Electric and	Non-Electric Heating Fuels
	Eananige man Electric and	intern Electric mouting i dele

Component	Туре	Value	Unit	Source(s)
Area	Variable	See customer application	sq.ft.	Customer application
ESF	Variable	See Table 8-3 through Table 8-6	kWh/sq.ft.	OpenStudio [®] energy modeling software outputs using EnergyPlus™ engine

Table 8-3. Energy Saving Factor (ESF) for 4-Story Office (Chilled Water, VAV) Measures by Weather Station, and Heating System Type, kWh/sq.ft.

Annual Electric	System Type,	Heating	ECM1:	ECM2:	ECM3:	ECM4:	ECM5:	ECM6:	ECM8: Reduced
Energy Savings Factor (kWh/sq.ft.)	Weather Station	System Fuel Type	Schedule Lighting	Schedule HVAC	Temp. Setback	Condenser Water Reset	Discharge Air Temp. Reset	Static Pressure Reset	VAV Box Minimum Position
		Electric	0.9426	3.1111	2.0117	N/A	0.8754	0.7411	2.2962
	Charlottesville	Non- Electric	1.2985	0.5137	0.5111	N/A	0.4375	1.2847	1.4020
		Electric	0.9374	3.0802	1.9954	N/A	0.8772	0.7275	2.2654
	Farmville	Non- Electric	1.3173	0.5242	0.5216	N/A	0.4222	1.2899	1.4288
	Frederickshurr	Electric	0.9326	3.0077	1.9602	N/A	0.8558	0.7017	2.1868
	Fredericksburg	Non- Electric	1.2900	0.5123	0.5099	N/A	0.4166	1.2631	1.3163
	Newfelle	Electric	0.9714	2.9175	1.8860	N/A	0.7872	0.7330	2.1416
4-story Office, Chilled water, VAV	Norfolk	Non- Electric	1.2221	0.5143	0.5118	N/A	0.4190	1.2717	1.3415
wate	Washington	Electric	0.9256	2.9889	1.9502	N/A	0.9327	0.7029	2.1954
hilled	DC Reagan Airport	Non- Electric	1.2594	0.4967	0.4942	N/A	0.3989	1.2336	1.2886
C (e)	Deereke	Electric	0.9359	3.0559	1.9782	N/A	0.9101	0.7454	2.2707
y Offic	Roanoke	Non- Electric	1.3204	0.5237	0.5214	N/A	0.4370	1.3083	1.3901
-stor	Oto ulin u	Electric	0.9201	3.0395	1.9803	N/A	0.9247	0.6814	2.2126
4	Sterling	Non- Electric	1.2920	0.4954 0.4	0.4933	N/A	0.3877	1.2306	1.2912
		Electric	0.9542	2.9420	1.8979	N/A	0.7971	0.7312	2.1795
	Richmond	Non- Electric	1.2701	0.5196	0.5174	N/A	0.4261	1.2871	1.3670
	Rocky Mount-	Electric	0.9808	3.0045	1.9271	N/A	0.7687	0.7650	2.2019
	Wilson	Non- Electric	1.2628	0.5289	0.5266	N/A	0.4553	1.3161	1.4594
		Electric	0.9975	2.8411	1.8010	N/A	0.7457	0.7646	2.0871
	Elizabeth City	Non- Electric	1.2133	0.5322	0.5297	N/A	0.4650	1.3111	1.3470

Table 8-4. Energy Saving Factor (ESF) for 4-Story Office (Chilled Water, CV) Measures by Weather Station, and Heating System Type, kWh/sq.ft.

Annual Electric Energy Savings Factor (kWh/sq.ft.)	Weather Station	Heating System Fuel Type	ECM1: Schedule Lighting	ECM2: Schedule HVAC	ECM3: Temp. Setback	ECM4: Condenser Water Reset	ECM5: Discharge Air Temp. Reset	ECM6: Static Pressure Reset	ECM8: Reduced VAV Box Minimum Position
	Charlottesville	Electric	1.3416	3.3268	2.4363	N/A	1.4414	N/A	N/A
	Charlottesville	Non- Electric	1.0393	0.7804	0.3944	N/A	0.1661	N/A	N/A
	E a maa villa	Electric	1.3558	3.2949	2.4458	N/A	1.4728	N/A	N/A
	Farmville	Non- Electric	1.0485	0.9491	0.4938	N/A	0.1621	N/A	N/A
	En desiderte beren	Electric	1.4063	3.2258	2.4680	N/A	1.5092	N/A	N/A
	Fredericksburg	Non- Electric	1.0754	0.6529	0.3119	N/A	0.1411	N/A	N/A
	N f . II.	Electric	1.3805	3.1348	2.3189	N/A	1.3526	N/A	N/A
ar, cV	Norfolk	Non- Electric	1.0708	0.7712	0.4233	N/A	0.1514	N/A	N/A
wate	Washington	Electric	1.3455	3.1841	2.4045	N/A	1.5359	N/A	N/A
hilled	DC Reagan Airport	Non- Electric	1.1070	0.6295	0.3082	N/A	0.1643	N/A	N/A
Ce, C	Description	Electric	1.3248	3.2587	2.3994	N/A	1.4776	N/A	N/A
4-story Office, Chilled water, CV	Roanoke	Non- Electric	1.0557	0.6952	0.3276	N/A	0.1704	N/A	N/A
4-sto	Charling	Electric	1.3240	3.2104	2.4217	N/A	1.5212	N/A	N/A
	Sterling	Non- Electric	1.0771	0.5991	0.2576	N/A	0.1066	N/A	N/A
		Electric	1.3777	3.1626	2.3513	N/A	1.3941	N/A	N/A
	Richmond	Non- Electric	1.0487	0.8221	0.3989	N/A	0.1506	N/A	N/A
	Rocky Mount-	Electric	1.3904	3.2547	2.3587	N/A	1.3214	N/A	N/A
	Wilson	Non- Electric	1.0849	0.9896	0.4759	N/A	0.1496	N/A	N/A
		Electric	1.4207	3.0960	2.2452	N/A	1.3070	N/A	N/A
	Elizabeth City	Non- Electric	1.0401	0.8332	0.4135	N/A	0.1409	N/A	N/A

Table 8-5. Energy Saving Factor (ESF) for 4-StoryStory Office (Package, VAV) Measures by Weather Station, and Heating System Type, kWh/sq.ft.

and Heating	System Type,	kvv11/5q.11.							
Annual Electric Energy Savings Factor (kWh/sq.ft.)	Weather Station	Heating System Fuel Type	ECM1: Schedule Lighting	ECM2: Schedule HVAC	ECM3: Temp. Setback	ECM4: Condenser Water Reset	ECM5: Discharge Air Temp. Reset	ECM6: Static Pressure Reset	ECM8: Reduced VAV Box Minimum Position
		Electric	0.8665	0.0179	0.4843	N/A	0.2767	0.5718	0.7512
	Charlottesville	Non- Electric	1.6465	0.4084	1.0399	N/A	0.2981	0.6456	0.3990
	E a marchille	Electric	0.8591	0.0181	0.4890	N/A	0.2684	0.5647	0.7381
	Farmville	Non- Electric	1.6544	0.4154	1.0506	N/A	0.2920	0.6449	0.3802
	F acilitation become	Electric	0.8646	0.0173	0.4898	N/A	0.2444	0.5404	0.7099
	Fredericksburg	Non- Electric	1.6414	0.4057	1.0329	N/A	0.2702	ECNI6: Static Pressure Reset Reduced VAV Box Minimum Position 7 0.5718 0.7512 1 0.6456 0.3990 4 0.5647 0.738 0 0.6449 0.3802 4 0.5404 0.7092 2 0.6299 0.3500 2 0.6299 0.3500 2 0.6158 0.3982 0 0.5733 0.6930 2 0.6158 0.3566 0 0.5733 0.7452 1 0.6558 0.3893 2 0.61131 0.3683 3 0.5718 0.7106 2 0.6131 0.3683 3 0.6081 0.7836 4 0.6468 0.3783 5 0.6131 0.3683 5 0.6131 0.3683 6 0.5718 0.7383 6 0.6228 0.7933	0.3506
2		Electric	0.8802	0.0184	0.4973	N/A	0.2689	0.5782	0.7506
m, V⊅	Norfolk	Non- Electric	1.6635	0.4101	1.0419	N/A	0.2872	0.2872 0.6413	0.3982
syste	Washington	Electric	0.8648	0.0169	0.4683	N/A	0.2470	0.5337	0.6930
kage	DC Reagan Airport	Non- Electric	1.6150	0.3921	1.0149	N/A	0.2705	0.6158	0.3564
, Pac	Describe	Electric	0.8555	0.0181	0.4963	N/A	0.2689	0.5733	0.7452
4-story Office, Package system, VAV	Roanoke	Non- Electric	1.6516	0.4167	1.0642	N/A	0.2931	0.6558	0.3893
tory	Otenting	Electric	0.8668	0.0165	0.4774	N/A	0.2347	0.5181	0.7108
-4	Sterling	Non- Electric	1.6150	0.3919	1.0143	N/A	0.2444 0.2702 0.2689 0.2872 0.2470 0.2470 0.2705 0.2689 0.2705 0.2689 0.2705 0.2689 0.2705 0.2689 0.2689 0.2931 0.29347 0.26626 0.26666 0.2884 0.2958 0.3130	0.6131	0.3685
		Electric	0.8686	0.0183	0.5047	N/A	0.2666	0.5718	0.7381
	Richmond	Non- Electric	1.6581	0.4134	1.0463	N/A	0.2884	0.6468	0.3782
	Rocky Mount-	Electric	0.8805	0.0194	0.5157	N/A	0.2958	0.6081	0.7836
	Wilson	Non- Electric	1.6891	0.4248	1.0593	N/A	0.3130	0.6680	0.4190
		Electric	0.8801	0.0198	0.5155	N/A	0.3020	0.6228	0.7935
	Elizabeth City	Non- Electric	1.7020	0.4314	1.0683	N/A	0.3168	0.6737	0.4271

Table 8-6. Energy Saving Factor (ESF) for Large Office (Package, VAV) Measures by Weather Station, andHeating System Type, kWh/sq.ft.

Heating System Type, kwn/sq.ft.									
Annual Electric Energy Savings Factor (kWh/sq.ft.)	Weather Station	Heating System Fuel Type	ECM1: Schedule Lighting	ECM2: Schedule HVAC	ECM3 : Temp. Setback	ECM4: Condenser Water Reset	ECM5: Discharge Air Temp. Reset	ECM6: Static Pressure Reset	ECM8: Reduced VAV Box Minimum Position
		Electric	2.0217	1.4112	0.7956	0.0273	0.8362	1.6951	0.5503
	Charlottesville	Non- Electric	3.3766	1.2276	1.1767	1.0830	1.0155	2.8377	0.7982
		Electric	1.9986	1.5053	0.7938	0.0157	0.8732	1.6964	0.5154
	Farmville	Non- Electric	3.3973	1.2665	1.1946	1.0977	1.0024	ECM6: Pressure Reset Reduced VAV Box Minimum Position 362 1.6951 0.5503 355 2.8377 0.7982 732 1.6964 0.5154 024 2.8763 0.7606 774 1.6466 0.4891 033 2.8403 0.7014 054 1.7067 0.5310 722 2.9044 0.7966 708 1.6390 0.4729 273 2.7847 0.7131 016 1.7180 0.5316 575 2.8994 0.7789 301 1.6029 0.5251 311 2.7568 0.7372 022 1.7140 0.5133 565 2.8995 0.7567 562 1.7743 0.5662 509 2.9312 0.8383	
		Electric	1.9405	1.7095	0.9942	0.0383	0.9774	1.6466	0.4891
	Fredericksburg	Non- Electric	3.3851	1.2720	1.2118	1.1086	1.0033	2.8403	ECM6: Static Pressure Reset Reduced VAV Box Minimum Position 1.6951 0.5503 2.8377 0.7982 1.6964 0.5154 2.8763 0.7606 1.6466 0.4891 2.8403 0.7014 1.7067 0.5310 2.9044 0.7966 1.6390 0.4729 2.7847 0.7131 1.7180 0.5316 2.8994 0.7789 1.6029 0.5251 2.7568 0.7372 1.7140 0.5133 2.8995 0.7567 1.7743 0.5662
₹		Electric	2.0279	1.8161	1.0828	0.0620	0.9664	1.7067	0.5310
m, V	Norfolk	Non- Electric	3.4569	1.3200	1.2599	1.1416	1.0722	2.8403 0.7014 4 1.7067 0.5310 2 2.9044 0.7966 3 1.6390 0.4729 3 2.7847 0.7131 5 1.7180 0.5316	
yste	Washington DC	Electric	1.8660	2.1179	1.2639	0.0458	1.2708	1.6390	0.4729
age S	Reagan Airport	Non- Electric	3.3270	1.2816	1.2039	1.0710	1.0273		0.7131
Pack		Electric	1.9638	1.8206	1.0651	0.0156	1.0916	1.7180	0.5316
Large Office, Package System, VAV	Roanoke	Non- Electric	3.3839	1.2773	1.2142	1.1029	1.0575	2.8994	0.7789
e G		Electric	1.8499	2.2055	1.3351	0.0215	1.2801	1.6029	0.5251
Larg	Sterling	Non- Electric	3.3106	1.2757	1.1976	1.0511	0.9811	Reset Position 2 1.6951 0.5503 3 2.8377 0.7982 2 1.6964 0.5154 4 2.8763 0.7606 4 1.6466 0.4891 3 2.8403 0.7014 4 1.7067 0.5310 2 2.9044 0.7966 3 1.6390 0.4729 3 2.7847 0.7131 5 2.8994 0.7789 1 1.6029 0.5251 1 2.7568 0.7372 2 1.7140 0.5133 5 2.8995 0.7567 2 1.7743 0.5662 9 2.9312 0.8383 2 1.8413 0.5608	
		Electric	1.9872	1.7821	1.0529	0.0397	1.0022	1.7140	0.5133
	Richmond	Non- Electric	3.4078	1.2943	1.2317	1.1099	1.0565	2.8995	0.7567
	Rocky Mount-	Electric	2.1252	1.2633	0.7146	0.0282	0.6562	1.7743	0.5662
	Wilson	Non- Electric	3.4438	1.2469	1.2034	1.1063	1.0509	2.9312	0.8383
		Electric	2.1446	1.2640	0.6784	0.0676	0.6212	1.8413	0.5608
	Elizabeth City	Non- Electric	3.5481	1.3243	1.2716	1.1893	1.1431	3.0749	0.8544

8.1.1.4 Default Savings

If the proper values are not available, a default savings may be applied using conservative input values.

8.1.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 8-7.

Table 8-7. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program Name	Value	Units	Source(s)
VI	Non-Residential Office Program, DSM Phase VII	7.00	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

8.1.1.6 Source(s)

The primary source for this deemed savings approach is prototypical building energy models derived from DOE's Commercial Large Office Reference Building and modified to represent Dominion Energy's Virginia and North Carolina weather zones, using typical meteorological year 3 (TMY3) data along with various program-specific measures.

8.1.1.7 Update Summary

Updates made to this section are described in Table 8-8.

Table	Table 8-8. Summary of Update(s)					

Version	Update Type	Description
2021	Inputs	Added large office building type and expanded to 10 weather stations
2020	Inputs	Revised kWh/sq.ft. with results from updated building models
v10	New Measure	New section

8.2 Lighting End Use

8.2.1 Reduce Lighting Schedule by One Hour on Weekdays

Lighting fixtures must be turned on and off by an automation system. The customer or controls vendor must provide documentation that lighting operating hours are reduced by at least 30 minutes per workday.

8.3 Heating, Ventilation, and Air Conditioning (HVAC) End Use

8.3.1 HVAC Unit Scheduling

HVAC air handling equipment (air handling units, unitary HVAC, or split system HVAC) must be scheduled to an unoccupied mode by an automation system. The unoccupied mode must shut outdoor air dampers to remove ventilation loads. The customer or controls vendor must provide documentation that HVAC equipment operating hours are reduced by at least 30 minutes per workday. These measures are applicable to systems with gas heat.

These measures are based on the frequent observation during commercial facility audits that many facilities maintain comfort conditions, including ventilation, well beyond the occupied hours of the facility. The simulation of these measures assumes that scheduling of fans and outside air can be decreased by a half-hour in the morning and half-

Jun 15 2022

hour in the afternoon. In cases with greater reduction in operating hours, savings can be scaled base on the number of hours of correction. The two measures and their savings differ in their heating type.

The following schedules were modified to determine the energy impact:

- VAV fan schedule for each of the 12 systems. This schedule essentially dictates when occupied hours occur, running the fan continuously and ensuring a constant supply of outside air (OA)
- Heating set point schedule for all zones served by VAV
- Cooling set points were not changed
- As with other measures that reduce OA, fan savings are limited due to reduction in free-cooling

8.3.2 HVAC Temperature Setback

The unoccupied temperature must be set lower than it was previously in the baseline condition. The temperature must be reduced at least two degrees below the occupied set point. This measure is offered to buildings with either gas or electric heat. The customer or controls vendor must provide documentation of the existing and new unoccupied temperature set points and their schedules.

In the simulations, temperature setpoints during unoccupied hours are set back by nine degrees. Other spaces such as the data center are not modified. Since the baseline HVAC schedules had already implemented temperature setback, this measure was "modeled in reverse" by eliminating the setback schedules in the reference energy model (which were set to nine degrees). Other schedule/setbacks can be scaled accordingly.

Code requires setback controls (but not setup) for ASHRAE Zone 4A, per ASHRAE 90.1-2004, sections 6.4.3.2(a) and 6.4.3.2.2. Implementing this measure involves restoring functionality that is intended by code.

- Setback temperature: 60.8 °F
- Occupied hours set point: 69.8 °F

8.3.3 HVAC Condensing Water Temperature Reset

The condenser temperature on an air-cooled or water-cooled chiller system must be allowed to reset (lower) by at least five degrees from the summer design conditions during periods of partial load. The customer or controls vendor should provide documentation of implementation of the enhanced reset schedule compared to the baseline system control strategy. Reset schedule as modeled for the efficient case reflects:

- For outside air temperature of 60°F, the chilled water setpoint temperature is changed to 60°F
- For outside air temperature of 75°F, the chilled water setpoint temperature is changed to 70°F
- The measure accounts for the presence of two stages in the cooling tower that had not existed in the baseline case.

8.3.4 HVAC DAT Reset

The discharge air temperature from a variable air volume or constant volume re-heat air handling system must be allowed to reset (increase) at least two degrees from the summer design conditions during periods of partial load. The customer or controls vendor should provide documentation of implementation of the enhanced reset schedule

compared to how the system was previously controlled. Systems that are eligible for this measure include those with electric reheat coils or baseboard heaters. This is not required by ASHRAE 90.1-2004.

8.3.5 HVAC Static Pressure Reset

Supply fans controlled by variable-frequency drives (VFDs) must be converted from a fixed static-pressure supply setpoint to a control sequence that resets the static-pressure supply setpoint based on the variable air volume box position. The customer or controls vendor should provide documentation showing the existing set point and new static pressure reset control sequence.

See section 6.5.3.2.3 of ASHRAE 90.1-2004. This measure was required by code for air systems with zone boxes integrated into DDC control system. Implementing it would appear to restore the condition intended by code, though not all systems would have such controls. The base model did not have this control implemented. VAV fan curves in the base model correspond to fixed duct static pressure.

OpenStudio does not currently include functionality to implement the more sophisticated "ComponentModel" fan present in EnergyPlus. Implementing the pressure reset strategy would require shifting the project entirely to raw EnergyPlus or modifying the VAV fan curve within OpenStudio in a way that would simulate static pressure reset. However, a fan curve for this purpose is available from the National Renewable Energy Laboratory.

Fan curve coefficients used were as shown in Table 8-9.

Table 8-9. Fan Curve Coefficients

Coefficient	Fixed Static Pressure (baseline)	Reset Static Pressure (efficient)
Coefficient 1	0.00130	0.04076
Coefficient 2	0.14700	0.08810
Coefficient 3	0.95060	-0.07290
Coefficient 4	-0.09980	0.94370
Coefficient 5	0.00000	0.00000
Minimum percent power	20%	10%

8.3.6 HVAC VAV Minimum Flow Reduction

VAV minimums were assumed to be set higher than necessary to meet winter heating loads. They were reduced by 10%. It is assumed that this measure can be implemented while continuing to provide code required ventilation levels and meeting winter heating set points in all zones (e.g., perhaps occupancy of the building has changed and not as much ventilation air is needed and/or insulation has been added so winter shell loads are smaller than before.). Verifying these conditions in an actual building would take a fair amount of analysis. This model run is based on a central plant with a hot-water boiler for re-heats. If re-heats were electric, then savings from this measure would be greater.

The presence of electric re-heats results in savings approximately double that for VAV with fossil fuel HW boilers.

8.3.7 Dual Enthalpy Air-side Economizer

This measure does not use the building simulation approach that is applied to other measures in this program. Instead, it utilizes the Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII savings approach described in Section 2.1.5.

9 NON-RESIDENTIAL SMALL BUSINESS IMPROVEMENT ENHANCED PROGRAM, DSM PHASE VIII

The Non-Residential Small Business Improvement Enhanced Program provides mall businesses an energy use assessment and tune-up or re-commissioning of electric heating and cooling systems, along with financial incentives for the installation of specific energy efficiency measures. Participating small businesses would be required to meet certain size and connected load requirements. All non-residential customers who do not exceed the 100-kW demand threshold.

The measures offered through the program and the sections that contain the savings algorithms for each measure are presented in Table 9-1.

End Use	Measure	Legacy Program	Manual Section
Building Envelope	Window Film Installation	Non-Residential Window Film Program, DSM Phase VII	Section 3.1.1
Domestic Hot Water	VFD on Hot Water Pump	D on Hot Water Pump Non-Residential Small Business Improvement Program, DSM Phase V	
	Duct Testing & Sealing	Non-Residential Small Business Improvement Program, DSM Phase V	Section 4.1.1
	Heat Pump Tune-up	Non-Residential Small Business Improvement Program, DSM Phase V	Section 4.1.2
HVAC	Refrigerant Charge Correction	Non-Residential Small Business Improvement Program, DSM Phase V	Section 4.1.3
IIVAC	Heat Pump Upgrade	Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII	Section 2.1.1
	Dual Enthalpy Air-side Economizer	Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII	Section 2.1.5
	Programmable Thermostat	Non-Residential Small Business Improvement Program, DSM Phase V	Section 4.1.8
	Lighting, Fixtures, Lamps, and Delamping	Non-Residential Lighting Systems and Controls Program, DSM Phase VII	Section 1.1.1
Lighting	Sensors and Controls	Non-Residential Lighting Systems and Controls Program, DSM Phase VII	Section 1.1.2
	LED Exit Signs	Non-Residential Small Business Improvement Program, DSM Phase V	Section 4.2.3
Plug-load	Vending Machine Miser	Non-Residential Prescriptive Program, DSM Phase VI	Section 5.4.13
	Refrigeration Variable Frequency Drives	New Measure	Section 9.6.1
	Refrigeration Night Cover	Non-Residential Prescriptive Program, DSM Phase VI5.4.9	Section 5.4.9
	Evaporator Fan Electronically Commutated Motor (ECM) Retrofit	Non-Residential Prescriptive Program, DSM Phase VI	Section 5.4.5
Refrigeration	Evaporator Fan Motor Controls	Non-Residential Prescriptive Program, DSM Phase VI	Section 5.4.6
	Door Closer	Non-Residential Prescriptive Program, DSM Phase VI	Section 5.4.1
	Anti-Sweat Heater Controls	New Measure	Section 9.6.6
	Strip Curtain (Cooler and Freezer)	Non-Residential Prescriptive Program, DSM Phase VI	Section 5.4.12

Table 9-1. Non-Residential Small Business Improvement Enhanced Program Measure List

Jun 15 2022

9.1 Building Envelope End Use

9.1.1 Window Film Installation

This measure is also offered through the Non-Residential Window Film Program, DSM Phase VII. The savings approach is described in Section 3.1.1.

9.2 Domestic Hot Water End Use

9.2.1 VFD on Hot Water Pump

This measure is also offered through the Non-Residential Small Business Improvement Program, DSM Phase V. The savings approach is described in Section 4.1.7.

9.3 HVAC End Use

9.3.1 Duct Testing & Sealing

This measure is also offered through the Non-Residential Small Business Improvement Program, DSM Phase V. The savings approach is described in Section 4.1.1.

9.3.2 Heat Pump Tune-up

This measure is also offered through the Non-Residential Small Business Improvement Program, DSM Phase V. The savings approach is described in Section 4.1.2.

9.3.3 Refrigerant Charge Correction

This measure is also offered through the Non-Residential Small Business Improvement Program, DSM Phase V. The savings approach is described in Section 4.1.3.

9.3.4 Heat Pump Upgrade

This measure is also offered through the Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII . The savings approach is described in Section 2.1.1.

9.3.5 Dual Enthalpy Air-side Economizer

This measure is also offered through the Non-Residential Heating and Cooling Efficiency program. The savings approach is described in Section 2.1.5.

9.3.6 Programmable Thermostat

This measure is also offered through the Non-Residential Small Business Improvement Program, DSM Phase V. The savings approach is described in Section 4.1.8.

9.4 Lighting End Use

9.4.1 Lighting, Fixtures, Lamps, and Delamping

This measure is also offered through the Non-Residential Lighting Systems and Controls Program, DSM Phase VII. The savings approach is described in Section 1.1.1.

9.4.2 Sensors and Controls

This measure is also offered through the Non-Residential Lighting Systems and Controls Program, DSM Phase VII. The savings approach is described in Section 1.1.2.

9.4.3 LED Exit Signs

This measure is also offered through the Non-Residential Small Business Improvement Program, DSM Phase V. The savings approach is described in Section 4.2.3.

9.5 Plug-Load End Use

9.5.1 Vending Machine Miser

This measure is also offered through the Non-Residential Prescriptive Program, DSM Phase VI. The savings approach is described in Section 5.4.13.

9.6 Refrigeration End Use

9.6.1 Refrigeration Variable Frequency Drives

Variable frequency drive (VFD) compressors are used to control and reduce the speed of the compressor during times when the refrigeration system does not require the motor to run at full capacity. VFD control is an economical and efficient retrofit option for existing compressor installations. The performance of variable speed compressors can more closely match the variable refrigeration load requirements thus minimizing energy consumption.

This measure, VFD control for refrigeration systems and its eligibility targets applies to retrofit construction in the commercial and industrial building sectors; it is most applicable to grocery stores or food processing applications with refrigeration systems. This protocol is for a VSD control system replacing a slide valve control system. The savings algorithms are shown below. There are two distinct sets of algorithms – one for if the refrigeration system is rated in tonnage, and another for if the refrigeration system is rated in horsepower.

9.6.1.1 Impacts Estimation Approach

Per measure, gross annual electric energy savings are calculated according to the following equations:

$$\Delta kWh = tons_{cool} \times ESF$$

If the refrigeration system is rated in horsepower:

$$tons_{cool} = 0.212 \times \frac{1}{COP} \times hp_{compressor}$$

Per measure, gross coincident summer peak demand reduction is calculated according to the following equation:

 $\Delta kW_{summer} = tons_{cool} \times DSF_{summer}$

Per measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = tons_{cool} \times DSF_{winter}$$

Where:

ΔkWh	= per measure gross annual electric energy savings
ΔkW_{summer}	= per measure gross coincident summer peak demand reduction
ΔkW_{winter}	= per measure gross coincident winter peak demand reduction
tons _{cool}	= refrigeration cooling capacity of the system, in tons
ESF	= energy saving factor in kWh per ton

DSF_summer= summer demand saving factor, in kW per tonDSF_winter= winter demand saving factor, in kW per tonCOP= coefficient of performancehp_compressor= rated horsepower of refrigeration compressor

9.6.1.2 Input Variable

 Table 9-2. Input Variables for Refrigeration Variable Frequency Drives

Component	Туре	Value	Unit	Source(s)
hp _{compressor}	Variable	See customer application	horsepower	Customer application
ESF	Fixed	1,696	kWh/ton	Pennsylvania TRM 2019 Vol.3, p. 164
DSF _{summer}	Fixed	0.22	kW/ton	Pennsylvania TRM 2019 Vol.3, p. 164
DSFwinter	Fixed	0.22	kW/ton	Pennsylvania TRM 2019 Vol.3, p. 164
		See customer application		Customer application
СОР	Variable	Default: Reach-in Coolers = 2.04 Reach-in Freezers = 1.25 Reach-in Unknown = 1.80 Walk-in Coolers = 3.42 Walk-in Freezers = 1.00 Walk-in Unknown = 2.67	-	Pennsylvania TRM 2019 Vol. 3, p. 164

9.6.1.3 Default Savings

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

9.6.1.4 Effective Useful Life

The effective useful life of this measure is provided in Table 9-3.

Table 9-3. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program Name	Value	Units	Source(s)
VIII	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	15.00	years	Pennsylvania TRM 2019, Vol. 3, p. 163

9.6.1.5 Source

The primary sources for this deemed savings approach Pennsylvania TRM 2019, Vol. 3, pp. 163-165.

9.6.1.6 Update Summary

Updates made to this section are described in Table 9-4.

Jun 15 2022

Table 9-4. Summary of Update(s)

Version	Update Type	Description
2021	New Measure	New Section

9.6.2 Night Cover

This measure is also offered through the Non-Residential Prescriptive Program, DSM Phase VI. The savings approach is described in Section 5.4.9.

9.6.3 Evaporator Fan Electronically Commutated Motor (ECM) Retrofit

This measure is also offered through the Non-Residential Prescriptive program. The savings approach is described in Section 5.4.5.

9.6.4 Evaporator Fan Motor Controls

This measure is also offered through the Non-Residential Prescriptive program. The savings approach is described in Section 5.4.6.

9.6.5 Door Closer

This measure is also offered through the Non-Residential Prescriptive program. The savings approach is described in Section 5.4.1.

9.6.6 Anti-Sweat Heater Controls

Anti-sweat door heaters (ASDH) prevent condensation from forming on cooler and freezer doors. By installing a control device to turn off door heaters when there is little or no risk of condensation, significant energy savings can be realized. There are two commercially available control strategies—On/Off controls and micro-pulse controls—that respond to a call for heating. Heating is typically triggered based on a door-moisture sensor or an indoor-air temperature and humidity-sensor to calculate the dew point. In the first strategy, the On/Off controls turn the heaters on and off for minutes at a time, resulting in a reduction in run time. In the second strategy, the micro pulse controls turn on the door heaters for fractions of a second, in response to the call for heating. Either of these strategies result in annual energy and coincident peak demand reduction. Additional savings come from refrigeration interactive effects. When the heaters run less, they introduce less heat into the refrigerated spaces and reduce the cooling load.

The baseline condition is assumed to be a commercial glass door cooler or refrigerator with a standard heated door running 24 hours per day, seven days per week (24/7) with no controls installed. The efficient equipment is assumed to be a door heater control on a commercial glass door cooler or refrigerator utilizing either On/Off or micro-pulse controls.

9.6.6.1 Impacts Estimation Approach

Per measure, gross annual electric energy savings are assigned according to the following equation:

 $\Delta kWh = kW_{load} \times (\%On_{base} - \%On_{ee}) \times HOU \times WHF_{e}$

Per measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = kW_{load} \times WHF_d \times CF_{summer}$$

Per measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = kW_{load} \times WHF_d \times CF_{winter}$$

Where:

ΔkWh	= per measure gross annual electric energy savings
ΔkW_{summer}	= per measure gross coincident summer peak demand reduction
ΔkW_{winter}	= per measure gross coincident winter peak demand reduction
kW _{load}	= connected load kW per connected door
%On _{base}	= effective run time of uncontrolled anti-sweat door heaters (ASDH)
%Onee	= effective run time of ASDH with controls
HOU	= annual hours of operation
WHFe	= waste heat factor for energy
WHFd	= waste heat factor for demand
CF _{summer}	= summer coincidence factor
CFwinter	= winter coincidence factor

9.6.6.2 Input Variable

Table 9-5. Input Values for Anti-Sweat Heater Controls

Component	Туре	Value	Units	Source(s)	
	Variable	See customer application		See customer application	
kW load		Default: 0.13	kW	Maryland/Mid-Atlantic TRM v10, p. 344	
%On _{base}	Fixed	0.907	-	Maryland/Mid-Atlantic TRM v10, p. 344	
%On _{ee}	Fixed	Default: On/Off control=0.589 Micro-pulse control=0.428	-	Maryland/Mid-Atlantic TRM v10, p. 345	
HOU	Fixed	8,760	hours, annual	Maryland/Mid-Atlantic TRM v10, p. 345	

Component Type Value		Value	Units	Source(s)
CFsummer	CF _{summer} Variable Default: Refrigerator: ON/OFF controls: 0.25 Micro-pulse control: 0.36 Freezer: ON/OFF controls: 0.21 Micro-pulse control: 0.30		-	Maryland/Mid-Atlantic TRM v10, p. 345
CF winter Variable		Default: Refrigerator: On/Off controls: 0.24 Micro-pulse: 0.35 Freezer: On/Off controls: 0.20 Micro-pulse: 0.29	-	Maryland/Mid-Atlantic TRM v10, pp. 345 ¹⁶¹ .
WHFe	Variable	High Temp (31°F - 55°F): 1.25 Med Temp (0°F - 30°F): 1.50 Low Temp (-35°F1°F): 1.50	-	Maryland/Mid-Atlantic TRM v10, p. 345
WHFd	Variable	High Temp (31°F - 55°F): 1.25 Med Temp (0°F - 30°F): 1.50 Low Temp (-35°F1°F): 1.50	-	Maryland/Mid-Atlantic TRM v10, p. 345

9.6.6.3 Default Savings

No default savings will be awarded for this measure if the necessary values are not provided in the customer application.

9.6.6.4 Effective Useful Life

The effective useful life of this measure is provided in Table 9-6.

Table 9-6. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program Name	Value	Units	Source(s)
VIII	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	12.00	years	Maryland/Mid-Atlantic TRM v10, p. 345

9.6.6.5 Source

The primary sources for this deemed savings approach Maryland/Mid-Atlantic TRM v10, pp. 344-345.

9.6.6.6 Update Summary

Updates made to this section are described in Table 9-7.

¹⁶¹ Applied the same methodology that Maryland/Mid-Atlantic TRM v10, pp. 345 uses for summer CF and applied to the winter peak values provided by Cadmus. 2015. Commercial Refrigeration Loadshape Project

Table 9-7. Summary of Update(s)

Version	Update Type	Description
2020	New Measure	New Section

9.6.7 Strip Curtain (Cooler and Freezer)

This measure is also offered through the Non-Residential Prescriptive program. The savings approach is described in Section 5.4.12.

10 NON-RESIDENTIAL MIDSTREAM ENERGY EFFICIENCY PRODUCTS PROGRAM, DSM PHASE VIII

The Non-Residential Midstream Energy Efficiency Products Program consists of enrolling equipment distributors into the Program through an agreement to provide point-of-sales data in an agreed upon format each month. These monthly data sets will contain, at minimum, the data necessary to validate and quantify the eligible equipment that has been delivered for sale in the Company's service territory. In exchange for the data sets, the distributor will discount the rebate-eligible items sold to end customers. This Program aims to increase the availability and uptake of efficient equipment for the Company's non-residential customers.

The measures offered through the program and the sections that contain the savings algorithms for each measure are presented in Table 10-1.

End Use	Measure	Legacy Program	Manual Section
	Commercial Combination Oven	Non-Residential Prescriptive Program, DSM Phase VI	Section 5.1.2
	Commercial Convection Oven	Non-Residential Prescriptive Program, DSM Phase VI	Section 5.1.1
Cooking	Commercial Griddle	Non-Residential Prescriptive Program, DSM Phase VI	Section 5.1.4
Cooking	Commercial Fryer	Non-Residential Prescriptive Program, DSM Phase VI	Section 5.1.3
	Commercial Steam Cooker	Non-Residential Prescriptive Program, DSM Phase VI	Section 5.1.6
	Commercial Hot Food holding Cabinet	Non-Residential Prescriptive Program, DSM Phase VI	Section 5.1.5
	Unitary/Split HVAC, Package Terminal Air conditioners and Heat Pumps	Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII	Section 2.1.1
HVAC	Mini-split Systems	Non-Residential Lighting Systems and Controls Program, DSM Phase VII	Section 2.1.2
	Electric Chillers	Non-Residential Lighting Systems and Controls Program, DSM Phase VII	Section 2.1.3
Refrigeration	Commercial Freezers and Refrigerators	Non-Residential Prescriptive Program, DSM Phase VI	Section 5.4.3

Table 10-1. Non-Residential Midstream Energy Efficiency Products Improvement Enhanced Program MeasureList

10.1 Cooking End Use

10.1.1 Commercial Combination Oven

This measure is also offered through the Non-Residential Prescriptive program. The savings approach is described in Section 5.1.2.

10.1.2 Commercial Convection Oven

This measure is also offered through the Non-Residential Prescriptive program. The savings approach is described in Section 5.1.1.

10.1.3 Commercial Griddle

This measure is also offered through the Non-Residential Prescriptive program. The savings approach is described in Section 5.1.4.

10.1.4 Commercial Fryer

This measure is also offered through the Non-Residential Prescriptive program. The savings approach is described in Section 5.1.3.

10.1.5 Commercial Steam Cooker

This measure is also offered through the Non-Residential Prescriptive program. The savings approach is described in Section 5.1.6.

10.1.6 Commercial Hot Food Holding Cabinet

This measure is also offered through the Non-Residential Prescriptive program. The savings approach is described in Section 5.1.5.

10.2 HVAC End Use

10.2.1 Unitary/Split HVAC, Package Terminal Air conditioners and Heat Pumps

This measure is also offered through the Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII. The savings approach is described in Section 2.1.1.

10.2.2 Mini-split Systems

This measure is also offered through the Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII. The savings approach is described in Section 2.1.2.

10.2.3 Electric Chiller

This measure is also offered through the Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII. The savings approach is described in Section 2.1.3.

10.3 Refrigeration End Use

10.3.1 Commercial Freezers and Refrigerators

This measure is also offered through the Non-Residential Prescriptive program. The savings approach is described in Section 5.4.3.

Jun 15 2022

11 NON-RESIDENTIAL MULTIFAMILY PROGRAM, DSM PHASE VIII

The Multifamily Program is designed to encourage investment in both the residential and commercial areas of multifamily properties. The Program design is based on a whole-building approach where the implementation vendor will identify as many cost-effective measure opportunities as possible in the entire building (both residential and commercial metered) and encourage property owners to address the measures as a bundle. This approach provides "one-stop shop" programming for multifamily property owners with solutions to include direct-install measures and incentives for prescriptive efficiency improvements. The Program will identify, track, and report residential (in-unit) and commercial (common space) savings separately, according to the account type. The Program will be delivered through an expanded network of local trade allies that the implementation vendor will recruit and support while also establishing a robust relationship with property management companies—the gatekeepers for determining enrollment for their multifamily communities. Once a property management company has decided to enroll a property into the Program, the implementation vendor will send the tenants a letter that will provide information about Program benefits along with an opportunity to opt-out of participating within a defined period of time. If a tenant does not take action to notify the program implementation vendor that they are opting out of participation, their unit will be included in the enrolled locations to receive the installed measures during the delivery phase.

The implementation vendor intends to complete site assessments at the time of the enlistment visit—or within two weeks—to identify all eligible measures. Subsequently, the property owner or manager will receive an assessment report identifying and quantifying savings opportunities with estimated project costs and available incentives. The program implementation vendor or trade ally auditor will perform a walk-through audit covering the envelope and all energy systems in the buildings, paying particular attention to the condition of domestic hot water (DHW) and HVAC systems, building-envelope insulation, and lighting. After assessing the entire structure and living units, the auditor will use an assessment tool to perform appropriate calculations and generate a report showing projected energy and potential cost savings specific to each unit and/or common area. The auditor will review the findings and recommendations of the assessment with the property owner and assist them in making measure installation and investment decisions. Participation will require that all services or installations qualifying for an incentive be completed by a participating contractor or properly-credentialed building maintenance staff. The measures offered through the program and the sections that contain the savings algorithms for each measure are presented in Table 11-1.

End Use	Measure	Legacy Program	Non-Residential Manual Section
Building	Air Sealing	Residential Manufactured Housing Program, DSM Phase VIII	Section 11.1.1
Envelope	Building Envelope Building Insulation/ Drill & Fill Wall Insulation	Residential Income and Age Qualifying Home Improvement Program, DSM Phase IV	Section 11.1.2
Domestic Hot Water	Domestic Hot Water Pipe Insulation	Residential Income and Age Qualifying Home Improvement Program, DSM Phase IV	Section 11.2.1
not water	Water Heater Temperature Setback/Turndown	Residential Home Energy Assessment Program, DSM Phase VII	Section 11.2.2

Table 11-1. Residential / Non-Residential Multifami	ly Program Measure List
Table 11-1. Residential / Non-Residential Multilani	iy i iografii measure List

End Use	Measure	Legacy Program	Non-Residential Manual Section
	HVAC Upgrade/ Unitary AC	Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII	Section 2.1.1
	Heat Pump Tune-up	Non-Residential Small Business Improvement Program, DSM Phase V	in Section 4.1.2
HVAC	Duct Sealing	Non-Residential Small Business Improvement Program, DSM Phase V	Section 4.1.1
	Energy Star [®] Room/Wall AC Units	Residential Home Energy Assessment Program, DSM Phase VII	Section 11.3.4
	Smart Thermostat Installation	New Measure	Section 11.3.5
	Lighting, Fixtures, Lamps, and Delamping	Non-Residential Lighting Systems and Controls Program, DSM Phase VII	Section 1.1.1
Lighting	LED Exit Signs	Non-Residential Small Business Improvement Program, DSM Phase V	Section 4.2.3
	Sensors and Controls	Non-Residential Lighting Systems and Controls Program, DSM Phase VI	Section 1.1.2
Plug-Load/	ENERGY STAR [®] Clothes Dryer	Posidential Efficient Products Markstalass	Section 11.5.1
Appliances	ENERGY STAR [®] Clothes Washer	Residential Efficient Products Marketplace Program, DSM Phase VII	Section 11.5.2
Recreation	Two-speed & Variable Speed Pool Pump	New Measure	Section 11.6.1

11.1 Building Envelope End Use

11.1.1 Air Sealing

This measure is also offered through the Residential Manufactured Housing Program, DSM Phase VIII. The savings approach is described in Appendix F1: Technical Reference Manual for Residential Programs v.2021, Section 11.1.1.

11.1.2 Building Insulation/Drill & Fill Wall Insulation

This measure is also offered through the Residential Income and Age Qualifying Home Improvement Program, DSM Phase IV. The savings approach is described in Appendix F1: Technical Reference Manual for Residential Programs v.2021, Section 2.2.1.

11.2 Domestic Hot Water End Use

11.2.1 Domestic Hot Water Pipe Insulation

This measure is also offered through the Residential Income and Age Qualifying Home Improvement Program, DSM Phase IV. The savings approach is described in Appendix F1: Technical Reference Manual for Residential Programs v.2021, Section 2.1.1.

11.2.2 Water Heater Temperature Setback/Turndown

This measure is also offered through the Residential Home Energy Assessment Program, DSM Phase VII. The savings approach is described in Appendix F1: Technical Reference Manual for Residential Programs v.2021, Section 5.2.5.

11.3 Heating, Ventilation, and Air-Conditioning End Use

11.3.1 HVAC Upgrade/ Unitary AC

This measure is also offered through the Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII. The savings approach is described in Section 2.1.1.

11.3.2 Heat Pump Tune-Up

This measure is also offered through the Non-Residential Small Business Improvement Program, DSM Phase V. The savings approach is described in Section 4.1.2.

11.3.3 Duct Sealing

This measure is also offered through the Non-Residential Small Business Improvement Program, DSM Phase V. The savings approach is described in Section 4.1.1.

11.3.4 ENERGY STAR® Room/Wall AC Units

This measure is also offered through the Residential Home Energy Assessment Program, DSM Phase VII. The savings approach is described in Appendix F1: Technical Reference Manual for Residential Programs v.2021, Section 5.3.1.

11.3.5 Smart Thermostat Installation

11.3.5.1 Measure Description

The smart thermostat measure involves the replacement of a manually operated or conventional programmable thermostat with a smart thermostat that meets or exceeds the ENERGY STAR[®] requirements.¹⁶² A "smart" or communicating thermostat allows remote set point adjustment and control via remote application. The system requires an outdoor-air-temperature algorithm in the control logic to operate heating and cooling systems.

The baseline is a mix of manual and programmable thermostats; the efficient condition is a smart thermostat that has earned ENERGY STAR[®] certification.

11.3.5.2 Impacts Estimation Approach

Per measure, the gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = kWh_{cool} + kWh_{heat}$$

For heat pumps, and AC units <65,000 Btu/h, per measure, gross annual electric cooling energy savings are calculated according to the following equation:

$$\Delta kWh_{cool} = Size_{cool} \times \frac{1 \ kBtuh}{1,000 \ Btuh} \times \frac{EFLH_{cool}}{SEER} \times ESF_{cool}$$

For heat pumps and AC units ≥65,000 Btu/h, per measure, gross annual electric cooling energy savings are calculated according to the following equation:

$$\Delta kWh_{cool} = Size_{cool} \times \frac{1 \ kBtuh}{1,000 \ Btuh} \times \frac{EFLH_{cool}}{IEER} \times ESF_{cool}$$

Heating savings are only applicable to spaced conditioned using heat pumps. For heat pumps <65,000 Btu/h, per measure gross annual electric heating energy savings are calculated according to the following equation

$$\Delta kWh_{heat} = Size_{heat} \times \frac{1 \ kBtuh}{1,000 \ Btuh} \times \frac{EFLH_{heat}}{HSPF} \times ESF_{heat}$$

For heat pumps ≥65,000 Btu/h, and water-source heat pumps of all sizes, and package terminal HP units of all sizes, per measure gross annual electric heating energy savings are calculated according to the following equation:

$$\Delta kWh_{heat} = Size_{heat} \times \frac{1W}{3.412 Btuh} \times \frac{1 kBtuh}{1,000 Btuh} \times \frac{EFLH_{heat}}{COP} \times ESF_{heat}$$

This measure does not provide gross coincident summer or winter peak demand reductions.

¹⁶² The key product criteria for Smart thermostats can be found at <u>https://www.energystar.gov/products/heating_cooling/smart_thermostats/key_product_criteria;</u>

DNV

Where:

ΔkWh	= per measure gross annual electric energy savings
Sizecool	= cooling capacity of HVAC system
Sizeheat	= heating capacity of heat pump
SEER	= seasonal energy efficiency ratio (SEER)
IEER	= integrated energy efficiency ratio (IEER)
HSPF	= heating seasonal performance factor (HSPF)
COP	= coefficient of performance (COP)
EFLH _{cool}	= equivalent cooling full load hours
EFLH _{heat}	= equivalent heating full load hours
ESF _{cool}	= cooling annual energy savings factor
ESF _{heat}	= heating annual energy savings factor

11.3.5.3 Input Variables

Table 11-2. Input Va	ariables for Smart	Thermostat Savings	Calculations
----------------------	--------------------	--------------------	--------------

Component	Туре	Value	Units	Source(s)
Sizecool	Variable	See customer application	Btu/h	Customer application
Size _{heat}	Variable	See customer application ¹⁶³	Btu/h	Customer application
		Default = Size _{cool}		
EFLH _{cool}	Variable	riable See Sub-Appendix F2-II: Non- Residential HVAC Equivalent Full Load Hours, Table 13-4 and Table 13-5 use multifamily (common area)		Maryland/Mid-Atlantic TRM v10, p. 423, scaled using CDD
EFLH _{heat}	Variable	See Sub-Appendix F2-II: Non- Residential HVAC Equivalent Full Load Hours, Table 13-5 use multifamily (common area)	hours, annual	Maryland/Mid-Atlantic TRM v10, p. 423, scaled using HDD
SEER/IEER/ HSPF/COP	Variable	See Sub-Appendix F2-III: Non- Residential HVAC Equipment Efficiency Ratings, Table 13-8 and Table 13-9	Btu/Wh (COP is unitless)	ASHRAE 90.1-2013
ESF _{cool}	SF _{cool} Fixed	Manual thermostat existing: 0.050 Programmable thermostat existing: 0.020		Maryland/Mid-Atlantic TRM v10, p. 319
		Default = 0.030	-	DNV, Dominion Energy 2020 Commercial Energy Survey, Appendix B, p.60 (Q25) ¹⁶⁴
ESF _{heat}	Fixed	Manual thermostat existing: 0.040 Programmable thermostat existing: 0.020		Maryland/Mid-Atlantic TRM v10, p. 319
Lorheat	Fixed	Default = 0.027		DNV, Dominion Energy2020 Commercial Energy Survey, Appendix B, p. 60 (Q25) ¹⁶⁴

¹⁶³ When customer-provided heating system size is <80% or >156% of customer-provided cooling system size, a default value will be used, instead. In such instances, it is assumed that the heating system size was incorrectly documented. The acceptable range is based on a review of the AHRI database across numerous manufacturers and heat pump types.

Jun 15 2022

¹⁶⁴ Used weighted average of programmable thermostat and manual thermostat responses to determine the ESF.

11.3.5.4 Default Savings

If the proper values are not available, zero savings will be given for gross annual electric energy savings.

11.3.5.5 Effective Useful Life

The effective useful life of this measure is provided in Table 11-3.

Table 11-3. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program Name	Value	Units	Source(s)
VIII Non-Residential Multifamily Program, DSM Phase VIII		7.50	years	Maryland/Mid-Atlantic TRM v10, pp. 317-320

11.3.5.6 Source

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 317-320.

11.3.5.7 Update Summary

Updates to this section are described in Table 11-8.

Table 11-4. Summary of Update(s)

Version Update Type		Description		
2021	New Measure	New section		

11.4 Lighting End Use

11.4.1 LED Lamps, Advanced Lighting, and Delamping

This measure is also offered through the Non-Residential Lighting Systems and Controls Program, DSM Phase VII. The savings approach is described in Section 1.1.1.

11.4.2 LED Exit Signs

This measure is also offered through the Non-Residential Small Business Improvement Program, DSM Phase V. The savings approach is described in Section 4.2.3.

11.4.3 Sensors and Controls

This measure is also offered through the Non-Residential Lighting Systems and Controls Program, DSM Phase VII. The savings approach is described in Section 1.1.2.

11.5 Plug-Load End Use

11.5.1 Clothes Dryer

This measure is also provided by the Residential Efficient Products Marketplace Program, DSM Phase VII. The savings are determined using the methodology described in Section 6.2.3.

11.5.2 Clothes Washer

This measure is also provided by the Residential Efficient Products Marketplace Program, DSM Phase VII. The savings are determined using the methodology described in Section 6.2.2.

11.6 Recreation Use

11.6.1 Two-Speed & Variable-Speed Pool Pump

11.6.1.1 Measure Description

This measure replaces a single-speed pool filter pump with a variable-speed or dual-speed pump of equivalent horsepower. This measure is only applicable to self-priming pool filter pumps which are typically used with permanent, in-ground pools in multifamily and commercial buildings. Non-self-priming pool filter pumps, which are typically used with rigid, above-ground pools, are not eligible for this measure. The baseline efficiency equipment is a single-speed, self-priming pool filter pump. The efficient equipment is a variable-speed or dual-speed self-priming pool filter pump.

11.6.1.2 Impacts Estimation Approach

Per measure, the gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = (kWh_{daily,base} - kWh_{daily,ee}) \times Days$$

Per measure, the gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \left[\left(\frac{kWh_{daily,base}}{Hours_{daily,base}} \right) \times CF_{base,summer} \right] - \left[\left(\frac{kWh_{daily,ee}}{Hours_{daily,ee}} \right) \times CF_{ee,summer} \right]$$

Per measure, the gross coincident winter peak demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \left[\left(\frac{kWh_{daily,base}}{Hours_{daily,base}} \right) \times CF_{base,winter} \right] - \left[\left(\frac{kWh_{daily,ee}}{Hours_{daily,ee}} \right) \times CF_{ee,winter} \right]$$

Jun 15 2022

DNV

Where:

ΔkWh ΔkWsummer ΔkWwinter kWhdaily,base kWhdaily,ee	 = per measure gross annual electric energy savings = per measure gross coincident summer peak demand reduction = per measure gross coincident winter peak demand reduction = typical daily energy consumption of a single speed motor in a cool climate = typical daily energy consumption for an efficient variable-speed or two-speed pump motor
Days HourSdailybase HourSdaily ee CFbase,summer CFee,summer CFbase,winter CFee,winter	 number of days the pump operates in a year daily runtime of baseline pump daily runtime of dual speed or variable-speed pump summer coincidence factor of baseline pump summer coincidence factor of dual speed or variable-speed pump winter coincidence factor of baseline pump winter coincidence factor of dual speed or variable-speed pump

11.6.1.3 Input Variables

Table 11-5. Input Variables for Two speed & Variable Speed Pool Pump Savings Calculations

Component	Туре	Value	Units	Source(s)
Sizebase	Variable	See customer application	hp (pump motor)	Customer application
Sizeee	Variable	See customer application	hp (pump motor)	Customer application
kWh _{daily,base}	Variable	See Table 11-6 based on Type _{base} and Bin _{size,base}	kWh, daily	Hawaii TRM 2019, p.172
kWh _{daily,ee}	Variable	See Table 11-6 based on Type $_{ee}$ and $Bin_{size,ee}$	kWh, daily	Hawaii TRM 2019, p.172
Typebase	Fixed	Default: Single-Speed Pump	-	Program requirement
Туреее	Variable	Default: 1. Dual-Speed Pump 2. Variable Speed Pump	-	Customer application
		See customer application		Customer application
Days	Variable	Default: VA: 100 NC: 120	Days, annual	Hawaii TRM 2019, p.172
Bin _{size,base}	Variable	See Table 11-6	-	Hawaii TRM 2019, p.172
Bin _{size,ee}	Variable	See Table 11-6	-	Hawaii TRM 2019, p.172
Hours _{daily,base}	Variable	See Table 11-6 based on Type _{base} and Bin _{size,base}	Hours, daily	Hawaii TRM 2019, p.172
Hours _{daily,ee}	Variable	See Table 11-6 based on Typeee and Binsize,ee	hours, daily	Hawaii TRM 2019, p.172
CF _{base,summer}	Variable	See Table 11-6 based on Type _{base} and Bin _{size,base}	-	Hawaii TRM 2019, p.172
CF ee,summer	Variable	See Table 11-6 based on Type $_{ee}$ and $Bin_{size,ee}$	-	Hawaii TRM 2019, p.172

Component	Туре	Value	Units	Source(s)
CF _{base} ,winter	Variable	If Days < 365: 0.00 If Days = 365: See Table 11-6 based on Type _{base} and Bin _{size,base}	-	Hawaii TRM 2019, p.172 ¹⁶⁵
CF _{ee,winter}	Variable	If Days < 365: 0.00 If Days = 365: See Table 11-6 based on Type _{ee} and Bin _{size,ee}	-	Hawaii TRM 2019, p.172 ¹⁶⁵

Table 11-6. Typical Energy Consumption of Pumps, Operating Hours and Coincidence Factor for VariousPump Size Strategies and Pump Type

Tupo	Metric	Bin, based on pump size (hp)					
Type _{pump}	weurc	> 0 and ≤ 1	> 1 and ≤ 2	> 2 and ≤ 3	> 3		
	kWh _{daily,base} (kWh)	20.3	29.3	43.7	51.8		
Single encod	Hours _{daily,base} (hr)	17.6	17.2	17.8	18.9		
Single-speed	CF _{base,summer}	0.73	0.72	0.74	0.70		
	CF _{base,winter}	0.73		0.74	0.79		
	kWh _{daily,ee} (kWh)	19.0	30.3	39.2	49.4		
Two opend	Hours _{daily,ee} (hr)				24.0		
Two-speed	CF _{ee,summer}						
	CF _{ee,winter}				1.00		
	kWh _{daily,ee} (kWh)	9.2	13.9	21.6	27.0		
Variable apoed	Hours _{daily,ee} (hr)				22.7		
Variable-speed	CFee,summer				0.95		
	CF _{ee,winter}				0.95		

11.6.1.4 Default Savings

If the proper values are not available, zero savings will be given for both gross annual electric energy savings and gross demand energy savings.

11.6.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 11-7.

¹⁶⁵ Source TRM does not have winter CF. If the pool is only used seasonally, it is assumed that it will not be used during the winter. Therefore, Winter CF is zero. However, the pool is used year-round (Days = 365), the summer CF to winter CF as an approximation.

Table 11-7. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program Name	Value	Units	Source(s)
VIII	Non-Residential Multifamily Program, DSM Phase VIII	10.00	years	Hawaii TRM 2019, p. 173

11.6.1.6 Source

The primary source for this deemed savings approach is the Hawaii TRM 2019, pp. 171-174.

11.6.1.7 Update Summary

Updates to this section are described in Table 11-8.

Table 11-8. Summary of Update(s)

Version	Update Type	Description
2021	New Measure	New section

Jun 15 2022

12 NON-RESIDENTIAL NEW CONSTRUCTION PROGRAM, DSM PHASE VIII

The Non-Residential New Construction Program provides incentives to non-residential customers to implement energy efficiency measures in their new construction project. Program engineers determine which energy efficiency upgrades are of interest to the owner and feasible within their budget. These measures—coupled with basic facility design data—are analyzed to determine the optimized building design. This in-depth analysis will be performed using building energy simulation models that will allow "bundles" of measures to be analyzed for energy savings while accounting for interactive effects between the measures within a given "bundle." The results are presented to the facility owner to facilitate their selection of the measures(s) to be installed. This program has been offered in Virginia and North Carolina beginning in March 2021.

To be eligible for a rebate, the new building must be eligible for a rate schedule that is not exempt by statute.

The measures offered through this program and the sections describing the measures are listed in Table 12-1. The energy savings methodology is provided in Section 12.5. The following sections include measure descriptions. Note that while some measures may be the same as those offered by other programs, the savings methodology will differ. That is because this program is designed to determine savings using building energy simulations. This approach accounts for measure interactivity across all measures to be implemented at a specific new building.

End Use	Measure	Section
Building Envelope	Optimal Choice of Vertical Fenestration	Section 12.1.1
	High Efficiency and Variable Speed Chillers (Air-Cooled)	Section 12.2.1
	High Efficiency DX Cooling Equipment	Section 12.2.2
Heating,	High Efficiency and Variable Speed Packaged DX Cooling Equipment	Section 12.2.3
Ventilation,	High Efficiency Packaged Air-Source Heat Pumps	Section 12.2.4
Air- conditioning	Demand Controlled Ventilation/CO2 Controls	Section 12.2.5
	VAV Dual-Max Controls	Section 12.2.6
	VAV Supply Air Temperature Reset	Section 12.2.7
	Chiller Controls	Section 12.2.8
Plug Load	Supervisory Plug Load Management Systems	Section 12.3.1
	High Performance Interior Lighting	Section 12.4.1
Lighting	LED Exterior Lighting	Section 12.4.2

12.1 Building Envelope

12.1.1 Optimal Choice of Vertical Fenestration

This measure upgrades the window assemblies relative to minimum building code requirements with assemblies having high insulative properties (low U-values), low Solar Heat Gain Coefficients (SHGC), and low visible sunlight transmittance (Tvis-glass).

12.2 Heating, Ventilation, Air Conditioning

12.2.1 High Efficiency and Variable Speed Chillers (Air-Cooled)

This measure upgrades a constant-speed, chilled-water system to one that includes variable-speed, air-cooled chillers and variable-speed chilled-water pumps. The baseline chiller performance and the VFD pump curves from ASHRAE 90.1-2013 are used.

12.2.2 High Efficiency DX Cooling Equipment

This measure upgrades from standard-efficiency DX cooling equipment to high-efficiency DX cooling equipment. The baseline equipment meets 90.1-2013 efficiency requirements.

12.2.3 High Efficiency and Variable Speed Packaged DX Cooling Equipment

This measure upgrades from a constant-speed rooftop unit (RTU) to a variable-speed RTU. This measure may utilize either a natural gas heating coil or a direct-expansion (DX) heating coil. The variable-speed RTU model stages the fan in response to the amount of heating/cooling required. The measure adjusts the fan flow according to the heating/cooling required at each stage.

12.2.4 High Efficiency Packaged Air-Source Heat Pumps

This measure upgrades from a standard efficiency air-source heat pump to a high efficiency air-source heat pump. The baseline equipment meets 90.1-2013 efficiency values.

12.2.5 Demand Controlled Ventilation/CO2 Controls

This measure varies the outside airflow based on the actual number of occupants in the space rather than the nominal number of occupants as required by building code. The baseline for this measure is a constant outside airflow based on the design conditions. This measure reduces the outside airflow and the amount of space conditioning needed for outside air.

12.2.6 VAV Dual-Max Controls (electric heat)

This measure modifies the control strategy for airflow of VAV boxes with electric reheat. In the efficient case, the minimum airflow is determined by the maximum of the lowest airflow setpoint allowed by the VAV box controls and the zone's minimum outdoor airflow rate. In the baseline case, the supply airflow rate operates at the maximum flow rate that meets the cooling load. The airflow is reset proportionally until the zone minimum when there is no cooling load. This minimum airflow setpoint is maintained throughout the heating periods and the deadband zone. This measure allows the minimum airflow to be lower during the deadband zone and resets proportional to the heating load. Energy is saved by reducing fan load, electric heating load, and electric reheat load.

12.2.7 VAV Supply Air Temperature Reset (electric heat)

This measure replaces a constant supply-air temperature setpoint with a temperature reset. A constant supply-air temperature provides more cooling than is required to meet cooling loads. By allowing the supply-air temperature setpoint to adjust to operating conditions, energy savings are achieved. There are energy savings by not cooling the supply air temperature more than is needed and minimizing reheating. Inputs to this control strategy can include the outside air temperature, the return air temperature, or the cooling demand across all zones.

12.2.8 Chiller Controls

This measure resets the chilled-water supply temperature or the condenser water temperature setpoint based on the chilled-water return temperature. The baseline maintains a constant condenser water temperature and chilled-water supply temperature setpoint. For condenser water reset, the condenser operates at a higher pressure than is needed when the building load is lower than the design conditions. By reducing the condenser-water temperature setpoint when feasible, the compressor lift, or the difference between condenser and evaporator saturation temperatures, energy consumption is reduced.

12.3 Plug Load

12.3.1 Supervisory Plug Load Management Systems

This measure reduces the Equipment Power Density (EPD) associated with select spaces. A supervisory plug load management system reduces plug-in and hardwired electrical loads in a building that are not associated with HVAC, lighting, or water heating. The system allows for review of plug load usage and identification of opportunities for reducing energy consumption and allows for scheduling of equipment. The baseline is no plug load management system present.

12.4 Lighting

12.4.1 High Performance Interior Lighting

This measure is for a reduction in lighting power density (LPD) relative to the code LPD for a given space type or building type. Lower LPD uses less energy while providing a comparable level of lighting. This measure is applicable only to interior lighting.

12.4.2 LED Exterior Lighting

This measure replaces baseline exterior lighting with LEDs. The efficient lighting provides similar lighting levels at a lower wattage than the baseline wattage, resulting in energy savings.

12.5 Building Simulation Description

Energy savings and demand reductions for this program are estimated using building energy simulations. The basic geometry and floor plan is created and imported into OpenStudio[®], a front-end software platform for building models to analyze using DOE's EnergyPlus[™] engine. OpenStudio is used to assign space types and apply thermal zones and develop the baseline building. Default construction, equipment, setpoints and building occupancy schedules are applied. The baseline building meets state and local building codes. The models are created to meet IECC 2015 and adjusted to meet local requirements. For other default inputs not determined by code, reasonable assumptions and standard practices are applied.

There are baseline and efficient building models for each measure case. Energy savings are calculated using these models and simulated using TMY3 weather data for selected weather stations in Virginia and North Carolina.

12.5.1 Model Review

To perform data validation and provide feedback to participating builders, DNV will request building models for a select sample of projects for review. The sample selection may consider the reported savings, building square footage, measures, and building type.

The models will be reviewed for relevant code compliance, default assumptions, equipment sizing, measure case assumptions, weather location, and savings results.

12.5.2 Impacts Estimation Approach

Per measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = kWh_{base} - kWh_{ee}$$

Per measure, gross coincident summer and winter peak demand reduction is calculated using the following equations:

 $\Delta kW_{summer} = kW_{base,summer} - kW_{ee,summer}$

 $\Delta k W_{winter} = k W_{base,winter} - k W_{ee,winter}$

Where:

∆kWh	= per measure gross annual electric energy savings
ΔkW_{summer}	= per measure gross coincident summer peak demand reduction
ΔkW_{winter}	= per measure gross coincident winter peak demand reduction
kWh _{base}	= annual energy consumption of the baseline model
kWh _{ee}	= annual energy consumption of the efficient model
kWbase,summer	= coincident summer peak demand of baseline model
kW _{ee,summer}	= coincident summer peak demand of efficient model
kW _{base,winter}	= coincident winter peak demand of baseline model
kW _{ee,winter}	= coincident winter peak demand of efficient model

12.5.2.1 Measure Sequence

All input variables used for calculating energy savings and demand reductions are generated by the building energy model runs. For each measure, there is a baseline model and an efficient model. For facilities with multiple measures, the measures are applied sequentially to account for measure interactivity. The sequence for applying measures is provided in Table 12-2. The first measure on the list that is implemented will have a baseline model and an efficient model. Each subsequent measure will use the preceding measure's efficient model as its baseline model. The sequence affects the way savings are attributed to each measure, but the total project impacts are not affected by the sequence.

Sequence	Measure			
1	Optimal Choice of Vertical Fenestration			
2	High Performance Interior Lighting			
3	Supervisory Plug Load Management Systems			
4	LED Exterior Lighting			
5	High Efficiency and Variable Speed Chillers (Air-Cooled)			
6	High Efficiency DX Cooling Equipment			
7	High Efficiency and Variable Speed Packaged DX Cooling Equipment			
8	High Efficiency Packaged Air-Source Heat Pumps			
9	Demand Controlled Ventilation/CO2 Controls			
10	VAV Supply Air Temperature Reset			
11	VAV Dual-Max Controls			
12	Chiller Controls			

Table 12-2. Non-Residential New Construction Measure Sequence for Modeling

12.5.2.2 Default Savings

There are no default savings as model savings are required for each measure.

12.5.2.3 Effective Useful Life

The effective useful life of this measure is provided inTable 12-3.

Table 12-3. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Measure	Value	Units	Source(s)
	Optimal Choice of Vertical Fenestration	25.00		Ohio TRM 2010, p. 142 ¹⁶⁶
	High Efficiency and Variable Speed Chillers (Air-Cooled)	23.00		Maryland/Mid-Atlantic TRM v10, p. 304
	High Efficiency DX Cooling Equipment	15.00		Maryland/Mid-Atlantic TRM v10, p. 291
	High Efficiency and Variable Speed Packaged DX Cooling Equipment	15.00		Maryland/Mid-Atlantic TRM v10, p. 291
	High Efficiency Packaged Air-Source Heat Pumps	15.00		Maryland/Mid-Atlantic TRM v10, p. 291
	Demand Controlled Ventilation/CO2 Controls	8.00	years	Illinois TRM commercial v.9 Volume 2, p. 258
VIII	VAV Dual-Max Controls	10.00		Massachusetts TRM 2019- 2021, p. 451 ¹⁶⁷
	VAV Supply Air Temperature Reset	10.00		Massachusetts TRM 2019- 2021, p. 451
	Chiller Controls	10.00		Massachusetts TRM 2019- 2021, p. 451
	Supervisory Plug Load Management Systems	10.00		Massachusetts TRM 2019- 2021, p. 451
	High Performance Interior Lighting	15.00		Maryland/Mid-Atlantic TRM v10, p. 219
	LED Exterior Lighting	15.00		Maryland/Mid-Atlantic TRM v10, p. 219

12.5.2.4 Source(s)

The primary source for this program is the building energy models.

12.5.2.5 Update Summary

Updates made to this section are described in Table 12-4.

Jun 15 2022

¹⁶⁶ This reference is for residential new construction. Commercial new construction building design measures like this are not included in most TRMs. Therefore, the residential new construction measure life is applied as an approximation.

¹⁶⁷ Used Energy Management System (EMS) measure life for most HVAC controls measures.

Table 12-4. Summary of Update(s)

Version	Update Type	Description
2021	New Measure	New section

13 SUB-APPENDICES

13.1 Sub-Appendix F2-I: Cooling and Heating Degree Days and Hours

This section appears in Appendix F1 as Sub-Appendix F1-III: Cooling and Heating Degree Days and Hours (a.k.a. Section 19.3).

Table 13-1. Base Temperatures by Sector and End Use

This table appears in Appendix F1 as Sub-Appendix F1-III: Cooling and Heating Degree Days and Hours (a.k.a. Section 19.3).

Table 13-2. Reference Cooling and Heating Degree Days

This table appears in Appendix F1 as Sub-Appendix F1-III: Cooling and Heating Degree Days and Hours (a.k.a. Section 19.3).

Table 13-3. Reference Cooling and Heating Degree Hours

This table appears in Appendix F1 as Sub-Appendix F1-III: Cooling and Heating Degree Days and Hours (a.k.a. Section 19.3).

13.2 Sub-Appendix F2-II: Non-Residential HVAC Equivalent Full Load Hours

This sub-appendix provides the default heating and cooling the equivalent full load hours (EFLH)s for non-residential HVAC equipment and VFDs. Table 13-4 and Table 13-5 provide the EFLHs for HVAC equipment by facility type and location. Table 13-6 provides annual run hours for VFDs by facility type and VFD application.

The EFLH are determined using the methodology used in the Maryland/Mid-Atlantic TRM v10. The methodology adapts EFLH from the Pennsylvania TRM 2016 and adjusted for locally design temperatures and degree days from 2013 ASHREA Handbook Fundamentals¹⁶⁸. DNV calculates EFLHs for various locations in Dominion Energy's service territory using the same adjustment method and TMY3 weather data. Baltimore is used as the reference location and EFLHs is scaled using local TMY3 weather data.

The scaling method is shown in the following example calculation, using Education – Elementary and Middle School for Richmond, VA:

Mid-Atlantic TRM Baltimore EFLH _{cool}	<i>= 295 hour/year</i>
Baltimore CDD	<i>= 1,222 hour/year</i>
Richmond CDD	= 1,448 hour/year
Richmond EFLH _{cool}	= Richmond CDD $\times \frac{Baltimore EFLH_{cool}}{Baltimore CDD}$
	= 1,448 hour/year $\times \frac{295 \text{ hour/year}}{1,222 \text{ hour/year}}$
	= 349 hour/year

 $^{^{168}}$ See pages 422 - 423, footnote 885 and 886 $\,$ in the Maryland/Mid-Atlantic TRM v. 10 $\,$

13.2.1 Annual Equivalent Full-Load Cooling Hours for Unitary Air Conditioners, Heat Pumps, Chiller, VRF, Room/Wall AC and Mini-split Systems

Table 13-4. Heat pump, Unitary AC, Chiller, VRF, Room/Wall AC, and Mini Split Equivalent Full-Load Cooling Hours for Non-Residential Buildings

Building Type	Maryland	North C	arolina				Virg	inia			
by Weather Station	Baltimore	Elizabeth City	Rocky Mount	Char- lottesville	Sterling	Farmville	Norfolk	Arlington	Richmond	Roanoke	Fredericks -burg
Education – Elementary and Middle School	295	422	327	260	262	307	389	363	349	265	327
Education – High School	340	486	377	300	302	354	448	419	403	306	377
Education – College and University ¹⁶⁹	750	1,072	832	662	666	780	988	923	888	675	831
Food Sales - Grocery	678	969	752	598	602	705	893	835	803	610	751
Food Sales – Convenience Store	923	1,320	1,023	815	820	960	1,216	1,136	1,093	831	1,023
Food Sales – Gas Station Convenience Store	923	1,320	1,023	815	820	960	1,216	1,136	1,093	831	1,023
Food Service - Full Service	768	1,098	852	678	682	799	1,011	946	910	691	851

¹⁶⁹ "Education – College and University" Baltimore, MD full load cooling hours is an average of the hours for "Education – Community College"(713 hours/year) and "Education – University" (787 hours/year) in the Maryland/Mid-Atlantic TRM v10, p.422

Building Type	Maryland	North C	arolina				Virg	inia			
by Weather Station	Baltimore	Elizabeth City	Rocky Mount	Char- lottesville	Sterling	Farmville	Norfolk	Arlington	Richmond	Roanoke	Fredericks -burg
Food Service - Fast Food	730	1,044	809	644	649	760	961	899	865	657	809
Health Care - Inpatient	1,223	1,748	1,356	1,079	1,086	1,273	1,611	1,506	1,449	1,100	1,355
Health Care - Outpatient	650	929	721	574	577	676	856	800	770	585	720
Lodging – (Hotel, Motel and Dormitory)	1,831	2,618	2,030	1,616	1,627	1,905	2,411	2,254	2,169	1,648	2,029
Mercantile (mall)	887	1,268	983	783	788	923	1,168	1,092	1,051	798	983
Mercantile (Retail, not mall)	911	1,302	1,010	804	809	948	1,200	1,122	1,079	820	1,009
Multifamily (Common Areas)	1,521	906	703	1,343	1,351	1,583	2,003	1,873	1,802	1,369	1,685
Office – Small (<40,000 sq ft)	634	1,048	813	560	563	660	835	781	751	570	702
Office – Large (≥40,000 sq ft)	733	350	272	647	651	763	965	902	868	660	812
Other ¹⁷⁰	245	1,351	1,048	216	218	255	323	302	290	220	271
Public Assembly	945	350	272	834	840	983	1,245	1,163	1,119	850	1,047
Public Order and Safety (Police and Fire Station)	245	350	272	216	218	255	323	302	290	220	271

¹⁷⁰ "Other" building type is mapped to the building type with the most conservative full load cooling hours in the Mid-Atlantic TRM 2018, p.528 "Public Order and Safety."

Building Type	Maryland	North C	arolina	Virginia								
by Weather Station	Baltimore	Elizabeth City	Rocky Mount	Char- lottesville	Sterling	Farmville	Norfolk	Arlington	Richmond	Roanoke	Fredericks -burg	
Religious Worship	245	1,320	1,023	216	218	255	323	302	290	220	271	
Service (Beauty, Auto Repair Workshop)	923	2,975	2,307	815	820	960	1,216	1,136	1,093	831	1,023	
Warehouse and Storage ¹⁷¹	2,081	2,175	1,686	1,837	1,849	2,165	2,741	2,562	2,465	1,873	2,306	

13.2.2 Annual Equivalent Full-Load Heating Hours for Heat Pumps, VRFs, and Mini-split Systems

Table 13-5. Heat Pump	. VRF. and Mini-split	Equivalent Full Load Heati	ng Hours for Non-Residential Build	inas
Table is sineact any	, . , ana mini opin		ng nouro ioi non nooraonaar Bana	

Building Type	Maryland	North C	arolina	Virginia							
by Weather Station	Baltimore	Elizabeth City	Rocky Mount	Char- lottesville	Sterling	Farmville	Norfolk	Arlington	Richmond	Roanoke	Fredericks -burg
Education – Elementary and Middle School	668	393	428	535	696	591	492	618	558	613	662
Education – High School	719	423	460	576	749	636	530	665	600	660	713
Education – College and University ¹⁷²	622	366	398	498	648	550	458	576	519	571	617
Food Sales - Grocery	980	576	627	785	1,021	867	722	907	818	899	972

^{171 &}quot;Warehouse and Storage" Baltimore, MD full load heating hours is an average of the hours for "Storage - Conditioned" (854 hours/year) and "Warehouse - Refrigerated" (342 hours/year) in the Maryland/Mid-Atlantic TRM v10, p.423

¹⁷² "Education – College" (713 hours/year) and "Education – University" (530 hours/year) in the Maryland/Mid-Atlantic TRM v10, p.423

DNV

Building Type	Maryland	North C	arolina				Virg	inia			
by Weather Station	Baltimore	Elizabeth City	Rocky Mount	Char- lottesville	Sterling	Farmville	Norfolk	Arlington	Richmond	Roanoke	Fredericks -burg
Food Sales – Convenience Store	623	366	399	499	649	551	459	577	520	572	618
Food Sales – Gas Station Convenience Store	623	366	399	499	649	551	459	577	520	572	618
Food Service - Full Service	1,131	665	724	906	1,179	1,001	833	1,047	944	1,038	1,122
Food Service - Fast Food	1,226	721	785	982	1,278	1,085	903	1,135	1,023	1,125	1,216
Health Care- inpatient	214	126	137	171	223	189	158	198	179	196	212
Health Care- outpatient	932	548	596	747	971	825	687	863	778	855	924
Lodging – (Hotel, Motel and Dormitory)	2,242	1,319	1,435	1,797	2,337	1,984	1,652	2,075	1,871	2,058	2,223
Mercantile (mall)	591	348	378	474	616	523	436	547	493	542	586
Mercantile (Retail, not mall)	739	435	473	592	770	654	545	684	617	678	733
Multifamily (Common Areas)	256	259	282	205	267	227	189	237	214	235	254
Office – Small (<40,000 sq ft)	440	130	141	353	459	389	324	407	367	404	436
Office – Large (≥40,000 sq ft)	221	86	93	177	230	196	163	205	184	203	219
Other	146	655	713	117	152	129	108	135	122	134	145

Building Type	Maryland	North C	arolina		Virginia						
by Weather Station	Baltimore	Elizabeth City	Rocky Mount	Char- lottesville	Sterling	Farmville	Norfolk	Arlington	Richmond	Roanoke	Fredericks -burg
Public Assembly ¹⁷³	1,114	86	93	893	1,161	986	821	1,031	930	1,022	1,105
Public Order and Safety (Police and Fire Station) ¹⁷⁴	146	86	93	117	152	129	108	135	122	134	145
Religious Worship	146	366	399	117	152	129	108	135	122	134	145
Service (Beauty, Auto Repair Workshop)	623	352	383	499	649	551	459	577	520	572	618
Warehouse and Storage	598	151	164	479	623	529	441	553	499	549	593

¹⁷⁴ "Religious Worship" building type is mapped to the building type with the most conservative full load heating hours in the Maryland/Mid-Atlantic TRM v10, p.423, p.529 "Manufacturing – Bio Tech/High Tech."

¹⁷³ "Public Order and Safety (Police and Fire Station)" building type is mapped to the building type with the most conservative full load heating hours in the Maryland/Mid-Atlantic TRM v10, p.423, "Manufacturing – Bio Tech/High Tech."

13.2.3 Annual Hours of Use for Variable Frequency Drives

Table 13-6. Variable Frequency Drive Annual Hours of Use by Facility Type¹⁷⁵

Building Type	Fan Motor Hours	Chilled Water Pumps ¹⁷⁶	Heating Pumps
Education – Elementary and Middle School	2,187	1,205	3,229
Education – High School	2,187	1,205	3,229
Education – College and University	2,187	1,205	4,038
Food Sales - Grocery	4,055	1,877	5,376
Food Sales – Convenience Store	6,376	2,713	5,376
Food Sales – Gas Station Convenience Store	6,376	2,713	5,376
Food Service - Full Service	4,182	1,923	5,376
Food Service - Fast Food	6,456	2,742	5,376
Health Care - Inpatient	7,666	3,177	8,760
Health Care - Outpatient	3,748	1,767	5,376
Lodging – (Hotel, Motel, and Dormitory)	3,064	1,521	5,492
Mercantile (Mall)	4,833	2,157	5,376
Mercantile (Retail, not Mall)	4,057	1,878	2,344
Office – Small (<40,000 sq ft)	3,748	1,767	3,038
Office – Large (≥ 40,000 sq ft)	3,748	1,767	3,038
Other	2,857	1,446	5,376
Public Assembly	1,955	1,121	5,376
Public Order and Safety (Police and Fire Station)	7,665	3,177	5,376
Religious Worship	1,955	1,121	5,376
Service (Beauty, Auto Repair Workshop)	3,750	1,768	5,376
Warehouse and Storage	2,602	1,354	5,376

¹⁷⁵ Maryland/Mid-Atlantic TRM v10, pp. 299 - 301. The facility hours have been mapped from a facility type list in the United Illuminating Company and Connecticut Light & Power Company. 2012. Connecticut Program Savings Document – 8th Edition for 2013 Program Year. Orange, CT.
¹⁷⁶ For condenser water pumps, use the same operating hours as provided for chilled water pumps.

13.2.4 Update Summary

Updates made to this section are described in Table 13-7.

Table 13-7. Summary of Update(s)

Version	Update Type	Description
2021	New weather stations	To the single weather station in Richmond, VA, seven weather stations were added for Virginia: Charlottesville, Dulles International Airport, Farmville, Norfolk, Reagan International Airport, Roanoke, and Shannon Airport. Also, divided the previously shared column—that contained the average of the two NC weather stations—into two separate columns (Elizabeth City, NC and Rocky Mount-Wilson, NC).
	Table	Updated building type for the Unitary Air Conditioners, Heat Pumps, Chiller, VRF, and Mini-split Systems
	Table	Removed the separate table for Chiller system cooling hours
2020	None	No change
v10	New weather stations	Replaced the Charlotte, NC weather station with the average results from two weather stations located within the Company's service territory: Elizabeth City, NC and Rocky Mount-Wilson, NC.
	Updated EFLHs	By-building hours of use values were updated and—in some cases, corrected—based upon revisions to HDD/CDD adjustments due to change of weather stations in NC.
	New Table	A table was added for the HOU values for VFDs.

13.3 Sub-Appendix F2-III: Non-Residential HVAC Equipment Efficiency Ratings

This sub-appendix contains the minimum efficiency metrics that are required by building codes for four categories of equipment:

- 1. Unitary air conditioners and condensing units, in Table 13-8
- 2. Unitary and applied heat pumps, in Table 13-9
- 3. Variable Refrigerant Flow (VRF) air conditioners and heat pumps, in Table 13-10
- 4. Water chilling packages (a.k.a. chillers), in Table 13-11

13.3.1 Cooling Efficiencies of Unitary Air Conditioners and Condensing Units

Equipment Type	Size Category (Btu/h)	Heating System Type	Subcategory	Minimum Annual Efficiency	Minimum Demand Efficiency
Air conditioners, air cooled	< 65,000 Btu/h	All	Split system/ Single package	13.0 SEER	11.1 EER ¹⁷⁸
Through the wall, packaged terminal air conditioners (air cooled)	≤ 30,000 Btu/h	All	Split system/ Single package	12.0 SEER	10.5 EER ¹⁷⁸
Small-duct, high- velocity (air cooled)	< 65,000 Btu/h	All	Split system/ Single package	11.0 SEER	9.9 EER ¹⁷⁸

Table 13-8. Unitary Air Conditioners and Condensing Units - Minimum Efficiency¹⁷⁷

Jun 15 2022

¹⁷⁷ ASHRAE 90.1 2013, Table 6.8.1-1 - Electrically Operated Unitary Air Conditioners and Condensing Units - Minimum Efficiency Requirement.

¹⁷⁸ This value was not provided in ASHRAE 90.1 2013, Table 6.8.1-1, so Equation 3 in Sub-Appendix F2-VIII: General Equations was used to convert between SEER and EER.

Equipment Type	Size Category (Btu/h)	Heating System Type	Subcategory	Minimum Annual Efficiency	Minimum Demand Efficiency
	≥ 65,000 Btu/h and	Electric resistance (or none)	Split system/ Single package	12.9 IEER	11.2 EER
	< 135,000 Btu/h	All other	Split system/ Single package	12.7 IEER	11.0 EER
	≥ 135,000 Btu/h and	Electric resistance (or none)	Split system/ Single package	12.4 IEER	11.0 EER
Air conditioners,	< 240,000 Btu/h	All other	Split system/ Single package	12.2 IEER	10.8 EER
air cooled	≥ 240,000 Btu/h and	Electric resistance (or none)	Split system/ Single package	11.6 IEER	10.0 EER
	< 760,000 Btu/h	All other	Split system/ Single package	11.4 IEER	9.8 EER
	≥ 760,000 Btu/h	Electric resistance (or none)	Split system/ Single package	11.2 IEER	9.7 EER
		All other	Split system/ Single package	11.0 IEER	9.5 EER
	< 65,000 Btu/h	All	Split system/ Single package	12.3 IEER	12.1 EER
	≥ 65,000 Btu/h and	Electric resistance (or none)	Split system/ Single package	13.9 IEER	12.1 EER
	< 135,000 Btu/h	All other	Split system/ Single package	13.7 IEER	11.9 EER
	≥ 135,000 Btu/h and	Electric resistance (or none)	Split system/ Single package	13.9 IEER	12.5 EER
Air conditioners, water cooled	< 240,000 Btu/h	All other	Split system/ Single package	13.7 IEER	12.3 EER
	≥ 240,000 Btu/h and	Electric resistance (or none)	Split system/ Single package	13.6 IEER	12.4 EER
	< 760,000 Btu/h	All other	Split system/ Single package	13.4 IEER	12.2 EER
	≥ 760,000 Btu/h	Electric resistance (or none)	Split system/ Single package	13.5 IEER	12.2 EER
		All other	Split system/ Single package	13.3 IEER	12.0 EER

Jun 15 2022

Equipment Type	Size Category (Btu/h)	Heating System Type	Subcategory	Minimum Annual Efficiency	Minimum Demand Efficiency
	< 65,000 Btu/h	All	Split system/ Single package	12.3 IEER	12.1 EER
	≥ 65,000 Btu/h	All other	Split system/ Single package	12.3 IEER	12.1 EER
	and < 135,000 Btu/h	Electric resistance (or none)	Split system/ Single package	12.1 IEER	11.9 EER
	≥ 135,000 Btu/h	All other	Split system/ Single package	12.2 IEER	12.0 EER
Air conditioners, evaporatively cooled ¹⁷⁹	and < 240,000 Btu/h	Electric resistance (or none)	Split system/ Single package	12.0 IEER	11.8 EER
	≥ 240,000 Btu/h and < 760,000 Btu/h	All other	Split system/ Single package	12.1 IEER	11.9 EER
		Electric resistance (or none)	Split system/ Single package	11.9 IEER	11.7 EER
	≥ 760,000 Btu/h	All other	Split system/ Single package	11.9 IEER	11.7 EER
		Electric resistance (or none)	Split system/ Single package	11.7 IEER	11.5 EER
Condensing units, air cooled ¹⁷⁹	≥ 135,000 Btu/h	-	-	11.8 IEER	10.5 EER
Condensing units, water cooled ¹⁷⁹	≥ 135,000 Btu/h	-	-	14.0 IEER	13.5 EER
Condensing units, evaporatively cooled ¹⁷⁹	≥ 135,000 Btu/h	-	-	14.0 IEER	13.5 EER

13.3.2 Efficiencies of Unitary and Applied Heat Pumps

Equipment Type	Cooling	Heating	Subcategory or	Minimum	Minimum
	Capacity/	System	Rating	Annual	Demand
	Size Category	Type	Conditions	Efficiency	Efficiency
Air Cooled (cooling mode)	< 65,000 Btu/h	All	Split System/ Single package	14.0 SEER	11.8 EER ¹⁸¹

¹⁸⁰ ASHRAE 90.1 2013, Table 6.8.1-2 - Electrically Operated Unitary and Applied Heat Pumps - Minimum Efficiency Requirement.

¹⁷⁹ These systems types were added in ASHRAE 90.1-2013. Therefore, these systems are not retroactively used for the Non-Residential Heating and Cooling Efficiency Program offered under the DSM Phase III program, due to data requirement constraints. However, these systems will be included in the DNV analysis for the Non-Residential Heating and Cooling Efficiency Program offered under the DSM Phase VII program.

¹⁸¹ This value was not provided in ASHRAE 90.1 2013, Table 6.8.1-2, so Equation 3 in Sub-Appendix F2-VIII: General Equations was used to convert between SEER and EER.

Equipment Type	Cooling Capacity/ Size Category	Heating System Type	Subcategory or Rating Conditions	Minimum Annual Efficiency	Minimum Demand Efficiency
Through-the-wall, packaged terminal heat pumps (air- cooled cooling mode)	≤ 30,000 Btu/h	All	Split System/ Single package	12.0 SEER	10.5 EER ¹⁸¹
Single-duct	< 65,000 Btu/h	All	Split System/ Single package	11.0 SEER	9.9 EER ¹⁸¹
	≥ 65,000 Btu/h and	Electric resistance (or none)	Split system/ Single package	12.2 IEER	11.0 EER
	< 135,000 Btu/h	All other	Split system/ Single package	12.0 IEER	10.8 EER
Air Cooled (cooling	≥ 135,000 Btu/h and	Electric resistance (or none)	Split system/ Single package	11.6 IEER	10.6 EER
mode)	< 240,000 Btu/h	All other	Split system/ Single package	11.4 IEER	10.4 EER
	≥ 240,000 Btu/h	Electric resistance (or none)	Split system/ Single package	10.6 IEER	9.5 EER
		All other	Split system/ Single package	10.4 IEER	9.3 EER
	< 17,000 Btu/h	All	86°F	Retrofits: 14.0 SEER ¹⁸²	Retrofits: 11.7 EER ¹⁸¹
		All	entering water	RCx: ¹⁸³ 13.1 EER _{part-load}	RCx: 11.2 EER
Water source ¹⁸²	≥ 17,000 Btu/h	A II	86°F	Retrofits: 14.0 SEER ¹⁸²	Retrofits: 11.7 EER ¹⁸¹
(Cooling mode)	and < 65,000 Btu/h	All	entering water	RCx: 14.5 EER _{part-load}	RCx: 12.0 EER
	≥ 65,000 Btu/h and	All	86°F	Retrofits: 12.2 IEER ¹⁸²	Retrofits: 10.9 EER ¹⁸⁴
	< 135,000 Btu/h	All	entering water	RCx: 13.4 EER _{part-load}	RCx: 12.0 EER
	< 65 000 Pt+//	A 11	77°F	Retrofits: 14.0 SEER ¹⁸²	Retrofits: 11.7 EER ¹⁸¹
Ground source ¹⁸² (cooling mode)	< 65,000 Btu/h	All	entering water	RCx: 17.4 EER _{part-load}	RCx: 13.4 EER
	≥ 65,000 Btu/h	A.!.	77°F	Retrofits: 12.2 IEER ¹⁸²	Retrofits: 10.9 EER ¹⁸⁴
	and < 135,000 Btu/h	All	entering water	RCx: 14.9 EER _{part-load}	RCx: 13.4 EER

¹⁸² Although ASHRAE values reflect the Building Code minimum, savings are calculated using the efficiencies shown. This is due to the Mid-Atlantic TRM 2019 assumption that the baseline technology—for residential ground source heat pump applications—is an air-cooled heat pump. (There is no corresponding commercial measure in the Mid-Atlantic TRM 2019.)

¹⁸³ Two types of measures are categorized as retro-commissioning (RCx) ones: Duct Testing & Sealing and AC/HP/Chiller Tune-ups.

¹⁸⁴ This value was not provided in ASHRAE 90.1 2013, Table 6.8.1-2, so Equation 4 in Sub-Appendix F2-VIII: General Equations was used to convert between IEER and EER.

Equipment Type	Cooling Capacity/ Size Category	Heating System Type	Subcategory or Rating Conditions	Minimum Annual Efficiency	Minimum Demand Efficiency
Air cooled (heating mode)	< 65,000 Btu/h	-	Split system/ Single system	7.7 HSPF	N/A
Through-the-wall, packaged terminal heat pump (air- cooled heating mode)	≤ 30,000 Btu/h	-	Split system/ Single system	7.4 HSPF	N/A
Air cooled (heating	≥ 65,000 Btu/h and < 135,000 Btu/h	-	47°F DBT/ 43°F WBT outdoor air	3.3 COP	N/A
mode)	≥ 135,000 Btu/h (cooling capacity)	-	47°F DBT/ 43°F WBT outdoor air	3.2 COP	N/A
Water source (heating mode)	< 135,000 Btu/h (cooling capacity)	-	68°F entering water	4.3 COP	N/A
Ground source (heating mode)	All Sizes ¹⁸⁵ (cooling capacity)	-	32°F entering water	3.2 COP	N/A

Jun 15 2022

¹⁸⁵ ASHRAE 90.1-2013 values only apply to equipment <135 kBtu/h. However, this value is used across all sizes as there is limited guidance for systems 135 kBtu/h and larger.</p>

13.3.3 Cooling Efficiencies of Variable Refrigerant Flow Air Conditioners and Heat Pumps

Table 13-10. Variable Refrigerant Flow Air Conditioners and Heat Pumps - Minimum Efficiency¹⁸⁶

Equipment Type	Size Category	Heating Section Type	Subcategory or Rating Conditions	Minimum Annual Cooling Efficiency	Minimum Peak Cooling Efficiency	Minimum Heating Efficiency
	< 65,000 Btu/h	All	VRF Multi-Split System	13.0 SEER	11.1 EER ¹⁸⁷	N/A
VRF Air Conditioners, Air Cooled	≥ 65,000 Btu/h and < 135,000 Btu/h	All ¹⁸⁸	VRF Multi-Split system	13.1 IEER	11.2 EER ¹⁸⁷	N/A
	≥ 135,000 Btu/h and < 240,000 Btu/h	All ¹⁸⁸	VRF Multi-Split system	12.9 IEER	11.0 EER ¹⁸⁷	N/A
	≥ 240,000 Btu/h	All ¹⁸⁸	VRF Multi-Split system	11.6 IEER	10.0 EER ¹⁸⁷	N/A
	< 65,000 Btu/h	All	VRF Multi-Split system	13.0 SEER	11.1 EER ¹⁸⁷	7.7 HSPF
VRF Heat Pumps, Air Cooled	≥ 65,000 Btu/h and < 135,000 Btu/h	All ¹⁸⁸	VRF Multi-Split system	12.9 IEER	11.0 EER ¹⁸⁷	3.3 COP
	≥ 135,000 Btu/h and < 240,000 Btu/h	All ¹⁸⁸	VRF Multi-Split system	12.3 IEER	10.6 EER ¹⁸⁷	3.2 COP
	≥ 240,000 Btu/h	All ¹⁸⁸	VRF Multi-Split system	11.0 IEER	9.5 EER ¹⁸⁷	3.2 COP

¹⁸⁶ ASHRAE 90.1 2013, Tables 6.8.1-9 - Electrically Operated Variable Refrigerant Flow Air Conditioners- Minimum Efficiency Requirement and 6.8.1J - Electrically Operated Variable Refrigerant Flow Heat Pumps - Minimum Efficiency Requirement.

¹⁸⁷ This value was not provided in ASHRAE 90.1 2013, Table 6.8.1-9, so Equation 3 in Sub-Appendix F2-VIII: General Equations was used to convert between SEER and EER.

¹⁸⁸ ASHRAE 90.1 2013, only provides Electric resistance or none for Heating Section Type. This is used for all Heating Section Types to allow for other heating system types.

13.3.4 Cooling Efficiencies of Water Chilling Packages

Table 13-11. Water Chilling Packages–Minimum Efficiency¹⁸⁹

			Path A		Path B	
Equipment Type	Size Category	Units	Full Load	IPLV	Full Load	IPLV
Air Cooled Chillers	< 150 tons	EER	≥ 10.100	≥ 13.700	≥ 9.700	≥ 15.800
All Cooled Chillers	≥ 150 tons	EER	≥ 10.100	≥ 14.000	≥ 9.700	≥ 16.100
	< 75 tons	kW/ton	≤ 0.750	≤ 0.600	≤ 0.780	≤ 0.500
Water-cooled,	≥ 75 tons and < 150 tons	kW/ton	≤ 0.720	≤ 0.560	≤ 0.750	≤ 0.490
electrically operated, positive	≥ 150 tons and < 300 tons	kW/ton	≤ 0.660	≤ 0.540	≤ 0.680	≤ 0.440
displacement	≥ 300 tons and < 600 tons	kW/ton	≤ 0.610	≤ 0.520	≤ 0.625	≤ 0.410
	≥ 600 tons	kW/ton	≤ 0.560	≤ 0.500	≤ 0.585	≤ 0.380
	<150 tons	kW/ton	≥ 0.610	≤ 0.550	≤ 0.695	≤ 0.440
	≥ 150 tons and < 300 tons	kW/ton	≤ 0.610	≤ 0.550	≤ 0.635	≤ 0.440
Water-cooled, electrically operated, centrifugal	≥ 300 tons and < 400 tons	kW/ton	≤ 0.560	≤ 0.520	≤ 0.595	≤ 0.390
centinugui	≥ 400 tons and < 600 tons	kW/ton	≤ 0.560	≤ 0.500	≤ 0.585	≤ 0.380
	≥ 600 tons	kW/ton	≤ 0.560	≤ 0.500	≤ 0.585	≤ 0.380
	< 75 tons	kW/ton	≤ 0.750	≤ 0.600	≤ 0.780	≤ 0.500
	≥ 75 tons and < 150 tons	kW/ton	≤ 0.720	≤ 0.560	≤ 0.750	≤ 0.490
Water-cooled, unknown	≥ 150 tons and < 300 tons	kW/ton	≤ 0.660	≤ 0.540	≤ 0.680	≤ 0.440
	≥ 300 tons and < 600 tons	kW/ton	≤ 0.610	≤ 0.520	≤ 0.625	≤ 0.410
	≥ 600 tons	kW/ton	≤ 0.560	≤ 0.500	≤ 0.585	≤ 0.380

Jun 15 2022

¹⁸⁹ ASHRAE 90.1-2013, Table 6.8.1-3 - Water Chilling Packages - Efficiency Requirements. Consistent with International Energy Conservation Code 2015, Table C403.2.3(7) Water Chilling Packages, Efficiency Requirements, used in the 2019 Mid-Atlantic TRM. Compliance with this standard can be obtained by meeting the minimum requirements of Path A or Path B. However, both the full load and IPLV must be met to fulfil the requirements of Path A or Path B.

13.3.5 Heating Efficiencies of Systems with Central Chilled Water Plants

 Table 13-12. Electric Heating Efficiency Associated with Central Chilled Water Cooling Systems¹⁹⁰

Equipment Type	Size Category	HSPF (Btu/Wh)	СОР
Air- or Water-Cooled Chillers with unknown electric heating	Any	3.4	1.0

13.3.6 Update Summary

Updates made to this section are described in Table 13-13

Version	Update Type	Description
2021	Table	Added table for minimum COP for electric heating associated with central chilled water cooling systems.
2020	Standards Application	Revised the VRF heating section type categories to accommodate more than just the electric resistance
v10	Standards Update	Both VA and NC building codes were updated from ASHRAE 2010 to ASHRAE 2013 in 2019. This resulted in widespread increases to the minimum efficiency requirements of many equipment types.

Table 13-13. Summary of Update(s)

¹⁹⁰ For some measures applications indicate electric heating associated with chilled water cooling systems. For these systems we assume either central electric boilers or other electric resistance type heating with an efficiency.

13.5 Sub-Appendix F2-IV: Non-Residential Lighting Factors: Annual Equivalent Hours, Coincidence Factors and Waste Heat Factors

For the purposes of this Technical Reference Manual, Table 13-15 provides the annual lighting (interior CFL and non-CFL) hours of use, summer seasonal peak coincidence factors, and waste heat factors by building types for interior lighting fixtures that are designated for the Dominion territory. All of these are gathered from the Mid-Atlantic TRM, which pulls from a combinations of the Connecticut Program Savings Document (PSD) and the EmPOWER Maryland 2014 Evaluation Report. Table 13-14 provides the same variables for exterior lights and LED exit signs.

Since the building types in the Mid-Atlantic TRM do not map directly to those used in this manual, a separate mapping was conducted to arrive at the values. Under each building type in Table 13-15 are listings of the Mid-Atlantic TRM building types that were mapped to this document.

For all non-residential lighting measures, DNV assigns these variables based on the measure characteristics in this descending order:

- 1. Measure location (interior or exterior)
- 2. Fixture name
- 3. Building type

For example, when calculating savings for a specific non-residential lighting type (fixtures), variables (hours of use, coincidence factor, waste heat factors) are assigned based on if the fixture indicates it is for "exterior" use. All fixtures that contain the word "exterior" in the fixture name, from the tracking data provided to DNV, should assign parameters based on the lighting type in Table 13-14.

All fixtures that contain the phrase "24/7" in the fixture name, from the tracking data provided to DNV, shall be assigned variables appropriate for "LED Exit Sign". All fixtures that do not specify "exterior" in the fixture name are assumed to be for interior use and should be assigned variables based on the building type as shown in Table 13-15.

Summary of terms used in this section:

- CF_{PJM} PJM summer peak coincidence factor is from June to August, weekdays between 2 p.m. and 6 p.m. EDT.
- CF_{SSP} Summer system peak coincidence factor refers to the hour ending 5 p.m. EDT on the hottest summer weekday.
- Interior CFL lighting refers to general-purpose CFL screw-based bulbs
- Interior Non-CFL lighting type includes:
 - o T5 Lighting
 - o Pulse-Start Metal Halide fixture interior
 - o Solid State Lighting (LED) Recessed Downlight Luminaire
 - o Delamping

Jun 15 2022

• Occupancy Sensor - wall box

Table 13-14. Non-Residential Lighting Parameters by Exterior Lighting Type

Lighting Type	Annual Exterior Lighting Hours	CF _{summer}	CF _{winter} ¹⁹¹	WHFe ¹⁹²	WHF d,summer	WHF _{d,winter}	Source
Pulse Start Metal Halide - exterior	3,604 ¹⁹³	0.11 ¹⁹⁴	0.50	1.00	1.00	1.00	Maryland/Mid- Atlantic TRM v10, p. 242
High Pressure Sodium	3,604 ¹⁹⁵	0.11 ¹⁹⁶	0.50	1.00	1.00	1.00	Maryland/Mid- Atlantic TRM v10, p. 242
LED Exit Sign and "24/7" lights ¹⁹⁷	8,760	1.00	1.00	1.00	1.00	1.00	Maryland/Mid- Atlantic TRM v10, p. 215; DNV judgement
LED Parking Garage	Canopy: 3,338 Parking garage: 8,678	Canopy: 0.00 Parking garage: 0.98	Canopy: 0.50 Parking garage: 0.98	1.00	1.00	1.00	Maryland/Mid- Atlantic TRM v10, p. 254
Outdoor LED and Roadway Lighting	3,604	0.11 ¹⁹⁸	0.50	1.00	1.00	1.00	Maryland/Mid- Atlantic TRM v10, p. 242

The hours and coincident factors (CF) shown in Table 13-15 apply only to the Non-Residential Lighting Systems and Controls Programs (DSM Phases III and VII) and Non-Residential Cooling and Heating Programs (DSM Phases III and VII).

¹⁹¹ The source TRM does not provide winter CF. Therefore the winter CF is estimated based on sunrise and peak period. The winter peak period occurs for the hour ending at 8:00 A.M on non-holiday Mondays in January. The latest sunrise in the period is 7:17 A.M. Given the ambient light levels during the peak period, The winter CF is estimated to be 0.50. This estimate will be revised when better information becomes available.

 ¹⁹² "If cooling and heating equipment types are unknown or the space is unconditioned, assume WHFd = WHFe = 1.0." Maryland/Mid-Atlantic TRM 2020, p. 215.
 ¹⁹³ Navigant Commercial and Industrial Long-Term Metering Study

¹⁹⁴ Ibid.

¹⁹⁵ Ibid.

¹⁹⁶ Ibid.

¹⁹⁷ DNV judgement that if non-residential lighting measure name contains "24/7" in the tracking data provided to DNV, treat it the same as "LED Exit Sign" when calculating savings.

¹⁹⁸ Navigant Commercial and Industrial Long-Term Metering Study

Table 13-15. Non-Residential Interior Lighting Parameters by Facility Type

Building Types	Interior Lighting Annual Hours ¹⁹⁹	CF _{summer} ²⁰⁰	CF _{winter} ²⁰¹	WHF _{d,summer} 202	WHFd,winter ²⁰³	WHF _e ²⁰⁴
Education – College and University	2,233	0.360	0.330	1.44	0.710	0.960
Education – High School	2,233	0.360	0.330	1.44	0.710	0.960
Education – Elementary and Middle School	2,233	0.360	0.330	1.44	0.710	0.960
Food Sales – Convenience Store	7,272	0.970	0.930	1.35	0.740	0.930
Food Sales – Gas Station Convenience Store	7,272	0.970	0.930	1.35	0.740	0.930
Food Sales – Grocery	7,272	0.970	0.930	1.35	0.740	0.930
Food Service - Fast Food	4,696	0.830	0.930	1.27	0.740	0.950
Food Service - Full Service	4,696	0.830	0.930	1.27	0.740	0.950
Health Care – inpatient	3,817	0.680	0.510	1.35	0.740	0.930
Health Care – outpatient	3,817	0.680	0.510	1.35	0.740	0.930
Lodging – (Hotel, Motel and Dormitory)	4,058	0.610	0.460	1.35	0.740	0.930
Mercantile (Retail, Not Mall)	4,696	0.830	0.560	1.27	0.740	0.950
Mercantile (Mall)	4,696	0.830	0.560	1.27	0.740	0.950
Non-Residential Multifamily ²⁰⁵	5,950	0.058	0.124	0.96	0.815	0.959
Office – Small (<40,000 sq ft)	3,044	0.690	0.490	1.36	0.750	0.940
Office – Large (>= 40,000 sq ft)	3,044	0.690	0.490	1.36	0.750	0.940
Other (default)	4,058	0.610	0.460	1.35	0.740	0.930
Public Assembly	4,058	0.610	0.460	1.35	0.740	0.930
Public Order and Safety (Police and Fire Station)	4,058	0.610	0.460	1.35	0.740	0.930

¹⁹⁹ Maryland/Mid-Atlantic TRM v10, p. 418 Table D-3: C&I Interior Midstream Lighting Parameters by Building Type. Midstream lighting tables are referenced because downstream table parameters require knowledge of the location of the product installation—information that is unavailable for midstream programs.

²⁰¹ Ibid.

²⁰² Maryland/Mid-Atlantic TRM v10, p. 419-421. Selected waste heat factors from "Washington, D.C. All utilities", AC (utility) WHF_d and heat pump WHF_e. Waste heat factors were provided for only five building types (1. Office, 2. Retail, 3. School, 4. Warehouse, 5. Other), therefore they were mapped to the full list of building types as appropriate. Original source of waste heat factor values are from the "EmPOWER Maryland DRAFT Final Impact Evaluation Report Evaluation Year 4 (June 1, 2012 – May 31, 2013) Commercial & Industrial Prescriptive & Small Business Programs, Navigant, March 31, 2014. Values for Washington D.C. and Delaware assume values from Maryland, Pepco and Maryland, DPL, respectively."

²⁰³ Maryland/Mid-Atlantic TRM v10, p. 419-421. Selected waste heat factors from "Washington, D.C. All utilities", Waste heat factors were provided for only five building types (1. Office, 2. Retail, 3. School, 4. Warehouse, 5. Other), therefore they were mapped to the full list of building types as appropriate. Original source of waste heat factor values are from the "EmPOWER Maryland DRAFT Final Impact Evaluation Report Evaluation Year 4 (June 1, 2012 – May 31, 2013) Commercial & Industrial Prescriptive & Small Business Programs, Navigant, March 31, 2014. Values for Washington D.C. and Delaware assume values from Maryland, Pepco and Maryland, DPL, respectively." Winter peak WHF_d is not provided, therefore, the WHFe is used for no AC with electric resistance heating. This will yield the most conservative winter peak demand reduction estimate.

²⁰⁴ Ibid.

²⁰⁵ Maryland/Mid-Atlantic TRM v10, p.44, common areas

²⁰⁰ Ibid.

Building Types	Interior Lighting Annual Hours ¹⁹⁹	CF _{summer} ²⁰⁰	CF _{winter} ²⁰¹	WHF _{d,summer} 202	WHF _{d,winter} ²⁰³	WHFe ²⁰⁴
Religious Worship	4,058	0.610	0.460	1.350	0.740	0.930
Service (Beauty, Auto Repair Workshop)	4,696	0.830	0.460	1.270	0.560	0.950
Warehouse and Storage	4,361	0.800	0.460	1.230	0.500	0.890

13.5.1 Update Summary

Updates made to this section are described in Table 13-16

Table 13-16. Summary of Update(s)

Version	Update Type	Description
	Inputs	Added winter CF _{winter} and WHF _{d,winter}
2021		Updated page numbers / version of the Maryland/Mid-Atlantic TRM v10
S	Source	 Updated Exterior Lighting Annual Hours and CF values Added a new building type in the interior lighting parameter table
2020	None	No change
v10	Source	Updated page numbers / version of the Mid-Atlantic TRM v.9

13.6 Sub-Appendix F2-V: Non-Residential Commercial Kitchen Inputs

This sub-appendix contains the commercial kitchen inputs.

Facility Type	Hour/Day	Day/Year	Weight Applied for Unknown Facility Type ²⁰⁷
Education - Elementary and Middle School	8.0	214	0.09
Education - High School			
Education - College and University			
Food Sales - Grocery	12.0	365	0.10
Food Sales - Convenience Store			
Food Sales - Gas Station Convenience Store			
Food Service - Full Service	13.0	342	0.17
Food Service - Fast Food			
Health Care - Inpatient	11.0	365	0.11
Health Care - Outpatient			
Lodging - Hotel, Motel and Dormitory	20.0	365	0.17
Mercantile - Mall	9.0	325	0.00
Mercantile - Retail, non-mall			
Office - Small (<40,000 sq.ft.)	12.0	250	0.36
Office - Large (≥40,000 sq.ft.)			
Other	9.0	325	0.00
Public Assembly			
Public Order and Safety (Police and Fire Station)			
Religious Worship			
Service (Beauty, Auto-repair, Workshop)			
Warehouse and Storage			
Unknown (default) ²⁰⁸	13.1	307	0.00

²⁰⁶ Maryland/Mid-Atlantic TRM v10, p. 383, hours/day and days/year values are used for all facility types with the exception of Unknown, which uses Dominion Energy building weights. Maryland/Mid-Atlantic TRM v10 cites the original source as California Energy Commission, Characterizing the Energy Efficiency Potential of Gas-Fired Commercial Foodservice Equipment, Appendix E.

²⁰⁷ Unknown facility type is based on a weighted average of building types from Dominion Energy 2020 Commercial Energy Survey Results Appendix B, p. 4. Question 3. Building types that are in the source TRM are used when calculating weights to avoid overweighting building types that aren't typically associated with cooking equipment. Those buildings use the Other/Miscellaneous building category from the source TRM for hours/day and days/year.

²⁰⁸ Unknown facility type is based on a weighted average of building types from DNV, Dominion Energy 2020 Commercial Energy Survey Results, Appendix B, p. 4, Question 3

13.6.1 Update Summary

Updates made to this section are described in Table 13-16

Table 13-18. Summary of Update(s)

Version	Update Type	Description
2021	New section	Moved tables shared by multiple measures from individual measure sections to this sub-appendix.

13.7 Sub-Appendix F2-VI: Non-Residential Compressed Air End Use Factors

This sub-appendix contains the compressed air end use factors of input variables based on type of control and coincidence factor based on operating schedule.

Bin	Load Range	Default Load _{bin} Proportion	Default HOU _{bin} Proportion
1	100% - 90%	0.95	0.00
2	90% - 80%	0.85	0.00
3	80% - 70%	0.75	0.00
4	70% - 60%	0.65	0.50
5	60% - 50%	0.55	0.50
6	50% - 40%	0.45	0.00
7	<40%	0.30	0.00

Table 13-19: Load Proportion and HOU Proportion Defaults by Load Range Bins

Table 13-20. Input Variables Based on Type of Control

Control Type	ηνγd	X 2	X 1	С
Inlet modulation	1.00	0.007900	0.297000	0.695800
Load/no-load, 1 gal/cfm	1.00	-0.901260	1.555462	0.320416
Load/no-load, 2 gal/cfm	1.00	-0.708400	1.429375	0.284163
Load/no-load, 3 gal/cfm	1.00	-0.479030	1.213741	0.267587
Load/no-load, 4 gal/cfm	1.00	-0.383750	1.127370	0.263671
Load/no-load, 5 gal/cfm	1.00	-0.193200	0.954629	0.255839
Reciprocating	1.00	-0.000610	0.833885	0.166648
Geometric	1.00	0.227656	0.324240	0.436002
VFD	0.98	3.09E-16	0.950000	0.050000

Table 13-21. Coincidence Factor (CF) Based on Operating Schedule

Operating Schedule	CF _{summer} ²⁰⁹	CF _{swinter} ²¹⁰
Single shift (8/5) (default)	0.59	0.59
2-shift (16/5)	0.95	0.95

²⁰⁹ 2019 IL TRM v 7.0 Volume 2

 210 Source TRM does not provide a specific winter CF. Therefore, the summer CF is applied as the winter CF.

Operating Schedule	CF _{summer} ²⁰⁹	CF _{swinter} ²¹⁰
3-shift (24/5)	0.95	0.95
4-shift (24/7)	0.95	0.95

Table 13-22. Dryer constant values, based on base dryer type and percent load

Dryer type	Load _{dryer}	R1	K
Non evoling Pofrigorated	0%	0.000	0.00
Non-cycling, Refrigerated	> 0%	0.250	0.75
Cycling Pofrigorated	≤ 75%	1.133	0.10
Cycling, Refrigerated	> 75%	0.200	0.80
VED Definition of the second	≤ 50%	0.100	0.45
VFD, Refrigerated	> 50%	1.000	0.00
Digital Sarall Defrigorated	0%	0.000	0.00
Digital Scroll, Refrigerated	> 0%	0.900	0.10

Table 13-23. Purgebase, based on dryer type

Dryer Type	Purgebase
Non-cycling, Refrigerated	0.00
Cycling, Refrigerated	0.00
VFD, Refrigerated	0.00
Digital Scroll, Refrigerated	0.00
Desiccant	0.15
Heated Desiccant	0.70
Blower Purge	0.00
Heated Blower Purge	0.00

13.7.1 Update Summary

Updates made to this section are described in Table 13-16

Table 13-24. Summary of Update(s)

Version	Update Type	Description
2021	New section	Moved tables shared by multiple measures from individual measure sections to this sub-appendix.

13.8 Sub-Appendix F2-VII: Non-Residential Window Film Energy Saving Factors

This sub-appendix contains the Energy Saving Factor (ESF) per square foot of reflective window film by facility type, window pane type, heating system type, and window orientation. Each table is for a specific weather location in Dominion Energy's service territory.

Table 13-25. Energy Savings Factors for Reflective Window Film by Building Type and Window Orientation
for Charlottesville, VA

Facility Type ²¹¹	Window Type	Heating System Type ²¹²	ESF _{north} (kWh/sq.ft.)	ESF _{east} (kWh/sq.ft.)	ESF _{south} ²¹³ (kWh/sq.ft.)	ESF _{west} (kWh/sq.ft.)
	Single	Electric	1.86	4.09	6.83	6.05
Education – Elementary and	Pane	Non-electric	2.12	5.76	7.93	10.03
Middle School	Double	Electric	0.77	1.74	3.00	2.56
	Pane	Non-electric	0.89	2.45	3.62	4.48
	Single	Electric	3.93	6.88	16.77	11.43
Education – High	Pane	Non-electric	3.62	6.25	10.94	13.41
School	Double	Electric	1.73	2.77	6.62	4.59
	Pane	Non-electric	1.56	2.63	4.97	5.70
F 1	Single	Electric	3.93	6.88	16.77	11.43
Education – College and	Pane	Non-electric	3.62	6.25	10.94	13.41
University	Double	Electric	1.73	2.77	6.62	4.59
	Pane	Non-electric	1.56	2.63	4.97	5.70
	Single	Electric	2.58	7.21	6.47	10.99
Food Sales -	Pane	Non-electric	3.00	8.20	7.58	12.53
Grocery	Double	Electric	13.06	4.66	5.03	3.03
	Pane	Non-electric	1.35	5.26	5.83	3.46
	Single	Electric	2.58	7.21	6.47	10.99
Food Sales –	Pane	Non-electric	3.00	8.20	7.58	12.53
Convenience Store	Double	Electric	13.06	4.66	5.03	3.03
	Pane	Non-electric	1.35	5.26	5.83	3.46
	Single	Electric	2.58	7.21	6.47	10.99
Food Sales – Non- electric Station	Pane	Non-electric	3.00	8.20	7.58	12.53
Convenience Store	Double	Electric	13.06	4.66	5.03	3.03
	Pane	Non-electric	1.35	5.26	5.83	3.46
	Single	Electric	0.00	6.56	8.37	11.69
Food Service - Full	Pane	Non-electric	0.00	7.26	10.23	12.86
Service	Double	Electric	0.00	0.00	4.05	5.28
	Pane	Non-electric	0.00	3.01	4.71	5.66
	Single	Electric	0.00	3.72	4.68	6.57
Food Service -	Pane	Non-electric	0.00	5.00	7.14	8.12
Fast Food	Double	Electric	0.00	1.60	2.38	3.00
	Pane	Non-electric	0.00	2.14	3.39	3.61

²¹¹ Warehouse and storage building type DEER models do not have windows. Tracking data with this building type will be flagged for on-site verification.

²¹² Non-electric heating systems were represented by gas heating in building energy models.

²¹³ Negative demand reduction is observed in some building types for south window orientation, implying that installation of window film on the south side of the buildings leads to increased energy use due to increase heating load in the winter season.

Facility Type ²¹¹	Window Type	Heating System Type ²¹²	ESF _{north} (kWh/sq.ft.)	ESF _{east} (kWh/sq.ft.)	ESF _{south} ²¹³ (kWh/sq.ft.)	ESF _{west} (kWh/sq.ft.)
	Single	Electric	7.11	33.18	15.87	29.91
Health Care-	Pane	Non-electric	4.60	18.31	11.15	17.66
inpatient	Double	Electric	3.23	14.26	7.44	11.58
	Pane	Non-electric	2.03	7.66	4.91	6.68
	Single	Electric	1.25	39.48	17.60	23.83
Health Care-	Pane	Non-electric	1.74	30.28	16.98	23.10
outpatient	Double	Electric	0.55	16.95	7.12	9.45
	Pane	Non-electric	0.79	12.93	6.59	9.18
Lodaina (Hotol	Single	Electric	3.69	11.43	13.40	10.31
Lodging – (Hotel, Motel, and	Pane	Non-electric	4.30	13.43	15.02	11.13
Dormitory)	Double	Electric	1.52	4.70	5.62	4.10
	Pane	Non-electric	1.71	5.43	6.33	4.34
	Single	Electric	2.68	7.46	5.48	8.41
Mercantile (mall)	Pane	Non-electric	2.93	8.24	6.85	9.00
mercantile (mail)	Double	Electric	1.09	2.88	2.53	3.48
	Pane	Non-electric	1.22	3.21	3.10	3.72
	Single	Electric	2.58	7.21	6.47	10.99
Mercantile (Retail,	Pane	Non-electric	3.00	8.20	7.58	12.53
not mall)	Double	Electric	13.06	4.66	5.03	3.03
	Pane	Non-electric	1.35	5.26	5.83	3.46
	Single	Electric	1.58	5.03	2.73	4.91
Office – Small	Pane	Non-electric	1.76	5.54	3.19	5.66
(<40,000 sq ft)	Double Pane	Electric	0.64	2.05	1.09	1.96
		Non-electric	0.72	2.22	1.25	2.21
	Single	Electric	5.30	17.19	15.82	17.79
Office –Large (≥	Pane	Non-electric	2.23	6.08	7.07	8.17
40,000 sq ft)	Double	Electric	2.15	6.83	6.06	6.70
	Pane	Non-electric	0.89	2.40	2.91	3.13
	Single	Electric	0.07	2.28	0.02	0.43
Other ²¹⁴	Pane	Non-electric	0.09	2.39	0.04	0.52
Other	Double	Electric	0.03	1.02	0.01	0.16
	Pane	Non-electric	0.03	1.06	0.02	0.20
	Single	Electric	0.46	2.49	2.49	1.24
Public Assembly	Pane	Non-electric	0.75	2.38	2.83	1.74
Fublic Assembly	Double	Electric	0.22	1.03	1.06	0.71
	Pane	Non-electric	0.36	0.98	1.18	0.92
Dublia Orden end	Single	Electric	0.07	2.28	0.02	0.43
Public Order and Safety (Police and	Pane	Non-electric	0.09	2.39	0.04	0.52
Fire Station)	Double	Electric	0.03	1.02	0.01	0.16
	Pane	Non-electric	0.03	1.06	0.02	0.20
	Single	Electric	0.46	2.49	2.49	1.24
Religious Worship	Pane	Non-electric	0.75	2.38	2.83	1.74
	Double	Electric	0.22	1.03	1.06	0.71
	Pane	Non-electric	0.36	0.98	1.18	0.92

²¹⁴ ESF for the "Other" building type is taken from the Convenience store building energy model because it represents a conservative savings estimate and common building characteristics.

Facility Type ²¹¹	Window Type	Heating System Type ²¹²	ESF _{north} (kWh/sq.ft.)	ESF _{east} (kWh/sq.ft.)	ESF _{south} ²¹³ (kWh/sq.ft.)	ESF _{west} (kWh/sq.ft.)
Service (Beauty, Auto Repair Workshop)	Single	Electric	2.68	7.46	5.48	8.41
	Pane	Non-electric	2.93	8.24	6.85	9.00
	Double	Electric	1.09	2.88	2.53	3.48
	Pane	Non-electric	1.22	3.21	3.10	3.72

Table 13-26. Energy Savings Factors for Reflective Window Film by Facility Type and Window Orientation for	
Farmville, VA	

Building Type ²¹⁵	Window Type	Heating System Type ²¹⁶	ESF _{north} (kWh/sq.ft.)	ESF _{east} (kWh/sq.ft.)	ESF _{south} ²¹⁷ (kWh/sq.ft.)	ESF _{west} (kWh/sq.ft.)
	Single	Electric	2.00	4.83	7.76	7.02
Education – Elementary and	Pane	Non-electric	2.04	5.98	7.95	9.92
Middle School	Double	Electric	0.91	1.85	3.41	3.11
	Pane	Non-electric	0.93	2.57	3.67	4.38
	Single	Electric	4.02	7.20	17.71	12.10
Education – High	Pane	Non-electric	3.35	6.32	11.26	13.78
School	Double	Electric	1.75	2.78	7.18	4.99
	Pane	Non-electric	1.47	2.73	5.24	5.89
	Single	Electric	4.02	7.20	17.71	12.10
Education – College	Pane	Non-electric	3.35	6.32	11.26	13.78
and University	Double	Electric	1.75	2.78	7.18	4.99
	Pane	Non-electric	1.47	2.73	5.24	5.89
	Single	Electric	2.60	7.16	6.43	10.26
Food Sales - Grocerv	Pane	Non-electric	3.08	8.29	7.57	11.70
Food Sales - Grocery	Double Pane	Electric	14.74	2.15	5.09	4.19
		Non-electric	1.28	2.56	5.93	4.92
	Single	Electric	2.60	7.16	6.43	10.26
Food Sales –	Pane	Non-electric	3.08	8.29	7.57	11.70
Convenience Store	Double	Electric	14.74	2.15	5.09	4.19
	Pane	Non-electric	1.28	2.56	5.93	4.92
	Single	Electric	2.60	7.16	6.43	10.26
Food Sales – Non- electric Station	Pane	Non-electric	3.08	8.29	7.57	11.70
Convenience Store	Double	Electric	14.74	2.15	5.09	4.19
	Pane	Non-electric	1.28	2.56	5.93	4.92
	Single	Electric	0.00	6.88	8.52	12.21
Food Service - Full	Pane	Non-electric	0.00	7.51	10.09	13.04
Service	Double	Electric	0.00	0.00	4.19	5.58
	Pane	Non-electric	0.00	3.23	4.82	5.93

²¹⁵ Warehouse and storage building type DEER models do not have windows. Tracking data with this building type will be flagged for on-site verification.

²¹⁶ Non-electric heating systems were represented by gas heating in building energy models.

²¹⁷ Negative demand reduction is observed in some building types for south window orientation, implying that installation of window film on the south side of the buildings leads to increased energy use due to increase heating load in the winter season.

Building Type ²¹⁵	Window Type	Heating System Type ²¹⁶	ESF _{north} (kWh/sq.ft.)	ESF _{east} (kWh/sq.ft.)	ESF _{south} ²¹⁷ (kWh/sq.ft.)	ESF _{west} (kWh/sq.ft.)
	Single	Electric	0.00	3.93	4.80	6.76
Food Service - Fast	Pane	Non-electric	0.00	5.18	7.10	8.22
Food	Double	Electric	0.00	1.68	2.41	2.98
	Pane	Non-electric	0.00	2.23	3.38	3.66
	Single	Electric	7.35	33.15	15.59	29.96
Health Care-inpatient	Pane	Non-electric	4.68	18.31	10.88	17.71
	Double	Electric	3.23	14.21	7.39	11.62
	Pane	Non-electric	2.02	7.66	4.85	6.73
	Single	Electric	1.32	38.88	16.62	23.90
Health Care-	Pane	Non-electric	1.83	29.98	16.10	23.35
outpatient	Double	Electric	0.59	16.91	6.75	9.48
	Pane	Non-electric	0.83	13.02	6.31	9.29
Lodging – (Hotel,	Single	Electric	3.62	11.58	12.80	10.34
Motel, and	Pane	Non-electric	4.15	13.29	14.36	11.45
Dormitory)	Double	Electric	1.53	4.65	5.43	4.17
,	Pane	Non-electric	1.75	5.27	6.12	4.53
	Single	Electric	2.59	7.47	5.31	8.42
Mercantile (mall)	Pane	Non-electric	2.90	8.38	6.75	9.11
Mercantine (mail)	Double	Electric	1.09	2.89	2.43	3.49
	Pane	Non-electric	1.21	3.27	3.04	3.78
	Single	Electric	2.60	7.16	6.43	10.26
Mercantile (Retail,	Pane	Non-electric	3.08	8.29	7.57	11.70
not mall)	Double	Electric	14.74	2.15	5.09	4.19
	Pane	Non-electric	1.28	2.56	5.93	4.92
	Single	Electric	1.59	5.16	2.61	5.05
Office – Small	Pane	Non-electric	1.74	5.81	3.00	5.83
(<40,000 sq ft)	Double	Electric	0.66	2.08	1.05	2.05
	Pane	Non-electric	0.75	2.33	1.24	2.32
	Single	Electric	5.34	17.71	15.70	18.27
Office – Large (≥	Pane	Non-electric	2.24	6.52	7.01	8.63
40,000 sq ft)	Double	Electric	2.17	6.97	6.11	6.92
	Pane	Non-electric	0.90	2.61	2.78	3.17
	Single	Electric	0.08	2.44	0.02	0.44
Other ²¹⁴	Pane	Non-electric	0.10	2.55	0.04	0.54
Other	Double	Electric	0.03	1.10	0.01	0.18
	Pane	Non-electric	0.04	1.15	0.02	0.22
	Single	Electric	0.44	2.94	2.66	1.46
Public Assembly	Pane	Non-electric	0.74	2.72	2.92	1.88
I UNIC ASSCIINTY	Double	Electric	0.23	1.27	1.18	0.86
	Pane	Non-electric	0.37	1.13	1.29	1.03
Dublis Onder 1	Single	Electric	0.08	2.44	0.02	0.44
Public Order and	Pane	Non-electric	0.10	2.55	0.04	0.54
Safety (Police and Fire Station)	Double	Electric	0.03	1.10	0.01	0.18
	Pane	Non-electric	0.04	1.15	0.02	0.22

Building Type ²¹⁵	Window Type	Heating System Type ²¹⁶	ESF _{north} (kWh/sq.ft.)	ESF _{east} (kWh/sq.ft.)	ESF _{south} ²¹⁷ (kWh/sq.ft.)	ESF _{west} (kWh/sq.ft.)
	Single	Electric	0.44	2.94	2.66	1.46
Religious Worship	Pane	Non-electric	0.74	2.72	2.92	1.88
	Double	Electric	0.23	1.27	1.18	0.86
	Pane	Non-electric	0.37	1.13	1.29	1.03
	Single	Electric	2.59	7.47	5.31	8.42
Service (Beauty, Auto Repair Workshop)	Pane	Non-electric	2.90	8.38	6.75	9.11
	Double	Electric	1.09	2.89	2.43	3.49
	Pane	Non-electric	1.21	3.27	3.04	3.78

Table 13-27. Energy Savings Factors for Reflective Window Film by Facility Type and Window Orientation for Fredericksburg, VA

Facility Type ²¹⁸	Window Type	Heating System Type ²¹⁹	ESF _{north} (kWh/sq.ft.)	ESF _{east} (kWh/sq.ft.)	ESF _{south} ²²⁰ (kWh/sq.ft.)	ESF _{west} (kWh/sq.ft.)
	Single Pane	Electric	1.96	4.67	8.26	7.09
Education –	Single Falle	Non-electric	1.95	5.56	8.11	9.86
Elementary and Middle School	Double	Electric	0.89	1.79	3.60	3.09
	Pane	Non-electric	0.91	2.35	3.74	4.50
	Single Pane	Electric	3.81	7.50	15.01	11.58
Education – High	Siligie Falle	Non-electric	3.52	6.47	11.47	14.11
School	Double	Electric	1.77	2.29	5.86	4.63
	Pane	Non-electric	1.42	2.75	5.29	5.63
	Single Done	Electric	3.81	7.50	15.01	11.58
Education –	Single Pane	Non-electric	3.52	6.47	11.47	14.11
College and University	Double Pane	Electric	1.77	2.29	5.86	4.63
Chirolony		Non-electric	1.42	2.75	5.29	5.63
	Single Pane	Electric	2.48	9.54	8.43	7.49
Food Sales -		Non-electric	3.01	11.17	10.14	8.64
Grocery	Double	Electric	16.37	5.27	3.52	3.00
	Pane	Non-electric	1.29	6.08	4.26	3.52
	Single Done	Electric	2.48	9.54	8.43	7.49
Food Sales – Convenience	Single Pane	Non-electric	3.01	11.17	10.14	8.64
Store	Double	Electric	16.37	5.27	3.52	3.00
	Pane	Non-electric	1.29	6.08	4.26	3.52
Food Sales –	Single Pane	Electric	2.48	9.54	8.43	7.49
Non-electric	Single Falle	Non-electric	3.01	11.17	10.14	8.64
Station	Double	Electric	16.37	5.27	3.52	3.00
Convenience Store	Pane	Non-electric	1.29	6.08	4.26	3.52

OFFICIAL COPY

²¹⁸ Warehouse and storage building type DEER models do not have windows. Tracking data with this building type will be flagged for on-site verification.

²¹⁹ Non-electric heating systems were represented by gas heating in building energy models.

²²⁰ Negative demand reduction is observed in some building types for south window orientation, implying that installation of window film on the south side of the buildings leads to increased energy use due to increase heating load in the winter season.

Facility Type ²¹⁸	Window Type	Heating System Type ²¹⁹	ESF _{north} (kWh/sq.ft.)	ESF _{east} (kWh/sq.ft.)	ESF _{south} ²²⁰ (kWh/sq.ft.)	ESF _{west} (kWh/sq.ft.)
Food Service - Full Service	Single Pape	Electric	0.00	6.44	8.55	11.97
	Single Pane	Non-electric	0.00	7.38	10.18	12.87
	Double	Electric	0.00	0.00	4.26	5.49
	Pane	Non-electric	0.00	3.11	4.77	5.71
	Single Pane	Electric	0.00	3.67	4.83	6.58
Food Service -	Single Falle	Non-electric	0.00	4.98	7.14	8.04
Fast Food	Double	Electric	0.00	1.64	2.41	2.98
	Pane	Non-electric	0.00	2.17	3.38	3.56
	Single Pane	Electric	6.66	32.82	15.88	29.55
Health Care-	Sillyle Falle	Non-electric	4.39	18.32	11.24	17.51
inpatient	Double	Electric	3.34	13.91	7.30	11.47
	Pane	Non-electric	2.08	7.55	4.89	6.64
	Single Pane	Electric	1.03	37.41	15.62	22.39
Health Care-	Sillyle Falle	Non-electric	1.61	29.19	15.53	22.23
outpatient	Double	Electric	0.51	16.11	6.46	9.10
	Pane	Non-electric	0.77	12.50	6.13	9.02
	Single Pane	Electric	3.62	11.47	12.77	10.01
Lodging – (Hotel, Motel, and	Sillyle Falle	Non-electric	3.97	12.71	14.23	10.46
Dormitory)	Double Pane	Electric	1.41	4.10	5.22	3.81
Domitory		Non-electric	1.66	5.16	5.99	4.15
	Single Pane	Electric	2.54	5.78	5.37	8.12
Mercantile (mall)		Non-electric	2.85	6.61	6.80	8.82
wercantile (mail)		Electric	1.10	3.07	2.46	3.44
	Pane	Non-electric	1.22	3.50	3.06	3.72
	Single Pane	Electric	2.48	9.54	8.43	7.49
Mercantile		Non-electric	3.01	11.17	10.14	8.64
(Retail, not mall)	Double	Electric	16.37	5.27	3.52	3.00
	Pane	Non-electric	1.29	6.08	4.26	3.52
	Single Pane	Electric	1.54	4.88	2.39	4.74
Office – Small	Single Falle	Non-electric	1.79	5.58	3.08	5.60
(<40,000 sq ft)	Double	Electric	0.59	1.97	0.96	1.93
	Pane	Non-electric	0.72	2.37	1.24	2.28
	Single Pane	Electric	5.31	17.28	15.43	17.60
Office – Large (≥	Sillyle Falle	Non-electric	2.19	6.61	7.45	8.35
40,000 sq ft)	Double	Electric	2.16	6.33	6.16	6.61
	Pane	Non-electric	0.96	2.64	3.03	3.19
	Single Pane	Electric	0.06	2.37	0.02	0.42
Other ²¹⁴		Non-electric	0.08	2.52	0.04	0.53
	Double	Electric	0.03	1.10	0.01	0.17
	Pane	Non-electric	0.03	1.16	0.02	0.22
	Single Pane	Electric	0.43	2.91	2.55	1.57
Public Assembly		Non-electric	0.78	2.65	3.01	1.95
Fublic Assembly	Double	Electric	0.23	1.25	1.14	0.80
	Pane	Non-electric	0.38	1.09	1.29	1.02

Facility Type ²¹⁸	Window Type	Heating System Type ²¹⁹	ESF _{north} (kWh/sq.ft.)	ESF _{east} (kWh/sq.ft.)	ESF _{south} ²²⁰ (kWh/sq.ft.)	ESF _{west} (kWh/sq.ft.)
	Single Pane	Electric	0.06	2.37	0.02	0.42
Public Order and	Single Falle	Non-electric	0.08	2.52	0.04	0.53
Safety (Police and Fire Station)	Double	Electric	0.03	1.10	0.01	0.17
	Pane	Non-electric	0.03	1.16	0.02	0.22
	Single Pane	Electric	0.43	2.91	2.55	1.57
Religious		Non-electric	0.78	2.65	3.01	1.95
Worship	Double Pane	Electric	0.23	1.25	1.14	0.80
		Non-electric	0.38	1.09	1.29	1.02
	Single Dane	Electric	2.54	5.78	5.37	8.12
Service (Beauty,	Single Pane	Non-electric	2.85	6.61	6.80	8.82
Auto Repair Workshop)	Double	Electric	1.10	3.07	2.46	3.44
workshop)	Pane	Non-electric	1.22	3.50	3.06	3.72

Table 13-28. Energy Savings Factors for Reflective Window Film by Facility Type and Window Orientation for	
Norfolk, VA	

Facility Type ²²¹	Window Type	Heating System Type ²²²	ESF _{north} (kWh/sq.ft.)	ESF _{east} (kWh/sq.ft.)	ESF _{south} ²²³ (kWh/sq.ft.)	ESF _{west} (kWh/sq.ft.)
- • •	Single	Electric	2.00	4.60	7.20	6.75
Education –	Pane	Non-electric	2.20	6.14	8.26	10.61
Elementary and Middle School	Double	Electric	0.82	1.67	3.15	2.69
	Pane	Non-electric	0.87	2.23	3.67	4.32
	Single	Electric	4.28	7.53	17.89	11.80
Education – High	Pane	Non-electric	3.92	6.53	11.41	15.09
School	Double	Electric	1.84	2.86	6.91	4.59
	Pane	Non-electric	1.75	2.48	5.52	6.07
	Single	Electric	4.28	7.53	17.89	11.80
Education – College	Pane	Non-electric	3.92	6.53	11.41	15.09
and University	Double	Electric	1.84	2.86	6.91	4.59
	Pane	Non-electric	1.75	2.48	5.52	6.07
	Single	Electric	2.72	10.30	9.41	7.96
Food Salas Crosswy	Pane	Non-electric	3.23	11.58	10.99	8.88
Food Sales - Grocery	Double	Electric	12.62	5.66	2.79	3.24
	Pane	Non-electric	1.39	6.32	3.23	3.64
	Single	Electric	2.72	10.30	9.41	7.96
Food Sales –	Pane	Non-electric	3.23	11.58	10.99	8.88
Convenience Store	Double	Electric	12.62	5.66	2.79	3.24
	Pane	Non-electric	1.39	6.32	3.23	3.64

²²¹ Warehouse and storage building type DEER models do not have windows. Tracking data with this building type will be flagged for on-site verification.

²²² Non-electric heating systems were represented by gas heating in building energy models.

²²³ Negative demand reduction is observed in some building types for south window orientation, implying that installation of window film on the south side of the buildings leads to increased energy use due to increase heating load in the winter season.

Facility Type ²²¹	Window Type	Heating System Type ²²²	ESF _{north} (kWh/sq.ft.)	ESF _{east} (kWh/sq.ft.)	ESF _{south} ²²³ (kWh/sq.ft.)	ESF _{west} (kWh/sq.ft.)
	Single	Electric	2.72	10.30	9.41	7.96
Food Sales – Non- electric Station	Pane	Non-electric	3.23	11.58	10.99	8.88
Convenience Store	Double	Electric	12.62	5.66	2.79	3.24
	Pane	Non-electric	1.39	6.32	3.23	3.64
	Single	Electric	0.00	6.76	7.96	12.00
Food Service - Full	Pane	Non-electric	0.00	7.50	9.69	13.03
Service	Double	Electric	0.00	0.00	3.89	5.51
	Pane	Non-electric	0.00	3.19	4.55	5.90
	Single	Electric	0.00	4.07	4.67	6.76
Food Service - Fast	Pane	Non-electric	0.00	5.35	7.09	8.42
Food	Double	Electric	0.00	1.78	2.29	3.07
	Pane	Non-electric	0.00	2.33	3.34	3.79
	Single	Electric	6.65	32.75	14.84	29.52
Health Care-inpatient	Pane	Non-electric	4.42	18.30	10.69	17.53
	Double	Electric	3.33	13.99	7.03	11.45
	Pane	Non-electric	2.10	7.64	4.78	6.67
	Single	Electric	1.24	38.50	14.45	23.37
Health Care-	Pane	Non-electric	1.73	29.32	13.83	22.39
outpatient	Double	Electric	0.58	16.83	6.44	9.40
	Pane	Non-electric	0.81	12.75	5.92	8.99
	Single	Electric	4.01	12.26	13.03	10.62
Lodging – (Hotel, Motel, and	Pane	Non-electric	4.59	14.44	14.52	11.72
Dormitory)	Double	Electric	1.63	4.67	5.49	4.02
20111101.37	Pane	Non-electric	1.82	5.67	6.13	4.68
	Single	Electric	2.79	6.34	5.28	8.46
Morecentile (mell)	Pane	Non-electric	3.09	7.09	6.77	9.12
Mercantile (mall)	Double	Electric	1.18	3.31	2.46	3.58
	Pane	Non-electric	1.31	3.66	3.09	3.83
	Single	Electric	2.72	10.30	9.41	7.96
Mercantile (Retail,	Pane	Non-electric	3.23	11.58	10.99	8.88
not mall)	Double	Electric	12.62	5.66	2.79	3.24
	Pane	Non-electric	1.39	6.32	3.23	3.64
	Single	Electric	1.60	5.24	2.63	5.13
Office – Small	Pane	Non-electric	1.78	5.69	3.05	5.71
(<40,000 sq ft)	Double	Electric	0.66	2.08	1.00	2.04
	Pane	Non-electric	0.74	2.32	1.20	2.34
	Single	Electric	5.49	16.69	14.64	17.03
Office – Large (≥	Pane	Non-electric	2.27	6.46	7.14	8.50
40,000 sq ft)	Double	Electric	2.22	6.39	5.89	6.37
	Pane	Non-electric	1.06	2.77	2.91	3.32
	Single	Electric	0.05	2.61	0.03	0.45
$0.4h = x^{214}$	Pane	Non-electric	0.07	2.72	0.03	0.55
Other ²¹⁴	Double	Electric	0.01	1.11	0.02	0.18
	Pane	Non-electric	0.02	1.15	0.02	0.21

Facility Type ²²¹	Window Type	Heating System Type ²²²	ESF _{north} (kWh/sq.ft.)	ESF _{east} (kWh/sq.ft.)	ESF _{south} ²²³ (kWh/sq.ft.)	ESF _{west} (kWh/sq.ft.)
	Single	Electric	0.55	2.94	2.56	1.69
Public Assembly	Pane	Non-electric	0.85	2.69	2.83	2.21
Fublic Assembly	Double	Electric	0.26	1.27	1.11	0.91
	Pane	Non-electric	0.38	1.05	1.16	1.07
	Single	Electric	0.05	2.61	0.03	0.45
Public Order and	Pane	Non-electric	0.07	2.72	0.03	0.55
Safety (Police and Fire Station)	Double	Electric	0.01	1.11	0.02	0.18
	Pane	Non-electric	0.02	1.15	0.02	0.21
	Single	Electric	0.55	2.94	2.56	1.69
Deligious Werehin	Pane	Non-electric	0.85	2.69	2.83	2.21
Religious Worship	Double	Electric	0.26	1.27	1.11	0.91
	Pane	Non-electric	0.38	1.05	1.16	1.07
	Single	Electric	2.79	6.34	5.28	8.46
Service (Beauty,	Pane	Non-electric	3.09	7.09	6.77	9.12
Auto Repair Workshop)	Double	Electric	1.18	3.31	2.46	3.58
	Pane	Non-electric	1.31	3.66	3.09	3.83

Table 13-29. Energy Savings Factors for Reflective Window Film by Facility Type and Window Orientation for	
Arlington, VA	

Facility Type ²²⁴	Windo w Type	Heating System Type ²²⁵	ESF _{north} (kWh/sq.ft.)	ESF _{east} (kWh/sq.ft.)	ESF _{south} ²²⁶ (kWh/sq.ft.)	ESF _{west} (kWh/sq.ft.)
_ , ,	Single	Electric	1.91	4.43	7.63	7.09
Education –	Pane	Non-electric	1.99	5.79	8.00	9.99
Elementary and Middle School	Double	Electric	0.82	1.81	3.32	2.72
	Pane	Non-electric	0.86	2.09	3.58	4.00
	Single	Electric	3.97	6.74	15.27	11.23
Education – High	Pane	Non-electric	3.62	6.42	11.51	13.85
School	Double Pane	Electric	1.70	2.40	6.09	4.40
		Non-electric	1.44	1.98	5.15	5.55
	Single	Electric	3.97	6.74	15.27	11.23
Education – College	Pane	Non-electric	3.62	6.42	11.51	13.85
and University	Double	Electric	1.70	2.40	6.09	4.40
	Pane	Non-electric	1.44	1.98	5.15	5.55
	Single	Electric	2.46	9.86	8.82	7.40
Facel Oalas Ora	Pane	Non-electric	3.05	11.39	10.80	8.55
Food Sales - Grocery	Double	Electric	16.05	5.49	2.48	2.88
	Pane	Non-electric	1.33	6.27	3.03	3.35

²²⁴ Warehouse and storage building type DEER models do not have windows. Tracking data with this building type will be flagged for on-site verification.
²²⁵ Non-electric heating systems were represented by gas heating in building energy models.

²²⁶ Negative demand reduction is observed in some building types for south window orientation, implying that installation of window film on the south side of the buildings leads to increased energy use due to increase heating load in the winter season.

Facility Type ²²⁴	Windo w Type	Heating System Type ²²⁵	ESF _{north} (kWh/sq.ft.)	ESF _{east} (kWh/sq.ft.)	ESF _{south} ²²⁶ (kWh/sq.ft.)	ESF _{west} (kWh/sq.ft.)
	Single	Electric	2.46	9.86	8.82	7.40
Food Sales –	Pane	Non-electric	3.05	11.39	10.80	8.55
Convenience Store	Double	Electric	16.05	5.49	2.48	2.88
	Pane	Non-electric	1.33	6.27	3.03	3.35
Food Sales – Non-	Single	Electric	2.46	9.86	8.82	7.40
electric Station	Pane	Non-electric	3.05	11.39	10.80	8.55
Convenience Store	Double	Electric	16.05	5.49	2.48	2.88
	Pane	Non-electric	1.33	6.27	3.03	3.35
	Single	Electric	0.00	6.20	8.10	11.37
Food Service - Full	Pane	Non-electric	0.00	7.15	10.04	12.54
Service	Double	Electric	0.00	0.00	3.90	5.15
	Pane	Non-electric	0.00	2.99	4.69	5.64
	Single	Electric	0.00	3.35	4.27	6.14
Food Service - Fast	Pane	Non-electric	0.00	4.84	6.99	7.92
Food	Double	Electric	0.00	1.55	2.23	2.85
	Pane	Non-electric	0.00	2.13	3.32	3.55
	Single	Electric	6.54	33.20	16.51	29.69
Health Care-inpatient	Pane	Non-electric	4.33	18.36	11.38	17.54
	Double	Electric	3.34	13.97	7.50	11.46
	Pane	Non-electric	2.08	7.56	4.94	6.64
	Single Pane	Electric	1.21	38.50	16.83	23.07
Health Care- outpatient		Non-electric	1.79	29.72	16.37	22.63
outpatient	Double Pane	Electric	0.45	16.60	6.86	9.08
		Non-electric Electric	0.71 3.51	12.74	6.39 12.71	8.92
Lodging – (Hotel,	Single Pane	Non-electric		11.22		9.41
Motel, and		Electric	4.03	12.75 4.37	14.26 5.31	10.41
Dormitory)	Double Pane	Non-electric	1.43 1.59	5.07	5.94	3.81 3.88
		Electric	2.53	5.84	4.97	7.91
	Single Pane	Non-electric	2.92	6.71	6.75	8.74
Mercantile (mall)	Double	Electric	1.10	3.04	2.32	3.35
	Pane	Non-electric	1.10	3.56	3.04	3.72
	Single	Electric	2.46	9.86	8.82	7.40
Mercantile (Retail,	Pane	Non-electric	3.05	11.39	10.80	8.55
not mall)	Double	Electric	16.05	5.49	2.48	2.88
,	Pane	Non-electric	1.33	6.27	3.03	3.35
	Single	Electric	1.44	4.84	2.27	4.70
Office – Small	Pane	Non-electric	1.80	5.69	3.09	5.68
(<40,000 sq ft)	Double	Electric	0.61	1.93	0.96	1.93
	Pane	Non-electric	0.71	2.28	1.24	2.24
	Single	Electric	5.45	16.35	15.31	17.15
Office – Large (≥	Pane	Non-electric	2.09	6.47	7.19	8.56
40,000 sq ft)	Double	Electric	2.19	6.14	6.07	6.43
	Pane	Non-electric	0.93	2.48	2.98	3.26

Facility Type ²²⁴	Windo w Type	Heating System Type ²²⁵	ESF _{north} (kWh/sq.ft.)	ESF _{east} (kWh/sq.ft.)	ESF _{south} ²²⁶ (kWh/sq.ft.)	ESF _{west} (kWh/sq.ft.)
	Single	Electric	0.04	2.34	0.01	0.40
Other ²¹⁴	Pane	Non-electric	0.06	2.49	0.04	0.52
Other	Double	Electric	0.01	1.03	0.01	0.15
	Pane	Non-electric	0.02	1.08	0.02	0.20
	Single	Electric	0.49	2.81	2.32	1.53
Dublic Accombly	Pane	Non-electric	0.81	2.54	2.77	1.85
Public Assembly	Double	Electric	0.22	1.17	1.01	0.84
	Pane	Non-electric	0.37	1.03	1.15	0.90
	Single	Electric	0.04	2.34	0.01	0.40
Public Order and	Pane	Non-electric	0.06	2.49	0.04	0.52
Safety (Police and Fire Station)	Double	Electric	0.01	1.03	0.01	0.15
	Pane	Non-electric	0.02	1.08	0.02	0.20
	Single	Electric	0.49	2.81	2.32	1.53
Policious Worship	Pane	Non-electric	0.81	2.54	2.77	1.85
Religious Worship	Double	Electric	0.22	1.17	1.01	0.84
	Pane	Non-electric	0.37	1.03	1.15	0.90
	Single	Electric	2.53	5.84	4.97	7.91
Service (Beauty,	Pane	Non-electric	2.92	6.71	6.75	8.74
Auto Repair Workshop)	Double	Electric	1.10	3.04	2.32	3.35
	Pane	Non-electric	1.25	3.56	3.04	3.72

Table 13-30. Energy Savings Factors for Reflective Window Film by Facility Type and Window Orientation for
Roanoke, VA

Facility Type ²²⁷	Window Type	Heating System Type ²²⁸	ESF _{north} (kWh/sq.ft.)	ESF _{east} (kWh/sq.ft.)	ESF _{south} ²²⁹ (kWh/sq.ft.)	ESF _{west} (kWh/sq.ft.)
	Single	Electric	1.80	4.39	7.28	5.99
Education – Elementary and	Pane	Non-electric	1.90	5.83	7.76	9.74
Middle School	Double	Electric	0.82	1.77	3.21	2.50
	Pane	Non-electric	0.82	2.24	3.47	3.86
	Single	Electric	3.91	7.10	14.39	10.93
Education – High	Pane	Non-electric	3.36	7.57	11.09	14.03
School	Double	Electric	1.66	2.85	6.35	4.32
	Pane	Non-electric	1.60	2.82	4.94	6.15
	Single	Electric	3.91	7.10	14.39	10.93
Education – College and University	Pane	Non-electric	3.36	7.57	11.09	14.03
	Double	Electric	1.66	2.85	6.35	4.32
	Pane	Non-electric	1.60	2.82	4.94	6.15

²²⁷ Warehouse and storage building type DEER models do not have windows. Tracking data with this building type will be flagged for on-site verification.

²²⁸ Non-electric heating systems were represented by gas heating in building energy models.

²²⁹ Negative demand reduction is observed in some building types for south window orientation, implying that installation of window film on the south side of the buildings leads to increased energy use due to increase heating load in the winter season.

Facility Type ²²⁷	Window Type	Heating System Type ²²⁸	ESF _{north} (kWh/sq.ft.)	ESF _{east} (kWh/sq.ft.)	ESF _{south} ²²⁹ (kWh/sq.ft.)	ESF _{west} (kWh/sq.ft.)
	Single	Electric	4.72	7.40	6.12	8.18
Food Salos Grocory	Pane	Non-electric	5.67	8.55	7.50	9.28
Food Sales - Grocery	Double	Electric	15.20	5.16	2.82	3.28
	Pane	Non-electric	1.30	5.86	3.41	3.76
	Single	Electric	4.72	7.40	6.12	8.18
Food Sales –	Pane	Non-electric	5.67	8.55	7.50	9.28
Convenience Store	Double	Electric	15.20	5.16	2.82	3.28
	Pane	Non-electric	1.30	5.86	3.41	3.76
	Single	Electric	4.72	7.40	6.12	8.18
Food Sales – Non- electric Station	Pane	Non-electric	5.67	8.55	7.50	9.28
Convenience Store	Double	Electric	15.20	5.16	2.82	3.28
	Pane	Non-electric	1.30	5.86	3.41	3.76
	Single	Electric	0.00	6.65	8.27	11.94
Food Service - Full	Pane	Non-electric	0.00	7.47	10.04	13.01
Service	Double	Electric	0.00	0.00	3.93	5.39
	Pane	Non-electric	0.00	3.15	4.67	5.86
	Single	Electric	0.00	3.67	4.61	6.39
Food Service - Fast	Pane	Non-electric	0.00	5.12	7.10	8.04
Food	Double	Electric	0.00	1.57	2.28	2.96
	Pane	Non-electric	0.00	2.19	3.35	3.63
	Single	Electric	7.47	33.28	15.45	29.99
Health Care-inpatient	Pane	Non-electric	4.93	18.79	11.14	18.06
nealth Care-inpatient	Double	Electric	3.08	14.18	7.16	11.60
	Pane	Non-electric	2.00	7.83	4.89	6.83
	Single	Electric	1.08	38.81	16.61	23.40
Health Care-	Pane	Non-electric	1.68	30.34	16.53	23.14
outpatient	Double	Electric	0.38	16.38	7.03	9.13
	Pane	Non-electric	0.66	12.63	6.73	9.02
	Single	Electric	3.68	11.79	12.87	10.12
Lodging – (Hotel, Motel, and	Pane	Non-electric	4.25	13.72	14.48	11.12
Dormitory)	Double	Electric	1.50	4.96	5.45	4.09
20111101.37	Pane	Non-electric	1.67	5.42	6.13	4.17
	Single	Electric	2.55	7.21	5.28	8.45
Mercantile (mall)	Pane	Non-electric	2.93	8.10	6.79	9.21
	Double	Electric	1.13	5.04	2.48	3.52
	Pane	Non-electric	1.27	5.57	3.09	3.85
	Single	Electric	4.72	7.40	6.12	8.18
Mercantile (Retail,	Pane	Non-electric	5.67	8.55	7.50	9.28
not mall)	Double	Electric	15.20	5.16	2.82	3.28
	Pane	Non-electric	1.30	5.86	3.41	3.76
	Single	Electric	1.55	5.26	2.32	5.04
Office – Small	Pane	Non-electric	1.79	5.80	3.00	5.89
(<40,000 sq ft)	Double	Electric	0.67	2.13	0.93	2.04
	Pane	Non-electric	0.74	2.31	1.16	2.35

Facility Type ²²⁷	Window Type	Heating System Type ²²⁸	ESF _{north} (kWh/sq.ft.)	ESF _{east} (kWh/sq.ft.)	ESF _{south} ²²⁹ (kWh/sq.ft.)	ESF _{west} (kWh/sq.ft.)
	Single	Electric	5.65	17.39	15.96	17.77
Office – Large (≥	Pane	Non-electric	2.27	6.71	7.37	8.80
40,000 sq ft)	Double	Electric	2.25	6.81	6.16	6.67
	Pane	Non-electric	1.03	2.70	3.05	3.50
	Single	Electric	0.05	2.48	0.01	0.40
Other ²¹⁴	Pane	Non-electric	0.08	2.62	0.04	0.52
Other	Double	Electric	0.03	1.09	0.01	0.16
	Pane	Non-electric	0.04	1.15	0.02	0.21
	Single	Electric	0.45	2.73	2.42	1.40
Public Assembly	Pane	Non-electric	0.80	2.63	2.85	1.84
Fublic Assembly	Double Pane	Electric	0.16	1.10	1.01	0.60
		Non-electric	0.37	1.07	1.18	0.94
	Single	Electric	0.05	2.48	0.01	0.40
Public Order and Safety (Police and	Pane	Non-electric	0.08	2.62	0.04	0.52
Fire Station)	Double	Electric	0.03	1.09	0.01	0.16
	Pane	Non-electric	0.04	1.15	0.02	0.21
	Single	Electric	0.45	2.73	2.42	1.40
Religious Worship	Pane	Non-electric	0.80	2.63	2.85	1.84
Religious worship	Double	Electric	0.16	1.10	1.01	0.60
	Pane	Non-electric	0.37	1.07	1.18	0.94
	Single	Electric	2.55	7.21	5.28	8.45
Service (Beauty,	Pane	Non-electric	2.93	8.10	6.79	9.21
Auto Repair Workshop)	Double	Electric	1.13	5.04	2.48	3.52
	Pane	Non-electric	1.27	5.57	3.09	3.85

Table 13-31. Energy Savings Factors for Reflective Window Film by Facility Type and Window Orientation for Sterling, VA

Facility Type ²³⁰	Window Type	Heating System Type ²³¹	ESF _{north} (kWh/sq.ft.)	ESF _{east} (kWh/sq.ft.)	ESF _{south} ²³² (kWh/sq.ft.)	ESF _{west} (kWh/sq.ft.)
_	Single	Electric	1.98	4.27	7.63	6.48
Education –	Pane	Non-electric	2.01	5.59	7.64	9.59
Elementary and Middle School	Double	Electric	0.93	1.73	3.40	2.90
	Pane	Non-electric	0.91	2.15	3.35	4.18
	Single	Electric	3.86	6.56	13.59	10.24
Education – High	Pane	Non-electric	3.37	6.73	10.97	13.29
School	Double	Electric	1.64	2.37	6.34	4.24
	Pane	Non-electric	1.38	2.70	4.64	5.45

²³⁰ Warehouse and storage building type DEER models do not have windows. Tracking data with this building type will be flagged for on-site verification.

²³¹ Non-electric heating systems were represented by gas heating in building energy models.

²³² Negative demand reduction is observed in some building types for south window orientation, implying that installation of window film on the south side of the buildings leads to increased energy use due to increase heating load in the winter season.

Facility Type ²³⁰	Window Type	Heating System Type ²³¹	ESF _{north} (kWh/sq.ft.)	ESF _{east} (kWh/sq.ft.)	ESF _{south} ²³² (kWh/sq.ft.)	ESF _{west} (kWh/sq.ft.)
_	Single	Electric	3.86	6.56	13.59	10.24
Education – College and	Pane	Non-electric	3.37	6.73	10.97	13.29
University	Double	Electric	1.64	2.37	6.34	4.24
omvorony	Pane	Non-electric	1.38	2.70	4.64	5.45
	Single	Electric	2.39	9.43	8.46	7.22
Food Sales -	Pane	Non-electric	2.99	11.00	10.72	8.45
Grocery	Double	Electric	17.37	5.32	2.36	2.87
	Pane	Non-electric	1.29	6.11	2.99	3.40
	Single	Electric	2.39	9.43	8.46	7.22
Food Sales – Convenience	Pane	Non-electric	2.99	11.00	10.72	8.45
Store	Double	Electric	17.37	5.32	2.36	2.87
	Pane	Non-electric	1.29	6.11	2.99	3.40
Food Sales –	Single	Electric	2.39	9.43	8.46	7.22
Non-electric	Pane	Non-electric	2.99	11.00	10.72	8.45
Station	Double	Electric	17.37	5.32	2.36	2.87
Convenience Store	Pane	Non-electric	1.29	6.11	2.99	3.40
	Single	Electric	0.00	6.35	8.25	11.54
Food Service -	Pane	Non-electric	0.00	7.31	10.24	12.72
Full Service	Double	Electric	0.00	0.00	4.06	5.23
	Pane	Non-electric	0.00	3.06	4.77	5.64
	Single	Electric	0.00	3.43	4.31	6.22
Food Service -	Pane	Non-electric	0.00	4.88	7.00	7.91
Fast Food	Double	Electric	0.00	1.45	2.21	2.73
	Pane	Non-electric	0.00	2.11	3.30	3.47
	Single	Electric	6.44	33.03	16.28	29.64
Health Care-	Pane	Non-electric	4.34	18.41	11.38	17.56
inpatient	Double	Electric	3.32	13.83	7.45	11.51
	Pane	Non-electric	2.08	7.52	4.90	6.66
	Single	Electric	1.04	37.91	16.28	22.83
Health Care-	Pane	Non-electric	1.66	29.45	16.06	22.62
outpatient	Double	Electric	0.37	16.33	6.66	8.89
	Pane	Non-electric	0.64	12.60	6.26	8.80
	Single	Electric	3.43	10.46	12.34	9.39
Lodging – (Hotel,	Pane	Non-electric	4.02	12.44	13.93	10.15
Motel, and	Double	Electric	1.40	4.14	5.09	3.48
Dormitory)	Pane	Non-electric	1.62	5.05	5.78	3.86
	Single	Electric	2.41	5.59	4.81	7.64
Mercantile (mall)	Pane	Non-electric	2.86	6.62	6.69	8.63
	Double	Electric	1.06	3.00	2.17	3.20
	Pane	Non-electric	1.23	3.52	2.95	3.60
	Single	Electric	2.39	9.43	8.46	7.22
Mercantile (Retail,	Pane	Non-electric	2.99	11.00	10.72	8.45
not mall)	Double	Electric	17.37	5.32	2.36	2.87
-	Pane	Non-electric	1.29	6.11	2.99	3.40

Facility Type ²³⁰	Window Type	Heating System Type ²³¹	ESF _{north} (kWh/sq.ft.)	ESF _{east} (kWh/sq.ft.)	ESF _{south} ²³² (kWh/sq.ft.)	ESF _{west} (kWh/sq.ft.)
	Single	Electric	1.54	4.85	2.11	4.50
Office – Small	Pane	Non-electric	1.70	5.36	2.89	5.48
(<40,000 sq ft)	Double	Electric	0.65	1.96	0.83	1.78
	Pane	Non-electric	0.70	2.15	1.12	2.13
	Single	Electric	5.54	16.64	15.44	16.95
Office – Large (≥	Pane	Non-electric	2.07	6.66	7.45	8.65
40,000 sq ft)	Double	Electric	2.23	6.07	6.10	6.35
	Pane	Non-electric	0.97	2.76	3.10	3.44
	Single	Electric	0.08	2.35	0.02	0.38
Other ²¹⁴	Pane	Non-electric	0.10	2.53	0.04	0.51
Other	Double	Electric	0.03	1.02	0.01	0.13
	Pane	Non-electric	0.03	1.09	0.02	0.19
	Single	Electric	0.33	2.63	2.07	1.38
Public Assembly	Pane	Non-electric	0.76	2.44	2.58	1.75
I ublic Assembly	Double	Electric	0.15	1.07	0.85	0.70
	Pane	Non-electric	0.35	0.96	1.05	0.90
	Single	Electric	0.08	2.35	0.02	0.38
Public Order and Safety (Police and	Pane	Non-electric	0.10	2.53	0.04	0.51
Fire Station)	Double	Electric	0.03	1.02	0.01	0.13
	Pane	Non-electric	0.03	1.09	0.02	0.19
	Single	Electric	0.33	2.63	2.07	1.38
Worship Do	Pane	Non-electric	0.76	2.44	2.58	1.75
	Double	Electric	0.15	1.07	0.85	0.70
	Pane	Non-electric	0.35	0.96	1.05	0.90
Osmiss (Desut	Single	Electric	2.41	5.59	4.81	7.64
Service (Beauty, Auto Repair	Pane	Non-electric	2.86	6.62	6.69	8.63
Workshop)	Double	Electric	1.06	3.00	2.17	3.20
	Pane	Non-electric	1.23	3.52	2.95	3.60

Table 13-32. Energy Savings Factors for Reflective Window Film by Facility Type and Window Orientation forRichmond, VA

Facility Type ²³³	Windo w Type	Heating System Type ²³⁴	ESF _{north} (kWh/sq.ft.)	ESF _{east} (kWh/sq.ft.)	ESF _{south} ²³⁵ (kWh/sq.ft.)	ESF _{west} (kWh/sq.ft.)
-	Single	Electric	1.90	4.53	7.56	6.30
Education –	mentary and	Non-electric	2.07	6.11	8.28	9.97
Middle School		Electric	0.85	1.82	3.26	2.73
		Non-electric	0.91	2.35	3.82	4.33

²³³ Warehouse and storage building type DEER models do not have windows. Tracking data with this building type will be flagged for on-site verification.

²³⁴ Non-electric heating systems were represented by gas heating in building energy models.

²³⁵ Negative demand reduction is observed in some building types for south window orientation, implying that installation of window film on the south side of the buildings leads to increased energy use due to increase heating load in the winter season.

Facility Type ²³³	Windo w Type	Heating System Type ²³⁴	ESF _{north} (kWh/sq.ft.)	ESF _{east} (kWh/sq.ft.)	ESF _{south} ²³⁵ (kWh/sq.ft.)	ESF _{west} (kWh/sq.ft.)
	Single	Electric	4.27	7.43	17.99	11.96
Education – High	Pane	Non-electric	3.76	7.72	11.71	14.84
School	Double	Electric	1.97	2.87	7.06	4.83
	Pane	Non-electric	1.67	2.70	5.17	5.94
	Single	Electric	4.27	7.43	17.99	11.96
Education – College	Pane	Non-electric	3.76	7.72	11.71	14.84
and University	Double	Electric	1.97	2.87	7.06	4.83
	Pane	Non-electric	1.67	2.70	5.17	5.94
	Single	Electric	2.67	10.12	8.56	8.94
Food Sales -	Pane	Non-electric	3.16	11.47	10.14	10.16
Grocery	Double	Electric	14.39	4.81	3.68	3.19
	Pane	Non-electric	1.38	5.41	4.39	3.63
	Single	Electric	2.67	10.12	8.56	8.94
Food Sales –	Pane	Non-electric	3.16	11.47	10.14	10.16
Convenience Store	Double	Electric	14.39	4.81	3.68	3.19
	Pane	Non-electric	1.38	5.41	4.39	3.63
Food Colos Non	Single	Electric	2.67	10.12	8.56	8.94
Food Sales – Non- electric Station	Pane	Non-electric	3.16	11.47	10.14	10.16
Convenience Store	Double	Electric	14.39	4.81	3.68	3.19
	Pane	Non-electric	1.38	5.41	4.39	3.63
	Single	Electric	0.00	6.99	8.48	12.30
Food Service - Full	Pane	Non-electric	0.00	7.64	10.09	13.05
Service	Double	Electric	0.00	0.00	4.06	5.58
	Pane	Non-electric	0.00	3.24	4.73	5.92
	Single	Electric	0.00	4.02	4.63	6.64
Food Service - Fast	Pane	Non-electric	0.00	5.32	7.16	8.31
Food	Double	Electric	0.00	1.73	2.34	2.97
	Pane	Non-electric	0.00	2.27	3.39	3.65
	Single	Electric	6.70	33.01	15.30	29.63
Health Care-	Pane	Non-electric	4.44	18.38	10.95	17.56
inpatient	Double	Electric	3.33	13.92	7.09	11.48
	Pane	Non-electric	2.08	7.60	4.81	6.67
	Single	Electric	1.31	38.66	15.40	23.69
Health Care-	Pane	Non-electric	1.82	29.61	14.79	22.83
outpatient	Double	Electric	0.48	16.47	6.46	9.44
	Pane	Non-electric	0.72	12.44	5.93	9.04
Lodaina – (Hotel	Single	Electric	3.89	12.04	13.14	10.57
Lodging – (Hotel, Motel, and Dormitory)	Pane	Non-electric	4.44	13.90	14.71	11.55
	Double	Electric	1.60	5.08	5.48	4.23
	Pane	Non-electric	1.84	5.55	6.18	4.34
	Single	Electric	2.70	6.08	5.22	8.25
Mercantile (mall)	Pane	Non-electric	3.03	6.93	6.84	8.99
	Double	Electric	1.14	3.24	2.42	3.48
	Pane	Non-electric	1.29	3.62	3.07	3.79

Facility Type ²³³	Windo w Type	Heating System Type ²³⁴	ESF _{north} (kWh/sq.ft.)	ESF _{east} (kWh/sq.ft.)	ESF _{south} ²³⁵ (kWh/sq.ft.)	ESF _{west} (kWh/sq.ft.)
	Single	Electric	2.67	10.12	8.56	8.94
Mercantile (Retail,	Pane	Non-electric	3.16	11.47	10.14	10.16
not mall)	Double	Electric	14.39	4.81	3.68	3.19
	Pane	Non-electric	1.38	5.41	4.39	3.63
	Single	Electric	1.58	5.22	2.62	5.11
Office – Small	Pane	Non-electric	1.82	5.84	3.13	5.86
(<40,000 sq ft)	Double	Electric	0.69	2.15	1.06	2.07
	Pane	Non-electric	0.73	2.32	1.22	2.34
	Single	Electric	5.58	17.52	15.45	17.57
Office – Large (≥	Pane	Non-electric	2.28	6.37	7.24	8.60
40,000 sq ft)	Double	Electric	2.24	6.42	6.15	6.60
	Pane	Non-electric	1.04	2.59	2.97	3.12
	Single	Electric	0.07	2.58	0.03	0.46
Other ²¹⁴	Pane Double	Non-electric	0.08	2.70	0.04	0.56
Other		Electric	0.03	1.12	0.01	0.17
	Pane	Non-electric	0.03	1.17	0.02	0.21
	Single	Electric	0.58	3.12	2.70	1.43
Public Assembly	Pane	Non-electric	0.86	2.77	2.97	1.98
Fublic Assembly	Double	Electric	0.28	1.21	1.16	0.83
	Pane	Non-electric	0.40	1.11	1.24	0.99
	Single	Electric	0.07	2.58	0.03	0.46
Public Order and Safety (Police and	Pane	Non-electric	0.08	2.70	0.04	0.56
Fire Station)	Double	Electric	0.03	1.12	0.01	0.17
	Pane	Non-electric	0.03	1.17	0.02	0.21
	Single	Electric	0.58	3.12	2.70	1.43
Religious Worship	Pane	Non-electric	0.86	2.77	2.97	1.98
Religious worship	Double	Electric	0.28	1.21	1.16	0.83
	Pane	Non-electric	0.40	1.11	1.24	0.99
	Single	Electric	2.70	6.08	5.22	8.25
Service (Beauty,	Pane	Non-electric	3.03	6.93	6.84	8.99
Auto Repair Workshop)	Double	Electric	1.14	3.24	2.42	3.48
	Pane	Non-electric	1.29	3.62	3.07	3.79

Table 13-33. Energy Savings Factors for Reflective Window Film by Facility Type and Window Orientation forRocky Mount-Wilson, NC

Facility Type ²³⁶	Windo w Type	Heating System Type ²³⁷	ESF _{north} (kWh/sq.ft.)	ESF _{east} (kWh/sq.ft.)	ESF _{south} ²³⁸ (kWh/sq.ft.)	ESF _{west} (kWh/sq.ft.)
	Single	Electric	2.03	4.55	6.75	6.10
Education – Elementary and	Pane	Non-electric	2.27	6.24	8.35	10.70
Middle School	Double	Electric	0.87	1.95	2.90	2.48
	Pane	Non-electric	1.00	2.59	3.76	4.55
	Single	Electric	4.47	8.10	20.13	12.97
Education – High	Pane	Non-electric	3.90	7.03	11.34	14.85
School	Double	Electric	1.91	3.15	7.81	5.23
	Pane	Non-electric	1.82	3.30	5.63	6.82
	Single	Electric	4.47	8.10	20.13	12.97
Education – College	Pane	Non-electric	3.90	7.03	11.34	14.85
and University	Double	Electric	1.91	3.15	7.81	5.23
	Pane	Non-electric	1.82	3.30	5.63	6.82
	Single	Electric	3.64	7.79	6.90	10.81
Food Salas Crossmy	Pane	Non-electric	4.16	8.62	7.74	11.86
Food Sales - Grocery	Double	Electric	10.34	2.28	5.32	3.53
	Pane	Non-electric	1.34	2.63	5.94	3.90
	Single	Electric	3.64	7.79	6.90	10.81
Food Sales – Convenience Store	Pane	Non-electric	4.16	8.62	7.74	11.86
	Double	Electric	10.34	2.28	5.32	3.53
	Pane	Non-electric	1.34	2.63	5.94	3.90
	Single	Electric	3.64	7.79	6.90	10.81
Food Sales – Non- electric Station	Pane	Non-electric	4.16	8.62	7.74	11.86
Convenience Store	Double	Electric	10.34	2.28	5.32	3.53
	Pane	Non-electric	1.34	2.63	5.94	3.90
	Single	Electric	0.00	7.00	8.51	12.74
Food Service - Full	Pane	Non-electric	0.00	7.61	9.80	13.31
Service	Double	Electric	0.00	0.00	3.93	5.83
	Pane	Non-electric	0.00	3.24	4.49	6.11
	Single	Electric	0.00	4.00	4.83	6.96
Food Service - Fast Food	Pane	Non-electric	0.00	5.27	7.11	8.43
	Double	Electric	0.00	1.70	2.37	3.16
	Pane	Non-electric	0.00	2.26	3.35	3.80
	Single	Electric	7.19	32.81	14.02	29.48
Health Care innetiant	Pane	Non-electric	4.67	18.14	10.38	17.45
Health Care-inpatient	Double	Electric	3.20	13.82	6.70	11.43
	Pane	Non-electric	2.02	7.51	4.64	6.62

 ²³⁶ Warehouse and storage building type DEER models do not have windows. Tracking data with this building type will be flagged for on-site verification.
 ²³⁷ Non-electric heating systems were represented by gas heating in building energy models.

²³⁸ Negative demand reduction is observed in some building types for south window orientation, implying that installation of window film on the south side of the buildings leads to increased energy use due to increase heating load in the winter season.

Facility Type ²³⁶	Windo w Type	Heating System Type ²³⁷	ESF _{north} (kWh/sq.ft.)	ESF _{east} (kWh/sq.ft.)	ESF _{south} ²³⁸ (kWh/sq.ft.)	ESF _{west} (kWh/sq.ft.)
	Single	Electric	1.16	38.33	13.54	23.36
Health Care-	Pane	Non-electric	1.65	28.95	13.08	22.33
outpatient	Double	Electric	0.40	16.43	6.00	9.16
	Pane	Non-electric	0.62	12.28	5.59	8.72
Ladalaa (Hatal	Single	Electric	4.29	13.30	13.93	12.22
Lodging – (Hotel, Motel, and	Pane	Non-electric	4.89	15.27	15.50	13.04
Dormitory)	Double	Electric	1.79	5.71	5.97	4.97
	Pane	Non-electric	2.05	6.16	6.64	5.21
	Single	Electric	2.88	7.99	5.73	8.84
Mercantile (mall)	Pane	Non-electric	3.05	8.60	6.79	9.15
	Double	Electric	1.20	3.07	2.64	3.68
	Pane	Non-electric	1.27	3.32	3.10	3.84
	Single	Electric	3.64	7.79	6.90	10.81
Mercantile (Retail,	Pane	Non-electric	4.16	8.62	7.74	11.86
not mall)	Double	Electric	10.34	2.28	5.32	3.53
	Pane	Non-electric	1.34	2.63	5.94	3.90
	Single	Electric	1.75	5.48	3.32	5.40
Office – Small	Pane	Non-electric	1.86	5.70	3.49	5.91
(<40,000 sq ft)	Double	Electric	0.74	2.26	1.33	2.18
	Pane	Non-electric	0.75	2.29	1.36	2.29
	Single	Electric	5.44	17.77	15.93	18.02
Office – Large (≥	Pane	Non-electric	2.41	6.22	7.13	8.49
40,000 sq ft)	Double	Electric	2.21	7.05	6.45	6.77
	Pane	Non-electric	1.07	2.46	2.89	3.21
	Single	Electric	0.11	2.61	0.03	0.51
Other ²¹⁴	Pane	Non-electric	0.11	2.69	0.04	0.58
Other	Double	Electric	0.05	1.14	0.02	0.19
	Pane	Non-electric	0.05	1.17	0.03	0.21
	Single	Electric	0.53	2.69	2.92	1.45
Public Assembly	Pane	Non-electric	0.85	2.63	3.27	1.90
FUDIC ASSEIIDIY	Double	Electric	0.26	1.16	1.25	0.84
	Pane	Non-electric	0.40	1.13	1.38	1.00
	Single	Electric	0.11	2.61	0.03	0.51
Public Order and Safety (Police and	Pane	Non-electric	0.11	2.69	0.04	0.58
Fire Station)	Double	Electric	0.05	1.14	0.02	0.19
riie Station)	Pane	Non-electric	0.05	1.17	0.03	0.21
	Single	Electric	0.53	2.69	2.92	1.45
Religious Worship	Pane	Non-electric	0.85	2.63	3.27	1.90
ivendions morship	Double	Electric	0.26	1.16	1.25	0.84
	Pane	Non-electric	0.40	1.13	1.38	1.00
	Single	Electric	2.88	7.99	5.73	8.84
Service (Beauty,	Pane	Non-electric	3.05	8.60	6.79	9.15
Auto Repair Workshop)	Double	Electric	1.20	3.07	2.64	3.68
	Pane	Non-electric	1.27	3.32	3.10	3.84

Table 13-34: Energy Savings Factors for Reflective Window Film by Facility Type and Window Orientation for	
Elizabeth City, NC	

Facility Type ²³⁹	Window Type	Heating System Type ²⁴⁰	ESF _{north} (kWh/sq.ft.)	ESF _{east} (kWh/sq.ft.)	ESF _{south} ²⁴¹ (kWh/sq.ft.)	ESF _{west} (kWh/sq.ft.)
E du cation	Single	Electric	1.97	5.26	7.38	6.86
Education – Elementary and	Pane	Non-electric	2.35	6.78	9.05	11.31
Middle School	Double	Electric	0.87	1.98	3.24	3.04
	Pane	Non-electric	1.00	2.50	4.12	4.64
	Single	Electric	4.77	9.14	20.46	14.20
Education – High	Pane	Non-electric	4.50	8.42	12.67	17.47
School	Double	Electric	2.07	3.27	7.93	5.56
	Pane	Non-electric	1.98	3.03	5.78	7.32
-	Single	Electric	4.77	9.14	20.46	14.20
Education – College and	Pane	Non-electric	4.50	8.42	12.67	17.47
University	Double	Electric	2.07	3.27	7.93	5.56
Chinterency	Pane	Non-electric	1.98	3.03	5.78	7.32
	Single	Electric	3.05	11.06	10.22	8.97
Food Sales -	Pane	Non-electric	3.44	11.99	11.43	9.66
Grocery	Double	Electric	9.07	5.28	3.11	3.56
	Pane	Non-electric	1.39	5.72	3.45	3.86
	Single	Electric	3.05	11.06	10.22	8.97
Food Sales –	Pane	Non-electric	3.44	11.99	11.43	9.66
Convenience Store	Double	Electric	9.07	5.28	3.11	3.56
	Pane	Non-electric	1.39	5.72	3.45	3.86
	Single	Electric	3.05	11.06	10.22	8.97
Food Sales – Non- electric Station	Pane	Non-electric	3.44	11.99	11.43	9.66
Convenience Store	Double	Electric	9.07	5.28	3.11	3.56
	Pane	Non-electric	1.39	5.72	3.45	3.86
	Single	Electric	0.00	7.76	8.92	13.31
Food Service - Full Service	Pane	Non-electric	0.00	8.23	10.24	13.96
	Double	Electric	0.00	0.00	4.24	6.03
	Pane	Non-electric	0.00	3.50	4.77	6.31
	Single	Electric	0.00	4.70	5.32	7.63
Food Service -	Pane	Non-electric	0.00	5.84	7.52	9.14
Fast Food	Double	Electric	0.00	2.00	2.55	3.35
	Pane	Non-electric	0.00	2.50	3.52	4.03

²³⁹ Warehouse and storage building type DEER models do not have windows. Tracking data with this building type will be flagged for on-site verification.

²⁴⁰ Non-electric heating systems were represented by gas heating in building energy models.

²⁴¹ Negative demand reduction is observed in some building types for south window orientation, implying that installation of window film on the south side of the buildings leads to increased energy use due to increase heating load in the winter season.

Facility Type ²³⁹	Window Type	Heating System Type ²⁴⁰	ESF _{north} (kWh/sq.ft.)	ESF _{east} (kWh/sq.ft.)	ESF _{south} ²⁴¹ (kWh/sq.ft.)	ESF _{west} (kWh/sq.ft.)
	Single	Electric	6.84	32.68	14.58	29.43
Health Care-	Pane	Non-electric	4.49	18.27	10.64	17.62
inpatient	Double	Electric	3.34	13.81	6.87	11.41
	Pane	Non-electric	2.10	7.57	4.75	6.71
	Single	Electric	1.33	38.81	14.37	23.70
Health Care-	Pane	Non-electric	1.79	29.62	13.78	22.67
outpatient	Double	Electric	0.65	18.01	6.99	9.61
	Pane	Non-electric	0.87	12.69	5.89	9.17
	Single	Electric	4.47	13.85	14.09	12.75
Lodging – (Hotel, Motel, and	Pane	Non-electric	5.03	15.70	15.59	13.63
Dormitory)	Double	Electric	1.87	5.62	6.05	5.13
	Pane	Non-electric	2.06	6.11	6.63	5.34
	Single	Electric	3.12	7.06	6.21	9.43
Mercantile (mall)	Pane	Non-electric	3.25	7.50	7.17	9.76
wercantile (mail)	Double	Electric	1.31	3.58	2.88	3.97
	Pane	Non-electric	1.37	3.83	3.28	4.10
	Single	Electric	3.05	11.06	10.22	8.97
Mercantile (Retail,	Pane	Non-electric	3.44	11.99	11.43	9.66
not mall)	Double	Electric	9.07	5.28	3.11	3.56
	Pane	Non-electric	1.39	5.72	3.45	3.86
	Single	Electric	1.81	5.82	3.27	5.74
Office – Small	Pane	Non-electric	1.88	6.24	3.47	6.26
(<40,000 sq ft)	Double	Electric	0.74	2.37	1.30	2.30
	Pane	Non-electric	0.79	2.52	1.38	2.47
	Single	Electric	5.59	17.97	15.44	18.46
Office – Large (≥	Pane	Non-electric	2.37	6.58	7.21	8.91
40,000 sq ft)	Double	Electric	2.29	6.93	6.27	6.89
	Pane	Non-electric	1.03	2.58	2.92	3.16
	Single	Electric	0.06	2.83	0.03	0.56
Othor ²¹⁴	Pane	Non-electric	0.07	2.88	0.04	0.61
Other ²¹⁴	Double	Electric	0.02	1.23	0.02	0.21
	Pane	Non-electric	0.03	1.25	0.03	0.23
	Single	Electric	0.73	3.44	3.56	1.75
Dublic Accombly	Pane	Non-electric	0.96	3.03	3.72	2.36
Public Assembly	Double	Electric	0.35	1.47	1.55	1.01
	Pane	Non-electric	0.43	1.23	1.55	1.11
	Single	Electric	0.06	2.83	0.03	0.56
Public Order and	Pane	Non-electric	0.07	2.88	0.04	0.61
Safety (Police and Fire Station)	Double	Electric	0.02	1.23	0.02	0.21
	Pane	Non-electric	0.03	1.25	0.03	0.23
	Single	Electric	0.73	3.44	3.56	1.75
Delinious Marshi	Pane	Non-electric	0.96	3.03	3.72	2.36
Religious Worship	Double	Electric	0.35	1.47	1.55	1.01
	Pane	Non-electric	0.43	1.23	1.55	1.11

Facility Type ²³⁹	Window Type	Heating System Type ²⁴⁰	ESF _{north} (kWh/sq.ft.)	ESF _{east} (kWh/sq.ft.)	ESF _{south} ²⁴¹ (kWh/sq.ft.)	ESF _{west} (kWh/sq.ft.)
	Single	Electric	3.12	7.06	6.21	9.43
Service (Beauty,	Pane	Non-electric	3.25	7.50	7.17	9.76
Auto Repair Workshop)	Vorkshop) Double Pane	Electric	1.31	3.58	2.88	3.97
		Non-electric	1.37	3.83	3.28	4.10

13.8.1 Update Summary

Updates made to this section are described in Table 13-16

Table 13-35. Summary of Update(s)

Version	Update Type	Description
2021	New section	Moved window film energy savings factors tables to this sub-appendix.

13.9 Sub-Appendix F2-VIII: General Equations

This section appears in Appendix F1 as Sub-Appendix F1-II: General Equations (a.k.a. Section 19.2).

Equation 1: Cooling Capacities – Btu/h to tons

This equation appears in Appendix F1 as Sub-Appendix F1-II: General Equations (a.k.a. Section 19.2).

Equation 2: Cooling Capacities - tons to Btu/h

This equation appears in Appendix F1 as Sub-Appendix F1-II: General Equations (a.k.a. Section 19.2).

Equation 3: Energy Efficiencies - SEER to EER, for systems < 65,000 Btu/h

This equation appears in Appendix F1 as Sub-Appendix F1-II: General Equations (a.k.a. Section 19.2).

Equation 4: Energy Efficiencies - EER to IEER, for systems ≥ 65,000 Btu/h

This equation appears in Appendix F1 as Sub-Appendix F1-II: General Equations (a.k.a. Section 19.2).

Equation 5: Energy Efficiencies - HSPF to COP

This equation appears in Appendix F1 as Sub-Appendix F1-II: General Equations (a.k.a. Section 19.2).

Equation 6: Energy Efficiencies - COP to HSPF

This equation appears in Appendix F1 as Sub-Appendix F1-II: General Equations (a.k.a. Section 19.2).

Equation 7: Energy Efficiencies - COP to EER

This equation appears in Appendix F1 as Sub-Appendix F1-II: General Equations (a.k.a. Section 19.2).

Equation 8: Energy Efficiencies - kW/tonfull-load to kW/tonIPLV

This equation appears in Appendix F1 as Sub-Appendix F1-II: General Equations (a.k.a. Section 19.2).

Equation 9: Energy Efficiencies – EER_{full-load} **to EER**_{IPLV} This equation appears in Appendix F1 as Sub-Appendix F1-II: General Equations (a.k.a. Section 19.2).

Equation 10: Heat to electric energy – Btu/h to kW

This equation appears in Appendix F1 as Sub-Appendix F1-II: General Equations (a.k.a. Section 19.2).

Dominion Energy North Carolina Docket No. E-22, Sub 604

DNV Energy Insights USA Inc.

APPENDIX G RESIDENTIAL INCOME AND AGE QUALIFYING HOME IMPROVEMENT PROGRAM IMPACT ANALYSIS

INCOME AND AGE QUALIFYING (IAQ) HOME IMPROVEMENT PROGRAM

Evaluation, Measurement, and Verification Report For Virginia Electric and Power Company (Dominion Energy)

Appendix G Impact Evaluation of Program Years 2015–2020

June 15, 2022

Table of contents

1	EXECU	TIVE SUMMARY	1
2	INTROD	UCTION	2
2.1	Program	background	2
2.2	Program	services, delivery, and measures	2
2.3	Evaluati	on objectives	3
2.4	Data sou	irces	3
2.4.1	Trac	king data	3
2.4.2	Billin	g data	4
2.4.3	Wea	ther data	4
3	METHO	DOLOGY	5
3.1	Researc	h design	5
3.2	Analysis		5
3.2.1	Merg	ing the tracking and billing data	5
3.2.2	Crea	ting the comparison group pool data	6
3.3	Tempera	ature normalization	6
3.4	Establis	ning a representative comparison group	7
3.5	Program	impact analysis	7
3.5.1	Weig	hting the sample back to the population	7
3.5.2	Tota	savings estimates	8
3.5.1	Estir	nates of measures and measure group savings	8
4	IMPACT	ESTIMATES	10
4.1	Program	Impacts	10
4.1.1	Num	ber of particpants, the analysis sample, NAC, savings, and confidence intervals	10
4.2	Measure	Impacts	11
APPEN	DIX A. F	ESIDENTIAL IAQ HOME IMPROVEMENT TRACKING DATA ELEMENTS	1
APPEN	ОІХ В. Т	RACKED ENERGY SAVINGS BY MEASURE AND YEAR	1
APPEN	DIX C. V	/EATHER DATA	1
APPEND		ETAILED METHODOLOGY	
-	ature norm		1 3
Establishing a representative comparison group			
-	-	ble back to the population	3
rotal sav	/ings estim	dles	4
APPEND	DIXE. E	M&V WORKPLAN	E-6

List of figures

Figure E-1 Program tracked savings, evaluated savings, and realization rate by year (2015–2020	1
Figure E-2 Tracked savings, evaluated savings, and realization rate by measure group	
Figure 3-1. Relative percent distribution of installed measure categories to all measures	
Figure 4-1 Program tracked savings, evaluated savings, and realization rate by year (2015–2020	10
Figure 4-2 Tracked savings, evaluated savings, and realization rate by measure group	12
Figure 4-3. Percent of tracked measure savings to total measure savings by year	12

List of tables

Table 2-1. Residential IAQ Home Improvement Program eligibility requirements	2
Table 2-2. Residential IAQ Home Improvement Program-eligible measures	
Table 3-1. The number of participants for six program measures and the number of installed measures by participant	
Table 4-1. Program participants, analysis sample, normalized annual consumption (NAC), savings, and confidence interv	als
	11
Table 4-2. Measure group savings per participant for all participants	12
Table 4-3 Measure group savings per participant/year (kWh) for participants with measures	

List of tables – Appendices

Table 4-4. Residential IAQ Home Improvement tracking data	1
Table 4-5 Summary of tracked energy savings by year and measure	
Table 4-6. Summary of weather stations used in the IAQ impact analysis	1
Table 4-7. Model summary for the participants and the comparison group by program period	2
Table 4-8. Distribution of model R ² for the participants and the comparison group by program period	2
Table 4-10. Comparison of pre-installation NAC participants vs comparison group (unweighted)	3
Table 4-11. The strata of tracked savings based on the distribution of the tracked savings for all participants	3
Table 4-12. Total energy savings model statistics summary	4
Table 4-8. Distribution of model R ² for the participants and the comparison group by program period	2 3 3

Jun 15 2022

1 EXECUTIVE SUMMARY

This report presents the results of the impact evaluation of the Residential Income and Age Qualifying (IAQ) Home Improvement program administered by the Virginia Electric and Power Company. The IAQ Home Improvement Program provided a home energy assessment and the direct installation of no-cost energy conservation measures to eligible IAQ households in Dominion's Virginia and North Carolina service territories. The program began in Virginia in May 2015 and in North Carolina in January 2016.

The Income and Age Qualifying Home Improvement program achieved a 105% realization rate for program years 2015– 2020.

68,111 measures, installed across 24,420 accounts, contributed to program impacts.

The goal of the evaluation was to estimate net energy impacts (kWh/year) and the realization rate for the IAQ Home Improvement Program years 2015 through 2020.¹ Annual savings and realization rates by year were calculated for three measure groups: attic insulation, LED lighting, and water distribution measures. The impact evaluation calculated net energy savings using a statistically adjusted engineering (SAE) billing analysis. This analysis used future program participants as the comparison group for current-year participants.

The evaluated savings compared against tracked or deemed savings yielded a

105% realization rate over the program years 2015–2021. The average five-year per-participant savings was 400 kWh/year. While the deemed or tracked savings and evaluated savings may deviate more widely from each other, either by year or by measure group, taken at the program level, which is the goal of the evaluation, the deemed savings equations in the Dominion Energy Technical Reference Manual (DE TRM) were predictive of evaluated savings.

The program's first year (2015) had the lowest realization rate (52%) across all program years. This is not unusual for the first year of enrollment as the program ramps up. In comparison, the realization rates in 2019 and 2020 were higher than realization rates in previous program years.

Impacts were also calculated for three measure groups. Measure-level realization rates were 106% for attic insulation, 111% for LED lighting, and 88% for the water distribution measures. Similar to the program realization rates, the measure-level realization rates were strong, and information from this evaluation will be incorporated into the next annual update of the DE TRM. The average five-year per-participant measure-level savings ranges from 196 kWh/year for LED lighting to 206 kWh/year for water distribution measures.

Figure E-2. Program tracked savings, evaluated savings, and realization rate by year (2015–2020)

Figure E-2. Program tracked savings, evaluated savings, and realization rate by measure group

¹ The realization rate is the proportion of deemed or expected (i.e.tracking) energy and peak demand savings that have been verified for all customers or projects in an evaluation of a program. It is expressed as a percentage.

2 INTRODUCTION

This report presents the results of the impact evaluation of the Residential Income and Age Qualifying (IAQ) Home Improvement program administered by the Virginia Electric and Power Company. The IAQ Home Improvement Program is designed to provide a free service to IAQ customers who would not otherwise have the financial means to complete the work. This evaluation was conducted using the methods defined in the IAQ Home Improvement program EM&V plan across the program years 2015–2020.² The impact evaluation calculated ex post gross energy savings, which in the context of income-qualifying programs, are considered equal to net energy savings.³

2.1 Program background

The IAQ Home Improvement Program provides a home energy assessment and the direct installation of no-cost energy conservation measures (ECM) to eligible IAQ households in Dominion's Virginia and North Carolina service territories. The program began in Virginia in May 2015 and in North Carolina in January 2016. Home assessments and direct installation of ECMs did not begin until July of each state's respective start year due to program start-up and the natural lag between enrollment, qualification, and in-home treatments. The program was scheduled to expire (and in fact paused) in early 2018. However, both the Virginia and North Carolina Commissions granted a three-year program extension, and the program restarted mid-year 2018.⁴ Program eligibility requirements are listed in Table 2-1.

Table 2-1. Residential IAQ Home Improvement Program eligibility requirements⁵

	Virginia	North Carolina		
Residential electric service for single, separately metered multi-family, and mobile homes. Renter households are also eligible with permission from the landlord.				
Income requirements	Total household income at or below 60% of the Virginia median income, or 80% of the local area median income, whichever is greater	Customers must have at or below a total household income of 200% of the federal poverty level		
Age-qualifying income requirements	Customers 60 years or older with a total household income at or below 120% of the Virginia median income	Customers 60 years or older with a total income at or below 250% of the federal poverty level		

2.2 Program services, delivery, and measures

Participation is initiated when a customer contacts a qualified Dominion Energy weatherization service provider (WSP). The WSPs also engage at the local level to spread awareness and promote the program. Once contact is initiated, the WSP determines income and/or age eligibility, performs the home assessment, and identifies qualifying measures. Not all households qualify for all measures. Applicability is determined based on the presence or absence of qualified measures and required pre-conditions such as the level of

² Appendix H., Residential Income and Age Qualifying Home Improvement Program EM&V Plan. Evaluation, Measurement, and Verification Report for Virginia Electric and Power Company (Dominion Energy), Case No. PUR-2018-00168 (Virginia), Docket No. E-22 Sub 577 (North Carolina), Volume 1 of 4, May 15, 2021, Prepared by DNV Energy Insights USA Inc. (DNV).

³ Violette, Daniel M.; Rathbun, Pamela. (2017). <u>Chapter 21: Estimating Net Savings</u> – Common Practices: Methods for Determining Energy-Efficiency Savings for Specific Measures. Golden, CO; National Renewable Energy Laboratory. NREL/SR-7A40-68578, 45.; Synapse Energy Economics, Erin Malone, Wendy Ong, Max Chang. <u>State Net-to-Gross Ratios</u>, <u>Research Results and Analysis for Average State Net-to-Gross Ratios Used in Energy Efficiency Savings Estimates</u>. Prepared for the United States Environmental Protection Agency, January 23, 2015, 2.

⁴ The Program started in Virginia on May 1, 2015, and in North Carolina on January 1, 2016. On May 10, 2018. The respective state commissions approved three years extensions later that year; Virginia on May 10, 2018, Case No. PUR-2017-00129 and North Carolina on July 1, 2018 (Docket No. E-22, Sub 523).

⁵ State and local area median income for 2016–2020 (in 2020 USD) is available from the U.S. Census, Virginia Quick Facts, at <u>https://www.census.gov/quickfacts/fact/table/VA/PST045221</u>. North Carolina data can be accessed from the same page. 2017–2021 federal poverty guidelines are published by the U.S. Dept. Of Health and Human Services at <u>https://aspe.hhs.gov/topics/poverty-economic-mobility/poverty-guidelines/prior-hhs-poverty-guidelines</u> <u>guidelines-federal-register-references/2021-poverty-guidelines</u>

existing insulation, or existing lighting types. The contractor reviews the energy assessment with the customer, using it as a vehicle to provide energy education, and installs the measures. Table 2-2 contains the list of approved measures.

Table 2-2. Residential IAQ Home Improvement Program-eligible measures

End Use	Measures			
Lighting	ENERGY STAR [®] LED A-Line lamps (up to 6 to replace existing 40- and 60-watt incandescent lamps.			
Whole house	Attic insulation			
Domestic	Low-flow showerhead(s)			
Hot	Faucet aerators			
Water	Hot water pipe wrap insulation			

2.3 Evaluation objectives

The goal of the evaluation is to estimate energy impacts (kWh/year) and the realization rate for the IAQ Home Improvement Program years 2015–2020.⁶ Annual savings and realization rates by year are calculated for three measure groups: attic insulation, LED lighting, and water distribution measures. Program impacts by year and measure are included in a secondary analysis. The evaluation uses a statistically adjusted engineering (SAE) billing analysis, with a representative comparison group.

2.4 Data sources

DNV used the following three primary data sources in this evaluation:

- Tracking data. The tracking database contains all participant, measure, and program related information. The tracking data is used for program reporting and to calculate "tracked" savings estimates. Dominion Energy provides tracking data from their Business Intelligence (BI) system to DNV on a monthly basis.
- 2. *Billing data*. For each account, Dominion Energy provided all available monthly billing data (kWh) from January 2010 through December 2021. The billing data was merged with the tracking data to identify the pre- and post-program periods and to develop the comparison group pool.
- 3. *Weather data*. The temperature data used in the analysis was taken from the National Oceanic and Atmospheric Administration (NOAA).⁷

2.4.1 Tracking data

The Residential IAQ Home Improvement Program tracking database provides information about program activity. This included:

- Participant data such as contact information, building type and condition, end use information, and utility identifiers such as rate class
- Program data such as participation dates, vendor information, and pre-existing conditions
- Measure-level data such as measure type, quantity, and installation date
- Measure-level gross savings estimates that are calculated using the deemed methods defined in the DE TRM.⁸

For program years 2015–2020, 68,111 measures installed across 24,420 accounts contributed to program impacts. The tracked measure-level energy savings by year and number of accounts can be found in APPENDIX B, Tracked energy savings by measure and

⁶ The realization rate is the proportion of deemed or expected (i.e.tracking) energy and peak demand savings that have been verified for all customers or projects in an evaluation of a program. It is expressed as a percentage.

⁷ NOAA, National Centers for Environmental Information, <u>Climate Data Online, https://www.ncdc.noaa.gov/cdo-web/</u> (accessed Mar 29, 2022).

⁸ Tracked (ex ante) savings are calculated using methods defined in the DE TRM. The DE TRM, updated annually, is included as an appendix to the annual EM&V report.

year. For each account, the period just on and after installation (the installation window) was established using the measure approval dates.

The tracking data was examined to identify inconsistencies or outliers. There were 314 participants with very low expected savings (i.e., total site savings of less than 30 kWh/year). This level of savings would be lost in the natural variability of a participant's electric consumption. Accordingly, these were eliminated from the analysis. There were also two customers with extremely large tracking savings (greater than 15,000 kWh/year). Since these participants were nearly three times larger than the next-largest participant, these were identified as outliers and were also eliminated from the analysis. This is a low data attrition rate for a typical income-qualified evaluation.

2.4.2 Billing data

This analysis was conducted using monthly customer billing data. Dominion Energy provided 1,455,197 monthly readings for 26,283 participant accounts for 2012–2021. Although the evaluation covered the 2015–2020 program years, the post-installation period for 2020 participants extended into 2021. Care was taken to include as much of the source billing data as possible. However, certain types of bills were identified as possible anomalies. The following bill types or participants were removed from the analysis set.

- Bills with less than or equal to zero energy consumption
- Bills with short or long monthly read cycles (less than 20 days or greater than 40 days)
- Bills that were obtained by postcard, estimated, rebilled, PC-read, or phoned in
- Duplicate records
- Participants who had fewer than 24 months of billing data⁹

The billing analysis requires that a participant (by premise and account number) have at least 10 months of billing data before and after the measure installation date. If a customer engages with the program fewer than 12 months after they have moved into the premise or moves out fewer than 12 months after project completion, there isn't enough billing data for that site to establish reliable models. Accordingly that account is excluded from the analysis. Between 2015 and 2020, 21,257, or 81%, of participants had enough billing data to be considered for the analysis.

2.4.3 Weather data

The billing analysis used weather data from the NOAA weather station closest to the customer service address. Temperature data from 27 NOAA weather stations for 296 participant zip codes was used in the analysis. The list of the weather stations used in the IAQ impact analysis is presented in APPENDIX C, Weather data.

Daily weather data were retained for each of the 27 stations from January 1, 2010, to December 1, 2021. The data set was checked for missing values. When there was missing data, it was filled using the relationship between the target weather station and the weather station in Richmond International Airport.

3 METHODOLOGY

3.1 Research design

This impact evaluation used a time-series comparison/cross-sectional research design. This research design estimates the program impacts by examining the changes in a participant's electric usage patterns 10 months before (pre-treatment) and after (post-treatment) the measure installation date.

A representative comparison group is key to determining program attributable net energy savings. A comparison group is used to account for the energy usage changes of participants to the energy usage changes of a representative comparison group over the same period. The goal of a well-matched comparison group is to increase the likelihood that increases or decreases in participant energy consumption attributable to exogenous, or non-program factors such as changes in the economy, the price of energy, or trends in equipment efficiency, do not inflate or deflate program-related savings.

This analysis uses future program participants as the comparison group for current-year participants with the assumption that the participant mix has been stable over time and that future participants were similar to current participants, apart from participation. This research design also helps reduce concerns about self-selection bias and free-ridership, and improves the evaluation's internal and external validity.¹⁰

The analytical approach was an SAE model, which incorporated expected savings estimates from the tracking data into the analysis.

3.2 Analysis

The analysis was performed in six steps, with each step building on the one before it. Merge the tracking and billing data together

- 4. Create the comparison group pool
- 5. Temperature-normalize the annual consumption of the participant and comparison group using monthly billing data from both groups
- 6. Identify a representative and matched comparison group using the normalized annual consumption (NAC) estimated in step three
- 7. Estimate the annual and aggregate program level total energy savings
- 8. Estimate the measure group energy savings

Each step is described in the following sections.

3.2.1 Merging the tracking and billing data

The billing data was merged with the tracking data using matching electric account numbers. The participant data was split into preprogram and post-program data sets, based on the measure installation window. The billing data for each period was checked. Only bills within 2 years of participation were used. To be included in the analysis, a participant needed to have at least 8 bills in each period, and at least 3 winter bills (November through April) and 3 summer bills (May through October).¹¹ Data from the 15,199 participants who met these requirements were available for the analysis.

¹⁰ Internal validity means the evaluation is conducted in a manner that allows the results to isolate the impact of the activity being studied. When other factors are not recognized, the changes attributed to the program may be the result of other phenomena. For example, if the experiment does not recognize the dynamic nature of a participant's characteristics, their change in usage could be explained by the impact of the implementation of the program or, alternatively, by the change in other participant characteristics. A research design can help achieve external validity by ensuring that the results are representative of a larger population of interest, allowing for the findings to be generalized. For example, for the selected program, the information determined by a sample of participants, and the corresponding comparison group, permits the evaluation to represent the total program impacts.

¹¹ The eight total bills and the three seasonal bill requirements were included to assure that the participant had enough degrees of freedom to estimate an adequate weather normalization model.

3.2.2 Creating the comparison group pool data

Although a comparison group is always required, the COVID-19 pandemic caused fundamental changes in energy consumption in 2020–2021 that must be recognized by the evaluation. These non-program effects can be mitigated by a well-matched comparison group. The analysis plan called for pre-treatment participants (participants who joined the program in later years) to be used to develop the comparison group. Accordingly, all participant bills before the measure installation window were considered in the initial comparison group pool, and only customers who maintained the same account in the analysis period were included. For example, a participant who joined the program in 2017 and had 3 years of account history was an ideal candidate for the comparison group of non-participants. Future participants are considered a good proxy for existing participants because they are apt to share similar characteristics to other program participants.

Every unique measure installation date window was identified from the tracking data. These dates were merged with each account in the comparison group pool. If an account had billing data within 9 months of an installation window (either before or after the installation), that customer/installation window combination was kept for consideration in the comparison group pool for participants with that installation window.

Each account/installation date combination was split into pre-program and post-program data sets. Each of these combinations was checked using the same criteria as the participant analysis data (i.e., only bills within 2 years of the installation window, minimum of 8 bills per period, etc.). After these edits, the comparison pool analysis data sets had 723,619 account/installation window combinations.

3.3 Temperature normalization

By controlling for other significant non-program influences, such as weather, the program's effects can be isolated and quantified. Accordingly, the first step in the analysis is to develop normalized annual consumption (NAC) during the pre-installation and the post-installation periods for each of the accounts in the participant group and for each of the account/installation window combinations for the comparison group. The temperature normalization procedure is taken from the U.S. Department of Energy's (DOE) Uniform Methods Project (UMP) and based on the Princeton Scorekeeping Method (PRISM[®]). The temperature normalization model isolates the relationship between temperature and energy consumption.¹² Models were developed to normalize each participant and comparison group pool member's energy consumption values and remove the effects of weather for both the pre-installation and the post-installation periods.

The model estimates the component of the energy usage attributed to baseload consumption (i.e., lighting, and hot water) and space conditioning (heating and cooling). The model isolates the baseload usage from the space conditioning usage and estimates the incremental rate of energy consumption per degree day for space conditioning, and the set point (or outdoor temperature) at which space conditioning occurs. This set point is influenced by the physical characteristic of the house and the thermostat behavior of its occupants and is unique to each site; therefore, heating degree days are not assumed to accumulate at or below 65°F for every site under this model.

The site-level temperature normalization model recognizes that each customer has unique operating characteristics that influence the rate of energy consumption for space conditioning under given temperature conditions. These characteristics include structure type, appliance mix, space conditioning system(s) and how they are operated, and demographics. To capture these unique space

¹² Agnew, K.; Goldberg, M. (2017). "Chapter 8: Whole-Building Retrofit with Consumption Data Analysis Evaluation Protocol," The Uniform Methods Project: Methods for Determining Energy- Efficiency Savings for Specific Measures. Golden, CO; National Renewable Energy Laboratory. NREL/SR-7A40-68564. <u>http://www.nrel.gov/docs/fy17osti/68564.pdf</u>; Fels, Margaret F. 1986. "PRISM: An Introduction". *Energy and Buildings*. 9, 5-18.

conditioning characteristics, the normalization process compares multiple models across a range of heating and cooling reference, or set point, temperatures for each customer account. The model chosen to represent a customer's energy use is the one that best linearizes the relationship between usage and degree days, or the best-fit model. For each customer and site, the best fit model is identified based on their unique temperature reference or set point. A more detailed description of the model and the model results can be found in APPENDIX D. Detailed methodology.

3.4 Establishing a representative comparison group

The comparison group was built from the pre-program participants (the comparison group pool). The NAC and NDC of each member of the comparison group pool were estimated in the temperature normalization step. DNV matched each participant to each comparison group pool customer based on the participant's installation window. The root mean square error (RMSE)between the participant preinstallation NDC and the comparison pre-installation NDC was calculated. For each participant, the three comparison customers with the lowest RMSE were included in the final comparison group.

The comparison group was chosen *with replacement*. Selecting a sample *with replacement* allows a comparison group customer to have the potential to be designated a comparison group member for more than one participant. **Error! Reference source not found.** presents a comparison of the pre-installation NAC for the participants and the comparison groups. This table demonstrates that the comparison group was well-matched to the participants' NAC in the pre-program period. The comparison of the pre-installation NAC participants versus the comparison group can be found in APPENDIX D. Detailed Methodology.

3.5 Program impact analysis

The objectives of the impact analysis of the IAQ Home improvement program are to:

- Calculate the program impacts and the realization rate for program years 2015–2020
- Calculate the program impacts and realization rate by program years 2015–2020
- Calculate program impacts by measure and measure groups for program years 2015–2020
- Conduct the analysis according to protocols defined in the program EM&V plan¹³

DNV carried out a two-step process to meet these objectives.

First, program impacts were calculated for each site; then, the site-level estimates were used to calculate the measure group impacts. Half of the participants had enough pre-installation and post-installation billing data to be included in the analysis. These participants are considered a representative sample of the population of participants.

3.5.1 Weighting the sample back to the population

To ensure that the results of the sample are an unbiased estimate of the population, the results of the analysis are weighted using case weights. A case weight is defined as the number of population participants represented by a sample participant. To determine the case weights, the population is stratified into homogeneous groups. For this analysis, we based the stratification groups on program year and a tracked savings category based on the quartiles of the distribution of the total tracking savings of all participants. The strata of tracked savings based on the distribution of the tracked savings for all participants can be found in APPENDIX D. Detailed methodology.

¹³ Appendix H., Residential Income and Age Qualifying Home Improvement Program EM&V Plan. Evaluation, Measurement, and Verification Report for Virginia Electric and Power Company (Dominion Energy).

3.5.2 Total savings estimates

For the total program savings, we used an SAE regression model. In this model, the post-installation usage is a function of the preinstallation usage and the expected program savings (i.e., the tracked savings). These individual estimates are weighted using the case weights and summed by variables of interest (e.g., program year) to provide the estimated overall program savings. The basic form of this model is shown in APPENDIX D. Detailed methodology.

3.5.1 Estimates of measures and measure group savings

As a result of the nature of the natural variation of residential consumption, it is difficult to achieve statistically significant estimates associated with small (less than 5%) influences using billing analyses. Accordingly, the basic form of the individual measure regression model shown in APPENDIX D used the *total* tracked savings for a participant as an independent variable. While adding additional variables to define individual measures should provide the same estimate of total savings, the individual estimates of small measures could be misleading, collinear with other measures, or statistically insignificant.

For the IAQ Home Improvement program, the disaggregation of the total savings into measure groups recognized that the measures are a function of the total participant savings. Accordingly, an initial estimate of total participant savings was incorporated into the individual measure regression model as the dependent variable, and the individual estimates of measure groupings were used as the independent variables.

Table 3-1 shows the number of participants for six program measures: one lighting (LEDs), one building envelope (attic insulation), and four water heating measures. Since the impact of the individual water heating measures is small and the impacts would be correlated (i.e., collinear), the water heating measures were grouped. Figure 3-1 shows the relative percent distribution of installed measure categories to all measures. This view shows the year over year change in measure mix. Although the relative distribution of installed measures differs slightly across program years, there was a substantial increase in building envelope measures in 2020, the first year of the Covid-19 pandemic.

Year	Total	LED (N)	Attic Insulation (N)	Bathroom Aerators (N)	Kitchen Aerators (N)	Pipe Insulation (N)	Low Flow Showerhead (N)
2015	1,523	1,513	628	945	260	335	955
2016	8,560	8,199	4,121	4,460	4,286	3,355	4,486
2017	6,100	5,633	2,840	2,454	2,687	2,529	2,416
2018	1,142	726	557	474	601	436	430
2019	6,029	5,165	2,158	1,099	1,083	694	917
2020	1,066	420	875	106	81	59	128
Total	24,420	21,656	11,179	9,538	8,998	7,408	9,332

Table 3-1. The number of participants for six program measures and the number of installed measures by participant

Dominion Energy North Carolina Docket No. E-22, Sub 604

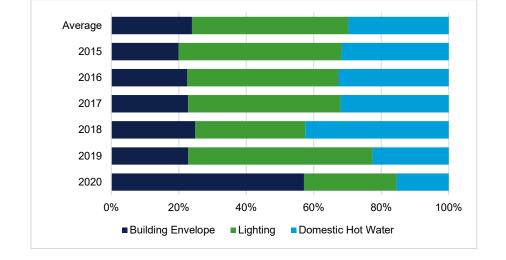


Figure 3-1. Relative percent distribution of installed measure categories to all measures

4 IMPACT ESTIMATES

The following sections describe the results of the impact analysis for the program and by measure.

4.1 Program Impacts

The evaluated savings compared against expected or tracked savings yielded a 105% realization rate. The overall per-participant evaluated savings was 400 kWh per participant/year. Tracked savings, evaluated savings, and realization rates by year are shown in Table 4-1. Tracked savings in 2015 is high relative to evaluated savings resulting in the lowest realization rate (52%) which is not unusual for the first year of a program. Measure-level realization rates were 88% for the water distribution measures, 106% for attic insulation, and 111% for LED lighting, as discussed in further detail in Section 4.2.

Figure 4-1 Program tracked savings, evaluated savings, and realization rate by year (2015-2020)

4.1.1 Number of participants, the analysis sample, NAC, savings, and confidence intervals

Table 4-1 shows the program impacts by year and for all years in aggregate combined. The first two columns in Table 4-1 show the number of participants in the program and the number of participants in the analysis sample by year, and for all years combined. Columns three and four show the pre-participation normalized annual consumption, which is followed by the tracked savings, and the realization rate per participant. Finally, the 90% confidence intervals and the relative confidence interval are shown.

A range of 38% to 64% of the participants were included in the analysis across all years. 2020 had the smallest relative sample size due to the timing of the evaluation and the availability of a minimum requirement for 12 months of post-participation billing data during the post-installation period. For 2015–2019, low relative participation occurred in 2015, the first year of the program, and in 2018, when the program paused before its reauthorization. Overall, nearly 60% of the participants were included in the analysis. This is considered a strong representative sample for age and income-qualified programs which typically have a higher number of renters and high data attrition rates due to move-in and moveouts. The high quality of billing and tracking data also contributed to the low data attrition rate.

The table shows that the average amount of the participants' average annual usage varied from year to year from 8,300 kWh/year to 10,500 kWh/year. Every year showed a decrease in NAC for the pre-installation to the post-installation period, with an overall average of 4.3% decrease between 2015 and 2020. The analysis showed that the average participant tracking savings varied substantially from year to year, from 240 kWh/year-participant in 2020 to 636 kWh/year-participant in 2015.

The overall participant savings of 400 kWh/year-participant has a ±2.8 kWh/year confidence interval (0.7% relative confidence interval). This level of savings yielded a 105% realization rate (i.e., the percentage of actual savings to tracking savings). Interestingly, the realization rate has increased over time. This may be due to the continuous improvement of program implementation and services and the refinement of the technical reference manual, or the DE TRM calculations used to calculate the tracked savings, which are updated annually.

		NAC Program Savings				Confidence Intervals 🛓			
Year	Participants	Sample	Pre- Participation	Post- Participation	Tracking (kWh/year- participants)	Evaluated (kWh/year- participants)	Realization Rate (%)	90% Confidence Intervals	Relative Confidenc Interval
2015	1,522	874	10,245	9,796	636	330	52%	5.7	1.7%
2016	8,489	5,015	8,940	8,402	428	421	98%	3.7	0.9%
2017	5,993	3,821	8,484	8,139	420	377	90%	4.1	1.1%
2018	1,122	711	9,556	9,238	317	310	98%	14.7	4.7%
2019	5,947	3,279	8,360	8,166	253	431	171%	6.7	1.6%
2020	1,097	422	10,487	10,071	240	374	156%	33.9	9.1%
Total	24,170	14,122	8,865	8,481	382	400	105%	2.8	0.7%

Table 4-1. Participants, analysis sample, normalized annual consumption (NAC), savings, and confidence intervals

4.2 Measure Impacts

Impacts were also calculated by measure. Interestingly, the tracking savings per measure group is consistent, ranging from 196 kWh/year for LED lighting to 206 kWh/year for water distribution measures. The realization rates range from 88% for water distribution measures to 111% for LED lighting. 90% of the participants had LED lighting measures installed. The combined measure savings are consistent with the aggregate tracked savings estimates shown in Figure 4-3 and Table 4-1, thus yielding a realization rate close to 103%.

Table 4-2 presents estimates based on all participants. Table 4-3 shows the estimates of savings based on the participants that received specific measure groups (attic insulation, LED lighting, and the water distribution measure group).

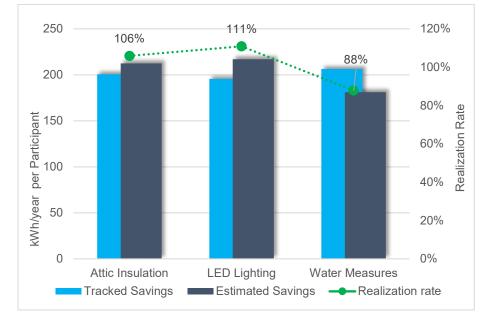
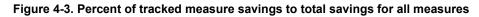
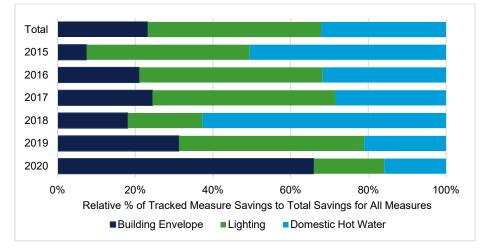
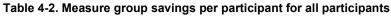





Figure 4-2 Tracked savings, evaluated savings, and realization rate by measure group

	М	easure savin	Confidence Intervals			
Measure	Tracking (kWh/year- participant)	Evaluated (kWh/year- participant)	Realization rate (%)	90% confidence intervals	Relative confidence interval	
Attic Insulation	87	92	106%	2.59	2.8%	
LED Lighting	175	194	111%	1.62	0.8%	
Water Distribution Measures	121	106	88%	1.77	1.7%	
Total	382	392	103%	2.47	0.6%	

Table 4-3. Measure group savings per participant/year (kWh) for participants with measures

		Measure	savings	Evaluated savings				
Measure	Participants with measure	Tracking (kWh/year- participant)	Evaluated (kWh/year- participant)	Realization rate (%)	90% confidence intervals	Relative confidence interval		
Attic Insulation	10,450	200.6	212	106%	3.03	1.4%		
LED Lighting	21,596	195.6	217	111%	0.90	0.4%		
Water Distribution Measures	14,162	206.3	181	88%	1.32	0.7%		
Total	24,170	382.4	392	103%	1.5	0.6%		

APPENDIX A. Residential IAQ Home Improvement tracking data elements

Table 4-4 is the list of Residential IAQ Home Improvement tracking data elements. The tracking data reports all participant, measure, and program related information. The tracking data is generated by Dominion Energy's Business Intelligence system and delivered to DNV on a monthly basis.

Table 4-4. Residential IAQ Home Improvement tracking data

Field	Description
ACTIVITY DATE	Date record was last updated by Nexant
EXTRACTION DATE	Date record was extracted by Nexant and sent to Dominion
RECORD ID	Internal record key for BI data mart; Nexant = Unit ID
ELECTRIC ACCOUNT ID	Account Number from Dominion
ELECTRIC_PREMISE_ID	From Dominion
CUSTOMER NAME	Customer Name on application; same as Dominion
ADDRESS 1	Service Address where work is performed; from Dominion
ADDRESS 2	Service Address where work is performed; from Dominion
CITY	Service City from Dominion
STATE	Service State from Dominion
ZIP	Service Zip from Dominion
MAILING_ADDRESS_1	Mailing address if Dominion has on record
MAILING_ADDRESS_2	Mailing address if Dominion has on record
MAILING CITY	Mailing address if Dominion has on record
MAILING STATE	Mailing address if Dominion has on record
MAILING ZIP	Mailing address if Dominion has on record
CUSTOMER RATE	Primary rate code in Dominion system
APP CONTACT PERSON	Contact name on application
APP EMAIL ADDRESS	Customer email address
APP_TELEPHONE_NO	Applicant primary telephone number
APP VENDOR NAME	Name of contractor that performed work
APP VENDOR ADDRESS1	Address of contractor (concatenated)
APP VENDOR ADDRESS2	Address of contractor
APP VENDOR CITY	Address of contractor
APP_VENDOR_STATE	Address of contractor
APP VENDOR ZIP CODE	Address of contractor
APP_VENDOR_CONTACT_PERSON	Contact at Vendor's Company
APP VENDOR EMAIL	Vendor email address
APP_VENDOR_TELEPHONE	Vendor telephone number
OWNERSHIP_STATUS	Lease or Own
APPROVAL_YN	Was work authorized to be done?
AUDIT_DATE	Date audit was completed
DSM_PROGRAM_ID	Program ID from Dominion

Field	Description
WORK_ORDER_ID	Work order id assigned to rebate upon creation.
CUSTOMER_DWELLING_TYPE	
NO_OF_HOME_OCCUPANTS	
APPROXIMATE_HOME_SIZE	
APPROXIMATE_HOME_AGE	
APPROXIMATE_ATTIC_SIZE	Sq ft
EXISTING_ATTIC_INSULATION_TYPE	
EXISTING_ATTIC_INSULATION_QTY	In inches
EXISTING_ATTIC_INSULATION_RVAL	Existing insulation R value
ATTIC_INSULATION_TYPE	Type installed
INSTALLED_INSULATION_QUANTITY	In inches
PIPE_DIAMETER	inches
PIPE_INSULATION_LENGTH	inches
EXISTING_BULB_TYPE	
WATER_HEATER_TYPE	Type of water heater
WATER_HEATING_FUEL	
MEASURE_NAME	
REASON_CODE	Reason why measure wasn't installed
REASON	Reason for replacement
COOLING_SYSTEM_TYPE	
HEATING_SYSTEM_TYPE	
HOW_HEAR	How did you hear about this program?
MARKETING_CODES	
SPACE_HEATING_FUEL	
BUDGET_RESOURCE	Provided by Nexant for accounting purposes
INSTALLD_ATTIC_INSULATION_RVAL	Installed insulation R value

APPENDIX B. Tracked energy savings by measure and year

The tracked measure-level energy savings by year and number of accounts includes 68,111 measures installed across 24,420 accounts (a single account can have multiple measures). The expected total by measure tracked savings are summarized in Table 4-5.

	То	otal	LE	Ð	Attic I	nsulation	Bathroo	m Aerators	Kitchen	Aerators	Pipe Ir	sulation	Low Flo	w Shower
Year	# Accounts	kWh/year	# Accounts	kWh/year	# Accounts	kWh/year	# Accounts	kWh/year	# Accounts	kWh/year	# Accounts	kWh/year	# Accounts	kWh/year
2015	1,523	984,390	1,513	413,006	628	73,871	945	56,664	260	5,719	335	19,513	955	415,617
2016	8,560	3,681,827	8,199	1,738,156	4,121	775,253	4,460	103,631	4,286	84,992	3,355	278,803	4,486	700,992
2017	6,100	2,553,907	5,633	1,201,843	2,840	625,442	2,454	66,516	2,687	59,546	2,529	160,945	2,416	439,616
2018	1,142	449,359	726	86,376	557	81,258	474	18,701	601	36,290	436	120,195	430	106,539
2019	6,029	1,518,078	5,165	723,724	2,158	474,686	1,099	32,642	1,083	64,708	694	44,134	917	178,183
2020	1,066	231,558	420	41,972	875	152,769	106	3,748	81	4,854	59	3,330	128	24,884
Total	24,420	9,419,119	21,656	4,205,077	11,179	2,183,279	9,538	281,902	8,998	256,109	7,408	626,920	9,332	1,865,831

Table 4-5 Summary of tracked energy savings by year and measure

Jun 15 2022

APPENDIX C. Weather data

The tracking data included the service address for each participant. The billing analysis used weather data from the station closest to the service address. Data from 27 NOAA weather stations for 296 valid participant zip codes was used in the analysis. Table 4-6 lists the NOAA station name and ID, the number of unique zip codes in the billing analysis for that zip code, and the number of participants within each zip code.

Station ID	Station Name	# Zip Codes	# Participants
723065	Pitt-Greenville Airport, NC	7	51
723068	Rocky Mount-Wilson Regional Airport, NC	8	373
723075	Oceana Naval Air Station, Va.	12	956
723080	Norfolk International Airport, Va.	6	1,746
723083	Franklin Municipal-John Beverly Rose Airport, Va.	22	438
723085	Norfolk Naval Station, Va.	14	2,513
723086	Newport News/Wimburg Intl Airport, Va.	30	3,302
724010	Richmond International Airport, Va.	37	5,627
724014	Dinwiddie County Airport, Va.	18	1,109
724016	Charlottesville Albemarle Airport, Va.	9	826
724017	Farmville Regional Airport, Va.	20	288
724030	Washington Dulles International Airport, Va.	8	1,363
724033	Shannon Airport, Va.	9	774
724035	Quantico MC Air Facility, Va.	5	508
724036	Manassas Regional/H P Davis Fd Airport, Va.	6	856
724037	Davison Army Airfield, Va.	11	1,457
724040	Naval Air Station, Md	7	209
724050	Ronald Reagan Washington Natl Airport, Va.	20	1,501
724053	Winchester Regional Airport, Va.	4	153
724055	Leesburg Executive Airport, Va.	5	296
724100	Lynchburg Regional/Preston Glenn Field Airport, Va.	3	111
724105	Shenandoah Valley Regional Art, Va.	14	776
724106	Danville Regional Airport, Va.	7	122
724115	Ingalls Field Airport, Va.	5	427
725064	Plymouth Municipal Airport, Ma	1	1
726050	Concord Municipal Airport, NH	1	1
745980	Langley AFB Airport, Va.	7	570
	Total	296	26,354

Daily weather data were retained for each of the stations from January 1, 2010, to December 1, 2021. The data set was checked for missing data. When there was missing data, it was filled using the relationship between the target weather station and the weather station in Richmond International Airport).

Normal temperatures were not available for the individual weather stations. Accordingly, normal temperatures were created for each of the stations. For each day of the year, the median temperature for the 11 historical years was determined and designated as the normal temperature for that month/day combination.

APPENDIX D. Detailed Methodology

Temperature normalization

This appendix is a continuation of the summary description of temperature normalization in Section 3.3.

To capture a households unique space conditioning characteristics, the normalization process compares multiple models across a range of heating and cooling reference, or set point, temperatures for each customer account. The model chosen to represent a customer's energy use is the one that best linearizes the relationship between usage and degree days, or the best-fit model. For each customer and site, the best fit model is identified based on their unique temperature reference or set point. Equation 1 shows the temperature normalization model to consider heating and cooling loads.

Equation 1. The temperature normalization heating and cooling model

$u_i = \beta_0 + \beta_1$	* $HDD_i(\tau_1) + \beta_2$	$* CDD_i(\tau_2) +$	e i

Where:		
Ui	=	Average daily usage during cycle i
$\text{HDD}_{i}(\tau_{1})$	=	Average daily heating degree days during cycle \underline{i} based on reference temperature τ_1
$\underline{\text{CDD}}_{i}(\tau_{2})$	=	Average daily cooling degree days during cycle i based on reference temperature τ_2
ei	=	Error in predicting U

The optimal model for each account is determined using the regression models and assessing the model fit across a range of reference or set point values (τ_1 and τ_2). For this analysis, the heating degree set points considered ranged from 54°F to 70°F and the cooling degree set points considered ranged from 64°F to 75°F. Recognizing that homes may not have electric space heating or cooling loads, "heating and cooling," "heating only," "cooling only," and "base load only" models were considered. Accordingly, each customer had 204 models estimated for each period (pre- and post-installation.)

After the initial model estimates were established, the results were examined. Poorly modeled sites (e.g., negative heating or cooling coefficients) were eliminated from consideration. From the remaining models, the model that minimized the root mean squared error (RMSE) for each account for each period was identified as the initial model and reviewed. Poorly performing models (e.g., models with an R² less than .80) were identified, examined for anomalous data, and if found, re-estimated. The re-estimated models were compared to the initial models. The model with the lowest RMSE is considered the optimal, or final, model.

Once the optimal models were determined, normalized annual degree days are applied to the optimal model to calculate normalized annual consumption (NAC) and then the expected daily degree days are applied to the optimal model to calculate the normalized daily consumptions (NDC).

From Equation 1, the results of the model can be interpreted as:

- β_o is an estimate of the average base load per day for a cycle.
- β₁ represents the heating slope, or the increase in electric usage for each incremental increase in heating degree days.
- β₂ represents the cooling slope, or the increase in electric usage for each incremental increase in cooling degree days.

The NACs were examined to identify anomalies. Participants or comparison pool members were eliminated from the analysis under the following model conditions:

- A large change in NAC from the pre- to the post-installation period (±7,000 kWh/year)
- A large relative change in NAC from the pre- to the post-installation period (<50% or >200%)
- Tracked savings were greater than 50% of the pre-NAC

Table 4-7 and Table 4-8 summarize the final models for the participants and comparison group, by program period. Table 4-7 describes the distribution of the temperature normalization model types for the participants and the comparison group pool. The three model types are *heating and cooling* (electric heating and cooling), *heating only* (electric heating, no cooling), *or cooling only* (no electric heating).

Table 4-8 shows the distribution of model R^2 for the same group.

Table 4-7. Model summary for the participants and the comparison group by program period

	Р	articipants	Comparison pool					
Distribution of models								
Туре	Pre	Post	Pre	Post				
Heating and Cooling	70%	66%	71%	68%				
Heating Only	9%	9%	8%	8%				
Cooling Only	21%	25%	21%	24%				

Table 4-8. Distribution of model R² for the participants and the comparison group by program period

	Partic	cipants	Comparison pool						
Distribution of Model R ²									
Percentile	Pre	Post	Pre	Post					
Median	.86	.86	.87	.87					
10 th	.55	.51	.60	.59					
90 th	.96	.96	.96	.96					

Establishing a representative comparison group

This section contains the detailed results of pre-installation NAC participants versus the comparison group analysis described in Section 3.4. Establishing a representative comparison group.

				,
	Average pre-installation NAC (kWh/year/participant)			
Year	Participants	Comparison	Difference	Percentage
2015	10,304	10,272	32	0.3%
2016	8,967	8,939	29	0.3%
2017	8,537	8,519	17	0.2%
2018	9,621	9,582	39	0.4%
2019	8,380	8,386	(7)	-0.1%
2020	10,427	10,262	165	1.6%
All Years	8,873	8,851	22	0.3%

Table 4-9. Comparison of pre-installation NAC participants vs comparison group (unweighted)

Weighting the sample back to the population

A case weight is defined as the number of population participants represented by a sample participant. To determine the case weights, the population is stratified into homogeneous groups. For this analysis, we based the stratification groups on program year and a tracked savings category based on the quartiles of the distribution of the total tracking savings of all participants. Table 4-10 shows the strata of the distribution of tracked savings for all participants.

Table 4-10. The strata of tracked savings based on the distribution of the tracked savings for all participants

Stratum	Range of tracked savings (kWh/year/participant)
1	30 to 195
2	196 to 289
3	290 to 481
4	482 to 10,000

Once the strata were defined, the number of population and sample participants was determined for each stratum. The case weights (total population participants divided by the total analysis participants by stratum) were calculated and assigned to the sample participants.

The second data preparation step aggregated the comparison group by participants. As described above, 3 comparison customers were chosen for each participant. To give the comparison group equal weight in the analysis, we combined the matched comparison group NACs for their attendant participant account.

Total savings estimates

The section provides a more detailed description of the basic form of the SAE model summarized in Section 3.5.2.

For the total program savings, we used an SAE regression model. In this model, the post-installation usage is a function of the preinstallation usage and the expected program savings (i.e., the tracked savings). The basic form of this model is shown in Equation 2.

Equation 2. The statistically adjusted engineering regression model

NAC_{post,i} = β_0 + β_1 *NAC_{pre,i}+ β_2 *TS_i+ ϵ_i

Where:

NACpost,I=Post Installation Normalized Annual Consumption for customer (participant or comparison group member) i

NACpre,i = Pre-Installation Normalized Annual Consumption for customer i

TS, = Tracking estimate of total savings for participant i.

=Zero for comparison group member i

 β_0 , β_1 , β_2 =Coefficients to be estimated to minimize the prediction error.

- B₂ =The realization rate of tracking estimate savings
- ε_i =Prediction error

Typically, in SAE models, the regression assumption most often violated is that the standard deviation of the error terms, or "residuals," is not constant across the range of predicted values. This is caused by the residual standard deviation being related to the size of the customer's electric usage or demand. When the standard deviation residuals are related to the predicted values, the model is said to be "heteroscedastic."

There are various ways to mitigate heteroscedasticity. One way is to segment the data into homogeneous groups. In setting the analysis, the customers were placed in strata based on the year of participation and their tracking savings. Since the tracking savings are highly correlated to the customer size, the development of independent models met the regression assumptions.

The models perform well. Table 4-11 summarizes a few of the performance statistics for the 24 models. The R² rate of the models for the individual stratum (year/savings) ranges from .87 to .95. All the models except four had significant β_2 coefficients.

Percentile 90th Statistic Median 10th 1.93 0.67 β₂ 1.18 \mathbb{R}^2 .93 .92 .89 **P-Value** 24% 0% 0%

Table 4-11. Total energy savings model statistics summary

The models' estimate of the β_2 can be interpreted as the "realization rate" of the tracked savings, or the ratio of the tracked savings that is the "true" program savings. Accordingly, β_2 multiplied by the participants' individual tracked savings is their estimate of actual savings. These individual estimates are weighted using the case weights and summed by variables of interest (e.g., program year) to provide the estimated overall program savings.

The basic form of the individual savings model is shown in Equation 3.

Equation 3. The individual measure regression model

 $S_i = \beta_1^*TSLED_i + \beta_{2^*}TSAI_i + \beta_{2^*}TSWM_i + \epsilon_i$

Where:

- S_i =Estimated savings for all measures installed for participant I, $\beta_{2*}TS_i$ from Equation 2
- TSLED, i = Tracking estimate of total savings of LEDs installed for participant i
- TSAI_i = Tracking estimate of total savings of attic insulation installed for participant i
- TSWM_i = sum of the tracking savings of the aerator, low flow showerhead, and pipe insulation measures
 - =Tracking estimate of total savings of water distribution measures installed for participant i
- TS, = Tracking estimate of total savings for customer i
- B₁, β_2 , β_3 =Coefficients to be estimated to minimize the prediction error.
- ϵ_i =Prediction error

Since the variables all are program savings, the models were based only on participant data. The estimation of the models was done by total savings stratum (4 total). Weighted least squares were used to mitigate the influence of the different annual sample sizes.

The models performed well. All of the coefficients were statistically significant. The R² statistics ranged from .88 to .99

APPENDIX E. EM&V Workplan

The IAQ Home Improvement Program Evaluation Workplan Plan is attached here as a pdf.

Residential Income and Age Qualifying **Home Improvement Program Impact Evaluation Work Plan**

Dominion Energy Date: November 3, 2021

Table of contents

1	INTRODUCTION	. 1
1.1	Overview of Implemented Measures	1
2	EVALUATION PLAN	. 1
2.1	Comparison Group	2
2.2	Data Requirements	2
3	IMPACT EVALUATION APPROACH	. 3
3.1	Research Design	3
3.2	Establishment of a Representative Comparison Group	3
3.3	Temperature Normalization	4
3.4	Regression Analysis Approach	5
3.5	Estimate of Total Savings	6
3.6	Estimate of Measure Savings	6
4	COMMUNCATION AND REPORTING	. 6
4.1	Project Schedule	6

List of tables

Table 1: Program energy-efficient measures	1
Table 2. Program participation by year	
Table 3. Billing data requirements for EAL3 impact evaluation	

1 INTRODUCTION

This is the detailed work plan for impact evaluation of the Income and Age Qualifying Home Improvement program (EAL3) administered by the Virginia Electric and Power Company, hereafter Dominion. This impact evaluation will provide estimates of ex post gross energy savings which, in the context of income qualifying programs, are considered equal to net energy savings.¹ The design of these programs is to provide a free service to income eligible customer who would not otherwise have had the financial means to complete the work.

The evaluation will cover the program years 2015–2020. This evaluation will be conducted in accordance with the EAL3 EM&V Plan, calculate impacts, and inform future program design and implementation.²

1.1 Overview of Implemented Measures

The Dominion program offers qualifying low-income (60% or less of Virginia state median income) and elderly (60+ and household income up to 120% Virginia state median income) residential customers of the Company a free energy audit that identifies energy saving opportunities that can save money on their monthly electric bill. If homeowners (or authorized renters) approve, auditors may immediately make certain improvements while at the home. Table 1 lists all the energy-efficient measures implemented under this program.

Table 1: Program energy-efficient measures

End Use	Measure
Whole house	Attic insulation
Lighting	Replacing incandescent with LEDs (up to 6)
Domestic Hot Water	Low flow Showerhead (electric water heat) Kitchen and/or bathroom aerators Pipe wrap on exposed water supply pipes (electric water heat)

2 EVALUATION PLAN

This section provides an overview of the Income and Age Qualifying Home Improvement Program EM&V approach. The goal of the evaluation is to quantify the program impacts, by year. We will also use our best effort to quantify measure level impacts, but there is a risk that individual impact estimates of small measures will be statistically insignificant.

The evaluation approach will be a statistically adjusted engineering (SAE) billing analysis, with a well-matched representative comparison group. Table 2 summarizes the program participation and savings by year. This table shows that over half the participants and nearly two-thirds of the savings occurred in 2016 and 2017.

¹ Violette, Daniel M.; Rathbun, Pamela. (2017). <u>Chapter 21: Estimating Net Savings</u> – Common Practices: Methods for Determining Energy-Efficiency Savings for Specific Measures. Golden, CO; National Renewable Energy Laboratory. NREL/SR-7A40-68578, 45.; Synapse Energy Economics, Erin Malone, Wendy Ong, Max Chang. <u>State Net-to-Gross Ratios, Research Results and Analysis for Average State</u> <u>Net-to-Gross Ratios Used in Energy Efficiency Savings Estimates</u>. Prepared for the United States Environmental Protection Agency, January 23, 2015, 2.

² Appendix H., Residential Income and Age Qualifying Home Improvement Program EM&V Plan. Evaluation, Measurement, and Verification Report for Virginia Electric and Power Company (Dominion Energy), Case No. PUR-2018-00168 (Virginia), Docket No. E-22 Sub 577 (North Carolina), VOLUME 1 OF 4, May 15, 2021, Prepared by DNV Energy Insights USA Inc. (DNV),

Table 2. Program participation by year

Year	Participant Premises	Savings (kWh/year)
2015	1,523	984,230
2016	8,561	3,681,872
2017	6,098	2,554,021
2018	1,142	448,498
2019	6,029	1,518,684
2020	1,066	231,558
2021	1,937	467,914
Total	26,356	9,886,777

2.1 Comparison Group

The program study period may present certain challenges for the evaluation. The first will be obtaining sufficient consumption data for the participants as consumption data from the early years of the program may be difficult to obtain if customers have moved within the pre-or post-analysis period.

During 2020 and 2021, the COVID-19 pandemic caused fundamental changes in energy consumption that must be recognized by the evaluation. These non-program effects can be mitigated by a well-matched comparison group. If possible, the comparison group will be developed from the participants who joined the program in later years, and were Dominion Energy customers under the same account in the study years. For example, a participant who joined the program in 2017 and had 3 years of account history is an ideal candidate for the comparison group of non-participants. Future participants are considered a good proxy for existing participants because they are apt to share similar characteristics to other program participants.

The success of this approach will depend account level attrition through the years and other factors. If the attrition rate is high and there are insufficient numbers of these "future participants" to make a valid comparison group, another approach for developing a comparison group will be required such as leveraging a large nonparticipant pool.³ DNV's initial data request will focus only on program participants. If necessary, additional billing data will be requested for non-participants.

2.2 Data Requirements

The billing analysis uses program tracking data (BI data), weather data, and monthly usage (billing data) shown in Table 3. The EAL3 monthly usage data will cover the period from 2014 (pre-installation for earliest program participants) through 2021 (post-installation of the program year 2020 participants). A more detailed data request has been submitted under separate cover and is attached as Appendix A.

Table 3. Billing data requirements for EAL3 impact evaluation

Electric account number
Electric premise number
Meter read date
Days in the billing cycle

³ The comparison pool can be a large random sample of residential customers or the Dominion Energy residential population from 2014 to 2021.DNV would perform additional matching within the larger pool.

Billing code (i.e., estimated, or actual)
Consumption in kWh
Zip code
Office ID
Rate code
AMI Flag
Email address

3 IMPACT EVALUATION APPROACH

This impact evaluation approach will be a SAE model. This approach provides a method to incorporate engineering estimates of savings into the analysis.

3.1 Research Design

This analysis will use a two-stage billing analysis approach. This research design essentially determines the program impacts by examining the change in participant's usage and demand patterns over time. Comparing a representative comparison group's change in usage over a similar period further refines the impact estimate. This provides a robust experimental design allowing the change in usage to determine how energy consumption would have changed among program participants had the program not been offered.

The two-stage approach with prior and future participant comparison group offers the best feasible approach to consumption data analysis where a randomized experimental design is not put in place.

3.2 Establishment of a Representative Comparison Group

A comparison group for the analysis will be developed following steps:

Step 1: Establishing a comparison group Pool

When possible, a comparison group built with future/prior participants offers the highest quality results. Future participants' data from before their program participation, and prior participants from after, represent participants in steady-state situation year over year. They are uniquely qualified to provide the counterfactual to active participants because they have also made the decision to participate in the same program either before or after the current evaluation period. Not only does this match a key characteristic—interest in, able to, and qualified for participation in this specific program—it also indicates it is extremely unlikely that any similar measure installation activity is happening in comparison group households during the evaluation period.⁴

If a future/prior participant comparison group is not feasible due to limited span of available usage data, then we will request consumption information for a large random sample of all residential customers that are otherwise eligible for the program. In this case, each bill for the "comparison group pool" will be examined to form the optimal comparison group.

Step 2: Eliminating known participation periods or participants

If a future/prior participant comparison pool is used, data that crosses the participation data will be removed. That is, for a future participant, only data prior to their participation will be included. This makes it possible to use this almost-participant's

Jun 15 2022

⁴ Billing analysis results are generally considered not quite fully gross estimates of savings because there might be some naturally occurring similar measure activity occurring in the comparison group. This activity is expected to be low, in general, for a variety of reasons but should be effectively absent for comparison group members who either recently installed or shortly will install these exact measures as part of the same program.

Jun 15 2022

data to track non-program change for active participants from a year or more before their future participation. Similarly, if prior participants are used, only data from after participation can be included.⁵

If a general population sample is used to construct the comparison group, then after the initial data cleaning, any known past participants will be eliminated from the comparison group pool. This will be done by matching the current participants and past participants against the available tracking data.

Step 3: Establishing the comparison group

During this step, each comparison group pool customer within a characteristic stratum will be compared to each participant in that stratum. Generally, either a minimum distance algorithm or a propensity score matching approach is used to match participants on multiple characteristics, such as consumption level and summer shoulder ratio. While both methods are appropriate, generally, we apply the minimum distance algorithm. The minimum distance algorithm effectively chooses the comparison group households closest to the participant in question across all dimensions. While we believe it is worth including more than one characteristic in the matching process, our experience has been that beyond two- or three-dimensions, improvements in the matching are minimal.

For each participant, up to two comparison group pool customers with the highest correlation in the annualized usage will be selected. These customers will be designated the comparison group.

The comparison group will be chosen *with replacement*. Selecting a sample with replacement allows a customer to have the potential of being designated a comparison Group member for more than one participant. This redundancy is addressed in the second stage regression with weighting to mitigate standard error estimates.

3.3 Temperature Normalization

One of the most important steps in the assessment of the program impacts is the pre-installation to the post-installation comparison of energy usage. By controlling for other non-program influences, such as weather, the programs effects can be isolated and quantified.

The temperature normalization procedure finds its fundamental basis derived from the *Princeton Scorekeeping Method* (PRISM[®]). The PRISM algorithm develops a mathematical model that represents the temperature to energy consumption relationship.⁶

The PRISM model reflects that a customer's energy usage is equal to some base level α , and a linear function between a reference temperature τ , and the outside temperature. The constant proportionality, β , represents a customer's effective heat-loss or heat-gain rate.

PRISM recognizes that each customer has unique space conditioning operating characteristics. To capture these unique space conditioning characteristics, PRISM examines a range of heating and cooling reference temperatures. The model chosen to represent a customer's energy use is the model that best linearizes the relationship between usage and degree days. For each customer, an optimal model based on a unique reference temperature (τ) is identified by the minimum mean

⁵ Prior participants may be less intuitive than future participants for use in a comparison group. However, the approach is mathematically identical to using future participants in the comparison group. Both groups provide an estimate of year over year non-program-related change

⁶ Fels, Margaret F. 1986. "PRISM: An introduction". *Energy & Buildings*. 9 (1): 5-18; Agnew, K.; Goldberg, M. 2017. <u>Chapter 8: Whole-Building Retrofit with Consumption Data Analysis Evaluation Protocol</u>, The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures. Golden, CO; National Renewable Energy Laboratory. NREL/SR-7A40-68564.

squared error (MSE) of the regression. The PRISM approach to consider heating and cooling loads is calculated using Equation 3-1.

Equation 3-1. The PRISM Heating and Cooling Model

$U_i = \beta_0 + \beta_1 *$	* HDD _i (τ_1) + β_2 * CDD _i (τ_2) + e_i
Where:	
$U_i = HDD_i(\tau_1) =$	The electric usage during cycle i. The heating degree days based on reference temperature τ_1 , during cycle i.
$CDD_{i}(\tau_{2}) = \beta_{i} =$	The cooling degree days based on reference temperature τ_2 , during cycle i. The coefficients to be estimated to minimize the error term.
$e_i =$	The error in predicting U.

The optimal heating and cooling model is determined by calculating the regression models assuming various reference temperature values (τ_1 and τ_2). Expected annual degree days are applied to the optimal model to calculate a normalized annual consumption (NAC). The results of the model can be interpreted as:

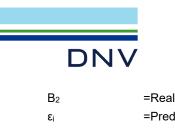
- β_{o} is an estimate of the average base load for a cycle
- β₁ represents the heating slope, or the increase in electric usage for each incremental increase in heating degree days; and,
- β₂ represents the cooling slope, or the increase in electric usage for each incremental increase in cooling degree days.

Models are developed to allow for the temperature normalization of each individual participant and comparison group member for both the pre-installation and the post-installation periods.

Once the optimal parameters have been established, normalized annual consumption is estimated applying normal or historical degree-days to each model.

3.4 Regression Analysis Approach

An initial regression model is developed using ordinary least squares (OLS). This simple model determined the effect of *one* important change variable (i.e., participants engineering estimate of savings) on energy *while controlling for all other changes.* The basic form of this model is shown in Equation 3-2. Comparison group customers chosen multiple times in the matching process only enter the model once but with a weight associated with the number of times they were chosen. This addresses the potential for downwardly biasing the parameter standard errors.


Equation 3-2. The Statistically Adjusted Engineering Regression Model

 $NAC_{post,i} = \beta_0 + \beta_1 NAC_{pre,i} + \beta_2 P_i + \beta_3 TS_i + \epsilon_i$

Where:

NAC _{post,I}	=Post Installation Normalized Annual Consumption for customer i
NAC _{pre,i}	=Pre-Installation Normalized Annual Consumption for customer i
Pi	= Dummy variable for participation
TS,I	= Tracking estimate of total savings for customer i
$\beta_{0,}\ \beta_{1,}\ \beta_{2,}\ \beta_{3}$	=Coefficients to be estimated to minimize the prediction error.

Jun 15 2022

=Realization rate of tracking estimate savings =Prediction error

As a result of the residual standard deviation being related to the size of the customer's electric usage or demand, one regression assumption most often violated is that the standard deviation of the error terms, (or "residuals") has a constant variance across the range of predicted values. When the standard deviation residuals are related to the predicted values, the model is said to be "heteroscedastic." Heteroscedasticity can often be detected in cross sectional models used to analyze program impact. During this step, a verification is performed to check that the regression assumptions are valid. If the initial regression model is found to be "heteroscedastic," it could result in the misspecification of mathematical relationships. Therefore, if the initial regression model is found to be heteroscedastic, further multivariate regression analysis are performed under a weighted least squares ("WLS") approach. As a result of the residual standard deviation being related to the size of the customer's electric usage or demand, heteroscedasticity is often detected in cross sectional models used to analyze DSM program impact.

3.5 Estimate of Total Savings

The final step in the analysis estimates the energy savings by using the resultant models.

Since there is seven implementation years, it may be worth producing annual savings estimates as well as an overall estimate. This will provide a time series of savings over the years, mitigate the effects of the availability of data by year, and mitigate outside influences (such as COVID). It will also reflect changing measure mixes over the years as well as lend insight into changes in program implementation. The yearly analysis can be treated as stratum, with the overall results being weighted by participation during the year.

3.6 Estimate of Measure Savings

As a result of the nature of the natural variation of residential consumption, it is difficult to get statistically significant estimates associated with small (less than 5%) influences. Accordingly, Equation 3-2 uses the *total* tracking savings as an independent variable. While adding additional variables to define individual measures should provide the same estimate of total savings, the individual estimates of small measures could be statistically insignificant. Accordingly, the estimate of individual measures would need to be *ex-post*. The analysis will attempt to disaggregate the savings using a number of techniques, including ratio allocation of savings and prediction models that would feature the total estimate of savings for a site as the dependent variable and the individual tracking estimates of savings as independent variables.

4 COMMUNCATION AND REPORTING

4.1 Project Schedule

Completing the evaluation on this accelerated schedule is dependent upon receiving usage data in a timely fashion. Delays in receiving complete data sets or collection efforts may cause disruption to the embedded milestone events. The evaluation schedule is presented below in Table 4.

Dates for each deliverable are listed in bold with 2 weeks for Dominion Energy to review and provide comments. DNV regularly allows for 4 weeks between draft report distribution and the final report deadline, allowing for 2 weeks of client review and 2 weeks to finalize the report.

Dominion Energy North Carolina Docket No. E-22, Sub 604

About DNV

DNV is a global quality assurance and risk management company. Driven by our purpose of safeguarding life, property and the environment, we enable our customers to advance the safety and sustainability of their business. We provide classification, technical assurance, software and independent expert advisory services to the maritime, oil & gas, power and renewables industries. We also provide certification, supply chain and data management services to customers across a wide range of industries. Operating in more than 100 countries, our experts are dedicated to helping customers make the world safer, smarter and greener.

APPENDIX H RESIDENTIAL SMART COOLING REWARD PROGRAM IMPACT ANALYSIS

RESIDENTIAL AC CYCLING (SMART REWARDS) PROGRAM

Evaluation, Measurement, and Verification Report for Virginia Electric and Power Company (Dominion Energy)

Appendix H Impact Evaluation of 2021 Dispatch Events

March 9, 2022

Dominion Energy North Carolina Docket No. E-22, Sub 604

Copyright © 2022, DNV Energy Insights USA, Inc.

This document, and the information contained herein, is the exclusive, confidential, and proprietary property of DNV and is protected under the trade secret and copyright laws of the United States and other international laws, treaties, and conventions. No part of this work may be disclosed to any third party or used, reproduced, or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system, without first receiving the express written permission of DNV. Except as otherwise noted, all trademarks appearing herein are proprietary to DNV.

Table of contents

EXECUTI	VE SUMMARY	1
1.1	Key Findings	1
2	INTRODUCTION	2
3	2021 AC CYCLING EVENTS AND PARTICIPATION	3
3.1	Frequency	3
3.2	Participation	3
4	IMPACT ANALYSIS	4
4.1	Data	4
4.2	Methodology	4
5	RESULTS	6
5.1	Ex Post Impacts	6
5.1.1	Event-Day Plots	6
5.2	Ex Post Impacts	9
5.3	Ex Ante Impacts	10
5.4	AMI Data – Quality Control	11
5.4.1	QC Results	11

List of figures

Figure 2-1. DR Potential (kW) for AC Cycling Participants in Virginia and North Carolina as of December 31, 2021	2
Figure 5-1. Timeline of 2021 Events by Average Impacts (Red) and Maximum Event-day THI (Blue)	
Figure 5-2. Load Profile for the Event Day with the Highest Impacts (June 30, 2021)	
Figure 5-3. Load Profile for the Event Day with the Low Impacts (June 9, 2021)	

List of tables

Table 3-1. Summary of 2018–2021 Events	3
Table 3-2. 2021 Total and AMI Participants by Division	
Table 5-1. AC Cycling Impacts by Event-Day and Hour (June 7 through July 21, 2021)	
Table 5-2. AC Cycling Impacts by Event-Day and Hour (July 26 through August 26, 2021)	9
Table 5-3. Ex Ante Per Participant Impacts by THI and Hour Ending (2021)	10
Table 5-4. Attrition of participant AMI data (2021)	11
Table 5-5. Total and AMI Participants by Division	12
Table 5-6. Weights by State, Division, and Connected Load for June 7, 2021	13

Jun 15 2022

EXECUTIVE SUMMARY

This report presents the load impacts of the 2021 Residential AC Cycling Program, marketed to customers as Smart Cooling Rewards and administered by Dominion Energy (the Company) in Virginia and North Carolina. The AC Cycling Program has been operating for 11 years as a supply resource to help the Company reduce summer peak demand. The results presented here represent the impacts realized from approximately 67,000 customers. Some customers from the 2020 analysis have transitioned to the demand response Smart Thermostat Rewards Program and this trend is expected to continue.¹

When an AC Cycling event is called, a one-way radiofrequency (RF) paging signal is broadcast to load curtailment switches installed on central air conditioners (AC) and heat pumps of participating residential customers. The load curtailment switch reduces the duty cycle of the registered AC units up to 50% during an event. DNV evaluates the AC Cycling Program annually. The objectives of the evaluation are:

- 1. To estimate the average kW impacts of demand reduction for each event hour (ex post analysis)
- 2. To forecast the kW impacts by event-hour delivered by the AC Cycling resource in varying temperature and humidity conditions including the Company's summer peak planning conditions

In 2021, the AC Cycling Program called 25 events over 71 event hours that were distributed evenly over June, July, and August. This report summarizes the event history between 2018 and 2021, reviews the 2021 event impacts across the Company's service areas, and presents the results of the hourly ex post and ex ante impact analyses. It also presents sample event-day plots showing the hourly progression of events with high and low impacts and discusses the weighting strategy that allocates impacts over the advanced metering infrastructure (AMI) and non-AMI participants.

1.1 Key Findings

- In 2021, the per-participant demand reduction is forecast to be 0.53 kW at the Company's peak planning conditions.
- Ex post impacts over the 71 event hours in 2021 ranged from 0.30 kW to 0.63 kW per participant. The lowest average event impact occurred on July 28 and the highest on June 29. Load profiles for a high- and low-case are shown in Figure 5-2 and Figure 5-3.

In 2021, the evaluated load impact for weather conditions observed during Dominion Energy's peak day conditions was 0.53 kW per participant.

 In 2021, relative to prior years, the proportion of AMI to non-AMI participants increased from 10% to 27% due to the accelerated

deployment of AMI meters in 2021. As a result, the number of accounts included in the regression analysis almost tripled. Until 2021, almost 90% of the accounts in the regression analysis came from the Northwest Division. In 2021, there was an even distribution of accounts across all divisions. To determine whether the increased number of AMI accounts impacted results, DNV calculated impacts for 2021 for the lower number (10%) of AMI accounts available in 2020. Impacts were similar regardless of the number of AMI accounts, indicating that the smaller, less geographically representative sample from prior years was similarly robust as the current larger and better geographically distributed sample.

• The effect of the COVID-19 pandemic on program impacts is unknown, but we assume that similar to 2020, more people were at home on weekdays in 2021 than in previous years. Qualitatively, the site-level customer load models were better behaved, which would be consistent with models dealing with fewer atypical periods such as vacations or family visits.

¹ Program website: <u>Smart Cooling Rewards, Smart Thermostat Rewards program</u>

2 INTRODUCTION

This report summarizes the event history between 2018 and 2021, reviews event participation in 2021, and presents the results of the ex post and ex ante impact analyses. It also presents sample event-day plots for events with high and low impacts, hourly impact estimates, and modeled impacts for varying weather conditions and time of day.

The AC Cycling event season spans June 1 through September 30 on non-holiday weekdays.² Events typically last between two and four hours. In 2021, the first event occurred on June 7 and the last on August 26. Under the program, when AC Cycling events are called, a one-way RF paging signal is broadcast throughout the Company's service area. The signal is received by load curtailment switches installed on central ACs and heat pumps of participating residential customers. The

dispatch of the RF signal to the load curtailment switch reduces the duty cycle of the registered AC units up to 50%.

When the AC Cycling Program was launched in 2010, the estimated impacts were based on a statistical regression model of consumption data from other utilities in the region. Since 2011, the modeled impact estimates have used site-level interval data from AMI meters, AC switch control data

from the implementer, and customer-specific weather data. In compliance with the order from the Virginia State Corporation Commission (the Commission), the sampling strategy transitioned from a random sample of participants with AMI meters to using consumption data from every AMI-enabled AC Cycling participant.³

In 2021, 20,557, or 27% of all participants were AMI-enabled and included in the analysis. This is a substantial increase over the 10% sample in 2019 and 2020. The effect of the larger analysis sample is discussed in more detail later in the report.

Figure 2-1. DR Potential (kW) for AC Cycling Participants in Virginia and North Carolina as of December 31, 2021

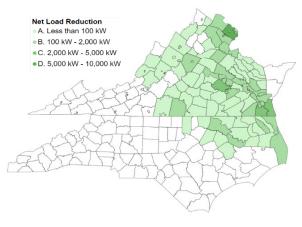


Figure 2-1 shows the amount of AC Cycling demand reduction potential as of December 31, 2021. As with the Company's energy efficiency programs, the Virginia regions with the highest demand reduction potential are Northern Virginia, Norfolk, and Richmond.

Understanding why results change from year to year is difficult without additional in-depth analysis because although the relationships between temperature, humidity, and demand reduction are strong, other factors drive demand reduction. Long hot periods and/or stretches of consecutive event days affect AC usage and the response to events. Conversely, a single hot day during an otherwise cool period also produces different demand reductions. Because demand reduction is a function of both the amount of cooling demanded at the time of an

event (i.e., potential demand reduction) and the customer response (i.e., the customer turning on their AC equipment), the complex relationship between demand reduction, long-term temperature trends, and event call schedules is difficult to predict from event to event or season to season. To further complicate matters, there are unknown effects of the protracted Covid-19 pandemic.

² Events may be called after September 30 under extenuating circumstances.

³ Required as part of the Final Order, State Corporation Commission of Virginia, Case #PUE-2015-00089, April 19, 2016.

Jun 15 2022

3 2021 AC CYCLING EVENTS AND PARTICIPATION

AC Cycling event seasons are distinguished from year to year by the number of events, the number of controlled hours, and the number of controlled participants. This section summarizes the 2021 events, including event hours (Table 3-1), and the number of controlled participants (Table 3-2). Data from prior years are provided for comparison.

Table 3-1. Summary of 2018–2021 Events

	2018	2019	2020	2021
Number of events	27	23	20	25
Controlled event hours	75	66	56	71

3.1 Frequency

There were 25 events spanning a total of 71 hours in the summer of 2021. This is a 20% increase over 2020, which had fewer events than any prior year. The 25 events were spread fairly evenly across June (7), July (8), and August (10).

3.2 Participation

Approximately 64,460 participants (accounts) and 70,600 AC and heat pump units were controlled in 2021. The number of participants and controlled units dropped approximately 6% from 2020 due to attrition. Table 3-2 shows the number of AMI-enabled and total participants by division. Approximately 100 customers have transitioned to the Smart Thermostat Rewards Program.

The relative proportion of AMI to non-AMI participants increased substantially in 2021. Over the last several years AMI data was available for approximately 10% of participants. In 2021, 27% of participants had AMI data, and the number of accounts included in the regression analysis almost tripled. Until 2021, almost 90% of all AMI data came from the Northwest Division, but as of 2021, it is evenly distributed across the Eastern, Northwest, and Central Divisions.

Division	Total Participants by Division	AMI Participants by Division	Percent age AMI to Total AMI by Division
Eastern	27,052	6,248	34%
Northwest	21,555	6,284	35%
Central	15,954	5,581	31%
North Carolina	2,626	93	1%
Total	67,187	18,206	

Table 3-2. 2021	Total and AMI	Participants by	v Division ⁴
		i aitioipainto a	,

⁴ The participation data was taken for the first event on June 7, 2021.

4 IMPACT ANALYSIS

The following sections describe the consumption, tracking, and weather data, the evaluation methodology, and the ex post and ex ante results. The ex post impact analysis describes what happened during the 2021 event season. The ex ante analysis predicts impacts under a variety of conditions.

The ex post analysis estimates per-participant kW impacts (demand reduction) realized at the end of each event hour for each event, and reports the time the event begins and ends, along with the length of each event (Section 5.2).

The ex ante analysis uses the kW impacts of the ex post analysis to forecast kW impacts by hour, temperature, and humidity conditions (Section 5.3). For example, 0.53 kW is the estimated impact from a demand response event for the Company's peak planning conditions, which are 95°F and 43% RH at 17:00.⁵

4.1 Data

Four sources of data are used in the impact analysis:

- 1. **AMI data**: Half-hourly whole-house consumption data collected from customer AMI meters
- Event control data: A record of controlled participants for each event provided by the implementer, including opt-outs
- Tracking data: Program tracking data is used to link the customer to their consumption data and to confirm that switch control records match the Company's list of active participants.
- Weather data: Hourly temperature and humidity data collected at the weather station closest to the account address⁶

Descriptions and results of the data quality control (QC) procedures are provided in Appendix I.

4.2 Methodology

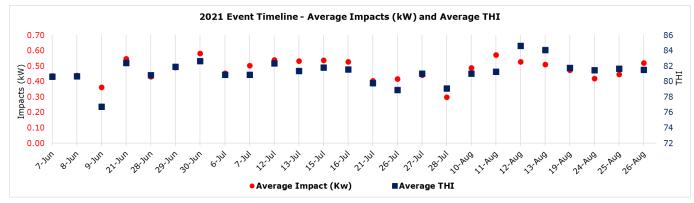
The following steps are used to calculate demand reduction impacts for the program:

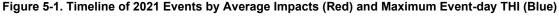
- 1. DNV receives and performs QC on 30-minute interval data for each participant.
- 2. AMI data are merged with the event control data.
- 3. Using AMI data, event control data, and weather data, regression analysis is used to predict event-day baseline consumption for each controlled AMI-enabled account.
- 4. To ensure that the AMI population is representative of the program population, the AMI accounts are assigned weights based on state, connected load, and location. The weighting method and final weights are included in Appendix II.

⁵ Dominions Energy's peak planning condition is hour-ending 17 at 95°F at 43% RH, or 83.4 THI. Temperature Humidity Index = THI = Td – (0.55 – 0.55*RH) * (Td – 58) where Td is dry bulb temperature and RH is relative humidity. Source: PJM Glossary: http://www.pjm.com/Glossary.aspx

⁶ National Oceanic and Atmospheric Association (NOAA), National Centers for Environmental Information, Climate Data Online.

- 5. The predicted and actual consumption for AMI-enabled accounts is weighted to the full program population and the difference between baseline predicted consumption and actual consumption is the calculated ex post impact. The results of the ex post analysis are provided in Section 5.1.
- 6. Ex ante estimates are then calculated using a regression analysis of the ex post impacts for each event-hour as the dependent variable and temperature humidity index (THI) as the independent variable. Ex ante results are the predicted impacts for each event hour and THI and are used to estimate the program impacts at the Company's peak planning conditions. The ex ante results are provided in Section 5.3.




5 RESULTS

This section presents the results of the 2021 ex post and ex ante analyses. Figure 5-1 is a seasonal timeline showing the impacts and THI for each event. Figure 5-2 and Figure 5-3 show event-level plots illustrating the event days with the highest and lowest impacts. Table 5-1 and Table 5-2 show the ex post impacts calculated for each event hour.

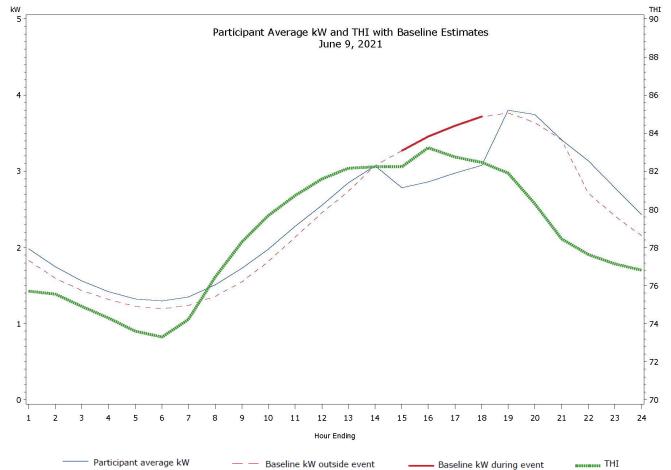
5.1 Ex Post Impacts

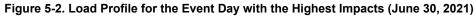
The 2021 timeline in Figure 5-1 shows the average impact (in kW) and maximum THI for each event. In general, the magnitude of the impacts moves with temperature and humidity.

5.1.1 Event-Day Plots

The ex post plots in Figure 5-2 and Figure 5-3 on the following pages illustrate events with relatively high and low impacts, respectively. The plots are described briefly below.

The ex post estimate, or what happened during the event, is the difference between the adjusted baseline during the event (solid red line) and the event load (purple line). Impacts are calculated at the end of each event hour and referred to as hour ending (HE). Impacts are determined by estimating the difference between the adjusted baseline load and the event load. The results are illustrated in time-series representations of:


- Event-day load profile for the AC Cycling Program participant population (solid purple line). The beginning of the event is clearly visible and is typically followed by a post-event load spike (snapback or rebound) before the load resumes to non-event levels.
- **Baseline during the event (solid red line)**. The solid red line plots the baseline for the event-day load curve during the event. The baseline is modeled from the non-event days and represents the estimated load for that day in the absence of an event.
- **Reference load outside the event (dashed red line).** This line plots the baseline load profile before and after the event taken from participant AMI data.
- **Event-day THI (green line)**. Hourly THIs are plotted to give context for the load curves and the relationship of load, temperature, and humidity.



Load Profile with High Impacts

The highest per-event impact occurred on June 30, 2021, on the day with the highest event-average THI (87). The June 30 event was the third day of 3 consecutive events and had the highest impact of the 3-day series.

The event was called at 14:00 with demand reduction clearly visible at hours ending 15, 16, and 17 (Figure 5-2). It was the only event in 2021 that was called at 14:00. The estimated average impact was 0.58 kW per participant. For a future comparison with the following low-impact event, the baseline consumption at the start of this high-impact event was approximately 3 kW.

Jun 15 2022

Page 7

Load Profile with Low Impact

The second-lowest event impact for 2021 occurred on June 9, 2021, the event day with the second-lowest event-average THI (79). The event was called at 16:00 with demand reduction clearly visible at hours ending 16, 17, and 18. The estimated average impact was 0.36 kW per participant. Like the prior example, it was also the last consecutive event in a 3-day series, but the coolest, least humid day of the series because a cool front passed through parts of the state. In Richmond, for example, the temperature dropped 10 °F between HE15 and HE16. The THI at HE16 was 79 (Figure 5-3), whereas the THI was 87 in the high-case in Figure 5-2. In this low case, the baseline consumption at the beginning of the event is just above 2.5 kW at HE15, whereas the high case is already 3 kW by HE14.

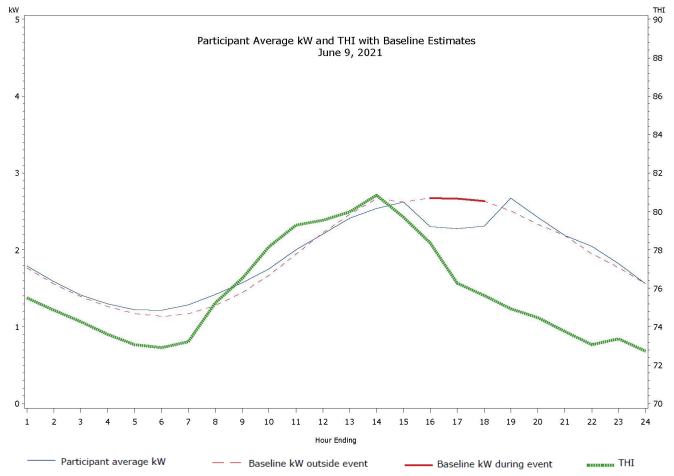


Figure 5-3. Load Profile for the Event Day with the Low Impacts (June 9, 2021)

The lowest average event impact occurred on July 28. Similar to the June 9 event, it was the third event day in a row but was an even cooler, less humid day, with a THI of 78. Despite the event beginning an hour later, in the last hour before the event (HE16), the average customer load was approximately 2.75 kW. This event further illustrates the influence of time, temperature, and humidity on the magnitude of impacts.

5.2 Ex Post Impacts

Ex post impacts by day and hour are presented in Table 5-1 and Table 5-2. Also shown are the maximum recorded event day THIs, Richmond daily high temperature in Fahrenheit, the opt-out percentage, and a day number indicating the event's order for consecutive event days.⁷

The highest average event impact (0.58 kW) occurred on June 30, and the lowest (0.30) on July 28. The maximum impact for a single interval in 2021 was 0.63 kW on June 30, the same event with the highest average impact that is plotted in Figure 5-2. The average opt-out percentage for 2021 was 0.01% and opt-outs for any given single event was 35 out of 70,433 switches.

Table 5-1. AC Cycling Impacts by Event-Day and Hour (June 7 through July 21, 2021)

Event Date	7-Jun	8-Jun	9-Jun	21-Jun	28-Jun	29-Jun	30-Jun	6-Jul	7-Jul	12-Jul	13-Jul	15-Jul	16-Jul	21-Jul
Consecutive Event-days		2	3			2	3		2		2		2	
Opt Out Percent	0.02%	0.04%	0.05%	0.01%	0.00%	0.00%	0.02%	0.01%	0.01%	0.02%	0.02%	0.01%	0.02%	0.01%
Weighted Average THI Across Event Hrs	80	80	79	82	81	82	82	81	81	82	82	82	82	80
Richmond Daily High Temp	89	90	89	95	90	92	95	92	94	91	91	92	94	92
HE15							0.48							
HE16	0.41	0.38	0.37	0.46		0.45	0.59		0.47	0.47	0.47	0.46	0.46	0.37
HE17	0.44	0.46	0.39	0.57	0.41	0.52		0.42	0.52	0.56	0.55	0.55	0.55	0.42
HE18	0.45	0.48	0.32	0.61	0.45	0.51		0.47	0.52	0.56	0.54	0.56	0.57	0.43
HE19								0.48		0.57	0.56	0.59		
Average Impact (Kw)	0.44	0.44	0.36	0.55	0.43	0.49	0.58	0.45	0.50	0.54	0.53	0.54	0.53	0.41

Table 5-2. AC Cycling Impacts by Event-Day and Hour (July 26 through August 26, 2021)

Event Date	26-Jul	27-Jul	28-Jul	10-Aug	11-Aug	12-Aug	13-Aug	19-Aug	24-Aug	25-Aug	26-Aug
Consecutive Event-days		2	3		2	3	4			2	3
Opt Out Percent	0.00%	0.01%	0.01%	0.00%	0.01%	0.01%	0.02%	0.01%	0.01%	0.00%	0.00%
Weighted Average THI Across Event Hrs	81	81	78	82	83		84	82	82	82	83
Richmond Daily High Temp	88	89	91	91	93	94	94	92	95	92	93
							-				
HE15											
HE16	0.40						0.47	0.42			
HE17	0.46	0.43	0.30	0.43	0.52	0.49	0.56	0.49	0.40	0.43	0.50
HE18	0.39	0.46	0.30	0.55		0.56		0.51	0.44	0.47	0.54
HE19		0.44			0.58						
Average Impact (Kw)	0.42	0.44	0.30	0.49	0.57	0.53	0.51	0.47	0.42	0.45	0.52

⁷ The THI reported in Tables 5-1 and 5-2 is the AMI participant THI at the closest NOAA weather station, weighted to the population of AC Cycling participants.

5.3 Ex Ante Impacts

The primary metric of the impact analysis is the ex ante impact estimates for the program year for the company's peak planning conditions. The ex ante analysis models event impacts for a range of THI values and event hours. The ex ante impact for the Company's peak planning conditions (83.4 THI at 17:00) was 0.53 kW. A regression model was fit of the ex post impacts for each of the event hours ending 15, 16, 17, 18, and 19, with a weighted customer-specific THI as a predictor variable. Like prior years, the 2021 ex ante model was based solely on 2021 ex post impacts.

Table 5-3 shows the predicted kW per participant impacts from the regression models for event hours ending at 15, 16, 17, 18, and 19, across a range of THIs. The predicted impact of 0.53 kW at the Company's peak conditions of 83.4 THI falls within the thick bordered box at HE17.

тні	HE15	HE16	HE17	HE18	HE19
76	0.48	0.29	0.33	0.32	0.41
77	0.48	0.32	0.36	0.35	0.44
78	0.48	0.35	0.39	0.39	0.47
79	0.48	0.37	0.41	0.43	0.49
80	0.48	0.40	0.44	0.47	0.52
81	0.48	0.42	0.47	0.50	0.55
82	0.48	0.45	0.50	0.54	0.57
83	0.48	0.48	0.52	0.58	0.60
84	0.48	0.50	0.55	0.62	0.63
85	0.48	0.53	0.58	0.65	0.65
86	0.48	0.56	0.60	0.69	0.68
87	0.48	0.58	0.63	0.73	0.71
88	0.48	0.61	0.66		0.73

Table 5-3. Ex Ante Per Participant Impacts by THI and Hour Ending (2021)

APPENDIX I. AC CYCLING EVALUATION DATA

5.4 AMI Data – Quality Control

Four sources of data are used in the impact analysis:

- 1. Half-hourly AMI customer consumption data
- 2. A record of controlled participants for each event
- 3. Program tracking data
- 4. Regional weather data.

A series of QC procedures are performed on the AMI data and the event control logs. This section describes these QC procedures that include a review of the AMI data and a cross-reference between the account level AMI data, the implementers' event control logs, and Dominion Energy's business intelligence (BI) data.

The AMI data is reviewed to ensure that it spans the analysis period within a specified tolerance for missing data and a determination that the consumption is reasonable. The following specific conditions must be met for a participant to be included in the impact analysis:

- AMI accounts must include consumption data for the event season, June 7th through August 26th.
- An account must not be missing consumption for more than 48 intervals or have zero consumption for more than 400 intervals.
- An AMI account must be associated with a corresponding account in the event control log.
- An account in the event control log must be associated with an active participant in the BI data.

The event control log lists all dispatched accounts and the start and stop times of the event. Only dispatched participants are included in the event control log. A participant will not be included if they opted out of an event or were not dispatched during a partial-dispatch event. However, there were no partial-dispatch events in 2021.

5.4.1 QC Results

Table 5-4 summarizes QC results for the AMI data.

Table 5-4. Attrition of participant AMI data (2021)

Data Prep	Number of Accounts	Remaining Population
Participant AMI accounts	21,865	
Data out of range or missing intervals	-11	
Number of accounts that appeared in the AMI data before June 1, 2021, only, or after September 30, 2021, only	-1,262	
Accounts removed because the AMI and event data did not overlap (new AMI meters)	-35	
Accounts included in the analysis	20,557	

APPENDIX II. EXTRAPOLATING THE AMI-ENABLED ACCOUNT IMPACTS TO THE PROGRAM POPULATION

The distribution of the AMI participants (the sample for analysis) among divisions and connected loads is not a random sample of the participant population. However, in 2021, the AC Cycling AMI sample increased from 10% to 27% of all participants because of the accelerated deployment of AMI meters across Dominion's service territory.⁸ To extrapolate the AMI account impacts to the participant population, the AMI-enabled accounts are assigned weights based on their division and connected load relative to all participants in the population. The distribution of AMI-enabled participants to all participants by division is shown in Table 5-5.

Division	Total Participants by Division	Total AMI Participants by Division	Percent age AMI by Division						
Eastern	27,052	6,248	34%						
Northwest	21,555	6,284	35%						
Central	15,954	5,581	31%						
North Carolina	2,626	93	1%						
Total	67,187	18,206	27%						

Table 5-5. Total and AMI Participants by Division⁹

The weights assigned to the AMI-enabled group for the June 23 event are listed in Table 5-6. The weights are unique to each event to reflect slight differences in participation levels. The weight can be understood as the number of program participants represented by each account in the AMI group. The following steps were taken to build the 2021 weights:

- 1. Construct a list of all event participants by division and connected load. The program tracking BI data is the source of the division and connected loads.
- 2. Stratify the participants based on state, division, and connected load.
- Calculate weights based on the number of AMI participants for each event relative to all participants within each stratum.¹⁰

⁸ Due to the non-random sample of AMI meters in the analysis, the Company commissioned a customer load modeling analysis, a new recruit trend study, and a non-AMI comparison. In turn, all were included in the Final Order of the State Corporation Commission on April 19, 2016. The results of these studies are found in the 2016 evaluation of dispatch events.

⁹ The table shows total participants and AMI participants in the first event on June 7, 2021. Although 20,557 AMI accounts are included in the overall analysis only 18,206 participated on June 7, 2021.

¹⁰ The weight within each stratum is the population divided by the total number of AMI meters in the study group.

Table 5-6. Weights by State, Division, and Connected Load for June 7, 2021

State	Division	Load (kW)	No. AMI meters	No. Participants	Weight
VA	Northwest	Not Available	1,079	5,807	5.38
VA	Northwest	< 4kW	3,085	8,826	2.86
VA	Northwest	≥4kW	2,120	6,922	3.27
VA	Eastern	Not Available	1,410	5,788	4.10
VA	Eastern	< 4 kW	3,179	13,618	4.28
VA	Eastern	>= 4 kW	1,659	7,646	4.61
VA	Central	Not Available	735	2,328	3.17
VA	Central	< 4kW	3,035	8,388	2.76
VA	Central	≥4kW	1,811	5,238	2.89
NC	NC	< 4kW	41	1,603	39.10
NC	NC	≥4kW	52	1,023	19.67
		Total	18,206	67,187	

Dominion Energy North Carolina Docket No. E-22, Sub 604

About DNV

DNV is a global quality assurance and risk management company. Driven by our purpose of safeguarding life, property, and the environment, we enable our customers to advance the safety and sustainability of their business. We provide classification, technical assurance, software, and independent expert advisory services to the maritime, oil & gas, power, and renewables industries. We also provide certification, supply chain and data management services to customers across a wide range of industries. Operating in more than 100 countries, our experts are dedicated to helping customers make the world safer, smarter, and greener.

APPENDIX I NON-RESIDENTIAL DISTRIBUTED GENERATION PROGRAM IMPACT ANALYSIS

DISTRIBUTED GENERATION PROGRAM

Evaluation, Measurement, and Verification Report for Virginia Electric and Power Company (Dominion Energy)

Appendix I Impact Evaluation of 2021 Dispatch Events

January 28, 2022

Dominion Energy North Carolina Docket No. E-22, Sub 604

Copyright © 2021, DNV Energy Insights USA, Inc.

This document and the information contained herein are the exclusive, confidential, and proprietary property of DNV and is protected under the trade secret and copyright laws of the United States and other international laws, treaties, and conventions. No part of this work may be disclosed to any third party or used, reproduced, or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system, without first receiving the express written permission of DNV. Except as otherwise noted, all trademarks appearing herein are proprietary to DNV.

Table of contents

EXECUTI	VE SUMMARY	1
1	INTRODUCTION AND BACKGROUND	3
1.1	Program terminology and metrics	3
1.1.1	Realization rate	3
2	IMPACT ANALYSIS METHODOLOGY	4
2.1	Data	4
2.2	Evaluation metrics	4
3	RESULTS	5
3.1	Program event impacts	6
3.2	Realization rates	8
3.3	Site-level detail	9
4	CONCLUSIONS	1

List of tables

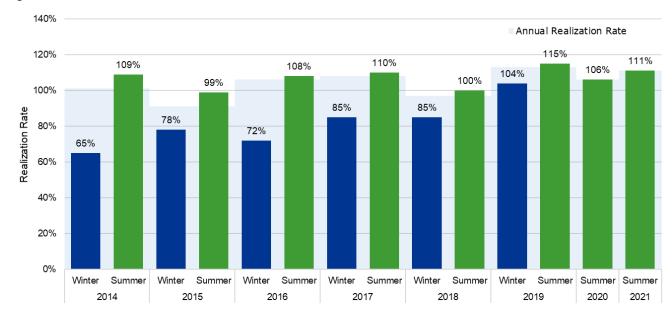
Table ES-1. DG program performance for 2020 events	2
Table 1-1. DG program performance for 2021 events	
Table 3-1. Program participant impacts and realization rates per year	
Table 3-2. DG performance indicators for winter and summer (2014–2021)	
Table 3-3. Dispatched generation by event day and hour ending–summer	6
Table 3-4. Measured generation by event day and hour ending–summer (kW)	7
Table 3-5. Realization rates by event day and hour ending–summer	8
Table 3-6. Average realization rates by site and event day (January 1–July 31, 2021)	9
Table 3-7. Average realization rates by site and event day (August 1–December 31, 2021)	10
Table 3-8. Average realization rates by site and event month (2021)	11

List of figures

Figure ES-1. Non-residential DG annual and seasonal realization rates, 2014–2021	1
--	---

Jun 15 2022

EXECUTIVE SUMMARY


This report presents the results of the annual impact analysis of Dominion Energy Virginia's (the Company's) Non-residential Distributed Generation (DG) Program for 2021.

The program began in June 2012 with the objective of curtailing peak load during periods of high demand. The Company calls upon participating large non-residential customers to provide it with a supply resource by operating backup power to curtail load on the grid. Customers must meet specific eligibility requirements to participate in the program and receive an incentive from the Company in exchange for their participation. In 2021, the program achieved an overall realization rate of 111%, and for the second year in a row there were no winter call events.

The three objectives of the impact analysis are to:

- Compute the aggregate and site-level curtailed load, in kilowatts (kW), for each event-hour and event day
- Compute program realization rates annually, seasonally, and for each event interval by comparing dispatched generation to measured generation
- Report monthly program performance and planned values

From January 1, 2021 to December 31, 2021, the program achieved an overall realization rate of 111%, exceeding its planned realization rate of 95%. Monthly realization rates ranged from 94% in May to 117% in August. There were no winter events in 2021; therefore, only summer events are included in the 2021 analysis.

Figure ES-1. Non-residential DG annual and seasonal realization rates, 2014–2021

Table ES-1 shows DG Program performance and planned values for 2021. The table provides the planned and actual participants, in megawatts (MW), and the average dispatched and measured generation in kW.

2021	Planned (MW)	Enrolled (MW)	Net kW planned	Net kW enrolled	Event days	Average dispatched (kW)	Average generation (kW)	Average realization rate
May	7.13	5.97	7,130	5,970	1	5,970	5,584	94%
June	7.13	5.97	7,130	5,970	7	5,601	6,050	108%
July	7.13	5.97	7,130	5,970	11	5,720	6,425	112%
August	7.13	5.97	7,130	5,970	8	5,782	6,783	117%

Table ES-1. DG program performance for 2020 events

1 INTRODUCTION AND BACKGROUND

The Virginia State Corporation Commission approved the Non-residential Distributed Generation (DG) Pilot Program on January 17, 2008. The DG Pilot achieved program status on April 30, 2012. In September 2021, the DG program was extended for an additional two years through May 31, 2024.¹

Large non-residential customers with at least 200 kW of demand are eligible to participate in the program. Dominion Energy may initiate a control event at any time during the year for any duration up to a total of 120 hours per calendar year subject to the physical constraints and environmental permitting requirements of the backup generation unit. The Company will pay an incentive payment each month based on the amount of load curtailment enrolled and actually delivered during control events. As of December 31, 2021, there were 21 enrolled sites, representing a resource potential of 5.97 MW to the Company.

Jun 15 2022

OFFICIAL COP

Details of the DG program are as follows:

- A participant is defined by its enrolled capacity, and one participant equals 1,000 kW of enrolled generation. A customer with greater than 1,000 kW of enrolled capacity is counted as more than one participant.² The level of incentive corresponds with the kW of enrolled generation capacity.
- Participating customers are compensated if the average annual measured on-site generation is at least 95% of the dispatched target generation for each event day.
- The Company has the right to adjust the incentive paid to customers based on historical performance if the average annual realization rate falls below the 95% target.

1.1 Program terminology and metrics

Any day on which an event is called is considered an event day. A given event day may include multiple events. The length of each event varies by event and events are reported in one-hour intervals at the end of the hour. For example, the interval hour ending 17 corresponds to an event between 16:00 and 17:00. The number of dispatched sites during a given event day may vary.

For the non-residential DG program, total and average dispatched generation is the amount of load curtailment, in kW, requested by the Company, per event-hour, aggregated and reported at the daily, monthly, seasonal, and yearly levels. Total and average measured generation is metered on-site and is the amount of load curtailed by the participant per event-hour interval.

1.1.1 Realization rate

The program's key performance indicator is the realization rate. The realization rate is calculated by dividing the average monthly measured generation by the average monthly dispatched generation for participating sites, expressed as a percentage. The measured generation before or following an event is not attributed to the program.

From January 1 through December 31, 2021, the program achieved an overall realization rate of 111%, exceeding its planned realization rate of 95%. The 2021 monthly realization rates shown in Table 1-1 highlight the months with call events (May–August).

¹. Case No. PUR-2020-00274, Commonwealth of Virginia, State Corporation Commission, Petition of Dominion Energy Virginia for approval of its 2020 DSM Update, Final Order September 2021.

² Customers who do not have exact multiples of 1,000 kW of on-site generation are credited with fractional levels of participation and incentive, e.g., 1,500 kW is considered 1.5 participants.

2021

May

June

Julv

August

Planned

(MW)

7.13

7.13

7.13

7.13

Jun 15 2022

5,970 5,584 94% 5,601 6,050 108% 5,720 6,425 112% 5,782 6,783 117%

Average

realization

rate

Average

generation

(kW)

Average

dispatched

(kW)

Table 1-1. DG program performance for 2021 events

Enrolled

(MW)

5.97

5.97

5.97

5.97

Net kW

planned

7,130

7.130

7,130

7.130

Performance indicators for DG pilot participants were reported through the end of the pilot (2014). Therefore, results reported in 2015–2021 are not directly comparable to the results of the combined pilot and program reported in 2013 and 2014.

Net kW

enrolled

5,970

5.970

5.970

5,970

Event

days

1

7

11

8

2 IMPACT ANALYSIS METHODOLOGY

For the non-residential DG program, dispatched generation is the amount of load curtailment, in kW, requested by the Company per event-hour interval, aggregated to the day, month, season, or year. Measured generation, which is sitemetered generation, is the amount of load delivered to the Company per event-hour interval, aggregated to the day, month, season, or year. Both dispatched and measured generation is presented in total (cumulative) and average (mean) aggregates. The realization rate is calculated by dividing the measured generation by the dispatched generation for participating sites.

2.1 Data

The Company provides measured generation data to DNV every month. If a site is not dispatched for a given event, it is not recorded. Each record includes the enrolled (dispatchable) generation for every site called for the event, as well as the measured generation for each hour ending during the event duration (in kW). Observations are recorded at the event-hour level for each site called on a given event day for each event.

2.2 Evaluation metrics

The key performance indicator used to measure program performance is the realization rate. The site-level realization rate for a given event interval is the on-site measured generation during that interval divided by the dispatched generation for the interval. The program realization rate during an event interval is the total measured generation divided by the total dispatched generation for all sites. For participants indexed by *i*, and for an event interval *j*,

Realization Rate_j =
$$\frac{\sum_{i} Measured Generation (kW_{i,j})}{\sum_{i} Dispatched Generation (kW_{i,i})}$$

The aggregate dispatched and measured generation across the program is calculated by event interval and day.

Results are reported seasonally for some parts of the analysis. The winter season spans October–May, and the summer season spans June–September.

3 RESULTS

This section summarizes program performance from 2013 to 2021 and presents a detailed impact analysis for the 2021 events.

A total of 27 events were called in 2021, with one event per event day. Eleven of the 27 events occurred in July. Table 3-1 presents an annual summary of the number of event days, average dispatched generation, average measured generation, and realization rates for event days through December 31, 2021.

Year	Number of event days	Average dispatched (kW)	Average measured generation (kW)	Realization rate
2013	12	6,239	6,306	102%
2014	23	5,862	5,978	101%
2015	26	5,899	5,457	93%
2016	37	5,215	5,524	106%
2017	27	5,603	6,054	108%
2018	31	5,296	5,140	97%
2019	25	5,619	6,368	113%
2020	29	5,932	6,293	106%
2021	27	5,695	6,314	111%

Table 3-1. Program participant impacts and realization rates per year

Table 3-2 presents an overview of yearly DG program impacts broken out by season. In 2021, summer's 111% realization rate exceeded the 95% target for 2021.

Year	Number of e	vent days	Average di (kW		Average ge (kW		Realization rate		
	Summer	Winter	Summer	Winter	Summer	Winter	Summer	Winter	
2014	14	9	5,798	6,060	6,305	3,954	109%	65%	
2015	20	6	5,958	5,846	5,903	4,515	99%	77%	
2016	34	3	5,171	5,911	5,602	4,281	108%	72%	
2017	24	3	5,564	6,130	6,114	5,234	110%	85%	
2018	27	4	5,438	4,757	5,432	4,026	100%	85%	
2019	23	2	5,565	6,085	6,376	6,302	115%	104%	
2020	29	0	5,932	-	6,293	-	106%	_	
2021	27	0	5,695	-	6,314	_	111%	-	

 Table 3-2. DG performance indicators for winter and summer (2014–2021)

Section 3.1 reports dispatched and measured generation by event-hour and day. Section 3.2 reports realization rates by event-hour and day. Section 3.3 provides site-level realization rate details by event day and month.

3.1 Program event impacts

Table 3-3 shows the total dispatched generation for all DG participants during the 2021 summer event intervals. The total and average dispatched generation is summarized by event day. The total hourly dispatched capacity ranged from 3,780 kW to 5,970 kW (27 events). The fully enrolled program capacity is 5,970 kW.

Dispatched kW is the amount of load curtailment requested (called) by the Company during an event. It is not a measure of participants' committed load and can vary by event.

Event day			Hour ending				
Event day	15	16	17	18	19	Total	Average
23-May-21				5,970	5,970	11,940	5,970
7-Jun-21		5,730	5,730	5,730		17,190	5,730
8-Jun-21		5,970	5,970	5,970		17,910	5,970
9-Jun-21		5,970	5,970	5,970		17,910	5,970
21-Jun-21		5,820	5,820	5,820		17,460	5,820
28-Jun-21			5,970	5,970		11,940	5,970
29-Jun-21		3,780	3,780	3,780		11,340	3,780
30-Jun-21	5,970	5,970	5,970	5,970		23,880	5,970
6-Jul-21			5,970	5,970		11,940	5,970
7-Jul-21		5,970	5,970			11,940	5,970
12-Jul-21			5,970	5,970		11,940	5,970
13-Jul-21			5,730	5,730		11,460	5,730
15-Jul-21			5,510	5,510		11,020	5,510
16-Jul-21		5,730	5,730			11,460	5,730
21-Jul-21		5,730	5,730			11,460	5,730
26-Jul-21		5,730	5,730			11,460	5,730
27-Jul-21			5,490	5,490		10,980	5,490
28-Jul-21			5,490			5,490	5,490
29-Jul-21		5,490	5,490			10,980	5,490
10-Aug-21			5,470			5,470	5,470
11-Aug-21			5,510	5,510		11,020	5,510
12-Aug-21			5,510			5,510	5,510
13-Aug-21		5,970				5,970	5,970
19-Aug-21		5,970	5,970			11,940	5,970
24-Aug-21			5,970			5,970	5,970
25-Aug-21			5,970			5,970	5,970
26-Aug-21			5,970			5,970	5,970

Table 3-3. Dispatched generation by event day and hour ending-summer (kW)

Table 3-4 reports the program-level measured generation by event day and interval for summer events.

Total and average measured generation are given across all events during each event day. The average measured generation was 6,314 kW, which is consistent with program expectations.

Event day							
Event day	15	16	17	18	19	Total	Average
23-May-21				5,640	5,529	11,169	5,584
7-Jun-21		5,960	6,056	6,053		18,069	6,023
8-Jun-21		6,401	6,363	6,355		19,120	6,373
9-Jun-21		6,166	6,001	5,525		17,693	5,898
21-Jun-21		6,220	6,219	6,241		18,679	6,226
28-Jun-21			6,298	6,413		12,712	6,356
29-Jun-21		4,687	4,706	4,717		14,111	4,704
30-Jun-21	6,656	6,674	6,679	6,666		26,675	6,669
6-Jul-21			6,666	6,592		13,258	6,629
7-Jul-21		6,417	6,392			12,810	6,405
12-Jul-21			6,766	6,769		13,534	6,767
13-Jul-21			6,484	6,437		12,921	6,460
15-Jul-21			6,402	6,341		12,743	6,372
16-Jul-21		6,722	6,684			13,406	6,703
21-Jul-21		6,345	6,352			12,697	6,348
26-Jul-21		6,413	6,197			12,610	6,305
27-Jul-21			6,278	6,276		12,554	6,277
28-Jul-21			5,798			5,798	5,798
29-Jul-21		6,307	6,280			12,587	6,294
10-Aug-21			6,228			6,228	6,228
11-Aug-21			6,573	6,487		13,060	6,530
12-Aug-21			6,610			6,610	6,610
13-Aug-21		7,034				7,034	7,034
19-Aug-21		6,993	6,968			13,961	6,980
24-Aug-21			6,750			6,750	6,750
25-Aug-21			7,095			7,095	7,095
26-Aug-21			7,093			7,093	7,093

Table 3-4. Measured generation by event day and hour ending-summer (kW)

3.2 Realization rates

The average realization rates for summer events are provided in Table 3-5, showing measured generation as a percentage of the dispatched generation for each event interval.

Twenty-six of 27 summer event days (96%) met or exceeded the 95% target average (Table 3-5). The May 23 event yielded a realization rate of 94%. The highest performing summer event day occurred June 29, generating 124% of the dispatched load on that day. Average realization rates that meet or exceed the 95% target are bolded in Table 3-5.

Event dev	Hour ending							
Event day	15	16	17	18	19	Average		
23-May-21				94%	93%	94%		
7-Jun-21		104%	106%	106%		105%		
8-Jun-21		107%	107%	106%		107%		
9-Jun-21		103%	101%	93%		99%		
21-Jun-21		107%	107%	107%		107%		
28-Jun-21			105%	107%		106%		
29-Jun-21		124%	125%	125%		124%		
30-Jun-21	111%	112%	112%	112%		112%		
6-Jul-21			112%	110%		111%		
7-Jul-21		107%	107%			107%		
12-Jul-21			113%	113%		113%		
13-Jul-21			113%	112%		113%		
15-Jul-21			116%	115%		116%		
16-Jul-21		117%	117%			117%		
21-Jul-21		111%	111%			111%		
26-Jul-21		112%	108%			110%		
27-Jul-21			114%	114%		114%		
28-Jul-21			106%			106%		
29-Jul-21		115%	114%			115%		
10-Aug-21			114%			114%		
11-Aug-21			119%	118%		119%		
12-Aug-21			120%			120%		
13-Aug-21		118%				118%		
19-Aug-21		117%	117%			117%		
24-Aug-21			113%			113%		
25-Aug-21			119%			119%		
26-Aug-21			119%			119%		

Table 3-5. Realization rates by event day and hour en	iding-summer
---	--------------

DNV

3.3 Site-level detail

Table 3-6 and Table 3-7 show the average realization rates by participant site for each event day. Each site is assigned a unique identifier. If a participant site was not dispatched during an event, the corresponding cell is blank. Realization rates greater than or equal to 95% are highlighted green, less than 95% and greater than or equal to 50% are lilac, and rates less than 50% are red. Site IDs 7, 9, 10, 11, 13, 14, 18, 19, and 20 met or exceeded the 95% target in every event. There was one enrolled customer site that was not included in any events.

	Мау				June									July					
Site ID	23	7	8	9	21	28	29	30	6	7	12	13	15	16	21	26	27	28	29
1	69%	91%	93%	86%	88%	85%		89%	90%	93%	97%	97%	97%	97%	92%	95%	96%	95%	95%
2	45%	45%	45%	45%	45%	45%		45%	45%	45%	45%	45%		104%	102%	104%	106%	11%	107%
3	58%	58%	58%	73%	106%	103%	102%	107%	98%	98%	95%	97%	94%	99%	94%	96%	92%	94%	99%
4	94%	107%	110%	49%	105%	100%	109%	109%	116%	0%	112%	111%	116%	120%	103%	34%			
5	79%	82%	84%	79%	87%	85%	87%	90%	84%	89%	86%	86%	88%	89%	87%	85%	84%	76%	87%
6	107%		114%	100%	119%	118%	118%	121%	109%	111%	113%								
7	97%	119%	120%	113%	123%	118%	118%	117%	124%	121%	124%	120%	119%	124%	113%	123%	120%	106%	125%
8	130%	132%	140%	118%		138%	140%	141%	134%	130%	136%	144%	134%	135%	129%	131%	136%	130%	125%
9	109%	111%	114%	106%	123%	118%	119%	123%	117%	117%	123%	115%	114%	120%	119%	113%	113%	115%	116%
10	145%	139%	147%	133%	146%	145%	143%	149%	146%	140%	147%	144%	146%	137%	129%	130%	143%	134%	133%
11	225%	222%	220%	214%	236%	231%	237%	242%	237%	230%	246%	246%	244%	245%	225%	224%	226%	214%	230%
12	80%	75%	78%	78%	95%	93%	89%	95%	97%	97%	98%	94%	98%	102%	84%	93%	95%	93%	93%
13	127%	133%	132%	128%	135%	131%	126%	137%	138%	137%	134%	139%	135%	137%	136%	125%	139%	125%	136%
14	108%	111%	111%	107%	116%	113%	114%	118%	114%	115%	114%	111%	111%	114%	108%	110%	114%	112%	109%
15	102%	112%	117%	116%	7%	123%	125%	128%	122%	128%	116%	109%	117%	124%	115%	128%	127%	125%	131%
16	86%	93%	92%	88%	98%	85%	93%	91%	109%	110%	105%	109%	109%	109%	111%	105%	107%	91%	111%
17	85%	101%	98%	100%	102%	101%	100%	103%	99%	100%	101%	100%	99%	104%	97%	100%	100%	85%	100%
18	117%	151%	147%	156%	171%	128%	171%	174%	165%	169%	160%	158%	153%	160%	158%	172%	165%	154%	170%
19	239%	246%	238%	230%	247%	243%	248%	249%	245%	246%	248%	245%	253%	255%	244%	248%	245%	226%	244%
20	157%	172%	169%	127%	176%	173%	173%	176%	176%	171%	179%	175%	184%	181%	175%	179%	177%	169%	179%
Legend	> 95%	< 95%	≥50%	< 50%	No even	t called													

Table 3-6. Average realization rates by site and event day (January 1–July 31, 2021)

Site	August							
ID	10	11	12	13	19	24	25	26
1	99%	100%	99%	107%	102%	94%	105%	104%
2	33%			0%	109%	107%	108%	108%
3		93%	111%	101%	99%	94%	97%	97%
4	112%	113%	0%	116%	114%	107%	112%	121%
5	83%	91%	96%	96%	89%	84%	89%	89%
6				112%	119%	111%	115%	115%
7	122%	128%	140%	131%	124%	122%	121%	120%
8	138%	135%	151%	142%	107%	139%	143%	141%
9	106%	107%	116%	118%	116%	95%	99%	113%
10	127%	143%	145%	142%	133%	136%	134%	142%
11	225%	242%	251%	243%	233%	236%	226%	228%
12	108%	102%	106%	107%	92%	98%	102%	103%
13	138%	134%	143%	141%	131%	113%	125%	132%
14	112%	113%	123%	114%	110%	113%	118%	106%
15	116%	119%	155%	118%	143%	133%	144%	119%
16	117%	114%	142%	118%	110%	109%	111%	114%
17	101%	106%	112%	104%	99%	101%	102%	99%
18	167%	171%	180%	166%	164%	169%	169%	173%
19	248%	259%	263%	262%	251%	255%	248%	255%
20	180%	186%	188%	183%	180%	183%	186%	182%
Legend	> 95%		< 95% ≥50)%	< 50%	No	event cal	led

Table 3-7. Average realization rates by site and event day (August 1–December 31, 2021)

Page 11 of 15

Table 3-8 shows the monthly average realization rate for each site. Twelve sites achieved or exceeded the program target of 95% every month.

Site ID	Мау	June	July	Aug
1	69%	89%	95%	101%
2	45%	45%	75%	82%
3	58%	87%	96%	98%
4	94%	99%	89%	102%
5	79%	85%	86%	90%
6	107%	115%	111%	115%
7	97%	118%	121%	126%
8	130%	135%	133%	134%
9	109%	117%	117%	109%
10	145%	143%	139%	138%
11	225%	229%	234%	236%
12	80%	86%	95%	101%
13	127%	132%	135%	132%
14	108%	113%	112%	113%
15	102%	104%	122%	131%
16	86%	92%	108%	116%
17	85%	101%	99%	103%
18	117%	159%	163%	169%
19	239%	243%	246%	255%
20	157%	167%	177%	184%
Legend	> 95%	< 95% ≥50%	< 50%	No event called

Table 3-8. Average realization rates by site and event month (2021)

4 CONCLUSIONS

The objective of each DG event is to provide the Company with a supply resource during periods of high demand. The performance goal of the DG program is that measured generation be at least 95% of the dispatched load. In 2021, the DG program exceeded 2021's program targets and achieved an annual realization rate of 111%, 16 percentage points higher than the program target of 95%. Similar to last year, there were no winter events in 2021. It is difficult to draw conclusions about the effect of the COVID-19 pandemic on program performance although impacts, if any, appear to be minimal.

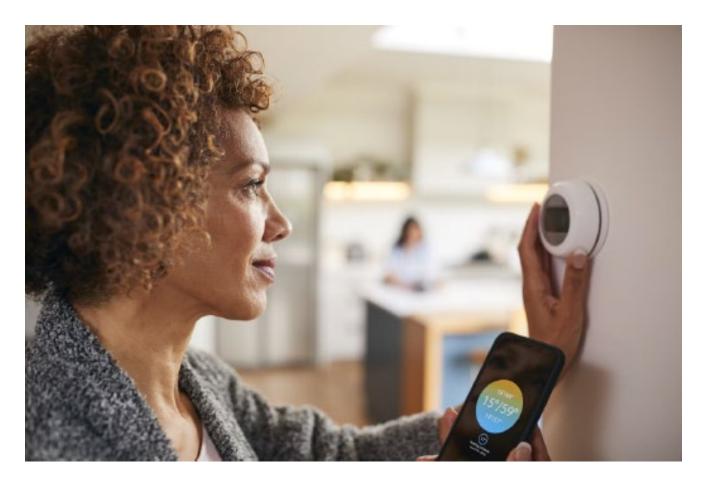
Page 12 of 15

Jun 15 2022

About DNV

DNV is a global quality assurance and risk management company. Driven by our purpose of safeguarding life, property and the environment, we enable our customers to advance the safety and sustainability of their business. We provide classification, technical assurance, software and independent expert advisory services to the maritime, oil & gas, power and renewables industries. We also provide certification, supply chain and data management services to customers across a wide range of industries. Operating in more than 100 countries, our experts are dedicated to helping customers make the world safer, smarter and greener.

APPENDIX J RESIDENTIAL THERMOSTAT REWARD PROGRAM IMPACT ANALYSIS



SMART THERMOSTAT REWARDS DEMAND RESPONSE PROGRAM

Evaluation, Measurement, and Verification Report for Virginia Electric and Power Company (Dominion Energy)

Appendix I Impact Evaluation of 2021 Dispatch Events

April 4, 2022

Contents

1	EXECUTIVE SUMMARY	3
2	INTRODUCTION	4
2.1	Smart Thermostats	4
3	SMART THERMOSTAT REWARDS EVENTS AND CUSTOMER PARTICIPATION	5
3.1	Frequency	5
3.2	Participation	5
4	IMPACT ANALYSIS	6
4.1	Smart Thermostat Rewards Evaluation Data	6
4.2	Methodology	7
5	RESULTS	9
5.1	Ex Post Impacts	9
5.2	Event-Day Plots	10
5.2.1	Event load profile with a high impact	11
5.2.2	Event load profile with a low Impact	12
5.3 APPEND	Ex Ante Impacts IX A. AMI Data Cleaning and Attrition	12 15
5.4	AMI Data Cleaning	15
5.5 APPEND	AMI Data Attrition	15
	POPULATION	16
5.6	Sample Weights	16
APPEND	IX C. Ex post Impact event data	17

List of figures

Figure 3-1. AMI and non-AMI participants by event	5
Figure 4-1. AMI and non-AMI participants by division (August 21, 2021)	
Figure 5-1. Timeline of 2021 events by average impacts and maximum event-day THI	
Figure 5-2. Estimated load reduction by the order of event-hour for all events	10
Figure 5-3. Load Profile for an event day with high impacts (June 21, 2021)	11
Figure 5-4. Load Profile for an event day with low impacts (July 21, 2021)	
Figure 5-5. Ex post estimates (points) and predicted (ex ante) kW impacts for HE 16, 17, and 18	

List of tables

Table 5-1. 2021 Ex ante per participant impacts by THI and hour-ending	14
Table 5-2. Attrition of participant AMI data (2021)	
Table 5-3. Participants, AMI participants, and sample weights by division or State for August 26, 2021	
Table 5-4. Smart Thermostat Rewards ex post impacts by event-day and hour (June 7–August 26, 2021)	17

Jun 15 2022

1 EXECUTIVE SUMMARY

This is the first impact analysis of the Residential Smart Thermostat Rewards demand response program, which operated demand response events (events) for the first time in 2021. This report summarizes program participation in the 2021 events and reviews the 2021 program impacts. The program began enrolling participants in March 2021. From June through August, Dominion Energy called 25 events.

The Smart Rewards Program leverages the demand response functionality of smart thermostats to provide residential load curtailment during periods of high demand on the Dominion grid. The smart thermostat functionality offers a pre-event cooling period that varies with the thermostat manufacturer. Following a pre-event cooling period, thermostat setpoints are increased from the cooler temperature achieved during precooling, to a higher event-period setpoint, which also varies by

In 2021, the evaluated load impact for weather conditions observed during Dominion Energy's peak day conditions was 1.07 kW per participant.

customer and thermostat manufacturer.¹ Once the new setpoint is achieved, cooling action re-commences, but the air conditioner draws less power due to the higher setpoint. In addition to the pre-cooling functionality, smart thermostats allow the customer to override the event at the thermostat by simply changing the existing set point at any time during the event. While this functionality is an important customer selling point for smart thermostat demand response programs, it also has the potential to lower demand response impacts. In particular, override rates tend to vary with weather conditions, and can undermine load reduction on the hottest days.

Key Findings

- In 2021, the evaluated load impact was 1.07 kW per participant at Dominion's summer peak planning conditions of 95°F and 43% relative humidity.
- By the first event, the program had 2,798 active participants and that number increased by 30% to 4,148 over the course of the summer.
- Average event-level ex post impacts range from 0.62 to 1.31 kW.
- First-hour load reduction is consistently higher than subsequent hours, with load reduction dropping with each additional hour. This pattern is present in all events and is explained by a combination of pre-cooling and the ease of override. Strategically leveraging this pattern to address system load reduction—through, for example, staggered starting hours—has the potential to increase the adaptability of the program impacts.
- Participating customers used smart thermostats from three manufacturers: Honeywell, Ecobee, and Emerson. During the first event on June 7, 47% of the thermostats were from Honeywell, 43% from Ecobee, and 10% from Emerson. By the end of August, Ecobee's share rose to 63%. In 2022, when the program is larger, DNV plans to analyze impacts by thermostat type.

¹ Not all thermostat manufacturers use the pre-cooling strategy.

Jun 15 2022

2 INTRODUCTION

The smart thermostat is a measure in three Dominion Programs: Smart Thermostat Rewards Program, The Smart Thermostat Purchase Program, and the WeatherSmart[™] Program.² The Smart Thermostat Rewards Program began recruiting participants in March 2021. This report summarizes participation in the 2021 Smart Rewards events, reviews the 2021 event impacts, and presents the results of the ex post and ex ante impact analyses. It also presents event-hour and event-day results, sample plots showing the hourly progression of two events, and the weighting strategy that extrapolates impacts from the AMI participants to the full population.

2.1 Smart Thermostats

Smart Rewards leverages the demand response functionality of smart thermostats to provide residential load curtailment similar to the existing Residential AC Cycling Program. The smart thermostat functionality and operational strategy includes a pre-event cooling period followed an event-period increase in temperature setpoint, that varies by customer and thermostat manufacturer.

Smart thermostats are energy management tools that enable customers to regulate their HVAC energy consumption. Since these are programmable devices, customers can schedule the set points of their homes' cooling and heating systems, so they run during periods when customers need them. These devices can also sense occupancy and "learn" to adjust temperature settings of the home optimally in a way that may further reduce energy consumption. Because they are Wi-Fi-enabled, they allow customers to adjust settings from their smart devices for additional energy use control.

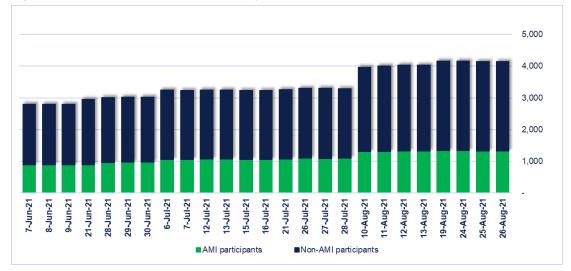
At the beginning of an event, the household temperature rises from the cooler temperature achieved during precooling to the higher event-period setpoint before the air conditioner resumes operation. This can occur over a span of as much as 5 degrees. Once the new setpoint is achieved, cooling action re-commences, but the air conditioner draws less power due to the higher setpoint. In addition to the pre-cooling functionality, smart thermostats allow the customer to override the event at the thermostat by simply changing the existing set point at any time during the event. While this functionality is an important customer selling point for smart thermostat demand response programs, it also has the potential to lower demand response impacts. In particular, override rates tend to vary with weather conditions, and can undermine load reduction on the hottest days.

Dominion has been operating the residential AC Cycling demand response program since 2011. Although the two programs share a common objective, AC Cycling reduces demand by using a 50% adaptive cycling strategy with no pre-cooling. The 50% adaptive cycling strategy produces a different event-based indoor temperature response than the smart thermostat strategy described above and has a different load reduction pattern.

The two demand response programs operated on the same event schedule throughout the summer. Accordingly, DNV used the same analysis approach to calculate impacts for both programs, while accounting for differences in the two reduction strategies and technologies and taking advantage of the more detailed data available from the smart thermostats.

² Participants in the WeatherSmart Program allow the Company to make minor, short-term adjustments to the customer HVAC system via the smart thermostat.

3 SMART THERMOSTAT REWARDS EVENTS AND CUSTOMER PARTICIPATION


3.1 Frequency

In 2021, there were 25 events spanning 71 event-hours. The 25 events were spread relatively evenly across June (7), July (8), and August (10). Dominion called 8 two-hour events, 13 three-hour events, and 4 four-hour events. The difference in load reduction as a function of consecutive event hours is discussed in Section 5.1, Ex Post Impacts.

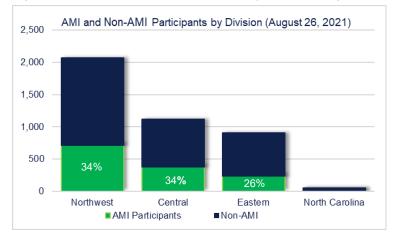
3.2 Participation

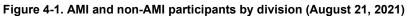
Program enrollment began in March 2021. By the first event on June 7, there were 2,798 customers enrolled. By the end of the event season participation had increased by 30%, to 4,142. The savings estimated in this analysis reflect the mix of participants active on that event day. This could lead to change in load reduction estimates over time as the population changes. As the program grows, typical load reduction could increase; for example, if a higher proportion of participants are in high cooling load areas. More likely, the characteristics of participants will not change dramatically over time and any trends in load reduction estimates will be obscured by natural variation across events caused by weather and short-term customer behavior such as vacations.

The increase in participants over the event season and the proportion of participants with available AMI data are shown in Figure 3-1 The role of AMI data in the analysis is described in Section 4.1, AMI data, and Section 4.2, Methodology.

Figure 3-1. AMI and non-AMI participants by event

4 IMPACT ANALYSIS


4.1 Smart Thermostat Rewards Evaluation Data


Four sources of data were used in the impact analysis: AMI whole-house energy consumption data, thermostat event control data, Smart Thermostat Rewards tracking data, and weather data. Each is described below. Descriptions and results of the data cleaning procedures are provided in Appendix A.

AMI Data

The analysis takes advantage of half-hourly whole-house consumption data collected from the AMI meters of all participating customers.

The distribution of AMI data across the Northwest, Central, and Eastern divisions, and in North Carolina is shown in Figure 4-1.³ Roughly a third of participants have AMI data. AMI data coverage is important as it forms the basis of the impact estimates. AMI-based impact estimates are extrapolated to the division based on both weights developed from these participant counts as well as population-level knowledge of customer cooling consumption. This process is discussed further in Section 4.2, Methodology. The sample weights and weighting methodology is included in APPENDIX B.

Thermostat Event Data

A record of controlled participants for each event provided by the implementer, including opt-outs.

Program Tracking Data

Program tracking data collected by the implementers is used to link the participant to their consumption data and division, to identify the participant's location (which is used to assign the appropriate weather station), and to confirm that thermostat control records match the Company's list of active participants.

³ Because there is only one North Carolina AMI participant and the total number of North Carolina program participants is so low, North Carolina observations are excluded from the analysis.

Jun 15 2022

Weather Data

Hourly temperature and humidity data from NOAA is collected at the weather station associated with the Dominion office nearest to the household's service address.⁴ Data from 7 weather stations was used in the analysis: Charlottesville-Albemarle Airport, Farmville Regional Airport, Norfolk International Airport, Richmond International Airport, Roanoke Regional Airport, Ronald Reagan Washington National Airport, and Washington Dulles International Airport.

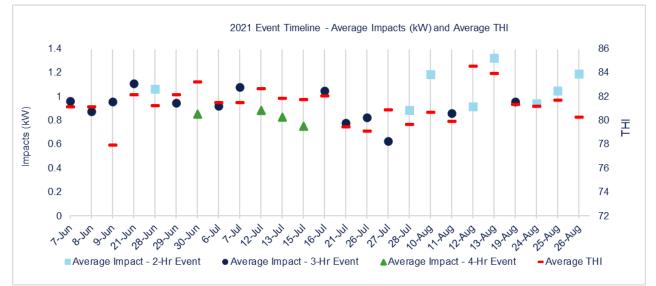
4.2 Methodology

The following steps are used to calculate demand reduction impacts for the program:

- For each account, hourly consumption on non-event days is modelled using AMI consumption data, temperature data, and humidity data. The regression specification estimates hourly consumption as a function of hour of the day, weekday/weekend and a five-hour, lagged average of THI for each hour. The estimated parameters from this regression analysis are used to predict a preliminary estimate of baseline consumption on event days for each AMI-enabled account.
- 2. Because regressions estimated on less extreme, non-event days tend to underestimate load on more extreme event days, a widely used pre-event adjustment is applied to estimated load at the customer/event level. The difference between actual consumption and the predicted baseline consumption during the third hourly interval prior to an event is added to the two-hour pre-event period and the event period. This adjusts the predicted baseline upward or downward to account for underestimation or overestimation of consumption on the afternoon of an event day. The difference during the third hour interval prior to an event was selected because it occurs prior to pre-cooling. If the adjustment were calculated using intervals during pre-cooling, load would be adjusted above the level that would have occurred in the absence of the program. Load reduction is calculated as the difference between the adjusted baseline consumption and actual consumption for each event hour for all AMI accounts.
- 3. The AMI sample used for this analysis is large but not selected at random. The geographic build-out of the AMI system determines which customers have hourly data. The sample is stratified at the division level to make sure each region gets proper representation regardless of the presence of AMI. As with the aggregation of any stratified sample, weights are required to reflect the presence of the population in the sample. Sample weights are calculated for each event by dividing the number of participants in the event logs by the number of participants with AMI consumption data for each division and event date. APPENDIX B. contains a description of the weighting method and final weights.
- 4. The load reduction for each AMI account is extrapolated to the full program population using the sample weights described above and a ratio estimation method that leverages the 2020 cooling consumption available for the full population of customers. Incorporating 2020 cooling consumption into the estimation method addresses possible differences in cooling system size between the sample and the population and decreases the standard errors of the load reduction estimate. The results are the calculated ex post impact for all event hours. The results of the ex post analysis are provided in Section 5.1 and APPENDIX C.

⁴ National Oceanic and Atmospheric Association (NOAA), National Centers for Environmental Information, Climate Data Online. Dominion Energy's peak planning condition is hour-ending 17 at 95°F at 43% RH, or 83.4 THI. Temperature Humidity Index = THI = Td – (0.55 – 0.55*RH) * (Td – 58) where Td is dry bulb temperature and RH is relative humidity. Source: PJM Glossary: http://www.pjm.com/Glossary.aspx

5. The ex post estimates are summarized in a linear regression model for each event-hour with the temperature humidity index (THI) as the independent variable. The predicted impact from these models for each event hour and THI are the basis of ex ante estimates that are used to estimate the program impacts at the Company's peak planning conditions. The ex ante results are provided in Section 5.3.


5 **RESULTS**

This section presents the results of the 2021 ex post and ex ante analyses.

5.1 Ex Post Impacts

Ex post impacts describe what actually happened during an event-hour and over each event. This is in contrast to the ex ante impacts which describe what is predicted to happen at the Company's peak load conditions.

The ex post per-participant kW impacts (demand reduction) are calculated for each event hour and for each event, on average across hours. The 2021 timeline in Figure 5-1 shows the average event-level impact (in kW) and maximum THI for each event. The red dashes are the event average THI and are plotted to provide the movement of this primary driver of load reduction. Average impacts for different event lengths are indicated by both color and shape. Light blue squares represent two-hour events, dark blue circles are for the three-hour events, and green triangles are for the four-hour events. In general, the magnitude of the impacts moves with THI, a combination of temperature and humidity. The length of an event is also quite important. While the impacts of the 3-hour events follow the general pattern set by the event THI values, seven of the eight 2-hour events fall above the THI trend, and all of the 4-hour events fall below the THI trend.

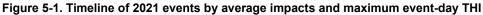
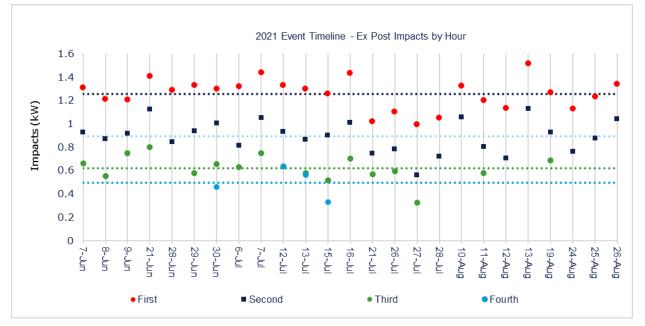



Figure 5-2 displays the estimated ex post load reduction by the event-hour for all events. The red circles represent load reduction during the first hour, dark blue squares are for the second hour, green circles are for the third hour, and light blue are for the fourth hour. The dotted lines represent the average load reduction for the first hour (red), second (dark blue), third (green), and fourth hours (light blue). The average first-hour load reduction across all events, regardless of start time, is 1.26 kW. On average across all events, load reduction in the second, third and fourth hours is 71%, 50%, and 38% of first hour load reduction, respectively.

Higher impacts are achieved in the first hour and drop as the event progresses because the pre-cooling produces the lowest internal temperature conditions of all event hours relative to subsequent event hours. During this initial period,

the air conditioner system remains off and no cooling occurs. As the event progresses, the internal temperature of the house rises as much as 5 degrees until it reaches the higher event-period setpoint. The rate at which the house warms is a function of the physical characteristics of the house (insulation), occupancy, household activities, and shading effects. As the internal temperature of the household rises, cooling action will re-commence but the air conditioner will draw less power than during a non-event period due to the higher event-setpoint. Opt-out activity also increases as the temperature reaches and then stays at the higher temperature. Both processes contribute to the decrease in load reduction as the event proceeds, causing the dramatic and consistent pattern illustrated here.

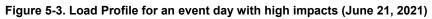
Ex post impacts by day and hour are detailed in APPENDIX C., Table 5-4. Also shown are the number of participants, the opt out percent, the weighted average THI, the maximum daily temperature for Richmond, and a day number indicating the event's order for consecutive event days.

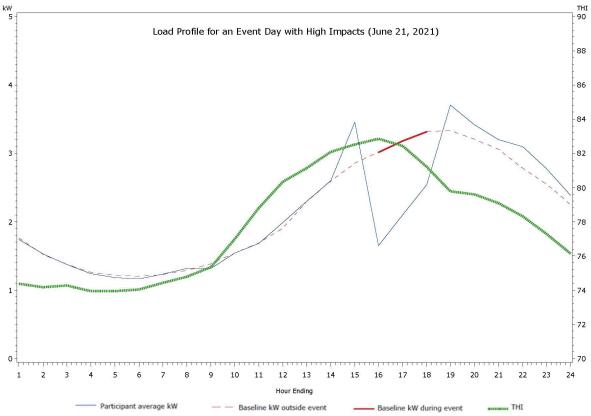
5.2 Event-Day Plots

The ex post plots in Figure 5-3 and Figure 5-4 on the following pages illustrate events with relatively high and low impacts, respectively. The plots are described briefly below.

The ex post estimate, or what happened during the event, is the difference between the adjusted baseline during the event (solid red line) and the event load (blue line). Impacts are calculated at the end of each event hour, referred to as hour-ending (HE). Impacts are determined by estimating the difference between the adjusted baseline load and the event load. The results are illustrated in time-series representations of:

• **Event-day load profile for the Smart Thermostat Rewards Program (blue line).** The pre-cooling period immediately preceding the event is clearly visible at the first spike in kW load and is followed by a post-event load spike during snapback or rebound as the household returns to the non-event setpoint temperature.

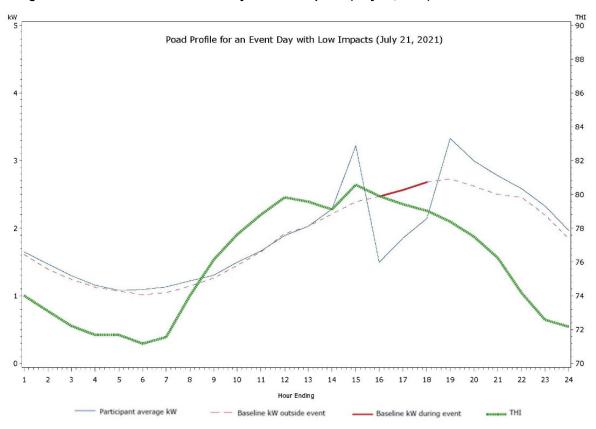

Jun 15 2022



- **Baseline during the event (red line)**. The solid red line plots the baseline kW load for the event-day load curve during the event. The baseline is the modeled load for the specific event-day under similar weather conditions on non-event days.
- **Reference load outside the event (red line).** This line plots the baseline load profile before and after the event taken from participant AMI data.
- **Event-day THI (green line)**. Hourly THIs for the closest station to each AMI household are plotted to contextualize the relationship between load, temperature, and humidity.

5.2.1 Event load profile with a high impact

Figure 5-3 shows a high average impact event that occurred on June 21, 2021 (1.11 kW). is shown in. Pre-cooling begins at HE 14 and can be seen by the sharp increase in load for the following hour. The event begins at HE 15. Load reduction is taken as the difference between the adjusted baseline (red) and the actual power consumption (blue) at HE 16, 17, and 18. The baseline consumption prior to the event is slightly above 2.5 kW and the THI during the first event hour is 83. By contrast, THI is 79 for the low impact event shown in Figure 5-4. Load reduction in the first hour is 1.40 kW, and by the third hour has dropped to 0.80 kW.

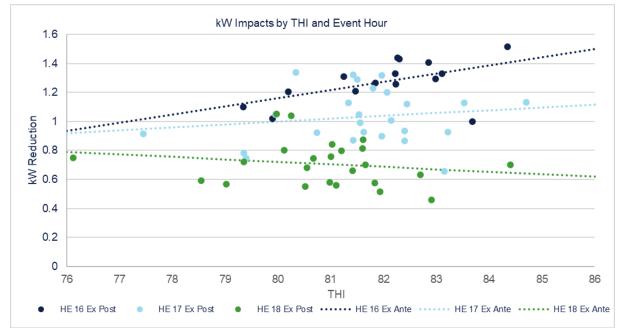


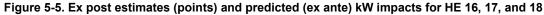
5.2.2 Event load profile with a low Impact

The second-lowest average impact (0.78 kW) occurred on July 21,2021 and is shown in Figure 5-4. This event had the second-lowest weighted THI during the first event hour (80) and the third-lowest average event THI (79). Similar to June 21, pre-cooling begins at HE 14 and can be seen by the sharp increase in load for the following hour. Baseline consumption prior to the event is approximately 1.75 kW (compared to 2.5 kW for the high-impact event shown above). The event begins at HE 15 and load reduction is visible for HE 16, 17, and 18. The baseline consumption prior to pre-cooling is slightly lower than the high-impact event. Load reduction in the first hour is 1.02 kW (vs 1.41 in the high-impact event), and by the third hour has dropped to 0.57 (vs. 0.80 kW).

Figure 5-4. Load Profile for an event day with low impacts (July 21, 2021)

5.3 Ex Ante Impacts


Ex ante impacts are the predicted load reduction for a range of weather conditions in kW at the company's peak planning conditions (83.4 THI during HE17). The predicted, or ex ante, impact of the Smart Thermostat Rewards Program for the Company's peak planning conditions was 1.07 kW. Figure 5-5 illustrates the relationship between hourly load estimates and THI for HE 15, 16, 17, 18, and 19. The ex ante estimates (dashed line) are plotted for each hour as a linear function of the ex post estimates (dots).


The diminishing impacts between the first hour (dark blue) and last hour (green) discussed previously for the ex post (what actually happened) and the ex ante (predicted) estimates are clearly illustrated. All but one event started in

HE 16 or later. As a result, 14 out of the 15 HE 16 load reduction estimates represent first-hour load reductions. Not surprisingly they are tightly clustered around the highest load reductions at any given THI. HE 17 is a mix of first and second hours, which explains the lower trend and the substantially greater variation of load reduction around the trend line. Similarly, HE 18 is a mix of second and third hours. The practical takeaway from this graph is that starting all events in HE 17 would maximize the ex ante estimate of load reduction.

Table 5-1 shows the predicted kW per participant impacts from the regression models across a range of THI values and event hours for the combined event day impacts, or event season. The predicted impact of 1.07 kW at the Company's peak conditions falls within the thick bordered boxes.

84

85

86

87

88

1.30

1.30

1.30

1.30

1.30

1.39

1.44

1.50

1.56

1.61

HE15 HE16 HE17 HE18 HE19 THI 76 1.30 0.94 0.92 0.79 0.48 77 1.30 0.99 0.94 0.77 0.49 78 1.30 1.05 0.96 0.76 0.49 0.98 0.74 0.50 79 1.30 1.10 0.51 80 1.30 1.16 1.00 0.72 81 1.30 1.22 1.02 0.70 0.51 82 1.30 1.27 1.04 0.69 0.52 83 1.30 1.33 1.06 0.67 0.52

1.08

1.10

1.12

1.14

1.16

Table 5-1. 2021 Ex ante per participant impacts by THI and hour-ending

0.65

0.64

0.62

0.60

0.58

0.53

0.54

0.54

0.55

0.55

APPENDIX A. AMI Data Cleaning and Attrition

5.4 AMI Data Cleaning

The analysis uses half-hourly AMI whole-house consumption data from all participants that have AMI meters. The AMI data is first subset to the accounts that appear in Smart Thermostat Rewards tracking data. Accounts that only appear in the AMI data before June 1, 2021, or only after September 30, 2021, and accounts which AMI observations did not overlap with the event data are removed.

5.5 AMI Data Attrition

Table 5-2 summarizes attrition for the AMI data.

Table 5-2. Attrition of participant AMI data (2021)

Data Prep	Number of Accounts	Remaining Population
Participant AMI accounts	1,599	
Number of accounts that appeared in the AMI data before June 1, 2021, only, or after September 30, 2021, only	-59	1,540
Accounts removed because the AMI and event data did not overlap (new AMI meters)	-15	
Accounts included in the analysis		1,525

APPENDIX B. EXTRAPOLATING THE AMI-ENABLED ACCOUNT IMPACTS TO THE PROGRAM POPULATION

5.6 Sample Weights

Sample weights are created to extrapolate the ami-enabled account impacts to the program population using the following method:

- 1. Construct a list of all event participants by division . The program tracking BI data is the source of the division.
- 2. Stratify the participants based on state and division.
- Calculate weights based on the number of AMI participants for each event relative to all participants within each stratum.⁵

		-		
Division/State	Total Participants by Division	Total AMI Participants by Division	Percentage AMI by Division	Weight
Northwest	2,067	711	34%	2.91
Central	1,117	377	34%	2.96
Eastern	907	240	26%	3.78
North Carolina	51	1	2%	51.00
Total	4,142	1,329	32%	

Table 5-3. Participants, AMI participants, and sample weights by division or State for August 26, 2021⁶

⁵ The weight within each stratum is the population divided by the total number of AMI meters in the study group.

⁶ The table shows total participants and AMI participants in the last event on August 26, 2021.

APPENDIX C. Ex post Impact event data

Ex post impacts by day and hour are presented in . Also shown are the number of participants, the opt out percent, the weighted average THI, the maximum daily temperature for Richmond, and a day number indicating the event's order for consecutive event days.⁷ The highest average event impact (1.32 kW) occurred on August 13, and the lowest (0.62) on July 27. The maximum impact for a single interval in 2021 was 1.51 kW on August 13. The greatest estimated impact is always during the first hour interval during the event and the impacts decrease during subsequent intervals.

Event Date	7-Jun	8-Jun	9-Jun	21-Jun	28-Jun	29-Jun	30-Jun	6-Jul	7-Jul	12-Jul	13-Jul	15-Jul	16-Jul	21-Jul
# of Participants	2,798	2,800	2,801	2,954	3,013	3,022	3,023	3,245	3,228	3,252	3,249	3,236	3,234	3,256
Consecutive Event-days		2	3			2	3		2		2		2	
Opt Out %	14%	15%	13%	18%	13%	17%	21%	20%	16%	20%	20%	20%	20%	15%
Weighted Avg THI	81	81	78	82	81	82	83	82	81	83	82	82	82	79
Richmond Max Temp	89	90	89	95	90	92	95	92	94	91	91	92	94	92
HE15							1.3							
HE16	1.31	1.21	1.2	1.41		1.33	1		1.44	1.33	1.29	1.26	1.43	1.02
HE17	0.92	0.87	0.91	1.12	1.29	0.93	0.65	1.32	1.05	0.93	0.86	0.9	1.01	0.74
HE18	0.66	0.55	0.75	0.8	0.84	0.58	0.46	0.81	0.75	0.63	0.58	0.52	0.7	0.57
HE19								0.63		0.63	0.56	0.33		
Average Impact (kW)	0.96	0.88	0.96	1.11	1.06	0.95	0.85	0.92	1.08	0.88	0.82	0.75	1.05	0.78
Event Date	26-Jul	27-Jul	28-Jul	10-Aug	11-Aug	12-Aug	13-Aug	19-Aug	24-Aug	25-Aug	26-Aug			
# of Participants	3,306	3,306	3,295	3,970	4,000	4,031	4,029	4,160	4,156	4,145	4,142			
Consecutive Event-days	0,000	2	3	0,010	2	3	4	1,100	1,100	2	3			
Opt Out %	15%	17%	13%	12%	16%	12%	15%	17%	13%	13%	12%			
Weighted Avg THI	79	81	80	81	80	85	84	81	81	82	80			
Richmond Max Temp	88	89	91	91	93	94	94	92	95	92	93			
HE15														
HE16	1.1						1.51	1.27						
HE17	0.78	0.99	1.05	1.32	1.2	1.13	1.13	0.93	1.13	1.23	1.34			
HE18	0.59	0.56	0.72	1.05	0.8	0.7		0.68	0.76	0.87	1.04			
HE19		0.32			0.57									
Average Impact (Kw)	0.82	0.62	0.88	1.19	0.86	0.92	1.32	0.96	0.94	1.05	1.19			

Table 5-4. Smart Thermostat Rewards ex post impacts by event-day and hour (June 7–August 26, 2021)

⁷ The THI reported in Table 5-5 is the THI at the weather station designated by Dominion for each AMI participant weighted to the population of RT demand response participants.

Dominion Energy North Carolina Docket No. E-22, Sub 604

About DNV

DNV is a global quality assurance and risk management company. Driven by our purpose of safeguarding life, property, and the environment, we enable our customers to advance the safety and sustainability of their business. We provide classification, technical assurance, software, and independent expert advisory services to the maritime, oil & gas, power, and renewables industries. We also provide certification, supply chain and data management services to customers across a wide range of industries. Operating in more than 100 countries, our experts are dedicated to helping customers make the world safer, smarter, and greener.

DNV Headquarters, Veritasveien 1, P.O.Box 300, 1322 Høvik, Norway. Tel: +47 67 57 99 00. www.dnv.com