

Evaluation, Measurement, and Verification Report for Virginia Electric and Power Company (Dominion Energy)

CASE NO. PUR-2021-00247 (VIRGINIA) DOCKET NO. E-22, SUB 645 (NORTH CAROLINA)

PUBLIC VERSION VOLUME 4 of 6

June 15, 2023 Prepared by DNV Energy Insights USA Inc. (DNV)

Appendix F Technical Reference Manual (TRM) for Non-Residential Programs

Dominion Energy Virginia and North Carolina

Protocols to Track Demand-Side Management (DSM) Programs Resource Savings

Version 2022

Prepared by DNV Energy Insights USA Inc.

June 15, 2023

Table of Contents

1	NON-RESIDENTIAL LIGHTING SYSTEMS AND CONTROLS PROGRAM, DSM PHASE VII	l 1
1.1 1.1.1 1.1.2	Lighting end use Lighting fixtures, lamps, and delamping Occupancy sensors and daylight controls	1 1 6
1.1.3 1.1.4	Occupancy sensors and controls – stairwell integrated and bi-level lighting Reach-in unit occupancy sensor	9 11
2	NON-RESIDENTIAL HEATING AND COOLING EFFICIENCY PROGRAM, DSM PHASE VII	16
2.1 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5	 Heating, Ventilation, and Air-Conditioning (HVAC) end use Unitary/split air conditioning (AC) & Heat Pump (HP) Systems VAC upgrade Variable Refrigerant Flow Systems and mini-split systems Electric chillers HVAC Variable Frequency Drives Dual enthalpy air-side economizers 	16 16 21 25 28 35
3	NON-RESIDENTIAL WINDOW FILM PROGRAM, DSM PHASE VII	40
3.1 3.1.1	Building envelope end use Window film	40 40
4	NON-RESIDENTIAL PRESCRIPTIVE PROGRAM, DSM PHASE VI	45
4.1	Cooking end use	46
4.1.1 4 1 2	Commercial convection oven	46 50
4.1.3	Commercial fryer	57
4.1.4	Commercial griddle	62
4.1.5	Commercial steam cooker	68
4.1.7	Variable speed drives on kitchen exhaust fan	75
4.2	Heating, Ventilation, and Air-Conditioning (HVAC) end use	79
4.2.1 4.2.2	Unitary/split air conditioning, heat pump, and chiller tune-up	79 87
4.3	Appliance or Plug Load end use	92
4.3.1	Smart strip Vending machine miser	92 03
4.4	Refrigeration end use	97
4.4.1	Door closer (cooler and freezer)	97
4.4.2	Door gasket (cooler and freezer)	100
4.4.4	Commercial ice maker	105
4.4.5	Evaporator Fan Electronically Commutated Motor (ECM) Retrofit (Reach-in and walk-in	
4.4.6	Evaporator fan control (cooler and freezer)	116
4.4.7	Floating head pressure control	120
4.4.8	Low/Anti-sweat door film Refrigeration night cover	123
4.4.10	Refrigeration coil cleaning	120
4.4.11	Suction pipe insulation (cooler and freezer)	131
4.4.12	Strip curtain (cooler and freezer)	134
5	NON-RESIDENTIAL DISTRIBUTED GENERATION PROGRAM, DSM PHASE II	139
6	NON-RESIDENTIAL SMALL MANUFACTURING PROGRAM, DSM PHASE VII	141
6.1 6.1.1	Compressed air end use Compressed air nozzle	141 141

$\begin{array}{c} 6.1.2 \\ 6.1.3 \\ 6.1.4 \\ 6.1.5 \\ 6.1.6 \\ 6.1.7 \\ 6.1.8 \\ 6.1.9 \\ 6.1.10 \\ 6.1.11 \end{array}$	Leak repair No-loss condensate drain Add storage Heat-of-compression dryer Low pressure-drop filter VFD air compressor Cycling air dryer Dew point controls Pressure reduction Downsized VFD compressor	146 149 152 156 161 164 168 173 178 182
7	NON-RESIDENTIAL OFFICE PROGRAM, DSM PHASE VII	. 187
7.1	Building model simulation description	187
7.1.1	Building models	188
7.2	Lighting end use	192
7.2.1	Reduce lighting schedule	192
7.3 7.3.1 7.3.2 7.3.3 7.3.4 7.3.5 7.3.6 7.3.7	Heating, Ventilation, and Air Conditioning (HVAC) end use HVAC unit scheduling HVAC temperature setback Condensing water temperature reset HVAC discharge air temperature reset HVAC static pressure reset HVAC VAV minimum flow reduction Dual enthalpy air-side economizer	194 196 199 201 203 205 207
8	NON-RESIDENTIAL SMALL BUSINESS IMPROVEMENT ENHANCED PROGRAM, DSM PHASE VIII	. 208
8.1	Building envelope end use	209
8.1.1	Window film installation	209
8.2	Heating, Ventilation, and Air Conditioning (HVAC) end use	209
8.2.1	Duct testing & sealing	209
8.2.2	Heat pump tune-up	209
8.2.3	Refrigerant charge correction	213
8.2.4	Heat pump upgrade	213
8.2.5	Dual enthalpy air-side economizer	213
8.2.6	Programmable thermostat	213
8.2.7	Variable frequency drives	213
8.3	Lighting end use	220
8.3.1	Lighting, fixtures, lamps, and delamping	220
8.3.2	Sensors and controls	220
8.3.3	LED exit signs	220
8.4	Appliance or Plug Load end use	224
8.4.1	Vending machine miser	224
8.5	Refrigeration end use	224
8.5.1	Refrigeration variable frequency drives	226
8.5.2	Night cover	226
8.5.3	Evaporator fan electronically commutated motor (ECM) retrofit	226
8.5.4	Evaporator fan motor controls	226
8.5.5	Door closer	226
8.5.6	Anti-sweat heater controls	227
8.5.7	Strip curtain (cooler and freezer)	229
9	NON-RESIDENTIAL MIDSTREAM ENERGY EFFICIENCY PRODUCTS PROGRAM, DSM PHASE VIII	. 230
9.1	Cooking end use	231
9.1.1	Commercial combination oven	231

9.1.2	Commercial convection oven	231
9.1.3	Commercial griddle	231
9.1.4	Commercial steam cooker	231
9.1.6	Commercial hot food holding cabinet	231
9.2	Heating, Ventilation, and Air Conditioning (HVAC) end use	231
9.2.1	Unitary/split HVAC, package terminal air conditioners and heat pumps	231
9.2.2	Mini-split systems	232
9.2.3	Electric chiller	232
9.3 9.3.1	Refrigeration end use Commercial freezers and refrigerators	232 232
10	NON-RESIDENTIAL MULTIFAMILY PROGRAM, DSM PHASE VIII	
10.1	Building envelope end use	234
10.1.1	Air sealing	234
10.1.2	Building insulation/drill & fill wall insulation	234
10.2	Domestic hot water end use	235
10.2.1	Domestic hot water pipe insulation	235
10.2.2		235
10.3	Heating, Ventilation, and Air-Conditioning (HVAC) end use	235
10.3.1	HVAC Upgrade/ Officially AC	235
10.3.3	Duct sealing	235
10.3.4	ENERGY STAR [®] Room/Wall AC units	235
10.3.5	Smart thermostat installation	236
10.4	Lighting end use	238
10.4.1	LED lamps, advanced lighting, and delamping	238
10.4.2	Sensors and controls	230
10.1.0		230
10.5.1	Clothes drver	239
10.5.2	Clothes washer	239
10.6	Recreation end use	239
10.6.1	Two-speed & variable-speed pool pump	239
11	NON-RESIDENTIAL NEW CONSTRUCTION PROGRAM, DSM PHASE VIII	244
11.1	Building simulation description	244
11.1.1	Impacts Estimation Approach	240
11.2		247
11.2.1	Optimal choice of vertical fenestration	247
11.3	Heating, Ventilation, Air Conditioning (HVAC) end use	247
11.3.1	High-efficiency and variable speed chillers (air-cooled)	247
11.3.2	High-efficiency DX cooling equipment	247
11.3.3	High-efficiency and variable speed packaged DX cooling equipment	248
11.3.4	Demand controlled ventilation/CO2 controls	240
11.3.6	VAV Dual-Max Controls (electric heat)	248
11.3.7	VAV supply air temperature reset (electric heat)	248
11.3.8	Chiller controls	249
11.4	Appliance or plug load end use	249
11.4.1	Supervisory plug load management systems	249
11.5	Lighting end use	249
11.5.1	I ED exterior lighting	249 249
		210

DNV

12	NON-RESIDENTIAL AGRICULTURAL ENERGY EFFICIENCY PROGRAM, DSM PHA	SE IX 250
12.1 12.1.1	Heating, Ventilation, Air Conditioning (HVAC) end use Circulation fan	250 250 250
12.1.2	Ventilation fan	254 256
12.1.4	VFD for greenhouse ventilation fan and poultry fan	259
12.2 12.2 1	Lighting end use	260 260
12.2.2	Horticultural LED	263
12.2.3	Poultry LED	266
12.2.4	Process end use	200 268
12.3.1	Automatic milker take-off	268
12.3.2	Dairy plate cooler	271
12.3.3	Low-pressure irrigation	274
12.3.5	VFD for dust collection	279
12.3.6 12.3.7	VFD for irrigation pump VFD for tobacco curing	281 282
-		-
13	NON-RESIDENTIAL BUILDING AUTOMATION SYSTEM PROGRAM, DSM PHASE I	<
13.1 13.1.1	Building automation system	285 285
14	NON-RESIDENTIAL BUILDING OPTIMIZATION PROGRAM, DSM PHASE IX	
14.1.1	Lighting end use	200
14.2.1	Reduce lighting schedule by one hour on weekdays	291
14.3	Heating, Ventilation, and Air Conditioning (HVAC) end use	291
14.3.1 14.3.2	HVAC unit scheduling HVAC temperature setback	291 291
14.3.3	HVAC condensing water temperature reset	292
14.3.4 14 3 5	HVAC discharge air temperature reset	292 292
14.3.6	HVAC VAV minimum flow reduction	292
14.3.7	Dual enthalpy air-side economizer	292
14.3.8	Chilled Water (CHW) supply temperature reset	292 294
14.3.10	Outdoor Air (OA) reduction	296
14.3.11	Coil cleaning Pump pressure reduction	298 300
14.3.12	Schedule equipment	302
14.3.14	Custom retrocommissioning	305
15	NON-RESIDENTIAL ENGAGEMENT PROGRAM, DSM PHASE IX	
15.1	Cross-cutting end uses	306
15.1.1	Building operator training	306
16	NON-RESIDENTIAL PRESCRIPTIVE ENHANCED PROGRAM, DSM PHASE IX	309
16.1 16.1.1	Cooking end use	310
16.1.2	Commercial combination oven	310
16.1.3	Commercial fryer	310
16.1.4 16.1.5	Commercial griddle Commercial hot food holding cabinet	310 310
-		•

DNV

16.1.6 16.1.7	Commercial steam cooker Variable speed drive on kitchen exhaust fan	310 310
16.2 16.2.1 16.2.2	Domestic hot water end use Heat pump water heater Pre-rinse spraver	311 311 314
16.3 16.3.1 16.3.2 16.3.3 16.3.4 16.3.5	Heating, Ventilation, Air-Conditioning (HVAC) end use Air conditioning tune up Duct test and seal Electrically commutated motor Guest room occupancy Parking ventilation	316 316 316 317 319 322
16.4 16.4.1 16.4.2 16.4.3 16.4.4 16.4.5	Appliance or Plug Load end use Commercial dishwasher Commercial dryer Commercial washing machine Food seal wrapper Ozone laundry	324 324 328 331 335 337
16.5 16.5.1 16.5.2 16.5.3	Recreation end use Heat pump pool heater Pool spa cover Variable speed pool pump	341 341 343 345
16.6 16.6.1 16.6.2 16.6.3 16.6.4 16.6.5 16.6.6 16.6.7 16.6.8	Refrigeration end use Commercial freezers and refrigerators Commercial ice maker Door closer (cooler and freezer) Door gasket Evaporator fan electronically commutated motor (ECM) retrofit Low/anti-sweat door film Refrigeration condenser coil cleaning Strip curtain (cooler and freezer)	345 345 345 345 345 345 346 346 346 346
17	SUB-APPENDICES	347
17.1	Sub-Appendix F2-I: Cooling and heating degree days and hours	347
17.2 17.2.1	Sub-Appendix F2-II: Non-residential HVAC equivalent full load hours Annual equivalent full-load cooling hours for unitary air conditioners, heat pumps, chiller	, 348 ,
17.2.2 17.2.3 17.2.4	VRF, room/wall AC, and mini-split systems Annual equivalent full-load heating hours for heat pumps, VRFs, and mini-split systems Annual hours of use for variable frequency drives Update summary	349 351 354 354
17.3 17.3.1 17.3.2 17.3.3 17.3.4 17.3.5	Sub-Appendix F2-III: Non-residential HVAC equipment efficiency ratings Cooling efficiencies of unitary air conditioners and condensing units Efficiencies of unitary and applied heat pumps Cooling efficiencies of variable refrigerant flow air conditioners and heat pumps Cooling efficiencies of water chilling packages Heating efficiency of electric resistance heating and systems with central chilled water p	355 355 357 360 361 lants
17.3.6	Update summary	361
17.5	Sub-Appendix F2-IV: Non-residential lighting factors: annual equivalent hours, coincidence factors, and waste heat factors	363
17.6	Sub-Appendix F2-V: Non-residential commercial kitchen inputs	366
17.7	Sub-Appendix F2-V: Non-residential compressed air end use factors	368
17.8	Sub-Appendix F2-V: Non-residential window film energy saving factors	369
17.9	Sub-Appendix F2-VI: General equations	389

List of Tables

Table 1-1. Non-Residential Lighting Systems and Controls Program (DSM VII) measure list	1
Table 1-2. Programs that offer this measure	2
Table 1-3. Input values for lighting fixtures, lamps, and delamping savings calculations	3
Table 1-4. Interior lighting power allowances	4
Table 1-5. Effective Useful Life for lifecycle savings calculations	5
Table 1-6. Summary of update(s)	6
Table 1-7. Programs that offer this measure	6
Table 1-8. Input values for occupancy sensors and controls measure savings	7
Table 1-9. Effective Useful Life for lifecycle savings calculations	8
Table 1-10. Summary of update(s)	8
Table 1-11. Input values for occupancy sensors and controls-stairwell integrated measure	10
Table 1-12. Effective Useful Life for lifecycle savings calculations	10
Table 1-13. Summary of update(s)	11
Table 1-14. Input values for reach-in unit occupancy sensors savings calculations	12
Table 1-15. Effective Useful Life for lifecycle savings calculations	14
Table 1-16. Summary of update(s)	14
Table 2-1. Non-Residential Heating and Cooling Efficiency Program measure list (DSM VII)	16
Table 2-2. Programs that offer this measure	16
Table 2-3. Input values for Non-residential HVAC equipment	19
Table 2-4. Effective Useful Life for lifecycle savings calculations	20
Table 2-5. Summary of update(s)	20
Table 2-6. Programs that contain this measure	21
Table 2-7. Input values for VRF systems and mini-split systems	23
Table 2-8. Effective Useful Life for lifecycle savings calculations	24
Table 2-9. Summary of update(s)	24
Table 2-10. Programs that offer this measure	25
Table 2-11. Input values for Non-residential electric chillers	26
Table 2-12. Effective Useful Life for lifecycle savings calculations	27
Table 2-13. Summary of update(s)	28
Table 2-14. Programs that Offer this Measure	29
Table 2-15. Input values for non-residential variable frequency drives	30
Table 2-16. Baseline motor efficiency	31
Table 2-17. Default fan duty cycle	32
Table 2-18. Part load ratios by control type, fan type, and flow range	33
Table 2-19. Average Baseline Part Load Ratios (PLRs) by control type, and fan type	34
Table 2-20. Energy and demand savings factors by application	34
Table 2-21. Effective Useful Life for lifecycle savings calculations	34
Table 2-22. Summary of update(s)	35
Table 2-23. Programs that offer this measure	35
Table 2-24. Input values for economizer repair savings calculations	36
Table 2-25. Economizer energy savings factors by building type	37
Table 2-26. Effective Useful Life for lifecycle savings calculations	39
Table 2-27. Summary of update(s)	39
Table 3-1. Programs that offer this measure	40
Table 3-2. DOE and DNV building type descriptions	41
Table 3-3. Key building energy modelling parameters	42
Table 3-4. Input values for solar window film	43
Table 3-5. Effective Useful Life for lifecycle savings calculations	43
Table 3-6. Summary of update(s)	44
Table 4-1. Non-residential prescriptive program measure list	45
Table 4-2. Programs that offer this measure	46
Table 4-3. Input parameters for convection oven	47
Table 4-4. Effective Useful Life for lifecycle savings calculations	49
Table 4-5. Summary of update(s)	50
Table 4-6. Programs that offer this measure	50
Table 4-7. Input parameters for commercial electric combination ovens	52
Table 4-8. Effective Useful Life for Lifecycle savings calculations	57
Table 4-9. Summary of update(s)	57

Table 1 10	Dreament that affer this measure	E 0
Table 4-10.	Programs that oner this measure	
I able 4-11.	Input parameters for electric commercial fryer measure	59
Table 4-12.	Effective Useful Life for lifecycle savings calculations	61
Table 4-13.	Summary of update(s)	62
Table 4-14.	Programs that offer this measure	62
Table 4-15	Input parameters for commercial griddle measure	64
Table 4 16.	Effective Llocful Life for lifeguela sources and substantian	04 65
Table 4-10.		05
Table 4-17.	Summary of update(s).	65
I able 4-18.	Programs that offer this measure	66
Table 4-19.	Input parameters for hot food holding cabinet	67
Table 4-20.	Effective Useful Life for Lifecycle Savings Calculations	67
Table 4-21.	Summary of update(s)	68
Table 4-22.	Programs that offer this measure	68
Table 4-23	Input parameters for commercial steam cooker measure	70
Table 4 20.	Mater Consumption rotation the baseline and energy efficient equipment	
Table 4-24.	Valer Consumption rate for the baseline and energy encient equipment	12
Table 4-25.	Elective Oseful Life (c) intecycle savings calculations	74
Table 4-26.	Summary of update(s)	74
I able 4-27.	Programs that offer variable speed drives on kitchen exhaust fan	75
Table 4-28.	Input parameters for VSD on kitchen fan(s)	77
Table 4-29.	Annual hours of use, power, and airflow reductions due to VSD	78
Table 4-30.	Effective Useful Life for lifecycle savings calculations	78
Table 4-31.	Summary of update(s)	78
Table 1-32	Programs that offer this measure	70
Table 4-33	Insult values for duct scaling savings calculations	
Table 4-33.	Input values for duct sealing savings calculations	02
	Duct system enciency by broad building type categories	00
Table 4-35.	Duct system efficiency mapping to building type	86
Table 4-36.	Effective Useful Life for lifecycle savings calculations	86
Table 4-37.	Summary of update(s)	87
Table 4-38.	Programs that offer this measure	88
Table 4-39.	Input variables for AC/HP/chiller tune-up measure	90
Table 4-40.	Effective Useful Life for lifecycle savings calculations	91
Table 4-41	Summary of undate(s)	91
Table 1-12	Effective Useful Life for lifecycle savings calculations	03
Table 4-42.	Enecuve Oseru Elle for medyale savings calculations	
	Summary of update(s)	93
Table 4-44.	Programs that Offer this Measure	94
I able 4-45.	Input values for vending miser savings calculations	94
Table 4-46.	Vending miser rated kilowatts and energy savings factors	95
Table 4-47.	Effective Useful Life for Lifecycle Savings Calculations	96
Table 4-48.	Summary of Update(s)	96
Table 4-49.	Programs that offer this measure	97
Table 4-50	Door closer electric energy sayings and gross coincident demand reduction (per closer)	98
Table 1-51	Effective Useful Life for lifervice savings calculations	aa
Table 4-51.	Encouve Oserul Line for medycle savings calculations	
	Summary of update(s)	
Table 4-53.	Input values for door gasket savings calculations	101
Table 4-54.	Door gasket annual electric energy and coincident demand reductions	101
Table 4-55.	Effective Useful Life for lifecycle savings calculations	102
Table 4-56.	Summary of update(s)	103
Table 4-57.	Programs that offer this measure	103
Table 4-58.	Input parameters for commercial freezers and refrigerator measure	104
Table 4-59	Calculated baseline daily energy consumption from volume. V	105
Table 4-60	Calculated efficient unit daily energy consumption from volume	105
Table 4 60.	Effective Useful Life for lifeovelo sovings coloulations	105
		100
Table 4-62.	Summary of update(s).	100
able 4-63.	Programs that oner this measure	106
i able 4-64.	Input parameters for commercial ice maker	107
Table 4-65.	Batch-type ice machine baseline efficiencies	108
Table 4-66.	Continuous-type ice machine baseline efficiencies	109
Table 4-67.	CEE Tier 2 ice machine qualifying efficiencies	109
Table 4-68.	Batch-type ENERGY STAR [®] ice machine qualifying efficiencies	110

Table 4-69, Continuous-type ENERGY STAP [®] ice machine qualifying efficiencies	110
Table 4-05. Continuous-type EINERGE Source Country and Participation and the machine qualitying enciencies	110
Table 4-70. Effective Oseful Life for LifeCycle Savings Calculations	111
Table 4-71. Summary of update(s).	111
Table 4-72. Programs that other this measure	112
Table 4-73. Input values for ECM evaporator savings calculations	113
Table 4-74. Total deemed savings for ECM evaporator fan motor1	113
Table 4-75. Effective Useful Life for lifecycle savings calculations	115
Table 4-76. Summary of update(s)1	115
Table 4-77. Programs that Offer this Measure1	116
Table 4-78. Input values for freezer and cooler evaporator fan controls saving calculations1	117
Table 4-79. Effective Useful Life for Lifecycle Savings Calculations1	119
Table 4-80: Summary of update(s)	120
Table 4-81, Input values for floating head pressure control savings calculations	121
Table 4-82. Floating-head pressure control gross annual electric energy savings (per horsepower)	121
Table 4-83 Effective useful life for lifecycle savings calculations	122
Table 4-84. Summary of undate(s)	122
Table 4-45. Driverame that offer this measure	122
Table 4-00. In optimis that one for low for sweet door film	120
Table 4-00. Input parameters for forwing-sweat door infinite sectors and the sectors in the sector sectors and the sector sectors and the sect	124
Table 4-67. Effective Oseful Life for medycle savings calculations	120
Table 4-88. Summary of update(s)	126
Table 4-89. Programs that offer this measure	127
Table 4-90. Input values for refrigeration night cover savings calculations	127
Table 4-91. Effective Useful Life for lifecycle savings calculations 1	128
Table 4-92. Summary of update(s)1	129
Table 4-93. Programs that offer this measure1	129
Table 4-94. Input values for refrigeration coil cleaning savings calculations1	130
Table 4-95. Effective Useful Life for lifecycle savings calculations	131
Table 4-96, Summary of update(s)	131
Table 4-97. Input values for suction pipe insulation savings calculations	132
Table 4-98 Suction pipe insulation annual electric energy savings and coincident demand reduction	132
Table 4-99 Effective Useful Life for lifecycle savings calculations	133
Table 4-00 Summary of undate(s)	134
Table 4-100. Durnary of the offer this massure	13/
Table 4-101. Flograms that origin automating solitons colculations	125
Table 4-102. Input values for sinp curtain savings calculations	100
Table 4-103. Strip curtain gross annual electric energy savings (per sq.it.)	135
Table 4-104. Doorway area assumptions (sq.π.)	136
Table 4-105. Effective Useful Life for lifecycle savings calculations	137
Table 4-106. Summary of update(s)1	137
Table 5-1. Input values for non-residential distributed generation impact analysis	139
Table 5-2. Summary of update(s)1	140
Table 6-1. Non-Residential Small Manufacturing Program measure list1	141
Table 6-2. Maximum compressed air usage for qualifying nozzles1	142
Table 6-3. Input values for compressed air nozzles savings calculations	144
Table 6-4. Effective Useful Life for lifecycle savings calculations	145
Table 6-5. Summary of update(s)	145
Table 6-6 Input values for leak savings calculations	147
Table 6-7 Effective Liseful Life for lifecycle savings calculations	1/18
Table 0-1. Encouve Oseral Life to metrycle savings calculations	1/0
Table 0-0. Summary of update(S).	143
Table 0-9. Input parameters for no-loss condensate drain savings calculations	101
Table 6-10. Effective Oserul Life for hiecycle savings calculations	152
Table 6-11. Summary of update(s)	152
Table 6-12. Input parameters for add storage (5 gallon/cfm) savings calculations	154
Table 6-13. Effective Useful Life for lifecycle savings calculations	155
Table 6-14. Summary of update(s)1	155
Table 6-15. Input parameters for heat of compression dryer1	159
Table 6-16. Effective Useful Life for lifecycle savings calculations1	160
Table 6-17. Summary of update(s)1	161
Table 6-18. Input parameters for low-pressure drop filter savings calculations1	163
Table 6-19. Effective Useful Life for lifecycle savings calculations1	164

Table 6-20. Summary of update(s)1	164
Table 6-21. Input values VSD air compressor savings calculations1	166
Table 6-22. Effective Useful Life for lifecycle savings calculations1	167
Table 6-23. Summary of update(s)1	168
Table 6-24. Input parameters for cycling dryer1	171
Table 6-25. Effective Useful Life for lifecycle savings calculations1	173
Table 6-26. Summary of update(s)	173
Table 6-27. Input parameters for heat of compression dryer1	176
Table 6-28, Effective Useful Life for lifecycle savings calculations	177
Table 6-29. Summary of update(s).	178
Table 6-30. Input parameters for pressure reduction	180
Table 6-31. Effective Useful Life for lifecycle savings calculations	182
Table 6-32. Summary of update(s).	182
Table 6-33 Input values downsized VSD air compressor savings calculations	184
Table 6-34 Effective Useful Life for lifecycle savings calculations	186
Table 6-35 Summary of undate(s)	186
Table 7-1 Non-residential office program measure list	187
Table 7-2 Energy savings factor by measure	190
Table 7.2. Demond reduction factor (DRE)	101
Table 7-3. Effective Leaful Life for lifecycle sovings calculations	101
Table 7-4. Litective Oseful Lite for inecycle savings calculations	102
Table 7-3. Summary of update(s)	102
Table 7-0. Input values for once buildings	193
Table 7-7. Effective Oseful Life for inecycle savings calculations	193
Table 7-0. Summary of update(s).	194
Table 7-3. Input values for once buildings	190
Table 7-10. Elective Oseful Life for inecycle savings calculations	190
Table 7-11. Summary of update(s).	190
Table 7-12. Input values for office buildings.	198
Table 7-13. Effective Oseful Life for inecycle savings calculations	198
Table 7-14. Summary of update(s).	198
Table 7-15. Input values for office buildings	200
Table 7-16. Effective Useful Life for lifecycle savings calculations	200
Table 7-17. Summary of update(s)	200
Table 7-18. Input values for office buildings	202
Table 7-19. Effective Useful Life for lifecycle savings calculations	202
Table 7-20. Summary of update(s)	202
Table 7-21. Fan curve coefficients	203
Table 7-22. Input values for office buildings	204
Table 7-23. Effective Useful Life for lifecycle savings calculations	204
Table 7-24. Summary of update(s)	205
Table 7-25. Input values for office buildings	206
Table 7-26. Effective Useful Life for lifecycle savings calculations	206
Table 7-27. Summary of update(s)	207
Table 8-1. Non-Residential small business improvement enhanced program measure list2	208
Table 8-2. Input variables for refrigerant charge adjustment	211
Table 8-3. Effective Useful Life for lifecycle savings calculations	212
Table 8-4. Summary of update(s)2	212
Table 8-5. Input parameters for programmable thermostat measure2	215
Table 8-6. Effective Useful Life for lifecycle savings calculations2	215
Table 8-7. Summary of update(s)	216
Table 8-8. Programs that offer this measure	217
Table 8-9. Input values for non-residential variable frequency drives	217
Table 8-10. Baseline Motor Efficiency	218
I able 8-11. Energy savings and demand reduction factors by application	219
Table 8-12. Effective Useful Life for Lifecycle Savings Calculations	219
Table 8-13. Summary of update(s)	220
Table 8-14. Programs that offer this measure	220
Table 8-15. Input values for LED exit sign calculations	221
I able 8-16. Effective Useful Life for lifecycle savings calculations	223

Table 8-17 Summary of undate(s)	223
Table 8-18 Input variables for refrigeration variable frequency drives	225
Table 0-10. Input valiables to reingeration valiable inequency drives	220
Table 6-19. Effective Oseful Life for inecycle savings calculations	
Table 8-20. Summary of update(s)	
Table 8-21. Input values for anti-sweat heater controls.	228
Table 8-22. Effective Useful Life for Lifecycle Savings Calculations	229
Table 8-23. Summary of update(s)	229
Table 9-1. Non-Residential Midstream Energy Efficiency Products Improvement Enhanced Program measure li	st .230
Table 10-1. Non-Residential Multifamily Program measure list	233
Table 10-2. Input variables for Smart Thermostat savings calculations	237
Table 10-3. Effective Useful Life for lifecycle savings calculations	238
Table 10-4. Summary of update(s)	238
Table 10-5. Programs that offer this measure	239
Table 10-6. Input Variables for two speed & variable speed pool pump	240
Table 10-7. Typical residential pool pump energy consumption, operating hours, and coincidence factor for vari	ous
nump size strategies and nump type	242
Table 10-8 Typical commercial nool numb energy consumption operating hours and coincidence factor for ya	rious
rub i constructional policitati p	2/2
Table 10.9. Effective Useful Life for life vale savings calculations	2/2
Table 10-9. Effective Oseful Elle 10 inecycle savings calculations	240
Table 10-10. Summary of update(s)	243
Table 11-1. Non-Residential New Construction Program measure list	
Table 11-2. Non-residential new construction measure sequence for modeling	246
Table 11-3. Effective Useful Life for lifecycle savings calculations	246
Table 11-4. Summary of update(s)	247
Table 12-1. Non-residential agricultural energy efficiency program measure list	250
Table 12-2. Program qualifying efficiency requirements	251
Table 12-3. Input variables for circulation fans	252
Table 12-4. Default base and efficient fan power	252
Table 12-5. Circulation fan hours of use by facility type	252
Table 12-6. Effective Useful Life for lifecycle savings calculations	253
Table 12-7 Summary of update(s)	254
Table 12-8 Input variables for bird volume low speed fan	255
Table 12-9. Default base and efficient fan nower	255
Table 12-0. Deflactive Useful Life for lifervice savings calculations	255
Table 12-10. Elective Oselul Election Electric Savings Calculations	256
Table 12-11. Summary Or update(s)	256
Table 12-12. Flogram Qualitying Enclercy Requirements.	200
Table 12-13. Input variables for ventilation fans.	257
Table 12-14. Default base and efficient fan power	257
Table 12-15. Ventilation fan hours of use by facility type	258
Table 12-16. Effective Useful Life for lifecycle savings calculations	259
Table 12-17. Summary of update(s)	259
Table 12-18. Input variables for horticultural LED	260
Table 12-19. Effective Useful Life for lifecycle savings calculations	260
Table 12-20: Summary of update(s)	260
Table 12-21. Input values for occupancy sensors and controls-stairwell integrated measure	262
Table 12-22. Effective Useful Life for lifecycle savings calculations	263
Table 12-23. Summary of update(s).	263
Table 12-24. Input variables for horticultural I ED	264
Table 12-25. Default base and efficient horticultural LED lighting fixture wattage	264
Table 12-26 Horticultural I ED lighting fixture hours of use by facility type	265
Table 12-20. Fifective Liseful Life for lifecycle savings calculations	265
Table 12 21. Elipsing Oberni Eliptor incovolo saviriyo calculationo	200
Table 12-20. Junitially of update(5)	200
Table 12-29. Input variables for Horticultural LED.	266
Table 12-50. Effective Useful Life for lifecycle savings calculations	267
Table 12-31. Summary of update(s)	267
Table 12-32. Input variables for automatic milker take off	269
Table 12-33. Effective Useful Life for lifecycle savings calculations	270
Table 12-34. Summary of update(s)	270
Table 12-35. Input variables for dairy plate cooler	272

Table		070
Table	12-36. Difference in Btu/n recovered by neat reclaimer (neat recovery) for water neater type	
Table	12-37. Energy Efficiency Ratio (EER) for various compressor types	272
Table	12-38. Effective Useful Life for lifecycle savings calculations	274
Table	12-39. Summary of update(s)	274
Table	12-40. Input variables for grain storage aeration fan control	275
Table	12-41. Required fan brake horsepower (hp _{fan}) based on grain bin size	276
Table	12-42. Effective Useful Life for lifecycle savings calculations	276
Table	12-43: Summary of update(s)	277
Table	12-44 Input variables for low-pressure irrigation	278
Table	12-45 Effective Leaful Life for lifeovice equiptions	278
Table	12 45. Elective Osciul Life for mecycle savings calculations	270
Table	12-40. Summary of update(s).	279
Table	12-47. Input variables for dust collection	280
Table	12-48. VFD Average Speed	280
Table	12-49. Effective Useful Life for lifecycle savings calculations	281
Table	12-50. Summary of update(s)	281
Table	12-51. Input variables for irrigation pump	282
Table	12-52. Effective Useful Life for lifecycle savings calculations	282
Table	12-53. Summary of update(s)	282
Table	12-54 Input variables for tobacco curing	283
Table	12-55 Effective Liseful Life for lifecycle savings calculations	28/
Table	12-50. Elective Oseiul Elector intervie savings calculations	204 201
	12-50. Summary of update(s).	204
Table	13-1. Input variables for Building Automation System	286
lable	13-2. Effective Useful Life for lifecycle savings calculations	287
Table	13-3. Summary of update(s)	287
Table	14-1. Non-Residential Building Optimization Program measure list	288
Table	14-2. Energy savings factor by measure	290
Table	14-3. Summer demand reduction factor by measure	291
Table	14-4. Summary of update(s)	291
Table	14-5 Input values for office buildings with electric and non-electric beating fuels	203
Table	14.6. Effective Lisoful Life for lifegyele sovings calculations	202
Table	14-3. Checure oscial Lie to mecycle savings calculations	293
Table	14-7. Summary of update(s)	294
Table	14-8. Input values for office buildings with electric and non-electric heating fuels	295
Table	14-9. Effective Useful Life for lifecycle savings calculations	295
Table	14-10. Summary of update(s)	296
Table	14-11. Input values for office buildings with electric and non-electric heating fuels	297
Table	14-12. Effective Useful Life for Lifecycle Savings Calculations	298
Table	14-13. Summary of update(s)	298
Table	14-14. Input values for office buildings with electric and non-electric heating fuels	299
Table	14-15 Effective Useful Life for lifecycle savings calculations	299
Table	14-16 Summary of undate(s)	300
Table	14-17. During y of update(s).	201
	14-17. Input values for once buildings with electric and non-electric realing rules	
Table	14-18. Effective Oseful Life for hiecycle savings calculations	301
Table	14-19. Summary of update(s).	302
Table	14-20. Input values for office buildings with electric and non-electric heating fuels	303
Table	14-21. Effective Useful Life for lifecycle savings calculations	304
Table	14-22. Summary of update(s)	304
Table	14-23. Effective Useful Life for lifecycle savings calculations	305
Table	14-24. Summary of update(s)	305
Table	15-1 Input variables for Building Operator Training	307
Table	15-2. Effective Liseful Life for lifecycle sovings calculations	308
Table	15-2. Encluve Oseful Elector integrale savings calculations	200
Table	10-0. Guillinary of update(5)	200
	to a non-residential prescriptive program measure list	
lable	16-2. Input values for the heat pump domestic hot water heater savings calculations	312
Iable	16-3. Effective Useful Life for lifecycle savings calculations	313
Table	16-4. Summary of update(s)	314
Table	16-5. Input variables for measure name	315
Table	16-6. Daily operation hours for various facility types	315
Table	16-7. Effective Useful Life for lifecycle savings calculations	316
Table	16-8. Summary of update(s)	
	· · · · · · · · · · · · · · · · ·	

Table 16-9. Input variables for measure name	318
Table 16-10. Hours of use (HOU) and coincidence factor (CF) for various control strategies	318
Table 16-11. Effective Useful Life for lifecycle savings calculations	319
Table 16-12. Summary of update(s)	319
Table 16-13. Input variables for measure name	321
Table 16-14. Effective Useful Life for lifecycle savings calculations	322
Table 16-15. Summary of update(s)	322
Table 16-16. Input variables for measure name	323
Table 16-17. Effective Useful Life for lifecycle savings calculations	324
Table 16-18. Summary of update(s)	324
Table 16-19. Input variables for measure name	325
Table 16-20. Annual energy use of use (kWh) for various commercial dishwasher	326
Table 16-21. Annual water use of use for various commercial dishwasher	326
Table 16-22. Effective Useful Life for lifecycle savings calculations	327
Table 16-23. Summary of update(s)	327
Table 16-24. Input variables for commercial dryer	329
Table 16-25. Product class CEF values	329
Table 16-26. Effective Useful Life for lifecycle savings calculations	330
Table 16-27. Summary of update(s)	331
Table 16-28. Input variables for measure name	332
Table 16-29. MEF based on Efficiency Level and Loading Type	333
Table 16-30. DHW fuel factor	333
Table 16-31. Dryer fuel factor	334
Table 16-32. Number of washer cycles per year based on the building type	334
Table 16-33. Effective Useful Life for lifecycle savings calculations	334
Table 16-34. Summary of update(s)	334
Table 16-35. Input variables for measure name	336
Table 16-36. Effective Useful Life for lifecycle savings calculations	337
Table 16-37. Summary of update(s)	337
Table 16-38. Input variables for measure name	339
Table 16-39. Water Reduction Factor (WRF) and capacity values for various applications	339
Table 16-40. Effective Useful Life for lifecycle savings calculations	340
Table 16-41. Summary of update(s)	340
Table 16-42. Input variables for measure name	341
Table 16-43. Effective Useful Life for lifecycle savings calculations	342
Table 16-44. Summary of update(s).	343
Table 16-45. Input variables for measure name	344
Table 16-46. Wrater savings factor (WSF) for various locations	344
Table 16-47. Effective Useful Life for lifecycle savings calculations	344
Table 16-48 Summary of update(s)	345
Table 17-1. Base Temperatures by Sector and End Use	
Table 17-2 Reference Cooling and Heating Degree Days	
Table 17-3 Reference Cooling and Heating Degree Hours	347
Table 17-4 Heat pump unitary AC chiller VRF room/wall AC and mini split equivalent full-load cooling bours	for
non-residential buildings	349
Table 17-5. Heat owno VRF, and mini-split equivalent full load beating hours for non-residential buildings	351
Table 17-6. Variable frequency drive annual hours of use by facility type	354
Table 17-7 Summary of undate(c)	35/
Table 17-8 Unitary of conditioners and condensing units - minimum efficiency	355
Table 17-0 Unitary and applied heat number minimum efficiency	357
Table 17-10 Variable refrigerant flow air conditioners and heat pumps - minimum efficiency	360
Table 17-10. Valiable reingerant new an conditioners and near pumps - minimum enclency	361
Table 17-17. Flectric heating efficiency associated with central chilled water cooling systems	261
Table 17-12. Lieutin meaning enderby associated with central chilled Water Coulling Systems	362
Table 17-10. Commany of update(s)	361
Table 17-14. Non-residential interior lighting parameters by exterior hyperinter type	265
Table 17-16. Summary of undate(s)	266
Table 17-10. Summary of update(s)	366
Table 17-17. Operational hours by building type	

Table 17-19. Load proportion and HOU proportion defaults by load range bins	.368
Table 17-20. Input variables based on type of control	.368
Table 17-21. Coincidence factor (CF) based on operating schedule	.368
Table 17-22, Drver constant values, based on base drver type and percent load	.369
Table 17-23 %Purgebase based on driver type	369
Table 17-24 Summary of undate(s)	369
Table 17-25 Energy savings factors for reflective window film by facility type and window orientation for	000
Charlottesville VA	370
Table 17-26. Energy savings factors for reflective window film by facility type and window orientation for Farmville,	, VA 372
Table 17-27. Energy sayings factors for reflective window film by facility type and window orientation for	012
Franchericksburg VA	373
Table 17-28. Energy savings factors for reflective window film by facility type and window orientation for Norfolk, V	/A 375
Table 17-29. Energy savings factors for reflective window film by facility type and window orientation for Arlington,	VA .377
Table 17-30. Energy savings factors for reflective window film by facility type and window orientation for roanoke, '	VA .379
Table 17-31. Energy savings factors for reflective window film by facility type and window orientation for Sterling, \	/A 381
Table 17-32. Energy savings factors for reflective window film by facility type and window orientation for Richmonc VA	з. 383
Table 17-33. Energy savings factors for reflective window film by facility type and window orientation for Rocky Mount, NC	.385
Table 17-34. Energy savings factors for reflective window film by facility type and window orientation for Elizabeth City. NC.	.387
	000

1 NON-RESIDENTIAL LIGHTING SYSTEMS AND CONTROLS PROGRAM, DSM PHASE VII

The Non-Residential Lighting Systems and Controls Program is for DSM Phase VII. It has been offered in Virginia since 2019; it is not yet offered in North Carolina. The program provides incentives to non-residential customers who install new or retrofit existing lighting systems with more efficient lighting systems and/or install lighting sensors and controls.

Eligible measures defined under the Non-Residential Lighting Systems and Controls Program DSM Phase VII are shown in Table 1-1.

Table 1-1, Non-Residential Li	ahting Systems and	Controls Program	(DSM VII) measure list
	ginning oyotomo and	a oona olo i rogrami	

End use	Measure	Manual section
	Lighting, fixtures, lamps, and delamping including T8s, T5s, LEDs, and CFLs	Section 1.1.1
Lighting	Occupancy sensors & controls	Section 1.1.2
	Occupancy sensors & controls, stairwell-integrated occupancy sensor	Section 1.1.3
	Reach-in unit occupancy sensor	Section 1.1.4

1.1 Lighting end use

1.1.1 Lighting fixtures, lamps, and delamping

1.1.1.1 Measure description

This measure realizes energy savings by installing reduced wattage lamp/ ballast systems that have higher lumens per watt than existing systems. The savings estimation method is applied to lighting that involves T8, T5, LED, or CFL lamps/ ballasts. The baseline is assumed to be a Bulged Reflector (BR) lamp of a standard BR30-type.

The measure also covers delamping of existing lighting systems. Delamping includes removal of one or more lamps in a fixture (e.g., removing two lamps out of a four-lamp fixture) or removal of the entire fixture itself that results in either a reduced or eliminated connected load. Similar to lamp and fixture retrofit calculations, changes in load due to delamping are tracked through the difference between baseline and installed wattages. The baseline will vary with pre-existing characteristics.

Gross coincident demand reduction for delamping measures is included in PJM EE Resource nominations when reflectors or tombstones are installed since these are defined as persistent.

This measure is offered through various programs as listed in Table 1-2 and uses the impacts estimation approach described in this section. There are two methodologies described for this measure:

• The retrofit/replace-on-burnout/exit signs/exterior methodology (applies to all programs).

Docket No. E-22, Sub 645

• The new construction methodology only applies to one program (shown in the table that follows).

Table 1-2. Programs that offer this measure

Program name	Methodology	Section
Non-Residential Lighting Systems and Controls Program, DSM Phase VII	Retrofit, replace-on- burnout, exit signs, exterior, and new construction	Section 1.1.1
Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	Retrofit. replace-on-	Section 8.3.1
Non-Residential Multifamily Program, DSM Phase VIII	burnout, exit signs, and	Section 10.4.1
Non-Residential Agricultural Energy Efficiency Program, DSM Phase IX	iency Program, exterior Sect	

1.1.1.2 Impacts estimation approach

Each application of this measure uses its own impacts estimation approach as described in the sub-sections that follow.

Retrofit/replace-on-burnout/exit signs/exterior lighting

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\frac{\Delta kWh}{1,000 W/kW} = \frac{(Qty_{base} \times watts_{base} - Qty_{ee} \times watts_{ee}) \times HOU \times WHF_e \times ISR}{1,000 W/kW}$$

Per-measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\frac{\Delta k W_{summer}}{1,000 W/kW} = \frac{(Qty_{base} \times watts_{base} - Qty_{ee} \times watts_{ee}) \times CF_{summer} \times WHF_{d,summer} \times ISR}{1,000 W/kW}$$

Per-measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\frac{\Delta kW_{winter}}{1,000W/kW} = \frac{(Qty_{base} \times watts_{base} - Qty_{ee} \times watts_{ee}) \times CF_{winter} \times WHF_{d,winter} \times ISR}{1,000W/kW}$$

New construction interior lighting

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \left(\frac{LPD_{base}}{LPD_{ee}} - 1\right) \times watts_{ee} \times Qty_{ee} \times HOU \times WHF_{e} \times ISR \times \frac{1 \ kW}{1,000 \ W}$$

Docket No. E-22, Sub 645

Per-measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\frac{\Delta k W_{summer}}{LPD_{ee}} = \left(\frac{LPD_{base}}{LPD_{ee}} - 1\right) \times watts_{ee} \times Qty_{ee} \times WHF_{d,summer} \times ISR \times CF_{summer} \times \frac{1 \ kW}{1,000 \ W}$$

Per-measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\frac{\Delta k W_{winter}}{LPD_{ee}} = \left(\frac{LPD_{base}}{LPD_{ee}} - 1\right) \times watts_{ee} \times Qty_{ee} \times WHF_{d,winter} \times ISR \times CF_{winter} \times \frac{1 \ kW}{1,000 \ W}$$

Where:

ΔkWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction
LPD _{base}	= baseline lighting power density
LPDee	= efficient lighting power density
Qty _{base}	= quantity of existing or baseline fixtures/lamps
Qty _{ee}	= quantity of installed energy-efficient (ee) fixtures/lamps
watts _{base}	= load of the existing or baseline fixture/lamp on a per unit basis
wattsee	= load of installed energy-efficient (ee) fixture/lamps on a per unit basis
HOU	= annual operating hours of use for fixtures/lamps
WHFe	= waste heat factor to account for annual cooling savings from efficient lighting
WHF _{d,summer}	= waste heat factor for summer peak demand to account for cooling savings from
	efficient lighting
WHF _{d,winter}	= waste heat factor for winter peak demand to account for heating penalty from
	efficient lighting
CF _{summer}	= summer coincidence factor
CF _{winter}	= winter coincidence factor
ISR	= in-service rate

1.1.1.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 1-3. Input values for lighting fixtures, lamps, and delamping savings calculations

Component	Туре	Value	Unit	Source(s)
Qty _{base}	Variable	See customer application	-	Customer application
Qtyee	Variable	See customer application	-	Customer application
watts _{base}	Variable	See customer application	watts	Customer application
wattsee	Variable	See customer application	watts	Customer application
LPD _{base}	Variable	See Table 1-4	watt/sq.ft	2015 Virginia Energy Conservation Code/IECC 2015 Section C405.4.2, Table C405.4.2(1) and Maryland/Mid- Atlantic TRM v. 10, p. 229

Component	Туре	Value	Unit	Source(s)
		Default=Other building type	watts/sq.ft	Maryland/Mid-Atlantic TRM v.10, p. 217, per ENERGY STAR® ¹
LPDee	Variable	See customer application	watt/sq.ft	Customer application
CFsummer	Variable	For measures where the location is "Exit sign," "Stairwell," "Exterior light except garage," or "Garage," use Table 17-14 in	-	Maryland/Mid-Atlantic TRM v.10, pp. 215, 243, 255, and 2722
CF _{winter}	Variable	Treat "Exit sign" and "Stairwell" as	-	Maryland/Mid-Atlantic TRM v.10, pp. 215, 243, 255, and 2723
HOU	Variable	Treat "Exterior light except garage" as "Outdoor LED and Roadway Lighting."	hours, annual	Maryland/Mid-Atlantic TRM v.10, pp. 215, 242, 254, 272, and 415-416
WHFe	Variable	Treat "Garage" as "LED "Parking Garage - Parking garage."	-	Maryland/Mid-Atlantic TRM v.10, pp. 419-420
WHFd,summer	Variable	For the Non-Residential Agricultural Energy Efficiency Program, DSM Phase IX and other programs have the location of	-	Maryland/Mid-Atlantic TRM v.10, pp. 419-420
WHFd,winter	Variable	"Interior light except exit light" and the use Table 17-15 in	-	Maryland/Mid-Atlantic TRM v.10, pp. 419-420
ISR	Fixed	1.00	-	Maryland/Mid-Atlantic TRM v.10, p. 2184

Table 1-4. Interior lighting power allowances

Customer building type	LPD _{base} ⁵
Education – Elementary and middle school	0.87
Education – High school	0.87
Education – College and university	0.87
Food Sales - Grocery	1.26
Food Sales – Convenience store	1.26
Food Sales – Gas station convenience store	1.26

¹ LED exit sign default values come from an ENERGY STAR[®] report: "Save Energy, Money and Prevent Pollution with Light-Emitting Diode (LED) Exit Signs" at LED Exit Signs Tech Sheet Final Version (energystar.gov) (accessed 03/20/2023).

² The LED measures were grouped with other lighting applications' coincident factors based on their similar function or usage. LED downlights are assumed to be replacing CFL and T8 fixtures; LED or induction HE garage fixtures would be expected to replace PSMH in garage applications, and exterior LEDs replace exterior fixtures.

³ The LED measures were grouped with other lighting applications' coincident factors based on their similar function or usage. LED downlights are assumed to be replacing CFL and T8 fixtures; LED or induction HE garage fixtures would be expected to replace PSMH in garage applications, and exterior LEDs replace exterior fixtures.

⁴ Maryland/Mid-Atlantic TRM v.9, p. 319 footnote 737 EmPOWER Maryland DRAFT Final Impact Evaluation Report Evaluation Year 4 (June 1, 2012 – May 31, 2013) Commercial & Industrial Prescriptive & Small Business Programs, Navigant, March 31, 2014.

⁵ DNV mapped the building types with the building area types contained in IECC 2015 Section C405.4.2, Table C405.4.2(1).

Customer building type	LPD _{base} ⁵
Food Service – Full service	1.01
Food Service – Fast food	0.90
Health Care - Inpatient	1.05
Health Care - Outpatient	0.90
Lodging – (Hotel, motel, and dormitory)	0.87
Mercantile (Mall)	1.26
Mercantile (Retail, not mall)	1.26
Office – Small (<40,000 sq ft)	0.82
Office - Large (≥ 40,000 sq ft)	0.82
Other	1.17
Public assembly	1.01
Public order and safety (police and fire station)	0.87
Religious worship	1.00
Service – (beauty, auto repair workshop)	1.19
Warehouse and storage	0.66

1.1.1.4 Default savings

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

1.1.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 1-5.

Table 1-5. Effe	ective Useful Life for lifecycle savir	ngs calculation	าร

DSM Phase	Program name	Value	Units	Source(s)
іх	Non-Residential Agricultural Energy Efficiency Program, DSM Phase IX	10.65		Maryland/Mid-Atlantic TRM v.10, p. 219 and Wisconsin TRM 2022, p. 495 ⁶
VIII	Non-Residential Multifamily Program, DSM Phase VIII	8.40	years	Maryland/Mid-Atlantic TRM v.10, p. 219 ⁷
	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	10.10		Dominion Energy Non-Residential Lighting End-Use Baseline, Gross
VII	Non-Residential Lighting Systems and Controls Program, DSM Phase VII	10.10		Impact, Net-to-Gross, and Persistence Study, DNV, 2023

⁶ Based on lifetime hours divided by annual operating hours for agriculture lighting (50,000 hours / 4,698 hours per year = 10.65 years)

⁷ Based on lifetime hours divided by annual operating hours for multifamily common area lighting (50,000 hours / 5,950 hours per year = 8.40 years)

Docket No. E-22, Sub 645

1.1.1.6 Source(s)

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v.10, pp. 215–221, 241-243, 253-255, 271-272, 415-416, and 419-421, and the IECC 2015 Section C405.4.2.

1.1.1.7 Update summary

Updates made to this section are described in Table 1-6.

Version	Update type	Description	
2022	EUL	Revised EUL	
	Source	Updated page numbers / version of the Maryland/Mid-Atlantic TRM v.10	
2021	Input table	Jpdated CF, HOU values	
2021	Equation	Added coincident winter peak demand reduction equation	
	New table	Effective Useful Life (EUL) by program	
2020	None	No change	
v10	-	Initial release	

		~			
l able	1-6.	Summary	ot	update	S)

1.1.2 Occupancy sensors and daylight controls

1.1.2.1 Measure description

This measure defines the savings associated with installing at wall-, fixture-, or remote-mounted occupancy sensors that switch lights off or dim them after a brief delay when no occupants are detected, or daylight conditions are sufficient. The baseline condition is lighting that is controlled with a manual switch.

This measure is offered through different programs listed in Table 1-7 and uses the impacts estimation approach described in this section.

Table 1-7. Flogranis that oner this measure

Program name	Section
Non-Residential Lighting Systems and Controls Program, DSM Phase VII	Section 1.1.2
Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	Section 8.3.2
Non-Residential Multifamily Program, DSM Phase VIII	Section 10.4.3

1.1.2.2 Impacts estimation approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = watts_{connected} \times \frac{1 \ kW}{1.000 \ W} \times HOU \times ESF_e \times ISR \times WHF_e$$

Per-measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = watts_{connected} \times \frac{1 \ kW}{1,000 \ W} \times ESF_d \times ISR \times WHF_{d,summer} \times CF_{summer}$$

Per-measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = watts_{connected} \times \frac{1 \ kW}{1,000 \ W} \times ESF_d \times ISR \times WHF_{d,winter} \times CF_{winter}$$

Where:

ΔkWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction
wattsconnected	= connected load on lighting sensor/control
HOU	= hours of use per year
ESFe	= percentage of annual lighting energy saved by lighting control
ESFd	= percentage of lighting demand saved by lighting control
WHFe	= waste heat factor for energy to account for cooling savings from efficient lighting
WHF _{d,summer}	= waste heat factor for demand to account for cooling savings from efficient lighting
WHF _{d,winter}	 waste heat factor for demand to account for cooling savings from efficient lighting
CF _{summer}	= summer coincidence factor
CFwinter	= winter coincidence factor
ISR	= in-service rate represents the proportion of rebated measures installed

1.1.2.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Unit	Source(s)
wattsconnected	Variable	See customer application	watt	Customer application
HOU	Variable	See Table 17-15 in	hours/year	Maryland/Mid-Atlantic TRM v.10, p. 222
ESFe	Fixed	0.28	-	Maryland/Mid-Atlantic TRM v.10, p. 222 and p. 225
ESFd	Variable	Occupancy sensor = 0.14 Daylight control = 0.28	-	Maryland/Mid-Atlantic TRM v.10, p. 223 and p. 225
CF _{summer}	Variable	See Table 17-15 in	-	Maryland/Mid-Atlantic TRM v.10, p. 223
CFwinter	Variable	See Table 17-15 in	-	Maryland/Mid-Atlantic TRM v.10, p. 223
WHFe	Variable	See Table 17-15 in	-	Maryland/Mid-Atlantic TRM v.10, pp. 419-421
		Default: 0.94		Assumes "Small Office" building type

 Table 1-8. Input values for occupancy sensors and controls measure savings

Docket No. E-22, Sub 645

Component	Туре	Value	Unit	Source(s)
WHFd.summer	Variable	See Table 17-15 in	-	Maryland/Mid-Atlantic TRM v.10, pp. 419-421
vviii a,sunner	Vanabio	Default: 1.35		Assumes "Other" building type
WHFd.winter	Variable	See Table 17-15 in	-	Maryland/Mid-Atlantic TRM v.10, pp. 419-421
•••••• dywinter	Vallabio	Default: 0.740		Assumes "Other" building type
ISR	Fixed	1.00	-	Maryland/Mid-Atlantic TRM v.10, p. 223

1.1.2.4 Default savings

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

1.1.2.5 Effective Useful Life

The effective useful life of this measure is provided in Table 1-9.

Table 1-9. Effective Useful Life for lifecy	cle savings calculations
---	--------------------------

DSM Phase	Program name	Value	Units	Source(s)
VIII	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII Non-Residential Multifamily Program, DSM Phase VIII	10.10	years	Dominion Energy Non-Residential Lighting End-Use Baseline, Gross Impact, Net-to-Gross, and
VII	Non-Residential Lighting Systems and Controls Program, DSM Phase VII			Persistence Study, DNV, 2023

1.1.2.6 Source(s)

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v.10, pp. 222-224, 225 – 227 and 419-421.

1.1.2.7 Update summary

Updates made to this section are described in Table 1-10.

Table 1-10. Summary of update(S)				
Version	Update type	Description		
2022	EUL	Revised EUL		
	Source	Updated page numbers/version of the Maryland/Mid-Atlantic TRM v.10		
2024	Inputs	Added daylight control inputs		
2021	Equation	Added coincident winter peak demand reduction equation		
	New table	Effective Useful Life (EUL) by program		

Table 1-10. Summary of update(s)

Docket No. E-22, Sub 645

Version	Update type	Description
2020	None	No change
v10	-	Initial release

1.1.3 Occupancy sensors and controls – stairwell integrated and bi-level lighting

1.1.3.1 Measure description

This measure defines the savings associated with installing controls on existing fixtures or installation of luminaires with integrated bi-level control. This measure has multiple applications and can be used in stairwell lighting or agriculture facility.

For stairwell lighting applications, the bi-level control technology allows for continuous lighting that maintains the code-mandated minimum illumination levels in stairwells when unoccupied spaces while also providing higher light levels when occupied. The baseline condition is interior-space lighting that continues operation at high lighting levels, regardless of occupancy.

1.1.3.2 Impacts estimation approach

Per-measure, gross annual electric energy savings and coincident demand reduction are calculated according to the following equation:

$$\begin{split} & \Delta kWh \\ & = \left[\frac{Qty_{base} \times watts_{base}}{1,000 \, W/kW} - \left(\frac{Qty_{ee} \times watts_{ee}}{1,000 \, W/kW} \times (1 - ESF) \right) \right] \times HOU \\ & ESF \\ & = F_{low} \times \left(1 - \frac{watts_{ee,low}}{watts_{ee}} \right) \end{split}$$

Per-measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \left(\frac{Qty_{base} \times watts_{base} - Qty_{ee} \times watts_{ee}}{1,000 W/kW}\right) \times CF_{summer}$$

Per-measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \left(\frac{Qty_{base} \times watts_{base} - Qty_{ee} \times watts_{ee}}{1,000 W/kW}\right) \times CF_{winter}$$

Where:

 $\begin{array}{ll} \Delta kWh &= per-measure \mbox{ gross annual electric energy savings} \\ \Delta kW_{summer} &= per-measure \mbox{ gross coincident summer peak demand reduction} \\ \Delta kW_{winter} &= per-measure \mbox{ gross coincident winter peak demand reduction} \end{array}$

DNV - www.dnv.com

Docket No. E-22, Sub 645

= quantity of baseline fixtures **Qty**base = quantity of installed fixtures equipped with bi-level occupancy control Qtyee wattsbase = baseline wattage per fixture wattsee,low = installed wattage per fixture at low-power output wattsee = installed wattage per fixture at full-power output, if bi-level occupancy controls are installed on existing fixtures, wattsee = wattsbase. = proportion of annual operating time that fixture operates at low power Flow ESF = energy savings factor HOU = hours of use per year CF_{summer} = summer peak coincidence factor = winter peak coincidence factor CFwinter

1.1.3.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Unit	Source(s)
Qty _{base}	Variable	See customer application	-	Customer application
Qty _{ee}	Variable	See customer application	-	Customer application
watts _{base}	Variable	See customer application	watts	Customer application
wattsee,low	Variable	See customer application	watts	Customer application
wattsee	Variable	See customer application	watts	Customer application
Flow	Fixed	0.73	-	New York TRM v9, p. 834
HOU	Fixed	8,760	hours, annual	New York TRM v9, p. 834
CF _{summer}	Fixed	1.00	-	New York TRM v9, p. 834
CFwinter	Fixed	1.00	-	New York TRM v9, p. 8348

Table 1-11. Input values for occupancy sensors and controls-stairwell integrated measure

1.1.3.4 Default savings

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

1.1.3.5 Effective Useful Life

The effective useful life of this measure is provided in Table 1-12.

Table 1-12. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VII	Non-Residential Lighting Systems and Controls Program, DSM Phase VII	10.10	years	Dominion Energy Non-Residential Lighting End-Use Baseline, Gross Impact, Net-to-Gross, and Persistence Study, DNV, 2023

⁸ The source TRM doesn't differentiate between winter and summer peak periods. Therefore, the summer CF is also applied to winter peak periods.

Docket No. E-22, Sub 645

1.1.3.6 Source(s)

The primary source for this deemed savings approach is the New York TRM v9, pp. 832-836.

1.1.3.7 Update summary

Updates made to this section are described in Table 1-13.

Version	Update type	Description
	EUL	Revised EUL
2022	Inputs	Expanded inputs to accommodate the Non-Residential Agricultural Energy Efficiency Program, DSM Phase IX
	References	Updated source TRM and reference page number
	None	No change
2021	Equation	Added coincident winter peak demand reduction equation
	New table	Effective Useful Life (EUL) by program
2020	Equation	Modified the ΔkWh savings equation to incorporate the ESF and associated equation. This makes the calculation clearer and aligns with the reference TRM but does not change the result.
v10	-	Initial release

Table 1-13. Summary of update(s)

1.1.4 Reach-in unit occupancy sensor

1.1.4.1 Measure description

This measure realizes energy savings by adding occupancy sensors to reach-in refrigerated case lighting. Occupancy sensors reduce energy usage by turning off lights when customers are not present. Savings and assumptions are based on the lighting load controlled by each occupancy sensor. The baseline condition is reach-in refrigerated case lighting that is controlled with a manual switch.

1.1.4.2 Impacts estimation approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = Qty_{sensor} \times watts_{connected} \times \frac{1 \ kW}{1,000 \ W} \times HOU \times ESF_e \times ISR \times WHF_e$$

Per-measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = Qty_{sensor} \times watts_{connected} \times \frac{1 \ kW}{1,000 \ W} \times ESF_d \times ISR \times WHF_{d,summer} \times CF_{summer}$$

Docket No. E-22, Sub 645

DNV

Per-measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = Qty_{sensor} \times watts_{connected} \times \frac{1 \ kW}{1,000 \ W} \times ESF_d \times ISR \times WHF_{d,winter} \times CF_{winter}$$

Where:

ΔkWh = per-measure gross annual electric energy savings
ΔkW _{summer} = per-measure gross summer peak coincident demand reduction
ΔkW _{winter} = per-measure gross winter peak coincident demand reduction
Qty _{sensor} = number of occupancy sensors installed
wattsconnected = connected lighting load controlled by occupancy sensor
ESF _e = percentage of annual lighting energy saved by lighting control
ESF _d = percentage of lighting demand saved by lighting control
WHF _e = waste heat factor for energy; represents the increased savings due to reduced waste heat from
lights that must be rejected by the refrigeration equipment
WHF _{d,summer} = waste heat factor for demand; represents the increased savings due to reduced waste heat
from lights that must be rejected by the refrigeration equipment
WHF _{d,winter} = waste heat factor for demand; represents the increased savings due to reduced waste heat
from lights that must be rejected by the refrigeration equipment

HOU = hours of use per year

CF_{summer} = summer peak coincidence factor

CF_{winter} = winter peak coincidence factor

ISR = in-service rate is the percentage of rebated measures actually installed

1.1.4.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Unit	Source(s)
	Variable	See customer application		Customer application
watts		Default = 38	watts	Same default as from LED case lighting measure watts for 5-foot lamp
Qtysensors	Variable	See customer application	-	Customer application
ESFe	Fixed	0.31	-	Efficiency Maine Commercial TRM 2019, Appendix D, Table 409, p. 173
ESFd	Fixed	0.14	-	Maryland/Mid-Atlantic TRM v.10, p. 223
НО	Variable	See Table 17-15 in	hours, annual	Maryland/Mid-Atlantic TRM v.10, p. 222

 Table 1-14. Input values for reach-in unit occupancy sensors savings calculations

⁹ Maine TRM refers to "US DOE, "Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case Lighting." Refrigerated cases were metered for 12 days to determine savings from occupancy sensors. Assumes that refrigerated freezers and refrigerated coolers will see the same amount of savings from sensors. The nature of the savings is not explained. Showcase controls often keep a fixed number of lights on to reduce the "dark aisle" conditions. It is assumed that this value accounts for both reduction in operating hours and incremental reduction in power.

Component	Туре	Value	Unit	Source(s)
ISR	Fixed	1.00	-	Maryland/Mid-Atlantic TRM v.10, p. 222
WHFe	Variable	Low Temp (-35°F1°F): 1.52 Med Temp (0°F - 30°F): 1.52 High Temp (31°F - 55°F): 1.41	-	Maryland/Mid-Atlantic TRM v.10, p. 269
WHFd, summer	Variable	Low Temp (-35°F1°F): 1.51 Med Temp (0°F - 30°F): 1.51 High Temp (31°F - 55°F): 1.40	-	Maryland/Mid-Atlantic TRM v.10, p. 270
WHFd, winter	Variable	Low Temp (-35°F1°F): 1.51 Med Temp (0°F - 30°F): 1.51 High Temp (31°F - 55°F): 1.40	-	Maryland/Mid-Atlantic TRM v.10, p. 27010
CF _{summer}	Fixed	0.96	-	Maryland/Mid-Atlantic TRM v.10, p. 27011
CFwinter	Fixed	0.96	-	Maryland/Mid-Atlantic TRM v.10, p. 27012

1.1.4.4 Default savings

If the proper values are not supplied, a default savings may be applied using conservative input values.

The default per-measure gross annual electric energy savings will be assigned according to the following calculations:

$$\Delta kWh = Qty_{sensor} \times \frac{watts}{1,000 W/kW} \times HOU \times ESF_e \times ISR \times WHF_e$$

$$= 1 \times \frac{38 W}{1,000 W/kW} \times 7,272 hours \times 0.31 \times 1.00 \times 1.41$$

$$= 120.79 \, kWh$$

The default per-measure gross summer peak coincident demand reduction will be assigned according to the following calculations:

¹⁰ The source TRM doesn't differentiate between winter and summer WHFs. Therefore, the summer WHF is applied to the winter WHF.

¹¹ Value for "grocery" building type from Mid-Atlantic TRM v.9, p. 270 footnote 579 "EmPOWER Maryland DRAFT Final Impact Evaluation Report Evaluation Year 4 (June 1, 2012 – May 31, 2013) Commercial & Industrial Prescriptive & Small Business Programs, Navigant, March 31, 2014."

¹² The source TRM doesn't differentiate between winter and summer peak periods. Therefore, the summer CF is applied to the winter CF.

DNV

$$\Delta kW_{summer} = Qty_{sensor} \times \frac{watts}{1,000 W/kW} \times ESF_d \times ISR \times WHF_{d,summer} \times CF_{summer}$$
$$= 1 \times \frac{38 W}{1,000 W/kW} \times 0.14 \times 1.00 \times 1.40 \times 0.96$$
$$= 0.007 kW$$

The default per-measure gross winter peak coincident demand reduction will be assigned according to the following calculations:

$$\Delta kW_{winter} = Qty_{sensor} \times \frac{watts}{1,000 W/kW} \times ESF_d \times ISR \times WHF_{d,winter} \times CF_{winter}$$
$$= 1 \times \frac{38 W}{1,000 W/kW} \times 0.14 \times 1.00 \times 1.40 \times 0.96$$
$$= 0.007 kW$$

1.1.4.5 Effective Useful Life

The effective useful life of this measure is provided in Table 1-15.

Table 1-15. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VII	Non-Residential Lighting Systems and Controls Program, DSM Phase VII	10.10	years	Dominion Energy Non-Residential Lighting End-Use Baseline, Gross Impact, Net-to-Gross, and Persistence Study, DNV, 2023

1.1.4.6 Source(s)

The primary sources for this deemed savings approach are the Efficiency Maine TRM 2019, p. 173, and Maryland/Mid-Atlantic TRM v.10, pp. 222-224 and 269-270.

1.1.4.7 Update summary

Updates made to this section are described in Table 1-16.

Table 1-16. Summary of update(s)

Version	Update type	Description
2022	EUL	Revised EUL

Version	Update type	Description
	Source	Updated page numbers / version of the Maryland/Mid-Atlantic TRM v.10
2021	New table	Effective Useful Life (EUL) by program
	Equation	Added gross winter peak demand reduction equation
2020	None	No change
v10	-	Initial release

2 NON-RESIDENTIAL HEATING AND COOLING EFFICIENCY PROGRAM, DSM PHASE VII

The Non-Residential Heating and Cooling Efficiency program is offered in Virginia beginning July 1, 2019 and approved in North Carolina on November 13, 2019. The program provides incentives to non-residential customers to implement new and upgrade existing HVAC equipment to more efficient HVAC technologies.

Many types of HVAC systems are eligible as shown in Table 2-1.

Table 2.1 Non Peridential Heating	and Cooling	Efficiency Broc	rom monouro lict	
Table 2-1. Non-Residential Realing	j anu coomi	J EINCIENCY FIOL	rain measure iist	

End use	Measure	Manual section
	Unitary/split Air Conditioning (AC) & Heat Pump (HP) Systems	Section 2.1.1
HVAC	Variable Refrigerant Flow (VRF) & Mini-split Systems	Section 2.1.2
	Water- and air-cooled chillers	Section 2.1.3
	Variable frequency drive	Section 2.1.4
	Dual enthalpy air-side economizer	Section 2.1.5

The algorithms to calculate heating, cooling, and demand reduction for each of these measures are described in this section.

2.1 Heating, Ventilation, and Air-Conditioning (HVAC) end use

2.1.1 Unitary/split air conditioning (AC) & Heat Pump (HP) Systems VAC upgrade

2.1.1.1 Measure description

This measure relates to the installation of new high-efficiency unitary/split HVAC units and heat pumps in place of standard-efficiency unitary/split HVAC units. For the standard (baseline) efficiencies, refer to Table 17-8 and Table 17-9 in Sub-Appendix F2-III: Non-residential HVAC. The measure efficiencies are based on the installed unit's efficiency provided by the application. The measure savings include both heating and cooling electric energy savings.

This measure is offered through the various programs listed in Table 2-2 and uses the impacts estimation approach described in this section. (Not all programs offer all the listed HVAC equipment types.)

Table 2-2	. Programs	that	offer	this	measure
-----------	------------	------	-------	------	---------

Program name	Section
Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII	Section 2.1.1
Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	Section 8.2.4
Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII	Section 9.2.1
Non-Residential Multifamily Program, DSM Phase VIII	Section 10.3.1

Docket No. E-22, Sub 645

2.1.1.2 Impacts estimation approach

Algorithms and inputs to calculate heating, cooling savings, and demand reduction for unitary/split HVAC, package terminal AC, packaged terminal heat pump, variable refrigerant flow, and mini-split systems are provided below. Gross annual electric energy savings and gross coincident demand reduction are calculated according to the equations following this section.

Cooling energy savings:

For heat pumps, and AC units <65,000 Btu/h, per-measure, gross annual electric cooling energy savings are calculated according to the following equation:

$$\Delta kWh_{cool} = Size_{cool} \times \left[\frac{1}{SEER_{base}} - \frac{1}{SEER_{ee}}\right] \times EFLH_{cool} \times \frac{1 \ kBtuh}{1,000 \ Btuh}$$

For heat pumps and AC units ≥65,000 Btu/h, per-measure, gross annual electric cooling energy savings are calculated according to the following equation:

$$\Delta kWh_{cool} = Size_{cool} \times \left[\frac{1}{IEER_{base}} - \frac{1}{IEER_{ee}}\right] \times EFLH_{cool} \times \frac{1 \ kBtuh}{1,000 \ Btuh}$$

For package terminal AC and HP units of all sizes, per-measure, gross annual electric cooling energy savings are calculated according to the following equation:

$$\Delta kWh_{cool} = Size_{cool} \times \left[\frac{1}{EER_{base}} - \frac{1}{EER_{ee}}\right] \times EFLH_{cool} \times \frac{1 \ kBtuh}{1,000 \ Btuh}$$

Heating energy savings:

For heat pumps <65,000 Btu/h, per-measure gross annual electric heating energy savings are calculated according to the following equation:

$$\Delta kWh_{heat} = Size_{heat} \times \left[\frac{1}{HSPF}_{base} - \frac{1}{HSPF}_{ee}\right] \times EFLH_{heat} \times \frac{1 \, kBtuh}{1,000 \, Btuh}$$

For heat pumps ≥65,000 Btu/h, and water-source heat pumps of all sizes, and package terminal HP units of all sizes, per-measure gross annual electric heating energy savings are calculated according to the following equation:

$$\Delta kWh_{heat} = Size_{heat} \times \left[\frac{1}{COP_{base}} - \frac{1}{COP_{ee}}\right] \times EFLH_{heat} \times \frac{1 \ kBtuh}{1,000 \ Btuh}$$

Heating and cooling energy savings are added to calculate the per-measure, gross annual electric energy savings as shown:

$$\Delta kWh = \Delta kWh_{cool} + \Delta kWh_{heat}$$

Docket No. E-22, Sub 645

The per-measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta k W_{summer} = Size_{cool} \times \left[\frac{1}{EER_{base}} - \frac{1}{EER_{ee}}\right] \times CF_{summer} \times \frac{1 \ kBtuh}{1,000 \ Btuh}$$

The per-measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \frac{\Delta kWh_{heat}}{EFLH_{heat}} \times CF_{winter}$$

Where:

ΔkWh	= per-measure gross annual electric energy savings
∆kWh _{cool}	= per-measure gross annual electric cooling energy savings
∆kWh _{heat}	= per-measure gross annual electric heating energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction
$\Delta k W_{winter}$	= per-measure gross summer peak coincident demand reduction
Size _{cool}	= equipment cooling capacity of installed unit
Sizeheat	 equipment heating capacity of installed unit
SEER _{base}	 seasonal energy efficiency ratio (SEER) of the existing or baseline air conditioning equipment. It is used for heat pumps and AC units that are smaller than 65,000 Btu/h.
SEERee	= seasonal energy efficiency ratio (SEER) of the installed air conditioning equipment. It is used for heat pumps and AC units that are smaller than 65,000 Btu/h.
IEER _{base}	 integrated energy efficiency ratio (IEER) of the existing or baseline air conditioning equipment. IEER is a weighted average of a unit's efficiency at four load points: 100%, 75%, 50%, and 25% of full cooling capacity. It is used for heat pumps and AC units that are 65 000 Btu/b or larger
IEERee	 integrated energy efficiency ratio (IEER) of the installed air conditioning equipment. IEER is a weighted average of a unit's efficiency at four load points: 100%, 75%, 50%, and 25% of full cooling capacity. It is used for heat pumps and AC units that are 65,000 Btu/h or larger.
	= equivalent full-load cooling hours
EFLHheat	= equivalent full-load heating hours
EER _{base}	= energy efficiency ratio (EER) of existing or baseline air conditioning equipment. EER is used to analyze demand performance of heat pumps and AC units.
EER _{ee}	= energy efficiency ratio (EER) of installed air conditioning equipment. EER is used to analyze performance of heat pumps and AC units.
HSPF _{base}	= heating seasonal performance factor (HSPF) of existing or baseline heat pump. HSPF is used in heating savings for air source heat pumps.
HSPFee	= heating seasonal performance factor (HSPF) of installed heat pump. HSPF is used in heating savings for air source heat pumps.
COP _{base}	= coefficient of performance (COP) of existing or baseline heating equipment. Ground source heat pumps use COP to determine heating savings.
COPee	= coefficient of performance (COP) of installed heating equipment. Ground source heat pumps use COP to determine heating savings.
CFsummer	= summer coincidence factor
CFwinter	= winter coincidence factor

Docket No. E-22, Sub 645

For ground-source heat pumps, the baseline efficiency is assumed to be that of an air-source heat pump.¹³ See Equation 1 and Equation 2 in Sub-Appendix F2-VI: General to convert between tons and Btu/h or kBtu/h, or vice versa.

In the event of a missing efficiency metric from an application, the equations provided in Sub-Appendix F2-VI: General may be used to estimate the missing efficiency using another application-provided efficiency metric.

2.1.1.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Units	Source(s)
Size _{cool}	Variable	See customer application	Btu/h	Customer application
Size _{heat}	Variable	See customer application ¹⁴ Default = Size _{cool}	Btu/h	Customer application
EFLH _{heat}	Variable	See Table 17-5 in Sub-Appendix F2-II: Non-residential HVAC	hours, annual	Maryland/Mid-Atlantic TRM v.10, p. 423
EFLH _{cool}	Variable	See Table 17-4 in Sub-Appendix F2-II: Non-residential HVAC	hours, annual	Maryland/Mid-Atlantic TRM v.10, p. 422
HSPF/SEER/ IEER/EER/ COP _{base}	Variable	See Table 17-8 and Table 17-9 in Sub- Appendix F2-III: Non-residential HVAC . If required efficiency value is not available, refer to Sub-Appendix F2-VI: General to convert the available efficiency value to the required efficiency value.	kBtu/kW- hour (except COP is dimension- less)	ASHRAE 90.1 2013, Table 6.8.1-1
HSPF/SEER/ IEER/EER/COPee	Variable	See customer application If required efficiency value is not available, refer to Sub-Appendix F2-VI: General to convert the available efficiency value to the required efficiency value.	kBtu/kW- hour (except COP is dimension- less)	Customer application
CF _{summer}	Variable	Where baseline and installed system capacities differ, use installed system capacity to assign CF. Otherwise, use baseline system capacity to assign CF: < 135 kBtu/h = 0.588 ≥ 135 kBtu/h = 0.874	-	Maryland/Mid-Atlantic TRM v.10, p. 291
CF _{winter}	Variable	Where baseline and installed system capacities differ, use installed system	-	Maryland/Mid-Atlantic TRM v.10, p. 291 ¹⁵

Table 2-3. Input values for Non-residential HVAC equipment

¹³ Although ASHRAE values reflect the Building Code minimum, savings are calculated using the efficiencies provided in Sub-Appendix F2-III: Non-residential HVAC. This is due to the Mid-Atlantic TRM 2020 assumption that the baseline technology—for residential ground source heat pump applications—is an aircooled heat pump. (There is no corresponding commercial measure in the Mid-Atlantic TRM 2020.)

¹⁴ When customer-provided heating system size is <80% or >156% of customer-provided cooling system size, a default value will be used, instead. In such instances, it is assumed that the heating system size was incorrectly documented. The acceptable range is based on a review of the AHRI database across numerous manufacturers and heat pump types.

¹⁵ The source TRM does not provide a winter CF. Therefore, the summer CF is applied to the winter CF.

Component	Туре	Value	Units	Source(s)
		capacity to assign CF. Otherwise, use		
		baseline system capacity to assign CF.		
		< 135 KBtu/n = 0.588		
		≥ 135 kBtu/h = 0.874		

2.1.1.4 Default savings

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

2.1.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 2-4.

Table 2-4. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
	Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII		years	Maryland/Mid-Atlantic TRM v.10, p. 291
VIII	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	15.00		
	Non-Residential Multifamily Program, DSM Phase VIII			
VII	Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII	15.00	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

2.1.1.6 Source(s)

The primary sources for this deemed savings approach are the ENERGY STAR[®] Air Source Heat Pump Calculator (2002 EPA), Maryland/Mid-Atlantic TRM v.10, pp. 283-291 and 422-423, and ASHRAE 90.1 2013.

2.1.1.7 Update summary

Updates made to this section are described in Table 2-5.

Table 2-5. Summary of update(s)				
Version	Update type	Description		
2022	None	No change		
2021	Source	Updated page numbers / version of the Maryland/Mid-Atlantic TRM v.10.		
	Equation	Added Electric Base Board heating savings equations. Added coincident winter peak demand reduction equation.		
	New table	Effective Useful Life (EUL) by program		

Table 2-5. Summary of update(s)

Version	Update type	Description
2020	Equation	Added size condition of <65,000 Btu/h and ≥65,000 Btu/h for determining which equation to use for ground-source heat pumps. Previously all ground-source heat pumps used equations with IEER and COP.
v10	Source Updated page numbers / version of the Mid-Atlantic TRM v.9.	
	Input variable	Update to weather stations in North Carolina resulted in revised EFLHs for weather-sensitive measures. Baseline efficiency levels were revised per update to ASHRAE 2013 in VA and NC.

2.1.2 Variable Refrigerant Flow Systems and mini-split systems

2.1.2.1 Measure description

This measure relates to installation of new high-efficiency variable refrigerant flow (VRF) and new mini-split systems in place of standard-efficiency air conditioners or heat pumps. For baseline VRF air conditioner and heat pump efficiencies refer to Table 17-10 in Sub-Appendix F2-III: Non-residential HVAC. The measure efficiency is based on the installed unit's efficiency. The measure-approved savings applies only to the air cooled VRF AC, and air cooled VRF HP. Water source or ground source units are not included.

This measure is offered through different programs listed in Table 2-6 and uses the impacts estimation approach described in this section.

Table 2-6. Programs that contain this measure

Program name	Section
Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII	Section 2.1.2
Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII	Section 9.2.2

2.1.2.2 Impacts estimation approach

Algorithms and inputs to calculate heating, cooling, and gross coincident savings for variable refrigerant flow (VRF) systems and mini split systems are provided in this section. Gross annual electric energy savings and gross coincident demand reduction are calculated according to the equations following this section.

Cooling energy savings:

For VRF systems and mini-split systems <65,000 Btu/h, per-measure, gross annual electric cooling energy savings are calculated according to the following equation:

$$\Delta kWh_{cool} = Size_{cool} \times \left[\frac{1}{SEER_{base}} - \frac{1}{SEER_{ee}}\right] \times EFLH_{cool} \times \frac{1 \ kBtuh}{1,000 \ Btuh}$$

For VRF systems ≥65,000 Btu/h, per-measure gross annual electric cooling energy savings are calculated according to the following equation:
DNV $\Delta kWh_{cool} = Size_{cool} \times \left[\frac{1}{IEER_{base}} - \frac{1}{IEER_{ee}}\right] \times EFLH_{cool} \times \frac{1 \ kBtuh}{1,000 \ Btuh}$

Heating energy savings:

For VRF and mini-split heat pump systems <65,000 Btu/h, per-measure gross annual electric heating energy savings are calculated according to the following equation:

$$\Delta kWh_{heat} = Size_{heat} \times \left[\frac{1}{HSPF_{base}} - \frac{1}{HSPF_{ee}}\right] \times EFLH_{heat} \times \frac{1 \ kBtuh}{1,000 \ Btuh}$$

For VRF and mini-split heat pump systems ≥65,000 Btu/h, per-measure gross annual electric heating energy savings are calculated according to the following equation:

$$\Delta kWh_{heat} \quad pe = Size_{heat} \times \left[\frac{1}{COP}_{base} - \frac{1}{COP}_{ee}\right] \times EFLH_{heat} \times \frac{1 \ kW}{3,412 \ Btuh}$$

Heating and cooling energy savings are added to calculate the per-measure gross annual electric energy savings:

$$\Delta kWh = \Delta kWh_{cool} + \Delta kWh_{heat}$$

The per-measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = Size_{cool} \times \left[\frac{1}{EER_{base}} - \frac{1}{EER_{ee}}\right] \times CF_{summer} \times \frac{1 \ kBtuh}{1,000 \ Btuh}$$

The per-measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\frac{\Delta k W_{winter}}{EFLH_{heat}} \times CF_{winter}$$

Where:

ΔkWh = per-measure gross annual electric energy savings ΔkWh_{cool} = per-measure gross annual electric cooling energy savings for mini split heat pump systems ΔkWh_{heat} = per-measure gross annual electric heating energy savings for mini split heat pump systems ΔkW_{summer} = per-measure gross coincident summer peak demand reduction ΔkW_{winter} = per-measure gross coincident winter peak demand reduction Sizecool = equipment cooling capacity of installed unit Sizeheat = equipment heating capacity of installed unit SEERbase = seasonal energy efficiency ratio (SEER) of the existing or baseline equipment. SEER is used for units that are smaller than 65.000 Btu/h. SEERee = seasonal energy efficiency ratio (SEER) of the installed equipment. SEER is used for units that are smaller than 65,000 Btu/h. IEER_{base} = integrated energy efficiency ratio (IEER) of existing or baseline equipment. IEER is a weighted average of a unit's efficiency at four load points: 100%, 75%, 50%, and 25% of full

Docket No. E-22, Sub 645

DNV cooling o larger.

cooling capacity. It is used for heat pumps and AC units that are 65,000 Btu/h or larger.

IEER_{ee} = integrated energy efficiency ratio (IEER) of installed equipment. IEER is a weighted average of a unit's efficiency at four load points: 100%, 75%, 50%, and 25% of full cooling capacity. It is used for heat pumps and AC units that are 65,000 Btu/h or larger.

EFLH_{cool} = equivalent full load cooling hours

EFLH _{heat}	= equivalent full load heating hours
EER _{base}	= energy efficiency ratio (EER) of existing or baseline equipment

- EER_{ee} = energy efficiency ratio (EER) of installed equipment
 - ER_{ee} = energy eniciency ratio (EER) of installed equipment
- HSPF_{base} = heating seasonal performance factor (HSPF) of existing or baseline system
- HSPF_{ee} = heating seasonal performance factor (HSPF) of installed equipment COP_{base} = coefficient of performance (COP) of existing or baseline heating equipment
- COP_{ee} = coefficient of performance (COP) of existing of baseline nearing e
- COP_{ee} = coefficient of performance (COP) of installed heating equ CF_{summer} = summer coincidence factor
- CF_{summer} = summer coincidence factor CF_{winter} = winter coincidence factor

To convert between EER, SEER, and IEER, see equations in Sub-Appendix F2-VI: General .

2.1.2.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Units	Source(s)
Sizecool	Variable	See customer application	Btu/h	Customer application
Size _{heat}	Variable	See customer application ¹⁶ Default = Size _{cool}	Btu/h	Customer application
EFLH _{heat}	Variable	See Table 17-5 in Sub-Appendix F2-II: Non-residential HVAC	hours, annual	Maryland/Mid-Atlantic TRM v.10, p. 423
	Variable	See Table 17-4 in Sub-Appendix F2-II: Non-residential HVAC	hours, annual	Maryland/Mid-Atlantic TRM v.10, p. 422
HSPF/SEER/ EER/COP/ IEER _{base}	Variable	See Table 17-10 in Sub-Appendix F2-III: Non-residential HVAC If required efficiency value is not available, refer to Sub-Appendix F2-VI: General to convert the available efficiency value to the required efficiency value.	kBtu/kW- hour (except COP is dimension- less)	ASHRAE 90.1 2013, Table 68.1-1
HSPF/SEER/ EER/COP/ IEERee	Variable	See customer application ¹⁷ If required efficiency value is not available, refer to Sub-Appendix F2-VI: General to convert the available efficiency value to the required efficiency value.	kBtu/kW- hour (except COP is dimension- less)	Customer application
CFsummer	Fixed	Where baseline and install system capacity vary, use install system capacity to assign CF. Otherwise, use baseline system capacity to assign CF. < 135 kBtu/h = 0.588 ≥ 135 kBtu/h = 0.874	-	Maryland/Mid-Atlantic TRM v.10, p. 295

Table 2-7. Input values for VRF systems and mini-split systems

¹⁶ When customer-provided heating system size is <80% or >156% of customer-provided cooling system size, a default value will be used, instead. In such instances, it is assumed that the heating system size was incorrectly documented. The acceptable range is based on a review of the AHRI database across numerous manufacturers and heat pump types.

¹⁷ When missing an efficiency value, use the general equations to convert in Sub-Appendix F2-VI: General equations to convert to the appropriate value.

DNV

Component	Туре	Value	Units	Source(s)
CF _{winter}	Variable	Where baseline and installed system capacities differ, use installed system capacity to assign CF. Otherwise, use baseline system capacity to assign CF: < 135 kBtu/h = 0.588 ≥ 135 kBtu/h = 0.874	-	Maryland/Mid-Atlantic TRM v.10, p. 295 ¹⁸

2.1.2.4 Default savings

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

2.1.2.5 Effective Useful Life

The effective useful life of this measure is provided in Table 2-8.

Table 2-8. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VIII	Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII	18.00		Maryland/Mid-Atlantic TRM v.10, p. 295
VII	Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII	15.00	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

2.1.2.6 Source(s)

The primary sources for this deemed savings approach are the Maryland/Mid-Atlantic TRM v.10, pp. 292-295 and 422-423, and ASHRAE 90.1-2013.

2.1.2.7 Update summary

Updates made to this section are described in Table 2-9.

Table	2-9.	Summary	of	update(s)
-------	------	---------	----	-----------

Version	Update type	Description			
2022	Measure life	Updated Effective Useful Life (EUL) for the Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII			
	Source	Updated page numbers / version of the Maryland/Mid-Atlantic TRM			
2021	Equation	Added coincident winter peak demand reduction equation			
	New table	Effective Useful Life (EUL) by program			

 $^{^{18}}$ The source TRM does not provide a winter CF. Therefore, the summer CF is applied to the winter CF.

DNV

Version	Update type	Description				
2020	Equation	Added size condition of <65,000 Btu/h and ≥65,000 Btu/h for determining which equation to use for ground-source heat pumps. Previously all ground-source heat pumps used equations with IEER and COP.				
	Source	Updated page numbers / version of the Maryland/Mid-Atlantic TRM				
V10	Input variable	Update to weather stations in North Carolina resulted in revised EFLHs for weather-sensitive measures Baseline efficiency levels were revised per update to ASHRAE 2013 in VA and NC				

2.1.3 Electric chillers

2.1.3.1 Measure description

This measure relates to the installation of a new high-efficiency electric water chilling package (either water- or aircooled types) in place of a standard-efficiency electric water chilling package. For the baseline chiller efficiencies, refer to Table 17-11 of Sub-Appendix F2-III: Non-residential HVAC for the 2013 ASHRAE-90.1 specified minimum efficiencies. The installed chiller efficiency is taken from the customer application.

This measure is offered through different programs listed in Table 2-10 and uses the impacts estimation approach described in this section.

Table 2-10. Programs that offer this measure

Program name			
Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII	Section 2.1.3		
Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII	Section 9.2.3		

2.1.3.2 Impacts estimation approach

Water-cooled chillers

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = Size_{ee} \times \left[\frac{kW}{ton_{base,IPLV}} - \frac{kW}{ton_{ee,IPLV}}\right] \times EFLH_{cool}$$

Per-measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = Size_{ee} \times \left[\frac{kW}{ton_{base,full\,load}} - \frac{kW}{ton_{ee,full\,load}}\right] \times CF_{summer}$$

This measure does not have gross coincident winter peak demand reduction.

Air-cooled chillers

Per-measure, gross annual electric energy savings are calculated according to the following equation:

Docket No. E-22, Sub 645

DNV

$$\Delta kWh = Size_{ee} \times \left[\frac{12 \, kBtuh/ton}{EER_{base,IPLV}} - \frac{12 \, kBtuh/ton}{EER_{ee,IPLV}}\right] \times EFLH_{cool}$$

Per-measure, gross coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = Size_{ee} \times \left[\frac{12 \, kBtuh/ton}{EER_{base,full \, load}} - \frac{12 \, kBtuh/ton}{EER_{ee,full \, load}}\right] \times CF_{summer}$$

This measure does not provide gross coincident winter peak demand reduction.

Where:

 ΔkWh
 = per-measure gross annual electric energy savings

 ΔkWsummer
 = per-measure gross coincident demand reduction

 Sizee
 = cooling capacity of the installed chiller system

 EERbase,IPLV, kW/tonbase,IPLV
 = chiller system baseline efficiency at integrated part load value (IPLV), in kW/ton (for kW/tonbase,IPLV) assigned based on installed system capacity

 EERee,IPLV, kW/tonee,IPLV
 = chiller system installed efficiency at integrated part load value (IPLV)

 EERbase,full load, kW/tonee,IPLV
 = chiller system baseline efficiency at integrated part load value (IPLV)

 EFLH_{cool}
 = equivalent full load hours of cooling

 EERbase,full load, kW/tonbase,full load
 = chiller system installed efficiency at full load

 EERee,full load, kW/tonbase,full load
 = chiller system installed efficiency at full load

 EERee,full load, kW/tonbase,full load
 = chiller system installed efficiency at full load

 EERses,full load, kW/tonbee,full load
 = chiller system installed efficiency at full load

 EERsummer
 = summer peak coincidence factor

2.1.3.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component Type Value		Unit	Source(s)	
Sizeee Variable See customer application		See customer application	ton, cooling capacity	Customer application
kW/tonbase,full-load Variable See Table Appendix F		See Table 17-11 of Sub- Appendix F2-III: Non-residential HVAC	kW/ton	ASHRAE 90.1 2013, Table 6.8.1-3
kW/ton _{base,IPLV} Variable		See Table 17-11 of Sub- Appendix F2-III: Non-residential kW/ton HVAC		ASHRAE 90.1 2013, Table 6.8.1-3
kW/tonee,full-load Variable See custom		See customer application ¹⁹	kW/ton	Customer application
kW/tonee,IPLv Variable		See customer application ¹⁹	kW/ton	Customer application
	Variable	See customer application ²⁰		Customer Application
EER _{base, full} load		Default: See Table 17-11 of Sub-Appendix F2-III: Non- residential HVAC	kBtu/kW	ASHRAE 90.1-2013, Table 6.8.1-3
EERbase, IPLV		See customer application ²⁰		Customer Application
	Variable	Default: See Table 17-11 Sub-Appendix F2-III: Non- residential HVAC	kBtu/kW	ASHRAE 90.1-2013, Table 6.8.1-3

Table 2-11. Input values for Non-residential electric chillers

¹⁹ When missing either the IPLV or the full load value, use the general equations to convert in Sub-Appendix F2-VI: General equations to convert to the appropriate value.

Component	Туре	Value	Unit	Source(s)
EERee, full load	Variable	See customer application ²⁰	kBtu/kW	Customer application
EERee, IPLV	Variable	See customer application ²⁰	kBtu/kW	Customer application
EFLH _{cool}	Variable	See Table 17-4 in Sub-Appendix F2-II: Non-residential HVAC	hours, annual	Maryland/Mid-Atlantic TRM v.10, adjusted for ten locations in VA and NC, based on TMY3 cooling degree days data.
CF _{summer}	Fixed	0.923	-	Maryland/Mid-Atlantic TRM v.10, p. 304

Note that some jurisdictions, such as New Jersey, provide a fixed estimate of full-load cooling hours, while others provide several estimates of cooling hours based on factors such as facility type, chiller type, chiller efficiency, or weather region. This TRM follows a similar approach as used in Mid Atlantic TRM in that the full load cooling hours of chillers are assigned by building type. As per Table 17-11 of Sub-Appendix F2-III: Non-residential HVAC, the water chilling efficiency requirement from ASHRAE 90.1-2010, presents two paths of compliance for water-cooled chillers. Path A is intended for those project sites where the chiller application is primarily operating at full-load conditions during its annual operating period. Path B is intended for those project sites where the chiller application is primarily operating at part-load conditions during its annual operating period. Compliance with the code-specified minimum efficiency can be achieved by meeting the requirement of either Path A or Path B. However, both full-load and IPLV levels must be met to fulfill the requirements of Path A or Path B.

For applications in the Virginia and North Carolina regions, chillers are expected to operate primarily at full-load conditions for a significant portion of their operating period. Therefore, the Path A efficiency is used for the baseline.

2.1.3.4 Default savings

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

2.1.3.5 Effective Useful Life

The effective useful life of this measure is provided in Table 2-12.

Table 2-12	. Effective	Useful Life	for lifecycle	savings	calculations
------------	-------------	--------------------	---------------	---------	--------------

DSM Phase	Program name	Value	Units	Source(s)
VIII	Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII	23.00	years	Maryland/Mid-Atlantic v.10, p. 304
VII	Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII	15.00	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

²⁰ When missing either the IPLV or the full load value, use the general equations to convert in Sub-Appendix F2-VI: General equations to convert to the appropriate value.

2.1.3.6 Source(s)

The primary sources for this deemed savings approach are the Maryland/Mid-Atlantic TRM v.10, pp. 302-305 and 422 and ASHRAE 90.1-2013, Table 6.8.1-3 - Water Chilling Packages - Efficiency Requirements.

2.1.3.7 Update summary

Updates made to this section are described in Table 2-13.

Version	Update type	Description
2022	None	No change
2024	Source	Updated page numbers / version of the Maryland/Mid-Atlantic TRM
2021	New table	Effective Useful Life (EUL) by program
2020	None	No change
	Source	Updated page numbers / version of the Maryland/Mid-Atlantic TRM
v10	Input variable	Update to weather stations in North Carolina resulted in revised EFLHs for weather-sensitive measures Baseline efficiency levels were revised per update to ASHRAE 2013 in VA and NC

Table 2-13. Summary of update(s)

2.1.4 HVAC Variable Frequency Drives

2.1.4.1 Measure description

This measure defines savings that result from installing a variable frequency drive (VFD) control on a HVAC motor with application to supply fans, return fans, exhaust fans, cooling tower fans, chilled water pumps, condenser water pumps, and hot water pumps. The HVAC application must also have a variable load and proper controls in place: feedback control loops to fan/pump motors and variable air volume (VAV) boxes on air-handlers.

The algorithms and inputs to calculate energy and demand reduction for VFDs are provided below. The baseline equipment fan/pump type should be determined from the program application, if available. Otherwise, the minimum savings factors will be applied. For all known types, the energy savings calculations will include the following baseline applications:

HVAC Fans

Airfoil / Backward-Inclined (AF / BI) Fan

Airfoil / Backward-Inclined w/Inlet Guide Vanes (AF / BI IGV) Fan

Forward Curved (FC) Fan

Forward Curved w/Inlet Guide Vanes (FC IGV) Fan

Unknown (Default)

HVAC Pumps

Chilled Water Pump (CHW Pump)

Docket No. E-22, Sub 645

Condenser Water Pump (CW Pump)

Hot Water Pump (HW Pump)

Unknown (Default)

This measure is offered through the programs listed in Table 2-14. TheNon-Residential Heating and Cooling Efficiency Program, DSM Phase VII uses the impacts estimation approach described In this section. However, the savings methodology is different for the Non-Residential Small Business Improvement Enhanced Program, described in section 8.2.7.

Table 2-14. Programs that Offer this Measure

Program name	Section
Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII	Section 2.1.4
Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	Section 8.2.7

2.1.4.2 Impacts estimation approach

Per-measure, gross annual electric energy savings are calculated according to the following equations:

HVAC Fans:

$$\frac{\Delta kWh_{fan}}{\eta} = \frac{hp \ x \ 0.746 \ x \ LF}{\eta} \times HOU \times \Delta LR$$

$$\Delta LR = \sum_{0\%}^{100\%} FF \times (PLR_{base} - PLR_{ee})$$

HVAC Pumps:

$$\Delta kWh_{pump} = \frac{hp \ x \ 0.746 \ x \ LF}{\eta} \times HOU \times ESF$$

Per-measure, gross coincident summer peak demand reduction is calculated according to the following equation: HVAC Fans:

$$\frac{\Delta k W_{fan,summer}}{\eta} = \frac{hp \ x \ 0.746 \ x \ LF}{\eta} \times \left(PLR_{base,peak} - PLR_{ee,peak} \right) = 0$$

HVAC Pumps:

$$\Delta kW_{pump,summer} = \frac{hp \ x \ 0.746 \ x \ LF}{\eta} \times \ CF_{summer} \times \ DSF$$

Docket No. E-22, Sub 645

Per-measure, gross coincident winter peak demand reduction is calculated according to the following equation: HVAC Fans:

$$\Delta kW_{fan,winter} = \frac{hp \ x \ 0.746 \ x \ LF}{\eta} \times \left(PLR_{base,peak} - PLR_{ee,peak}\right) = 0$$

HVAC Pumps:

$$\frac{\Delta k W_{pump,winter}}{\eta} = \frac{hp \ x \ 0.746 \ x \ LF}{\eta} \times \ CF_{winter} \times \ DSF$$

Where:

∆kWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction
hp	= motor horsepower
LF	= motor load factor (%) at fan design airflow rate or pump design flowrate
η	= NEMA-rated efficiency of motor
HOU	= annual operating hours for fan motor based on building type
ΔLR	= change in load ratio due to differences in part-load ratios
FF	= flow fraction, percentage of run-time spent within a given range of flows
PLR _{base}	= baseline part-load ratio
PLRee	= efficient part-load ratio
PLR _{base, pea}	_{ak} = summer peak baseline part-load ratio
PLR _{ee, peak}	= summer peak efficient part-load ratio
ESF	= energy savings factor
DSF	= demand savings factor
CF _{summer}	= summer peak coincidence factor
CF _{winter}	= winter peak coincidence factor

2.1.4.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 2-15. Input values for non-residential variable frequency drives					
Component Type Value Unit					

Component	Туре	Value	Unit	Source(s)
hp	Variable	See customer application	horsepower	Customer application
		See customer application	-	Customer application
LF	Variable	Default: 0.65	-	Maryland/Mid-Atlantic TRM v.10, p. 297
		See customer application		Customer application
η	Variable	For default see Table 2-16. Baseline motor efficiency] -	NEMA Standards Publication Condensed MG 1-2007
FF	Fixed	0.524 per Table 2-17	-	Maryland/Mid-Atlantic TRM v.10, p. 297
		See customer application		Customer application
PLR _{base}	Variable	Default = 0.53 per Table 2-19. forward-curved fan with outlet dampers at FF=0.524	-	Maryland/Mid-Atlantic TRM v.10, p. 298

Component	Туре	Value	Unit	Source(s)
PLR _{base} , peak	Fixed	1.00	-	DNV engineering judgement
		See customer application		Customer application
PLRee	Variable	Default: 0.30 ²¹ per Table 2-19. for VFD with duct Static Pressure Controls at FF=0.524	-	Maryland/Mid-Atlantic TRM v.10, p. 299
PLR _{ee, peak}	Fixed	1.00	-	DNV engineering judgement
ESF	Variable	See Table 2-20	-	Maryland/Mid-Atlantic TRM v.10, p. 301
DSF	Variable	See Table 2-20	-	Maryland/Mid-Atlantic TRM v.10, p. 301
HOU	Variable	See Table 17-6 in Sub-Appendix F2-II: Non-residential HVAC	hours, annual	Maryland/Mid-Atlantic TRM v.10, pp. 299-301
CF _{summer}	Fixed	0.55 for pump applications	-	Maryland/Mid-Atlantic TRM v.10, p. 299
CF _{winter}	Fixed	0.78 for pump applications	-	Dominion Energy 2012 Commercial HVAC VSD Study ²²

Table 2-16 provides the baseline motor efficiencies that are consistent with the minimum federal accepted motor efficiencies provided by the National Electrical Manufacturers Association (NEMA).²³

Table 2-16.	Baseline	motor	efficiencv ²⁴
			••••••

Horsepower (hp)	η	Horsepower (hp)	η
1	0.855	60	0.950
1.5	0.865	75	0.954
2	0.865	100	0.954
3	0.895	125	0.954
5	0.895	150	0.958
7.5	0.917	200	0.962
10	0.917	250	0.962
15	0.924	300	0.962
20	0.930	350	0.962
25	0.936	400	0.962
30	0.936	450	0.962
40	0.941	500	0.962
50	0.945		

²¹ Corresponds to the approximate PLR for 'VFD with Duct Static Pressure Controls' from Table 2-18. at the average FF of 52.4% from Table 2-17.

²² The source TRM does not provide a winter CF. Therefore, the results from Dominion Energy's 2012 Commercial VSD Loadshape study to calculate winter CF.
²³ Refer to NEMA Standards Publication "Condensed MG 1-2011 - Information Guide for General Purpose Industrial AC Small and Medium Squirrel-Cage Industria Mater Standards Publication "Condensed MG 1-2011 - Information Guide for General Purpose Industrial AC Small and Medium Squirrel-Cage Industria Mater Standards Publication "Condensed MG 1-2011 - Information Guide for General Purpose Industrial AC Small and Medium Squirrel-Cage Industria Mater Standards Publication "Condensed MG 1-2011 - Information Guide for General Purpose Industrial AC Small and Medium Squirrel-Cage Industria Mater Standards Publication" and Table 52 (Full Load Efficience) for General Purpose Industrial AC Small and Medium Squirrel-Cage Industrial AC Small and Standards Publication (Part do Note) for General Purpose Industrial AC Small and Medium Squirrel-Cage Industrial AC Small and Medium Squirrel-Cage Industrial AC Small and Small

Induction Motor Standards" and Table 52 'Full-Load Efficiencies for 60 Hz NEMA Premium Efficiency Electric Motors Rated 600 Volts or Less (Random Wound)' in said standard.

²⁴ NEMA Standards Publication Condensed MG 1-2011 - Information Guide for General Purpose Industrial AC Small and Medium Squirrel-Cage Induction Motor Standards. Assumed Totally Enclosed Fan-Cooled (TEFC), Premiums Efficiency, 1800 RPM (4 Pole).

Table 2-17 provides the assumed proportion of time that fans operate within ten ranges of airflow rates, relative to the design airflow rate (cfm).

Table 2-17. Default fan duty cycle

Airflow range (% of design cfm)	Airflow Fraction (FF), percent of time in flow range	Average flow range (% of design cfm)		
0% - 10%	0.0%			
10% - 20%	1.0%			
20% - 30%	5.5%			
30% - 40%	15.5%			
40% - 50%	22.0%	50 40/		
50% - 60%	25.0%	52.4%		
60% - 70%	19.0%			
70% - 80%	8.5%			
80% - 90%	3.0%			
90% - 100%	0.5%			

Table 2-18. provides the part-load ratios (PLRs) that vary with fan control types and air flow range.

Table 2-18. Part load ratios by control type, fan type, and flow range

		Airflow range (percent of design cfm)									
Control type	Fan type(s)	0% - 10%	10% - 20%	20% - 30%	30% - 40%	40% - 50%	50% - 60%	60% - 70%	70% - 80%	80% - 90%	90% - 100%
No control or bypass damper	All	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Discharge dampers	All	0.46	0.55	0.63	0.70	0.77	0.83	0.88	0.93	0.97	1.00
Outlet damper	BI, AF	0.53	0.53	0.57	0.64	0.72	0.80	0.89	0.96	1.02	1.05
Inlet damper box	All	0.56	0.60	0.62	0.64	0.66	0.69	0.74	0.81	0.92	1.07
Inlet guide vane	BI, AF	0.53	0.56	0.57	0.59	0.60	0.62	0.67	0.74	0.85	1.00
Inlet vane dampers	All	0.38	0.40	0.42	0.44	0.48	0.53	0.60	0.70	0.83	0.99
Outlet damper	FC	0.22	0.26	0.30	0.37	0.45	0.54	0.65	0.77	0.91	1.06
Eddy current drives	All	0.17	0.20	0.25	0.32	0.41	0.51	0.63	0.76	0.90	1.04
Inlet guide vane	FC	0.21	0.22	0.23	0.26	0.31	0.39	0.49	0.63	0.81	1.04
VFD with duct static pressure controls	All	0.09	0.10	0.11	0.15	0.20	0.29	0.41	0.57	0.76	1.01
VFD with low/no duct static pressure controls (<1" w.g.)	All	0.05	0.06	0.09	0.12	0.18	0.27	0.39	0.55	0.75	1.00

Fan types include: Bi=Backward Inclined fan; AF=Airfoil Fan; and FC=Forward-Curved fan.

Table 2-19 displays the average part-load ratios calculated using the flow fractions from Table 2-17, and the part-load values across flow ranges from Table 2-18.

Table 2-19. Average Baseline Part Load Ratios (PLRs) by control type, and fan type

Case	Control type	Fan type(s)	Weighted average PLR
	Outlet dompor	Airfoil (AF) or Backward Inclined (BI)	0.78
		Forward Curved (FC) or Unknown	0.53
	Discharge damper	All	0.81
	Inlet damper box	All	0.70
Baseline	Inlet quide yang	Airfoil (AF) or Backward Inclined (BI)	0.64
		Forward Curved (FC) or Unknown	0.40
	Inlet vane damper	All	0.54
	Eddy current drive	All	0.50
	No control or bypass damper	All	1.00
	VFD with duct static pressure controls	All	0.30
Efficient	VFD with low/no duct static pressure controls (<1" w.g.)	All	0.28

Table 2-20. Energy and demand savings factors by application

VFD Applications ²⁵	ESF	DSF
Chilled Water Pump	0.633	0.460
Hot Water Pump	0.652	0.000
Unknown/Other Pump (Average) ²⁶	0.643	0.230

2.1.4.4 Default savings

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

2.1.4.5 Effective Useful Life

The effective useful life of this measure is provided in Table 2-21.

Table 2-21. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VII	Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII	15.00	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

²⁵ Mid-Atlantic TRM 2020, p. 301.

 $^{^{26}}$ Assigned for pumps not specifically in this table, such as condenser water pump.

2.1.4.6 Source(s)

The primary sources for this deemed savings approach Maryland/Mid-Atlantic TRM v.10, pp. 296-301.

2.1.4.7 Update summary

Updates made to this section are described in Table 2-22.

Version	Update type	Description		
2022	None	No change		
	Source	Updated page numbers / version of the Maryland/Mid-Atlantic TRM		
2021	New table	Effective Useful Life (EUL) by program		
	Equation	Added gross winter peak demand reduction equation		
2020	None	Added efficient cases of control strategies to clarify assumptions. No change to resulting savings.		
v10	Source	Updated page numbers / version of the Maryland/Mid-Atlantic TRM		

Table 2-22. Summary of update(s)

2.1.5 Dual enthalpy air-side economizers

2.1.5.1 Measure description

Non-Residential Heating and Cooling Efficiency Program

This measure involves the installation of a dual-enthalpy economizer to provide free cooling during the appropriate ambient conditions. Dual-enthalpy economizers are used to control a ventilation system's outside-air intake in order to reduce a facility's total cooling load. The economizer operation controls the outside air and return air flow rates by monitoring the outside air temperature (sensible heat) and humidity (latent heat) and provides free cooling in place of mechanical cooling. This reduces the load on the mechanical cooling system and lowers the operating hours. This measure applies only to retrofits or newly-installed cooling units with a factory-installed "dual-enthalpy" economizer controller. The baseline condition is the existing HVAC system without economizer. The efficient condition is the HVAC system with functioning dual enthalpy economizer control(s).

Non-Residential Small Business Improvement Enhanced Program

In addition to the measure scope description in Non-Residential Heating and Cooling Efficiency Program above, this program also includes repair of existing dual-enthalpy economizer. This measure is offered through the programs listed in Table 2-23 and uses the impacts estimation approach described in this section.

Table 2-23. Programs	s that	offer this	measure
----------------------	--------	------------	---------

Program name	Section
Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII	Section 2.1.5
Non-Residential Office Program, DSM Phase VII	Section 7.3.7
Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	Section 8.2.5

2.1.5.2 Impacts estimation approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

 $\Delta kWh = Size_{cool} \times ESF$

Per-measure, gross summer and winter coincident demand reduction is assumed to be zero because an economizer will typically not operate during the peak period.²⁷ Hence,

 $\Delta k W_{summer} = \Delta k W_{winter} = 0$

Where:

∆kWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross summer peak coincident demand reduction
∆kW _{winter}	= per-measure gross winter peak coincident demand reduction
Size _{cool}	= HVAC system cooling capacity
ESF	= annual energy savings factor for the installation of dual enthalpy economizer control

2.1.5.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 2-24. Input values for economizer repair savings calculations

Component	Туре	Value	Unit	Source(s)
Sizecool	Variable	See customer application	tons	Customer application
ESF	Variable	See Table 2-25	kWh/ton	Maryland/Mid-Atlantic TRM v.10, p. 314

²⁷ Maryland/Mid-Atlantic TRM v.10, p. 313.

			-								
		Energy savings factors (kWh/ton)									
Building type	Baltimore , MD	Richmond, VA	Norfolk, VA	Roanoke, VA	Sterling, VA	Arlington, VA	Charlottes- ville, VA	Farmville, VA	Fredericks burg, VA	Elizabeth City, NC	Rocky Mount, NC
Education: ²⁹ college and university, high school, – elementary and middle school	39	46	51	35	35	48	34	41	43	56	43
Food sales: ³⁰ grocery, ³¹ convenience store, gas station convenience store	57	67	75	51	51	70	50	59	63	82	63
Food	29	34	38	26	26	36	26	30	32	41	32
service: ³² full service.	29	34	38	26	26	36	26	30	32	41	32
fast food ³³	37	43	49	33	33	46	33	39	41	53	41
Mercantile (retail, not mall) ³⁴	57	67	75	51	51	70	50	59	63	82	63
Mercantile (mall)	57	67	75	51	51	70	50	59	63	82	63

Table 2-25. Economizer energy savings factors by building type²⁸

²⁸ Maryland/Mid-Atlantic TRM v.10, p. 314 lists savings factor for installation of dual enthalpy economizer. Mid Atlantic TRM does not have savings factor for VA or NC, therefore Baltimore, MD savings factors are scaled to determine those for Richmond, VA and Rocky Mount-Wilson/Elizabeth City, NC values using the CDD provided in Sub-Appendix F2-I: Cooling and heating degree days and . For example, VA and NC values are calculated from Baltimore, MD savings factors and degree days (DD-65°F = CDD) using TMY3 data.

²⁹ All education building types in the STEP Manual were mapped to savings factors for the "Primary School" building type listed in the Maryland/Mid-Atlantic TRM v.10, p. 314.

³⁰ All food sales, and service (beauty, auto repair workshop) building types in the STEP Manual were mapped to savings factors for the "Small Retail" building type listed in the Maryland/Mid-Atlantic TRM v.10, p. 314.

³¹ Food-sales-grocery and mercantile (mall) building types in the STEP Manual were mapped to the "Big Box Retail" building type listed in the Maryland/Mid-Atlantic TRM v.10, p. 314.

³² All general food service and food service-full service building types in the STEP Manual were mapped to savings factors for the "Full Service Restaurant" building type listed in the Maryland/Mid-Atlantic TRM v.10, p. 314.

³³ Food service – fast food building types in the STEP Manual were mapped to savings factors for the "Fast Food" building type in the Maryland/Mid-Atlantic TRM v.10, p. 314.

³⁴ Mercantile (retail, not mall) building types in the STEP Manual were mapped to savings factors for the "Small Retail" building type in the Maryland/Mid-Atlantic TRM v.10, p. 314.

		Energy savings factors (kWh/ton)									
Building type	Baltimore , MD	Richmond, VA	Norfolk, VA	Roanoke, VA	Sterling, VA	Arlington, VA	Charlottes- ville, VA	Farmville, VA	Fredericks burg, VA	Elizabeth City, NC	Rocky Mount, NC
Office: Small (<40,000 sq. ft.) ³⁵ and Large (≥ 40,000 sq. ft.)	57	67	75	51	51	70	50	59	63	82	63
Public assembly	25	29	33	23	22	31	22	26	28	36	28
Religious worship	6	7	8	5	5	7	5	6	7	9	7
Other ³⁶ : lodging (hotel, motel and dormitory), health care (outpatient, inpatient) public order and safety (police and fire station)	57	67	75	51	51	70	50	59	63	82	63
Service (beauty, auto repair workshop)	57	67	75	51	51	70	50	59	63	82	63
Warehouse and storage	2	2	3	2	2	2	2	2	2	3	2

³⁵ Office – small (< 40,000 sqft) and office – large (>= 40,000 sqft) building types in the STEP Manual were mapped to savings factors for the "Small Office" building types in the Maryland/Mid-Atlantic TRM v.10, p. 314.

³⁶ Other, lodging – (hotel, motel and dormitory), health care-outpatient, healthcare-inpatient, public order and safety (police and fire station) building types in the STEP Manual were mapped to the "Other" building type in the Maryland/Mid-Atlantic TRM v.10, p. 314.

Docket No. E-22, Sub 645

2.1.5.4 Default savings

If the proper values are not supplied, a default savings may be applied using conservative input values. Default hours of use will be taken from the above chart if the building type is available.

The default gross coincident demand reduction is zero.

2.1.5.5 Effective Useful Life

The effective useful life of this measure is provided in Table 2-26.

Table 2-26. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)	
іх	Non-Residential Building Optimization Program, DSM Phase IX	10.00	Vooro	Mid Atlantia TPM 2020 p. 212	
VIII	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	10.00	years		
VII	Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII	15.00 years		Program design assumptions (weighted average of measure lives	
VII	Non-Residential Office Program, DSM Phase VII	7.00		and their planned uptake)	

2.1.5.6 Source(s)

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v.10, pp. 313-314.

2.1.5.7 Update summary

Updates made to this section are described in Table 2-27.

Table 2-27. Summary of update(s)

Version	Update type	Description		
2022	None	No change		
	Source	Updated page numbers / version of the Maryland/Mid-Atlantic TRM		
2021	Input variable	xpanded weather stations		
	New table	Effective Useful Life (EUL) by program		
	Equation	Added gross winter peak demand reduction equation		
2020	None	No change		
v10	Source	Updated page numbers / version of the Maryland/Mid-Atlantic TRM		
	Input variable	Updated weather stations in North Carolina		

Docket No. E-22, Sub 645

3 NON-RESIDENTIAL WINDOW FILM PROGRAM, DSM PHASE VII

The Non-Residential Window Film Program provides incentives to non-residential customers to install reflective window film on existing windows in order to reduce the solar heat gain through the affected windows. The program has been offered in Virginia beginning August 1, 2014 and in North Carolina beginning January 1, 2015.

3.1 Building envelope end use

3.1.1 Window film

3.1.1.1 Measure description

This measure applies to window film installed on existing windows to reduce the solar heat gain through the affected window. Because the window film reduces solar heat gain, cooling loads are often reduced leading to mechanical cooling savings. For the same reason, heating load may also increase leading to mechanical heating penalties.

Windows facing any orientation are eligible. The film must be SHGC equal to or less than 0.5.37

This measure applies to window film installed on the exterior side of existing non-residential single pane or double pane windows. Savings are calculated per square foot of north, south, east, and west facing windows.

This measure is offered through different programs listed in Table 3-1 and uses the impacts estimation approach described in this section.

Table 3-1. Programs that offer this measure

Program name	Section
Non-Residential Window Film Program, DSM Phase VII	Section 3.1.1
Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	Section 8.1.1

3.1.1.2 Impacts estimation approach

The window film installation measure savings calculations utilize savings factors developed using OpenStudio[™] and EnergyPlus[™] software simulations of prototypical building models. The prototype building models were sourced from the DOE Commercial Reference Buildings within OpenStudio. Two building types, the public assembly and public safety and health buildings, were developed by DNV, as these building types were not included in the DOE Commercial Reference Buildings. The prototype models were modified for various heating equipment types. All models were based on building energy code and ASHRAE climate zone 4A.

Savings factors are calculated as the difference in simulated energy consumption between the baseline models and the efficient models. An efficient model is created for windows facing each orientation. This is done by changing the window properties to the efficient case in a given orientation, to isolate the effects of installing window film on each orientation, on the building energy consumption. DNV modeled an array of different building types, to represent the

³⁷ DSM Phase VII Non-Residential Window Film Program design assumptions.

Docket No. E-22, Sub 645

varying types of customers who may participate in this program. DNV encountered three modeling scenarios, related to where windows are installed on the prototypical baseline models:

There are prototype models where there are windows on all four walls. In these cases, the efficient models are run with window film applied to each individual window orientation, to isolate its impact on energy consumption.

In some of the prototype models there are windows only on one orientation. In these cases, the model was rotated by 90 degrees for each orientation in the efficient model, to isolate the effects of the window film installation on that orientation.

Some prototype models did not have windows in the North orientation. In these cases, savings are set to zero as the savings are relatively small compared to the other orientations and the quantity of windows in these building types with north facing windows will likely be relatively small.

Table 3-2 provides building descriptions and the HVAC heating type assumptions depending on the heating fuel type.

Table 3-2	DOF and DNV	building type	descriptions
Table J-2.		building type	uescriptions

Building type	Total floor area (sq. ft.)	No. Floors	Gas heating HVAC system	Electric heating HVAC system	Note
Quick service restaurant	2,500	1	Packaged AC w/ gas furnace	Packaged HP	No north-facing windows; north facing savings factors were not estimated
Full service restaurant	5,500	1	Packaged AC w/ gas furnace	Packaged HP	No north-facing windows; north facing savings factors were not estimated
Hospital	241,351	5	CHW/HW plant w/ VAV & HW reheat	PTHP & DOAS w/ HW coils	
Outpatient healthcare	40,946	3	Packaged VAV w/ HW & electric reheat	Packaged VAV w/ electric reheat	
Large hotel	122,120	6	CHW/HW plant w/ 4- pipe FC	PTHP & Packaged HPs	
Small office	5,500	1	Packaged AC w/ gas furnace	Packaged HP	
Large office	498,588	12	CHW/HW plant w/ VAV & HW reheat	WSHP	
Primary school	73,960	1	Packaged VAV w/ HW reheat	Packaged VAV w/ electric reheat	
Secondary school	210,887	2	CHW/HW plant w/ VAV & HW reheat	WSHP	
Stand-alone retail	24,962	1	Packaged AC w/ gas furnace	Packaged HP	Original model has only east-facing windows. Models were rotated to estimate savings for all cardinal directions

Building type	Total floor area (sq. ft.)	No. Floors	Gas heating HVAC system	Electric heating HVAC system	Note
Strip mall	22,500	1	Packaged AC w/ gas furnace	Packaged HP	Original model has only east-facing windows. Models were rotated to estimate savings for all cardinal directions
Public assembly	28,024	2	Packaged AC w/ HW coils	Packaged HP	Developed by DNV
Public order and safety	8,734	2	Packaged AC w/ HW reheat	Packaged HP	Developed by DNV
Quick service restaurant	2,500	1	Packaged AC w/ gas furnace	Packaged HP	No north-facing windows; north facing savings factors were not estimated
Full service restaurant	5,500	1	Packaged AC w/ gas furnace	Packaged HP	No north-facing windows; north facing savings factors were not estimated
Hospital	241,351	5	CHW/HW plant w/ VAV & HW reheat	PTHP & DOAS w/ HW coils	
Outpatient healthcare	40,946	3	Packaged VAV w/ HW & electric reheat	Packaged VAV w/ electric reheat	
Large hotel	122,120	6	CHW/HW plant w/ 4- pipe FC	PTHP & Packaged HPs	

Models are run for various locations throughout Dominion Energy's service territory using typical meteorological year 3 (TMY3) data—and modification of a few key window parameters.³⁸ The assumed values for key parameters affected by addition of window film to single and double pane windows are provided in Table 3-3.

	• • • • • • • • • • • • • • • • • • • •	• •			
Window variable	Window type	Baseline value	Source(s) ³⁹	Efficient value	Source(s) ³⁹
U-Factor	Single pane	1.23	DEER (1978-2001)	1.23	DEER (1978-2001)
	Double pane	0.77	DEER (1993-2001)	0.77	DEER (1993-2001)
SHGC	Single pane	0.82	DEER (1978-2001)	0.40	Program requirement
	Double pane	0.61	DEER (1993-2001)	0.40	Program requirement

Table 3-3. Key	/ building	energy	modelling	parameters
----------------	------------	--------	-----------	------------

The savings factors are listed per square foot of reflective window film area for each building type and window orientation Table 17-25 to Table 17-34 Table 17-33. Savings factors differ based on the number of panes within

OFFICIAL COPY

³⁸ See Sub-Appendix I: Cooling and Heating Degree Days and Hours for a description of the weather stations selected for this document.

³⁹ Building vintage ranges defined in DEER, <u>http://www.deeresources.com</u>

DNV

affected windows (single or double) and the heating fuel type of the building (electric or non-electric). Per-measure, gross annual electric energy savings are calculated according to the following equation:

 $\Delta kWh = SqFt_{orientation} \times ESF_{orientation}$

Per-measure, gross coincident summer and winter peak demand reduction is negligible for this measure

Where:

 $\begin{array}{ll} \Delta k W h & = \mbox{per-measure gross annual electric energy savings} \\ SqFt_{orientation} = \mbox{area of window film for each window orientation of a retrofitted building} \\ ESF_{orientation} = \mbox{annual energy savings factor} \end{array}$

3.1.1.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Unit	Source(s)
SqFtorientation	Variable	See customer application	sq.ft.	Customer application
ESForientation	Variable	See Table 17-25 to Table 17-34 in Sub-Appendix F2-V: Non- residential window film energy saving factors 17.8	kWh/sq.ft.	DOE 2.2 energy modeling software

Table 3-4. Input values for solar window film

3.1.1.4 Default savings

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

3.1.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 3-5.

Table 3-5. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VIII	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	10.00		New York TRM 2019 v.7, p. 77040
VII	Non-Residential Window Film Program, DSM Phase VII	10.00	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

⁴⁰ California DEER 2014, GlazDaylt-WinFilm

3.1.1.6 Source(s)

The deemed savings for this measure are determined by using prototypical building energy models defined by California's 2008 Database for Energy Efficient Resources (DEER)⁴¹ and modified to represent program-specific window characteristics for ten cities across Dominion Energy's service territory in Virginia and North Carolina (eight locations in Virginia and two in North Carolina).

3.1.1.7 Update summary

Updates made to this section are described in Table 3-6.

Version	Update type	Description			
2022	None	No change			
	New table	Effective Useful Life (EUL) by program			
2021	Input variable	Updated per-square-foot savings using new building models and revised weather stations			
2020	None	No change			
v10	Input variable	Updated per-square-foot savings for buildings in North Carolina based on revised weather stations			

Table 3-6. Summary of update(s)

⁴¹<u>https://cedars.sound-data.com/</u>

4 NON-RESIDENTIAL PRESCRIPTIVE PROGRAM, DSM PHASE VI

Dominion's Non-Residential Prescriptive Program provides qualifying business owners incentives to use pursue one or more of the qualified energy efficiency measures through a local, participating contractor in Dominion's contractor network. To qualify for this program, the customer must be responsible for the electric bill and must be the owner of the facility or reasonably able to secure permission to complete the measures. All program measures are summarized in Table 4-1.

End use	Measure	Manual section
	Commercial convection oven	Section 4.1.1
	Commercial combination oven	Section 4.1.2
	Commercial fryer	Section 4.1.3
Cooking	Commercial griddle	Section 4.1.4
	Commercial hot food holding cabinet	Section 4.1.5
	Commercial steam cooker	Section 4.1.6
	Variable speed drives on kitchen fan	Section 4.1.7
нулс	Duct testing & sealing	Section 4.2.1
HVAC	Unitary/split AC/HP tune-up	Section 4.2.2
Appliance or	Smart strip	Section 4.3.1
Plug Load	Vending machine miser	Section 4.3.2
	Door closer	Section 4.4.1
	Door gasket	Section 4.4.2
	Commercial freezers and refrigerators - solid door	Section 4.4.3
	Commercial ice maker	Section 4.4.4
	Evaporator fan ECM retrofit	Section 4.4.5
Pofrigoration	Evaporator fan control	Section 4.4.6
Reingeration	Floating head pressure control	Section 4.4.7
	Low/no-sweat door film	Section 4.4.8
	Refrigeration night cover	Section 4.4.9
	Refrigerator coil cleaning	Section 4.4.10
	Suction pipe insulation (cooler & freezer)	Section 4.4.11
	Strip curtain (cooler & freezer)	Section 4.4.12

Table 4-1. Non-residential prescriptive program measure list

4.1 Cooking end use

4.1.1 Commercial convection oven

4.1.1.1 Measure description

This measure involves the installation of an ENERGY STAR[®] qualified commercial convection oven. Commercial convection ovens that are ENERGY STAR certified have higher heavy load cooking efficiencies and lower idle energy rates making them more efficient than standard models.

The baseline equipment is assumed to be a standard-efficiency convection oven with a heavy-load efficiency of 65% for full-size electric ovens (i.e., a convection oven that can accommodate full-size sheet pans measuring 18 x 26 x 1inch) and 68% for half-size electric ovens (i.e., a convection oven that can accommodate half-size sheet pans measuring 18 x 13 x 1-inch).

This measure is offered through different programs listed in Table 4-2 and uses the impacts estimation approach described in this section.

Table 4-2. Programs that offer this measure

Program name	Section
Non-Residential Prescriptive Program, DSM Phase VI	Section 4.1.1
Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII	Section 9.1.2
Non-Residential Prescriptive Enhanced Program, DSM Phase IX	Section 16.1.1

4.1.1.2 Impacts estimation approach

The baseline annual electric energy consumption is calculated as follows:

$$kWh_{base} = \left[lb_{daily} \times \frac{E_{conv}}{\eta_{base}} + kW_{base,idle} \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{base}} \right) \right] \times Days$$

The efficient annual electric energy consumption is calculated as follows:

$$kWh_{ee} = \left[lb_{daily} \times \frac{E_{conv}}{\eta_{ee}} + kW_{ee,idle} \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{ee}} \right) \right] \times Days$$

Per-measure, gross annual electric energy savings are calculated using the following equations:

 $\Delta kWh = kWh_{base} - kWh_{ee}$

Per-measure, gross coincident summer peak demand reduction is calculated using the following equation:

Per-measure, gross coincident winter peak demand reduction is calculated using the following equation:

$$\frac{\Delta kW_{winter}}{(Hours_{daily} \times Days)} \times CF_{winter}$$

where:

ΔkWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per- measure gross coincident summer peak demand reduction
∆kW _{winter}	= per- measure gross coincident winter peak demand reduction
hours _{daily}	= average daily operating hours
E _{conv.}	= ASTM Energy to Food; the amount of energy absorbed by food during convection cooking
Ib _{daily}	= pounds of food cooked per day
days	= annual days of operation
η_{base}	= baseline equipment cooking energy efficiency
η_{ee}	= efficient equipment cooking energy efficiency
kW _{base,idle}	= baseline equipment idle energy rate
kW _{ee,idle}	= efficient equipment idle energy rate
PC _{base}	= baseline equipment production capacity
PCee	= efficient equipment production capacity
CFsummer	= summer peak coincidence factor
CF _{winter}	= winter peak coincidence factor

4.1.1.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Units	Source(s)
		See customer application		Customer application
Hours _{daily}	Variable	For defaults see Table 17-17 in Sub-Appendix F2-V: Non- residential commercial kitchen inputs	hours, daily	Maryland/Mid-Atlantic TRM v.10, p. 383
		See customer application		Customer application
Days	Variable	For defaults see Table 17-17 in Sub-Appendix F2-V: Non- residential commercial kitchen inputs	days, annual	Maryland/Mid-Atlantic TRM v.10, p. 383
	daily Variable	See customer application	lb	Customer application
Ib _{daily}		Default: 100	daily	Maryland/Mid-Atlantic TRM v.10, p. 383
Econv	Fixed	0.0732	kWh/lb	Maryland/Mid-Atlantic TRM v.10, p. 383

Table 4-3. Input parameters for convection oven

Component	Туре	Value	Units	Source(s)
PC _{base}	Variable	Half Size: 45 Full Size: 90	lb/hour	Maryland/Mid-Atlantic TRM v.10, p. 383
η_{base}	Variable	Half Size: 0.68 Full Size: 0.65	-	Maryland/Mid-Atlantic TRM v.10, p. 383
kW base,idle	Variable	Half Size:1.03 Full Size: 2.00	kW	Maryland/Mid-Atlantic TRM v.10, p. 383
kW _{ee,idle}	Variable	Half Size: 1.00 Full Size: 1.60	kW	Maryland/Mid-Atlantic TRM v.10, p. 382
PCee	Variable	Half Size: 50 Full Size: 90	lb/hour	Maryland/Mid-Atlantic TRM v.10, p. 383
η_{ee}	Variable	Half Size: 0.71 Full Size: 0.71	-	Maryland/Mid-Atlantic TRM v.10, p. 383
CF _{summer}	Fixed	1.0	-	Maryland/Mid-Atlantic TRM v.10, p. 384 ⁴²
CFwinter	Fixed	1.0	-	Maryland/Mid-Atlantic TRM v.10, p. 384 ⁴²

4.1.1.4 Default savings

If the proper values are not supplied, a default savings may be applied using conservative input values. The default per-measure gross annual electric energy savings for a half size convection oven will be assigned as follows:

$$\begin{split} kWh_{base} &= \left[lb_{daily} \times \frac{E_{conv}}{\eta_{base}} + kW_{base,idle} \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{base}} \right) \right] \times Days \\ &= \left[100 \ lb \times \frac{0.0732 \ kW/lb}{0.68} + 1.03 \ kW \times \left(13.1 \ hr - \frac{100 \ lb/day}{45 \ lb/hr} \right) \right] \times 307 \ days \\ &= 6,744.43 \ kWh \\ kWh_{ee} &= \left[lb_{daily} \times \frac{E_{conv}}{\eta_{ee}} + kW_{ee,idle} \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{ee}} \right) \right] \times Days \\ &= \left[100 \ lb \times \frac{0.0732 \ kW/lb}{0.71} + 1.00 \ kW \times \left(13.1 \ hr - \frac{100 \ lb/day}{50 \ lb/hr} \right) \right] \times 307 \ days \end{split}$$

$$= 6,572.83 \, kWh$$

$$\Delta kWh = kWh_{base} - kWh_{ee}$$

⁴² No specific study of commercial kitchen equipment coincident peak demand savings is available. In the absence of this information, a simple average demand value is used: Annual energy savings divided by the total annual hours of operation and the coincidence factor is 1.0.

DNV = 6,744 kWh - 6,572 kWh = 171.60 kWh

Per-measure, default gross coincident summer peak demand reduction is calculated using the following calculation:

$$\Delta kW_{summer} = \frac{\Delta kWh}{(Hours_{daily} \times Days)} \times CF_{summer}$$
$$= \frac{172 \ kWh}{(13.1 \ hr \times 307 \ day)} \times 1.0$$
$$= 0.043 \ kW$$

Per-measure, default gross coincident winter peak demand reduction is calculated using the following calculation:

$$\Delta kW_{winter} = \frac{\Delta kWh}{(Hours_{daily} \times Days)} \times CF_{winter}$$
$$= \frac{172 \, kWh}{(13.1 \, hr \times 307 \, day)} \times 1.0$$
$$= 0.043 \, kW$$

4.1.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-4.

Table 4-4. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
IX	Non-Residential Prescriptive Enhanced Program, DSM Phase IX	12 00	years	Maryland/Mid-Atlantic TRM v.10, p.
VIII	Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII	12.00		385
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

4.1.1.6 Source(s)

The primary sources for this deemed savings approach is the Maryland/Mid-Atlantic TRM v.10, pp. 382-385.

4.1.1.7 **Update summary**

Updates made to this section are described in Table 4-5.

Version	Update type	Description	
2022	None	No change	
	Source	Updated page numbers / version of the Mid-Atlantic TRM	
2021	Input variable	Updated Hourdaily and Days values and default customer building type	
	Equation	Added equation for coincident winter peak demand reduction	
	New table	Effective Useful Life (EUL) by program	
2020	None	No change	
v40	Source	Updated page numbers / version of the Mid-Atlantic TRM	
VIU	Input variable	Clarified default assumption values	

Table 4-5. Summary of update(s)

4.1.2 Commercial combination oven

4.1.2.1 **Measure description**

This measure involves the installation of an ENERGY STAR® gualified combination oven. A combination oven is a convection oven that includes the added capability to inject steam into the oven cavity and typically offers at least three distinct cooking modes. This measure applies to time of sale opportunities. The baseline equipment is assumed to be a typical standard-efficiency electric combination oven.

This measure is offered through different programs listed in Table 4-6 and uses the impacts estimation approach described in this section.

Table 4-6. Programs that offer this measure

Program name	Section
Non-Residential Prescriptive Program, DSM Phase VI	Section 4.1.2
Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII	Section 9.1.1
Non-Residential Prescriptive Enhanced Program, DSM Phase IXNon-Residential Prescriptive Enhanced Program, DSM Phase IX	Section 16.1.2

4.1.2.2 Impacts estimation approach

The baseline annual electric energy consumption is calculated as follows:

Docket No. E-22, Sub 645

DNV $kWh_{base,conv} = \left[lb_{daily} \times \frac{E_{conv}}{\eta_{base,conv}} + kW_{base,conv,idle} \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{base,conv}} \right) \right]$ $\times (1 - PCT_{steam}) \times Day$

$$\begin{split} kWh_{base,steam} &= \left[lb_{daily} \times \frac{E_{steam}}{\eta_{base,steam}} \\ &+ kW_{base,steam,idle} \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{base,steam}} \right) \right] \\ &\times PCT_{steam} \times Days \end{split}$$

$$kWh_{base} = kWh_{base,conv} + kWh_{base,steam}$$

The efficient annual electric energy consumption is calculated as follows:

$$kWh_{ee,conv} = \left[lb_{daily} \times \frac{E_{conv}}{\eta_{ee,conv}} + kW_{ee,conv,idle} \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{ee,conv}} \right) \right] \\ \times (1 - PCT_{steam}) \times Days$$

$$kWh_{ee,steam} = \left[lb_{daily} \times \frac{E_{steam}}{\eta_{ee,steam}} + kW_{ee,steam,idle} \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{ee,steam}} \right) \right] \\ \times PCT_{steam} \times Days$$

$$kWh_{ee} = kWh_{ee,conv} + kWh_{ee,steam}$$

Per-measure, gross annual electric energy savings are calculated using the following equation:

$$\Delta kWh = kWh_{base} - kWh_{ee}$$

Per-measure, gross coincident summer peak demand reduction is calculated using the following equation:

$$\frac{kW_{summer}}{(Hours_{daily} \times Days)} \times CF_{summer}$$

Per-measure, gross coincident winter peak demand reduction is calculated using the following equation:

$$\frac{kW_{winter}}{(Hours_{daily} \times Days)} \times CF_{winter}$$

Per-measure, gross annual water savings are calculated according to the following equation:

DNV

```
\Delta Water = (Water_{base} - Water_{ee}) \times Hours_{daily} \times PCT_{steam} \times Days
```

Where:

∆kWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction
kWh _{base}	= annual energy usage of the baseline equipment
kWh _{ee}	= annual energy usage of the efficient equipment
kWh _{base,con}	v = baseline annual cooking energy consumption in convection mode
kWh _{base,stea}	am = baseline annual steam energy consumption in steam mode
kW _{base,conv,}	idle = baseline idle energy rate in convection mode
kWbase,steam	n,idle = baseline idle energy rate in steam mode
kWh _{ee,conv}	 efficient annual cooking energy consumption in convection mode
kWh _{ee,steam}	= efficient annual steam energy consumption in steam mode
kWee,conv,idl	e = efficient idle energy rate in convection mode
kWee,steam,io	the = efficient idle energy rate in steam mode
∆Water	= per-measure gross annual water savings
Hoursdaily	= average daily operating hours
Days	= annual days of operation
bdaily	= pounds of food cooked per day
Econv	= ASTM Energy to Food, the amount of energy absorbed by the food during convection mode cooking, per pound of food
Esteam	= ASTM Energy to Food, the amount of energy absorbed by the food during steam cooking
	mode, per pound of food
nbase,conv	= baseline equipment cooking energy efficiency in convection mode
nbase,steam	= baseline equipment cooking energy efficiency in steam mode
ηee,conv	= efficient equipment cooking energy efficiency in convection mode
η _{ee,steam}	= efficient equipment cooking energy efficiency in steam mode
PCT _{steam}	= percent of food cooked in steam cooking mode
PC _{base,conv}	= baseline equipment production capacity in convection mode
PC _{ee,conv}	= efficient equipment production capacity in convection mode
PC _{base,stearr}	= baseline equipment production capacity in steam mode
PC _{ee,steam}	= efficient equipment production capacity in steam mode
Water _{base}	= average water consumption rate of baseline combination ovens
Wateree	= average water consumption rate of efficient combination ovens
CF _{summer}	= summer peak coincidence factor
CF _{winter}	= winter peak coincidence factor

4.1.2.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Units	Source(s)
Hoursdaily	Variable	See customer application	hours, daily	Customer application
		For defaults see Table 17-17 in Sub-Appendix F2-V: Non-		Maryland/Mid-Atlantic TRM v.10, p. 387

Table 4-7. Input parameters for commercial electric combination ovens

Component	Туре	Value	Units	Source(s)
		residential commercial kitchen inputs		
		See customer application		Customer application
Days	Variable	For defaults see Table 17-17 in Sub-Appendix F2-V: Non- residential commercial kitchen inputs	days, annual	Maryland/Mid-Atlantic TRM v.10, p. 387
		See customer application	pounds	Customer application
Ib _{daily}	Variable	Default: 200	daily	Maryland/Mid-Atlantic TRM v.10, p. 387
		See customer application		Customer application
PCT _{steam}	Variable	Default: 0.50	-	Maryland/Mid-Atlantic TRM v.10, p. 387
PCT	Variable	See customer application		Maryland/Mid-Atlantic TRM v.10, p.
F C I conv	Valiable	Default: 0.50	-	387
Econv	Fixed	0.0732	kWh/lb	Maryland/Mid-Atlantic TRM v.10, p. 387
Esteam	Fixed	0.0308	kWh/lb	Maryland/Mid-Atlantic TRM v.10, p. 387
PC _{base,conv}	Variable	<15 pans: 79 ≥15 pans: 166	lb/hr	Maryland/Mid-Atlantic TRM v.10, p. 387
PC _{base,steam}	Variable	<15 pans: 126 ≥15 pans: 295	lb/hr	Maryland/Mid-Atlantic TRM v.10, p. 387
ηbase,conv	Fixed	0.72	-	Maryland/Mid-Atlantic TRM v.10, p. 387
ηbase,steam	Fixed	0.49	-	Maryland/Mid-Atlantic TRM v.10, p. 387
kWbase,conv,idle	Variable	<15 pans: 1.320 ≥15 pans: 2.280	kW	Maryland/Mid-Atlantic TRM v.10, p. 387
kWbase,steam,idle	Variable	<15 pans: 5.260 ≥15 pans: 8.710	kW	Maryland/Mid-Atlantic TRM v.10, p. 387
kW _{ee,conv,idle} 43	Variable	<15 pans: 1.299 ≥15 pans: 2.099	kW	Maryland/Mid-Atlantic TRM v.10, p. 387
kWee,steam,idle ⁴⁴	Variable	<15 pans: 1.970 ≥15 pans: 3.300	kW	Maryland/Mid-Atlantic TRM v.10, p. 387
PC _{ee,conv}	Variable	<15 pans: 119 ≥15 pans: 201	lb/hr	Maryland/Mid-Atlantic TRM v.10, p. 387
PC _{ee,steam}	Variable	<15 pans: 177 ≥15 pans: 349	lb/hr	Maryland/Mid-Atlantic TRM v.10, p. 387
η _{ee,conv}	Fixed	0.76	-	Maryland/Mid-Atlantic TRM v.10, p. 387
ηee,steam	Fixed	0.55	-	Maryland/Mid-Atlantic TRM v.10, p. 387
Waterbase	Fixed	40.0	gal/ hr	Ohio TRM 2010, p. 26045

 ⁴³ Maryland/Mid-Atlantic TRM v.10 provided an equation for calculating this value based on number of pans, as follows: =0.080 x Number of pans + 0.4989. To establish fixed kW values for efficient equipment, DNV reviewed the list of qualifying ENERGY STAR electric combination ovens and determined the mode for the number of pans: 10 pans is the mode for units having <15 pans (11 of 27 models or 41%); and 20 pans is the mode of capacity for units having <15 pans (5 of 7 models or 70%). These modes were used to calculate the kW values for <15 pans and ≥15 pans, respectively.

⁴⁴ Maryland/Mid-Atlantic TRM v.10 provided an equation for calculating this value based on number of pans, as follows: = 0.133 x Number of pans + 0.64. To establish fixed kW values for efficient equipment, the list of qualifying ENERGY STAR electric combination ovens was reviewed to determine t the mode for the number of pans: 10 pans is the mode for units having <15 pans (11 of 27 models or 41%); and 20 pans is the mode of capacity for units having ≥15 pans (5 of 7 models or 70%). These modes were used to calculate the kW values for <15 pans and ≥15 pans, respectively.</p>

⁴⁵ Ohio TRM Revised Edition, 2013. Food Service Technology Center (FSTC), based on assumption that baseline ovens use water at an average rate of 40 gal/hr.

Component	Туре	Value	Units	Source(s)
Wateree	Fixed	20.0	gal/ hr	Ohio TRM 2010, p. 260 ⁴⁶
CFsummer	Fixed	1.0	-	Maryland/Mid-Atlantic TRM v.10, p. 38747
CFwinter	Fixed	1.0	-	Maryland/Mid-Atlantic TRM v.10, p. 387 ⁴⁷

4.1.2.4 Default savings

If the proper values are not supplied, a default savings may be applied using conservative input values. The default efficient annual electric energy consumption will be as follows for <15 pans:

$$kWh_{base,conv} = \left[lb_{daily} \times \frac{E_{conv}}{\eta_{base}} + kW_{base,conv,idle} \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{base,conv}} \right) \right]$$
$$\times (1 - PCT_{steam}) \times Days$$
$$= \left[200 \ lb \times \frac{0.0732 \ kWh/lb}{0.72} + 1.320 \ kW \times \left(13.1 \ hr - \frac{200 \ lb}{79 \ lb/hr} \right) \right]$$
$$\times (1 - 0.50) \times 307 \ days$$
$$= 5,262.53 \ kWh$$

$$kWh_{base,steam} = \left[lb_{daily} \times \frac{E_{steam}}{\eta_{base}} + kW_{base,steam,idle} \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{base,steam}} \right) \right]$$
$$\times PCT_{steam} \times Days$$
$$= \left[200 \ lb \times \frac{0.0308 \ kWh/lb}{0.49} + 5.260 \ kW \times \left(13.1 \ hr - \frac{200 \ lb}{126 \ lb/hr} \right) \right]$$
$$\times 0.50 \times 307 \ days$$

 $= 11,225.18 \, kWh$

⁴⁶ Ibid

⁴⁷ No specific study of commercial kitchen equipment coincident peak demand savings is available. In the absence of this information, a simple average demand value is used: Annual energy savings divided by the total annual hours of operation and the coincidence factor is 1.0.

DNV

 $kWh_{base} = kWh_{base,conv} + kWh_{base,steam}$ $= 5,263 \, kWh + 11,225 \, kWh$

The efficient annual electric energy consumption is calculated as follows:

 $= 16,487.71 \, kWh$

$$\begin{split} kWh_{ee,conv} &= \left[lb_{daily} \times \frac{E_{conv}}{\eta_{ee,conv}} + kW_{ee,conv,idle} \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{ee,conv}} \right) \right] \\ &\times (1 - PCT_{steam}) \times Days \\ &= \left[200 \ lb \times \frac{0.0732 \ kWh/lb}{0.76} + 1.299 \ kW \times \left(13.1 \ hr - \frac{200 \ lb}{119 \ lb/hr} \right) \right] \\ &\times (1 - 0.50) \times 307 \ days \end{split}$$

$$= 5,233.87 \, kWh$$

$$\begin{aligned} tankWh_{ee,steam} &= \left[lb_{daily} \times \frac{E_{steam}}{\eta_{ee,steam}} + kW_{ee,steam,idle} \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{ee,steam}} \right) \right] \\ &\times PCT_{steam} \times Days \end{aligned}$$
$$= \left[200 \ lb \times \frac{0.0308 \ kWh/lb}{0.55} + 1.970 \ kW \times \left(13.1 \ hr - \frac{200 \ lb}{177 \ lb/hr} \right) \right] \\ &\times 0.50 \times 307 \ days \end{aligned}$$

 $= 5,338.89 \, kWh$

$$kWh_{ee} = kWh_{ee,conv} + kWh_{ee,steam}$$
$$= 5,234 kWh + 5,339 kWh$$
$$= 10,572.75 kWh$$

Docket No. E-22, Sub 645

Per-measure, gross annual electric energy savings are calculated using the following equation:

$$\Delta kWh = kWh_{base} - kWh_{ee}$$
$$= 16,488 \ kWh - 10,573 \ kWh$$
$$= 5,914.96 \ kWh$$

Per- measure, gross coincident summer peak demand reduction is calculated using the following equation:

 $\Delta kW_{summer} = \frac{\Delta kWh}{Hours_{daily} \times Days} \times CF_{summer}$ $= \frac{5,915 \, kWh}{13.1 \, hr \times 307 \, days} \times 1.0$ $= 1.47 \, kW$

Per- measure, gross coincident winter peak demand reduction is calculated using the following equation:

$$\Delta kW_{winter} = \frac{\Delta kWh}{Hours_{daily} \times Days} \times CF_{winter}$$
$$= \frac{5,915 \, kWh}{13.1 \, hr \times 307 \, days} \times 1.0$$
$$= 1.47 \, kW$$

Per- measure, gross annual water savings are calculated according to the following equation.

$$\Delta Water = (Water_{base} - Water_{ee}) \times Hours_{daily} \times PCT_{steam} \times Days$$
$$= (40 - 20)gal/hr \times 13.1 hr \times 0.5 \times 307 days$$
$$= 40,217 \text{ gallons}$$

4.1.2.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-8.

DNV

Table 4-8. Effective Useful Life for Lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)	
іх	Non-Residential Prescriptive Enhanced Program, DSM Phase IX	10.00	years	Maryland/Mid-Atlantic TRM v.10, p.	
VIII	Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII	12.00		389	
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)	

4.1.2.6 Source(s)

The primary sources for this deemed savings approach is the Maryland/Mid-Atlantic TRM v.10, p. 383 and pp. 386-389.

4.1.2.7 Update summary

Updates made to this section are described in Table 4-9.

Table 4-	0 Sumn	oorv of i	undato(c)
I able 4-	a. Summ	liary of t	ipuale(s)

Version	Update type	Description	
2022	None	No change	
	Source	Updated page numbers / version of the Mid-Atlantic TRM	
	Input variable	Updated Hour _{daily} and Days values based on the customer building type Added Water _{base} and Water _{ee} constants for water savings calculation	
2021	Equation	Added equation for coincident winter peak demand reduction Added gross annual water savings equation	
	Default savings	Added default gross annual water savings value	
	New table	Effective Useful Life (EUL) by program	
2020	None	No change	
	Source	Updated page numbers / version of the Mid-Atlantic TRM	
v10	Equation	Added Qty to savings equations	
	Input variable	Updated Hours _{daily,} Days, kW _{ee,conv,idle} , and kW _{ee,steam,idle} value	

4.1.3 Commercial fryer

4.1.3.1 Measure description

This measure involves the installation of an ENERGY STAR[®] qualified electric commercial fryer. Commercial fryers with the ENERGY STAR[®] designation offer shorter cook times and higher production rates through advanced burner
Docket No. E-22, Sub 645

and heat exchanger designs. Further, fry-pot insulation reduces standby losses resulting in a lower idle energy rate. This measure applies to both standard-size and large-vat fryers.

The baseline equipment is assumed to be a standard-efficiency electric fryer with a heavy load efficiency of 75% for standard sized equipment and 70% for large vat equipment.⁴⁸

This measure is offered through different programs listed in Table 4-10 and uses the impacts estimation approach described in this section.

Table 4-10. Programs that offer this measure

Program name	Section
Non-Residential Prescriptive Program, DSM Phase VI	Section 4.1.3
Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII	Section 9.1.4
Non-Residential Prescriptive Enhanced Program, DSM Phase IX	Section 16.1.3

4.1.3.2 Impacts estimation approach

The baseline per-measure gross annual electric energy usage is calculated using the following equation:

$$kWh_{base} = \left[lb_{daily} \times \frac{E_{fry}}{\eta_{base}} + kW_{base,idle} \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{base}} \right) \right] \times Days$$

Similarly, the efficient per-measure gross annual electric energy usage is calculated using the following equation:

$$kWh_{ee} = \left[lb_{daily} \times \frac{E_{fry}}{\eta_{ee}} + kW_{ee,idle} \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{ee}} \right) \right] \times Days$$

Per-measure, gross annual energy savings are calculated using the following equation:

$$\Delta kWh = kWh_{base} - kWh_{ee}$$

Per-measure, gross coincident summer peak demand reduction is calculated using the following equation:

$$\frac{\Delta k W_{summer}}{(Hours_{daily} \times Days)} \times CF_{summer}$$

Per-measure, gross coincident winter peak demand reduction is calculated using the following equation:

$$\frac{\Delta k W_{winter}}{(Hours_{daily} \times Days)} \times CF_{winter}$$

⁴⁸ Standard fryers measure 12-18 in. wide and have a shortening capacity of 25-65 lb; large fryers measure 18-24-in. wide and have a shortening capacity greater than 50 lb.

Docket No. E-22, Sub 645

Where:

ΔkWh ΔkWsummer ΔkWwinter kWhbase kWhee hoursdaily Efry	 = per-measure gross annual electric energy savings = per-measure gross coincident summer peak demand reduction = per-measure gross coincident winter peak demand reduction = per-measure annual energy usage of the baseline equipment = per-measure annual energy usage of the efficient equipment = average daily operating hours = ASTM Energy to Food ratio, the amount of energy absorbed by each pound of food during frying
lb _{daily} days n _{base}	= pounds of food cooked per day = annual days of operation = baseline equipment cooking energy efficiency
ηeff KWbase,idle KWee,idle PCbase PCee CFsummer CFwinter	 = efficient equipment cooking energy efficiency = baseline equipment idle energy rate = efficient equipment production capacity = efficient equipment production capacity = summer peak coincidence factor = winter peak coincidence factor

4.1.3.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value		Units	Source(s)
		See customer application			Customer application
Hours _{daily}	Variable	Default: Standard fryer: 16 Large-vat fryer: 12		hours, daily	Maryland/Mid-Atlantic TRM v.10, p. 371
E _{fry}	Fixed		0.167	kWh/lb	Maryland/Mid-Atlantic TRM v.10, p. 371
		See customer application			Customer application
Ib _{daily}	b _{daily} Variable Defa			lb, daily	Maryland/Mid-Atlantic TRM v.10, p. 371
	Variable	See customer application		days, annual	Customer application
Days		Default: 365			Maryland/Mid-Atlantic TRM v.10, p. 371
η base	Variable	Standard fryer: 0.75 Large-vat fryer: 0.70		-	Maryland/Mid-Atlantic TRM v.10, p. 371
kW _{base,idle}	Variable	Standard fryer: 1.05 Large-vat fryer: 1.35		kW	Maryland/Mid-Atlantic TRM v.10, p. 371
PC _{base}	Variable	Standard fryer: 65 Large-vat fryer: 100		lb/hr	Maryland/Mid-Atlantic TRM v.10, p. 371
$\eta_{ m ee}$	Variable	Standard fryer: 0.83 Large-vat fryer: 0.80		-	Maryland/Mid-Atlantic TRM v.10, p. 371
kW _{ee,idle}	Variable	Standard fryer: 0.80 Large-vat fryer: 1.10		kW	Maryland/Mid-Atlantic TRM v.10, p. 371
PCee	Variable	Standard fryer: 70 Large-vat fryer: 110		lb/hr	Maryland/Mid-Atlantic TRM v.10, p. 371

Table 4-11. Input parameters for electric commercial fryer measured	re
---	----

Docket No. E-22, Sub 645

Component	Туре	Value	Units	Source(s)
CFsummer	Fixed	1.0	-	Maryland/Mid-Atlantic TRM v.10, p. 37149
CF _{winter}	Fixed	1.0	-	Maryland/Mid-Atlantic TRM v.10, p. 37149

4.1.3.4 Default savings

If the proper values are not supplied, a default savings may be applied using conservative input values. The default per-measure gross annual electric energy savings will be assigned according to the following calculation (assuming for a standard fryer):

$$kWh_{base} = \left[lb_{daily} \times \frac{E_{fry}}{\eta_{base}} + kW_{base,idle} \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{base}} \right) \right] \times Days$$
$$= \left[150 \ lb \times \frac{0.167 \ kW/lb}{0.75} + 1.05 \ kW \times \left(16 \ hr - \frac{150 \ lb/day}{65 \ lb/hr} \right) \right] \times 365 \ days$$
$$= 17,438.58 \ kWh$$

$$kWh_{ee} = \left[lb_{daily} \times \frac{E_{fry}}{\eta_{ee}} + kW_{ee,idle} \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{base}} \right) \right] \times Days$$
$$= \left[150 \ lb \times \frac{0.167 \ kW/lb}{0.83} + 0.80 \ kW \times \left(16 \ hr - \frac{150 \ lb/day}{70 \ lb/hr} \right) \right]$$
$$\times 365 \ days$$

$$= 15,062.25 \, kWh$$

 $\Delta kWh = kWh_{base} - kWh_{ee}$

 $= 17,439 \, kWh - 15,062 \, kWh$

$$= 2,376.33 \, kWh$$

⁴⁹ No specific study of commercial kitchen equipment coincident peak demand savings is available. In the absence of this information, a simple average demand value is used: Annual energy savings divided by the total annual hours of operation and the coincidence factor is 1.0.

Docket No. E-22, Sub 645

The default per-measure gross coincident summer peak demand reduction is calculated using the following calculation:

$$\Delta kW_{summer} = \frac{\Delta kWh}{(Hours_{daily} \times Days)} \times CF_{summer}$$
$$= \frac{2,376.33 \, kWh}{(16 \, hr \times 365 \, days)} \times 1.0$$
$$= 0.407 \, kW$$

The default per-measure gross coincident winter peak demand reduction is calculated using the following calculation:

$$\Delta kW_{winter} = \frac{\Delta kWh}{(Hours_{daily} \times Days)} \times CF_{winter}$$
$$= \frac{2,376.33 \, kWh}{(16 \, hr \times 365 \, days)} \times 1.0$$
$$= 0.407 \, kW$$

4.1.3.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-12.

Table 4-12. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
IX	Non-Residential Prescriptive Enhanced Program, DSM Phase IX	12 00	vears	Maryland/Mid-Atlantic TRM v.10, p.
VIII	Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII	12.00	years	372
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

4.1.3.6 Source(s)

The primary sources for this deemed savings approach is the Maryland/Mid-Atlantic TRM v.10, pp. 370-372.

4.1.3.7 Update summary

Updates made to this section are described in Table 4-13.

Table 4	13.	Summary	of	update((s)
---------	-----	---------	----	---------	-----

Version	Update type	Description
2022	None	No change
	Source	Updated page numbers / version of the Mid-Atlantic TRM
2021 Equation Added equation for coinci		Added equation for coincident winter peak demand reduction
	New table	Effective Useful Life (EUL) by program
2020	None	No change
v10	Source	Updated page numbers / version of the Mid-Atlantic TRM

4.1.4 Commercial griddle

4.1.4.1 Measure description

This measure involves the installation of an ENERGY STAR[®] qualified commercial griddle. ENERGY STAR[®] qualified commercial griddles have higher cooking energy efficiency and lower idle energy rates than standard equipment. The result is more energy being absorbed by the food compared with the total energy use, and less wasted energy when the griddle is in standby mode. This measure applies to only 10-sq.ft. commercial griddles due to Dominion Energy program requirements.

The baseline equipment is assumed to be a standard-efficiency electric griddle with a cooking-energy efficiency of 65%.

This measure is offered through different programs listed in Table 4-14 and uses the impacts estimation approach described in this section.

Table 4-14. Programs	s that	offer	this	measure
----------------------	--------	-------	------	---------

Program name	Section
Non-Residential Prescriptive Program, DSM Phase VI	Section 4.1.4
Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII	Section 9.1.3
Non-Residential Prescriptive Enhanced Program, DSM Phase IX	Section 16.1.4

4.1.4.2 Impacts estimation approach

Per-measure, gross annual electric energy savings are calculated using the following equations:

$$\Delta kWh = kWh_{base} - kWh_{ee}$$

where,

DNV

Jun 15 2023

Per-measure, gross coincident summer peak demand reduction is calculated using the following equation:

 $kWh_{base} = \left[lb_{daily} \times \frac{E_{griddle}}{\eta_{base}} + kW_{base,idle} \times SqFt \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{base} \times SqFt} \right) \right]$

 ${}^{kWh_{ee}} = \left[lb_{daily} \times \frac{E_{griddle}}{\eta_{ee}} + kW_{ee,idle} \times SqFt \times \left(Hours_{daily} - \frac{lb_{daily}}{PC_{ee} \times SqFt} \right) \right] \times Days$

$$\frac{\Delta k W_{summer}}{(Hours_{daily} \times Days)} \times CF_{summer}$$

 \times Days

Per-measure, gross coincident winter peak demand reduction is calculated using the following equation:

$$\frac{\Delta k W_{winter}}{(Hours_{daily} \times Days)} \times CF_{winter}$$

Where:

and

∆kWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction
kWh _{base}	= per-measure annual energy usage of the baseline equipment
kWh _{ee}	= per-measure annual energy usage of the efficient equipment
SqFt	= surface area of griddle
Hoursdaily	= average daily operating hours
Egriddle	= ASTM Energy to Food ratio, the amount of energy absorbed by each pound of food during
	griddling
b _{daily}	= pounds of food cooked per day
Days	= annual days of operation
η _{base}	= baseline equipment cooking energy efficiency
η _{ee}	= efficient equipment cooking energy efficiency
kWbase,idle	= baseline equipment idle energy rate
kW _{ee,idle}	= efficient equipment idle energy rate
PC _{base}	= baseline equipment production capacity
PCee	= efficient equipment production capacity
CF _{summer}	= summer peak coincidence factor
CFwinter	= winter peak coincidence factor

4.1.4.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 4-15. Input parameters for commercial griddle measure

Component	Туре	Value	Units	Source(s)
		See customer application		Customer application
Ib _{daily}	Variable	Default: 100	lb, daily	Maryland/Mid-Atlantic TRM v.10, p. 380
SqFt	Variable	See customer application	sq.ft	Customer application
		See customer application		Customer application
Hours _{daily}	Variable	For defaults see Table 17-17 in Sub-Appendix F2-V: Non- residential commercial kitchen inputs	hours, daily	Maryland/Mid-Atlantic TRM v.10, p. 380 ⁵⁰ , for default the Dominion Energy 2020 Commercial Energy Survey Appendix B, p.3 weighted average of building types is used
		See customer application		Customer application
Days	Variable	For defaults see Table 17-17 in Sub-Appendix F2-V: Non- residential commercial kitchen inputs	days, annual	Maryland/Mid-Atlantic TRM v.10, p. 38050, for default the Dominion Energy 2020 Commercial Energy Survey Appendix B, p.3 weighted average of building types is used
Egriddle	Fixed	0.139	kWh/lb	Maryland/Mid-Atlantic TRM v.10, p. 380
PC _{base}	Fixed	5.83	lb/hr/sq.ft	Maryland/Mid-Atlantic TRM v.10, p. 380
η_{base}	Fixed	0.65	-	Maryland/Mid-Atlantic TRM v.10, p. 380
kWbase,idle	Fixed	0.40	kW/sq.ft	Maryland/Mid-Atlantic TRM v.10, p. 380
kW _{ee,idle}	Fixed	0.32	kW/sq.ft	Maryland/Mid-Atlantic TRM v.10, p. 380
PCee	Fixed	6.67	lb/hr/sq.ft	Maryland/Mid-Atlantic TRM v.10, p. 380
ηee	Fixed	0.70	-	Maryland/Mid-Atlantic TRM v.10, p. 380
CFsummer	Fixed	1.0	-	Maryland/Mid-Atlantic TRM v.10, p. 380 ⁵¹
CFwinter	Fixed	1.0	-	Maryland/Mid-Atlantic TRM v.10, p. 380 ⁵¹

4.1.4.4 Default savings

There are no default savings for this measure. Applicant will need to provide the surface area of the griddle in square feet, for savings to be calculated. Default values are provided for most other input parameters.

4.1.4.5 Effective Useful Life

The Effective Useful Life of this measure is provided in Table 4-16.

⁵⁰ Maryland/Mid-Atlantic TRM v. 10 uses customer application values for hours and days with a default provided. For consistency with commercial convection oven the same hours and days are used for his measure.

⁵¹ No specific study of commercial kitchen equipment coincident peak demand savings is available. In the absence of this information, a simple average demand value is used: Annual energy savings divided by the total annual hours of operation and the coincidence factor is 1.0.

DNV

Table 4-16. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
	Non-Residential Prescriptive Enhanced Program, DSM Phase IX Non-Residential Midstream Energy Efficiency Products	12.00	years	Maryland/Mid-Atlantic TRM v.10, p. 379
VIII	Program, DSM Phase VIII			
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

4.1.4.6 Source(s)

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v.10, pp. 379-381.

4.1.4.7 Update summary

Updates made to this section are described in Table 4-17.

Version	Update type	Description		
2022	None	No change		
	Source	Updated page numbers / version of the Mid-Atlantic TRM		
2021	Equation	Added equation for coincident winter peak demand reduction		
	New table	Effective Useful Life (EUL) by program		
2020	None	No change		
v10	Source	Updated page numbers / version of the Mid-Atlantic TRM		

Table 4-17. Summary of update(s)

4.1.5 Commercial hot food holding cabinet

4.1.5.1 Measure description

This measure involves installing an ENERGY STAR[®] qualified commercial hot food holding cabinet. The installed equipment will incorporate better insulation, reducing heat loss, and may also offer additional energy saving devices such as magnetic door gaskets, auto-door closures, or Dutch doors. The insulation of the cabinet also offers better temperature uniformity within the cabinet from top to bottom. This means that qualified hot food holding cabinets are more efficient at maintaining food temperature while using less energy.

The baseline equipment is assumed to be a standard-efficiency hot food holding cabinet.

This measure is offered through different programs listed in Table 4-18 and uses the impacts estimation approach described in this section.

Docket No. E-22, Sub 645

Table 4-18. Programs that offer this measure

Program name	Section
Non-Residential Prescriptive Program, DSM Phase VI	Section 4.1.5
Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII	Section 9.1.6
Non-Residential Prescriptive Enhanced Program, DSM Phase IX	Section 16.1.5

4.1.5.2 Impacts estimation approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\frac{\Delta kWh}{1,000 W/kW} = \frac{(watts_{base,idle} - watts_{ee,idle})}{1,000 W/kW} \times Hours_{daily} \times Days$$

Per-measure, gross coincident summer peak demand reduction is calculated according to the following equation:

 $\frac{\Delta k W_{summer}}{1,000 \ W/kW} = \frac{\left(watts_{base,idle} - watts_{ee,idle}\right)}{1,000 \ W/kW} \times CF_{summer}$

Per-measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\frac{\Delta kW_{winter}}{1,000 \ W/kW} = \frac{(watts_{base,idle} - watts_{ee,idle})}{1,000 \ W/kW} \times CF_{winter}$$

Where:

4.1.5.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 4-19. Input parameters for hot food holding cabinet

Component	Туре	Value	Units	Source(s)
watts _{base,idle}	Variable	40 x Vol ⁵²	watts	Maryland/Mid-Atlantic TRM v.10, p. 377
watts _{ee,idle}	Variable	$Vol < 13:$ $21.5 \times Vol + 0.0$ $13 \le Vol < 28:$ $2.0 \times Vol + 254.0$ $Vol \ge 28:$ $3.8 \times Vol + 203.5$	watts	Maryland/Mid-Atlantic TRM v.10, p. 377
		See customer application		Customer application
Days	Variable	For defaults see Table 17-17 in Sub- Appendix F2-V: Non-residential commercial kitchen inputs	days, annual	Maryland/Mid-Atlantic TRM v.10, p. 380 ⁵³ , for default the Dominion Energy 2020 Commercial Energy Survey Appendix B, p.3 weighted average of building types is used
		See customer application		Customer application
Hours _{daily}	Variable	For defaults see Table 17-17 in Sub- Appendix F2-V: Non-residential commercial kitchen inputs	hours, daily	Maryland/Mid-Atlantic TRM v.10, p. 380 ⁵³ , for default the Dominion Energy 2020 Commercial Energy Survey Appendix B, p.3 weighted average of building types is used
CF _{summer}	Fixed	1.0	-	Maryland/Mid-Atlantic TRM v.10, p. 377 ⁵⁴
CFwinter	Fixed	1.0	-	Maryland/Mid-Atlantic TRM v.10, p. 377 ⁵⁴

4.1.5.4 Default savings

There are no default savings for this measure. Applicant will need to provide the baseline and efficient idle wattage or the volume of the holding cabinet for savings to be calculated.

4.1.5.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-20.

Table 4-20. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program name	Value	Units	Source(s)
IX	Non-Residential Prescriptive Enhanced Program, DSM Phase IX	12.00	Veere	Maryland/Mid-Atlantic TRM v.10, p.
VIII	Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII	12.00	years	378

 $^{^{52}}$ Vol = the internal volume of the holding cabinet (ft^3) = volume of installed unit

⁵³ Maryland/Mid-Atlantic TRM v. 10 uses customer application values for hours and days with a default provided. For consistency with commercial convection oven the same hours and days for this measure.

⁵⁴ No specific study of commercial kitchen equipment coincident peak demand savings is available. In the absence of this information, a simple average demand value is used: Annual energy savings divided by the total annual hours of operation and the coincidence factor is 1.0.

DSM Phase	Program name	Value	Units	Source(s)
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

4.1.5.6 Source(s)

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v.10, pp. 377-378.

4.1.5.7 Update summary

Updates made to this section are described in Table 4-21.

Table 4-	21. Sumr	nary of u	pdate(s)

Version	Update type	Description	
2022	None	No change	
	Source	Updated page numbers / version of the Mid-Atlantic TRM	
2021	Equation	Added equation for coincident winter peak demand reduction	
	New table	Effective Useful Life (EUL) by program	
2020	None	No change	
v10	Source	Updated page numbers / version of the Mid-Atlantic TRM	

4.1.6 Commercial steam cooker

4.1.6.1 Measure description

This measure involves an ENERGY STAR[®] qualified commercial steam cookers. Energy efficient steam cookers that have earned the ENERGY STAR[®] label offer shorter cook times, higher production rates, and reduced heat loss due to better insulation and a more efficient steam-delivery system.

The baseline condition assumes a standard-efficiency, electric boiler-style steam cooker.

This measure is offered through different programs listed in Table 4-22 and uses the impacts estimation approach described in this section.

Table 4-22. Programs that offer this measure

Program name	Section
Non-Residential Prescriptive Program, DSM Phase VI	Section 4.1.6
Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII	Section 9.1.5
Non-Residential Prescriptive Enhanced Program, DSM Phase IX	Section 16.1.6

DNV

4.1.6.2 Savings estimation

Per-measure, gross annual electric energy savings are calculated using the following equations:

$$kWh_{base,steam} = lb_{daily} \times \frac{E_{steam}}{\eta_{base}} \times Days$$

$$kWh_{base,idle} = \left[(1 - PCT_{steam}) \times kW_{base,idle} + PCT_{steam} \times PC_{base} \times Qty_{pans} \times \frac{E_{steam}}{\eta_{base}} \right] \\ \times \left(Hours_{daily} - \frac{lb_{daily}}{Qty_{pans} \times PC_{base}} \right) \times Days$$

$$kWh_{base} = kWh_{base,steam} + kWh_{base,idle}$$

$$kWh_{ee,steam} = lb_{daily} \times \frac{E_{steam}}{\eta_{ee}} \times Days$$

$$kWh_{ee,idle} = \left[(1 - PCT_{steam}) \times kW_{ee,idle} + PCT_{steam} \times PC_{ee} \times Qty_{pans} \times \frac{E_{steam}}{\eta_{ee}} \right]$$

$$\times \left(Hours_{daily} - \frac{lb_{daily}}{Qty_{pans} \times PC_{ee}} \right) \times Days$$

 $kWh_{ee} = kWh_{ee,steam} + kWh_{ee,idle}$

$$\Delta kWh = kWh_{base} - kWh_{ee}$$

Per-measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\frac{\Delta k W_{summer}}{Hours_{daily} \times Days} \times CF_{summer}$$

Per-measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \frac{\Delta kWh}{Hours_{daily} \times Days} \times CF_{winter}$$

DNV - www.dnv.com

Docket No. E-22, Sub 645

DNV

Per-measure, gross annual water savings is calculated according to the following equation:

 $\Delta Water = (GPH_{base} - GPH_{ee}) \times Hours_{daily} \times Days$

Where:

∆kWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction
kWh _{base}	= the annual energy usage of the baseline equipment
kWh _{ee}	= the annual energy usage of the efficient equipment
kWh _{base,stea}	am = baseline daily cooking energy consumption
kWh _{base,idle}	= baseline daily idle energy consumption
∆Water	= per-measure gross annual water savings
Hoursdaily	= average daily operating hours
Esteam	= ASTM Energy to Food (kWh/lb); the amount of energy absorbed by each pound of food during
	steaming
Ib _{daily}	= pounds of food cooked per day
Days	= annual days of operation
PCT _{steam}	= percent of time in constant steam mode
Qty _{pans}	= number of pans per unit
η_{base}	= baseline equipment cooking energy efficiency
η_{ee}	= efficient equipment cooking energy efficiency
kW _{base,idle}	= baseline equipment idle energy rate
kW _{ee,idle}	= efficient equipment idle energy rate
PC _{base}	= baseline equipment production capacity
PCee	= efficient equipment production capacity
GPH _{base}	= water consumption rate of baseline equipment
GPHee	= water consumption rate of efficient equipment
CF _{summer}	= summer peak coincidence factor
CFwinter	= winter peak coincidence factor

4.1.6.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Units	Source(s)
		See customer application		Customer application
Hours _{daily}	Variable	For defaults see Table 17-17 in Sub-Appendix F2-V: Non- residential commercial kitchen inputs	hours, daily	Maryland/Mid-Atlantic TRM v.10, p. 380 ⁵⁵ , for default the Dominion Energy 2020 Commercial Energy Survey Appendix B, p.3 weighted average of building types is used
Days	Variable	See customer application		Customer application

Table 4-23. Input parameters for commercial steam cooker measure

⁵⁵ Maryland/Mid-Atlantic TRM v. 10 uses customer application values for hours and days with a default provided. For consistency with commercial convection oven the same hours and days for his measure.

Component	Туре	Value	Units	Source(s)
		For defaults see Table 17-17 in Sub-Appendix F2-V: Non- residential commercial kitchen inputs	days, annual	Maryland/Mid-Atlantic TRM v.10, p. 380 ⁵⁶ , for default the Dominion Energy 2020 Commercial Energy Survey Appendix B, p.3 weighted average of building types is used
		See customer application		Customer application
Ib daily	Variable	Default: 100	lb, daily	Maryland/Mid-Atlantic TRM v.10, p. 374
		See customer application		Customer application
Qty _{pans}	Variable	Default: 3 ⁵⁷	pans	Maryland/Mid-Atlantic TRM v.10, p. 374
Esteam	Fixed	0.0308	kWh/lb	Maryland/Mid-Atlantic TRM v.10, p. 374
PC _{base}	Fixed	23.3	lb/hr, per pan	Maryland/Mid-Atlantic TRM v.10, p. 375
η _{base}	Variable	Boilerless and Steam generator: 0.30 Boiler-based: 0.26	-	Maryland/Mid-Atlantic TRM v.10, p. 374
		Default = Boiler-based: 0.26		
kW base,idle	Variable	Boilerless and Steam generator: 1.20 Boiler-based: 1.00 Default = Boiler-based: 1.00	kW	Maryland/Mid-Atlantic TRM v.10, p. 375
kW _{ee,idle}	Variable	3 pans: 0.40 4 pans: 0.53 5 pans: 0.67 6+ pans: 0.80 Default = 3 pans: 0.40	kW	Maryland/Mid-Atlantic TRM v.10, p. 375
PCee	Fixed	16.7	lb/hr, per pan	Maryland/Mid-Atlantic TRM v.10, p. 375
ηee	Fixed	0.50	-	Maryland/Mid-Atlantic TRM v.10, p. 374
PCT _{steam}	Fixed	0.40	-	Maryland/Mid-Atlantic TRM v.10, p. 374
GPH _{base}	Variable	See Table 4-24	gal/hr	Maryland/Mid-Atlantic TRM v.10, p. 376
GPHee	Variable	See Table 4-24	gal/hr	Maryland/Mid-Atlantic TRM v.10, p. 376
CF _{summer}	Fixed	1.0	-	Maryland/Mid-Atlantic TRM v.10, p. 374 ⁵⁸
CFwinter	Fixed	1.0	-	Maryland/Mid-Atlantic TRM v.10, p. 374 ⁵⁸

⁵⁶ Maryland/Mid-Atlantic TRM v. 10 uses customer application values for hours and days with a default provided. For consistency with commercial convection oven the same hours and days for his measure.

 $^{^{57}}$ Assigned default of 3 pans based on the most conservative of the $kW_{\rm ee,idle}$ options.

⁵⁸ No specific study of commercial kitchen equipment coincident peak demand savings is available. In the absence of this information, a simple average demand value is used: Annual energy savings divided by the total annual hours of operation and the coincidence factor is 1.0.

Table 4-24. Water Consumption rate for the baseline and energy efficient equipment

		Baseline model	Energy efficient model				
Parameter	No. of Pans	All	Steam generator	Boiler based (default)	Boiler less		
GPH	All	40	15	10	3		

4.1.6.4 Default savings

If the proper values are not supplied, a default savings may be applied assuming boiler-based steam generation. The default per-measure, gross annual electric energy savings will be assigned according to the following equations:

$$kWh_{base,steam} = lb_{daily} \times \frac{E_{steam}}{\eta_{base}} \times Days$$

$$= 100 \ lb \times \frac{0.0308 \ kWh/lb}{0.26} \times 307 \ days$$

$$= 3,636.77 \ kWh$$

$$kWh_{base,idle} = \left[(1 - PCT_{steam}) \times kW_{base,idle} + PCT_{steam} \times PC_{base} \times Qty_{pans} \times \frac{E_{steam}}{\eta_{base}} \right] \times \left(Hours_{daily} - \frac{lb_{daily}}{Qty_{pans} \times PC_{base}} \right) \times Days$$

$$= \left[(1 - 0.40) \times 1.20 \ kW + 0.40 \times 23.3 \ \frac{lb}{hr} \times 3 \ pans \times \frac{0.0308 \ kWh/lb}{0.26} \right]$$

$$\times \left(13.1 hr - \frac{100 lb}{3 pans \times 23.3 lb/hr}\right) \times 307 days$$

$$= 14,445.31 \, kWh$$

$$kWh_{ee,steam} = lb_{daily} \times \frac{E_{steam}}{\eta_{ee}} \times Days$$
$$= 100 \ lb \times \frac{0.0308 \ kWh/lb}{0.50} \times 307 \ days$$

$$=$$
 1,891.12 *kWh*

 E_{steam}]

D 0

D 0 **m**

Jun 15 2023

DNV

kWhee idle

$$\begin{aligned} \mathcal{K}Wh_{ee,idle} &= \left[(1 - PCT_{steam}) \times kW_{ee,idle} + PCT_{steam} \times PC_{ee} \times Qty_{pans} \times \frac{E_{steam}}{\eta_{ee}} \right] \\ &\times \left(Hours_{daily} - \frac{lb_{daily}}{Qty_{pans} \times PC_{ee}} \right) \times Days \\ &= \left[(1 - 0.40) \times 0.4 \ kW + 0.40 \times 16.7 \ \frac{lb}{hr} \times 3 \ pans \times \frac{0.0308 \ kWh/lb}{0.50} \right] \\ &\times \left(13.1 \ hr - \frac{100 \ lb}{3 \ pans \times 16.7 \ lb/hr} \right) \times 307 \ days \\ &= 5,026.34 \ kWh \\ \Delta kWh &= kWh_{base,steam} + kWh_{base,idle} - \left(kWh_{ee,steam} + kWh_{ee,idle} \right) \\ &= \left(3,636.77 \ kWh + 14,445.31 \ kWh \right) - \left(1,891.12 \ kWh + 5,026.34 \ kWh \end{aligned}$$

. . . .

 $= 11,164.62 \ kWh$

- **-** -

Per-measure, gross coincident summer peak demand reduction is calculated using the following equation:

$$\Delta kW_{summer} = \frac{\Delta kWh}{Hours_{daily} \times Days} \times CF_{summer}$$
$$= \frac{11,164.62 \, kWh}{(13.1 \, hr/day \times 307 \, days)} \times 1.0$$
$$= 2.77 \, kW$$

Per-measure, gross coincident winter peak demand reduction is calculated using the following equation:

$$\Delta kW_{winter} = \frac{\Delta kWh}{Hours_{daily} \times Days} \times CF_{summer}$$
$$= \frac{11,164.62 \ kWh}{(13.1 \ hr/day \ \times \ 307 \ days)} \times 1.0$$
$$= 2.77 \ kW$$

Per-measure, gross annual water savings is calculated according to the following equation:

 $\Delta Water = (GPH_{base} - GPG_{ee}) \times Hours_{daily} \times Days$

 $= (40 - 10) \times 13.1 \times 307$

 $= 120,651 \ gallons$

4.1.6.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-25.

Table 4-25. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
IX	Non-Residential Prescriptive Enhanced Program, DSM Phase IX	12.00	Vooro	Maryland/Mid-Atlantic TRM v.10, p.
VIII	Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII	12.00	years	376
VII	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

4.1.6.6 Source(s)

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v.10, pp. 373-376.

4.1.6.7 Update summary

Updates made to this section are described in Table 4-26.

Version	Update type	Description
2022	None	No change
	Source	Updated page numbers / version of the Mid-Atlantic TRM
	Equation	Added equation for coincident winter peak demand reduction Added gross annual water savings equation
2021	Input variable	Added GPH _{base} and GPH _{ee} variables for water savings calculation
	Default savings	Added default gross annual water savings value
	New table	Effective Useful Life (EUL) by program
2020	None	No change
×40	Source	Updated page numbers / version of the Mid-Atlantic TRM
VIU	Input variable	Updated PCee value

Table 4-26. Summary of update(s)

Docket No. E-22, Sub 645

4.1.7 Variable speed drives on kitchen exhaust fan

4.1.7.1 Measure description

This measure involves installing variable speed drives at commercial kitchen exhaust fans so that the fan motor speed matches the demand. The baseline condition is the manual on/off switch and magnetic relay or motor starter for commercial kitchen hoods. The baseline assumes that the fan operates at full speed while in operation.

This measure involves retrofitting a variable-speed drive (VSD) controller at an existing kitchen exhaust fan with a make-up-air fan. The measure includes optical and temperature sensors to detect the level of cooking activity and modulate the speed of the exhaust-air fan accordingly. The optical and temperature sensor(s) are typically located either in the collar of or the inlet to the exhaust-fan hood. The kitchen hood exhaust fans are modulated automatically to vary the exhaust airflow rate and make-up (ventilation) air by adjusting the exhaust and make-up air fan speeds.

The total measure energy savings includes the energy savings resulted from fan power reduction during part load operation as well as a decrease in heating and cooling requirement of make-up air. The measure also provides cooling and heating savings for the make-up air if the existing kitchen system(s) supplies conditioned make-up air through a dedicated make-up air unit. If the supplied make-up air is not conditioned, no heating and cooling savings are provided. Furthermore, the measure does not approve heating savings from gas-fired make-up-air units.

This measure is meant for the kitchen hood exhaust flow control only. The exhaust system from kitchen dishwashers is not included in this measure.

This measure is offered through different programs listed in Table 4-27 and uses the Impacts Estimation Approach described in this section.

Program name	Section
Non-Residential Prescriptive Program, DSM Phase VI	Section 4.1.7
Non-Residential Prescriptive Enhanced Program, DSM Phase IX	Section 16.1.7

Table 4-27. Programs that offer variable speed drives on kitchen exhaust fan

4.1.7.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings for the exhaust fan are calculated according to the following equation:

$$\Delta kWh_{EF} = hp_{EF} \times LF_{EF} \times \frac{0.746}{\eta_{EF}} \times HOU \times \Delta Power_{EF}$$

If the make-up air is conditioned, then the cooling and heating savings are calculated according to the following equations:

$$\Delta kWh_{cool} = SqFt_{Kitchen} \times \frac{cfm}{SqFt} \times OF_{EF} \times \Delta cfm_{EF} \times CDD \times \frac{24 \times 1.08}{3,412 \times COP_{MUA_{cool}}}$$

DNV

$$\Delta kWh_{heat} = SqFt_{Kitchen} \times \frac{cfm}{SqFt} \times OF_{EF} \times \Delta cfm_{EF} \times HDD \times \frac{24 \times 1.08}{3,412 \times COP_{MUA_{heat}}}$$

If make-up air is <u>not</u> conditioned, then the cooling and heating savings equal zero.

 $\Delta kWh_{cool} = \Delta kWh_{heat} = 0$

Per-measure, gross annual electric energy savings are calculated according to the following equation:

 $\Delta kWh = \Delta kWh_{EF} + \Delta kWh_{cool} + \Delta kWh_{heat}$

There are no gross coincident summer and winter peak demand reduction:

 $\Delta k W_{summer} = 0 \ k W$

 $\Delta k W_{winter} = 0 \ k W$

Where:

ΔkWh_{EF}	= per-measure gross annual electric energy savings for the exhaust fan
ΔkWh_{cool}	= per-measure gross annual electric energy savings for cooling the make-up air
ΔkWh_{heat}	= per-measure gross annual electric energy savings for heating the make-up air
∆kWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction
hpef	= total motor horsepower of exhaust fan(s)
LF _{EF}	= load factor of exhaust fan motor(s)
ηef	= efficiency of exhaust fan motor(s)
HOU	= annual run hours of use of exhaust fan(s)
$\Delta Power_{EF}$	= proportional exhaust fan power reduction due to VFD
SqFt _{Kitchen}	= floor area of kitchen
cfm SqFt	= exhaust airflow rate per square foot of kitchen floor area
OF_{EF}	= oversize ratio of exhaust fan system
Δcfm_{EF}	= proportional exhaust fan airflow reduction due to VFD
CDD	= cooling degree days
COP _{MUAcool}	= coefficient of performance of cooling component of make-up air system
HDD	= heating degree days
COP _{MUAheat}	= coefficient of performance of heating component for make-up air system
0.746	= conversion factor for horsepower to kilowatt
3,412	= conversion factor for Btu/h to kilowatt-hour
24	= conversion factor for day to hour
1.08	= sensible heat factor for air, Btuh/cfm/°F

4.1.7.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Units	Source(s)
hp _{EF}	Variable	See customer application	hp	Customer application
LF _{EF}	Fixed	90%	90% -	
		See customer application		Customer application
ηеғ	Variable	Default: See Table 2-16. Baseline motor efficiency based on hper	-	See Table 2-16. Baseline motor efficiency in Section 2.1.4
		See customer application		Customer application
нои	Variable	Default: See Table 4-29	hours, annual	New Jersey Clean Energy Program Protocols to Measure Resource Savings: Revisions to FY2020 Protocols, p. 118
$\Delta \mathbf{Power}_{\mathbf{EF}}$	Variable	See Table 4-29 -		New Jersey Clean Energy Program Protocols to Measure Resource Savings: Revisions to FY2020 Protocols, p. 118
SqFt _{Kitchen}	Variable	See customer application	sq.ft	Customer application
cfm SqFt	Fixed	0.7	cfm/sq.ft	ASHRAE 62.1-2013, Table 6.5 – for Kitchen -Commercial
OF _{EF}	Fixed	1.4	-	New Jersey Clean Energy Program Protocols to Measure Resource Savings: Revisions to FY2020 Protocols, p. 117
Δcfm_{EF}	Variable	See Table 4-29	-	New Jersey Clean Energy Program Protocols to Measure Resource Savings: Revisions to FY2020 Protocols, p. 118
CDD	Variable	See Sub-Appendix F2-I: Cooling and heating degree days and	Cooling Degree Days	
HDD	Variable	See Sub-Appendix F2-I: Cooling and heating degree days and	Heating Degree Days	
		See customer application		Customer application
COP _{MUAcool}	Variable	Default: 3.0	-	New Jersey Clean Energy Program Protocols to Measure Resource Savings 2020, p. 117
		See customer application		Customer application
COP _{MUAheat}	Variable	Default: 3.0	-	New Jersey Clean Energy Program Protocols to Measure Resource Savings 2020, p. 117

Table 4-28	Input	narameters	for \	/SD on	kitchen	fan(s	:)
	mpac	parametero		00 011	Nito iio ii	101110	,,

Jun 15 2023

Table 4-29. Annual hours of use, power, and airflow reductions due to VSD⁵⁹

Facility type	Annual Hours of Use (hours)	Proportion of power reduction $(\Delta Power_{EF})$	Proportion of airflow reduction (Δcfm_{EF})
Campus	5,250	0.568	0.295
Lodging	8,736	0.618	0.330
Restaurant	5,824	0.552	0.295
Supermarket	5,824	0.597	0.320
Other	5,250	0.584	0.310

4.1.7.4 Default savings

If the proper input variables are not supplied, no default savings will be given.

4.1.7.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-30.

DSM Phase	Program name	Value	Units	Source(s)
IX	Non-Residential Prescriptive Enhanced Program, DSM Phase IX	15.00	Voors	New Jersey Clean Energy Program Protocols to Measure Resource Savings: Revisions to FY2020 Protocols, p. 128
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

4.1.7.6 Source(s)

The primary source for this deemed savings approach include the New Jersey Clean Energy Program Protocols to Measure Resource Savings 2020, pp. 116-119.

4.1.7.7 Update Summary

Updates made to this section are described in Table 4-31.

Table 4-31.	Summary	of	update(s)
-------------	---------	----	-----------

Version	Update type	Description	
2022	None	No change	
2021	Source	Updated page numbers / version of the New Jersey Clean Energy Program Protocols to Measure Resource Savings	
	Equation	Removed peak coincident demand reduction equation as the source TR does not attribute peak savings to this measure.	
	New Table	Effective Useful Life (EUL) by program	
2020	None	No change	

⁵⁹ New Jersey Clean Energy Program Protocols to Measure Resource Savings: Revisions to FY2019 Protocols, pg. 106

Docket No. E-22, Sub 645

Version	Update type	Description			
	Source	Updated page numbers / version of the New Jersey Clean Energy Program Protocols to Measure Resource Savings			
VIU	Input Variable	Update to weather stations in North Carolina resulted in revised CDDs/HDDs for weather-sensitive measures			

4.2 Heating, Ventilation, and Air-Conditioning (HVAC) end use

4.2.1 Duct testing and sealing

4.2.1.1 Measure description

This measure provides building owners incentives to use Dominion-approved, duct-sealing contractors to reduce conditioned-air leakage to unconditioned spaces by the following steps:

- 1. Test non-residential duct systems for air leakage.
- 2. Seal the ducts using an aerosol-based product.
- 3. Test the sealed duct systems for air leakage to confirm that sealing the ducts reduced the air-leakage rate.

Eligible ductwork is connected to a unitary HVAC system or a heat pump and occurs within an unconditioned plenum space or between an insulated, finished ceiling and a roof surface. Based on DNV's judgment, this measure is applicable to ductwork at unitary and chiller-cooled systems.

This measure is offered through different programs listed in Table 4-32 and uses the impacts estimation approach described in this section.

Table 4-32. Programs that offer this measure

Program name	Section
Non-Residential Prescriptive Program, DSM Phase VI	Section 4.2.1
Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	Section 8.2.1
Non-Residential Multifamily Program, DSM Phase VIII	Section 10.3.3
Non-Residential Prescriptive Enhanced Program, DSM Phase IX	Section 16.3.2

4.2.1.2 Impacts Estimation Approach

For all system types, per-measure gross annual electric energy savings are calculated according to the following equation:

$\Delta kWh = \Delta kWh_{cool} + \Delta kWh_{heat}$

Duct testing and sealing on unitary systems, air source heat pumps, and AC units

Per-measure, gross annual electric cooling and heating energy savings are calculated according to the following equations.

For unitary-system heat pumps and AC units of Size_{cool} < 65,000 Btu/h:

DNV

$$\Delta kWh_{cool} = Size_{cool} \times \frac{12\frac{kBtuh}{ton}}{SEER} \times EFLH_{cool} \times \left(1 - \frac{\bar{n}_{dist,base}}{\bar{n}_{dist,ee}}\right)_{cool}$$

For unitary-system heat pumps of Sizeheat < 65,000 Btu/h:

$$\Delta kWh_{heat} = Size_{heat} \times \frac{1}{HSPF} \times EFLH_{heat} \times \left(1 - \frac{\bar{n}_{dist,base}}{\bar{n}_{dist,ee}}\right)_{heat}$$

For unitary-system heat pumps and AC units of $Size_{cool} \ge 65,000$ Btu/h,:

$$\Delta kWh_{cool} = Size_{cool} \times \frac{12\frac{kBtuh}{ton}}{IEER} \times EFLH_{cool} \times \left(1 - \frac{\bar{n}_{dist,base}}{\bar{n}_{dist,ee}}\right)_{cool}$$

For unitary-system heat pumps of Size_{heat} ≥ 65,000 Btu/h:

$$\frac{\Delta kWh_{heat}}{COP \times 3.412 \frac{Btuh}{W}} \times EFLH_{heat} \times \left(1 - \frac{\bar{n}_{dist,base}}{\bar{n}_{dist,ee}}\right)_{heat}$$

Per-measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = Size_{cool} \times \frac{12\frac{kBtuh}{ton}}{EER} \times \left(1 - \frac{n_{dist,pk,base}}{n_{dist,pk,ee}}\right) \times CF_{summer}$$

Per-measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = Size_{heat} \times \frac{1}{EER} \times \left(1 - \frac{n_{dist,pk,base}}{n_{dist,pk,ee}}\right) \times CF_{winter}$$

Duct testing and sealing on chiller systems

Water-cooled chiller systems, cooling savings:

$$\Delta kWh_{cool} = Size_{cool} \times \frac{kW}{ton_{IPLV}} \times EFLH_{cool} \times \left(1 - \frac{\bar{n}_{dist,base}}{\bar{n}_{dist,ee}}\right)_{cool}$$

Air-cooled chiller systems, cooling savings:

Docket No. E-22, Sub 645

$$= Size_{cool} \times \frac{12\frac{kBtuh}{ton}}{EER_{IPLV}} \times EFLH_{cool} \times \left(1 - \frac{\bar{n}_{dist,base}}{\bar{n}_{dist,ee}}\right)_{cool}$$

Chiller systems with non-electric heating fuel will not have heating savings. For chiller systems with electric heating, savings are calculated as follows:

Chiller system with electric heating system < 65,000 Btu/h:

$$\Delta kWh_{heat} = Size_{heat} \times \frac{1}{HSPF} \times FLH_{heat} \times \left(1 - \frac{\bar{n}_{dist,base}}{\bar{n}_{dist,ee}}\right)_{heat}$$

Chiller system with electric heating system ≥ 65,000 Btu/h:

$$\Delta kWh_{heat} = Size_{heat} \times \frac{1}{COP \times 3.412 \frac{Btuh}{W}} \times EFLH_{heat} \times \left(1 - \frac{\bar{n}_{dist,base}}{\bar{n}_{dist,ee}}\right)_{heat}$$

The per-measure gross coincident summer peak demand reduction is calculated according to the following equations:

Duct testing and sealing on water-cooled chiller systems:

$$\Delta kW_{summer} = Size_{cool} \times \frac{kW}{ton_{full \, load}} \times \left(1 - \frac{\bar{n}_{dist, peak, base}}{\bar{n}_{dist, peak, ee}}\right) \times CF_{summer}$$

Duct testing and sealing on air-cooled chiller systems:

$$\Delta kW_{summer} = Size_{cool} \times \frac{12\frac{kBtuh}{ton}}{EER_{full \ load}} \times \left(1 - \frac{\bar{n}_{dist, peak, base}}{\bar{n}_{dist, peak, ee}}\right) \times CF_{summer}$$

Chiller systems with non-electric heating fuel will not have gross coincident winter peak demand reductions. For chiller systems with electric heating, savings are calculated as follows:

Air-cooled or water-cooled chiller system with electric resistance < 65,000 Btu/h:

$$\Delta kW_{winter} = Size_{heat} \times \frac{1}{HSPF} \times \left(1 - \frac{\bar{n}_{dist,base}}{\bar{n}_{dist,ee}}\right)_{heat} \times CF_{winter}$$

Air-cooled or water-cooled chiller system with electric resistance ≥ 65,000 Btu/h:

DNV

 $\Delta k W_{winter}$

$$= Size_{heat} \times \frac{1}{COP \times 3.412 \frac{Btuh}{W}} \times \left(1 - \frac{\bar{n}_{dist,base}}{\bar{n}_{dist,ee}}\right)_{heat} \times CF_{winter}$$

Where:

ΔkWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure summer peak gross coincident demand reduction
$\Delta k W_{winter}$	= per-measure winter peak gross coincident demand reduction
Sizecool	= system cooling capacity in tons, based on nameplate data
Size _{heat}	= system heating capacity in kBtu/h, based on nameplate data
SEER	= seasonal energy efficiency ratio (SEER). It is used for heat pumps and AC units that are smaller than 65,000 Btu/h.
IEER	 integrated energy efficiency ratio (IEER) of a unit's efficiency at four load points: 100%, 75%, 50%, and 25% of full cooling capacity. It is used for heat pumps and AC units that are 65,000 Btu/h or larger.
HSPF	= heating seasonal performance factor (HSPF) of existing heat pump. HSPF is used in heating savings for air-source heat pumps.
COP	= coefficient of performance (heating)
$\overline{n}_{dist,base,co}$	p_{ol} = duct system average seasonal efficiency of baseline (pre-sealing) cooling system
$\bar{n}_{dist,base,he}$	at = duct system average seasonal efficiency of baseline (pre-sealing) heating system
$\bar{n}_{dist,ee,cool}$	= duct system average seasonal efficiency of efficient (post-sealing) cooling system
$\bar{n}_{dist,ee,heat}$	= duct system average seasonal efficiency of efficient (post-sealing) heating system
n _{dist,peak,ba}	$_{se}$ = duct system efficiency of baseline system, under peak conditions (equal to $\bar{n}_{dist,base,cool}$)
n _{dist,peak,ee}	= duct system efficiency of efficient system, under peak conditions (equal to $\bar{n}_{dist,ee,cool}$)
EER _{full-load}	= energy efficiency ratio (EER) of air-cooled chillers at full-load conditions.
EERIPLV	= energy efficiency ratio (EER) of air-cooled chillers at integrated part load value (IPLV).
kW ton _{IPLV}	= energy efficiency of water-cooled chiller system at integrated part load value (IPLV)
tonfull load	= energy efficiency of water-cooled chiller system at full load
EFLH _{cool}	= cooling equivalent full load hours (EFLH)
EFLH _{heat}	= heating equivalent full load hours (EFLH)
CF _{summer}	= summer peak coincidence factor
CF winter	= winter peak coincidence factor
TRF	= Thermal regain factor

In the event of a missing efficiency metric from an application, the equations provided in Sub-Appendix F2-VI: General may be used to estimate the missing efficiency using another application-provided efficiency metric.

4.2.1.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

capacity (per unit)

Table 4-55. Input	alues for uu	ci sealing savings calculations		
Component	Туре	Value	Unit	Source(s)
			tons of	
Sizecool	Variable	See customer application	cooling	Customer application

Table 4-33 Input values for duct sealing savings calculations

Component	Туре	Value	Unit	Source(s)	
		See customer application ⁶⁰	kBtu/h	Customer application	
Sizeheat	Variable	Default = Size _{cool} x 12 kBtu/ton	(per unit)		
		See customer application ⁶¹	-	Customer application	
SEER/IEER/EE R/COP/HSPF	Variable	Default: See Table 17-8 and Table 17-9 in Sub-Appendix F2-III: Non- residential HVAC based on equipment type	Btu/W-hr (COP is dimensio n-less)	ASHRAE 90.1-2013	
		See customer application		Customer application	
kW/tonfull load	Variable	Default: see Table 17-11 in Sub- Appendix F2-III: Non-residential HVAC based on equipment type	kW/ton	ASHRAE 90.1-2013	
		See customer application		Customer application	
kW/ton⊮Lv	Variable	Default: see Table 17-11 in Sub- Appendix F2-III: Non-residential HVAC based on equipment type	kW/ton	ASHRAE 90.1-2013	
		See customer application ⁶¹		Customer application	
	Variable	Default: see Table 17-11 in Sub- Appendix F2-III: Non-residential HVAC based on equipment type	Btu/W-h	ASHRAE 90.1-2013	
EERIPLV	Variable	See customer application ⁶¹		Customer application	
		Default: see Cooling efficiencies of water chilling packages Table 17-11 in Sub-Appendix F2- III: Non-residential HVAC based on equipment type	kBtu/kW- h	ASHRAE 90.1-2013	
	Variable	See customer application along		Customer application	
$\overline{n}_{dist,base,cool}$		with Table 4-34 and Table 4-35 Default: No insulation, 30% leakage.	percent	New York TRM 2018, p. 242	
n	Variable	See customer application along with Table 4-34 and Table 4-35	norcont	Customer application	
Maist,base,heat		Default: No insulation, 30% leakage	percent	New York TRM 2018, p. 242	
$\overline{n}_{dist,ee,cool}$	Variable	See customer application along with Table 4-34 and Table 4-35	percent	Customer application	
		Default: No insulation, 15% leakage	porcont	New York TRM 2018, p. 242	
$\overline{n}_{dist,ee,heat}$	Variable	See customer application along with Table 4-34 and Table 4-35	percent	Customer application	
	Variable	Default: No insulation, 15% leakage	poroon	New York TRM 2018, p. 242	
n	Variable	See customer application along with Table 4-34 and Table 4-35	percent	Customer application	
**dist,peak,base	Valiable	Default: No insulation, 30% leakage	percent	New York TRM 2018, p. 242	
$n_{dist,peak,ee}$	n_dist,peak,eeVariableSee customer application along with Table 4-34 and Table 4-35		percent	Customer application	

⁶⁰ When customer-provided heating system size is <80% or >156% of customer-provided cooling system size, a default value will be used, instead. In such instances, it is assumed that the heating system size was incorrectly documented. The acceptable range is based on a review of the AHRI database across numerous manufacturers and heat pump types.

⁶¹ The customer provided efficiency values are reviewed for reasonability. If the efficiency value is outside acceptable bounds the applicable default value is applied. The bounds were determined from a review of the AHRI database. Bounds are as follows: 9.90 < SEER < 46.2, 7.92 < EER < 22.11, 8.10 < IEER < 34.82, 8.82 < CEER < 16.50, 5.85 < HSPF < 15.07, 2.70 < COP < 15.01.</p>

Component	Туре	Value	Unit	Source(s)
		Default: No insulation, 15% leakage		New York TRM 2018, p. 242
EFLH _{heat} Variable		See Table 17-5 in Sub-Appendix F2-II: Non-residential HVAC	hours, annual	Maryland/Mid-Atlantic TRM v.10, p. 423
EFLH _{cool} Variable		See Table 17-4 in Sub-Appendix hours, F2-II: Non-residential HVAC annual		Maryland/Mid-Atlantic TRM v.10, p. 422
<i>CF_{summer}</i> Variable		Where baseline and installed system capacities differ, use installed system capacity to assign CF. Otherwise, use baseline system capacity to assign CF: < 135 kBtu/h = 0.588 > 135 kBtu/h = 0.874		Maryland/Mid-Atlantic TRM v.10, p. 291 ⁶²
CF _{winter} CF sy		Where baseline and installed system capacities differ, use installed system capacity to assign CF. Otherwise, use baseline system capacity to assign CF: < 135 kBtu/h = 0.588 ≥ 135 kBtu/h = 0.874	-	Maryland/Mid-Atlantic TRM v.10, p. 291 ⁶³

The New York TRM provides values for duct system efficiency for uninsulated ducts and ducts with R-6 insulation for four building types: assembly buildings, fast-food restaurants, full-service restaurant, and small retail. The average column in Table 4-34 is a simple average of the four building types. The values for R-2, R-4 and R-8 insulation have been calculated by scaling the results using an engineering relationship of the effectiveness of increasing R-values (non-linear).

The manual provides efficiencies for only five leakage-rate bins: 8%, 15%, 20%, 25%, and 30%. In preparation for receiving duct leakage percentages that do not match these specific values, DNV used a linear regression to model duct system efficiency as a function of leakage proportion. The coefficients from this model were used to compute duct system efficiency for any leakage value between 0% and 50%.

Jun 15 2023

⁶² The New York TRM 2018 provides a CF with no specific source as a placeholder. Therefore, the same CFs are applied as used for other HVAC measure using the Maryland/Mid-Atlantic TRM v.10.

⁶³ The Maryland/Mid-Atlantic TRM v.10 does not provide a winter CF. Therefore, the summer CF is applied to the winter CF.

Table + et baet by term emeloney by bread banding type bategeries

Duct total	Duct system	Asse	mbly	Fast food	restaurant	Full so resta	ervice urant	Small	retail	Ave	rage
Теакаде	R-value	Heating	Cooling	Heating	Cooling	Heating	Cooling	Heating	Cooling	Heating	Cooling
8%	Uninsulated	0.857	0.922	0.766	0.866	0.797	0.854	0.614	0.838	0.759	0.870
15%	Uninsulated	0.829	0.908	0.734	0.853	0.765	0.845	0.581	0.827	0.727	0.858
20%	Uninsulated	0.810	0.897	0.714	0.844	0.743	0.837	0.559	0.818	0.707	0.849
25%	Uninsulated	0.793	0.886	0.693	0.834	0.721	0.829	0.538	0.809	0.686	0.840
30%	Uninsulated	0.776	0.873	0.675	0.823	0.701	0.820	0.520	0.799	0.668	0.829
8%	R-2	0.877	0.954	0.821	0.906	0.845	0.904	0.691	0.885	0.808	0.912
15%	R-2	0.846	0.938	0.780	0.889	0.807	0.893	0.648	0.871	0.770	0.898
20%	R-2	0.826	0.926	0.754	0.878	0.781	0.884	0.619	0.861	0.745	0.887
25%	R-2	0.807	0.913	0.729	0.865	0.755	0.874	0.593	0.850	0.721	0.875
30%	R-2	0.789	0.899	0.707	0.852	0.732	0.864	0.570	0.839	0.699	0.863
8%	R-4	0.886	0.970	0.848	0.925	0.869	0.929	0.729	0.908	0.833	0.933
15%	R-4	0.855	0.952	0.802	0.907	0.827	0.917	0.681	0.893	0.791	0.917
20%	R-4	0.833	0.940	0.774	0.894	0.799	0.908	0.649	0.883	0.764	0.906
25%	R-4	0.814	0.926	0.747	0.881	0.772	0.897	0.621	0.871	0.738	0.893
30%	R-4	0.795	0.911	0.723	0.867	0.748	0.885	0.594	0.859	0.715	0.881
8%	R-6	0.896	0.986	0.875	0.945	0.893	0.954	0.767	0.931	0.858	0.954
15%	R-6	0.863	0.967	0.825	0.925	0.848	0.941	0.714	0.915	0.813	0.937
20%	R-6	0.841	0.954	0.794	0.911	0.818	0.931	0.679	0.904	0.783	0.925
25%	R-6	0.821	0.939	0.765	0.896	0.789	0.919	0.648	0.891	0.756	0.911
30%	R-6	0.801	0.924	0.739	0.881	0.763	0.907	0.619	0.879	0.731	0.898
8%	R-8	0.901	0.994	0.889	0.955	0.905	0.967	0.786	0.943	0.870	0.965
15%	R-8	0.867	0.974	0.836	0.934	0.858	0.953	0.731	0.926	0.823	0.947
20%	R-8	0.845	0.961	0.804	0.919	0.827	0.943	0.694	0.915	0.793	0.935
25%	R-8	0.825	0.946	0.774	0.904	0.798	0.930	0.662	0.901	0.764	0.920
30%	R-8	0.804	0.930	0.747	0.888	0.771	0.918	0.631	0.889	0.738	0.906

⁶⁴ NY TRM 2019, Appendix H. Distribution Efficiencies, pp. 681–686. New York City values are used for heating and cooling efficiencies for different building types. This table represent more R-Values and total duct leakage (%) than the reference table and for those cases, regression analysis was performed to obtain the respective heating and cooling duct system efficiencies.

Table 4-35. Duct system efficiency mapping to building type⁶⁵

Building type	Associated duct system efficiency building type
Education Education – College and university Education – High school Education – Elementary and middle school Health Care – inpatient Health Care – outpatient Lodging – (hotel, motel, and dormitory) Office – Small (< 40,000 sq ft) Office – Large (≥ 40,000 sq ft) Other Warehouse and storage	Average
Food sales Food sales – Gas station convenience store Food sales – Convenience store Food sales – Grocery Mercantile (retail, not mall) Mercantile (mall) Service (Beauty, auto repair workshop)	Small retail
Food service Food service – Fast food Food service – Other	Fast food restaurant
Food service – Restaurant Food service – Full service	Full service restaurant
Public assembly Public order and safety (police and fire station) Religious worship	Assembly building

4.2.1.4 Default savings

If the proper values are not supplied, a default savings may be applied using conservative input values. Default hours of use will be taken from the above chart if the building type is available.

4.2.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-36.

Table 4-36	. Effective	Useful Li	fe for	lifecycle	savings	calculations
------------	-------------	-----------	--------	-----------	---------	--------------

DSM Phase	Program name	Value	Units	Source(s)
IX	Non-Residential Prescriptive Enhanced Program, DSM Phase IX			
VIII	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	18.00	years	New York TRM 2019, p. 772
	Non-Residential Multifamily Program, DSM Phase VIII			

⁶⁵ Where "Building Type" does not clearly map to "Associated Duct System Efficiency Building Type," "Associated Duct System Efficiency Building Type is assigned to most conservative type." Full building type list was consolidated to map directly to 2003 U.S. DOE CBECS building types. Full building type list from Maryland/Mid-Atlantic TRM. Original sources: Connecticut Program Savings Document for 2012 Program Year (September 2011), pp. 219-220. <u>https://energizect.com/sites/default/files/documents/2012%20CT%20Program%20Savings%20Documentation%20FINAL.pdf</u>, 2003 US DOE CBECS building type definitions. Jun 15 2023

DSM Phase	Program name	Value	Units	Source(s)
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

4.2.1.6 Source(s)

The primary sources for this deemed savings approach is the New York TRM 2018, pp. 241-244, New York TRM 2019, pp. 681-686, Maryland/Mid-Atlantic TRM v.10, pp. 422-423, and ASHRAE 90.1-2013.

4.2.1.7 Update summary

Updates made to this section are described in Table 4-37.

Version	Update type	Description
2022	Section	Moved from the Non-Residential Small Business Improvement Program, DSM Phase V Section as that program is no longer active.
	Source	Updated page numbers / version of the Maryland/Mid-Atlantic TRM
2021	New table	Effective Useful Life (EUL) by program
	Equation	Added gross winter peak demand reduction equation
2020	Equation	Added size condition of <65,000 Btu/h and ≥65,000 Btu/h for determining which equation to use for ground-source heat pumps. Previously all ground-source heat pumps used equations with IEER and COP efficiency metrics.
	Source	Updated page numbers / version of the New York TRM
v10	Input variable	Update to weather stations in North Carolina resulted in revised EFLHs for weather-sensitive measures Equipment efficiency levels were revised per update to ASHRAE 2013 in VA and NC
	Default savings	Default savings modified due to changes to Sub-Appendix F2-III: Non- residential HVAC

Table 4-37. Summary of update(s)

4.2.2 Unitary/split air conditioning, heat pump, and chiller tune-up

4.2.2.1 Measure description

This measure involves tuning up packaged air conditioning units, heat pump units (both air and ground source), and air- and water-cooled cooled chillers at small commercial and industrial sites. All HVAC applications other than space cooling and heating—such as process cooling—are ineligible for this measure.

For the Small Business Improvement Program, this measure is separated from the Refrigerant Charge Adjustment retrocommissioning measure. However, this measure is also offered by the Commercial Non-Residential Prescriptive Program in which case, the tune-up and the refrigerant charge adjustment steps are combined into a single measure.

This measure is offered through different programs listed in Table 4-38, and uses the impacts estimation approach described in this section.

Table 4-38. Programs that offer this measure

Program name	Section
Non-Residential Prescriptive Program, DSM Phase VI	Section 4.2.2
Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	Section 8.2.2
Non-Residential Multifamily Program, DSM Phase VIII	Section 10.3.2
Non-Residential Prescriptive Enhanced Program, DSM Phase IX	Section 16.3.1

4.2.2.2 Impacts Estimation Approach

Algorithms and inputs to calculate heating, cooling savings, and demand reduction for unitary/split HVAC and package terminal AC system tune-ups are provided below. Gross annual electric energy savings and gross coincident demand reduction are calculated according to the equations following this section.

Per-measure gross annual electric energy savings are calculated by combining the cooling and heating energy savings according to the following equation:

$$\Delta kWh = \Delta kWh_{cool} + \Delta kWh_{heat}$$

Cooling energy savings

For heat pumps and AC units <65,000 Btu/h, the per- measure gross annual electric cooling energy savings are calculated as follows:

$$\Delta kWh_{cool} = Size_{cool} \times \frac{12 \ kBtuh/ton}{SEER} \times \ EFLH_{cool} \times \ TUF$$

For heat pumps and AC units ≥65,000 Btu/h, the per-measure gross annual electric cooling energy savings are calculated as follows:

$$\Delta kWh_{cool} = Size_{cool} \times \frac{12 \ kBtuh/ton}{IEER} \times \ EFLH_{cool} \times \ TUF$$

For air- and water-cooled chillers:

 $\Delta kWh_{cool} = Size_{cool} \times IPLV \times EFLH_{cool} \times TUF$

Heating energy savings

For heat pumps <65,000 Btu/h, the per-measure gross annual electric heating energy savings are calculated as follows:

$$\Delta kWh_{heat} = Size_{heat} \times \frac{1}{HSPF} \times EFLH_{heat} \times TUF$$

Docket No. E-22, Sub 645

For heat pumps ≥65,000 Btu/h the per-measure gross annual electric heating energy savings are calculated as follows:

$$\Delta kWh_{heat} = Size_{heat} \times \frac{1}{COP \times 3.412 Btuh/W} \times EFLH_{heat} \times TUF$$

For AC units and air- and water-cooled chillers, there are no per-measure gross annual electric heating energy savings:

$$\Delta kWh_{heat} = 0$$

Per-measure gross coincident demand reduction is calculated according to the following equation for air-conditioning and heat pump systems and chillers:

$$\Delta kW_{summer} = Size_{cool} \times \frac{12 \ kBtuh/ton}{EER} \times CF_{summer} \times TUF$$

Per-measure gross coincident demand reduction is calculated according to the following equation for air-conditioning and heat pump systems and chillers:

$$\frac{\Delta k W_{winter}}{EFLH_{heat}} \times CF_{winter}$$

Where:

∆kWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross summer peak coincident demand reduction
∆kW _{winter}	= per-measure gross winter peak coincident demand reduction
∆kWh _{cool}	 per-measure gross annual electric cooling energy savings
∆kWh _{heat}	= per-measure gross annual electric heating energy savings
Sizecool	= tons of cooling capacity of equipment
Sizeheat	= heating capacity of equipment, if applicable.
SEER	= seasonal energy efficiency ratio (SEER) of the installed air conditioning equipment. It is used
	for heat pumps and AC units that are smaller than 65,000 Btu/h.
IEER	= integrated energy efficiency ratio (IEER) of the existing or baseline air conditioning equipment.
	IEER is a weighted average of a unit's efficiency at four load points: 100%, 75%,
	50%, and 25% of full cooling capacity. It is used for heat pumps and AC units that are
	65,000 Btu/h or larger.
EFLH _{cool}	= equivalent full load cooling hours
EFLHheat	= equivalent full load heating hours
IPLV	= energy efficiency at integrated part load value (IPLV) of chillers. For air-cooled chillers, this is
	typically shown as EER _{IPLV} ; for water-cooled chillers, this is typically shown as
	kW/ton _{IPLV} .
TUF	= rate of energy efficiency improvement due to tune-up
EER	= energy efficiency ratio of air-conditioning and heat pump systems and air- and water-cooled chillers at full load conditions.

Docket No. E-22, Sub 645

- SPF = heating seasonal performance factor (HSPF) of existing heat pump. HSPF is used in heating savings for air-source heat pumps.
- COP = coefficient of performance of existing heating equipment. Ground source heat pumps use COP to determine heating savings.
- CF_{summer} = summer coincidence factor

CF_{winter} = winter coincidence factor

4.2.2.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Units	Source(s)
Sizecool	Variable	See customer application	tons of cooling capacity	Customer application
Sizeheat	Variable	See customer application ⁶⁶ Default for HPs: 12 x Sizecool	kBtu/h	Customer application
EFLHcool	Variable	Refer to Sub-Appendix F2-II: Non-residential HVAC ACs, HPs, & Chillers: Table 17-4	hours, annual	Maryland/Mid-Atlantic TRM v.10, p. 422
EFLHheat	Variable	Refer to Sub-Appendix F2-II: Non-residential HVAC HPs: Table 17-5	hours, annual	Maryland/Mid-Atlantic TRM v.10, p. 423
		See customer application ⁶⁷		Customer application
HSPF/SEER/IEE R/ EER/COP	Variable	Refer to Sub-Appendix F2-III: Non-residential HVAC ACs & HPs: Table 17-9 Chillers: Table 17-11	kBtu/kW-hour (except COP is dimensionless)	ASHRAE 90.1-2013
		See customer application	Btu/W for air-	Customer application
IPLV	Variable	Refer to Sub-Appendix F2-III: Non-residential HVAC Chillers: Table 17-11	cooled chillers; kW/ton for water- cooled chillers	ASHRAE 90.1-2013
RCA_Done68	Boolean	See customer application	True/False	Customer application
TUF	Variable	If RCA was not done: ACs: 0.023 HPs: 0.028 Chillers: 0.050 If RCA was also done (only for Commercial Non-residential prescriptive program): ACs: 0.050	-	Maryland/Mid-Atlantic TRM v.10, p. 316, California Impact Evaluation of 2013-14 Commercial Quality Maintenance Programs, ⁶⁹ and Wisconsin Focus on

Table 4-39. Input variables for AC/HP/chiller tune-up measure

⁶⁶ When customer-provided heating system size is <80% or >156% of customer-provided cooling system size, a default value will be used, instead. In such instances, it is assumed that the heating system size was incorrectly documented. The acceptable range is based on a review of the AHRI database across numerous manufacturers and heat pump types.

⁶⁷ The customer provided efficiency values are reviewed for reasonability. If the efficiency value is outside acceptable bounds the applicable default value is applied. The bounds were determined from a review of the AHRI database. Bounds are as follows: 9.90 < SEER < 46.2, 7.92 < EER < 22.11, 8.10 < IEER < 34.82, 8.82 < CEER < 16.50, 5.85 < HSPF < 15.07, 2.70 < COP < 15.01.</p>

⁶⁸ RCA_Done is only relevant to the Non-Residential Prescriptive Program; it is neither collected nor used for the Small Business Improvement Program because Refrigerant Charge Adjustment is a separate measure.

⁶⁹ California Public Utilities Commission (2016). Impact Evaluation of 2013-14 Commercial Quality Maintenance Programs (HVAC3), While these proportions were not provided in the report, DNV analyzed the same supporting data—though owned by the CPUC and not publicly available—used to produce the tables provided on pages BB-2 and BB-3 of Appendix BB of the report. Whereas the tables provided in Appendix BB were aggregated by program, DNV aggregated the raw data by HVAC-system type to determine appropriate TUF values. This analysis showed that for packaged air-conditioning systems, an average of 54.7% of the overall tune-up savings were attributable to the RCA treatment; for packaged heat pump systems, 44.7% of the overall tune-up savings were attributable to the RCA treatment.

Component	Туре	Value	Units	Source(s)
		HPs: 0.050 Chillers: 0.050		Energy 2020 TRM, pp. 957-959.
CF _{summer}	Variable	Use system capacity to assign CF: < 11.5 tons = 0.588 ≥ 11.5 tons = 0.874	-	Maryland/Mid-Atlantic TRM v.10, p. 316
CFwinter	Variable	Use system capacity to assign CF: < 11.5 tons = 0.588 ≥ 11.5 tons = 0.874	-	Maryland/Mid-Atlantic TRM v.10, p. 31670

4.2.2.4 Default savings

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

4.2.2.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-40.

Table 4-40.	Effective	Useful Life	e for lifed	cycle savings	calculations
-------------	-----------	--------------------	-------------	---------------	--------------

DSM Phase	Program name	Value	Units	Source(s)
іх	Non-Residential Prescriptive Enhanced Program, DSM Phase IX			
VIII	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	5.00	years	Maryland/Mid-Atlantic TRM v.10, p. 316
	Non-Residential Multifamily Program, DSM Phase VIII			
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

4.2.2.6 Source(s)

The primary sources for this deemed savings approach include the ASHRAE 90.1-2013, Maryland/Mid-Atlantic TRM v.10, pp. 315-316, pp. 422-423, the California Impact Evaluation of 2013-14 Commercial Quality Maintenance Programs and the Wisconsin Focus on Energy TRM 2020, pp. 957-959.

4.2.2.7 Update summary

Updates made to this section are described in Table 4-41.

Table 4-41.	Summary	of u	update(s	s)
-------------	---------	------	----------	----

Version	Update Type	Description
2022	None	No change

 70 The source TRM does not provide a winter CF. Therefore, the summer CF is applied to the winter CF.

Jun 15 2023

Version	Update Type	Description
	Source	Updated page numbers and versions of the Maryland/Mid-Atlantic TRM and Wisconsin TRM
2021	Equation	Added gross winter peak demand reduction equation
	New table	Effective Useful Life (EUL) by program
2020	Equation	Added size condition of <65,000 Btu/h and ≥65,000 Btu/h for determining which equation to use for ground-source heat pumps. Previously all ground-source heat pumps used equations with IEER and COP efficiency metrics.
v10	Source	Updated page numbers and versions of references to: Maryland/Mid-Atlantic TRM Wisconsin Focus on Energy TRM Clarified citation and footnote of CPUC's Impact Evaluation for 2013-14 (HVAC3)
	Input variable	For HPs at which RCA was not performed, revised Tune-up Factor (TUF) value from 0.027 to 0.028 Update to weather stations in North Carolina resulted in revised EFLHs for weather-sensitive measures Baseline efficiency levels were revised per update to ASHRAE 2013 in VA and NC

4.3 Appliance or Plug Load end use

4.3.1 Smart strip

4.3.1.1 Measure description

This measure realizes energy savings by installing a "smart-strip" plug outlet in place of a standard "power strip." Smart strip devices are designed to automatically turn-off connected loads when those devices are not in use, therefore minimizing energy losses caused by phantom loads.

The baseline condition is a standard "power strip." This strip is simply a "plug multiplier" that allows the user to plug in multiple devices using a single wall outlet. Additionally, the baseline unit has no ability to control power flow to the connected devices.

4.3.1.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are assigned per unit as follows:71

 $\Delta kWh = 26.9 \, kWh$

Per-measure, gross coincident summer and winter peak demand reduction is assigned no reduction, as follows:

Jun 15 2023

⁷¹ Energy & Resource Solutions (ERS) 2013. Emerging Technologies Research Report; Advanced Power Strips for Office Environments prepared for the Regional Evaluation, Measurement, and Verification Forum facilitated by the Northeast Energy Efficiency Partnerships." Assumes savings consistent with the 20W threshold setting for the field research site demonstrating higher energy savings (of two available sites). ERS noted that the 20 W threshold may be unreliable due to possible inaccuracy of the threshold setting in currently available units. It is assumed that future technology improvements will reduce the significance of this issue. Further, savings from the site with higher average savings was adopted (26.9 kWh versus 4.7 kWh) acknowledging that investigations of APS savings in other jurisdictions have found significantly higher savings. For example, Northwest Power and Conservation Council, Regional Technical Forum. 2011. "Smart Power Strip Energy Savings Evaluation" found average savings of 145 kWh.

 $\Delta k W_{summer} = 0 \ k W$

$$\Delta k W_{winter} = 0 \ k W$$

Where:

 $\begin{array}{lll} \Delta k W h & = per-measure \mbox{ gross annual electric energy savings} \\ \Delta k W_{summer} & = per-measure \mbox{ gross coincident summer peak demand reduction} \\ \Delta k W_{winter} & = per-measure \mbox{ gross coincident winter peak demand reduction} \end{array}$

4.3.1.3 Effective Useful Life

The effective useful life of this measure is provided in Table 4-42.

Table 4-42. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

4.3.1.4 Source(s)

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v.10, pp. 368-369.

4.3.1.5 Update summary

Updates made to this section are described in Table 4-43.

Version	Update type	Description
2022	None	No change
2024	Source	Updated page numbers / version of the Mid-Atlantic TRM
2021	New table	Effective Useful Life (EUL) by program
2020	Source	Updated page numbers / version of the Mid-Atlantic TRM
v10	Source	Updated page numbers / version of the Mid-Atlantic TRM

Table 4-43. Summary of update(s)

4.3.2 Vending machine miser

4.3.2.1 Measure description

This measure realizes energy savings by installing vending misers that control the vending machine lighting and refrigeration systems power consumption of distributed closed-door cases. Miser controls power down these systems during periods of inactivity while ensuring that the product stays cold. Qualifying machines include glass front

refrigerated coolers, non-refrigerated snack vending machines, and refrigerated beverage vending machines, but this measure does not apply to ENERGY STAR[®] vending machines that have built-in internal controls or distributed open door cases.

This measure is offered through different programs listed in Table 4-49 and uses the impacts estimation approach described in this section.

Table 4-44. Programs that Offer this Measure

Program Name	Section
Non-Residential Prescriptive Program, DSM Phase VI	Section 4.3.2
Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	Section 8.4.1

4.3.2.2 Impacts Estimation Approach

Per-measure gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = kW_{rated} \times HOU \times ESF$$

Per-measure, gross coincident summer peak demand reductions are calculated according to the following equation:

$$\frac{\Delta k W_{summer}}{HOU} = \frac{\Delta k W h}{HOU} \times C F_{summer}$$

Per-measure, gross coincident winter peak demand reductions are calculated according to the following equation:

$$\frac{\Delta k W_{winter}}{HOU} = \frac{\Delta k W h}{HOU} \times C F_{winter}$$

Where:

ΔkWh	= per-measure gross annual electric energy savings
$\Delta kW_{\text{summer}}$	= per-measure gross coincident summer peak demand reduction
ΔkW_{winter}	= per-measure gross coincident winter peak demand reduction
kW _{rated}	= rated kilowatts of connected equipment
HOU	= annual hours of use
ESF	= energy savings factor
CF _{summer}	= summer coincidence factor
CFwinter	= winter coincidence factor

4.3.2.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

 Table 4-45. Input values for vending miser savings calculations

Component	Туре	Value	Unit	Source(s)
kW _{rated}	Variable	See customer application	kW	Customer application

Component	Туре	Value	Unit	Source(s)
		See Table 4-46		Massachusetts e-TRM 2019- 2021, p. 595
ESF	Variable	See Table 4-46	-	Massachusetts e-TRM 2019- 2021, p. 595
HOU	Fixed	8,760	hours, annual	Massachusetts e-TRM 2019- 2021, p. 595
CF _{summer}	Fixed	1.0		Massachusetts e-TRM 2019- 2021, p. 595 ⁷²
CFwinter	Fixed	1.0		Wisconsin TRM 2019, p. 82272

Table 4-46. Vending miser rated kilowatts and energy savings factors⁷³

Equipment Type	kW _{rated} (kW)	ESF	
Refrigerated Beverage Vending Machine	0.400	0.46	
Non-Refrigerated Snack Vending Machine (Default)	0.085	0.46	
Glass Front Refrigerated Cooler	0.460	0.30	

4.3.2.4 Default savings

If the proper values are not supplied, a default savings may be applied using conservative input values.

The default, per-measure gross annual electric energy savings will be applied according to the following calculation:

$$\Delta kWh = kW_{rated} \times HOU \times ESF$$

 $= 0.085 \, kW \times 8,760 \, hours \times 0.46$

 $= 342.52 \, kWh$

The default, per-measure, gross coincident summer peak demand reduction will be applied according to the following calculation:

$$\Delta kW_{summer} = \frac{\Delta kWh}{HOU} \times CF_{summer}$$
$$= \frac{343 \, kWh}{8.760 \, hours} \times 1.0$$

Jun 15 2023

⁷² The Massachusetts TRM does not provide summer or winter CFs. However, the equation for peak demand is kWh savings divided by annual hours implying a CF of 1.0.

⁷³ Massachusetts TRM 2019-2021 Plan Version, p. 595-597; <u>https://www.masssavedata.com/Public/TechnicalReferenceLibrary</u> (accessed on April 18, 2012).

The default, per-measure, gross coincident winter peak demand reduction will be applied according to the following calculation:

$$\Delta kW_{winter} = \frac{\Delta kWh}{HOU} \times CF_{winter}$$
$$= \frac{343 \ kWh}{8,760 \ hours} \times 1.0$$

4.3.2.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-47.

 $= 0.039 \, kW$

DSM Phase	Program Name	Value	Units	Source(s)
VIII	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	5.00	years	Massachusetts e-TRM 2019-2021, p. 596
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

4.3.2.6 Source(s)

The primary source for this deemed savings approach is the Massachusetts e-TRM 2019-2021, pp. 595-597.

4.3.2.7 Update Summary

Updates made to this section are described in Table 4-48.

Version	Update Type	Description	
2022	None	No change	
	Source	Updated page numbers / version of the Massachusetts TRM	
2021	Equation	Added equation for coincident winter peak demand reduction	
	New Table	Effective Useful Life (EUL) by program	
2020	None	No change	
v10	Source	Verified no changes to page numbers / version of the Massachusetts TRM	

Table 4-48. Summary of Update(s)

Docket No. E-22, Sub 645

4.4 Refrigeration end use

4.4.1 Door closer (cooler and freezer)

4.4.1.1 Measure description

This measure realizes energy savings by installing an auto-closer on main doors to walk-in coolers or freezers, or by installing an automatic, hydraulic-type door closer on glass-reach-in doors to coolers or freezers. This measure consists of installing a door closer where none existed before. Gross annual electric energy savings are gained when an auto-closer installation reduces the infiltration of warmer outside air into a cooler or freezer environment.

Savings assume that an auto-closer reduces warm air infiltration on average by 40% and the walk-in coolers and freezer doors have effective strip curtains.⁷⁴ To simulate the reduction, the main door open time is reduced by 40%. For walk-in coolers and freezers, savings are calculated with the assumption that strip curtains that are 100% effective are installed on the doorway.

This measure is offered through different programs listed in Table 4-49, and uses the impacts estimation approach described in this section.

Table 4-49. Programs that offer this measure

Program name	Section	
Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	Section 8.5.5	
Non-Residential Prescriptive Enhanced Program, DSM Phase IX	Section 16.6.3	

4.4.1.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are assigned according to the refrigeration unit type and temperature setting:

Cooler doors:

$$\Delta kWh = \Delta kWh_{cooler}$$

Freezer doors:

$$\Delta kWh = \Delta kWh_{freezer}$$

Per-measure, gross coincident summer peak demand reduction is assigned according to the refrigeration unit type and temperature setting:

Cooler doors:

 $\Delta k W_{summer} = \Delta k W_{cooler}$

⁷⁴ Tennessee Valley Authority TRM 2018, p. 127 -128. Original sources: California Database for Energy Efficiency Resources, www.deeresources.com (DEER 2008), and San Diego Gas & Electric work paper WPSDGENRRN0110 Rev 0, August 17, 2012, "Auto-Closers for Main Cooler of Freezer Doors."

Docket No. E-22, Sub 645

Freezer doors:

 $\Delta k W_{summer} = \Delta k W_{freezer}$

Per-measure, gross coincident winter peak demand reduction is assigned according to the refrigeration unit type and temperature setting:

Cooler doors:

 $\Delta k W_{winter} = \Delta k W_{cooler}$

Freezer doors:

 $\Delta k W_{winter} = \Delta k W_{freezer}$

Where:

∆kWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction
∆kWh _{cooler}	= annual electric energy savings for main cooler doors
∆kW _{cooler}	= coincident demand reduction for main cooler doors
∆kWh _{freezer}	= annual electric energy savings for main freezer doors
∆kW _{freezer}	= coincident demand reduction for main freezer doors

4.4.1.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 4-50. Door closer electric energy savings an	gross coincident demand reduction (per closer)75
--	--

Pofrigoration unit type	Location	Walk-in		Reach-in	
Kengeration unit type		ΔkWh	∆kW ⁷⁶	∆kWh	ΔkW ⁷⁶
	Richmond, VA	43.9	0.0050	102	0.0116
	Norfolk, VA	43.5	0.0050	101	0.0115
	Roanoke, VA	42.4	0.0048	98	0.0112
	Sterling, VA	42.3	0.0048	98	0.0112
Cooler	Arlington, VA	42.3	0.0048	98	0.0112
(31°F to 55°F)	Charlottesville, VA	42.7	0.0049	99	0.0113
	Farmville, VA	44.8	0.0051	104	0.0119
	Fredericksburg, VA	43.3	0.0049	101	0.0115
	Elizabeth City, NC	43.1	0.0049	100	0.0114
	Rocky Mount, NC	43.6	0.0050	101	0.0116
Freezer	Richmond, VA	172.7	0.0197	439	0.0501

⁷⁵ Methodology from Tennessee Valley Authority TRM 2018, pp. 127-129, was used. Savings were revised using the TMY3 weather data for Dominion Energy service territory locations.

⁷⁶ The source TRM calculates coincident kW as the kWh savings divided by 8,760 hours. This implies that the demand reduction is the same in all periods. This is the best information available. Therefore, the same coincident peak demand reduction for summer and winter periods.

Defrigeration unit type	Location	Walk-in		Reach-in	
Reingeration unit type		∆kWh	∆kW ⁷⁶	∆kWh	∆kW ⁷⁶
(-35°F to 30 °F)	Norfolk, VA	170.2	0.0194	433	0.0494
	Roanoke, VA	165.8	0.0189	422	0.0481
	Sterling, VA	167.2	0.0191	425	0.0486
	Arlington, VA	167.2	0.0191	425	0.0486
	Charlottesville, VA	167.5	0.0191	426	0.0486
	Farmville, VA	176.4	0.0201	449	0.0512
	Fredericksburg, VA	171.8	0.0196	437	0.0499
	Elizabeth City, NC	168.4	0.0192	428	0.0489
	Rocky Mount, NC	171.4	0.0196	436	0.0498

4.4.1.4 Default savings

In the event of incomplete data, make the following conservative assumptions:

- If the door type is missing, assume it is a walk-in door type.
- If the refrigeration system type is missing, assume it is a high-temperature cooler.

4.4.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-51.

Table 4-51. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)	
іх	Non-Residential Prescriptive Enhanced Program, DSM Phase IX			Tennessee Valley Authority TRM	
VIII	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	8.00	years	2018, p. 128	

4.4.1.6 Source(s)

The primary source for this deemed savings approach is the Tennessee Valley Authority TRM 2018, pp. 127-129.

4.4.1.7 Update summary

Updates made to this section are described in Table 4-52.

Table 4-52. Summary of update(s)

Version	Update type	Description	
2022	None	None change	
2021	New table	Effective Useful Life (EUL) by program	

Docket No. E-22, Sub 645

DNV

Version	Update type	Description		
	Inputs	Added large office building type and expanded to 10 weather stations		
	Equation	Added equation for coincident winter peak demand reduction		
2020	None	No change		
	Source	Updated page numbers / version of the Tennessee Valley Authority TRM		
v10	Default savings	Default savings were adjusted due to change of weather stations in North Carolina (from Charlotte to Elizabeth City and Rocky Mount-Wilson)		

4.4.2 Door gasket (cooler and freezer)

4.4.2.1 Measure description

This measure realizes energy savings by replacing worn-out gaskets with new gaskets on walk-in and reach-in refrigerator or freezer doors. By replacing the gasket, the air infiltration and cooling loads is reduced, saving energy.

This is a retrofit measure with the baseline condition being the worn-out gasket. The efficient case is a new gasket.

4.4.2.2 Impacts Estimation Approach⁷⁷

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\frac{\Delta kWh}{ft} = \frac{\Delta kWh}{ft} \times L$$

Per-measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\frac{\Delta k W_{summer}}{ft} = \frac{\Delta k W}{ft} \times L$$

Per-measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\frac{\Delta k W_{winter}}{ft} = \frac{\Delta k W}{ft} \times L$$

Where:

∆kWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction
∆kWh/ft	= gross annual electric energy savings per linear foot
∆kW/ft	= gross coincident demand reduction per linear foot
L	= length of gasket applied

⁷⁷ Electric energy and demand reduction for this measure are based on modeled results found in the Tennessee Valley Authority TRM 2018, which based its model assumptions and equations on 3 sources: the California Database for Energy Efficiency Resources, www.deeresources.com (DEER 2008), the 2009 Southern California Edison Company- WPSCNRRN0004.1 - Door Gaskets for Glass Doors of Walk-In Coolers work paper, and the 2009 Southern California Edison Company- WPSCNRRN0001.1 - Door Gaskets for Main Door of Walk-in Coolers and Freezers work paper.

4.4.2.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 4-53.	Input values	for doo	r gasket sav	vings calc	ulations
	input values	101 000	i gasket sav	ings calc	ulations

Component	Туре	Value	Unit	Source(s)
ΔkWh/ft	Variable	See Table 4-54	kWh/ft	Tennessee Valley Authority TRM 2018, p. 123.
ΔkW/ft	Variable	See Table 4-54Table 4-54	kW/ft	Tennessee Valley Authority TRM 2018, p. 123. ⁷⁸
L	Variable	See customer application	feet	Customer application
		Default = 15		DNV engineering judgment

Table 4-54. Door gasket annual electric energy and coincident demand reductions 79

Refrigeration type	ΔkWh/ ft	ΔkW/ft	
Freezer (-35°F to 30°F)			
Walk-in Door	29.5	0.0036	
Reach-in glass door	22.2	0.0025	
Cooler (31°F to 55°F)			
Walk-in door	9.3	0.0011	
Reach-in glass door	3.4	0.0004	

4.4.2.4 Default savings

If the proper values are not supplied, a default savings may be applied using conservative input values assuming a reach-in, glass-door cooler.

The default per-measure, gross annual electric energy savings per unit cooler/freezer will be assigned according to the following calculation:

$$\Delta kWh = \frac{\Delta kWh}{ft} \times L$$
$$= 3.4 \frac{kWh}{ft} \times 15 ft$$

Jun 15 2023

⁷⁸ The source TRM calculates coincident kW as the kWh savings divided by 8,760 hours. This implies that the demand reduction is the same in all periods. This is the best information available. Therefore, the same coincident peak demand reduction for summer and winter periods.

⁷⁹ Tennessee Valley Authority 2018, p. 123 – 124, methodology was used. TMY3 weather data was applied for Richmond, VA and Charlotte, NC. The difference between these locations was less than 1%. Richmond values are applied for all locations across Dominion Energy service territory as the variance is negligible across locations.

The default per-measure, gross coincident summer peak demand savings per unit cooler/freezer will be assigned according to the following calculation:

$$\Delta kW_{summer} = \frac{\Delta kW}{ft} \times L$$
$$= 0.0004 \frac{kW}{ft} \times 15 ft$$
$$= 0.006 kW$$

The default per-measure, gross coincident winter peak demand savings per unit cooler/freezer will be assigned according to the following calculation:

$$\Delta kW_{winter} = \frac{\Delta kW}{ft} \times L$$
$$= 0.0004 \frac{kW}{ft} \times 15 ft$$
$$= 0.006 kW$$

4.4.2.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-55.

Table 4-55. Effective Useful Life for	lifecycle savings calculations
---------------------------------------	--------------------------------

DSM Phase	Program name	Value	Units	Source(s)
IX	Non-Residential Prescriptive Enhanced Program, DSM Phase IX	4.00		Maryland/Mid-Atlantic TRM v10
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

4.4.2.6 Source(s)

The primary source for this deemed savings approach is the Tennessee Valley Authority TRM 2018, pp. 123-124.

4.4.2.7 Update summary

Updates made to this section are described in Table 4-56.

Version	Update type	Description
2022	None	No change
2024	New Table	Effective Useful Life (EUL) by program
Equation Added equation for coincident winte		Added equation for coincident winter peak demand reduction
2020	Source	No change
v10	Source	Updated page numbers / version of the Tennessee Valley Authority TRM

4.4.3 Commercial freezers and refrigerators

4.4.3.1 Measure description

This measure involves the installation of an ENERGY STAR[®] qualified commercial freezer or refrigerator. These models are designed for warm commercial kitchen environments with frequent door opening. Qualifying equipment utilize a variety of energy-efficient components such as ECM fan motors, hot gas anti-sweat heaters, or high-efficiency compressors. Qualifying equipment must not exceed the maximum daily kWh values determined by the volume, door type, and configuration specified by Version 4.0 specifications that went into effect March 2017.

This measure is offered through different programs listed in Table 4-57 and uses the impacts estimation approach described in this section.

Table 4-57. Frograms that oner this measure	Table 4-57.	Programs	that	offer	this	measure
---	-------------	----------	------	-------	------	---------

Program name	Section
Non-Residential Prescriptive Program, DSM Phase VI	Section 4.4.3
Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII	Section 9.3.1
Non-Residential Prescriptive Enhanced Program, DSM Phase IX	Section 16.6.1

4.4.3.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = (kWh_{base} - kWh_{ee}) \times Days$$

Per-measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \left(\frac{\Delta kWh}{EFLH}\right) \times CF_{summer}$$

Per-measure, gross coincident winter peak demand reduction is calculated according to the following equation:

DN\

$$\Delta k W_{winter} = \left(\frac{\Delta k W h}{EFLH}\right) \times C F_{winter}$$

Where:

kWhee

Days

∆kWh	= per-measure gross annual electric energy savings
ΔkW_{summer}	= per-measure gross coincident summer peak demand reduction
ΔkW_{winter}	= per-measure gross coincident winter peak demand reduction
kWh _{base}	= daily energy consumption of the baseline equipment
kWh _{ee}	= daily energy consumption of the efficient equipment
Days	= days per year
EFLH	= equivalent full load hours of equipment
CF _{summer}	= summer peak coincidence factor
CFwinter	= winter peak coincidence factor

4.4.3.3 Input variables

Variable

Fixed

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Units	Source(s)
kWh _{base}	Variable	See Table 4-59	kWh	Federal Standards, Energy Efficiency Program for Certain Commercial and Industrial Equipment, title 10, sec. 431.66

Table 4-58. Input parameters for commercial freezers and refrigerator measure

See Table 4-60

EFLH	Fixed	5,858	hours, annual	Maryland/Mid-Atlantic TRM v.10, pp. 335 and 339 ⁸²
CFsummer	Fixed	0.77	-	Maryland/Mid-Atlantic TRM v.10, pp. 335 and 339 ⁸³
CFwinter	Fixed	0.77	-	Maryland/Mid-Atlantic TRM v.10, pp. 335 and 339 ⁸⁴
Volume	Variable	See customer application	cubic feet	Customer application

kWh

days,

annual

365

(2013)80

freezers81

Constant

ENERGY STAR® Certified-

commercial-refrigerators-and-

⁸⁰ The Maryland/Mid-Atlantic TRM v.10 references the federal standards, but the actual values used do not match. Since the baseline daily kWh is greater than required by code, it is assumed that they have been modified per program design.

⁸¹ Values are provided in ENERGY STAR Certified Commercial Refrigerators and Freezers List as the "Energy Use (Daily Energy Consumption)(kWh/day)" downloadable list can be found here: https://www.energystar.gov/productfinder/product/certified-commercial-refrigerators-and-freezers/results

⁸² Original source is cited as: Efficiency Vermont Technical Reference User Manual No. 2013-82.5, August 2013; Derived from Washington Electric Coop data by West Hill Energy Consultants.

⁸³ Derived from Itron eShapes, using 8,760 hourly data by end use for Upstate New York. This was combined with full load hour assumptions used for efficiency measures to account for diversity of equipment usage within the peak period hours.

⁸⁴ The Maryland/Mid-Atlantic TRM v.10 only provides summer peak CF. Without winter peak CF value available, the summer peak CF is applied.

Table 4-59. Calculated baseline daily energy consumption from volume, V

Equipment type	Refrigerator energy, kWh	Freezer energy, kWh
Vertical Closed		
Solid Door	= 0.050 x V + 1.360	= 0.220 x V + 1.380
Transparent	= 0.100 x V + 0.860	= 0.290 x V + 2.950
Horizontal Closed		
Solid Door	= 0.050 x V + 0.910	= 0.060 x V + 1.120
Transparent	= 0.060 x V + 0.370	= 0.080 x V + 1.230

Table 4-60. Calculated efficient unit daily energy consumption from volume

Equipment type and volume (ft ³)	Refrigerator energy, kWh	Freezer energy, kWh
Vertical Closed	'	
Solid Door		
V < 15 ft ³	=0.022 x V + 0.970	=0.210 x V + 0.900
15 ≤ V < 30 ft³	=0.066 x V + 0.310	=0.120 x V + 2.248
30 ≤ V < 50 ft ³	=0.040 x V + 1.090	=0.285 x V - 2.703
V ≥ 50 ft ³	=0.024 x V + 1.890	=0.142 x V + 4.445
Transparent Door		
V < 15 ft ³	=0.095 x V + 0.445	=0.232 x V + 2.360
15 ≤ V < 30 ft³	=0.050 x V + 1.120	=0.232 x V + 2.360
30 ≤ V < 50 ft ³	=0.076 x V + 0.340	=0.232 x V + 2.360
V ≥ 50 ft ³	=0.105 x V - 1.111	=0.232 x V + 2.360
Horizontal Closed		
Solid or Transparent Door		
All Volumes	=0.050 x V + 0.280	=0.057 x V + 0.550

4.4.3.4 Default savings

This measure does not have default savings.

4.4.3.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-61.

Table 4-61. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
іх	Non-Residential Prescriptive Enhanced Program, DSM Phase IX	12.00	years	Mid-Atlantic TRM 2020, p. 335

DSM Phase	Program name	Value	Units	Source(s)
VIII	Non-Residential Midstream Energy Efficiency Products Program, DSM Phase VIII			
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

4.4.3.6 Source(s)

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v.10, pp. 334–341.

4.4.3.7 Update summary

Updates made to this section are described in Table 4-62.

Version	Update type	Description
2022	None	No change
	Source	Updated page numbers / version of the Mid-Atlantic TRM
2021	Equation	Added equation for coincident winter peak demand reduction
	New table	Effective Useful Life (EUL) by program
2020	None	No change
	Source	Updated page numbers / version of the Mid-Atlantic TRM
VIU	Input variable	Updated CF value

Table 4-62. Summary of update(s)

4.4.4 Commercial ice maker

4.4.4.1 Measure description

This measure involves high-efficiency ice makers meeting ENERGY STAR[®] or CEE Tier 2 ice maker requirements. The measure applies to batch type (also known as cube type) and continuous type (also known as flake or nugget type) equipment. The equipment includes ice-making head (without storage bin), self-contained, or remote-condensing units. ENERGY STAR[®] ice makers are limited to only air-cooled units while CEE Tier 2 standards address water-cooled units. The baseline for each type of ice maker is the corresponding Federal standard for the same technology.

This measure is offered through different programs listed in Table 4-65 and uses the impacts estimation approach described in this section.

Table 4-63. Programs that offer this measure

Program name	Section
Non-Residential Prescriptive Program, DSM Phase VI	Section 4.4.4

Jun 15 2023

Docket No. E-22, Sub 645

Program name	Section
Non-Residential Prescriptive Enhanced Program, DSM Phase IX	Section 16.6.2

4.4.4.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\frac{\Delta kWh}{100 \ lb} = \left(\frac{kWh_{base} - kWh_{ee}}{100 \ lb}\right) \times H_{rated} \times DC \times Days$$

Per-measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\frac{\Delta k W_{summer}}{8,760 \ hours} \times CF_{summer}$$

Per-measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\frac{\Delta k W_{winter}}{8,760 \ hours} \times CF_{winter}$$

Where:

∆kWh	= per-measure gross annual electric energy savings	
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction	
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction	
kWh _{base}	= energy consumption per 100 lb of ice produced by the baseline equipment	
kWh _{ee}	= energy consumption per 100 lb of ice produced by the new equipment	
H _{rated}	= manufacturer-rated daily harvest rate of equipment	
DC	= duty cycle of ice machine	
Days	= number of days per year	
CF _{summer}	= summer peak coincidence factor	
CF _{winter}	= winter peak coincidence factor	

4.4.4.3 Input Variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Units	Source(s)
kWh _{base}	Variable	Batch-type: See Table 4-65 Continuous-type: See Table 4-66	kWh/ 100- lb of ice	Federal Standards 80 FR 4645 ⁸⁵
kWhee	Variable	CEE Tier 2 Water-cooled: See Table 4-67	kWh/ 100- lb of ice	

Table 4-64. Input parameters for commercial ice maker

⁸⁵ The standards are available here: <u>https://www.regulations.gov/document?D=EERE-2010-BT-STD-0037-0137</u>. Batch type ice maker efficiencies are on p. 5-4 and continuous type baseline efficiency levels are on p. 5-9.

Component	Туре	Value	Units	Source(s)
		Air-cooled: ENERGY STAR batch-type: See Table 4-68 ENERGY STAR continuous-type: See Table 4-69 If ice machine type is unknown and water cooled: Default = cube or nugget If ice machine is ENERGY STAR and water-cooled ⁸⁸ : Default = CEE Tier 2 Water-cooled = cube or nugget		CEE Tier 2 ⁸⁶ and ENERGY STAR ^{®87} lists of qualifying equipment
H _{rated}	Variable	See customer application	pound, daily	Customer application
DC	Fixed	0.5	-	Arkansas TRM 2019 Volume 8.1 p. 498 ⁸⁹
Days	Fixed	365	days, annual	Arkansas TRM 2019 Volume 8.1 p. 498
CFsummer	Fixed	1.0	-	Arkansas TRM 2019 Volume 8.1 p. 498 ⁹⁰
CF _{winter}	Fixed	1.0	-	Arkansas TRM 2019 Volume 8.1 p. 498 ⁹⁰

Table 4-65. Batch-type ice machine baseline efficiencies⁹¹

Ice machine type	Ice machine type Type of Cooling Harvest rate (Ib/day)		kWh _{base} (kWh/100-Ib ice)
		< 300	6.880 – 0.00550 x H _{rated}
		≥ 300 and < 850	5.800 – 0.00191 x H _{rated}
	Water	≥ 850 and < 1,500	4.420 – 0.00028 x H _{rated}
		≥ 1,500 and < 2,500	4.000
Ice-making head		≥ 2,500 and < 4,000	4.000
		< 300	10.000 – 0.01233 x H _{rated}
	Air	≥ 300 and < 800	7.055 – 0.00250 x H _{rated}
		≥ 800 and < 1,500	5.550 – 0.00063 x H _{rated}
		≥ 1,500 and < 4,000	4.610
Remote-condensing w/o remote	A :	≥ 50 and < 1,000	7.970 – 0.00342 x H _{rated}
compressor	AIr	≥ 1,000 and < 4,000	4.590
Remote-condensing w/ remote	A :=	< 942	7.970 – 0.00342 x H _{rated}
compressor	AI	≥ 942 and < 4,000	4.790

⁸⁶ Currently qualifying ice makers meet CEE requirements effective 7/01/2011. Qualifying equipment is updated quarterly, available here:

https://library.cee1.org/content/commercial-kitchens-ice-machines-qualifying-product-list

⁸⁷ Currently qualifying ice makers meet ENERGY STAR[®] Version 3.0 program requirements effective January 28, 2018. The list of qualifying equipment can be found here: <u>https://www.energystar.gov/productfinder/product/certified-commercial-ice-machines/results</u>.

⁸⁸ ENERGY STAR does not include water-cooled ice makers. If both of these are indicated to be true on the application, it is assumed the equipment type is CEE Tier-2 water-cooled.

⁸⁹ Per Arkansas TRM, this value was selected based on the most conservative value from a collection of sources including TRMs in Vermont, Pennsylvania, Ohio, Wisconsin, and Missouri.

⁹⁰ Per Arkansas TRM, this value was selected based on building types and lighting CFs. There is limited information about the specific load profile of ice makers. No winter CF is provided so summer CF is used.

⁹¹ 10 CFR Part 431 Subpart H, Automatic Commercial Ice Makers. 77 FR 1591. January 11, 2012. New minimum requirements effective January 28, 2018.

Ice machine type	Type of cooling	Harvest rate (lb/day)	kWh _{base} (kWh/100-Ib ice)
		< 200	9.500 – 0.00342 x H _{rated}
	Water	≥ 200 and < 2,500	5.700
Solf contained		≥ 2500 and < 4,000	5.700
Sen-containeu	Air	< 110	14.790 – 0.04690 x H _{rated}
		≥ 110 and < 200	12.420 – 0.02533 x H _{rated}
		≥ 200 and < 4,000	7.350

Table 4-66. Continuous-type ice m	nachine baseline efficiencies
-----------------------------------	-------------------------------

Ice machine type	Type of cooling	Harvest rate (lb/day)	kWh _{base} (kWh/100-Ib ice)
		< 801	6.48 – 0.00267 x H _{rated}
	Water	≥ 801 and < 2,500	4.34
lee meking head		≥ 2,500 and < 4,000	4.34
		< 310	9.19 – 0.00629 x H _{rated}
	Air	≥ 310 and < 820	8.23 – 0.00320 x H _{rated}
		≥ 820 and < 4,000	5.61
Remote-condensing w/o remote	Air	< 800	9.70 – 0.00580 x H _{rated}
compressor		≥ 800 and < 4,000	5.06
Remote-condensing w/ remote	A :	< 800	9.90 – 0.00580 x H _{rated}
compressor		≥ 800 and < 4,000	5.26
		< 900	7.60 – 0.00302 x H _{rated}
	Water	≥ 900 and < 2,500	4.88
Solf contained		≥ 2,500 and < 4,000	4.88
Sell-contained	Air	< 200	14.22 – 0.03000 x H _{rated}
		≥ 200 and < 700	9.47 – 0.00624 x H _{rated}
		≥ 700 and < 4,000	5.10

Table 4-67. CEE Tier 2 ice machine qualifying efficiencies⁹²

Ice type ⁹³ Type of cooling		Harvest rate (lb/day)	kWhee (kWh/100-lb ice)	
	t) Water	< 175	10.6 – 0.0241 x H _{rated}	
Cube or purget (default)		≥ 175 and < 450	7.1 – 0.0062 x H _{rated}	
Cube of hugget (default)		≥ 450 and < 1,000	4.7 – 0.0011 x H _{rated}	
		≥ 1,000	3.7 – 0.0002 x H _{rated}	

⁹² CEE Requirements don't differentiate between continuous or batch type ice machines, requirements are found here:

https://library.cee1.org/system/files/library/4280/CEE_Ice_Machines_Spec_Final_Effective_01Jul2011_-_updated_July_7_2015.pdf

⁹³ CEE Ice machine types are cube (self-contained), Nugget (ice-making head) and flake (ice-making head). The application determines if the equipment is self-contained or ice-making head. However, the application does not differentiate between flake or nugget ice making head. Flake ice machine types make up a low percent of the CEE Tier 2 models and typically used for specific applications. Therefore, cube or nugget ice machine type is used as the default for CEE Tier 2 water cooled ice makers.

Ice type ⁹³	Type of cooling	Harvest rate (lb/day)	kWh _{ee} (kWh/100-lb ice)
	Water	< 1,000	4.8 – 0.0017 x H _{rated}
гаке туре		≥ 1,000	3.2

Table 4-68. Batch-type ENERGY STAR[®] ice machine qualifying efficiencies⁹⁴

Ice machine type	Type of cooling	Harvest rate (lb/day)	kWhee (kWh/100-lb ice)
		< 300	9.20 – 0.01134 x H _{rated}
loo making hood	A :	≥ 300 and < 800	6.49 – 0.0023 x H _{rated}
		≥ 800 and < 1,500	5.11 – 0.00058 x H _{rated}
		≥ 1,500 and ≤ 4,000	4.24
Remote-condensing (with and	Air	< 988	7.17 – 0.00308 x H _{rated}
without remote compressor)		≥ 988 and ≤ 4,000	4.13
	Air	< 110	12.57 – 0.0399 x H _{rated}
Self-contained		≥ 110 and < 200	10.56 – 0.0215 x H _{rated}
		≥ 200 and ≤ 4,000	6.25

Table 4-69. Continuous-type ENERGY STAR® ice machine qualifying efficiencies⁹⁵

Ice machine type	Type of cooling	Harvest rate (lb/day)	kWhee (kWh/100-lb ice)
		< 310	7.90 – 0.005409 x H _{rated}
Ice-making head	Air	≥ 310 and < 820	7.08 – 0.002752 x H _{rated}
		≥ 820 and ≤ 4,000	4.82
Remote-condensing (with and	Air	< 800	7.76 – 0.00464 x H _{rated}
without remote compressor)		≥ 800 and ≤ 4,000	4.05
		< 200	12.37 – 0.0261 x H _{rated}
Self-contained	Air	≥ 200 and < 700	8.24 – 0.005429 x H _{rated}
		≥ 700 and ≤ 4,000	4.44

4.4.4.4 Default savings

If the proper values are not available, some values have defaults savings. However, there are no default savings for this measure as some values are needed to calculate savings.

4.4.4.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-70.

⁹⁵ Ibid

DNV - www.dnv.com

Jun 15 2023

⁹⁴ Currently qualifying ice makers meet ENERGY STAR[®] Version 3.0 program requirements effective January 28, 2018.: The current requirements are found here: https://www.energystar.gov/sites/default/files/Final%20V3.0%20ACIM%20Specification%205-17-17_1_0.pdf, https://www.energystar.gov/products/commercial_food_service_equipment/commercial_ice_makers/key_product_criteria

DNV

Table 4-70. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program name	Value	Units	Source(s)
іх	Non-Residential Prescriptive Enhanced Program, DSM Phase IX	10.00		Arkansas TRM 2019 Volume 8.1 p. 497
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

4.4.4.6 Source(s)

The primary source for this deemed savings approach is the Arkansas TRM 2019 Version 8.1, pp. 495–498.

4.4.4.7 Update summary

Updates made to this section are described in Table 4-71.

Version	Update type	Description
2022	None	No change
	Source	Updated page numbers / version of the Arkansas TRM
2021	Equation	Added equation for coincident winter peak demand reduction
	New Table	Effective Useful Life (EUL) by program
2020		Clarified which kWhee values to use for conflicts between CEE Tier 2, ENERGY STAR, for air-cooled and water-cooled units
	Source	Clarified CEE Tier 2 ice machine types and assigned default to cube or nugget ice machine types (not collected by the current Non-Residential Prescriptive Program)
v10	Source	Updated page numbers of the Arkansas TRM
	Equation	Updated equation

Table 4-71. Summary of update(s)

4.4.5 Evaporator Fan Electronically Commutated Motor (ECM) Retrofit (Reachin and walk-in coolers and freezers)

4.4.5.1 Measure description

The measure replaces the baseline shaded-pole (SP), evaporator-fan motors with electronically-commuted motors (ECMs). The baseline motors run 24 hour/day, seven day/week (24/7) and have no controls.

Evaporator fans circulate air in refrigerated spaces by drawing air across the evaporator coil and into the space. Fans are found in both reach-in and walk-in coolers and freezers. Energy and demand savings for this measure are achieved by reducing motor operating power. Additional savings come from refrigeration interactive effects. Because electronically-commutated motors (ECMs) are more efficient and use less power, they introduce less heat into the

Docket No. E-22, Sub 645

refrigerated space compared to the baseline motors and result in a reduction in cooling load on the refrigeration system.

This measure is offered through different programs listed in Table 4-72 and uses the impacts estimation approach described in this section.

Program name	Section
Non-Residential Prescriptive Program, DSM Phase VI	Section 4.4.5
Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	Section 8.5.3
Non-Residential Prescriptive Enhanced Program, DSM Phase IX	Section 16.6.5

4.4.5.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\frac{\Delta kWh}{1,000 W/kW} \approx \% ON \times HOU \times WHF_e$$

Per-measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\frac{\Delta k W_{summer}}{1,000 W/kW} = \frac{(watts_{base} - watts_{ee})}{1,000 W/kW} \times WHF_d \times CF_{summer}$$

Per-measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\frac{\Delta k W_{winter}}{1,000 W/kW} = \frac{(watts_{base} - watts_{ee})}{1,000 W/kW} \times WHF_d \times CF_{winter}$$

If the application shows that the rated wattage of existing/baseline evaporator fan motor, W_{base}, is less than rated wattage of electronically commutated evaporator fan motor, W_{ee}, then it is assumed that the baseline motor was replaced with a larger energy efficient motor. In such instances, the default values for these variables—provided in The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 4-73-are to be used.

Where:

ΔkWh	= per-measure gross annual electric energy savings
$\Delta kW_{\text{summer}}$	= per-measure gross coincident summer peak demand reduction
ΔkW_{winter}	= per-measure gross coincident summer peak demand reduction
watts _{base}	= rated wattage of existing/baseline evaporator fan motor
wattsee	= rated wattage of electronically commutated evaporator fan motor
%ON	= duty cycle (effective run time) of controlled evaporator-fan motors
HOU	= annual operating hours

 WHFe
 = Waste Heat Factor for Energy; represents the increased savings due to reduced waste heat from motors that must be rejected by the refrigeration equipment

 WHFd
 = Waste Heat Factor for Demand; represents the increased savings due to reduced waste heat from motors that must be rejected by the refrigeration equipment

 WHFd
 = Summer peak demand Coincidence Factor

 CFwinter
 = winter peak demand Coincidence Factor

4.4.5.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value		Unit	Source(s)
		See customer application			Customer application
watts _{base} Variable		Defaults: See Table 4-74		watts	Wisconsin TRM 2020, p. 795
		See customer application			Customer application
wattsee	Variable	Defaults: See Table 4-74		watts	Wisconsin TRM 2020, p. 795
%ON	Variable	Uncontrolled: 0.978 ON/OFF Control: 0.636 Multispeed Control/ Unknown (default): 0.692		-	Maryland/Mid-Atlantic TRM v.10, p. 349
HOU	Fixed		8,760	hours, annual	Maryland/Mid-Atlantic TRM v.10, p. 346
WHFe	Variable	Low Temp (-35°F1°F): 1.76 Med Temp (0°F - 30°F): 1.76 High Temp (31°F - 55°F): 1.38		-	Maryland/Mid-Atlantic TRM v.10, p. 347
		Default: 1.38			
WHF₫	Variable	Low Temp (-35°F1°F): 1.76 Med Temp (0°F - 30°F): 1.76 High Temp (31°F - 55°F): 1.38 Default: 1.38		-	Maryland/Mid-Atlantic TRM v.10, p. 347
			0.070		Marvland/Mid-Atlantic TRM v.10.
CFsummer	Fixed		0.978	-	p. 349 ⁹⁶
CFwinter	Fixed		0.978	-	Maryland/Mid-Atlantic TRM v.10, p. 34997

Table 4 70	In much sealers a	for COM			
Table 4-7.3.	input values		evaporator	savinds	calculations
10010 1101	input fuidoo		or aporator	ournige	valuationo

Table 4-74. Total deemed savings for ECM evaporator fan motor

system type	Motor size	watts _{base}	wattsee	Source
Walk-In Cooler	<1/20 hp	79.38	26.64	Wisconsin TRM 2020, pp:795-796
Walk-In Cooler	1/20 - 1 hp	211.66	71.04	Wisconsin TRM 2020, pp:795-796

⁹⁶ Maryland/Mid-Atlantic TRM v.10, p. 347. Coincidence factors were developed by dividing the PJM Peak Savings for EF Motors and Controls from Table 47 by the product of the average ECM wattage per rated horsepower (0.758 kW/hp) and the Waste Heat Factor for Demand. Note: the CF was adjusted to 0.978 (percent on), for uncontrolled evaporator fan motors. The Mid-Atlantic TRM has a CF greater than one because it is calculated relative to the wattage of the post-retrofit ECM motor as opposed to the existing SP motor.

⁹⁷ Maryland/Mid-Atlantic TRM v.10, p. 347. Winter coincidence factors were not provided in source TRM. Similar to summer CF, the Note: the CF referenced load shape study does not provide winter peak reduction relative to the change in baseline and ECM power. Instead, the reduction is provided in terms of the ECM wattage. There isn't enough information provided to determine the winter CF. Therefore, the percentage on is used as an approximation.

system type	Motor size	watts _{base}	wattsee	Source
Walk-in Cooler or Unknown (default)	Unknown (default) ⁹⁸	151.19	50.74	Wisconsin TRM 2020, pp:795-796
Walk-In Freezer	<1/20 hp	90.70	30.44	Wisconsin TRM 2020, pp:795-796
Walk-In Freezer	1/20 - 1 hp	244.22	81.97	Wisconsin TRM 2020, pp:795-796
Walk-in Freezer	Unknown (default)99	188.95	63.42	Wisconsin TRM 2020, pp:795-796
Reach-In Cooler	<1/20 hp or 1/20 - 1 hp	31.00	12.00	Maryland/Mid-Atlantic TRM v.10, p. 346
Reach-In Freezer	<1/20 hp or 1/20 - 1 hp	31.00	12.00	Maryland/Mid-Atlantic TRM v.10, p. 346

4.4.5.4 Default savings

If the proper values are not supplied, a default savings may be applied using conservative input values. Accordingly, the default per-measure, gross annual electric energy savings will be assigned according to the following calculation:

$$\Delta kWh = \frac{(watts_{base} - watts_{ee})}{1,000 W/kW} \times \%ON \times HOU \times WHF_{e}$$
$$= \frac{(151.19 W - 50.74 W)}{1,000 W/kW} \times 0.692 \times 8,760 hours \times 1.38$$
$$= 840.31 kWh$$

The default per-measure, gross coincident summer peak demand reduction will be assigned according to the following calculation:

$$\Delta kW_{summer} = \frac{(watts_{base} - watts_{ee})}{1,000 W/kW} \times WHF_d \times CF_{summer}$$
$$= \frac{(151.19 W - 50.74 W)}{1,000 W/kW} \times 1.38 \times 0.978$$
$$= 0.136 kW$$

The default per-measure, gross coincident winter peak demand reduction will be assigned according to the following calculation:

Jun 15 2023

⁹⁸ Applied the Wisconsin TRM 2020 weighted average of all of the motors surveyed, 45.7% <1/20 hp and 54.3% 1/20 - 1 hp.

⁹⁹ Applied the Wisconsin TRM 2020 weighted average of all of the motors surveyed, 36.0% <1/20 hp and 64.0% 1/20 – 1 hp.

DNV

$$\Delta kW_{winter} = \frac{(watts_{base} - watts_{ee})}{1,000 W/kW} \times WHF_d \times CF_{winter}$$
$$= \frac{(151.19 W - 50.74 W)}{1,000 W/kW} \times 1.38 \times 0.978$$
$$= 0.136 kW$$

4.4.5.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-75.

DSM Phase	Program name	Value	Units	Source(s)
IX	Non-Residential Prescriptive Enhanced Program, DSM Phase IX	15.00	Vooro	Maryland/Mid-Atlantic TRM v.10, p.
VIII	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	15.00	years	347
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of EULs across all measures offered by program and their planned uptake)

4.4.5.6 Source(s)

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v.10, pp. 346-347 and Wisconsin TRM 2020, pp. 394-397.

4.4.5.7 Update summary

Updates made to this section are described in Table 4-76.

Table 4-76. Summary of update(s)

Version	Update type	Description			
2022	None	No change			
2021	Source	Updated page numbers / version of the Mid-Atlantic TRM			
	Input variable	 Updated values of wattsbase, wattsee Replaced DCevap with %ON and updated values 			
	Default savings	Updated default savings value			
	Equation	Added equation for coincident winter peak demand reduction			
	New table	Effective Useful Life (EUL) by program			
2020	None	No change			

Docket No. E-22, Sub 645

Version	Update type	Description
v10	Input variable	Deleted a conversion factor, CW _{rated} , as it was not needed
	Source	Updated page numbers / version of the Mid-Atlantic TRM and Wisconsin TRM

4.4.6 Evaporator fan control (cooler and freezer)

4.4.6.1 Measure description

This measure realizes energy savings by installing evaporator controls for reach-in or walk-in coolers and freezers. Typically, evaporator fans run constantly (24 hours per day, 365 days per year) to provide cooling when the compressor is running, and to provide air circulation when the compressor is not running. This measure saves energy by cycling the fan off or reducing fan speed when the compressor is not running. This results in a reduction in fan energy usage and a reduction in the refrigeration load resulting from the reduction in heat given off by the fan.

This approach applies to reach-in or walk-in freezers and refrigerator units; it is not applicable to refrigerated warehouses or other industrial refrigeration applications.

This measure is offered through different programs listed in Table 4-77, and uses the impacts estimation approach described in this section.

Table 4-77	. Programs	that Offer	this	Measure
------------	------------	------------	------	---------

Program name	Section
Non-Residential Prescriptive Program, DSM Phase VI	Section 4.4.6
Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	Section 8.5.4

4.4.6.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated using the following equation:

$$\Delta kWh = hp \times \frac{kW}{hp} \times (\%On_{base} - \%On_{ee}) \times HOU \times WHF_{e}$$

Per-measure, gross coincident summer peak demand reduction is calculated using the following equation:

$$\Delta k W_{summer} = hp \times \frac{kW}{hp} \times WHF_d \times CF_{summer}$$

Per-measure, gross coincident winter peak demand reduction is calculated using the following equation:

$$\Delta kW_{winter} = hp \times \frac{kW}{hp} \times WHF_d \times CF_{winter}$$

Where:

Docket No. E-22, Sub 645

DNV

∆kWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction
hp	= rated hp of evaporator fan motors connected to control
kW/hp	= evaporative fan connected load per rated horsepower
%On _{base}	= duty cycle of the uncontrolled evaporator fan
%On _{ee}	= duty cycle of the controlled evaporator fan
HOU	= annual hours of use
WHFe	= waste heat factor (WHF) for energy; represents the increased savings due to reduced waste
	heat from motors that must be rejected by the refrigeration equipment
WHFd	= waste heat factor (WHF) for Demand; represents the increased savings due to reduced waste
	heat from motors that must be rejected by the refrigeration equipment
CF _{summer}	= summer peak demand coincidence factor (CF)
CFwinter	= winter peak demand coincidence factor (CF)

4.4.6.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Unit	Source(s)
		See customer application		Customer application
hp	Variable	Default: If system is walk-in: 1/15 hp If system is reach-in: 1/62 hp	hp	Maryland/Mid-Atlantic TRM v.10, p. 348 ¹⁰⁰
kW/hp	Variable	Single-speed: 2.088 kW/hp Multi-speed: 0.758 kW/hp Default: 0.758 kW/hp	kW/hp	Maryland/Mid-Atlantic TRM v.10, p. 348
%On _{base}	Fixed	0.978	-	Maryland/Mid-Atlantic TRM v.10, p. 348
%Onee	Variable	Single-speed (on/off controls): 0.636 Multi-speed: 0.692	-	Maryland/Mid-Atlantic
		Default: 0.692		TRIVI V. 10, p. 349
HOU	Fixed	8,760	hours, annual	Maryland/Mid-Atlantic TRM v.10, p. 349
WHFe	Variable	Low Temp (-35°F to -1°F): 1.76 Med Temp (0°F - 30°F): 1.76 High Temp (31°F - 55°F): 1.38 Default: 1.38	-	Maryland/Mid-Atlantic TRM v.10, p.349
WHFd	Variable	Low Temp (-35°F1°F): 1.76 Med Temp (0°F - 30°F): 1.76 High Temp (31°F - 55°F): 1.38	-	Maryland/Mid-Atlantic TRM v.10, p. 349
CF _{summer}	Variable	Single-speed (on/off controls): 0.11 Multi-speed: 0.31	-	Maryland/Mid-Atlantic TRM v.10, p. 349 ¹⁰¹

Table 4-78. Input values for freezer and cooler evaporator fan controls saving calculations

¹⁰⁰ Default value not provided in Mid-Atlantic TRM, however the original source is the Commercial Refrigeration Loadshape Project NEEP 2015, p. 5, finds that the average new ECM motor is rated at 1/15 hp. This majority of motors studied were installed in walk-in cases. Therefore, 1/15 hp or 50 W is the default for walk-in applications. Default size for reach-in cases is the smallest motor sizes identified in this study, 1/62 hp or 12 W

¹⁰¹ The Maryland/Mid-Atlantic TRM references the Commercial Refrigeration Loadshape Project NEEP 2015 for the summer CF. The CFs are calculated and separated out for single-speed and multispeed summer CFs.

Docket No. E-22, Sub 645

Component	Туре	Value	Unit	Source(s)
CFwinter	Variable	Single-speed (on/off controls): 0.12 Multi-speed: 0.31	-	Maryland/Mid-Atlantic TRM v.10, p. 349 ¹⁰²

4.4.6.4 Default savings

If the proper values are not supplied, a default savings may be applied using conservative input values.

The default per-measure, gross annual electric energy savings for a high-temperature walk-in and reach-in coolers with a multi-speed evaporator motor will be assigned according to the following calculation, respectively:

Walk-in

$$\Delta kWh = hp \times \frac{kW}{hp} \times (\%On_{base} - \%On_{ee}) \times HOU \times WHF_e$$

 $=\frac{1}{15}hp \times 0.758 \frac{kW}{hp} \times (0.978 - 0.692) \times 8,760 \ hours \ \times 1.38$

 $= 174.14 \, kWh$

Reach-in

$$\Delta kWh = hp \times \frac{kW}{hp} \times (\%On_{base} - \%On_{ee}) \times HOU \times WHF_e$$
$$= \frac{1}{62}hp \times 0.758 \frac{kW}{hp} \times (0.978 - 0.692) \times 8,760 \text{ hours} \times 1.38$$
$$= 42.27 \text{ kWh}$$

The corresponding default per-measure, gross coincident demand reduction for walk-in and reach-in coolers will be assigned according to the following calculation, respectively:

Walk-In

$$\Delta kW_{summer} = hp \times \frac{kW}{hp} \times WHF_d \times CF_{summer}$$

$$=\frac{1}{15}hp \times 0.758 \frac{kW}{hp} \times 1.38 \times 0.26$$

¹⁰² The Maryland/Mid-Atlantic TRM does not provide a winter CF. The referenced Commercial Refrigeration Loadshape Project NEEP 2015 is used to calculate winter CF.

DNV

$$= 0.018 \, kW$$

$$\Delta k W_{winter} = hp \times \frac{kW}{hp} \times W H F_d \times C F_{winter}$$

$$=\frac{1}{15}hp \times 0.758 \frac{kW}{hp} \times 1.38 \times 0.26$$

$$= 0.018 \, kW$$

Reach-in

$$\Delta k W_{summer} = hp \times \frac{kW}{hp} \times W H F_d \times C F_{summer}$$

$$=\frac{1}{62}hp \times 0.758 \frac{kW}{hp} \times 1.38 \times 0.26$$

$$= 0.004 \, kW$$

$$\Delta k W_{winter} = hp \times \frac{kW}{hp} \times W H F_d \times C F_{winter}$$

$$=\frac{1}{62}hp \times 0.758 \frac{kW}{hp} \times 1.38 \times 0.26$$

$$= 0.004 \, kW$$

4.4.6.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-79.

Table 4-79. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program name	Value	Units	Source(s)
VIII	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	10.00	years	Maryland/Mid-Atlantic TRM v.10, p. 349
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

Docket No. E-22, Sub 645

4.4.6.6 Source(s)

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v.10, pp. 348-349.

4.4.6.7 Update summary

Updates made to this section are described in Table 4-80.

Version	Update type	Description	
2022	None	No change	
	Source	Updated page numbers / version of the Mid-Atlantic TRM	
	Input variable	Updated hp values	
2021	Default calculation	Updated default calculation	
	Equation	Added equation for coincident winter peak demand reduction	
	New table	Effective Useful Life (EUL) by program	
2020	None	No change	
v10	Source	Updated page numbers / version of the Mid-Atlantic TRM	
	Input variable	 Clarified kW/hp, WHFe, and WHFd default assumptions for values Updated hp, %Onbase and %Onee values 	

Table 4-80: Summary of update(s)

4.4.7 Floating head pressure control

4.4.7.1 Measure description

This measure realizes energy savings by adjusting the head-pressure setpoint in response to different outdoor temperatures. Without controls, the head-pressure setpoint is based on the design conditions regardless of the actual condenser operating conditions. By installing the floating-head pressure controller, the head-pressure setpoint is adjusted based on outside-air temperature. When conditions allow, the compressor operates at a lower discharge-head pressure, resulting in compressor energy savings.

4.4.7.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\frac{\Delta kWh}{hp} = \frac{kWh}{hp} \times hp_{comp}$$

Per-measure, gross coincident summer peak and winter peak demand reduction is zero¹⁰³, as shown in the following equations:

¹⁰³ Gross coincident demand savings are zero since savings are realized during off-peak periods. No demand reduction is expected from this measure.

OFFICIAL COPY

DNV

 $\Delta k W_{summer} = 0$

 $\Delta k W_{winter} = 0$

Where:

∆kWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction
kWh/hp	= floating head pressure control gross annual electric energy savings per compressor
	horsepower (hp)
hp _{comp}	= compressor horsepower

4.4.7.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

 Table 4-81. Input values for floating head pressure control savings calculations

Component	Туре	Value	Unit	Source(s)
kWh/hp	Variable	See Table 4-82 Default = 509 (High Temperature, Scroll Compressor)	kWh/ horsepower/ year	Maine Commercial TRM v2020.4, p. 95
bDaama	Variable	See customer application.	borsepower	Customer application
TPcomp		Default = 5	noisepower	Vermont TRM 2015, p. 132 ¹⁰⁴

Table 4-82. Floating-head pressure control gross annual electric energy savings (per horsepower)¹⁰⁵

	Electric savings (kWh/hp/year)					
Compressor type	Low temperature (-35°F to -1°F) (Temp _{ref} -20°F SST)	Medium temperature (0°F to 30°F) (Temp _{ref} 20°F SST)	High temperature (31°F to 55°F) (Temp _{ref} 45°F SST)			
Standard Reciprocating	695	727	657			
Discus	607	598	694			
Scroll	669	599	509			

4.4.7.4 Default savings

If the proper values are not supplied, a default savings may be applied using conservative input values.

The default gross annual electric energy savings will be assigned according to the following calculation:

¹⁰⁴ Vermont TRM 2015, p. 132. Assumes "5 HP compressor data used, based on average compressor size."

¹⁰⁵ Efficiency Maine Commercial TRM v2020.4, Table 16 – Floating Head Pressure Control kWh Savings per Horsepower, p. 95.

Docket No. E-22, Sub 645

DNV

$$\Delta kWh = \frac{kWh}{hp} \times hp_{comp}$$

$$= 509 \frac{kWh}{hp} \times 5 hp$$

$$= 2,545 kWh$$

The default gross coincident summer peak demand reduction will be assigned according to the following calculation:

$$\Delta k W_{summer} = 0$$

The default gross coincident winter peak demand reduction will be assigned according to the following calculation:

$$\Delta k W_{winter} = 0$$

4.4.7.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-83.

Table 4-83. Effective useful life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

4.4.7.6 Source(s)

The primary source for this deemed savings approach is the Maine Commercial TRM v2020, pp. 94-95. Additionally, the Vermont TRM 2015, p. 132, was used to estimate the default compressor size.

4.4.7.7 Update summary

Updates made to this section are described in Table 4-84.

Version	Update type	Description	
2022	None	No change	
2021	Source	Updated page number / version of the Maine Commercial TRM	
	New table	Effective Useful Life (EUL) by program	
2020	None	No change	
v10	Source	Updated page numbers / version of the Maine Commercial TRM	

Table 4-84. Summary of update(s)

Docket No. E-22, Sub 645

4.4.8 Low/Anti-sweat door film

4.4.8.1 Measure description

This measure involves the installation of window film on the doors of refrigerated cooler and freezer cases. Anti-sweat film prevents condensation from forming and collecting on refrigerated case doors. This measure saves energy by allowing anti-sweat heaters to be deactivated permanently. Typically, anti-sweat door heaters (ASDH) are installed on the glass itself to raise the surface temperature and prevent condensation from collecting on the glass. However, the low/anti-sweat door film eliminates the need for these heaters.¹⁰⁶ Note that this measure does not affect frame heaters.

The savings methodology borrows from that of ASDH controls. The baseline condition for this measure is refrigerated case doors with operational ASDH, with or without controls. The measure case is door film with no ASDHs in use. Refrigerated case doors without ASDH are not allowed under this measure. Door size is assumed to be 12.5 sq.ft. based on program design assumptions.

This measure is offered through different programs listed in Table 4-85 and uses the impacts estimation approach described in this section.

Table	4-85.	Programs	that offer	this	measure
Tuble	- 00.	riograms	that one	1113	measure

Program name	Section
Non-Residential Prescriptive Program, DSM Phase VI	Section 4.4.8
Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	Section 16.6.6

4.4.8.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = kW_{ASDH} \times DC \times HOU \times WHF_e$$

Per-measure, gross coincident summer peak demand reduction is assigned as follows:

$$\Delta kW_{summer} = kW_{ASDH} \times DC \times WHF_d \times CF_{summer}$$

Per-measure, gross coincident winter peak demand reduction is assigned as follows:

 $\Delta kW_{winter} = kW_{ASDH} \times DC \times WHF_d \times CF_{winter}$

Where:

 ΔkWh = per-measure, gross annual electric energy savings ΔkW_{summer} = per-measure, gross coincident summer peak demand reduction

¹⁰⁶ In some cases, ASDHs may not be deactivated altogether, but their controls are modified to drastically lower the dew-point setpoint thereby reducing the duration of heater operation. In these cases, it is assumed that the duration of heater operation is negligible.

DNV

∆kW _{winter} kW₄sdh	= per-measure, gross coincident winter peak demand reduction = rated power of the existing ASDH
DC	= duty cycle (effective run time) of the existing ASDH based on existing controls
HOU	= annual operating hours
WHFe	= waste heat factor (WHF) represents the increased gross annual electric savings due to
	reduced heat from ASDH that must be rejected by the refrigeration equipment
WHFd	= waste heat factor (WHF) represents the increased gross coincident demand reduction due to reduced heat from ASDH that must be rejected by the refrigeration equipment
CFsummer	= summer peak coincidence factor (CF)
CFwinter	= winter peak coincidence factor (CF)

4.4.8.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Units	Source(s)
		See customer application		Customer application
KWASDH	Variable	Default: 0.13	kW	Maryland/Mid-Atlantic TRM v.10, p. 344 ¹⁰⁷
DC	Variable	No controls: 0.907 On/Off controls: 0.589 Micropulse controls: 0.428	-	Maryland/Mid-Atlantic TRM v.10, p. 344
		Default: 0.428	-	Maryland/Mid-Atlantic TRM v.10, p. 345
HOU	Fixed	8,760	hours, annual	Maryland/Mid-Atlantic TRM v.10, p. 345
WHFe	Variable	Low temp (-35°F1°F): 1.50 Med temp (0°F - 30°F): 1.50 High temp (31°F - 55°F): 1.25	-	Maryland/Mid-Atlantic TRM v.10, p. 345
		Default: 1.25		
WHFd	Variable	Low temp (-35°F1°F): 1.50 Med temp (0°F - 30°F): 1.50 High temp (31°F - 55°F): 1.25	-	Maryland/Mid-Atlantic TRM v.10, p. 345
		Default: 1.25		
		Freezer (Low/med temp) case: On/Off controls: 0.21 Micropulse: 0.30 No controls: 1.00		Manyland/Mid-Atlantic TPM v 10
CFsummer	Variable	Default for freezer case: 0.21	21 ase: - - - - - - - - - - - - - - - - - - -	pp. 345 ¹⁰⁸ . Without heater
	Variable	Refrigerated (High temp) case: On/off controls: 0.25 Micropulse: 0.36 No controls: 1.00		controls, uniform load throughout year is assumed.
		Default for refrigerated case: 0.25		
CFwinter	Variable	Freezer (Low/med temp) case: On/off controls: 0.20 Micropulse: 0.29 No controls: 1.00		

	Table 4-86.	Input parameters	for low/no-sweat	door film
--	-------------	------------------	------------------	-----------

¹⁰⁷ Original source: Cadmus. 2015. Commercial Refrigeration Loadshape Project. Lexington, MA.

¹⁰⁸ Coincidence factors developed by dividing the PJM Summer Peak Savings for ASDH Controls from Table 52 of the original source by the product of the average wattage of ASDH per connected door (0.13 kW) and the Waste Heat Factor for Demand.

Component	Туре	Value	Units	Source(s)
		Default for freezer case: 0.20		
		Refrigerated (High Temp) case: On/Off controls: 0.24 Micropulse: 0.35 No controls: 1.00		Maryland/Mid-Atlantic TRM v.10, pp. 345 ¹⁰⁹ . Without heater controls, uniform load throughout year is assumed.
		Default for refrigerated case: 0.24		

4.4.8.4 **Default savings**

When the application does not have information about the ASDH control type, it is assumed to have micropulse controls. When the temperature range and the case type are also unknown, the case is assumed to be a hightemperature, refrigerated case.

Accordingly, the default per-measure gross annual energy savings are as follows:

 $\Delta kWh = kW_{ASDH} \times DC \times HOU \times WHF_e$ $= 0.13 \, kW \times 0.428 \times 8,760 \, hours \times 1.25$ $= 609.26 \, kWh$

And the default per-measure, gross coincident summer peak demand reduction is:

$$\Delta kW_{summer} = kW_{ASDH} \times DC \times WHF_d \times CF_{summer}$$
$$= 0.13 \ kW \times 0.428 \times 1.25 \times 0.25$$
$$= 0.017 \ kW$$

And the default per-measure, gross coincident winter peak demand reduction is:

$$\Delta kW_{winter} = kW_{ASDH} \times DC \times WHF_d \times CF_{winter}$$
$$= 0.13 \ kW \times 0.428 \times 1.25 \times 0.24$$
$$= 0.017 \ kW$$

OFFICIAL COPY

Jun 15 2023

¹⁰⁹ Applied the same methodology that Maryland/Mid-Atlantic TRM v.10, pp. 345 uses for summer CF and applied to the winter peak values provided by Cadmus. 2015. Commercial Refrigeration Loadshape Project

4.4.8.5 **Effective Useful Life**

The effective useful life of this measure is provided in Table 4-87.

Table 4-87. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
IX	Non-Residential Prescriptive Enhanced Program, DSM Phase IX	12.00	years	Maryland/Mid-Atlantic TRM v.10, p. 345
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

4.4.8.6 Source(s)

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v.10, pp. 344–345. The method was adapted from the ASDH controls methodology.

4.4.8.7 **Update summary**

Updates made to this section are described in Table 4-88.

Table 4-88. Sum	mary of update(s)			
Version	Update type	Description		
2022	None	No change		
2021	Source	Updated page number / version of the Mid-Atlantic TRM		
	Equation Added equation for coincident winter peak demand reduction			
	New table	Effective Useful Life (EUL) by program		
2020 None No change		No change		
v10	Source	Updated page numbers / version of the Mid-Atlantic TRM		
	Input variable	Clarified WHFe and WHFd default assumption values		

-1 - (- (-)

4.4.9 Refrigeration night cover

4.4.9.1 **Measure description**

This measure realizes energy savings by installing a cover to minimize the energy losses associated with top opencase refrigeration units. Walk-in units are not included in this measure. The cover is used during hours which the business is closed. The baseline equipment is a refrigerated case without a night cover.

This measure is offered through different programs listed in Table 4-89 and uses the impacts estimation approach described in this section.

 Table 4-89. Programs that offer this measure

Program name	Section
Non-Residential Prescriptive Program, DSM Phase VI	Section 4.4.9
Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	Section 8.5.2

4.4.9.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\frac{\Delta kWh}{12,000 Btuh/ton} \times \frac{3.516 kW/ton}{COP} \times L \times ESF \times HOU$$

Per-measure, gross coincident summer and winter peak demand reduction is zero,¹¹⁰ as shown in the following equations:

 $\Delta k W_{summer} = 0$

$$\Delta k W_{winter} = 0$$

Where:

ΔkWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident demand reduction
∆kW _{winter}	= per-measure gross coincident demand reduction
load	= average refrigeration load per linear foot of refrigerated case without night covers deployed
L	= linear feet of covered refrigerated case
COP	= coefficient of performance of refrigerated case
ESF	= energy savings factor; reflects the percentage reduction in refrigeration load due to the
	deployment of night covers
HOU	= annual hours of use

4.4.9.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

 Table 4-90. Input values for refrigeration night cover savings calculations

Component	Туре	Value	Unit	Source(s)
		See customer application	Btu/bour/	Customer application
load	Fixed	Default = 1,500	feet	Maryland/Mid-Atlantic TRM v.10, p. 342 ¹¹¹
L	Variable	See customer application	feet	Customer application
		Default = 6		DNV judgment

¹¹⁰ Mid-Atlantic TRM 2020, p. 343. Assumed that continuous covers are deployed at night; therefore, no demand savings occur during the peak period.

111 Mid-Atlantic 2020, p. 342. Original source: Davis Energy Group, Analysis of Standard Options for Open Case Refrigerators and Freezers.

Jun 15 2023

DNV

Component	Туре	Value	Unit	Source(s)
COP ¹¹²	Fixed	2.20	-	Maryland/Mid-Atlantic TRM v.10, p. 342
ESF ¹¹³	Fixed	0.09	-	Maryland/Mid-Atlantic TRM v.10, p. 342
HOU	Fixed	8,760	hours, annual	Maryland/Mid-Atlantic TRM v.10, p. 343

4.4.9.4 Default savings

If the proper values are not supplied, a default savings may be applied using conservative input values.

The default gross annual electric energy savings will be assigned according to the following calculation:

$$\Delta kWh = \frac{load}{12,000 Btuh/ton} \times L \times \frac{3.516 kW/ton}{COP} \times ESF \times HOU$$
$$= \frac{1,500 Btuh/feet}{12,000 Btuh/ton} \times \frac{3.516 kW/ton}{2.2} \times 6 feet \times 0.09 \times 8,760 hours$$
$$= 945.0 kWh$$

The default gross coincident summer and winter peak demand reduction will be assigned as follows:

$$\Delta k W_{summer} = 0$$

 $\Delta k W_{winter} = 0$

4.4.9.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-91.

Table 4-91. Effectiv	e Useful Life f	or lifecycle sa	avings calculations

DSM Phase	Program name	Value	Units	Source(s)
VIII	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	5.00	years	Maryland/Mid-Atlantic TRM v.10, p. 343
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

¹¹² Kuiken et al, Focus on Energy Evaluation, Business Programs: Deemed Savings Manual V1.0, KEMA, March 22, 2010.

¹¹³ Mid-Atlantic TRM 2020, p. 342. Original source: Effects of the Low Emissivity Shields on Performance and Power Use of a Refrigerated Display Case, Southern California Edison, August 8, 1997. Characterization assumes covers are deployed for six hours per day.

Docket No. E-22, Sub 645

4.4.9.6 Source(s)

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 342-343.

4.4.9.7 Update summary

Updates made to this section are described in Table 4-92.

Version	Update type	Description	
2022	None	No change	
2024	Source	Updated page numbers / version of the Maryland/Mid-Atlantic TRM v10	
2021	New table	Effective Useful Life (EUL) by program	
2020	None	No change	
×10	Source	Updated page numbers / version of the Mid-Atlantic TRM	
VIU	Default savings	Corrected mistaken default annual energy savings	

Table 4-92. Summary of update(s)

4.4.10 Refrigeration coil cleaning

4.4.10.1 Measure description

This measure realizes energy savings by cleaning the condenser coils on reach-in and walk-in coolers and freezers. Eligible units will have 25% fouling or greater based on visual inspection. This measure may only receive energy savings and demand reduction when combined with the floating head pressure measure.

This measure is offered through different programs listed in Table 4-93 and uses the impacts estimation approach described in this section.

Program name	Section
Non-Residential Prescriptive Program, DSM Phase VI	Section 4.4.10
Non-Residential Prescriptive Enhanced Program, DSM Phase IX	Section 16.6.7

4.4.10.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\frac{\Delta kWh}{12,000 Btuh/ton} \times \frac{3.156 kW/ton}{COP} \times HOU \times ESF$$

Per-measure, gross coincident summer peak demand reduction is calculated according to the following equation:
Docket No. E-22, Sub 645

Per-measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\frac{\Delta kW_{winter}}{12,000 \ Btuh/ton} \times \frac{3.156 \ kW/ton}{COP} \times DRF_{winter}$$

Where:

ΔkWh	= per-measure gross annual energy savings
ΔkW_{summer}	= per-measure gross coincident summer peak demand reduction
ΔkW_{summer}	= per-measure gross coincident summer peak demand reduction
load	= total capacity of condensers (BTU per hour)
COP	= coefficient of performance of refrigeration equipment
ESF	= savings factor attributable to coil cleaning for annual energy
DRFsummer	= savings factor attributable to coil cleaning for summer peak demand reduction
DRFwinter	= savings factor attributable to coil cleaning for winter peak demand reduction
HOU	= annual hours of use

4.4.10.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Unit	Source(s)
load	Variable	See customer application	Btu/h	Customer application
СОР	Variable	Low Temp (-35°F – -1°F): 1.30 Med Temp (0°F – 30°F): 1.30 High Temp (31°F – 55°F): 2.51	-	Pennsylvania TRM V3, 2019, p. 155
нои	Variable	Low Temp (-35°F1°F): 6,370 Med Temp (0°F - 30°F): 6,370 High Temp (31°F - 55°F): 6,173	hours, annual	Calculated duty cycle using weather factor, defrost factor, and capacity factor ¹¹⁴
ESF	Fixed	0.048	-	Qureshi and Zubair (2011) ¹¹⁵
DRF _{summer}	Fixed	0.022	-	Qureshi and Zubair (2011) ¹¹⁶
DRFwinter	Fixed	0.022	-	Qureshi and Zubair (2011) ¹¹⁷

Table 4-94. Input values for refrigeration coil cleaning savings calculations

4.4.10.4 Default savings

If the proper values are not supplied, no default savings will be awarded for this measure.

¹¹⁵ Qureshi B.A. and Zubair S.M., "Performance degradation of a vapor compression refrigeration system under fouled conditions." International Journal of Refrigeration 24 (2011), p. 1016 – 1027. Figure 2-(a). Assumes a weighting of refrigerant types of 80% R-134 and 20% R-404.

¹¹⁶ Ibid.

¹¹⁴ The duty cycle is calculated using the same method as is used by TVA 2016 TRM for refrigeration measures. For coolers, a defrost factor of 0.995, a capacity factor of 0.87, and a weather factor of 0.84 is assumed. For freezers, a defrost factor of 0.90, a capacity factor of 0.87, and a weather factor of 0.90 is assumed.

¹¹⁷ The source study for this measure does not provide a winter DRF. Therefore, the summer DRF is applied.

4.4.10.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-95.

Table 4-95. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
IX	Non-Residential Prescriptive Enhanced Program, DSM Phase IX	15.00	years	Pennsylvania TRM V3, 2019, p. 154
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

4.4.10.6 Source(s)

The primary sources for this deemed savings approach are the Pennsylvania TRM V3, 2019, p.155 and the technical paper titled, "Performance degradation of a vapor compression refrigeration system under fouled conditions.

4.4.10.7 Update summary

Updates made to this section are described in Table 4-96.

Version	Update type	Description
2022	None	No change
	Source	Updated page numbers / version of the Pennsylvania TRM
2024	Input value	Updated COP value
2021	Equation	Added equation for coincident winter peak demand reduction
	New table	Effective Useful Life (EUL) by program
2020	None	No Change
V10	None	No Change

Table 4-96. Summary of update(s)

4.4.11 Suction pipe insulation (cooler and freezer)

4.4.11.1 Measure description

This measure realizes energy savings by installing insulation on existing bare suction lines (lines that run from evaporator to compressor) that are located outside of the refrigerated space.

4.4.11.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

Per-measure, gross coincident summer and winter peak demand reduction are calculated according to the following equation:

$$\frac{\Delta k W_{summer}}{ft} = \frac{\Delta k W}{ft} \times L$$

$$\frac{\Delta k W_{winter}}{ft} = \frac{\Delta k W}{ft} \times L$$

Where:

ΔkWh	= per-measure gross annual electric energy savings
ΔkW_{summer}	= per-measure gross coincident demand reduction
ΔkW_{winter}	= per-measure gross coincident demand reduction
∆kWh/ft	= gross annual electric energy savings per linear foot
∆kW/ft	= gross coincident demand reduction per linear foot
L	= length of insulation applied in linear feet

4.4.11.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 1-07 In	nut values f	or suction	ning insulation	savings calculation	c
Table 4-97. III	put values i	or suction	pipe insulation	savings calculation	5

Component	Туре	Value Unit		Source(s)	
ΔkWh/ft	Variable	See Table 4-98	kWh/feet	Pennsylvania TRM V3, 2019, p. 178	
ΔkW/ft	Variable	See Table 4-98	kW/feet	Pennsylvania TRM V3 2019, p. 178 ¹¹⁸	
	Variable	See customer application	foot	Customer application	
		Default = 1	leel	Per unit savings	

Table 4-98.	Suction	pipe insulatio	n annua	l electric	energy	savings a	nd coincident	demand	reduction	n ¹¹⁹
										-

Refrigeration type	∆kWh/year∙ft	∆kW/ft
Low temperature (-35°F1°F)	85.5	0.016
Medium temperature (0°F - 30°F)	85.5	0.016
High temperature (31°F - 55°F)	24.8	0.005

 ¹¹⁸ The source TRM only provides summer peak demand reduction. Therefore, the summer CF is applied to the winter CF.
 ¹¹⁹ Pennsylvania TRM V3 2019, p. 178, original source: Southern California Edison Company, "Insulation of Bare Refrigeration Suction Lines", Work Paper WPSCNRRN0003.

DNV

4.4.11.4 Default savings

If the proper values are not supplied, a default savings value may be applied using conservative input values.

The default per-measure, gross annual electric energy savings will be assigned according to the following calculation:

$$\Delta kWh = \frac{\Delta kWh/year}{ft} \times L$$
$$= 24.8 \, kWh/ft \times 1 \, foot$$
$$= 24.8 \, kWh$$

The default per-measure, gross coincident demand reduction will be assigned according to the following calculation:

$$\Delta kW_{summer} = \frac{\Delta kW}{ft} \times L$$

$$= 0.005 \, kW/ft \times 1ft$$

$$= 0.005 \, kW$$

$$\Delta kW_{winter} = \frac{\Delta kW}{ft} \times L$$

$$= 0.005 \, kW/ft \times 1ft$$

$$= 0.005 \, kW$$

4.4.11.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-99.

Table 4-99. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

Docket No. E-22, Sub 645

4.4.11.6 Source(s)

The primary source for this deemed savings approach is the Pennsylvania TRM V3 2019, pp. 177–178.

4.4.11.7 Update summary

Updates made to this section are described in Table 4-100.

Version	Update type	Description
2022	None	No change
	Source	 Updated page numbers / version of the Pennsylvania TRM Updated footnote
2021	Input values	Update annual electric energy savings per linear foot ($\Delta kWh/ft$) and coincident demand reduction per linear foot ($\Delta kW/ft$)
	Equation	Added equation for coincident winter peak demand reduction
	New table	Effective Useful Life (EUL) by program
2020	None	No change
v10	Source	Updated footnote

Table 4-100. Summary of update(s)

4.4.12 Strip curtain (cooler and freezer)

4.4.12.1 Measure description

The measure realizes energy savings by installing strip curtains on walk-in coolers and freezers. Strip curtains reduce the refrigeration load by minimizing infiltration of non-refrigerated air into the refrigerated space of walk-in coolers or freezers. Strip curtains are assumed to be operational only during building operating hours. When buildings are not operational, coolers and freezers doors will be closed.

This measure is offered through different programs listed in Table 4-101 and uses the impacts estimation approach described in this section.

Table 4-101	. Programs	that	offer	this	measure
-------------	------------	------	-------	------	---------

Program name	Section
Non-Residential Prescriptive Program, DSM Phase VI	Section 4.4.12
Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	Section 8.5.7
Non-Residential Prescriptive Enhanced Program, DSM Phase IX	Section 16.6.8

4.4.12.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = kWh/ft^2 \times Area$$

Per-measure, gross coincident summer peak demand reductions are calculated according to the following equation:

Docket No. E-22, Sub 645

Per-measure, gross coincident winter peak demand reductions are calculated according to the following equation:

$$\frac{\Delta k W_{winter}}{HOU} = \frac{\Delta k W h}{HOU} \times C F_{winter}$$

Where:

∆kWh	= per-measure gross annual electric energy
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction
kWh/ft ²	= average annual kilowatt hour savings per square foot of infiltration barrier
Area	= area of doorway where strip curtains are installed
CFsummer	= summer coincidence factor
CF _{winter}	= winter coincidence factor

4.4.12.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 4-102. Input values for strip curtain savings calculations

Component	Туре	Value	Unit	Source(s)
∆kWh/sq.ft	Variable	See Table 4-103	kWh/sq.ft	Pennsylvania TRM V3, 2019, p. 167
		Default = 19		Assume convenience store, Cooler
Area	Variable	See Table 4-104	sa ft	Pennsylvania TRM V3, 2019, p. 168
		Default = 21	oq.it	Assume convenience store
HOU	Fixed	8,760	hours, annual	Wisconsin TRM 2019, p. 822
CF _{summer}	Fixed	1.0	-	Wisconsin TRM 2019, p. 822 ¹²⁰
CF _{summer}	Fixed	1.0	-	Wisconsin TRM 2019, p. 822 ¹²⁰

Table 4-103. Strip curtain gross annual electric energy savings (per sq.ft.)

Туре		Annual Electric Energy Savings per Square Foot (ΔkWh/sq.ft)
Grocery	Cooler	123
	Freezer	535
Convenience Store	Cooler	19
	Freezer	31

¹²⁰ The Wisconsin TRM 2019 does not provide summer or winter CFs. However, the equation for peak demand is kWh savings divided by annual hours implying a CF of 1.0.

Туре		Annual Electric Energy Savings per Square Foot (ΔkWh/sq.ft)
Restaurant	Cooler	24
	Freezer	129
Refrigerator	Cooler	410

 Table 4-104. Doorway area assumptions (sq.ft.)

Туре		Doorway Area (sq.ft)
Creeserv	Cooler	21
Grocery	Freezer	21
Convenience Store	Cooler	21
	Freezer	21
Restaurant	Cooler	21
	Freezer	21
Refrigerator	Cooler	120

4.4.12.4 Default savings

The default per-measure, gross annual electric energy savings will be assigned—assuming the strip curtains were installed at a cooler within a convenience store for the baseline conditions—according to the following calculation:

$$\Delta kWh = kWh/ft^2 \times Area$$
$$= 19 kWh/ft^2 \times 21 ft^2$$
$$= 399 kWh$$

The default per-measure, gross coincident summer peak demand reduction will be assigned according to the following calculation:

$$\Delta kW_{summer} = \frac{\Delta kWh}{HOU} \times CF_{summer}$$
$$= \frac{231 \, kWh}{8,760 \, hours} \times 1.0$$
$$= 0.026 \, kW$$

Docket No. E-22, Sub 645

The default per-measure, gross coincident winter peak demand reduction will be assigned according to the following calculation:

$$\Delta kW_{winter} = \frac{\Delta kWh}{HOU} \times CF_{winter}$$
$$= \frac{231 \, kWh}{8,760 \, hours} \times 1.0$$
$$= 0.026 \, kW$$

4.4.12.5 Effective Useful Life

The effective useful life of this measure is provided in Table 4-105.

Table 4-105. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)	
IX	Non-Residential Prescriptive Enhanced Program, DSM Phase IX	4.00	Vears	Wieconsin TRM 2020, p. 821	
VIII	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	4.00 years			
VI	Non-Residential Prescriptive Program, DSM Phase VI	6.30	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)	

4.4.12.6 Source(s)

The primary source for this deemed savings approach is the Pennsylvania TRM V3, 2019, pp. 166-168 and Wisconsin TRM 2020, p. 822.

4.4.12.7 Update summary

Updates made to this section are described in Table 4-106.

	iniary of apaato(o)		
Version	Update type	Description	
2022	None	No change	
	Source	Updated page numbers / version of the Pennsylvania TRM and Wisconsin TRM	
2021	Input value	Updated Area and $\Delta kWh/sq.ft$	
-	Equation	Added equation for coincident winter peak demand reduction	
	Default savings	Updated default savings	

Table 4-106. Summary of update(s)

Version	Update type	Description
	New table	Effective Useful Life (EUL) by program
2020	None	No change
×40	Source	Updated page numbers / version of the Pennsylvania TRM
VIU	Equation	Updated equations

Page 138

Docket No. E-22, Sub 645

5 NON-RESIDENTIAL DISTRIBUTED GENERATION PROGRAM, DSM PHASE II

The Non-Residential Distributed Generation (NRDG) Program is designed to reduce peak demand for the Company. During a Distributed Generation Program dispatch event, large non-residential customers are incentivized to transfer their electrical demand from the grid to a distributed on-site resource. A third-party contractor installs, monitors, and operates the distributed equipment controls.

Participants and the implementation contractor are notified 30 minutes in advance of an NRDG dispatch event by email or telephone. The number of dispatched sites, and the beginning and ending event-hours varies by event. The program operates 12 months a year, but annual event-hours are limited per the terms of the program.

5.1.1.1 Measure description

The impacts from the non-residential DG program are calculated by measuring the amount of aggregate and sitelevel kW generated by a distributed resource. The most important performance indicator is the program realization rate. The methodology for calculating the realization rate is presented below. A customer is compliant with the terms of the program if their average event-based generated kW, calculated monthly, is at least 95% of enrolled and committed kW.

5.1.1.2 Impacts Estimation Approach

At the site and interval level, the ex-post impact is defined as the measured kW generated by the distributed resource. Dispatched generation is the amount of electricity requested by the company during a non-residential DG event. The sources of dispatched generation and enrolled dispatchable supply can be found in The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 5-1.

5.1.1.3 Realization rate

The program realization rate for a given dispatch event (j) is the sum of measured generation (kW) from called participants (i) for the interval divided by the sum of dispatched generation for called participants.

 $\frac{Realization Rate_{j}}{\sum_{i} Dispatched Generation (kW)}$

Program performance is tracked by aggregating measured generation and dispatched generation by event interval and day. Event-day plots facilitate the analysis of realization rate patterns for the entire program.

5.1.1.4 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 5-1. In	put values for	non-residential	distributed	generation im	pact analy	vsis
	put values ioi	non-residential	uistiibuteu	generation ini	ρασι απαι	1313

Variable	Value	Unit	Source
Measured generation	Metered site data	kW	Dominion Energy

Dispatched generation	Event-based resource requested by Dominion Energy	kW	Dominion Energy
Enrolled dispatchable generation	Per program terms, fixed per site	kW	Dominion Energy

5.1.1.5 Default savings

Default savings will not be credited to a non-residential DG customer for unmeasured generation.

5.1.1.6 Effective Useful Life

The effective useful life of this measure is 1.00 years since demand reductions do not persist. The demand reductions are associated with the participation and events of each year.

5.1.1.7 Source(s)

DNV developed the non-residential DG evaluation methodology according to standard EM&V protocols.¹²¹

5.1.1.8 Update summary

Updates made to this section are described in Table 5-2.

Table 5-2. Summary of update(s)

Version	Update type	Description
2022	None	No change
2021	None	No change
2020	None	No change
v10	None	No change

Jun 15 2023

¹²¹ Miriam L. Goldberg & G. Kennedy Agnew. Measurement and Verification for Demand Response, National Forum on the National Action Plan on Demand Response, <u>https://www.ferc.gov/industries/electric/indus-act/demand-response/dr-potential/napdr-mv.pdf.</u>

6 NON-RESIDENTIAL SMALL MANUFACTURING PROGRAM, DSM PHASE VII

The Non-Residential Small Manufacturing Program provides qualifying business owners incentives to pursue one or more of the qualified energy efficiency measures through a local, participating contractor in Dominion Energy's contractor network. To qualify for this program, the customer must be responsible for the electric bill and must be the owner of the facility or reasonably able to secure permission to complete the measures. All program measures are summarized in Table 6-1.

End use	Measure	Legacy program	Manual section
	Compressed air nozzles	N/A	Section 6.1.1
	Leak repair	Non-residential small business improvement program	Section 6.1.2
	No loss drains		Section 6.1.3
Compressed air	Add storage (5 gal/cfm)		Section 6.1.4
	Heat of compression dryer		Section 6.1.5
	Low pressure-drop filter		Section 6.1.6
	VSD air compressor	N/A	Section 6.1.7
	Cycling refrigerant dryer		Section 6.1.8
	Dewpoint controls		Section 6.1.9
	Pressure reduction		Section 6.1.10
	Downsized VFD compressor		Section 6.1.11

Table 6-1. Non-Residentia	al Small Manufacturing	Program measure list
---------------------------	------------------------	----------------------

6.1 Compressed air end use

This section describes each measure and how energy and demand impacts are calculated. Due to the interactivity of the measures and the complexity of compressed air systems, savings are calculated in project-level spreadsheets. These spreadsheets are provided by the program implementer and reviewed by DNV. The desk reviews will verify that the appropriate baseline assumptions, operating hours, inputs, and calculations are used. The savings calculations and inputs shown in this section are in line with the implementer calculations.

6.1.1 Compressed air nozzle

6.1.1.1 Measure description

This measure realizes energy savings by replacing standard air nozzles with engineered air nozzles. Nozzles are used in industrial processes to deliver jets of compressed air to remove debris or liquid, cool parts, eject parts from conveyors, or to perform other manufacturing functions. Standard nozzles use 100% compressed air to perform these tasks whereas engineered nozzles use compressed air to entrain ambient air, thereby halving the compressed-air usage. Engineered nozzles provide the same force and functionality as standard nozzles, but use less compressed air and, therefore, less energy.

Qualifying nozzles may use no more compressed air, at 80 psig, than the maximum flowrates shown in Table 6-2.

Table 6-2. Maximum compressed air usage for qualifying nozzles

Nozzle diameter (inch)	Maximum flow rate at 80 psig (scfm)
1/8	11
1/4	29
5/16	56
1/2	140

6.1.1.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \left[scfm_{base} \times \left(\frac{kW}{scfm}\right)_{base} - scfm_{ee} \times \left(\frac{kW}{scfm}\right)_{ee}\right] \times Use \times HOU$$

The system air flow and loading values are calculated using the following equations:

$$scfm_{base} = scfm_{rated} \times Load_{base}$$
$$scfm_{ee} = scfm_{base} - \Delta scfm$$
$$Load_{ee} = \frac{scfm_{ee}}{scfm_{rated}}$$

If the system air flow and loading values are calculated using the following equations:

$$scfm_{ee} = scfm_{base} - \Delta scfm$$

$$\begin{array}{ll} Load_{ee} & = \frac{scfm_{ee}}{scfm_{rated}} \end{array}$$

To determine the reduction in flow rate from the standard to engineered nozzles, the following conditions and equations are used:

$$\Delta scfm = scfm_{80-psig,orifice} \times \left[\frac{p_{orifice} + 14.7}{(80 + 14.7)}\right]^n$$

Per-measure, gross coincident demand reduction is calculated according to the following equation:

DNV

$$\left(\frac{kW}{scfm}\right)_{base} = \frac{hp \times 1.1 \times 0.746}{0.945 \times \eta_{VFD}} \times \frac{\left(X_2 \times Load_{base}^2 + X_1 \times Load_{base} + C\right)}{scfm_{base}}$$

$$\left(\frac{kW}{scfm}\right)_{ee} = \frac{hp \times 1.1 \times 0.746}{0.945 \times \eta_{VFD}} \times \frac{\left(X_2 \times Load_{ee}^2 + X_1 \times Load_{ee} + C\right)}{scfm_{ee}}$$

Per-measure, gross summer peak coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \left[scfm_{base} \times \left(\frac{kW}{cfm}\right)_{base} - scfm_{ee} \times \left(\frac{kW}{cfm}\right)_{ee}\right] \times Use \times CF_{summer}$$

Per-measure, gross winter peak coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \left[scfm_{base} \times \left(\frac{kW}{cfm}\right)_{base} - scfm_{ee} \times \left(\frac{kW}{cfm}\right)_{ee} \right] \times Use \times CF_{winter}$$

Where:

ΔkWh	= per-measure gross annual electric energy savings
ΔkW _{summer}	= per-measure gross summer peak coincident demand reduction
ΔkW _{winter}	= per-measure gross winter peak coincident demand reduction
hp	= trim compressor rated horsepower
scfm _{rated}	= trim compressor rated flow rate
scfm _{base}	= base trim compressor operating flow
scfmee	 efficient trim compressor operating flow
∆scfm	= reduction in trim compressor operating flow
scfm _{80-psig, nozzle}	= reduction in nozzle flow rate at 80 psig
Load _{base}	= average percent of rated flow for base trim compressor
Loadee	= average percent of rated flow for base trim compressor with one engineered
	nozzle in operation
kW/scfm _{base}	= base trim compressor operating performance
kW/scfm _{ee}	 efficient trim compressor operating performance
р	= system operating pressure
n	= flowrate pressure adjustment coefficient
Dia	= diameter of nozzle
ηvfd	= VFD efficiency
X ₂	= coefficient
X ₁	= coefficient
С	= constant
Use	= percent of annual operating hours (HOU) that nozzle is in use
HOU	= annual hours of operation of compressor system
CF _{summer}	= summer coincidence factor
CFwinter	= winter coincidence factor

6.1.1.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table e el lipat falace lei cempreceda an nemice catinge calculaterie	Table 6-3. In	put values for	compressed a	ir nozzles savings	calculations
---	---------------	----------------	--------------	--------------------	--------------

Component	Туре	Value	Unit	Source(s)
scfm _{rated}	Variable	See customer application	scfm	Customer application
SCfm80-psig, nozzle	Variable	See Table 6-2	scfm	IL TRM V8.0 Vol. 2, 2020, p. 574
Lood	Verieble	See customer application		Customer application
LOadbase	variable	Default = 0.60] -	Engineering estimate
р	Variable	See customer application	psig	Customer application
n	Fixed	1.0	-	Engineering estimate
Dia	Variable	See customer application	inches	Customer application
ηνεσ	Variable	See Table 17-20 in Sub- Appendix F2-V: Non- residential compressed air end use factors	-	Engineering estimate, only applicable if the control type is VFD
X ₂	Variable	See Table 17-20 in Sub- Appendix F2-V: Non- residential compressed air end use factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
X ₁	Variable	See Table 17-20 in Sub- Appendix F2-V: Non- residential compressed air end use factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
с	Variable	See Table 17-20 in Sub- Appendix F2-V: Non- residential compressed air end use factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
	Variable	See customer application		Customer application
Use		Default = 0.05	-	Minnesota TRM V3.1, 2020, pp. 451
	Variable	See customer application	hours.	Customer application
HOU		Default = 6,240	annual	Minnesota TRM V3.1, 2020, pp. 451
CFsummer	Variable	See Table 17-21 in Sub- Appendix F2-V: Non- residential compressed air end use factors	-	Illinois TRM V8.0 Volume 2, 2020, pp. 575
		Default =0.59		Default based on single shift (8/5) operating schedule from IL TRM V8.0 Volume 2, 2020, pp. 575
CFwinter	Variable	See Table 17-21 in Sub- Appendix F2-V: Non- residential compressed air end use factors		Illionois TRM V8.0 Volume 2, 2020, pp. 575 ¹²²
		Default =0.59		Default based on single shift (8/5) operating schedule from IL

¹²² The source TRM does not differentiate between winter and summer peak periods. Therefore, DNV applied the same CF for summer and winter peak periods.

Component	Туре	Value	Unit	Source(s)
				TRM V8.0 Volume 2, 2020, pp. 575

6.1.1.4 Default savings

If the necessary values are not available, some values have defaults savings. However, there are no default savings for this measure as some values are essential to calculate savings.

6.1.1.5 Effective Useful Life

The Effective Useful Life of this measure is provided in Table 6-4.

Table 6-4. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VII	Non-Residential Small Manufacturing Program, DSM Phase VII	12.24	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

6.1.1.6 Source(s)

The system performance (kW/scfm) relies on performance curves for various control types as provided by Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004. Other sources include the IL TRM v.8.0 Vol.2 2020, pp. 573-575 and MN TRM v3.1 2020, pp. 450-452.

6.1.1.7 Update summary

Updates made to this section are described in Table 6-5.

Updates in Version	Update type	Description	
2022	None	No change	
	Source	Updated page numbers / version of the IL TRM and MN TRM	
2021	Table	Updated scfm _{80-psig} ,values based on nozzle size	
2021	New Table	Effective Useful Life (EUL) by program	
	Equation	Added gross winter peak demand reduction equation	
2020	None	No change	
v10	-	Initial release	

Table 6-5. Summary of update(s)

Jun 15 2023

6.1.2 Leak repair

6.1.2.1 Measure description

This measure realizes energy savings by repairing compressed air leaks. Reducing the amount of air leaked in the compressed air system reduces the load on the compressors and thereby saves energy.

Qualifying leaks must be identified, estimated, and tagged by a compressed-air professional.

6.1.2.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \left(scfm_{base} \times \left(\frac{kW}{scfm}\right)_{base} - scfm_{ee} \times \left(\frac{kW}{scfm}\right)_{ee}\right) \times HOU$$

The baseline system air flow is calculated using the following equation:

$$scfm_{base} = scfm_{rated} \times Load_{base}$$

The efficient system air flow and loading values are calculated using the following equations:

$$scfm_{ee} = scfm_{base} - \Delta scfm$$

$$\begin{array}{ll} Load_{ee} & = \frac{scfm_{ee}}{scfm_{rated}} \end{array}$$

The baseline and efficient system operating performances are calculated using the following equations:

$$\left(\frac{kW}{scfm}\right)_{base} = \frac{hp \times 1.1 \times 0.746}{0.945 \times \eta_{VFD}} \times \frac{\left(X_2 \times Load_{base}^2 + X_1 \times Load_{base} + C\right)}{scfm_{base}}$$
$$\left(\frac{kW}{scfm}\right)_{ee} = \frac{hp \times 1.1 \times 0.746}{0.945 \times \eta_{VFD}} \times \frac{\left(X_2 \times Load_{ee}^2 + X_1 \times Load_{ee} + C\right)}{scfm_{ee}}$$

Per-measure, gross summer peak coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \left(scfm_{base} \times \left(\frac{kW}{cfm}\right)_{base} - scfm_{ee} \times \left(\frac{kW}{cfm}\right)_{ee}\right) \times CF_{summer}$$

Per-measure, gross winter peak coincident demand reduction is calculated according to the following equation:

DNV

Jun 15 2023

Where:

= per-measure gross annual electric energy savings
$_{er}$ = per-measure gross summer peak coincident demand reduction
= per-measure gross winter peak coincident demand reduction
= trim compressor rated horsepower
= trim compressor rated flow rate
= baseline trim compressor operating flow
= efficient trim compressor operating flow
= efficient trim compressor operating flow reduction
= average percent of rated flow for base trim compressor
= average percent of system flow after leaks are repaired
= baseline system operating performance
efficient system operating performance
= VFD efficiency
= coefficient
= coefficient
= constant
= annual hours of operation of compressor system
= summer coincidence factor
= winter coincidence factor

 $\Delta kW_{winter} = \left(scfm_{base} \times \left(\frac{kW}{cfm}\right)_{base} - scfm_{ee} \times \left(\frac{kW}{cfm}\right)_{ee}\right) \times CF_{winter}$

6.1.2.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Units	Sources
hp	Variable	See customer application	hp	See customer application
scfm _{rated}	Variable	See customer application	scfm	See customer application
Δscfm	Variable	See customer application	-	See customer application
Lood	Variable	See customer application		See customer application
Load _{base}	Variable	Default = 0.60	1 -	Engineering estimate
η vfd	Variable	See Table 17-20 in Sub- Appendix F2-V: Non- residential compressed air end use factors	-	Engineering estimate; only applicable for VFD-controlled compressors
X ₂	Variable	See Table 17-20 in Sub- Appendix F2-V: Non- residential compressed air end use factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
X ₁	Variable	See Table 17-20 in Sub- Appendix F2-V: Non- residential compressed air end use factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004

Table 6-6. Input values for leak savings calculations

Component	Туре	Value	Units	Sources
с	Variable	See Table 17-20 in Sub- Appendix F2-V: Non- residential compressed air end use factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
ноц	Variable	See customer application	hours,	See customer application
поо	Variable	Default=6,240	annual	Minnesota TRM V3.1, 2020, p. 451
CF _{summer}	Variable	See Table 17-21 in Sub- Appendix F2-V: Non- residential compressed air end use factors		Illinois TRM V8.0 Volume 2, 2020, pp. 575
		Default =0.59		Default based on single shift (8/5) operating schedule from IL TRM V8.0 Volume 2, 2020, p. 575
CFwinter	Variable	See Table 17-21 in Sub- Appendix F2-V: Non- residential compressed air end use factors	-	Illinois TRM v8.0 Volume 2, 2020, p. 575 ¹²³
		Default =0.59		Default based on single shift (8/5) operating schedule from IL TRM V8.0 Volume 2, 2020, p. 575

6.1.2.4 Default savings

If the proper values are not available, some values have defaults savings. However, there are no default savings for this measure as some values are needed to calculate savings.

6.1.2.5 Effective Useful Life

The effective useful life of this measure is provided in Table 6-7.

DSM Phase	Program name	Value	Units	Source(s)
VII	Non-Residential Small Manufacturing Program, DSM Phase VII	12.24	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

6.1.2.6 Source(s)

The system performance (kW/scfm) relies on performance curves for various control types as provided by Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004. Other sources include the IL TRM V8.0 Vol. 2, 2020, pp. 573-575 and MN TRM V3.1, 2020, pp. 450-452.

¹²³ The source TRM doesn't differentiate between winter and summer peak periods. Therefore, the summer CF is applied to the winter CF.

6.1.2.7 Update summary

Updates made to this section are described in Table 6-8.

Table 6-	-8. Summa	ry of	update	(s)
----------	-----------	-------	--------	-----

Version	Update type	Description	
2022	None	No change	
	Source	Updated page numbers / version of the IL TRM and MN TRM	
2021	New table	Effective Useful Life (EUL) by program	
2021	Equation	 Added gross winter peak demand reduction equation Updated the Δscfm value to customer application 	
2020	Input	Added default value for hours of use	
v10	-	Initial release	

6.1.3 No-loss condensate drain

6.1.3.1 Measure description

This measure involves the installation of a no-loss condensate drain on a compressed-air line. Timed drains open the drain at regular periods for a set amount of time. After timed drains open to drain the condensate, they allow compressed air to leak. Typically, these drains are set for the worst-case conditions resulting in a significant amount of wasted compressed air. No-loss drains use sensors to assess when the drain should open and for how long. This eliminates the loss of compressed air when the drain purges. Energy is saved by reducing the load on the compressed-air system.

Qualifying drains are no-loss drains that do not vent compressed air when draining condensate.

6.1.3.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \left(scfm_{base} \times \left(\frac{kW}{scfm}\right)_{base} - scfm_{ee} \times \left(\frac{kW}{scfm}\right)_{ee}\right) \times HOU$$

To determine the reduction in flow rate from the leak repair, the following equation is used:

$$\Delta scfm = scfm_{100-psig,orifice} \times \left(\frac{p+14.7}{(100+14.7)}\right)^n$$

The baseline system air flow is calculated using the following equation:

$$scfm_{base} = scfm_{rated} \times Load_{base}$$

The efficient system air flow and loading values are calculated using the following equations:

Docket No. E-22, Sub 645

DN\

$$scfm_{ee} = scfm_{base} - \Delta scfm$$

$$\frac{Load_{ee}}{scfm_{rated}} = \frac{scfm_{ee}}{scfm_{rated}}$$

The base and efficient system operating performances are calculated by the following equations:

$$\left(\frac{kW}{scfm}\right)_{base} = \frac{hp \times 1.1 \times 0.746}{0.945 \times \eta_{VFD}} \times \frac{\left(X_2 \times Load_{base}^2 + X_1 \times Load_{base} + C\right)}{scfm_{base}}$$
$$\left(\frac{kW}{scfm}\right)_{ee} = \frac{hp \times 1.1 \times 0.746}{0.945 \times \eta_{VFD}} \times \frac{\left(X_2 \times Load_{ee}^2 + X_1 \times Load_{ee} + C\right)}{scfm_{ee}}$$

Per-measure, gross summer peak coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \left(scfm_{base} \times \left(\frac{kW}{scfm}\right)_{base} - scfm_{ee} \times Qty \times \left(\frac{kW}{scfm}\right)_{ee}\right) \times CF_{summer}$$

Per-measure, gross summer peak coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \left(scfm_{base} \times \left(\frac{kW}{scfm}\right)_{base} - scfm_{ee} \times Qty \times \left(\frac{kW}{scfm}\right)_{ee}\right) \times CF_{winter}$$

Where:

ΔkWh = per-measure gross annual electric energy savings ΔkW summer = per-measure gross summer peak coincident demand reduction ΔkW_{winter} = per-measure gross winter peak coincident demand reduction = trim compressor rated horsepower hp scfm_{rated} = trim compressor rated flow rate = baseline trim compressor operating flow scfm_{base} = efficient trim compressor operating flow scfmee = efficient trim compressor operating flow ∆scfm scfm_{100-psig}, drain = reduction in flow rate at 100 psig = flowrate pressure adjustment coefficient n = percent of trim compressor load with standard drains Load_{base} = percent of trim compressor load with no loss drains Loadee kW/scfm_{base} = baseline system operating performance kW/scfm_{EE} = efficient system operating performance р = system operating pressure = VFD efficiency η_{VFD} X₂ = coefficient X₁ = coefficient С = constant HOU = annual hours of operation of compressor system *CF_{summer}* = summer coincidence factor

DNV

 CF_{winter} = winter coincidence factor

6.1.3.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 6-9. Input parameters for no-loss c	condensate drain savings calculations
---	---------------------------------------

Component	Туре	Value	Units	Source
hp	Variable	See customer application	hp	Customer application
scfm _{rated}	Variable	See customer application	scfm	Customer application
scfm _{100-psig,drain}	Fixed	3.0	scfm	Illinois TRM v.8.0 Vol. 2 2020, p. 571
n	Fixed	1.0	-	Engineering estimate
Load _{base}	Variable	See customer application; Default = 0.60	-	Customer application Engineering estimate
р	Variable	See customer application	psig	Customer application
ηνεσ	Variable	See Table 17-20 in Sub- Appendix F2-V: Non- residential compressed air end use factors	-	Engineering estimate, only applicable for VFD-controlled compressors
X2	Variable	See Table 17-20 in Sub- Appendix F2-V: Non- residential compressed air end use factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
X1	Variable	See Table 17-20 in Sub- Appendix F2-V: Non- residential compressed air end use factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
с	Variable	See Table 17-20 in Sub- Appendix F2-V: Non- residential compressed air end use factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
ноц	Variable	See customer application	hours,	See customer application
100	Variable	Default=6,240	annual	Minnesota TRM v 3.1 2020, p. 451
CFsummer	Variable	See Table 17-21 in Sub- Appendix F2-V: Non- residential compressed air end use factors	_	Illinois TRM v 8.0 Volume 2 2020, p. 575
		Default =0.59		Default based on single shift (8/5) operating schedule from IL TRM v 8.0 Volume 2 2020, p. 575
CF _{winter}	Variable	See Table 17-21 in Sub- Appendix F2-V: Non- residential compressed air end use factors		Illinois TRM v 8.0 Volume 2 2020, p. 575 ¹²⁴
		Default =0.59		Default based on single shift (8/5) operating schedule from IL TRM v 8.0 Volume 2 2020, p. 575

Jun 15 2023

¹²⁴ The source TRM doesn't differentiate between winter and summer peak periods. Therefore, the summer CF is applied to the winter CF.

DNV

6.1.3.4 Default savings

If the proper values are not available, some values have defaults savings. However, there are no default savings for this measure as some values are needed to calculate savings.

6.1.3.5 Effective Useful Life

The effective useful life of this measure is provided in Table 6-10.

Table 6-10. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VII	Non-Residential Small Manufacturing Program, DSM Phase VII	12.24	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

6.1.3.6 Source(s)

The system performance (kW/scfm) relies on performance curves for various control types as provided by Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004.Other sources include the Illinois TRM V8.0 Vol.2, 2020, pp. 573-575 and Minnesota TRM V3.1, 2020, pp. 450-452.

6.1.3.7 Update summary

Updates made to this section are described in Table 6-11.

Version	Update type	Description
2022	None	No change
	Source	Updated page numbers / version of the IL TRM and MN TRM
2021	New table	Effective Useful Life (EUL) by program
	Equation	Added gross winter peak demand reduction equation
2020	Equation	 Added η_{VFD} to the kW/scfm equations. Removed quantity from the ∆scfm equation
	Inputs	Added default operating hours
v10	-	Initial release

Table 6-11. Summary of update(s)

6.1.4 Add storage

6.1.4.1 Measure description

This measure involves adding an air receiver with a flow controller on a load/no-load compressor system. Load/no-load compressors transition gradually from loaded to unloaded operation. Using storage and a flow controller the compressor has reduced cycling from loaded to unloaded operation. With fewer cycles the compressor spends less

Docket No. E-22, Sub 645

time transitioning, saving energy. The baseline case for savings is the existing storage capacity per cfm, which is expected to be 1 or 2 gallon/cfm.

Qualifying storage is at least 5 gallons of storage capacity per CFM capacity. This measure is eligible for load/no-load compressor systems.

6.1.4.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated per compressed air system according to the following equation:

$$\Delta kWh = scfm_{base} \times \left[\left(\frac{kW}{scfm} \right)_{base} - \left(\frac{kW}{scfm} \right)_{ee} \right] \times HOU$$

The baseline system air flow and is calculated using the following equation:

 $scfm = scfm_{rated} \times Load$

The baseline and efficient system operating performance values are calculated by the following equations:

$$\left(\frac{kW}{scfm}\right)_{base} = \frac{hp \times 1.1 \times 0.746}{0.945} \times \frac{\left(X_{2,base} \times Load^2 + X_{1,base} \times Load + C_{base}\right)}{scfm}$$
$$\left(\frac{kW}{scfm}\right)_{ee} = \frac{hp \times 1.1 \times 0.746}{0.945} \times \frac{\left(X_{2,ee} \times Load^2 + X_{1,ee} \times Load + C_{ee}\right)}{scfm}$$

Per-measure, gross summer peak coincident demand reduction is calculated per compressed air system according to the following equation:

$$\Delta kW_{summer} = scfm_{base} \times \left[\left(\frac{kW}{scfm} \right)_{base} - \left(\frac{kW}{scfm} \right)_{ee} \right] \times CF_{summer}$$

Per-measure, gross summer peak coincident demand reduction is calculated per compressed air system according to the following equation:

$$\Delta kW_{winter} = scfm_{base} \times \left[\left(\frac{kW}{scfm} \right)_{base} - \left(\frac{kW}{scfm} \right)_{ee} \right] \times CF_{winter}$$

Where:

 $\Delta kWh = per-measure gross annual electric energy savings$ $\Delta kW _{summer} = per-measure gross summer peak coincident demand reduction$ $\Delta kW _{winter} = per-measure gross winter peak coincident demand reduction$ scfm = trim compressor operating flow $kW/scfm_{base} = base trim compressor operating performance$

Docket No. E-22, Sub 645

kW/scfm _{ee}	= efficient trim compressor operating performance
scfmrated	= trim compressor rated flow rate
scfm _{rated}	= trim compressor rated flow rate
hp	= compressor rated horsepower ¹²⁵
Load	= average operating airflow rate percent of full load conditions of trim compressor
X _{2,base}	= coefficient
X _{1,base}	= coefficient
Cbase	= constant
X _{2,ee}	= coefficient
X _{1,ee}	= coefficient
Cee	= constant
HOU	= annual hours of operation of compressor system
CF _{summer}	= summer coincidence factor
CF_{winter}	= winter coincidence factor

6.1.4.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Units	Source
hp	Variable	See customer application	hp	Customer application
scfm _{rated}	Variable	See customer application	scfm	Customer application
Load	Variable	See customer application		Customer application
Luau	Valiable	Default = 0.60	-	Engineering estimate
X _{2,base}	Variable	See Table 17-20 in Sub- Appendix F2-V: Non-residential compressed air end use factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
X _{1,base}	Variable	See Table 17-20 in Sub- Appendix F2-V: Non-residential compressed air end use factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
C _{base}	Variable	See Table 17-20 in Sub- Appendix F2-V: Non-residential compressed air end use factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
X _{2,ee}	Variable	See Table 17-20 in Sub- Appendix F2-V: Non-residential compressed air end use factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
X _{1,ee}	Variable	See Table 17-20 in Sub- Appendix F2-V: Non-residential compressed air end use factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
Cee	Variable	See Table 17-20 in Sub- Appendix F2-V: Non-residential compressed air end use factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
		See customer application		See customer application
HOU	Variable	Default=6,240	hours	Minnesota TRM v 3.1 2020, p. 451

 Table 6-12. Input parameters for add storage (5 gallon/cfm) savings calculations

¹²⁵ With multiple fully loaded compressors, and only one part loaded unit, the horsepower and capacity (cfm) relate to the horsepower and capacity of the partly loaded compressor.

Component	Туре	Value	Units	Source
CF _{summer}	Variable	See Table 17-21 in Sub- Appendix F2-V: Non-residential compressed air end use factors	-	Illinois TRM v 8.0 Volume 2 2020, p. 575
		Default =0.59		Default based on single shift (8/5) operating schedule from IL TRM v 8.0 Volume 2 2020, p. 575
CFwinter		See Table 17-21 in Sub- Appendix F2-V: Non-residential compressed air end use factors	-	IL TRM v 8.0 Volume 2 2020, p. 575 ¹²⁶
	Variable	Default =0.59		Default based on single shift (8/5) operating schedule from IL TRM v 8.0 Volume 2 2020, p. 575

6.1.4.4 Default savings

If the proper values are not available, some values have defaults savings. However, there are no default savings for this measure as some values are needed to calculate savings.

6.1.4.5 Effective Useful Life

The effective useful life of this measure is provided in Table 6-13.

Table 6-13. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VII	Non-Residential Small Manufacturing Program, DSM Phase VII	12.24	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

6.1.4.6 Source(s)

The system performance (kW/scfm) relies on performance curves for various control types as provided by Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004. Other sources include the Illinois TRM V8.0 Vol.2, 2020, pp. 573-575 and Minnesota TRM V3.1, 2020, pp. 450-452.

6.1.4.7 Update summary

Updates made to this section are described in Table 6-14.

Table 0-14. Summary of update(S)	Table	6-14.	Summary	of	update(s))
----------------------------------	-------	-------	---------	----	-----------	---

Version	Update type	Description
2022	None	No change

¹²⁶ The source TRM doesn't differentiate between winter and summer peak periods. Therefore, the summer CF is applied to the winter CF.

Jun 15 2023

Docket No. E-22, Sub 645

DNV

Version	Update type	Description	
	Source	Updated page numbers / version of the IL TRM and MN TRM	
2021	New table	Effective Useful Life (EUL) by program	
	Equation	Added gross winter peak demand reduction equation	
2020	Inputs	Added default operating hours and CF value	
v10	-	Initial release	

6.1.5 Heat-of-compression dryer

6.1.5.1 Measure description

This measure replaces a standard purge-desiccant dryer with a heat-of-compression dryer. Standard desiccant dryers use compressed air to purge moisture from the desiccant. These dryers can use a significant amount of a system's rated compressed air capacity for drying. Heat-of-compression dryers, however, utilize the waste heat from the compressed air to recharge (dry) the desiccant. This saves energy by reducing the need to use compressed air for drying. The baseline is a standard purge desiccant dryer.

The installed equipment is a rotating drum or twin tower desiccant dryer that utilizes the heat of compression from the air compressor to regenerate the desiccant material.

6.1.5.2 Impacts Estimation Approach

Per dryer, the gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \left[scfm_{base} \times \left(\frac{kW}{scfm}\right)_{base} + kW_{heater,base} + kW_{blower,base} + kW_{refrig,base} - (1 + PSF \times (p_{base} - p_{ee})) \left(scfm_{ee} \times \left(\frac{kW}{scfm}\right)_{ee} \right) \right] \times HOU$$

To determine the reduction in airflow rate due to the new dryer type, the following equation is used:

$$scfm_{reduced} = scfm_{dryer, rated, base} \times Purge_{base} - scfm_{dryer, rated, ee} \times Purge_{ee}$$

The baseline airflow rate and loading are calculated using the following equations:

$$scfm_{base} = scfm_{rated} \times Load_{base}$$

$$\frac{Load_{dryer,base}}{scfm_{dryer,rated,base}} = \frac{scfm_{base}}{scfm_{dryer,rated,base}}$$

The efficient system air flow and loading is calculated using the following equations:

DNV

 $scfm_{ee} = scfm_{base} - scfm_{reduced}$

$$\begin{array}{l} Load_{ee} \\ = \frac{scfm_{ee}}{scfm_{rated}} \end{array}$$

The base and efficient system operating performance values are calculated by the following equations:

$$\left(\frac{kW}{scfm}\right)_{base} = \frac{hp \times 1.1 \times 0.746}{0.945 \times \eta_{VFD}} \times \frac{\left(X_2 \times Load_{base}^2 + X_1 \times Load_{base} + C\right)}{scfm_{base}}$$
$$\left(\frac{kW}{scfm}\right)_{ee} = \frac{hp \times 1.1 \times 0.746}{0.945 \times \eta_{VFD}} \times \frac{\left(X_2 \times Load_{ee}^2 + X_2 \times Load_{ee} + C\right)}{scfm_{ee}}$$

The load due to each component is calculated using the following equations:

$$\frac{kW_{blower,base}}{0.957} = \frac{hp_{blower,base} \times 0.8 \times 0.746}{0.957}$$

 $kW_{heater,base} = kW_{heater,base} \times Use_{heater,base}$

$$kW_{refrig,base} = kW_{refrig,base,rated} \times (R_1 \times Load_{dryer,base} + K)$$

Per dryer, the gross summer coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \left[scfm_{base} \times \left(\frac{kW}{scfm}\right)_{base} + kW_{heater,base} + kW_{blower,base} + kW_{refrig,base} - \left(1 + PSF \times (p_{base} - p_{ee})\right) \left((scfm_{ee}) \times \left(\frac{kW}{scfm}\right)_{ee} \right) \right] \times CF_{summer}$$

Per dryer, the gross summer coincident demand reduction is calculated according to the following equation:

Docket No. E-22, Sub 645

DNV

$$\begin{split} \Delta kW_{winter} &= \left[scfm_{base} \times \left(\frac{kW}{scfm} \right)_{base} + kW_{heater,base} + kW_{blower,base} \right. \\ &+ kW_{refrig,base} - \left(1 \right. \\ &+ PSF \times \left(p_{base} - p_{ee} \right) \right) \left(\left(scfm_{ee} \right) \times \left(\frac{kW}{scfm} \right)_{ee} \right) \right] \times CF_{winter} \end{split}$$

Where:

ΔkWh	= per-measure gross annual electric energy savings
∆kW _{summe}	r_r = per-measure gross summer peak coincident demand reduction
∆kW _{winter}	= per-measure gross winter peak coincident demand reduction
hp	= trim compressor rated horsepower
scfm _{rated}	= trim compressor rated flow
scfm _{base}	= base trim compressor operating flow
scfm _{ee}	= efficient trim compressor operating flow
scfmreduced	= average reduction in flow resulting from replacing base dryer
scfmdryer, rat	ed, base = base dryer rated flow
scfmdryer, rat	ed, ee = efficient cycling dryer rated flow
Type _{dryer,bas}	se = baseline dryer type
Purgebase	= purge percent of base dryer
Purgeee	= purge percent of EE dryer
Load _{base}	 average percent of rated flow for trim compressor
Loaddryer bas	are = average operating proportion of baseline dryer rated airflow
Loadee	= average operating percent of trim compressor rated flow with the heat of compression dryer
kWheater,base	e average operating kW of the baseline heater
kWblower,base	e = average operating kW of the baseline blower
kW _{refrig,base}	= average operating kW of the baseline refrigerated dryer
hpblower.base	= rated hp of blower in baseline dryer
Useheater,bas	$_{\text{re}}$ = proportion of operating time that heater is in use
kWrefrig,base,	rated = the rated kW of the baseline dryer
R₁	= coefficient
K	= coefficient
kW/scfm _{bas}	e = baseline system operating performance
kW/scfm _{ee}	= efficient system operating performance
Pbase	= system operating pressure of baseline system
p _{ee}	= system operating pressure of efficient system
PSF	= pressure savings factor
η_{VFD}	= VFD efficiency
X2	= coefficient
X1	= coefficient
С	= constant
HOU	= annual hours of use
CF _{summer}	= summer coincidence factor

 CF_{winter} = winter coincidence factor

6.1.5.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 6-15. Input parameters for heat of compression dryer

Component	Туре	Value	Units	Sources
hp	Variable	See customer application	hp	Customer application
scfm _{rated}	Variable	See customer application	scfm	Customer application
scfm _{dryer,rated,base}	Variable	see customer application	scfm	Customer application
scfmdryer,rated ee	Variable	see customer application	scfm	Customer application
Purgebase	Variable	See Table 17-23 in Sub-Appendix F2-V: Non-residential compressed air end use factors	-	Desiccant purge rates are from: Dryer Selection for Compressed Air Systems, Compressed Air Challenge, 1999. no purge for other dryer types
Purgeee	Fixed	0.02	-	Engineering estimate
Lood	Variable	See customer application		Customer application
LOadbase	variable	Default = 0.60] -	Engineering estimate
hpblower,base	Variable	See customer application (for blower purge and heated blower purge, only)	hp	Customer application
kWheater,base	Variable	See customer application (for heated blower purge and heated desiccant dryer types, only)	kW	Customer application
USe heater,base	Variable	Assigned by baseline blower type: heated blower purge = 0.75 heated desiccant dryer = 1.00	-	Based on engineering judgment
kW refrig,rated,base	Variable	See customer application, only applicable to: Non-cycling refrigerated Cycling refrigerated VFD refrigerated Digital Scroll refrigerated	kW	Customer application
R ₁	Variable	See Table 17-22 in Sub-Appendix F2-V: Non-residential compressed air end use factors for refrigerated dryers, only	-	Compressed Air Challenge, Cycling Refrigerated Air Dryers - Are Savings Significant
к	Variable	See Table 17-22 in Sub-Appendix F2-V: Non-residential compressed air end use factors for refrigerated dryers, only	-	Compressed Air Challenge, Cycling Refrigerated Air Dryers - Are Savings Significant
Pbase	Variable	See customer application	psig	Customer application
Pee	Variable	See customer application	psig	Customer application
PSF	Fixed	0.005	1/psig	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
η_{VFD}	Variable	See Table 17-20 in Sub-Appendix F2-V: Non-residential compressed air end use factors	-	Engineering estimate; only applicable if the control type is a VFD

Component	Туре	Value	Units	Sources
X2	Variable	See Table 17-20 in Sub-Appendix F2-V: Non-residential compressed air end use factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
X 1	Variable	See Table 17-20 in Sub-Appendix F2-V: Non-residential compressed air end use factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
с	Variable	See Table 17-20 in Sub-Appendix F2-V: Non-residential compressed air end use factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
		See customer application	houro	See customer application
HOU	Variable	Default=6,240	annual	Minnesota TRM v 3.1 2020, p. 451
CFsummer	Fixed	See Table 17-21 in Sub-Appendix F2-V: Non-residential compressed air end use factors	-	Illinois TRM v 8.0 Volume 2 2020, p. 575
		Default =0.59		Default based on single shift (8/5) operating schedule from IL TRM v 8.0 Volume 2 2020, p. 575
		See Table 17-21 in Sub-Appendix F2-V: Non-residential compressed air end use factors		Illinois TRM v 8.0 Volume 2 2020, p. 575 ¹²⁷
CFwinter	Variable	Default =0.59		Default based on single shift (8/5) operating schedule from IL TRM v 8.0 Volume 2 2020, p. 575

6.1.5.4 Default savings

There are no default savings for this measure as site-specific values are required to calculate savings.

6.1.5.5 Effective Useful Life

The Effective Useful Life of this measure is provided in Table 6-16.

Table 6-16. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VII	Non-Residential Small Manufacturing Program, DSM Phase VII	12.24	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

6.1.5.6 Source(s)

The system performance (kW/scfm) relies on performance curves for various control types as provided by Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004. Other sources include the Illinois TRM

¹²⁷ The source TRM doesn't differentiate between winter and summer peak periods. Therefore, the summer CF is applied to the winter CF.

Docket No. E-22, Sub 645

v.8.0 Vol.2 2020, pp. 573-575, Minnesota TRM v3.1 2020, pp. 450-452 and Dryer Selection for Compressed Air Systems, Compressed Air Challenge, 1999.

6.1.5.7 Update summary

Updates made to this section are described in Table 6-17.

Version	Update type	Description
2022	None	No change
	Source	Updated page numbers / version of the IL TRM and MN TRM
2021	Equation	Added gross winter peak demand reduction equation
	New table	Effective Useful Life (EUL) by program
2020	Input	Changed CF from fixed value to allow for more than one production shift Added default operating hours
v10	-	Initial release

Table	6-17.	Summarv	of	update(s)	١

6.1.6 Low pressure-drop filter

6.1.6.1 Measure description

This measure involves replacing standard coalescing filters with low-pressure drop filters. Filters are used to remove contaminants from the compressed air system and protect equipment. Filters induce a static pressure drop and require increased air pressure setpoints to overcome the pressure drop. By replacing standard filters with low-pressure drop filters, the pressure setpoint can be reduced at the discharge to realize energy savings. Only positive-displacement compressors (rotary-screw and reciprocating) are eligible for this measure because lowering discharge pressure will result in approximately 0.5% drop in power for every 1-psig reduction of discharge pressure setpoint.¹²⁸ Furthermore, qualifying filters have a rated pressure drop of 1 psig or less. Centrifugal compressors are ineligible for this measure because they require compressor-specific performance curves to accurately calculate savings.

6.1.6.2 Savings estimation

Per-measure, gross annual electric energy savings are calculated per filter according to the following equation:

$$\Delta kWh = scfm_{base} \times \left(\frac{kW}{scfm}\right)_{base} \times PSF \times \Delta p \times HOU$$

The baseline airflow is calculated using the following equation:

 $scfm_{base} = scfm_{rated} \times Load_{base}$

The base system operating performance is calculated using the following equation:

DNV - www.dnv.com

¹²⁸ "Fundamentals of Compressed Air Systems", Compressed Air Challenge, 2004

Docket No. E-22, Sub 645

The change in pressure due to the new filter is calculated using the following equation:

$$\Delta p = MIN (p_{base} - p_{ee}, \Delta p_{max})$$

Per-measure, gross coincident summer peak demand reduction is calculated per filter according to the following equation:

$$\Delta kW_{summer} = scfm_{base} \times \left(\frac{kW}{scfm}\right)_{base} \times PSF \times \Delta p \times CF_{summer}$$

Per-measure, gross coincident winter peak demand reduction is calculated per filter according to the following equation:

$$\Delta kW_{winter} = scfm_{base} \times \left(\frac{kW}{scfm}\right)_{base} \times PSF \times \Delta p \times CF_{winter}$$

Where:

∆kWh	= per-measure, gross annual electric energy savings
∆kW _{summer}	= per-measure, gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure, gross coincident winter peak demand reduction
np	= compressor rated horsepower
Obase	= base pressure setpoint
Dee	= system operating pressure after pressure reduction
∆р	= the change in pressure setpoint
∆p _{max}	= the maximum pressure reduction attributed to low-pressure filter
scfm _{rated}	= trim compressor rated flow
scfm _{base}	= base trim compressor operating flow
_oad _{base}	= average percent of rated flow for trim compressor
kW/scfmba	se = base system operating performance
PSF	= pressure savings factor
1 _{VFD}	= VFD efficiency
X ₂	= coefficient
X ₁	= coefficient
C	= constant
HOU	= annual hours of use
CF _{summer}	= summer coincidence factor
CF _{winter}	= winter coincidence factor

6.1.6.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 6-18. Input parameters for low-pressure drop filter savings calculations

Component	Туре	Value	Units	Sources
P _{base}	Variable	See customer application	psig	Customer application
pee	Variable	See customer application	psig	Customer application
Δp _{max}	Fixed	5.00	psig	Assumed maximum amount of pressure reduction that can be attributed to measure (difference between base filter pressure reduction and low PD filter)
hp	Variable	See customer application	hp	See customer application
scfm _{rated}	Variable	See customer application	scfm	Customer application
Load	Variable	See customer application		Customer application
LUdUbase	variable	Default = 0.60	-	Engineering estimate
PSF	Fixed	0.005	1/psig	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
η_{VFD}	Variable	See Table 17-20 in Sub- Appendix F2-V: Non- residential compressed air end use factors	-	Engineering estimate, only applicable if the control type is VFD
X ₂	Variable	See Table 17-20 in Sub- Appendix F2-V: Non- residential compressed air end use factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
X ₁	Variable	See Table 17-20 in Sub- Appendix F2-V: Non- residential compressed air end use factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
С	Variable	See Table 17-20 in Sub- Appendix F2-V: Non- residential compressed air end use factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
	Variable	See customer application	houro	See customer application
nou	variable	Default=6,240	nours	Minnesota TRM v 3.1 2020, p. 451
CFsummer	Variable	See Table 17-21 in Sub- Appendix F2-V: Non- residential compressed air end use factors	-	Illinois TRM v 8.0 Volume 2 2020, p.575
		Default =0.59		Default based on single shift (8/5) operating schedule from IL TRM v 8.0 Volume 2 2020, p. 575
CFwinter	Variable	See Table 17-21 in Sub- Appendix F2-V: Non- residential compressed air end use factors		Illinois TRM v 8.0 Volume 2 2020, p. 575 ¹²⁹
		Default =0.59		Default based on single shift (8/5) operating schedule from IL TRM v 8.0 Volume 2 2020, p. 575

¹²⁹ The source TRM doesn't differentiate between winter and summer peak periods. Therefore, the summer CF is applied to the winter CF.

Jun 15 2023

DNV

6.1.6.4 Default savings

If the proper values are not available, some values have defaults savings. However, there are no default savings for this measure as some values are needed to calculate savings.

6.1.6.5 Effective Useful Life

The effective useful life of this measure is provided in Table 6-19.

Table 6-19. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VII	Non-Residential Small Manufacturing Program, DSM Phase VII	12.24	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

6.1.6.6 Source

The system performance (kW/scfm) relies on performance curves for various control types as provided by Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004. The Illinois TRM v.8.0, Vol. 2. 2020, p. 575 and Minnesota TRM v 3.1 2020, p. 451 is also referenced.

6.1.6.7 Update summary

Updates made to this section are described in Table 6-20.

Version	Update type	Description	
2022	None	No change	
2021	Source	Updated page numbers / version of the IL TRM and MN TRM	
	New table	Effective Useful Life (EUL) by program	
	Equation	Added winter peak coincident demand reduction equation	
2020	Inputs	Added default operating hours	
v10	-	Initial release	

Table 6-20. Summary of update(s)

6.1.7 VFD air compressor

6.1.7.1 Measure description

This measure installs an air compressor with variable frequency drive replacing an existing air compressor without a variable frequency drive. Variable frequency drives control the output airflow rate by varying the electrical frequency to the compressor motor. Inlet modulation with unloading, load/no-load, and centrifugal compressor systems vary the compressor capacity by physically changing the compressor operation. Variable frequency drive controls have much higher part-load efficiencies than the standard control types, thus saving energy under part-load conditions. Typical air compressors spend a small percent of the operation at or near full-load conditions.

Docket No. E-22, Sub 645

The qualifying equipment is an air compressor with a variable frequency drive. If this is installed as a replacement for an existing compressor, the compressor should be the same rated hp capacity as the existing compressor. Base-load units that serve multi-compressor systems do not qualify.

6.1.7.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated per VFD-controlled compressor according to the following equation:

$$\Delta kWh = \sum_{bin=1}^{7} scfm_{bin} \times \left(\left(\frac{kW}{scfm} \right)_{base, bin} - \left(\frac{kW}{scfm} \right)_{ee, bin} \right) \times HOU_{bin} \times HOU$$

The bin flow rate is calculated using the following equation:

$$scfm_{bin} = scfm_{rated} \times Load_{bin}$$

The base and efficient system operating performance is calculated by the following equations:

$$\left(\frac{kW}{scfm}\right)_{base, \, bin} = \frac{hp \times 1.1 \times 0.746}{0.945 \times \eta_{VFD}} \times \frac{\left(X_{2, base} \times Load_{bin}^2 + X_{1, base} \times Load_{bin} + C_{base}\right)}{scfm_{bin}}$$

$$\left(\frac{kW}{scfm}\right)_{ee, bin} = \frac{hp \times 1.1 \times 0.746}{0.945 \times \eta_{VFD}} \times \frac{\left(X_{2,ee} \times Load_{bin}^2 + X_{1,ee} \times Load_{bin} + C_{ee}\right)}{scfm_{bin}}$$

Gross coincident summer peak demand reduction is calculated per VFD-controlled compressor according to the following equation:

$$\Delta kW_{summer} = \sum_{bin=1}^{7} scfm_{bin} \times \left[\left(\frac{kW}{scfm} \right)_{base, bin} - \left(\frac{kW}{scfm} \right)_{ee, bin} \right] \times HOU_{bin} \times CF_{summer}$$

Gross coincident winter peak demand reduction is calculated per VFD-controlled compressor according to the following equation:

$$\Delta kW_{winter} = \sum_{bin=1}^{7} scfm_{bin} \times \left[\left(\frac{kW}{scfm} \right)_{base, bin} - \left(\frac{kW}{scfm} \right)_{ee, bin} \right] \times HOU_{bin} \times CF_{winter}$$

Where:

 $\label{eq:lambda} \begin{array}{ll} \Delta k W h & = \mbox{per-measure gross annual electric energy savings} \\ \Delta k W_{\mbox{summer}} & = \mbox{per-measure, gross coincident summer peak demand reduction} \end{array}$
DNV

ΔkW_{winter}	= per-measure, gross coincident winter peak demand reduction
hp	= trim compressor rated horsepower
scfmrated	= trim compressor rated flow rate
scfm _{bin}	= flow rate of bin
load _{bin}	= percent of rated flow of base trim compressor for each bin
kW/scfmbas	se,bin = base trim compressor operating performance for each bin
kW/scfmee,	bin = ee trim compressor operating performance for each bin
η_{VFD}	= VFD efficiency
X _{2,base}	= coefficient
X _{1, base}	= coefficient
C _{base}	= constant
Cee	= constant
X _{2,ee}	= coefficient
X _{1,ee}	= coefficient
HOU	= annual hours of use
HOUbin	= percent of operating hours compressor operates at corresponding load
CF _{summer}	= summer coincidence factor
CF_{winter}	= winter coincidence factor

6.1.7.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Units	Sources
hp	Variable	See customer application	hp	Customer application
scfm _{rated}	Variable	See customer application	scfm	Customer application
load _{bin}	Variable	For default see Table 17-19 in Sub- Appendix F2-V: Non-residential compressed air end use factors. The Load _{bins} are the median load range of each bin. The HOU _{bin} values are provided by the customer application and should total 1.00. If these values are unknown the defaults are used.	-	Average percent of bin definition, bins are 10% load ranges, from 100% to 40%, 30% assumed for <40% bin (bin 7)
η_{VFD}	Fixed	0.98	-	Engineering estimate
X2, base	Variable	See Table 17-20 in Sub-Appendix F2-V: Non-residential compressed air end use factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
X _{1, base}	Variable	See Table 17-20 in Sub-Appendix F2-V: Non-residential compressed air end use factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
Cbase	Variable	See Table 17-20 in Sub-Appendix F2-V: Non-residential compressed air end use factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
X _{2, ee}	Fixed	VFD = 0	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
X _{1, ee}	Fixed	VFD = 0.95	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004

Table 6-21 In	nut values VSI) air compressor	savings calculations
			Savingo Salsalations

OFFICIAL COPY

Component	Туре	Value	Units	Sources
Cee	Fixed	VFD = 0.05	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
		See customer application	hour	Customer application
HOU	Variable	Default=6,240	annual	Minnesota TRM v 3.1 2020, p. 451
		See customer application		Customer application; sum of HOU _{bins} must equal 1.00
HOUbin	Variable	For default see Table 17-19 in Sub- Appendix F2-V: Non-residential compressed air end use factors. The Load _{bins} are the median load range of each bin. The HOU _{bin} values are provided by the customer application and should total 1.00. If these values are unknown the defaults are used.	-	Engineering judgement
CFsummer	Variable	See Table 17-21 in Sub-Appendix F2-V: Non-residential compressed air end use factors	-	Illinois TRM v 8.0 Volume 2 2020, p. 575
		Default =0.59		Default based on single shift (8/5) operating schedule from IL TRM v 8.0 Volume 2 2020, p. 575
CFwinter	Variable	See Table 17-21 in Sub-Appendix F2-V: Non-residential compressed air end use factors	-	Illinois TRM v 8.0 Volume 2 2020, p. 575 ¹³⁰
		Default =0.59		Default based on single shift (8/5) operating schedule from IL TRM v 8.0 Volume 2 2020, p. 575

6.1.7.4 Default savings

If the proper values are not available, some values have defaults savings. However, there are no default savings for this measure as some values are needed to calculate savings.

6.1.7.5 Effective Useful Life

The effective useful life of this measure is provided in Table 6-22.

Table 6-22. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VII	Non-Residential Small Manufacturing Program, DSM Phase VII	12.24	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

¹³⁰ The source TRM doesn't differentiate between winter and summer peak periods. Therefore, the summer CF is applied to the winter CF.

6.1.7.6 Source(s)

The system performance (kW/scfm) relies on performance curves for various control types as provided by Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004. Other sources include the Illinois TRM v.8.0, Vol. 2. 2020, p. 575 and Minnesota TRM v 3.1 2020, p. 451.

6.1.7.7 Update summary

Updates made to this section are described in Table 6-23.

Version	Update type	Description	
2022	None	No change	
	Source	Updated page numbers / version of the IL TRM and MN TRM	
2021	Equation	Added gross winter peak demand reduction equation	
	New table	Effective Useful Life (EUL) by program	
2020	Inputs	Added default operating hours	
v10	-	Initial release	

Table 6-23. Summary of update(s)

6.1.8 Cycling air dryer

6.1.8.1 Measure description

This measure replaces an existing standard refrigerated air dryer with a new cycling air dryer. Standard non-cycling refrigerated air dryers run their refrigerant compressors continuously regardless of the need. This wastes energy by running when the compressed air does not need to be dried. This occurs when the ambient conditions are cooler and drier than the design conditions. Cycling dryers operate only when the compressed air needs to be dried.

The cycling dryer must either be a thermal-mass dryer, a VFD-controlled dryer, or a digital scroll-compressor dryer that modulates to match load.

6.1.8.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \left[scfm_{base} \times \left(\frac{kW}{scfm}\right)_{base} + kW_{heater} + kW_{blower} + kW_{refrig} - scfm_{ee} \times \left(\frac{kW}{scfm}\right)_{ee} - kW_{dryer, ee}\right] \times HOU$$

To determine the reduction in flow rate due to the new dryer type, the following equation is used:

 $scfm_{reduced} = scfm_{base \, dryer, rated} \times Purge_{base}$

Docket No. E-22, Sub 645

The baseline air flow and loading are calculated using the following equations:

 $scfm_{system,base} = scfm_{system, rated} \times Load_{system, base}$

 $scfm_{base} = scfm_{rated} \times Load_{base}$

 $Load_{system, base} = \frac{scfm_{system, rated} - scfm_{rated} + scfm_{rated} \times Load_{base}}{scfm_{system, rated}}$

 $Load_{dryer,base} = \frac{scfm_{system, base}}{scfm_{base dryer, rated}}$

The efficient system air flow and loading is calculated using the following equations:

$$scfm_{ee} = scfm_{base} - scfm_{reduced}$$

 $\begin{array}{ll} Load_{ee} & = \frac{scfm_{ee}}{scfm_{rated}} \end{array}$

$$\frac{Load_{dryer,ee}}{scfm_{ee} dryer, rated} = \frac{scfm_{ee}}{scfm_{ee} dryer, rated}$$

The base and efficient system operating performance is calculated by the following equations:

$$\left(\frac{kW}{scfm}\right)_{base} = \frac{hp \times 1.1 \times 0.746}{0.945 \times \eta_{VFD}} \times \frac{\left(X_2 \times Load_{base}^2 + X_1 \times Load_{base} + C\right)}{scfm_{base}}$$
$$\left(\frac{kW}{scfm}\right)_{ee} = \frac{hp \times 1.1 \times 0.746}{0.945 \times \eta_{VFD}} \times \frac{\left(X_2 \times Load_{ee}^2 + X_1 \times Load_{ee} + C\right)}{scfm_{ee}}$$

The load due to each component is calculated using the following equations:

$$\frac{kW_{blower}}{kW_{heater}} = \frac{hp_{blower} \times 0.8 \times 0.746}{0.957}$$

$$kW_{heater} = kW_{heater,rated} \times Utilization_{heater}$$

$$kW_{refrig} = kW_{refrig,rated} \times (R_{1,base} \times Load_{dryer,base} + K_{base})$$

DNV

$$kW_{dryer,ee} = kW_{dryer,rated,ee} \times (R_{1,ee} \times Load_{dryer,ee} + K_{ee})$$

Per-measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\begin{split} \Delta k W_{summer} &= \left[scfm_{base} \times \left(\frac{kW}{scfm} \right)_{base} + k W_{heater} + k W_{blower} \right. \\ &+ k W_{refrig} - scfm_{ee} \times \left(\frac{kW}{scfm} \right)_{ee} - k W_{dryer, \ ee} \right] \times CF_{summer} \end{split}$$

Per-measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\begin{aligned} \Delta kW_{winter} &= \left[scfm_{base} \times \left(\frac{kW}{scfm} \right)_{base} + kW_{heater} + kW_{blower} \right. \\ &+ kW_{refrig} - scfm_{ee} \times \left(\frac{kW}{scfm} \right)_{ee} - kW_{dryer, ee} \right] \times CF_{winter} \end{aligned}$$

Where:

ΔkWh = per-measure gross annual electric energy savings ΔkW_{summer} = per-measure, gross coincident summer peak demand reduction ΔkW_{winter} = per-measure, gross coincident winter peak demand reduction = trim compressor rated horsepower hp = trim compressor rated flow scfm_{rated} scfm_{system,rated} = system rated flow scfm_{base} = base trim compressor operating flow scfm_{system,base} = base system operating flow = EE trim compressor operating flow scfmee scfm_{reduced} = average reduction in flow resulting from replacing base dryer scfm_{base dryer rated} = base dryer rated flow scfmee dryer rated = EE cycling dryer rated flow Purgebase = purge percent of base dryer Load_{base} = average percent of rated flow for trim compressor Load_{system, base} = average percent of rated flow for system Load_{drver base} = average operating percent of base dryer rated flow Load_{dryer,ee} = average operating percent of EE dryer rated flow Load_{ee} = average operating percent of EE dryer rated flow kWheater = average operating kW of the base heater = average operating kW of the base blower kWblower kWrefrig = average operating kW of the base refrigerated dryer kW_{dryer, ee} = average operating kW of the base refrigerated dryer hpblower = blower rated hp of base dryer kWrated heater = heater rated kW of base dryer Utilization_{heater} = heater operation time kW_{rated refrig} = the rated kW of the base dryer kW_{rated dryer,ee} = the rated kW of the EE dryer = coefficient R_{1.base} K_{base} = coefficient

Docket No. E-22, Sub 645

DNV

R _{1,ee}	= coefficient
Kee	= coefficient
kW/scfmbas	se = base system operating performance
kW/scfmee	= efficient system operating performance
η_{VFD}	= VFD efficiency
X2	= coefficient
X ₁	= coefficient
С	= constant
HOU	= annual hours of use
CF _{summer}	= summer coincidence factor
CF _{winter}	= winter coincidence factor

6.1.8.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Units	Sources
hp	Variable	Customer application	hp	See customer application
scfm _{rated}	Variable	Customer application	scfm	See customer application
scfm _{system} ,rated	Variable	Customer application	scfm	See customer application
scfm _{base,dryer,rated}	Variable	Customer application	scfm	See customer application
scfmee,dryer,rated	Variable	Customer application	scfm	See customer application
Purgebase	Variable	See Table 17-23 in Sub- Appendix F2-V: Non- residential compressed air end use factors		Desiccant purge rates are from: Dryer Selection for Compressed Air Systems, Compressed Air Challenge, 1999 No purge for other dryer types
Lood	Variable	Customer application,		See customer application
LOaubase	vanable	Default = 60%] -	Engineering estimate
hp _{blower}	Variable	Customer application, only applicable to blower purge and heated blower purge	hp	See customer application
kW heater,rated	Variable	Customer application, only applicable to heated blower purge and heated desiccant dryer types	kW	See customer application
Utilization _{heater}	Variable	Assigned by base blower type: heated blower purge = 0.75 heated desiccant dryer = 1.0	-	Heated desiccant dryer operates continuously, heated blower purge is based on engineering judgment
kWrefrig,rated	Variable	Customer application, only applicable to blower purge and heated blower purge dryer types	kW	See customer application
kWee,dryer,rated	Variable	Customer application, only applicable to blower purge and heated blower purge dryer types	kW	See customer application
R1, base	Variable	See Table 17-22 in Sub- Appendix F2-V: Non-	-	Compressed Air Challenge, Cycling Refrigerated Air Dryers - Are Savings Significant

Table 6-24. Input parameters for cycling dryer

Component	Туре	Value	Units	Sources
		residential compressed air end use factors		
K _{base}	Variable	See Table 17-22 in Sub- Appendix F2-V: Non- residential compressed air end use factors	-	Compressed Air Challenge, Cycling Refrigerated Air Dryers - Are Savings Significant
R1, ee	Variable	See Table 17-22 in Sub- Appendix F2-V: Non- residential compressed air end use factors	-	Compressed Air Challenge, Cycling Refrigerated Air Dryers - Are Savings Significant
Kee	Variable	See Table 17-22 in Sub- Appendix F2-V: Non- residential compressed air end use factors	-	Compressed Air Challenge, Cycling Refrigerated Air Dryers - Are Savings Significant
X ₂	Variable	See Table 17-20 in Sub- Appendix F2-V: Non- residential compressed air end use factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
X ₁	Variable	See Table 17-20 in Sub- Appendix F2-V: Non- residential compressed air end use factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
С	Variable	See Table 17-20 in Sub- Appendix F2-V: Non- residential compressed air end use factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
ноц	Variable	See customer application	hours,	See customer application
поо		Default=6,240	annual	Minnesota TRM v 3.1 2020, p. 451
CF _{summer}	Variable	See Table 17-21 in Sub- Appendix F2-V: Non- residential compressed air end use factors	_	Illinois TRM v 8.0 Volume 2 2020, p. 575
		Default =0.59		Default based on single shift (8/5) operating schedule from IL TRM v 8.0 Volume 2 2020, p. 575
CFwinter	Variable	See Table 17-21 in Sub- Appendix F2-V: Non- residential compressed air end use factors	-	Illinois TRM v 8.0 Volume 2 2020, p. 575 ¹³¹
		Default =0.59		Default based on single shift (8/5) operating schedule from IL TRM v 8.0 Volume 2 2020, p. 575

6.1.8.4 Default savings

If the proper values are not available, some values have defaults savings. However, there are no default savings for this measure as some values are needed to calculate savings.

¹³¹ The source TRM doesn't differentiate between winter and summer peak periods. Therefore, the summer CF is applied to the winter CF.

6.1.8.5 Effective Useful Life

The effective useful life of this measure is provided in Table 6-25.

Table 6-25. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VII	Non-Residential Small Manufacturing Program, DSM Phase VII	12.24	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

6.1.8.6 Source(s)

The system performance (kW/scfm) relies on performance curves for various control types as provided by Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004, and Cycling Refrigerated Air Dryers - Are Savings Significant, Compressed Air Challenge. Other sources include the Illinois TRM v.8.0, Vol. 2. 2020, p 575 and Minnesota TRM v 3.1 2020, p. 451

6.1.8.7 Update summary

Updates made to this section are described in Table 6-26.

Version	Update type	Description	
2022	None	No change	
	Source	Updated page numbers / version of the IL TRM and MN TRM	
2021	Equation	Added gross winter peak demand reduction equation	
	New table	Effective Useful Life (EUL) by program	
2020	Inputs	Added default operating hours	
v10	-	Initial release	

Table 6-26. Summary of update(s)

6.1.9 Dew point controls

6.1.9.1 Measure description

Typical desiccant dryers use compressed air to purge moisture from the desiccant. Standard desiccant dryer purge rates are fixed. Timer controls rotate the chambers of desiccant for recharging at a fixed rate determined based on the design conditions of the compressed air system, i.e., full load airflow and humid ambient conditions. Most systems operate at loads near the design conditions for only short periods of time. This measure is to install dew point controls that recharge desiccant only when the chamber is saturated. This is done by measuring the dew point of the dried air. This measure saves energy by limiting the compressed air purged to the amount needed to regenerate the desiccant.

Qualifying equipment must be installed on a twin tower desiccant dryer overriding fixed timer regeneration control and must use dew point-based controls.

DNV

6.1.9.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated per dryer controlled according to the following equation:

$$\Delta kWh = \left[scfm_{base} \times \left(\frac{kW}{scfm}\right)_{base} + kW_{heater} + kW_{blower} - scfm_{ee} \times \left(\frac{kW}{scfm}\right)_{ee} - kW_{blower, ee} - kW_{heater,ee}\right] \times HOU$$

The reduction in airflow due to the new controls is calculated using the following equation:

$$scfm_{reduced} = scfm_{base \, dryer, rated} \times Purge_{base} - (scfm_{base, dryer, rated} \times Purge_{base} \times Load_{base, dryer}) \times (1 - Time)$$

The baseline air flow and loading are calculated using the following equations:

$$\frac{Load_{system,base}}{scfm_{system, rated} - scfm_{rated} + scfm_{rated} \times Load_{base}}{scfm_{system, rated}}$$

$$scfm_{system,base} = scfm_{system, rated} \times Load_{system, base}$$

$$\frac{Load_{dryer,base}}{scfm_{dryer,rated}} = \frac{scfm_{system, base}}{scfm_{dryer,rated}}$$

$$scfm_{base} = scfm_{rated} \times Load_{base}$$

The efficient air flow and loading are calculated using the following equation:

$$scfm_{ee} = scfm_{base} - scfm_{reduced}$$

$$\frac{Load_{ee}}{scfm_{rated}} = \frac{scfm_{ee}}{scfm_{rated}}$$

The base and efficient system operating performance is calculated by the following equations:

$$\left(\frac{kW}{scfm}\right)_{base} = \frac{hp \times 1.1 \times 0.746}{0.945 \times \eta_{VFD}} \times \frac{\left(X_2 \times Load_{base}^2 + X_1 \times Load_{base} + C\right)}{scfm_{base}}$$

Docket No. E-22, Sub 645

DNV $\left(\frac{kW}{scfm}\right)_{ee} = \frac{hp \times 1.1 \times 0.746}{0.945 \times \eta_{VFD}} \times \frac{(X_2 \times Load_{ee}^2 + X_1 \times Load_{ee} + C)}{scfm_{ee}}$

Where the kW load due to each component is calculated using the following equations:

 $kW_{blower,ee} = kW_{blower,base} \times Load_{ee}$ $kW_{blower,bas} = hp_{blower} \times 0.8 \times 0.746 \times 0.957 =$ $kW_{heater,base} = kW_{heater,rated,base} \times Utilization_{heater}$ $kW_{heater,ee} = kW_{heater,base} \times Load_{ee}$

Per-measure, gross coincident summer peak demand reduction is calculated per dryer controlled according to the following equation:

$$\Delta kW_{summer} = \left[scfm_{base} \times \left(\frac{kW}{scfm}\right)_{base} + kW_{heater} + kW_{blower} - scfm_{ee} \times \left(\frac{kW}{scfm}\right)_{ee} - kW_{blower, ee} - kW_{heater, ee}\right] \times CF_{summer}$$

Per-measure, gross coincident winter peak demand reduction is calculated per dryer controlled according to the

$$\Delta kW_{winter} = \left[scfm_{base} \times \left(\frac{kW}{scfm}\right)_{base} + kW_{heater} + kW_{blower} - scfm_{ee} \times \left(\frac{kW}{scfm}\right)_{ee} - kW_{blower, ee} - kW_{heater, ee}\right] \times CF_{winter}$$

Where:

ΔkWh = per-measure gross annual electric energy savings ΔkW_{summer} = per-measure, gross coincident summer peak demand reduction ΔkW_{winter} = per-measure, gross coincident winter peak demand reduction = trim compressor rated horsepower hp = trim compressor rated flow scfm_{rated} scfm_{system,rated} = system rated flow scfm_{base} = baseline trim compressor operating flow scfm_{system,base} = baseline system operating flow scfm_{reduced} = average reduction in flow resulting from dewpoint controls scfm_{base dryer,rated} = baseline dryer rated flow = energy-efficient trim compressor operating flow scfmee Purgebase = purge percent of baseline dryer Load_{base} = average percentage of rated flow for trim compressor

Docket No. E-22, Sub 645

Load_{system,base} = average percentage of rated flow for baseline system Loaddryer,base = average operating percentage of base dryer rated flow = average operating percentage of trim compressor rated flow with dewpoint control dryer Loadee Time = proportion of time reduction due to dew-point controls kWheater, base = average operating kW of the baseline heater kW_{blower, base} = average operating kW of the baseline blower kW_{heater,ee} = average operating kW of the energy-efficient heater kW_{blower, ee} = average operating kW of the energy-efficient blower = blower rated hp of baseline dryer hpblower kWrated heater = heater rated kW of baseline dryer Utilization_{heater} = heater operation time kW/scfm_{base} = base system operating performance kW/scfmee = energy-efficient system operating performance = VFD efficiency η_{VFD} X2 = coefficient X1 = coefficient С = constant HOU = annual hours of use *CF_{summer}* = summer coincidence factor CF_{winter} = winter coincidence factor

6.1.9.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Units	Sources
hp	Variable	Customer application	hp	See customer application
scfm _{rated}	Variable	Customer application	scfm	See customer application
scfm _{system} , rated	Variable	Customer application	scfm	See customer application
scfm _{base,dryer,rated}	Variable	Customer application	scfm	See customer application
Purge _{base}	Variable	See Table 17-23 in Sub- Appendix F2-V: Non- residential compressed air end use factors	-	Desiccant purge rates are from: Dryer Selection for Compressed Air Systems, Compressed Air Challenge, 1999. no purge for other dryer types
Lood	Variable	Customer application,	-	See customer application
LOdUbase		Default = 0.60		Engineering estimate
TimeFixed0.25		-	Assumed, low RH during winter months	
hpblower Variable Customer application, only applicable to blower purge and heated blower purge		hp	See customer application	
kWrated heater	Variable	Customer application, only applicable to heated blower purge and heated desiccant dryer types	kW	See customer application
Utilization _{heater}	Variable	Assigned by base blower type: heated blower purge = 0.75 heated desiccant dryer = 1.0	-	Heated desiccant dryer operates continuously, heated blower purge is based on engineering judgment

Table 6-27. Input parameters for heat of compression dryer

Component	Туре	Value	Units	Sources
ηνεσ	Variable	See Table 17-20 in Sub- Appendix F2-V: Non- residential compressed air end use factors	-	engineering estimate, only applicable if the control type is VFD
X2	Variable	See Table 17-20 in Sub- Appendix F2-V: Non- residential compressed air end use factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
X1	Variable	See Table 17-20 in Sub- Appendix F2-V: Non- residential compressed air end use factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
c	Variable	See Table 17-20 in Sub- Appendix F2-V: Non- residential compressed air end use factors	-	Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004
НО	Variable	Customer application	hours	See customer application
		Default = 6,240	annual	Minnesota TRM v 3.1 2020, p. 451
CF _{summer}	See Table 17-21 in Sub- Appendix F2-V: Non- residential compressed air		-	Illinois TRM v 8.0 Volume 2 2020, p. 575
		Default =0.59		Default based on single shift (8/5) operating schedule from IL TRM v 8.0 Volume 2 2020, p. 575
CFwinter	Variable	See Table 17-21 in Sub- Appendix F2-V: Non- residential compressed air end use factors		Illinois TRM v 8.0 Volume 2 2020, p. 575 ¹³²
Crwinter		Default =0.59]-	Default based on single shift (8/5) operating schedule from IL TRM v 8.0 Volume 2 2020, p. 575

6.1.9.4 Default savings

If the proper values are not available, some values have defaults savings. However, there are no default savings for this measure as some values are needed to calculate savings.

6.1.9.5 Effective Useful Life

The effective useful life of this measure is provided in Table 6-28.

Table 6-28.	Effective	Useful	Life for	lifecycle	savings	calculations
-------------	-----------	--------	----------	-----------	---------	--------------

DSM Phase	Program name	Value	Units	Source(s)
VII	Non-Residential Small Manufacturing Program, DSM Phase VII	12.24	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

¹³² The source TRM doesn't differentiate between winter and summer peak periods. Therefore, the summer CF is applied to the winter CF.

Docket No. E-22, Sub 645

6.1.9.6 Source(s)

The system performance (kW/scfm) relies on performance curves for various control types as provided by Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004. Other sources include the Illinois TRM v.78.0, Vol. 2. 2020, p 575, Minnesota TRM v 3.1 2020, p. 451, Dryer Selection for Compressed Air Systems, Compressed Air Challenge, 1999.

6.1.9.7 Update summary

Updates made to this section are described in Table 6-29.

Version	Update Type	Description		
2022	None	No change		
	Source	Updated page numbers / version of the IL TRM and MN TRM		
2021 Equation Added gross winter peak demand reduction equation New Table Effective Useful Life (EUL) by program		Added gross winter peak demand reduction equation		
		Effective Useful Life (EUL) by program		
2020	Inputs	Added default operating hours		
v10	-	Initial release		

Table 6-29. Summary of update(s)

6.1.10 Pressure reduction

6.1.10.1 Measure description

This measure is for reducing the pressure setpoint of a compressed air system. Pressure setpoints are often set higher than is needed to ensure that serviced equipment is able to maintain the pressure requirements. Air compressors require more power to produce the same cfm at a higher pressure. Reducing this pressure setpoint saves energy. Additionally, there is a reduction in uncontrolled flow resulting from reducing the pressure setpoint.

This measure requires that the pressure reduction must take place at the compressor rather than at a downstream pressure regulator. This measure is only applicable to positive displacement compressors (rotary screw and reciprocating compressors) centrifugal compressors are excluded, because they require compressor specific performance curves to accurately calculate savings.

6.1.10.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated per compressed air system according to the following equations:

$$\Delta kWh = \Delta kWh_{artificial} + \Delta kWh_{pressure}$$

DNV

$$\Delta kWh_{artificial} = \left(scfm_{base} \times \left(\frac{kW}{scfm}\right)_{base} - (scfm_{ee}) \times \left(\frac{kW}{scfm}\right)_{ee}\right) \times HOU$$

$$\Delta kWh_{pressure} = \left(scfm_{ee} \times \left(\frac{kW}{scfm}\right)_{ee} \times PSF \times \Delta p\right) \times HOU$$

To determine the reduction in flow rate from the change to the pressure set-point, the following equation is used:

$$scfm_{reduced} = \left(scfm_{base} \times \%scfm_{artificial}\right) \\ - \left(scfm_{base} \times scfm_{artificial}\right) \times \left(\frac{(p_{ee} + 14.7)}{(p_{base} + 14.7)}\right)^{n}$$

The baseline system air flow is calculated using the following equation:

$$scfm_{base} = scfm_{rated} \times Load_{base}$$

The efficient system air flow and loading and is calculated using the following equation:

$$scfm_{ee} = scfm_{base} - scfm_{reduced}$$

$$\frac{Load_{ee}}{scfm_{rated}} = \frac{scfm_{base} - scfm_{reduced}}{scfm_{rated}}$$

The baseline and efficient system operating performances are calculated by the following equations:

$$\left(\frac{kW}{scfm}\right)_{base} = \frac{hp \times 1.1 \times 0.746}{0.945 \times \eta_{VFD}} \times \frac{\left(X2 \times Load_{base}^2 + X1 \times Load_{base} + C\right)}{scfm_{base}}$$
$$\left(\frac{kW}{scfm}\right)_{ee} = \frac{hp \times 1.1 \times 0.746}{0.945 \times \eta_{VFD}} \times \frac{\left(X2 \times Load_{ee}^2 + X1 \times Load_{ee} + C\right)}{scfm_{ee}}$$

Per-measure, gross coincident summer peak demand reduction is calculated per compressed air system according to the following equations:

$$\Delta kW_{summer} = (\Delta kW_{artificial} + \Delta kW_{pressure}) \times CF_{summer}$$

$$\Delta kW_{artificial} = \left(scfm_{base} \times \left(\frac{kW}{scfm}\right)_{base} - (scfm_{ee}) \times \left(\frac{kW}{scfm}\right)_{ee}\right)$$

DNV $\Delta k W_{pressure} = \left(scfm_{ee} \times \left(\frac{kW}{scfm} \right)_{ee} \times PSF \times \Delta p \right)$

Per-measure, gross coincident winter peak demand reduction is calculated per compressed air system according to the following equation:

$$\Delta kW_{winter} = (\Delta kW_{artificial} + \Delta kW_{pressure}) \times CF_{winter}$$

Where:

ΔkWh	= per-measure gross annual electric energy savings
ΔkW_{summer}	= per-measure, gross coincident summer peak demand reduction
ΔkW_{winter}	= per-measure, gross coincident winter peak demand reduction
∆kWh _{artificia}	= gross annual electric energy savings resulting from artificial load reduction
∆kWh _{pressu}	re= gross annual electric energy savings resulting from pressure reduction
∆kWartificial	= gross annual average demand reduction resulting from artificial load reduction
∆kW _{pressure}	= gross annual average demand reduction s resulting from pressure reduction
Δр	= the pressure reduction
p _{base}	= base system operating pressure of base system
p _{ee}	 efficient system operating pressure of efficient system
PSF	= pressure savings factor
n	= flowrate pressure adjustment coefficient
hp	= compressor system rated horsepower
scfmrated	= compressor rated flow rate
scfm _{base}	= base compressor operating flow
scfmee	 efficient trim compressor operating flow
scfm _{artificial}	= percent compressed air artificial demand
scfm _{reduced}	= efficient compressor operating flow
Load _{base}	= average percent of rated flow for base system
Load _{ee}	= average percent of rated flow for efficient system
kW/scfm _{bas}	se = base system operating performance
kW/scfm _{ee}	= efficient system operating performance
η_{VFD}	= VFD efficiency
X2	= coefficient
X1	= coefficient
С	= constant
HOU	= annual hours of operation of compressor system
CF _{summer}	= summer coincidence factor
CF_{winter}	= winter coincidence factor

6.1.10.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

 Table 6-30. Input parameters for pressure reduction

Component	Туре	Value	Units	Sources
P _{base}	Variable	See customer application	psig	Customer application

Component	Туре	Value	Units	Sources	
p _{ee}	Variable	See customer application	psig	Customer application	
Δр	Variable	The lesser of the difference between customer application p _{base} and p _{ee} or 10	psig	Customer application values and capped at 10 psig reduction	
PSF	Fixed	0.05	1/psig	"Fundamentals of Compressed Air Systems", Compressed Air Challenge, 2004	
n	Fixed	1.0	-	Engineering estimate	
hp	Variable	See customer application	hp	Customer application	
scfm _{rated}	Variable	See customer application	scfm	Customer application	
scfmartificial	Fixed	0.30	-	"Fundamentals of Compressed Air Systems", Compressed Air Challenge, 2004	
Lood	Variable	See customer application		Customer application	
LOdObase	vanable	Default = 0.60] -	Engineering estimate	
ηνερ	Variable	See Table 17-20 in Sub-Appendix F2-V: Non-residential compressed air end use factors	-	Engineering estimate, only applicable if the control type is VFD	
X2	Variable	See Table 17-20 in Sub-Appendix F2-V: Non-residential compressed air end use factors	-	"Fundamentals of Compressed Air Systems", Compressed Air Challenge, 2004	
X 1	Variable	See Table 17-20 in Sub-Appendix F2-V: Non-residential compressed air end use factors	-	"Fundamentals of Compressed Air Systems", Compressed Air Challenge, 2004	
с	Variable	See Table 17-20 in Sub-Appendix F2-V: Non-residential compressed air end use factors	-	"Fundamentals of Compressed Air Systems", Compressed Air Challenge, 2004	
) (h -	See customer application	hours,	Customer application	
HOU	variable	Default=6,240	annual	Minnesota TRM v 3.1 2020, p. 451	
CE	Variable	See Table 17-21 in Sub-Appendix F2-V: Non-residential compressed air end use factors	_	Illinois TRM v 8.0 Volume 2 2020, p. 575	
CFsummer	Variable	Default =0.59		Default based on single shift (8/5) operating schedule from IL TRM v 8.0 Volume 2 2020, p. 575	
CE	Variable	See Table 17-21 in Sub-Appendix F2-V: Non-residential compressed air end use factors	-	Illinois TRM v 8.0 Volume 2 2020, p. 575 ¹³³	
C1 ⁻ winter	vanabie	air end use factors - Default =0.59		Default based on single shift (8/5) operating schedule from IL TRM v 8.0 Volume 2 2020, p. 575	

¹³³ The source TRM doesn't differentiate between winter and summer peak periods. Therefore, the summer CF is applied to the winter CF.

6.1.10.4 Default savings

This measure does not have default savings. The savings depend on the rated power and system pressures before and after implementing this measure. However, there are defaults for other variables.

6.1.10.5 Effective Useful Life

The effective useful life of this measure is provided in Table 6-31.

Table 6-31. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VII	Non-Residential Small Manufacturing Program, DSM Phase VII	12.24	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

6.1.10.6 Source(s)

The system performance (kW/scfm) relies on performance curves for various control types as provided by Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004. Other sources include the Illinois TRM v.78.0, Vol. 2. 2020, p 575 and the 2022Minnesota TRM v 3.1 2020, p. 451.

6.1.10.7 Update summary

Updates made to this section are described in Table 6-32.

Version	Update type	Description			
2022	None	No change			
	Source	Updated page numbers / version of the IL TRM and MN TRM			
2021 Equation		Added gross winter peak demand reduction equation Modified ΔkWh equation to fix error in calculation by separating into separate terms of $\Delta kWh_{artificial}$ and $\Delta kWh_{pressure}$ for clarity			
	Table	Effective Useful Life (EUL) by program			
2020	Inputs	Added default operating hours			
v10	-	Initial release			

Table 6-32. Summary of update(s)

6.1.11 Downsized VFD compressor

6.1.11.1 Measure description

This measure installs an air compressor with variable frequency drive (VFD) replacing a larger air compressor without VFD controls. Air compressors can be oversized and hence, never operate near their rated capacity. Variable frequency drives control the output airflow rate by varying the electrical frequency to the compressor motor. Standard control types such as inlet valve modulation with unloading, load/unload, and centrifugal compressor systems vary

Docket No. E-22, Sub 645

DNV

the compressor capacity by physically changing the compressor operation. Variable frequency drive controls have much better part-load efficiencies than standard control types, thus saving energy under part load conditions. Additionally, energy is saved by installing a smaller compressor that still meets system airflow requirements.

The qualifying equipment is an air compressor with a variable frequency drive and replaces an existing compressor of larger size without variable frequency drive controls. It is assumed that the typical size reduction is one standard size. Base load units that serve multi-compressor systems do not qualify.

6.1.11.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated per VFD-controlled compressor according to the following equation:

$$\Delta kWh = \sum_{bin=1}^{7} scfm_{bin} \times \left[\left(\frac{kW}{scfm} \right)_{base, bin} - \left(\frac{kW}{scfm} \right)_{ee, bin} \right] \times HOU_{bin} \times HOU$$

The airflow and load of each bin is calculated using the following equations:

$$scfm_{bin} = scfm_{rated,base} \times Load_{base,bin}$$

 $Load_{ee, bin} = \frac{scfm_{bin}}{scfm_{rated, ee}}$

$$scfm_{bin} = scfm_{rated,base} \times Load_{base,bin}$$

$$\frac{Load_{ee, bin}}{scfm_{rated, ee}} = \frac{scfm_{bin}}{scfm_{rated, ee}}$$

The base and efficient system operating performance (of each bin) is calculated by the following equations:

$$\left(\frac{kW}{scfm}\right)_{base, bin} = \frac{hp_{base} \times 1.1 \times 0.746}{0.945} \times \frac{\left(X_{2, base} \times Load_{base, bin}^2 + X_{1, base} \times Load_{base, bin} + C_{base}\right)}{scfm_{bin}}$$

$$\left(\frac{kW}{scfm}\right)_{ee, bin} = \frac{hp_{ee} \times 1.1 \times 0.746}{0.945 * \times \eta_{VFD}} \times \frac{\left(X_{2,ee} \times Load_{ee, bin}^2 + X_{1,ee} \times Load_{ee, bin} + C_{ee}\right)}{scfm_{bin}}$$

Docket No. E-22, Sub 645

Per-measure, gross coincident summer peak demand reduction is calculated per VFD-controlled compressor according to the following equation:

$$\Delta kW_{summer} = \sum_{bin=1}^{7} scfm_{bin} \times \left[\left(\frac{kW}{cfm} \right)_{base,bin} - \left(\frac{kW}{cfm} \right)_{ee,bin} \right] \times HOU_{bin} \times CF_{summer}$$

Per-measure, gross coincident winter peak demand reduction is calculated per VFD-controlled compressor according to the following equation:

$$\Delta kW_{winter} = \sum_{bin=1}^{7} scfm_{bin} \times \left[\left(\frac{kW}{cfm} \right)_{base,bin} - \left(\frac{kW}{cfm} \right)_{ee,bin} \right] \times HOU_{bin} \times CF_{winter}$$

Where:

ΔkWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction
Hp _{base}	= base trim compressor rated horsepower
scfm _{rated,bas}	e = base trim compressor rated flow rate
hp _{ee}	= efficient trim compressor rated horsepower
scfm _{rated,ee}	 efficient trim compressor rated flow rate
scfm _{bin}	= flow rate of bin
Load _{base,bin}	= percent of rated flow of base trim compressor for each bin
Load _{ee,bin}	= percent of rated flow of EE trim compressor for each bin
kW/scfm _{bas}	sebin = base trim compressor operating performance for each bin
kW/scfmeet	bin = efficient trim compressor operating performance for each bin
ηvfd	= VFD efficiency
X _{2,base}	= coefficient
X _{1,base}	= coefficient
Cbase	= constant
X _{2,ee}	= coefficient
X _{1,ee}	= coefficient
Cee	= constant
HOU	= annual hours of use
HOU _{bin}	= proportion of operating hours compressor at corresponding load
CFsummer	= summer peak coincidence factor
CFwinter	= winter peak coincidence factor

6.1.11.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 6-55. Input values downsized v5D all compressor savings calculation	Table 6-33. In	put values do	wnsized VSD	air compressor	savings	calculations
---	----------------	---------------	-------------	----------------	---------	--------------

Component	Туре	Value	Units	Sources
hp _{base}	Variable	See customer application	hp	Customer application
scfmrated, base	Variable	See customer application	scfm	Customer application

Component	Туре	Value	Units	Sources
hp _{ee}	Variable	See customer application	hp	Customer application
scfmrated, ee	Variable	See customer application	scfm	Customer application
Load _{base} , bin	Variable	For default see Table 17-19 in Sub- Appendix F2-V: Non-residential compressed air end use factors. The Load _{bins} are the median load range of each bin. The HOU _{bin} values are provided by the customer application and should total 1.00. If these values are unknown the defaults are used.	-	Average percent of bin definition, bins are 10% load ranges, from 100% to 40%, 30% assumed for <40% bin (bin 7)
X _{2,base}	Variable	See Table 17-20 in Sub-Appendix F2- V: Non-residential compressed air end use factors	-	"Fundamentals of Compressed Air Systems", Compressed Air Challenge, 2004
X _{1,base}	Variable	See Table 17-20 in Sub-Appendix F2- V: Non-residential compressed air end use factors	-	"Fundamentals of Compressed Air Systems", Compressed Air Challenge, 2004
Cbase	Variable	See Table 17-20 in Sub-Appendix F2- V: Non-residential compressed air end use factors	-	"Fundamentals of Compressed Air Systems", Compressed Air Challenge, 2004
ηvfd	Fixed	0.98	-	Engineering estimate
X _{2,EE}	Fixed	VFD = 0.00	-	"Fundamentals of Compressed Air Systems", Compressed Air Challenge, 2004
X _{1,EE}	Fixed	VFD = 0.95	-	"Fundamentals of Compressed Air Systems", Compressed Air Challenge, 2004
Cee	Fixed	VFD = 0.05	-	"Fundamentals of Compressed Air Systems", Compressed Air Challenge, 2004
	Variable	See customer application	hours,	Customer application
ПОО	Valiable	Default=6,240	annual	MN TRM v 3.1 2020, p. 451
		See customer application		Customer application
HOU _{bin} Variable		For default see Table 17-19 in Sub- Appendix F2-V: Non-residential compressed air end use factors. The Load _{bins} are the median load range of each bin. The HOU _{bin} values are provided by the customer application and should total 1.00. If these values are unknown the defaults are used.	-	Engineering assumption
CF _{summer}	Variable	See Table 17-21 in Sub-Appendix F2- V: Non-residential compressed air end use factors	-	Illinois TRM v 8.0 Volume 2 2020, p. 575
		Default =0.59		operating schedule

DNV

Component	Туре	Value	Units	Sources
CFwinter	Variable	See Table 17-21 in Sub-Appendix F2- V: Non-residential compressed air end use factors		Illinois TRM v 8.0 Volume 2 2020, p. 575 ¹³⁴
		Default =0.59		Default based on single shift (8/5) operating schedule ¹²²

6.1.11.4 Default savings

This measure does not have default savings. The savings depend on the rated power. However, some variables have default values.

6.1.11.5 Effective Useful Life

The effective useful life of this measure is provided in Table 6-34.

Table 6-34. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VII	Non-Residential Small Manufacturing Program, DSM Phase VII	12.24	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

6.1.11.6 Source(s)

The system performance (kW/scfm) relies on performance curves for various control types as provided by Fundamentals of Compressed Air Systems, Compressed Air Challenge, 2004. Other sources include the Illinois TRM v.78.0, Vol. 2. 2020, p 575, and the Minnesota TRM v 3.1 2020, p. 451.

6.1.11.7 Update summary

Updates made to this section are described in Table 6-35.

Version	Update type	Description
2022	None	No change
	Source	Updated page numbers / version of the IL TRM and MN TRM
2021	Equation	Added gross winter peak demand reduction equation
	Table	Effective Useful Life (EUL) by program
2020	Inputs	Added default operating hours
v10	-	Initial release

Table 6-35. Summary of update(s)

¹³⁴ The source TRM doesn't differentiate between winter and summer peak periods. Therefore, the summer CF is applied to the winter CF.

DNV

7 NON-RESIDENTIAL OFFICE PROGRAM, DSM PHASE VII

The Non-Residential Office Program provides qualifying business owners incentives to pursue one or more of the qualified energy efficiency measures through a local, participating contractor in Dominion Energy's contractor network. This program offers controls measures such as adjusting schedules and setpoints to operate more efficiently. Participants may receive a facility assessment and measure implementation, as well as incentives to offset the cost of making recommended improvements. To qualify for this program, the customer must be responsible for the electric bill and must be the owner of the facility or reasonably able to secure permission to complete the measures. All program measures are summarized in Table 7-1.

End Use	Measure	Legacy program	Manual section
Lighting	Reduce lighting schedule	N/A	Section 7.2.1
	HVAC unit scheduling		Section 7.3.1
HVAC	HVAC temperature setback		Section 7.3.2
	Condensing	N1/A	Section 7.3.3
	HVAC discharge air temperature reset		Section 7.3.4
	HVAC static pressure reset		Section 7.3.5
	HVAC VAV minimum flow reduction		Section 7.3.6
	Dual enthalov air-side economizer	Non-Residential Heating	Section 2.1.5
		Program, DSM Phase VII	00010112.1.0

Table 7-1. Non-residential office program measure list

Except for the Dual enthalpy air-side economizer measure (Section 7.3.7), analyses for all the measure savings are based on building model simulations.

7.1 Building model simulation description

Measures that utilize the building model simulation approach are described in this section. The U.S. Department of Energy (DOE) reference building "Large Office" with code vintage defined as ASHRAE 90.1-2007 is used as the basis for the baseline and installed case building models.¹³⁵ The DOE Commercial Large Office Reference building was scaled down to a 4-story building. Current energy code in Virginia is 2018 IECC and ASHRAE 90.1-2016 with amendments.¹³⁶ It is DNV's expert engineering judgement that buildings and systems from the 2007 vintage would be appropriate candidates for the retro-commissioning measures in this program because the end-use systems being retro-commissioned in this program are generally assumed to be functioning properly but aged and should benefit from re-programming controls.

There are baseline and efficient building models for each measure case. Energy savings are calculated using these models and simulated using TMY3 weather data for selected weather stations in Virginia and North Carolina.

¹³⁵ U.S. Department of Energy. Office of Energy Efficiency & Renewable Energy. Commercial Reference Buildings. <u>https://www.energy.gov/eere/buildings/commercial-reference-buildings</u>, accessed on 08/03/2021

¹³⁶ U.S. Department of Energy. Office of Energy Efficiency & Renewable Energy. Building Energy Codes Program. Virginia. <u>https://www.energycodes.gov/status/states/virginia</u>, accessed on 11/15/2022

Docket No. E-22, Sub 645

7.1.1 Building models

The baseline energy model is derived from DOE's Commercial Large Office Reference Building. That model assumes a baseline annual energy consumption of 19.17 kWh/sq.ft. and 0.06 therm/sq.ft. Electricity usage includes a data center that is typical of such buildings along with typical interior equipment load. The reference building is a large office (12-stories plus a basement totaling 498,600 sq. ft. or 38,350 sq.ft./floor).

For those program participant buildings smaller than this, DOE's Commercial Large Office Reference Building was also scaled down to a 4-story building from simulations of the large building, as is standard practice in building energy simulation modelling. The reference 12-story building model was modified by removing eight of the interior floors— thereby reducing the building to four stories plus a basement data center. In fact, the interior floors of the 12-story DOE reference model were modelled using the EnergyPlus™ engine—developed by DOE—with floors "multipliers" which means that the simulator itself was scaling results for the interior floors. The 4-story models were further modified by changing the said floors multipliers from ten to two. In addition, the number of central HVAC equipment, namely chiller and cooling tower, to 1 compared to 2 in the large office model. The capacities of the HVAC equipment in the 4-story building are left to auto-sized. This 4-story model totaled 191,764 sq. ft. gross with about 150,000 sq. ft. in the above-ground floors subject to controls improvements.

There are three different models for HVAC system types representing the most likely HVAC systems to be encountered in small offices. The HVAC system types include: packaged VAV, and chilled water VAV. Additionally, the heating fuel type is considered for each of these systems where the options are either electric or non-electric.

Scaling of results can be used to predict savings for medium to large multi-story office buildings. Loads on HVAC systems in offices tend to be dominated less by shell or envelop loads (e.g., passive stored heat) than internal loads such as occupants, lighting, and plug-load waste heat. Small buildings with relatively large exterior surface areas compared to floor area (or larger sprawling buildings with only one or two floors) would not be modeled as well by scaling these results. On the other hand, small buildings would rarely be heated and cooled by VAV air-handlers with central hot water and chilled water plants.

The basement includes an 8,400-sq. ft. data center (e.g., server rooms) and each floor includes its own small 390-sq.ft. data center (e.g., IT closet). Savings factors are normalized with a building area of 498,600 sq. ft. for the large office model and 191,765 sq. ft. for the 4-story models.

Each measure has an efficient model. The efficient building models were created by modifying the baseline energy models in ways that the measure is intended to operate. This is done by modifying the applicable setpoints and schedules for each measure, in just the end-use building systems that are affected by the energy efficient measure.

7.1.1.1 Impacts Estimation Approach

Modeled savings are calculated by subtracting the energy consumption of the efficient model from the baseline model, for each weather station. The total building savings are divided by the applicable model parameters to get a savings per unit (i.e. floor area sq.ft. or supply fan cfm) to produce the applicable energy savings factors. For each record, energy savings factors are multiplied by the customer-specific units to calculate the customer-specific gross savings. Additionally, the savings may be scaled to account for the level of adjustment relative to the models assumptions. An example of this is that the lighting schedule reduction measure assumes the schedule is reduced 10 hours per week. If the record has a reduction higher or lower than this, the savings are scaled linearly.

Docket No. E-22, Sub 645

Per measure, gross annual electric energy savings are calculated in each of the following measure sections. In general, they follow the same structure, as follows:

 $\Delta kWh = ESF \times quantity \times MAF$

Per-measure, gross coincident summer and winter peak demand reduction for measures in this program are shown below:

 $\Delta kW_{summer} = DRF_{summer} \times quantity \times MAF$

 $\Delta kW_{winter} = DRF_{winter} \times quantity \times MAF$

Where:

= per-measure gross annual electric energy savings
= per-measure gross summer coincident demand reduction
= per-measure gross winter coincident demand reduction
= annual energy savings factor per unit based on measure by weather station
 summer coincident demand reduction factor
 winter coincident demand reduction factor
= quantity of measure-specific units
= measure adjustment factor to scale savings from the modeled assumptions to the application depth of measure

7.1.1.2 Input Variables

The input variables are defined in each of the following measure sections. The ESF and DRF values for each of the modeled measures are in Table 7-2 and Table 7-3.

Table 7-2	. Energy	savings	factor	by	measure
-----------	----------	---------	--------	----	---------

	Measure Name								
Weather station	Schedule Lighting (kWh/sq. ft.)	Schedule ł (kWh/cfm)	IVAC	Night temperature Setback (kWh/cfm)	Condenser temperature Reset (kWh/ton)	Discharge air temperature Reset (kWh/cfm)	Static pressure reset (kWh/cfm)	Reduce VA minimum P (kWh/sq. ft.)	/ box osition
Heating type	Both	Non- electric	Electric	Both	Both	Electric	Both	Non- electric	Electric
Charlottesville	0.489	0.658	0.893	0.386	146.8	0.306	0.629	0.127	0.447
Sterling	0.477	0.635	0.936	0.509	142.1	0.474	0.615	0.152	0.528
Farmville	0.486	0.642	0.893	0.421	146.2	0.337	0.650	0.115	0.449
Norfolk	0.477	0.706	0.968	0.391	195.5	0.358	0.638	0.134	0.451
Arlington	0.475	0.686	0.979	0.500	165.3	0.453	0.632	0.149	0.533
Richmond	0.486	0.679	0.952	0.439	170.8	0.366	0.649	0.132	0.459
Roanoke	0.482	0.639	0.911	0.401	140.3	0.410	0.633	0.135	0.481
Fredericksbur g	0.487	0.661	0.943	0.421	160.4	0.385	0.649	0.118	0.466
Rocky Mount- Wilson	0.490	0.698	0.914	0.312	167.9	0.236	0.668	0.114	0.382
Elizabeth City	0.488	0.753	0.971	0.352	221.6	0.231	0.677	0.133	0.403

Table 7-3. Demand reduction factor (DRF)

	Measure				
weather station	Static pressure reset (kW/cfm)				
DRF period	DRF _{summer}	DRF _{winter}			
Heating type	Both				
Charlottesville	0.00017837941	0.00009425006			
Sterling	0.00019140228	0.00011121182			
Farmville	0.00017938315	0.00008622703			
Norfolk	0.00018539720	0.00013525152			
Arlington	0.00018239536	0.00013601769			
Richmond	0.00018739927	0.00013724999			
Roanoke	0.00018238656	0.00008819459			
Fredericksburg	0.00018238924	0.00009240189			
Rocky Mount-Wilson	0.00017838515	0.00009932243			
Elizabeth City	0.00018839097	0.00004126336			

7.1.1.3 Default savings

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

7.1.1.4 Effective Useful Life

The effective useful life of this measure is provided in Table 7-4.

Table 7-4. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
хі	Non-Residential Building Optimization Program, DSM Phase IX	5.00		Wisconsin TRM 2022, p. 369 ¹³⁷
VI	Non-Residential Office Program, DSM Phase VII	7.00	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

7.1.1.5 Source(s)

The primary source for this deemed savings approach is prototypical building energy models derived from DOE's Commercial Large Office Reference Building and modified to represent Dominion Energy's Virginia and North Carolina weather zones, using typical meteorological year 3 (TMY3) data along with various program-specific measures.

¹³⁷ The chiller plant setpoint adjustment measure life is assigned for all measures in this program. The measures in this program will have a similar measures life as they are all related to retro-commissioning and controls measures.

7.1.1.6 Update summary

Updates made to this section are described in Table 7-5.

Table 7-5.	Summary	of	update	(s))
------------	---------	----	--------	-----	---

Version	Update type	Description
2022	Equations and assumptions	Updated methodology to scale the modeled savings to project specific values and added demand impacts for the static pressure reset value
2021	Inputs	Added large office building type and expanded to 10 weather stations
2020	Inputs	Revised kWh/sq.ft. with results from updated building models
v10	-	Initial release

7.2 Lighting end use

7.2.1 Reduce lighting schedule

7.2.1.1 Measure description

Lighting fixtures must be turned on and off by an automation system. The customer or controls vendor must provide documentation that lighting operating hours are reduced by at least 30 minutes per workday. For this measure, we assumed it is implemented in a large office building with a chilled water VAV system and heating fuel type of electric and gas. This model is selected since the measure itself is not very sensitive to building size or heating system type.

7.2.1.2 Impact Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = ESF \times SqFt \times MAF$$

$$MAF = \left(\frac{(HPD_{base} \times DPW_{base}) - (HPD_{ee} \times DPW_{ee})}{10\frac{hrs}{week}}\right)$$

Per-measure, gross coincident summer and winter peak demand reduction is assigned as zero because these measures have a negligible demand reduction as shown below:

$$\Delta k W_{summer} = 0$$

$$\Delta k W_{winter} = 0$$

Where:

ΔkWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction

DN	V
SF	= annual energy savings factor
/AF	= measure adjustment factor to scale savings from the modeled assumptions to the application depth of measure
IPD base	= baseline occupied hours per day of occupied schedule
HPD _{ee}	= energy-efficient case occupied hours per day of occupied schedule
DPW _{base}	= baseline occupied days per week of occupied schedule
DPWee	= energy-efficient case days occupied per week of occupied schedule
SqFt	= condition area impacted by measure

7.2.1.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Unit	Source(s)
ESF	Variable	See Table 7-2	kWh/Unit	OpenStudio [®] energy modeling software outputs using EnergyPlus™ engine
HPD _{base}	Variable	See customer application	hours/day	Customer application
HPDee	Variable	See customer application	hours/day	Customer application
DPW _{base}	Variable	See customer application	days/week	Customer application
DPWee	Variable	See customer application	days/week	Customer application
SqFt	Variable	See customer application	sq. ft.	Customer application

Table 7-6. Input values for office buildings

7.2.1.4 Default savings

This measure does not have default savings.

7.2.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 7-10.

Table 7-7. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
хі	Non-Residential Building Optimization Program, DSM Phase IX	5.00		Wisconsin TRM 2022, p. 369 ¹³⁸
VI	Non-Residential Office Program, DSM Phase VII	7.00	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

¹³⁸ The chiller plant setpoint adjustment measure life is assigned for all measures in this program. The measures in this program will have a similar measures life as they are all related to retro-commissioning and controls measures.

7.2.1.6 Source(s)

The primary source for this deemed savings approach is prototypical building energy models derived from DOE's Commercial Large Office Reference Building and modified to represent Dominion Energy's Virginia and North Carolina weather zones, using typical meteorological year 3 (TMY3) data.

7.2.1.7 Update summary

Updates made to this section are described in Table 7-8.

Version	Update type	Description
2022	Equations	Revised energy savings factors and applied scaling savings by additional parameters than just the sq. ft.
2021	Inputs	Added large office building type and expanded to 10 weather stations
2020	Inputs	Revised kWh/sq.ft. with results from updated building models
v10	-	Initial release

Table 7-8. Summary of update(s)

7.3 Heating, Ventilation, and Air Conditioning (HVAC) end use

7.3.1 HVAC unit scheduling

7.3.1.1 Measure description

HVAC air handling equipment (air handling units, unitary HVAC, or split system HVAC) must be scheduled to an unoccupied mode by an automation system. The unoccupied mode must shut outdoor air dampers to remove ventilation loads. The customer or controls vendor must provide documentation that HVAC equipment operating hours are reduced by at least 30 minutes per workday. For this measure, we assumed it is implemented in a 4-Story office building with a chilled water VAV system and heating fuel type of electric and gas.

These measures are based on the frequent observation during commercial facility audits that many facilities maintain comfort conditions, including ventilation, well beyond the occupied hours of the facility. The simulation of these measures assumes that scheduling of fans and outside air can be decreased by one hour in the morning and half-hour in the afternoon. In cases with greater reduction in operating hours, savings can be scaled based on the number of hours of correction. The two measures and their savings differ in their heating type. Therefore, savings in both gas heating system and electric heating system were modeled on a 4-story medium size office building.

The following schedules were modified to determine the energy impact:

- VAV fan schedule for each of the 12 systems. This schedule essentially dictates when occupied hours occur, running the fan continuously and ensuring a constant supply of outside air (OA)
- Heating set point schedule for all zones served by VAV
- Cooling set points were not changed
- As with other measures that reduce OA, fan savings are limited due to reduction in free-cooling

Docket No. E-22, Sub 645

7.3.1.2 Impact Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

 $\Delta kWh = ESF \times scfm_{supplyfan} \times MAF$

$$MAF = \left(\frac{(HPD_{base} \times DPW_{base}) - (HPD_{ee} \times DPW_{ee})}{12\frac{hrs}{week}}\right)$$

Per-measure, gross coincident summer and winter peak demand reduction is assigned as zero because these measures have a negligible demand reduction as shown below:

$$\Delta k W_{summer} = 0$$

$$\Delta k W_{winter} = 0$$

Where:

ΔkWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction
ESF	= annual energy savings factor
MAF	= measure adjustment factor to scale savings from the modeled assumptions to the application depth of measure
HPD _{base}	= baseline occupied hours per day of occupied schedule
HPDee	= energy-efficient case occupied hours per day of occupied schedule
DPW _{base}	= baseline occupied days per week of occupied schedule
DPWee	= energy-efficient case occupied days per week of occupied schedule
scfm _{supply} fan	= supply fan flow rate

7.3.1.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Unit	Source(s)
ESF	Variable	See Table 7-2	kWh/Unit	OpenStudio [®] energy modeling software outputs using EnergyPlus™ engine
HPD _{base}	Variable	See customer application	hours/day	Customer application
HPDee	Variable	See customer application	hours/day	Customer application
DPW _{base}	Variable	See customer application	days/week	Customer application
DPWee	Variable	See customer application	days/week	Customer application
Scfm _{supply fan}	Variable	See customer application	scfm	Customer application

Table 7-9. Input values for office buildings

7.3.1.4 Default savings

This measure does not have default savings.

7.3.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 7-10.

Table 7-10. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
XI	Non-Residential Building Optimization Program, DSM Phase IX	5.00		Wisconsin TRM 2022, p. 369 ¹³⁹
VI	Non-Residential Office Program, DSM Phase VII	7.00	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

7.3.1.6 Source(s)

The primary source for this deemed savings approach is prototypical building energy models derived from DOE's Commercial Large Office Reference Building and modified to represent Dominion Energy's Virginia and North Carolina weather zones, using typical meteorological year 3 (TMY3) data.

7.3.1.7 Update summary

Updates made to this section are described in Table 7-11.

Version	Update type	Description
2022	Equations	Revised energy savings factors and applied scaling savings by additional parameters than just the sq. ft.
2021	Inputs	Added large office building type and expanded to 10 weather stations
2020	Inputs	Revised kWh/sq.ft. with results from updated building models
v10	-	Initial release

Table 7-11. Summary of update(s)

7.3.2 HVAC temperature setback

7.3.2.1 Measure description

DNV - www.dnv.com

The unoccupied temperature must be set lower than it was previously in the baseline condition. The temperature must be reduced at least two degrees below the occupied set point. This measure is offered to buildings with either gas or electric heat. The customer or controls vendor must provide documentation of the existing and new

¹³⁹ The chiller plant setpoint adjustment measure life is assigned for all measures in this program. The measures in this program will have a similar measures life as they are all related to retro-commissioning and controls measures.

Docket No. E-22, Sub 645

unoccupied temperature set points and their schedules. For this measure, we assumed it is implemented in a large office building with a chilled water VAV system and heating fuel type of electric and gas.

In the simulations, temperature setpoints during unoccupied hours are set back by nine degrees. Other spaces such as the data center are not modified. Since the baseline HVAC schedules had already implemented temperature setback, this measure was "modeled in reverse" by eliminating the setback schedules in the reference energy model (which were set to nine degrees). Other schedule/setbacks can be scaled accordingly.

Code requires setback controls (but not setup) for ASHRAE Zone 4A, per ASHRAE 90.1-2007 section 6.4.3.2.2. Implementing this measure involves restoring functionality that is intended by code.

- Setback temperature: 60.8 °F
- Occupied hours set point: 69.8 °F

7.3.2.2 Impact Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = ESF \times scfm_{supply fan} \times MAF$$

$$MAF = \left(\frac{T_{unoccupied,base} - T_{unoccupied,ee}}{9^{\circ}F}\right)$$

Per-measure, gross coincident summer and winter peak demand reduction is assigned as zero because these measures have a negligible demand reduction as shown below:

$$\Delta k W_{summer} = 0$$

$$\Delta k W_{winter} = 0$$

Where:

Λk\//b	- per-measure gross appual electric energy savings
	= per-measure gross armual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction
ESF	= annual energy savings factor
MAF	= measure adjustment factor to scale savings from the modeled assumptions to the application depth of measure
Tunoccupied,base	= baseline unoccupied temperature setpoint
Tunoccupied, ee	= energy-efficient case unoccupied temperature setpoint
scfm _{supply} fan	= supply fan flow rate

7.3.2.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 7-12. Input values for office buildings

Component	Туре	Value	Unit	Source(s)
ESF	Variable	See Table 7-2	kWh/Unit	OpenStudio [®] energy modeling software outputs using EnergyPlus™ engine
Tunoccuiped,base	Variable	See customer application	°F	Customer application
Tunoccuiped,ee	Variable	See customer application	°F	Customer application
scfm _{supply fan}	Variable	See customer application	scfm	Customer application

7.3.2.4 Default savings

This measure does not have default savings.

7.3.2.5 Effective Useful Life

The effective useful life of this measure is provided in Table 7-13.

DSM Phase	Program name	Value	Units	Source(s)
хі	Non-Residential Building Optimization Program, DSM Phase IX	5.00		/isconsin TRM 2022, p. 369 ¹⁴⁰
VI	Non-Residential Office Program, DSM Phase VII	7.00	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

7.3.2.6 Source(s)

The primary source for this deemed savings approach is prototypical building energy models derived from DOE's Commercial Large Office Reference Building and modified to represent Dominion Energy's Virginia and North Carolina weather zones, using typical meteorological year 3 (TMY3) data.

7.3.2.7 Update summary

Updates made to this section are described in Table 7-14.

Table 7-14. Summary of update(s)

Version	Update type	Description
2022	Equations	Revised energy savings factors and applied scaling savings by additional parameters than just the sq. ft.
2021	Inputs	Added large office building type and expanded to 10 weather stations
2020	Inputs	Revised kWh/sq.ft. with results from updated building models
v10	-	Initial release

¹⁴⁰ The chiller plant setpoint adjustment measure life is assigned for all measures in this program. The measures in this program will have a similar measures life as they are all related to retro-commissioning and controls measures.

7.3.3 Condensing water temperature reset

7.3.3.1 Measure description

The condenser temperature on an air-cooled or water-cooled chiller system must be allowed to reset (lower) by at least five degrees from the summer design conditions during periods of partial load. The customer or controls vendor should provide documentation of implementation of the enhanced reset schedule compared to the baseline system control strategy. For this measure, we assumed it is implemented in a large office building with a chilled water VAV system and heating fuel type of electric and gas. Reset schedule as modeled for the efficient case reflects:

- For outside air temperature of 60°F, the chilled water setpoint temperature is changed to 60°F
- For outside air temperature of 75°F, the chilled water setpoint temperature is changed to 70°F
- The measure accounts for the presence of two stages in the cooling tower that had not existed in the baseline case.

7.3.3.2 Impact Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = ESF \times Size_{cool} \times MAF$$

$$MAF = \left(\frac{T_{condenser,base} - T_{condenser \, reset,ee}}{10^{\circ} \mathrm{F}}\right)$$

Per-measure, gross coincident summer and winter peak demand reduction is assigned as zero because these measures have a negligible demand reduction as shown below:

$$\Delta k W_{summer} = 0$$

$$\Delta k W_{winter} = 0$$

Where:

ΔkWh	= per-measure gross annual electric energy savings
ΔkW_{summer}	= per-measure gross coincident summer peak demand reduction
ΔkW _{winter}	= per-measure gross coincident winter peak demand reduction
ESF	= annual energy savings factor
MAF	= measure adjustment factor to scale savings from the modeled assumptions to the
	application depth of measure
Tcondenser,base	= baseline condenser temperature setpoint
Tcondenser reset, ee	= energy-efficient case condenser reset temperature setpoint
Sizecool	= chiller cooling capacity

7.3.3.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 7-15. Input values for office buildings

Component	Туре	Value	Unit	Source(s)
ESF	Variable	See Table 7-2	kWh/Unit	OpenStudio [®] energy modeling software outputs using EnergyPlus™ engine
Tcondenser,base	Variable	See customer application	°F	Customer application
T _{condenser} reset,ee	Variable	See customer application	°F	Customer application
size _{cool}	Variable	See customer application	sq. ft.	Customer application

7.3.3.4 Default savings

This measure does not have default savings.

7.3.3.5 Effective Useful Life

The effective useful life of this measure is provided in Table 7-16.

DSM Phase	Program name	Value	Units	Source(s)
хі	Non-Residential Building Optimization Program, DSM Phase IX	5.00		Wisconsin TRM 2022, p. 369 ¹⁴¹
VI	Non-Residential Office Program, DSM Phase VII	7.00	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

7.3.3.6 Source(s)

The primary source for this deemed savings approach is prototypical building energy models derived from DOE's Commercial Large Office Reference Building and modified to represent Dominion Energy's Virginia and North Carolina weather zones, using typical meteorological year 3 (TMY3) data.

7.3.3.7 Update summary

Updates made to this section are described in Table 7-17.

Table 7-17. Summary of update(s)

Version	Update type	Description
2022	Equations	Revised energy savings factors and applied scaling savings by additional parameters than just the sq. ft.
2021	Inputs	Added large office building type and expanded to 10 weather stations
2020	Inputs	Revised kWh/sq.ft. with results from updated building models
v10	-	Initial release

¹⁴¹ The chiller plant setpoint adjustment measure life is assigned for all measures in this program. The measures in this program will have a similar measures life as they are all related to retro-commissioning and controls measures.

DNV

7.3.4 HVAC discharge air temperature reset

7.3.4.1 Measure description

The discharge air temperature from a variable air volume or constant volume re-heat air handling system must be allowed to reset (increase) at least two degrees from the summer design conditions during periods of partial load. The customer or controls vendor should provide documentation of implementation of the enhanced reset schedule compared to how the system was previously controlled. For this measure, we assumed it is implemented in a large office building with a chilled water VAV system and heating fuel type of electric. Systems that are eligible for this measure include those with electric reheat coils or baseboard heaters. This is not required by ASHRAE 90.1-2007.

7.3.4.2 Impact Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = ESF \times scfm_{supply\,fan} \times MAF$$

$$MAF = \left(\frac{T_{discharge\,reset,ee} - T_{discharge,base}}{6^{\circ}F}\right)$$

Per-measure, gross coincident summer and winter peak demand reduction is assigned as zero because these measures have a negligible demand reduction as shown below:

$$\Delta k W_{summer} = 0$$

$$\Delta k W_{winter} = 0$$

Where:

ΔkWh ΔkW _{summer} ΔkW _{winter} ESF	 per-measure gross annual electric energy savings per-measure gross coincident summer peak demand reduction per-measure gross coincident winter peak demand reduction annual energy savings factor
MAF	= measure adjustment factor to scale savings from the modeled assumptions to the application depth of measure
Tdischarge reset, ee	= energy-efficient case discharge max reset temperature setpoint
T _{discharge, base}	= energy-efficient case unoccupied temperature setpoint
scfm _{supply} fan	= supply fan flow rate

7.3.4.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 7-18. Input values for office buildings

Component	Туре	Value	Unit	Source(s)
ESF	Variable	See Table 7-2	kWh/Unit	OpenStudio [®] energy modeling software outputs using EnergyPlus™ engine
Tdischange reset, ee	Variable	See customer application	°F	Customer application
Tdischarge, base	Variable	See customer application	°F	Customer application
scfm _{supply fan}	Variable	See customer application	scfm.	Customer application

7.3.4.4 Default savings

This measure does not have default savings.

7.3.4.5 Effective Useful Life

The effective useful life of this measure is provided in Table 7-19.

Table 7-19. Effective Useful Life for li	ifecycle savings cale	culations
--	-----------------------	-----------

DSM Phase	Program name	Value	Units	Source(s)
хі	Non-Residential Building Optimization Program, DSM Phase IX	5.00		Wisconsin TRM 2022, p. 369 ¹⁴²
VI	Non-Residential Office Program, DSM Phase VII	7.00	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

7.3.4.6 Source(s)

The primary source for this deemed savings approach is prototypical building energy models derived from DOE's Commercial Large Office Reference Building and modified to represent Dominion Energy's Virginia and North Carolina weather zones, using typical meteorological year 3 (TMY3) data.

7.3.4.7 Update summary

Updates made to this section are described in Table 7-20

Table 7-20. Summary of update(s)

Version	Update type	Description	
2022	Equations	Revised energy savings factors and applied scaling savings by additional parameters than just the sq. ft.	
2021	Inputs	Added large office building type and expanded to 10 weather stations	
2020	Inputs	Revised kWh/sq.ft. with results from updated building models	
v10	-	Initial release	

¹⁴² The chiller plant setpoint adjustment measure life is assigned for all measures in this program. The measures in this program will have a similar measures life as they are all related to retro-commissioning and controls measures.

7.3.5 HVAC static pressure reset

7.3.5.1 Measure description

Supply fans controlled by variable-frequency drives (VFDs) must be converted from a fixed static-pressure supply setpoint to a control sequence that resets the static-pressure supply setpoint based on the variable air volume box position. The customer or controls vendor should provide documentation showing the existing set point and new static pressure reset control sequence. For this measure, we assumed it is implemented in a large office building with a chilled water VAV system and heating fuel type of electric and gas.

See section 6.5.3.2.3 of ASHRAE 90.1-2007. This measure was required by code for air systems with zone boxes integrated into DDC control system. Implementing it would appear to restore the condition intended by code, though not all systems would have such controls. The base model did not have this control implemented. VAV fan curves in the base model correspond to fixed duct static pressure.

The baseline and efficient case inputs to model this measure were derived from the National Renewable Energy Laboratory.

Fan curve coefficients used were as shown in Table 7-21.

Coefficient	Fixed static pressure (baseline)	Reset static pressure (efficient)
Coefficient 1	0.00130	0.04076
Coefficient 2	0.14700	0.08810
Coefficient 3	0.95060	-0.07290
Coefficient 4	-0.09980	0.94370
Coefficient 5	0.00000	0.00000
Minimum percent power	20%	10%

Table 7-21. Fan curve coefficients

7.3.5.2 Impact Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = ESF \times scfm_{supply fam}$$

Per-measure, gross coincident summer and winter peak demand reduction is assigned as zero because these measures have a negligible demand reduction as shown below:

$$\Delta kW_{summer} = DRF_{summer} \times scfm_{supply fam}$$

$$\Delta kW_{winter} = DRF_{winter} \times scfm_{supply fan}$$

Where:

ΔkWh	= per-measure gross annual electric energy savings
ΔkW_{summer}	= per-measure gross coincident summer peak demand reduction
ΔkW _{winter}	= per-measure gross coincident winter peak demand reduction
ESF	= annual energy savings factor
DRFsummer	= summer coincident demand reduction factor
DRFwinter	= winter coincident demand reduction factor
scfm _{supply fan}	= supply fan flow rate

7.3.5.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Unit	Source(s)
ESF	Variable	See Table 7-2	kWh/scfm	OpenStudio [®] energy modeling software outputs using EnergyPlus™ engine
scfm _{supply fan}	Variable	See customer application	scfm	Customer application
DRF _{summer}	Variable	See Table 7-3	kW/ scfm	EnergyPlus™ energy modeling software outputs
DRFwinter	Variable	See Table 7-3	kW/ scfm	EnergyPlus™ energy modeling software outputs

Table 7-22. Input values for office buildings

7.3.5.4 Default savings

This measure does not have default savings.

7.3.5.5 Effective Useful Life

The effective useful life of this measure is provided in Table 7-23.

Table 7-23. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
хі	Non-Residential Building Optimization Program, DSM Phase IX	5.00		Wisconsin TRM 2022, p. 369 ¹⁴³
VI	Non-Residential Office Program, DSM Phase VII	7.00	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

¹⁴³ The chiller plant setpoint adjustment measure life is assigned for all measures in this program. The measures in this program will have a similar measures life as they are all related to retro-commissioning and controls measures.

OFFICIAL COPY

DNV

7.3.5.6 Source(s)

The primary source for this deemed savings approach is prototypical building energy models derived from DOE's Commercial Large Office Reference Building and modified to represent Dominion Energy's Virginia and North Carolina weather zones, using typical meteorological year 3 (TMY3) data.

7.3.5.7 Update summary

Updates made to this section are described in Table 7-24.

Version	Update Type	Description	
2022	Equations Revised energy savings factors and applied scaling savings parameters than just the sq. ft.		
2021	Inputs	Added large office building type and expanded to 10 weather stations	
2020	Inputs	Revised kWh/sq.ft. with results from updated building models	
v10	-	Initial release	

Table 7-24. Summary of update(s)

7.3.6 HVAC VAV minimum flow reduction

7.3.6.1 Measure description

VAV minimums were assumed to be set higher than necessary to meet winter heating loads. They were reduced by 10%. It is assumed that this measure can be implemented while continuing to provide code required ventilation levels and meeting winter heating set points in all zones (e.g., perhaps occupancy of the building has changed and not as much ventilation air is needed and/or insulation has been added so winter shell loads are smaller than before). Verifying these conditions in an actual building would take a fair amount of analysis. For this measure, we assumed it is implemented in a 4-story office building with a chilled water VAV system and heating fuel type of electric and gas. The presence of electric re-heats results in savings approximately double that for VAV with fossil fuel HW boilers.

7.3.6.2 Impact Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = ESF \times SqFt \times MAF$$

$$MAF = \left(\frac{VAV_{min \ position, base} - VAV_{min \ position, ee}}{0.10}\right)$$

Per-measure, gross coincident summer and winter peak demand reduction is assigned as zero because these measures have a negligible demand reduction as shown below:

$$\Delta k W_{summer} = 0$$
$$\Delta k W_{winter} = 0$$

Docket No. E-22, Sub 645

DNV

Where:

ΔkWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction
ESF	= annual energy savings factor
MAF	= measure adjustment factor to scale savings from the modeled assumptions to the application depth of measure
VAVmin position, base	= baseline VAV box minimum damper position
VAVmin position, ee	= energy-efficient case VAV box minimum damper position
SqFt	= condition area impacted by measure

7.3.6.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Unit	Source(s)
ESF	Variable	See Table 7-2	kWh/Unit	OpenStudio [®] energy modeling software outputs using EnergyPlus™ engine
VAVmin position, base	Variable	See customer application	hours/day	Customer application
VAVmin position, ee	Variable	See customer application	hours/day	Customer application
SqFt	Variable	See customer application	sq. ft.	Customer application

7.3.6.4 Default savings

This measure does not have default savings.

7.3.6.5 Effective Useful Life

The effective useful life of this measure is provided in Table 7-26.

Table 7-26. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
хі	Non-Residential Building Optimization Program, DSM Phase IX	5.00		Wisconsin TRM 2022, p. 369 ¹⁴⁴
VI	Non-Residential Office Program, DSM Phase VII	7.00	years	Program design assumptions (weighted average of measure lives of all measures offered by program and their planned uptake)

¹⁴⁴ The chiller plant setpoint adjustment measure life is assigned for all measures in this program. The measures in this program will have a similar measures life as they are all related to retro-commissioning and controls measures.

7.3.6.6 Source(s)

The primary source for this deemed savings approach is prototypical building energy models derived from DOE's Commercial Large Office Reference Building and modified to represent Dominion Energy's Virginia and North Carolina weather zones, using typical meteorological year 3 (TMY3) data.

7.3.6.7 Update summary

Updates made to this section are described in Table 7-27.

Version	Update type	Description
2022	Equations	Revised energy savings factors and applied scaling savings by additional parameters than just the sq. ft.
2021	Inputs	Added large office building type and expanded to 10 weather stations
2020	Inputs	Revised kWh/sq.ft. with results from updated building models
v10	-	Initial release

Table 7-27. Summary of update(s)

7.3.7 Dual enthalpy air-side economizer

This measure does not use the building simulation approach that is applied to other measures in this program. Instead, it utilizes the Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII savings approach described in Section 2.1.5.

DNV

8 NON-RESIDENTIAL SMALL BUSINESS IMPROVEMENT ENHANCED PROGRAM, DSM PHASE VIII

The Non-Residential Small Business Improvement Enhanced Program provides mall businesses an energy use assessment and tune-up or re-commissioning of electric heating and cooling systems, along with financial incentives for the installation of specific energy efficiency measures. Participating small businesses would be required to meet certain size and connected load requirements. All non-residential customers who do not exceed the 100-kW demand threshold.

The measures offered through the program and the sections that contain the savings algorithms for each measure are presented in Table 8-1.

End Use	Measure	Legacy program	Manual section
Building envelope	Window film installation	Non-Residential Window Film Program, DSM Phase VII	Section 3.1.1
	Duct testing & sealing	Non-Residential Prescriptive Program, DSM Phase VI	Section 4.2.1.
	Heat Pump tune-up	Non-Residential Prescriptive Program, DSM Phase VI	Section 4.2.2
	Refrigerant charge correction	-	Section 8.2.3
HVAC	Heat pump upgrade	Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII	Section 2.1.1
	Dual enthalpy air-side economizer	Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII	Section 2.1.5
	Programmable thermostat	-	Section 8.2.6
	HVAC variable frequency drives -		Section 8.2.7
Lighting	Lighting, fixtures, lamps, and delamping	Non-Residential Lighting Systems and Controls Program, DSM Phase VII	Section 1.1.1
	Sensors and controls	Non-Residential Lighting Systems and Controls Program, DSM Phase VII	Section 1.1.2
	LED exit signs	-	Section 8.3.3
Appliance or Plug Load	Vending machine miser	Non-Residential Prescriptive Program, DSM Phase VI	Section 4.3.2
	Refrigeration variable frequency drives	New Measure	Section 8.5.1
	Refrigeration	Non-Residential Prescriptive Program, DSM Phase VI	Section 4.4.9
	Evaporator fan electronically commutated motor (ECM) retrofit	Non-Residential Prescriptive Program, DSM Phase VI	Section 4.4.5
Refrigeration	Evaporator fan motor controls	Non-Residential Prescriptive Program, DSM Phase VI	Section 4.4.6
	Door closer	Non-Residential Prescriptive Program, DSM Phase VI	Section 4.4.1
	Anti-sweat heater controls	-	Section 8.5.6
	Strip curtain (cooler and freezer)	Non-Residential Prescriptive Program, DSM Phase VI	Section 4.4.12

Table 8-1 Non-Residential small business improvement enhanced program measure list				
	Table 8-1, Non-Residential smal	I business improvement	enhanced program	measure list

8.1 Building envelope end use

8.1.1 Window film installation

This measure is also offered through the Non-Residential Window Film Program, DSM Phase VII. The savings approach is described in Section 3.1.1.

8.2 Heating, Ventilation, and Air Conditioning (HVAC) end use

8.2.1 Duct testing & sealing

This measure is also offered through the Non-Residential Prescriptive Program, DSM Phase VI. The savings approach is described in Section 4.2.1.

8.2.2 Heat pump tune-up

This measure is also offered through the Non-Residential Prescriptive Program, DSM Phase VI. The savings approach is described in Section 4.2.2.

8.2.3 Refrigerant charge correction

8.2.3.1 Measure description

This measure involves adjusting the amount of refrigerant charge at air conditioners and heat pumps for packaged and split systems at small commercial and industrial sites. All HVAC applications other than space cooling and heating—such as process cooling—are ineligible for this measure.

8.2.3.2 Impacts estimation approach

Algorithms and inputs to calculate cooling, heating and demand reduction for unitary/split air-conditioning and heating pump systems that receive refrigerant charge adjustments are provided below. Gross annual electric energy savings are calculated according to the equations that follow.

Cooling energy savings

For heat pumps and AC units <65,000 Btu/h, the per-measure gross annual electric cooling energy savings are calculated according to the following equation:

 $\Delta kWh_{cool} = Size_{cool} \times \frac{12 \ kBtuh/ton}{SEER} \times EFLH_{cool} \times RCF$

For heat pumps and AC units ≥65,000 Btu/h, the per-measure gross annual electric cooling energy savings are calculated according to the following equation:

$$\Delta kWh_{cool} = Size_{cool} \times \frac{12 \ kBtuh/ton}{IEER} \times EFLH_{cool} \times RCF$$

Heating energy savings

For heat pump units <65,000 Btu/h, the per-measure gross annual electric heating energy savings are calculated according to the following equation:

$$\Delta kWh_{heat} = Size_{heat} \times \frac{1}{HSPF} \times EFLH_{heat} \times RCF$$

For heat pump units ≥65,000 Btu/h, the per-measure gross annual electric heating energy savings are calculated according to the following equation:

$$\Delta kWh_{heat} = Size_{heat} \times \left(\frac{1}{COP \times 3.412 Btuh/W}\right) \times EFLH_{heat} \times RCF$$

Cooling and heating savings are added to calculate the per-measure gross annual electric energy savings as follows:

$$\Delta kWh = \Delta kWh_{cool} + \Delta kWh_{heat}$$

Per-measure, gross coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = Size_{cool} \times \frac{12 \ kBtuh/ton}{EER} \times RCF \times CF_{summer}$$

Per-measure, gross coincident demand reduction is calculated according to the following equation:

$$\Delta k W_{winter} = \frac{\Delta k W h_{heat}}{EFLH_{heat}} \times CF_{winter}$$

Where,

ΔkWh	= per-measure gross annual electric energy savings
ΔkW	= per-measure gross coincident demand reduction
ΔkWh_{cool}	= per-measure gross annual electric cooling energy savings
ΔkWh_{heat}	= per-measure gross annual electric heating energy savings
Sizecool	= unit capacity for cooling
Sizeheat	= unit capacity for heating
EER	= energy efficiency ratio (EER) at full load
SEER	= seasonal energy efficiency ratio (SEER) of the installed air conditioning equipment. It is used for heat pumps and AC units that are smaller than 65,000 Btu/h.
IEER	 integrated energy efficiency ratio (IEER) of the existing or baseline air conditioning equipment. IEER is a weighted average of a unit's efficiency at four load points: 100%, 75%, 50%, and 25% of full cooling capacity. It is used for heat pumps and AC units that are 65,000 Btu/h or larger.
HSPF	= heating seasonal performance factor
COP	= coefficient of performance (heating)

EFLH _{cool}	= equivalent full load hours for cooling
EFLHheat	= equivalent full load hours for heating
RCF	= refrigerant charge factor
CF	= demand coincidence factor

8.2.3.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Units	Source(s)
Sizecool	Variable	See customer application	tons (cooling capacity)	Customer application
Size _{heat}	Variable	See customer application ¹⁴⁵ Default: = Size _{cool} x 12 kBtu/h /ton	kBtu/h	Customer application
EFLHcool	Variable	See Table 17-4 in Sub- Appendix F2-II: Non- residential HVAC	hours, annual	Maryland/Mid-Atlantic TRM v.10, p. 422
EFLH _{heat}	Variable	See Table 17-5 in Sub- Appendix F2-II: Non- residential HVAC	hours, annual	Maryland/Mid-Atlantic TRM v.10, p. 423
		See customer application ¹⁴⁶		Customer application
EER/SEER	Variable	See Table 17-8 and Table 17-9 in Sub-Appendix F2-III: Non-residential HVAC	Btu/W-hr	ASHRAE 90.1 2013
		See customer application ¹⁴⁶		Customer application
HSPF/COP	Variable	See Table 17-9 in Sub- Appendix F2-III: Non- residential HVAC	Btu/W-hr (for HSPF); COP is -	ASHRAE 90.1 2013
RCF ¹⁴⁷	Variable	AC units: 0.027 HP units: 0.022	-	Maryland/Mid-Atlantic TRM v.10, p. 315 and California 2013-2014 Evaluation Report ¹⁴⁸
CFsummer	Variable	Use system capacity to assign CF as follows: < 11.25 tons = 0.588 ≥ 11.25 tons = 0.874	-	Maryland/Mid-Atlantic TRM v.10, p. 316

Table 8-2. Input variables for refrigerant charge adjustment

¹⁴⁵ When customer-provided heating system size is <80% or >156% of customer-provided cooling system size, a default value will be used, instead. In such instances, it is assumed that the heating system size was incorrectly documented. The acceptable range is based on a review of the AHRI database across numerous manufacturers and heat pump types.

¹⁴⁶ The customer provided efficiency values are reviewed for reasonability. If the efficiency value is outside acceptable bounds the applicable default value is applied. The bounds were determined from a review of the AHRI database. Bounds are as follows: 9.90 < SEER < 46.2, 7.92 < EER < 22.11, 8.10 < IEER < 34.82, 8.82 < CEER < 16.50, 5.85 < HSPF < 15.07, 2.70 < COP < 15.01.</p>

¹⁴⁷ RCF values were calculated utilizing the AC Tune-Up measure in the Maryland/Mid-Atlantic TRM v.10 and electric savings due to coil cleaning and refrigerant charge adjustments found via extensive literature review.

¹⁴⁸ California Public Utilities Commission (2016). Impact Evaluation of 2013-14 Commercial Quality Maintenance Programs (HVAC3),

https://www.calmac.org/publications/HVAC3ImpactReport_0401ES.pdf, While these proportions were not provided in the report, DNV analyzed the same supporting data—though owned by the CPUC and not publicly available—used to produce the tables provided on pages BB-2 and BB-3 of Appendix BB of the report. Whereas the tables provided in Appendix BB were aggregated by program, DNV aggregated the raw data by HVAC-system type to determine appropriate TUF values. This analysis showed that for packaged air-conditioning systems, an average of 54.7% of the overall tune-up savings were attributable to the RCA treatment; for packaged heat pump systems, 44.7% of the overall tune-up savings were attributable to the RCA treatment.

Component	Туре	Value	Units	Source(s)
CFwinter	Variable	Use system capacity to assign CF as follows: < 11.25 tons = 0.588 ≥ 11.25 tons = 0.874	-	Maryland/Mid-Atlantic TRM v.10, p. 316 ¹⁴⁹

8.2.3.4 Default savings

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

8.2.3.5 Effective Useful Life

The effective useful life of this measure is provided in Table 8-3.

Table 8-3. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VIII	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	5.00	years	Maryland/Mid-Atlantic TRM v.10, p. 316

8.2.3.6 Source(s)

The primary sources for this deemed savings approach include the ASHRAE 90.1-2013, Maryland/Mid-Atlantic TRM v.10, pp. 315 - 316 and 422-423 as well as the California 2013-14 Impact Evaluation Report, pp. BB-2 to BB-3.

8.2.3.7 Update summary

Updates made to this section are described in Table 8-4.

Version	Update type	Description
2022	None	No change
	Source	Updated page number(s)/version of the Maryland/Mid-Atlantic TRM
2021	Equation	Added gross winter peak demand reduction equation
	New table	Effective Useful Life (EUL) by program
2020	Equation	Added size condition of <65,000 Btu/h and ≥65,000 Btu/h for determining which equation to use for ground-source heat pumps. Previously all ground-source heat pumps used equations with IEER and COP efficiency metrics.
v10	Source	Updated page number(s)/version of Maryland/Mid-Atlantic TRM Clarified citation footnote of CPUC report
	Input variable	Update to weather stations in North Carolina resulted in revised EFLHs for weather-sensitive measures Equipment efficiency levels were revised per update to ASHRAE 2013 in VA and NC

Jun 15 2023

 $^{^{149}}$ The source TRM does not provide a winter CF. Therefore, the summer CF is applied to the winter CF.

8.2.4 Heat pump upgrade

This measure is also offered through the Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII. The savings approach is described in Section 2.1.1.

8.2.5 Dual enthalpy air-side economizer

This measure is also offered through the Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII. The savings approach is described in Section 2.1.5.

8.2.6 Programmable thermostat

8.2.6.1 Measure description

This measure involves the installation of programmable thermostats¹⁵⁰ for cooling and/or heating systems in spaces with no existing setback control. The programmable thermostat shall set back the temperature setpoint during unoccupied periods. The savings will be realized from reducing the system usage during unoccupied times. The baseline operation of the HVAC units is assumed to be in continuous ON mode during the unoccupied period with fans cycling to maintain the occupied-period temperature setpoints.

8.2.6.2 Impacts Estimation Approach

AC units

Per-measure, gross annual electric energy savings are calculated according to the following equation for units <65,000 Btu/h:

$$\Delta kWh = \left[Size_{cool} \times \left(\frac{12}{SEER}\right) \times EFLH_{cool} \times ESF_{cool}\right]$$

Per-measure, gross annual electric energy savings are calculated according to the following equation for units ≥65,000 Btu/h:

$$\Delta kWh = \left[Size_{cool} \times \left(\frac{12}{IEER}\right) \times EFLH_{cool} \times ESF_{cool}\right]$$

Per-measure, gross coincident summer peak demand reduction is considered to be zero since space conditioning equipment typically operates at maximum capacity during peak periods. There is no gross coincident winter peak demand reduction as AC units.

 $\Delta k W_{summer} = 0$

$$\Delta k W_{winter} = 0$$

 $^{^{150}}$ Non-communicating thermostats are not eligible for the demand response programs.

Heat pumps

Per-measure, gross annual electric energy savings are calculated according to the following equation for units <65,000 Btu/h:

$$\Delta kWh = \left[Size_{cool} \times \left(\frac{12}{SEER}\right) \times EFLH_{cool} \times ESF_{cool}\right] + \left[Size_{heat} \times EFLH_{heat} \times \left(\frac{1}{HSPF}\right) \times ESF_{heat}\right]$$

Per-measure, gross annual electric energy savings are calculated according to the following equation for units ≥65,000 Btu/h:

$$\Delta kWh = \left[Size_{cool} \times \left(\frac{12}{IEER}\right) \times EFLH_{cool} \times ESF_{cool}\right] \\ + \left[Size_{heat} \times EFLH_{heat} \times \left(\frac{1}{3.412 \times COP}\right) \times ESF_{heat}\right]$$

Per-measure, gross coincident demand reduction is considered to be zero since space-conditioning equipment typically operates at maximum capacity during peak periods.

$$\Delta k W_{summer} = 0$$

$$\Delta k W_{winter} = 0$$

Where,

ΔkWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident demand reduction
Sizecool	= unit capacity for cooling
Sizeheat	= unit capacity for heating
SEER	= seasonal energy efficiency ratio (SEER) of the installed air conditioning equipment. It is used
	for heat pumps and AC units that are smaller than 65,000 Btu/h.
IEER	= integrated energy efficiency ratio (IEER) of the existing or baseline air conditioning equipment.
	IEER is a weighted average of a unit's efficiency at four load points: 100%, 75%,
	50%, and 25% of full cooling capacity. It is used for heat pumps and AC units that are
	65,000 Btu/h or larger.
HSPF	= heating seasonal performance factor
COP	= coefficient of performance (heating)
EFLH _{cool}	= equivalent full load hours for cooling
EFLH _{heat}	= equivalent full load hours for heating
ESF _{cool}	= energy savings factor for cooling energy
ESF _{heat}	= energy savings factor for heating energy

8.2.6.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 8-5. Input parameters for programmable thermostat measure

Component	Туре	Value	Units	Source(s)
Size _{cool}	Variable	See customer application	tons of cooling capacity	Customer application
Size _{heat}	Variable	See customer application Default ¹⁵¹ = Size _{cool} x 12 kBtu/h / ton	kBtu/h	Customer application
EFLH _{heat}	Variable	See Table 17-5 in Sub- Appendix F2-II: Non- residential HVAC	hours, annual	Maryland/Mid-Atlantic TRM v.10, p. 423
EFLH _{cool}	Variable	Refer to Table 17-4 in Sub- Appendix F2-II: Non- residential HVAC	hours, annual	Maryland/Mid-Atlantic TRM v.10, p. 422
		See customer application ¹⁵²		Customer application
SEER/IEER	Variable	See Table 17-8 and Table 17-9 in Sub-Appendix F2-III: Non-residential HVAC	kBtu/kW-hour	ASHRAE 90.1 2013, Table 6.8.1-1 and Table 6.8.1B
		See customer application ¹⁵²	kBtu/kW-hour	Customer application
HSPF/COP	Variable	riable See Table 17-9 in Sub- Appendix F2-III: Non- residential HVAC	(except COP is dimensionless)	ASHRAE 90.1 2013, Table 6.8.1-1 and Table 6.8.1-2
ESF _{cool}	Fixed	0.090	-	NY TRM 2018, p. 263
ESF _{heat}	Fixed	0.068	-	NY TRM 2018, p. 263

8.2.6.4 Default savings

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

8.2.6.5 Effective Useful Life

The effective useful life of this measure is provided in Table 8-6.

Table 8-6. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VIII	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	11.00	years	New York TRM 2018, p. 264

8.2.6.6 Source(s)

The primary source for this deemed savings approach is the ASHRAE 90.1-2013, New York TRM 2018, pp. 262-264, and Maryland/Mid-Atlantic TRM v.10, pp. 422-423.

Jun 15 2023

¹⁵¹ When customer-provided heating system size is <80% or >156% of customer-provided cooling system size, a default value will be used, instead. In such instances, it is assumed that the heating system size was incorrectly documented. The acceptable range is based on a review of the AHRI database across numerous manufacturers and heat pump types.

¹⁵² The customer provided efficiency values are reviewed for reasonability. If the efficiency value is outside acceptable bounds the applicable default value is applied. The bounds were determined from a review of the AHRI database. Bounds are as follows: 9.90 < SEER < 46.2, 7.92 < EER < 22.11, 8.10 < IEER < 34.82, 8.82 < CEER < 16.50, 5.85 < HSPF < 15.07, 2.70 < COP < 15.01.</p>

Docket No. E-22, Sub 645

8.2.6.7 Update summary

Updates made to this section are described in Table 8-7.

Table 8-7. Summary of update(s)

Version	Update type	Description
2022	None	No change
2024	Source	Updated page numbers / version of the Mid-Atlantic TRM
2021 New table		Effective Useful Life (EUL) by program
2020	None	No change
	Source	Updated page numbers / version of the New York TRM
v10	Input variable	 Update to weather stations in North Carolina resulted in revised EFLHs for weather-sensitive measures Equipment efficiency levels were revised per update to ASHRAE 2013 in VA and NC

8.2.7 Variable frequency drives

8.2.7.1 Measure description

This measure defines savings that result from installing a variable frequency drive (VFD) control on a HVAC motor with application to supply fans, return fans, exhaust fans, cooling tower fans, chilled water pumps, condenser water pumps, and hot water pumps. The HVAC application must also have a variable load and proper controls in place: feedback control loops to fan/pump motors and variable air volume (VAV) boxes on air-handlers.

The algorithms and inputs to calculate energy and demand reduction for VFDs are provided below. The baseline equipment fan/pump type should be determined from the program application, if available. Otherwise, the minimum savings factors will be applied. This measure is also delivered through the Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII as indicated in section 2.1.4. That program uses a different savings methodology.

The energy savings calculations will include the following baseline applications:

Fans

- Constant Volume (CV) Fan
- Airfoil / Backward-Inclined (AF / BI) Fan
- Airfoil / Backward-Inclined w/Inlet Guide Vanes (AF / BI IGV) Fan
- Forward Curved (FC) Fan
- Forward Curved w/Inlet Guide Vanes (FC IGV) Fan
- Unknown (Default)

Pumps

- Chilled Water Pump (CHW-Pump)
- Condenser Water Pump (CW-Pump)
- Hot Water Pump (HW-Pump)
- Unknown (Default)

This measure is offered through different programs listed in Table 8-8. The uses a different method than the impacts estimation approach described in this section.

	Table 8-8.	Programs	that offe	er this	measure
--	------------	----------	-----------	---------	---------

Program name	Section
Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII	Section 2.1.4
Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	Section 8.2.7

8.2.7.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \frac{hp \times 0.746 \times LF}{\eta} \times HOU \times ESF$$

Per-measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\frac{\Delta k W_{summer}}{\eta} = \frac{hp \times 0.746 \times LF}{\eta} \times CF_{summer} \times DRF$$

Per-measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\frac{\Delta k W_{winter}}{\eta} = \frac{hp \times 0.746 \times LF}{\eta} \times C F_{winter} \times D R F$$

Where:

∆kWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
ΔkW_{winter}	= per-measure gross coincident winter peak demand reduction
hp	= motor rated horsepower
LF	= motor load factor (%) at fan design airflow rate or pump design flowrate
η	= NEMA-rated efficiency of motor
HOU	= annual hours of use
ESF	= energy savings factor
DRF	= demand reduction factor
CFsummer	= summer peak coincidence factor
CF _{winter}	= winter peak coincidence factor

8.2.7.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 8-9. Input values for non-residential variable frequency drives

Component	Туре	Value	Unit	Source(s)
hp	Variable	See customer application	horsepower	Customer application

Component	Туре	Value	Unit	Source(s)
LF	Fixed	0.65	-	Maryland/Mid-Atlantic TRM v.10, p. 297
η	Variable	Default see Table 2-16. Baseline motor efficiency	-	NEMA Standards Publication Condensed MG 1-2007
ESF	Variable	Default see Table 8-11	-	Mid-Atlantic TRM 2015 p. 370; Mid-Atlantic TRM v10, p. 301
DRF	Variable	Default see Table 8-11	-	Mid-Atlantic TRM 2015 p. 370; Mid-Atlantic TRM v10, p. 301
HOU	Variable	See Table 17-6 in Sub-Appendix F2-II: Non-residential HVAC	hours, annual	Maryland/Mid-Atlantic TRM v.10, pp. 299-301
CF _{summer}	Variable	0.28 for fan applications 0.55 for pump applications	-	Mid-Atlantic TRM 2015 p. 370; Maryland/Mid-Atlantic TRM v.10, p. 299
CFwinter	Variable	0.28 for fan applications 0.55 for pump applications	-	Mid-Atlantic TRM 2015 p. 370; Maryland/Mid-Atlantic TRM v.10, p. 299 ¹⁵³

Table 8-10 provides the baseline motor efficiencies that are consistent with the minimum federal accepted motor efficiencies provided by the National Electrical Manufacturers Association (NEMA).¹⁵⁴

Horsepower (hp)	η	Horsepower (hp)	η
1	0.855	60	0.950
1.5	0.865	75	0.954
2	0.865	100	0.954
3	0.895	125	0.954
5	0.895	150	0.958
7.5	0.917	200	0.962
10	0.917	250	0.962
15	0.924	300	0.962
20	0.930	350	0.962
25	0.936	400	0.962
30	0.936	450	0.962
40	0.941	500	0.962
50	0.945		

Table 8-10.	Baseline M	Notor	Efficiency ¹⁵⁵
	Dasennen	notor	

¹⁵⁴ Refer to NEMA Standards Publication Condensed MG 1-2007 - Information Guide for General Purpose Industrial AC Small and Medium Squirrel-Cage Induction Motor Standards and Table 52 'Full-Load Efficiencies for 60 Hz NEMA Premium Efficiency Electric Motors Rated 600 Volts or Less (Random Wound)' in the above mentioned NEMA Standard.

 $^{^{153}}$ The source TRM does not provide a winter CF. Therefore, the summer CF is applied to the winter CF.

¹⁵⁵ NEMA Standards Publication Condensed MG 1-2007 - Information Guide for General Purpose Industrial AC Small and Medium Squirrel-Cage Induction Motor Standards. Assumed Totally Enclosed Fan-Cooled (TEFC), Premiums Efficiency, 1800 RPM (4 Pole).

Table 8-11 provides the energy savings and demand reduction factors by the application and the baseline control types.

Table 8-11. Energy savings and	demand reduction	factors by application
--------------------------------	------------------	------------------------

VFD applications	ESF	DRF		
Unknown VFD (Minimum) ¹⁵⁶	0.123	0.039		
HVAC fan VFD savings factors ¹⁵⁷				
Constant volume	0.717	0.466		
Airfoil / backward inclined (AF/BI-Fan)	0.475	0.349		
Airfoil / backward inclined w/Inlet guide vanes (AF/BI IGV-Fan)	0.304	0.174		
Forward curved (FC-Fan)	0.240	0.182		
Forward curved w/Inlet guide vanes (FC IGV-Fan)	0.123	0.039		
Unknown fan (Average)	0.372	0.242		
HVAC pump VFD savings factors ¹⁵⁸				
Chilled water pump	0.633	0.460		
Hot water pump	0.652	0.000		
Unknown/other pump (Average) ¹⁵⁹	0.643	0.230		

8.2.7.4 Default savings

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

8.2.7.5 Effective Useful Life

The effective useful life of this measure is provided in Table 8-12.

Table 8-12. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program Name	Value	Units	Source(s)
VIII	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	15.00	years	Maryland/Mid-Atlantic TRM v.10, p. 301

8.2.7.6 Source(s)

The primary sources for this deemed savings approach are Mid-Atlantic TRM 2015, pp. 367-371 (for fans) and Maryland/Mid-Atlantic TRM v.10, pp. 296-301 (for pumps).

8.2.7.7 Update summary

Updates made to this section are described in Table 8-13.

Jun 15 2023

 $^{^{156}}$ Assigned for applications such as compressors, based on DNV research and judgement.

¹⁵⁷ Mid-Atlantic TRM 2015, p. 370

¹⁵⁸ Maryland/Mid-Atlantic TRM v.10, p. 301.

¹⁵⁹ Assigned for pumps not specifically listed in this table, such as condenser water pump.

Table 8-13. Summary of update(s)

Version	Update Type	Description
2022	Section	Moved from the Non-Residential Small Business Improvement Program, DSM Phase V Section as that program is no longer active.
	Source	Updated page numbers / version of the Maryland/Mid-Atlantic TRM
2021	Equation	Added gross winter peak demand reduction equation
	New table	Effective Useful Life (EUL) by program
2020	Section Moved methodology from the retired Non-Residential Heating a Efficiency Program DSM III Section to this section.	
	Source	Updated page numbers / version of the Mid-Atlantic TRM
v10	HOU	Update to weather stations in North Carolina resulted in revised HOUs for weather-sensitive measures
	Clarification	Clarified that this methodology is only used for measures implemented during DSM Phase III

8.3 Lighting end use

8.3.1 Lighting, fixtures, lamps, and delamping

This measure is also offered through the Non-Residential Lighting Systems and Controls Program, DSM Phase VII. The savings approach is described in Section 1.1.1.

8.3.2 Sensors and controls

This measure is also offered through the Non-Residential Lighting Systems and Controls Program, DSM Phase VII. The savings approach is described in Section 1.1.2.

8.3.3 LED exit signs

8.3.3.1 Measure description

This measure realizes energy savings by installing an exit sign that is illuminated with light emitting diodes (LED). This measure should be limited to retrofit installations.

This measure is offered through different programs listed in Table 8-14 and uses the impacts estimation approach described in this section.

Table 8-14. Programs that offer this measure

Program name	Section
Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	Section 8.3.3
Non-Residential Multifamily Program, DSM Phase VIII	Section 10.4.2

8.3.3.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

DNV

$$\Delta kWh = \frac{(Qty_{base} \times watts_{base} - Qty_{ee} \times watts_{ee})}{1,000 W/kW} \times HOU \times WHF_e \times ISR$$

Per-measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\frac{\Delta k W_{summer}}{1,000 W/kW} = \frac{(Qty_{base} \times watts_{base} - Qty_{ee} \times watts_{ee})}{1,000 W/kW} \times WHF_{d,summer} \times CF_{summer} \times ISR$$

Per-measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\frac{\Delta k W_{winter}}{1,000 W/kW} = \frac{(Qty_{base} \times watts_{base} - Qty_{ee} \times watts_{ee})}{1,000 W/kW} \times WHF_{d,winter} \times CF_{winter} \times ISR$$

Where:

ΔkWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction
watts _{base}	= connected load of the baseline exit sign
wattsee	= connected load of the efficient exit sign
Qty _{base}	= number of baseline exit signs
Qty _{ee}	= number of efficient exit signs
HOU	= average hours of use per year
WHFe	= waste heat factor for energy to account for cooling savings from efficient lighting
WHF _{d,summ}	er = waste heat factor for demand to account for cooling savings from efficient lighting
WHF _{d,winter}	= waste heat factor for demand to account for heating savings from efficient lighting
CF _{summer}	= summer peak coincidence factor
CF _{winter}	= winter peak coincidence factor
ISR	= in-service rate, the percentage of rebated measures actually installed

8.3.3.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Unit	Source(s)
Qty _{base}	Variable	See customer application	-	Customer application
Qty _{ee}	Variable	See customer application Default: Qtyee = Qtybase	-	Customer application
		See customer application		Customer application
watts _{base}	Variable	Default: 16 W	watts	Maryland/Mid-Atlantic TRM v.10, p. 215, ENERGY STAR ¹⁶⁰
wattsee	Variable	See customer application	watts	Customer application

Table 8-15. Input values for LED exit sign calculations

¹⁶⁰ LED exit sign default values come from an ENERGY STAR[®] report: Save Energy, Money and Prevent Pollution with Light-Emitting Diode (LED) Exit Signs: <u>https://www.energystar.gov/sites/default/files/buildings/tools/led_exitsigns_techsheet.pdf</u>

Component	Туре	Value	Unit	Source(s)
		Default: 5 W LED		Maryland/Mid-Atlantic TRM v.10, p. 314, ENERGY STAR
нои	Fixed	8,760	hours, annual	Maryland/Mid-Atlantic TRM v.10, p. 215
WHFe	Variable	See Table 17-15 in Default savings assumed as lighting condition as Unconditioned space, WHFe=1.0	-	Maryland/Mid-Atlantic TRM v.10, p. 215
WHF d,summer	Variable	See Table 17-15 in Default savings assumed as lighting condition as Unconditioned space, WHFe=1.0	-	Maryland/Mid-Atlantic TRM v.10, p. 216
WHF d,winter	Variable	See Table 17-15 in Default savings assumed as lighting condition as Unconditioned space, WHFe=1.0	-	Maryland/Mid-Atlantic TRM v.10, p. 216
CF _{summer}	Fixed	1.0	-	Maryland/Mid-Atlantic TRM v.10, p. 216 ¹⁶¹
CFwinter	Fixed	1.0	-	Maryland/Mid-Atlantic TRM v.10, p. 216 ¹⁶²
ISR	Fixed	1.0	-	Maryland/Mid-Atlantic TRM v.10, p. 215 ¹⁶³

Note that the coincidence factor (CF) is 1 for this measure since exit signs are on continuously, including during the entirety of the peak period.

8.3.3.4 Default savings

If the proper values are not supplied, a default savings may be applied using conservative input values. The default per-measure gross annual electric energy savings will be assigned according to the following calculation:

$$\Delta kWh = \frac{(Qty_{base} \times watts_{base} - Qty_{ee} \times watts_{ee})}{1,000 W/kW} \times HOU \times WHF_e \times ISR$$
$$= \frac{(1 \times 16 W - 1 \times 5 W)}{1,000 W/kW} \times 8,760 hour \times 1.0 \times 1.0$$

 $= 96.36 \, kWh$

Jun 15 2023

 ¹⁶¹ Efficiency Vermont Technical Reference Manual 2009-55, December 2008.
 ¹⁶² Ibid.

¹⁶³ EmPOWER Maryland DRAFT Final Impact Evaluation Report Evaluation Year 4 (June 1, 2012 – May 31, 2013) Commercial & Industrial Prescriptive & Small Business Programs, Navigant, March 31, 2014.

The default per-measure gross coincident summer peak demand reduction is calculated using the following calculation:

$$\Delta kW_{summer} = \frac{(Qty_{base} \times watts_{base} - Qty_{ee} \times watts_{ee})}{1,000 W/kW} \times WHF_{d,summer} \times CF_{summer} \times ISR$$
$$= \frac{(1 \times 16 W - 1 \times 5 W)}{1,000 W/kW} \times 1.0 \times 1.0 \times 1.0$$
$$= 0.011 kW$$

The default per-measure gross coincident winter demand reduction is calculated using the following calculation:

$$\Delta kW_{winter} = \frac{(Qty_{base} \times watts_{base} - Qty_{ee} \times watts_{ee})}{1,000 W/kW} \times WHF_{d,winter} \times CF_{winter} \times ISR$$

$$=\frac{(1\times 16\ W-1\times 5\ W)}{1,000\ W/kW}\times\ 1.0\ \times 1.0\ \times 1.0$$

 $= 0.011 \, kW$

8.3.3.5 Effective Useful Life

The effective useful life of this measure is provided in Table 8-16.

Table 8-16. Effective Useful Life for lifecycle savings calculation

DSM Phase	Program name	Value	Units	Source(s)
VIII	Non-Residential Multifamily Program, DSM Phase VIII Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	5.00	years	Maryland/Mid-Atlantic TRM v.10, p. 216

8.3.3.6 Source(s)

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v.10, pp. 215-216.

8.3.3.7 Update summary

Updates made to this section are described in Table 8-17.

Table 8-17. Summary of update(s)

Version	Update type	Description	
2022	None	No change	
2021	Source	Updated page numbers / version of the Mid-Atlantic TRM	

Docket No. E-22, Sub 645

Version	Update type	Description		
Equation		Added gross winter peak demand reduction equation		
	New table	Effective Useful Life (EUL) by program		
2020	None	No change		
v10	Source	Updated page numbers / version of the Mid-Atlantic TRM		

8.4 Appliance or Plug Load end use

8.4.1 Vending machine miser

This measure is also offered through the Non-Residential Prescriptive Program, DSM Phase VI. The savings approach is described in Section 4.3.2

8.5 Refrigeration end use

8.5.1 Refrigeration variable frequency drives

Variable frequency drive (VFD) compressors are used to control and reduce the speed of the compressor during times when the refrigeration system does not require the motor to run at full capacity. VFD control is an economical and efficient retrofit option for existing compressor installations. The performance of variable speed compressors can more closely match the variable refrigeration load requirements thus minimizing energy consumption.

This measure, VFD control for refrigeration systems and its eligibility targets applies to retrofit construction in the commercial and industrial building sectors; it is most applicable to grocery stores or food processing applications with refrigeration systems. This protocol is for a VSD control system replacing a slide valve control system. The savings algorithms are shown below. There are two distinct sets of algorithms – one for if the refrigeration system is rated in tonnage, and another for if the refrigeration system is rated in horsepower.

8.5.1.1 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equations:

$$\Delta kWh = tons_{cool} \times ESF$$

If the refrigeration system is rated in horsepower:

$$tons_{cool} = 0.212 \times \frac{1}{COP} \times hp_{compressor}$$

Per-measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = tons_{cool} \times DSF_{summer}$$

DNV - www.dnv.com

Docket No. E-22, Sub 645

DNV

Per-measure, gross coincident winter peak demand reduction is calculated according to the following equation:

 $\Delta kW_{winter} = tons_{cool} \times DSF_{winter}$

Where:

ΔkWh	= per-measure gross annual electric energy savings
ΔkW_{summer}	= per-measure gross coincident summer peak demand reduction
ΔkW_{winter}	= per-measure gross coincident winter peak demand reduction
tons _{cool}	= refrigeration cooling capacity of the system, in tons
ESF	= energy saving factor in kWh per ton
DSF _{summer}	= summer demand saving factor, in kW per ton
DSF _{winter}	= winter demand saving factor, in kW per ton
COP	= coefficient of performance
hpcompressor	= rated horsepower of refrigeration compressor

8.5.1.2 Input variable

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value		Unit	Source(s)
hpcompressor	Variable	See customer application		horsepower	Customer application
ESF	Fixed		1,696	kWh/ton	Pennsylvania TRM 2019 Vol.3, p. 164
DSF _{summer}	Fixed		0.22	kW/ton	Pennsylvania TRM 2019 Vol.3, p. 164
DSFwinter	Fixed		0.22	kW/ton	Pennsylvania TRM 2019 Vol.3, p. 164
		See customer application			Customer application
СОР	Variable	Default: Reach-in coolers = 2.04 Reach-in freezers = 1.25 Reach-in unknown = 1.80		-	Pennsylvania TRM 2019 Vol. 3, p. 164
		Walk-in coolers = 3.42 Walk-in freezers = 1.00 Walk-in unknown = 2.67			

Table 8-18. Input variables for refrigeration variable frequency drives

8.5.1.3 Default savings

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

8.5.1.4 Effective Useful Life

The effective useful life of this measure is provided in Table 8-19.

Table 8-19. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VIII	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	15.00	years	Pennsylvania TRM 2019, Vol. 3, p. 163

8.5.1.5 Source

The primary sources for this deemed savings approach Pennsylvania TRM 2019, Vol. 3, pp. 163-165.

8.5.1.6 Update summary

Updates made to this section are described in Table 8-20.

Table 8-20. Summary of update(s)			
Version	Update Type	Description	
2022	None	No change	
2021	-	Initial release	

8.5.2 Night cover

This measure is also offered through the Non-Residential Prescriptive Program, DSM Phase VI. The savings approach is described in Section 4.4.9.

8.5.3 Evaporator fan electronically commutated motor (ECM) retrofit

This measure is also offered through the Non-Residential Prescriptive program. The savings approach is described in Section 4.4.5.

8.5.4 Evaporator fan motor controls

This measure is also offered through the Non-Residential Prescriptive program. The savings approach is described in Section 4.4.6.

8.5.5 Door closer

This measure is also offered through the Non-Residential Prescriptive program. The savings approach is described in Section 4.4.1.

8.5.6 Anti-sweat heater controls

Anti-sweat door heaters (ASDH) prevent condensation from forming on cooler and freezer doors. By installing a control device to turn off door heaters when there is little or no risk of condensation, significant energy savings can be realized. There are two commercially available control strategies—On/Off controls and micro-pulse controls—that respond to a call for heating. Heating is typically triggered based on a door-moisture sensor or an indoor-air temperature and humidity-sensor to calculate the dew point. In the first strategy, the On/Off controls turn the heaters on and off for minutes at a time, resulting in a reduction in run time. In the second strategy, the micro pulse controls turn on the door heaters for fractions of a second, in response to the call for heating. Either of these strategies result in annual energy and coincident peak demand reduction. Additional savings come from refrigeration interactive effects. When the heaters run less, they introduce less heat into the refrigerated spaces and reduce the cooling load.

The baseline condition is assumed to be a commercial glass door cooler or refrigerator with a standard heated door running 24 hours per day, seven days per week (24/7) with no controls installed. The efficient equipment is assumed to be a door heater control on a commercial glass door cooler or refrigerator utilizing either On/Off or micro-pulse controls.

8.5.6.1 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are assigned according to the following equation:

$$\Delta kWh = kW_{load} \times (\%On_{base} - \%On_{ee}) \times HOU \times WHF_{e}$$

Per-measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = kW_{load} \times WHF_d \times CF_{summer}$$

Per-measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = kW_{load} \times WHF_d \times CF_{winter}$$

Where:

∆kWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction
kW _{load}	= connected load kW per connected door
%On _{base}	= effective run time of uncontrolled anti-sweat door heaters (ASDH)
%On _{ee}	= effective run time of ASDH with controls
HOU	= annual hours of operation
WHFe	= waste heat factor for energy
WHFd	= waste heat factor for demand
CF _{summer}	= summer coincidence factor
CFwinter	= winter coincidence factor

Jun 15 2023

8.5.6.2 Input variable

Table 8-21. Input values for anti-sweat heater controls

Component	Туре	Value	Units	Source(s)
		See customer application		Customer application
kWload	Variable	Default: 0.13	kW	Maryland/Mid-Atlantic TRM v.10, p. 344
%On _{base}	Fixed	0.907	-	Maryland/Mid-Atlantic TRM v.10, p. 344
%Onee Variable Default: On/Off control=0.589 Micro-pulse control=0.428		-	Maryland/Mid-Atlantic TRM v.10, p. 345	
НО	Fixed	8,760	hours, annual	Maryland/Mid-Atlantic TRM v.10, p. 345
CF _{summer}	Variable	Default: Refrigerator: ON/OFF controls: 0.25 Micro-pulse control: 0.36 Freezer: ON/OFF controls: 0.21 Micro-pulse control: 0.30	-	Maryland/Mid-Atlantic TRM v.10, p. 345
CFwinter Variable Variable Default: Refrigerator: On/Off controls: 0.24 Micro-pulse: 0.35 Freezer: On/off controls: 0.20 Micro-pulse: 0.29		-	Maryland/Mid-Atlantic TRM v.10, pp. 345 ¹⁶⁴ .	
WHFe	Variable	High temp (31°F - 55°F): 1.25 Med temp (0°F - 30°F): 1.50 Low temp (-35°F1°F): 1.50	-	Maryland/Mid-Atlantic TRM v.10, p. 345
WHFd	Variable	High temp (31°F - 55°F): 1.25 Med temp (0°F - 30°F): 1.50 Low temp (-35°F1°F): 1.50	-	Maryland/Mid-Atlantic TRM v.10, p. 345

8.5.6.3 Default savings

No default savings will be awarded for this measure if the necessary values are not provided in the customer application.

8.5.6.4 Effective Useful Life

The effective useful life of this measure is provided in Table 8-22.

¹⁶⁴ Applied the same methodology that Maryland/Mid-Atlantic TRM v.10, pp. 345 uses for summer CF and applied to the winter peak values provided by Cadmus. 2015. Commercial Refrigeration Loadshape Project

Table 8-22. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program name	Value	Units	Source(s)
VIII	Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII	12.00	years	Maryland/Mid-Atlantic TRM v.10, p. 345

8.5.6.5 Source

The primary sources for this deemed savings approach Maryland/Mid-Atlantic TRM v.10, pp. 344-345.

8.5.6.6 Update summary

Updates made to this section are described in Table 8-23.

Table 8-23. Summary of update(s)

Version	Update type	Description
2022	None	No change
2020	-	Initial release

8.5.7 Strip curtain (cooler and freezer)

This measure is also offered through the Non-Residential Prescriptive program. The savings approach is described in Section 4.4.12.

Docket No. E-22, Sub 645

9 NON-RESIDENTIAL MIDSTREAM ENERGY EFFICIENCY PRODUCTS PROGRAM, DSM PHASE VIII

The Non-Residential Midstream Energy Efficiency Products Program consists of enrolling equipment distributors into the Program through an agreement to provide point-of-sales data in an agreed upon format each month. These monthly data sets will contain, at minimum, the data necessary to validate and quantify the eligible equipment that has been delivered for sale in the Company's service territory. In exchange for the data sets, the distributor will discount the rebate-eligible items sold to end customers. This Program aims to increase the availability and uptake of efficient equipment for the Company's non-residential customers.

The measures offered through the program and the sections that contain the savings algorithms for each measure are presented in Table 9-1.

End use	Measure	Legacy program	Manual section
	Commercial combination oven	Non-Residential Prescriptive Program, DSM Phase VI	Section 4.1.2
	Commercial convection oven	Non-Residential Prescriptive Program, DSM Phase VI	Section 4.1.1
Cooking	Commercial griddle	Non-Residential Prescriptive Program, DSM Phase VI	Section 4.1.4
Cooking	Commercial fryer	Non-Residential Prescriptive Program, DSM Phase VI	Section 4.1.3
	Commercial steam cooker	Non-Residential Prescriptive Program, DSM Phase VI	Section 4.1.6
	Commercial hot food holding cabinet	Non-Residential Prescriptive Program, DSM Phase VI	Section 4.1.5
	Unitary/split HVAC, package terminal air conditioners and heat pumps	Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII	Section 2.1.1
HVAC	Mini-split systems	Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII	Section 2.1.2
	Electric chillers	Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII	Section 2.1.3
Refrigeration	Commercial freezers and refrigerators	Non-Residential Prescriptive Program, DSM Phase VI	Section 4.4.3

Table 9-1. Non-Residential Midstream End	ergy Efficiency Products	s Improvement Enhanced	Program measure
list			

9.1 Cooking end use

9.1.1 Commercial combination oven

This measure is also offered through the Non-Residential Prescriptive Program, DSM Phase VI. The savings approach is described in Section 4.1.2.

9.1.2 Commercial convection oven

This measure is also offered through the Non-Residential Prescriptive Program, DSM Phase VI. The savings approach is described in Section 4.1.1.

9.1.3 Commercial griddle

This measure is also offered through the Non-Residential Prescriptive Program, DSM Phase VI. The savings approach is described in Section 4.1.4.

9.1.4 Commercial fryer

This measure is also offered through the Non-Residential Prescriptive Program, DSM Phase VI. The savings approach is described in Section 4.1.3.

9.1.5 Commercial steam cooker

This measure is also offered through the Non-Residential Prescriptive Program, DSM Phase VI. The savings approach is described in Section 4.1.6.

9.1.6 Commercial hot food holding cabinet

This measure is also offered through Non-Residential Prescriptive Program, DSM Phase VI. The savings approach is described in Section 4.1.5.

9.2 Heating, Ventilation, and Air Conditioning (HVAC) end use

9.2.1 Unitary/split HVAC, package terminal air conditioners and heat pumps

This measure is also offered through the Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII. The savings approach is described in Section 2.1.1.

9.2.2 Mini-split systems

This measure is also offered through the Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII. The savings approach is described in Section 2.1.2.

9.2.3 Electric chiller

This measure is also offered through the Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII. The savings approach is described in Section 2.1.3.

9.3 Refrigeration end use

9.3.1 Commercial freezers and refrigerators

This measure is also offered through the Non-Residential Prescriptive program. The savings approach is described in Section 4.4.3.

10 NON-RESIDENTIAL MULTIFAMILY PROGRAM, DSM PHASE VIII

The Multifamily Program is designed to encourage investment in both the residential and commercial areas of multifamily properties. The Program design is based on a whole-building approach where the implementation vendor will identify as many cost-effective measure opportunities as possible in the entire building (both residential and commercial metered) and encourage property owners to address the measures as a bundle. This approach provides "one-stop shop" programming for multifamily property owners with solutions to include direct-install measures and incentives for prescriptive efficiency improvements. The Program will identify, track, and report residential (in-unit) and commercial (common space) savings separately, according to the account type. The Program will be delivered through an expanded network of local trade allies that the implementation vendor will recruit and support while also establishing a robust relationship with property management companies—the gatekeepers for determining enrollment for their multifamily communities. Once a property management company has decided to enroll a property into the Program, the implementation vendor will send the tenants a letter that will provide information about Program benefits along with an opportunity to opt-out of participating within a defined period of time. If a tenant does not take action to notify the program implementation vendor that they are opting out of participation, their unit will be included in the enrolled locations to receive the installed measures during the delivery phase.

The implementation vendor intends to complete site assessments at the time of the enlistment visit—or within two weeks—to identify all eligible measures. Subsequently, the property owner or manager will receive an assessment report identifying and quantifying savings opportunities with estimated project costs and available incentives. The program implementation vendor or trade ally auditor will perform a walk-through audit covering the envelope and all energy systems in the buildings, paying particular attention to the condition of domestic hot water (DHW) and HVAC systems, building-envelope insulation, and lighting. After assessing the entire structure and living units, the auditor will use an assessment tool to perform appropriate calculations and generate a report showing projected energy and potential cost savings specific to each unit and/or common area. The auditor will review the findings and recommendations of the assessment with the property owner and assist them in making measure installation and investment decisions. Participation will require that all services or installations qualifying for an incentive be completed by a participating contractor or properly-credentialed building maintenance staff. The measures offered through the program and the sections that contain the savings algorithms for each measure are presented in Table 10-1.

End use	Measure	Legacy program	Non-Residential manual section
Puilding	Air sealing Residential Manufactured Housing Program, DSM Phase VIII		Section 10.1.1
envelope	Building insulation/ drill & fill wall insulation Residential Income and Age Qualifying Home Improvement Program, DSM Phase IV		Section 10.1.2
Domestic hot water	Domestic hot water pipe insulation	Residential Income and Age Qualifying Home Improvement Program, DSM Phase IV	Section 10.2.1
	Water heater temperature setback/turndown	/ater heater temperature Residential Home Energy Assessment Program, DSM Phase VII	

Table 10-1. Non-Residential Multifamily Program measure list

End use	Measure	Legacy program	Non-Residential manual section
	HVAC upgrade/ unitary AC	Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII	Section 2.1.1
	HVAC tune-up Non-Residential Prescriptive Program, DSM Phase VI		Section 4.2.2
HVAC	Duct sealing Non-Residential Prescriptive Program, DSM Phase VI		Section 4.2.1.
	Energy star room/wall AC units Residential Home Energy Assessment Program, DSM Phase VII		Section 10.3.4
	Smart thermostat installation	-	Section 10.3.5
	Lighting, fixtures, lamps, and delamping	hting, fixtures, lamps, Non-Residential Lighting Systems and Controls Program, DSM Phase VII	
Lighting	LED exit signs Non-Residential Small Business Improvement Enhanced Program, DSM Phase VIII		Section 8.3.3
	Sensors and controls Non-Residential Lighting Systems and Controls Program, DSM Phase VII		Section 1.1.2
Appliance or	ENERGY STAR clothes dryer	Papidantial Efficient Droducta Marketalaga	Section 10.5.1
Plug Load	ENERGY STAR clothes washer	Program, DSM Phase VII	Section 10.5.2
Recreation Two-speed & variable speed pool pump -		-	Section 10.6.1

10.1 Building envelope end use

10.1.1 Air sealing

This measure is also offered through the Residential Manufactured Housing Program, DSM Phase VIII. The savings approach is described in Appendix F1: Technical Reference Manual for Residential Programs v.2022, Section 10.1.1.

10.1.2 Building insulation/drill & fill wall insulation

This measure is also offered through the Residential Energy Efficient Kits Program, DSM Phase VIII. The savings approach is described in Appendix F1: Technical Reference Manual for Residential Programs v.2022, Section 10.1.2.

10.2 Domestic hot water end use

10.2.1 Domestic hot water pipe insulation

This measure is also offered through the Residential Home Energy Assessment Program, DSM Phase VIII. The savings approach is described in Appendix F1: Technical Reference Manual for Residential Programs v.2022, Section 4.2.1.

10.2.2 Water heater temperature setback/turndown

This measure is also offered through the Residential Home Energy Assessment Program, DSM Phase VIII. The savings approach is described in Appendix F1: Technical Reference Manual for Residential Programs v.2022, Section 4.2.5.

10.3 Heating, Ventilation, and Air-Conditioning (HVAC) end use

10.3.1 HVAC Upgrade/ Unitary AC

This measure is also offered through the Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII. The savings approach is described in Section 2.1.1.

10.3.2 HVAC Tune-up

This measure is also offered through the Non-Residential Prescriptive Program, DSM Phase VI. The savings approach is described in Section 4.2.2.

10.3.3 Duct sealing

This measure is also offered through the Non-Residential Prescriptive Program, DSM Phase VI. The savings approach is described in Section 4.2.1.

10.3.4 ENERGY STAR® Room/Wall AC units

This measure is also offered through the Residential Home Energy Assessment Program, DSM Phase VII. The savings approach is described in Appendix F1: Technical Reference Manual for Residential Programs v.2022, Section 4.3.1.

10.3.5 Smart thermostat installation

10.3.5.1 Measure description

The smart thermostat measure involves the replacement of a manually operated or conventional programmable thermostat with a smart thermostat that meets or exceeds the ENERGY STAR[®] requirements.¹⁶⁵ A "smart" or communicating thermostat allows remote set point adjustment and control via remote application. The system requires an outdoor-air-temperature algorithm in the control logic to operate heating and cooling systems.

The baseline is a mix of manual and programmable thermostats; the efficient condition is a smart thermostat that has earned ENERGY STAR certification.

10.3.5.2 Impacts Estimation Approach

Per-measure, the gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = kWh_{cool} + kWh_{heat}$$

For heat pumps, and AC units <65,000 Btu/h, per-measure, gross annual electric cooling energy savings are calculated according to the following equation:

$$\Delta kWh_{cool} = Size_{cool} \times \frac{1 \ kBtuh}{1,000 \ Btuh} \times \frac{EFLH_{cool}}{SEER} \times ESF_{cool}$$

For heat pumps and AC units ≥65,000 Btu/h, per-measure, gross annual electric cooling energy savings are calculated according to the following equation:

$$\Delta kWh_{cool} = Size_{cool} \times \frac{1 \ kBtuh}{1,000 \ Btuh} \times \frac{EFLH_{cool}}{IEER} \times ESF_{cool}$$

Heating savings are only applicable to spaced conditioned using heat pumps. For heat pumps <65,000 Btu/h, permeasure gross annual electric heating energy savings are calculated according to the following equation

$$\Delta kWh_{heat} = Size_{heat} \times \frac{1 \ kBtuh}{1,000 \ Btuh} \times \frac{EFLH_{heat}}{HSPF} \times ESF_{heat}$$

For heat pumps ≥65,000 Btu/h, and water-source heat pumps of all sizes, and package terminal HP units of all sizes, per-measure gross annual electric heating energy savings are calculated according to the following equation:

$$\Delta kWh_{heat} = Size_{heat} \times \frac{1W}{3.412 Btuh} \times \frac{1 kBtuh}{1,000 Btuh} \times \frac{EFLH_{heat}}{COP} \times ESF_{heat}$$

This measure does not provide gross coincident summer or winter peak demand reductions.

¹⁶⁵ The key product criteria for Smart thermostats can be found at <u>https://www.energystar.gov/products/heating_cooling/smart_thermostats/key_product_criteria</u>

Where:

ΔkWh	= per-measure gross annual electric energy savings
Sizecool	= cooling capacity of HVAC system
Sizeheat	= heating capacity of heat pump
SEER	= seasonal energy efficiency ratio (SEER)
IEER	= integrated energy efficiency ratio (IEER)
HSPF	= heating seasonal performance factor (HSPF)
COP	= coefficient of performance (COP)
EFLH _{cool}	= equivalent cooling full load hours
EFLHheat	= equivalent heating full load hours
ESF _{cool}	= cooling annual energy savings factor
ESF _{heat}	= heating annual energy savings factor

10.3.5.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Units	Source(s)
Size _{cool}	Variable	See customer application	Btu/h	Customer application
Size _{heat}	zeheat Variable See customer application ¹⁶⁶ Default = Sizecool		Btu/h	Customer application
EFLH _{cool} Variable See Sub-Appendix F residential HVAC, T Table 17-5 use multi (common area)		See Sub-Appendix F2-II: Non- residential HVAC, Table 17-4 and Table 17-5 use multifamily (common area)	hours, annual	Maryland/Mid-Atlantic TRM v.10, p. 423, scaled using CDD
EFLH _{heat}	Variable	See Sub-Appendix F2-II: Non- residential HVAC, Table 17-5 use multifamily (common area)	hours, annual	Maryland/Mid-Atlantic TRM v.10, p. 423, scaled using HDD
SEER/IEER/ HSPF/COP	Variable	See Sub-Appendix F2-III: Non- residential HVAC , Table 17-8 and Table 17-9	Btu/Wh (COP is unitless)	ASHRAE 90.1-2013
ESF _{cool}	Variable Variable Default = 0.030	Manual thermostat existing: 0.050 Programmable thermostat existing: 0.020		Maryland/Mid-Atlantic TRM v10, p. 319
			DNV, Dominion Energy 2020 Commercial Energy Survey, Appendix B, p.60 (Q25) ¹⁶⁷	
ESF _{heat}	VariableManual thermostat existing: 0.040 Programmable thermostat existing: 0.020Default = 0.027	Manual thermostat existing: 0.040 Programmable thermostat existing: 0.020		Maryland/Mid-Atlantic TRM v10, p. 319
			DNV, Dominion Energy2020 Commercial Energy Survey, Appendix B, p. 60 (Q25) ¹⁶⁷	

Table 10-2. Input variables for Smart Thermostat savings calculations

¹⁶⁶ When customer-provided heating system size is <80% or >156% of customer-provided cooling system size, a default value will be used, instead. In such instances, it is assumed that the heating system size was incorrectly documented. The acceptable range is based on a review of the AHRI database across numerous manufacturers and heat pump types.

¹⁶⁷ Used weighted average of programmable thermostat and manual thermostat responses to determine the ESF.

10.3.5.4 Default savings

If the proper values are not available, zero savings will be given for gross annual electric energy savings.

10.3.5.5 Effective Useful Life

The effective useful life of this measure is provided in Table 10-3.

Table 10-3. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VIII	Non-Residential Multifamily Program, DSM Phase VIII	7.50	years	Maryland/Mid-Atlantic TRM v10, pp. 317-320

10.3.5.6 Source

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 317-320.

10.3.5.7 Update summary

Updates to this section are described in Table 10-4.

	Table 10-4.	Summary	of update(s)
--	-------------	---------	--------------

Version	Update type	Description
2022	None	No change
2021	-	Initial release

10.4 Lighting end use

10.4.1 LED lamps, advanced lighting, and delamping

This measure is also offered through the Non-Residential Lighting Systems and Controls Program, DSM Phase VII. The savings approach is described in Section 1.1.1.

10.4.2 LED exit signs

This measure is also offered through the Non-Residential Lighting Systems and Controls Program, DSM Phase VII. The savings approach is described in Section 8.3.3.

10.4.3 Sensors and controls

This measure is also offered through the Non-Residential Lighting Systems and Controls Program, DSM Phase VII. The savings approach is described in Section 1.1.2.

Docket No. E-22, Sub 645

10.5 Appliance or Plug Load end use

10.5.1 Clothes dryer

This measure is also provided by the Residential Efficient Products Marketplace Program, DSM Phase VII. The savings are determined using the methodology described in Section 6.2.3.

10.5.2 Clothes washer

This measure is also provided by the Residential Efficient Products Marketplace Program, DSM Phase VII. The savings are determined using the methodology described in Section 6.2.2.

10.6 Recreation end use

10.6.1 Two-speed & variable-speed pool pump

10.6.1.1 Measure description

This measure replaces a single-speed pool filter pump with a variable-speed or dual-speed pump of equivalent horsepower. This measure is only applicable to self-priming pool filter pumps which are typically used with permanent, in-ground pools in Residential: single-family; Non-residential: multifamily and commercial buildings. Nonself-priming pool filter pumps, which are typically used with rigid, above-ground pools, are not eligible for this measure. The baseline efficiency equipment is a single-speed, self-priming pool filter pump. The efficient equipment is a variable-speed or dual-speed self-priming pool filter pump.

This measure is offered through different programs listed in Table 10-5 and uses the impacts estimation approach described in this section.

Table 10-5. Programs that offer this measure

Program name	Section
Non-Residential Multifamily Program, DSM Phase VIII	Section 10.6.1
Non-Residential Prescriptive Enhanced Program, DSM Phase IX	Section 16.5.3

10.6.1.2 **Impacts Estimation Approach**

Per-measure, the gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = (kWh_{daily,base} - kWh_{daily,ee}) \times Days$$

Per-measure, the gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \left[\left(\frac{kWh_{daily,base}}{Hours_{daily,base}} \right) \times CF_{base,summer} \right] - \left[\left(\frac{kWh_{daily,e}}{Hours_{daily,ee}} \right) \times CF_{ee,summer} \right]$$

Docket No. E-22, Sub 645

DNV

Per-measure, the gross coincident winter peak demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \left[\left(\frac{kWh_{daily,base}}{Hours_{daily,base}} \right) \times CF_{base,winter} \right] - \left[\left(\frac{kWh_{daily,ee}}{Hours_{daily,ee}} \right) \times CF_{ee,winter} \right]$$

Where:

ΔkWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction
kWh _{daily,base}	= typical daily energy consumption of a single speed motor in a cool climate
kWh _{daily,ee}	= typical daily energy consumption for an efficient variable-speed or two-speed pump
Dave	number of days the nump operates in a year
Days	- number of days the pump operates in a year
Hours _{dailybase}	= daily runtime of baseline pump
Hours _{daily ee}	= daily runtime of dual speed or variable-speed pump
CF _{base,summer}	= summer coincidence factor of baseline pump
CF _{ee,summer}	= summer coincidence factor of dual speed or variable-speed pump
CF _{base,winter}	= winter coincidence factor of baseline pump
CF _{ee,winter}	= winter coincidence factor of dual speed or variable-speed pump

10.6.1.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Units	Source(s)
Size _{base}	Variable	See customer application	hp (pump motor)	Customer application
Sizeee Variable See customer application		See customer application	hp (pump motor)	Customer application
kWh _{daily,base}	Variable	Residential: See Table 10-7 based on Typebase and Binsize,base Commercial: See Table 10-8 based on Typebase and Binsize,base	kWh, daily	Hawaii TRM 2021, p.191 and p.321
kWh _{daily,ee}	Variable	Residential: See Table 10-7 based on Type _{base} and Bin _{size,base} Commercial: See Table 10-8 based on Type _{base} and Bin _{size,base}	kWh, daily	Hawaii TRM 2021, p.191 and p.321
Typebase	Fixed	Default: Single-Speed Pump	-	Program requirement
Туреее	Variable	Default: 1. Dual-Speed Pump 2. Variable Speed Pump	-	Customer application
Days	Variable	See customer application		Customer application

Table 10-6. Input Variables for two speed & variable speed pool pump

Component	Туре	Value	Units	Source(s)
		Default: 100	days, annual	Maryland/Mid-Atlantic TRM v.10, p.195
Bin _{size,base}	Variable	See Table 10-7 and Table 10-8	-	Hawaii TRM 2021, p.191 and p.321
Bin _{size,ee}	Variable	See Table 10-7 and Table 10-8	-	Hawaii TRM 2021, p.191 and p.321
Hours _{daily,base}	Variable	Residential: See Table 10-7 based on Typebase and Bin _{size,base} Commercial: See Table 10-8 based on Typebase and Bin _{size,base}	hours, annual	Hawaii TRM 2021, p.191 and p.321
Hours _{daily,ee}	Variable	Residential: See Table 10-7 based on Typebase and Bin _{size,base} Commercial: See Table 10-8 based on Typebase and Bin _{size,base}	hours, annual	Hawaii TRM 2021, p.191 and p.321
CF _{base} ,summer	Variable	Residential: See Table 10-7 based on Typebase and Binsize,base Commercial: See Table 10-8 based on Typebase and Binsize,base	-	Hawaii TRM 2021, p.191 and p.321
CF _{ee} ,summer	Variable	Residential: See Table 10-7 based on Type _{base} and Bin _{size,base} Commercial: See Table 10-8 based on Type _{base} and Bin _{size,base}	-	Hawaii TRM 2021, p.191 and p.321
CF base,winter	Variable	If Days < 365: 0.00 If Days = 365: Residential: See Table 10-7 based on Typebase and Bin _{size,base} Commercial: See Table 10-8 based on Typebase and Bin _{size,base}	-	Hawaii TRM 2021, p.192 and p.322 ¹⁶⁸
CFee,winter	Variable	If Days < 365: 0.00 If Days = 365: Residential: See Table 10-7 based on Type _{base} and Bin _{size,base} Commercial: See Table 10-8 based on Type _{base} and Bin _{size,base}	-	Hawaii TRM 2021, p.192 and p.322 ¹⁶⁸

OFFICIAL COPY

¹⁶⁸ Source TRM does not have winter CF. If the pool is only used seasonally, it is assumed that it will not be used during the winter. Therefore, Winter CF is zero. However, the pool is used year-round (Days = 365), the summer CF to winter CF as an approximation.

Table 10-7. Typical residential pool pump energy	consumption, operation	rating hours, a	nd coincidence factor for
various pump size strategies and pump type			

Tuno	Metric	Bin, based on pump size (hp)				
I ypepump		> 0 and ≤ 1	> 1 and ≤ 2	> 2 and ≤ 3	> 3 and ≤ 4	
	kWh _{daily,base} (kWh)	6.4	11.5	15.0	16.0	
Single cheed	Hours _{daily,base} (hr)	5.6	6.8	6.1	5.8	
Single-speed	CF _{base} ,summer	0.22	0.28	0.26	0.24	
	CF _{base,winter}	0.23				
	kWh _{daily,ee} (kWh)	4.1	7.1	8.2	9.1	
Two speed	Hours _{daily,ee} (hr)	11.0	13.3	12.1	11.9	
i wo-speed	CF _{ee,summer}	0.46	0.56	0.50	0.50	
	CF _{ee,winter}	0.46			0.50	
	kWh _{daily,ee} (kWh)	1.7	2.9	4.1	4.4	
Variable aread	Hours _{daily,ee} (hr)	13.3	16.3	17.1	17.9	
variable-speed	CF _{ee,summer}	0.56	0.68	0.71	0.75	
	CF _{ee,winter}	0.56			0.75	

Table 10-8. Typical commercial pool pump energy consumption, operating hours, and coincidence factor for various pump size strategies and pump type

Turne	Metric	Bin, based on pump size (hp)				
Iypepump		> 0 and ≤ 1	> 1 and ≤ 2	> 2 and ≤ 3	> 3 and ≤ 4	
	kWh _{daily,base} (kWh)	20.3	29.3	43.7	51.8	
Single speed	Hours _{daily,base} (hr)	17.6	17.2	17.8	18.9	
Single-speed	CF _{base,summer}	0.72	0.72	0.74	0.70	
	CF _{base,winter}	0.73	0.72	0.74	0.79	
	kWh _{daily,ee} (kWh)	19.0	30.3	39.2	49.4	
Two speed	Hours _{daily,ee} (hr)				24.0	
i wo-speed	CFee,summer				1.00	
	CFee,winter				1.00	
	kWh _{daily,ee} (kWh)	9.2	13.9	21.6	27.0	
Variable speed	Hours _{daily,ee} (hr)			22.7	23.5	
valiable-speed	CFee,summer				0.05	
	CF _{ee,winter}				0.95	

10.6.1.4 Default savings

If the proper values are not available, zero savings will be given for both gross annual electric energy savings and gross demand energy savings.

10.6.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 10-9.

Table 10-9. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
IX	Non-Residential Prescriptive Enhanced Program, DSM Phase IX	10.00	vears	Hawaii TRM 2021. p.193 and p.223
VIII	Non-Residential Multifamily Program, DSM Phase VIII		, -	, , , , , , , , , , , , , , , , , , ,

10.6.1.6 Source

The primary source for this deemed savings approach is the Hawaii TRM 2021, pp. 190-193 and pp. 320-323, and Maryland/Mid-Atlantic TRM v.10, p.195.

10.6.1.7 Update summary

Updates to this section are described in Table 10-10.

Table 10-10. Summary of update(s	. Summary of update(s)
----------------------------------	------------------------

Version	Update type	Description			
2022	Input table	Added new table for the residential pool pump application			
	Source	Updated page numbers/version of the Hawaii TRM 2021			
2021	-	Initial release			

11 NON-RESIDENTIAL NEW CONSTRUCTION PROGRAM, DSM PHASE VIII

The Non-Residential New Construction Program provides incentives to non-residential customers to implement energy efficiency measures in their new construction project. Program engineers determine which energy efficiency upgrades are of interest to the owner and feasible within their budget. These measures—coupled with basic facility design data—are analyzed to determine the optimized building design. This in-depth analysis will be performed using building energy simulation models that will allow "bundles" of measures to be analyzed for energy savings while accounting for interactive effects between the measures within a given "bundle." The results are presented to the facility owner to facilitate their selection of the measures(s) to be installed. This program has been offered in Virginia and North Carolina beginning in March 2021.

To be eligible for a rebate, the new building must be eligible for a rate schedule that is not exempt by statute.

The measures offered through this program and the sections describing the measures are listed in Table 11-1. The following sections include measure descriptions. Note that while some measures may be the same as those offered by other programs, the savings methodology will differ. That is because this program is designed to determine savings using building energy simulations. This approach accounts for measure interactivity across all measures to be implemented at a specific new building.

End use	Measure	Section
Building envelope	Optimal choice of vertical fenestration	Section 11.2.1
	High-efficiency and variable speed chillers (air-cooled)	Section 11.3.1
	High-efficiency DX cooling equipment	Section 11.3.2
	High-efficiency and variable speed packaged DX cooling equipment	Section 11.3.3
HVAC	High-efficiency packaged air-source heat pumps	Section 11.3.4
	Demand-controlled ventilation/CO2 controls	Section 11.3.5
	VAV dual-max controls	Section 11.3.6
	VAV supply air temperature reset	Section 11.3.7
	Chiller controls	Section 11.3.8
Appliance or Plug Load	Supervisory plug load management systems	Section 11.4.1
Lighting	High performance interior lighting	Section 11.5.1
Lighting	LED exterior lighting	Section 11.5.2

Table 11-1. Non-Residential New Construction Program measure list

11.1 Building simulation description

Energy savings and demand reductions for this program are estimated using building energy simulations. The basic geometry and floor plan is created and imported into OpenStudio®, a front-end software platform for building models to analyze using DOE's EnergyPlus[™] engine. OpenStudio is used to assign space types and apply thermal zones and develop the baseline building. Default construction, equipment, setpoints, and building occupancy schedules are applied. The baseline building meets state and local building codes. The models are created to meet IECC 2015 and

Docket No. E-22, Sub 645

adjusted to meet local requirements. For other default inputs not determined by code, reasonable assumptions and standard practices are applied.

There are baseline and efficient building models for each measure case. Energy savings are calculated using these models and simulated using TMY3 weather data for selected weather stations in Virginia and North Carolina.

11.1.1 Model review

To perform data validation and provide feedback to participating builders, DNV will request building models for a select sample of projects for review. The sample selection may consider the reported savings, building square footage, measures, and building type.

The models will be reviewed for relevant code compliance, default assumptions, equipment sizing, measure case assumptions, weather location, and savings results.

11.1.2 Impacts Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = kWh_{base} - kWh_{ee}$$

Per-measure, gross coincident summer and winter peak demand reduction is calculated using the following equations:

$$\Delta k W_{summer} = k W_{base,summer} - k W_{ee,summer}$$

 $\Delta kW_{winter} = kW_{base,winter} - kW_{ee,winter}$

Where:

∆kWh	= per-measure gross annual electric energy savings
ΔkW_{summer}	= per-measure gross coincident summer peak demand reduction
ΔkW_{winter}	= per-measure gross coincident winter peak demand reduction
kWh _{base}	= annual energy consumption of the baseline model
kWh _{ee}	= annual energy consumption of the efficient model
kWbase,summer	= coincident summer peak demand of baseline model
kW _{ee,summer}	= coincident summer peak demand of efficient model
kWbase,winter	= coincident winter peak demand of baseline model
kW _{ee,winter}	= coincident winter peak demand of efficient model

11.1.2.1 Measure sequence

All input variables used for calculating energy savings and demand reductions are generated by the building energy model runs. For each measure there is a baseline model and an efficient model. For facilities with multiple measures, the measures are applied sequentially to account for measure interactivity. The sequence for applying measures is

provided in Table 11-2. The first implemented measure on the list will have a baseline model and an efficient model. Each subsequent measure will use the preceding measure's efficient model as its baseline model. The sequence affects the way savings are attributed to each measure, but the total project impacts are not affected by the sequence.

Sequence	Measure
1	Optimal choice of vertical fenestration
2	High performance interior lighting
3	Supervisory plug load management systems
4	LED exterior lighting
5	High-efficiency and variable speed chillers (air-cooled)
6	High-efficiency DX cooling equipment
7	High-efficiency and variable speed packaged DX cooling equipment
8	High-efficiency packaged air-source heat pumps
9	Demand-controlled ventilation/CO2 controls
10	VAV supply air temperature reset
11	VAV dual-max controls
12	Chiller controls

Table 11-2. Non-residentia	I new construction measure	sequence for modeling
----------------------------	----------------------------	-----------------------

11.1.2.2 Default savings

There are no default savings as model savings are required for each measure.

11.1.2.3 Effective Useful Life

The effective useful life of this measure is provided in Table 11-3.

Table 11-3. Effective Useful Life for lifecycle savings calculations

DSM Phase	Measure	Value	Units	Source(s)
VIII	Optimal choice of vertical fenestration	25.00		Ohio TRM_2010, p. 142 ¹⁶⁹
	High-efficiency and variable speed chillers (air-cooled)	23.00		Maryland/Mid-Atlantic TRM v.10, p. 304
	High-efficiency DX cooling equipment	15.00		Maryland/Mid-Atlantic TRM v.10, p. 291
	High-efficiency and variable speed packaged DX cooling equipment	15.00	years	Maryland/Mid-Atlantic TRM v.10, p. 291
	High-efficiency packaged air-source heat pumps	15.00		Maryland/Mid-Atlantic TRM v.10, p. 291
	Demand controlled ventilation/CO2 controls	8.00		Illinois TRM commercial v.9 Volume 2, p. 258
	VAV dual-max controls	10.00		Massachusetts TRM 2019- 2021, p. 451 ¹⁷⁰

¹⁶⁹ This reference is for residential new construction. Commercial new construction building design measures like this are not included in most TRMs. Therefore, the residential new construction measure life is applied as an approximation.

¹⁷⁰ Energy Management System (EMS) measure life is applied for most HVAC controls measures.

DSM Phase	Measure	Value	Units	Source(s)
	VAV supply air temperature reset	10.00		Massachusetts TRM 2019- 2021, p. 451
	Chiller controls	10.00		Massachusetts TRM 2019- 2021, p. 451
	Supervisory plug load management systems	10.00		Massachusetts TRM 2019- 2021, p. 451
	High performance interior lighting	15.00		Maryland/Mid-Atlantic TRM v.10, p. 219
	LED exterior lighting	15.00		Maryland/Mid-Atlantic TRM v.10, p. 219

11.1.2.4 Source(s)

The primary source for this program is the building energy models.

11.1.2.5 Update summary

Updates made to this section are described in Table 11-4.

Version	Update type	Description
2022	None	No change
2021	-	Initial release

11.2 Building envelope end use

11.2.1 Optimal choice of vertical fenestration

This measure upgrades the window assemblies relative to minimum building code requirements with assemblies having high insulative properties (low U-values), low Solar Heat Gain Coefficients (SHGC), and low visible sunlight transmittance (Tvis-glass).

11.3 Heating, Ventilation, Air Conditioning (HVAC) end use

11.3.1 High-efficiency and variable speed chillers (air-cooled)

This measure upgrades a constant-speed, chilled-water system to one that includes variable-speed, air-cooled chillers and variable-speed chilled-water pumps. The baseline chiller performance and the VFD pump curves from ASHRAE 90.1-2013 are used.

11.3.2 High-efficiency DX cooling equipment

This measure upgrades from standard-efficiency DX cooling equipment to high-efficiency DX cooling equipment. The baseline equipment meets 90.1-2013 efficiency requirements.

11.3.3 High-efficiency and variable speed packaged DX cooling equipment

This measure upgrades from a constant-speed rooftop unit (RTU) to a variable-speed RTU. This measure may utilize either a natural gas heating coil or a direct-expansion (DX) heating coil. The variable-speed RTU model stages the fan in response to the amount of heating/cooling required. The measure adjusts the fan flow according to the heating/cooling required at each stage.

11.3.4 High-efficiency packaged air-source heat pumps

This measure upgrades from a standard-efficiency air-source heat pump to a high-efficiency air-source heat pump. The baseline equipment meets 90.1-2013 efficiency values.

11.3.5 Demand controlled ventilation/CO2 controls

This measure varies the outside airflow based on the actual number of occupants in the space rather than the nominal number of occupants as required by building code. The baseline for this measure is a constant outside airflow based on the design conditions. This measure reduces the outside airflow and the amount of space conditioning needed for outside air.

11.3.6 VAV Dual-Max Controls (electric heat)

This measure modifies the control strategy for airflow of VAV boxes with electric reheat. In the efficient case, the minimum airflow is determined by the maximum of the lowest airflow setpoint allowed by the VAV box controls and the zone's minimum outdoor airflow rate. In the baseline case, the supply airflow rate operates at the maximum flow rate that meets the cooling load. The airflow is reset proportionally until the zone minimum when there is no cooling load. This minimum airflow setpoint is maintained throughout the heating periods and the deadband zone. This measure allows the minimum airflow to be lower during the deadband zone and resets proportional to the heating load. Energy is saved by reducing fan load, electric heating load, and electric reheat load.

11.3.7 VAV supply air temperature reset (electric heat)

This measure replaces a constant supply-air temperature setpoint with a temperature reset. A constant supply-air temperature provides more cooling than is required to meet cooling loads. By allowing the supply-air temperature setpoint to adjust to operating conditions, energy savings are achieved. There are energy savings by not cooling the supply air temperature more than is needed and minimizing reheating. Inputs to this control strategy can include the outside air temperature, the return air temperature, or the cooling demand across all zones.

11.3.8 Chiller controls

This measure resets the chilled-water supply temperature or the condenser water temperature setpoint based on the chilled-water return temperature. The baseline maintains a constant condenser water temperature and chilled-water supply temperature setpoint. For condenser water reset, the condenser operates at a higher pressure than is needed when the building load is lower than the design conditions. By reducing the condenser-water temperature setpoint when feasible, the compressor lift, or the difference between condenser and evaporator saturation temperatures, energy consumption is reduced.

11.4 Appliance or plug load end use

11.4.1 Supervisory plug load management systems

This measure reduces the Equipment Power Density (EPD) associated with select spaces. A supervisory plug load management system reduces plug-in and hardwired electrical loads in a building that are not associated with HVAC, lighting, or water heating. The system allows for review of plug load usage and identification of opportunities for reducing energy consumption and allows for scheduling of equipment. The baseline is no plug load management system present.

11.5 Lighting end use

11.5.1 High performance interior lighting

This measure is for a reduction in lighting power density (LPD) relative to the code LPD for a given space type or building type. Lower LPD uses less energy while providing a comparable level of lighting. This measure is applicable only to interior lighting.

11.5.2 LED exterior lighting

This measure replaces baseline exterior lighting with LEDs. The efficient lighting provides similar lighting levels at a lower wattage than the baseline wattage, resulting in energy savings.

12 NON-RESIDENTIAL AGRICULTURAL ENERGY EFFICIENCY PROGRAM, DSM PHASE IX

The Non-Residential Agricultural Energy Efficiency Program provides qualifying non-residential customers with incentives to implement specific energy efficiency measures to help agribusiness replace aging, inefficient equipment and systems with high-efficiency agricultural equipment, lighting, irrigation, and more.

To be eligible for a rebate, you must be a Dominion Energy Virginia non-residential customer who is not exempt by statute or under special contract and is the owner of the facility or is reasonably able to secure permission to complete installation of measures.

The measures offered through this program and the sections describing the measures are listed in Table 12-1. The following sections include measure descriptions.

End use	Measure	Legacy program	Section
	Circulation fan		Section 12.1.1
HVAC	High volume low-speed fan]	Section 12.1.2
	Ventilation fan		Section 12.1.3
	Dairy lighting controls		Section 12.2.1
	Horticultural LED		Section 12.2.2
Lighting	Poultry LED		Section 12.2.3
99	T5/T8 Lamps	Non-Residential Lighting Systems and Controls Program, DSM Phase VII	Section 1.1.1
	Automatic milker take-off		Section 12.3.112.3.1
	Dairy plate cooler]	Section 12.3.2
	Grain storage aeration fan controls		Section 12.3.3
Process	Low pressure irrigation	N/A	Section 12.3.4
	VFD for dust collection		Section 12.3.512.3.4
	VFD for irrigation pump		Section 12.3.6
	VFD for tobacco curing		Section 12.3.7

Tabla	12 1	Non raaida	ntial agricult	ural anaray	officiency	nrogram	monouro lict
rapie	12-1.1	non-reside	ential agriculti	urai energy	emclency	program	measure list

12.1 Heating, Ventilation, Air Conditioning (HVAC) end use

12.1.1 Circulation fan

12.1.1.1 Measure description

The measure applies to newly installed circulation fans or replacing an existing unit that reached the end of its useful life in agricultural applications. The baseline condition is assumed to be a new fan that does not meet program requirements. This characterization assumes that the baseline condition uses on/off thermostatic controls to automatically operate the fans above a designated temperature threshold and shut them off when temperature drops below setpoint. The efficient equipment must be certified by BESS Labs¹⁷¹ with fan diameters of at least 36 inches

¹⁷¹ University of Illinois, Department of Agricultural and Biological Engineering. <u>http://bess.illinois.edu/</u>

Docket No. E-22, Sub 645

and meet program minimum efficiency requirements and efficient fans are assumed to be governed by thermostatic on/off controls. The program efficiency requirements are show in Table 12-2.

Table 12-2. Program qualifying efficiency requirements

Fan diameter (in)	Tier 1 Qualifying efficiency ratio (cfm/W)	Tier 2 Qualifying efficiency ratio (cfm/W)
36-47	-	21.0
48-52	23.1	25.2
52+	23.1	25.0

12.1.1.2 Impacts Estimation Approach

Per-measure, the gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \left(\frac{watts_{base} - watts_{ee}}{1,000}\right) \times HOU$$

Per-measure, the gross summer coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \left(\frac{watts_{base} - watts_{ee}}{1,000}\right) \times CF_{summer}$$

Per-measure, the gross winter coincident demand reduction is calculated according to the following equation:

$$\frac{\Delta k W_{winter}}{1,000} = \left(\frac{watts_{base} - watts_{ee}}{1,000}\right) \times CF_{winter}$$

Where:

ΔkWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction
Watts _{base}	= baseline fan rated power
wattsee	= efficient fan rated power
HOU	= equipment operating hours of use
CF _{summer}	= summer peak coincidence factor
CFwinter	= winter peak coincidence factor

12.1.1.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 12-3. Input variables for circulation fans

Component	Туре	Value	Units	Source(s)
watts _{base}	Variable	See Table 12-4 watts		BESS Database ¹⁷²
Watte	Variable	See customer application	watts	BESS Database ¹⁷³
Wattsee	Variable	For defaults see Table 12-4		lowa TRM v5.0, Vol.3.0, 2020, p.8
		See customer application	hours	Customer application
HOU	Variable	For defaults see Table 12-5	annual	lowa TRM v5.0, Vol.3.0, 2020, pp. 7-8
CFsummer	Fixed	1.00	-	lowa TRM v5.0, Vol.3.0, 2020, p.9
CFwinter	Fixed	0.00	-	lowa TRM v5.0, Vol.3.0, 2020, p. 9 ¹⁷⁴

Table 12-4. Default base and efficient fan power

Fan diameter (in)	watts _{base} (W)	Wattsee (W)	
36-47 (default) ¹⁷⁵	599	458	
48-52	1,123	897	
52+	1,352	999	

Table 12-5. Circulation fan hours of use by facility type

Facility type	HOU (hours)
Нод	3,597
Poultry	2,862
Dairy	2,578
Unknown/other (default)	3,249

12.1.1.4 **Default savings**

If the application does not provide the input variables, savings are calculated using default values where applicable.

Per-measure, the gross annual electric energy savings are calculated as follows:

$$\Delta kWh = \left(\frac{watts_{base} - watts_{ee}}{1,000}\right) \times HOU$$

¹⁷² BESS fan database downloaded on 2/22/2023. Average watts from models below standard (minimum efficiency requirement detailed in the efficient equipment definition). ¹⁷³ BESS fan database downloaded on 2/22/2023. Average watts from models above standard (minimum efficiency requirement

detailed in the efficient equipment definition).

¹⁷⁴ The source TRM doesn't provide a winter demand value. The maximum ventilation is needed at temperatures above 72°F with a 67°F balance point assumed. For winter peak periods, it is assumed that little ventilation will be needed, and peak savings will be negligible.

¹⁷⁵ If fan diameter is not provided in the customer application, then smallest range is assigned as default with the most conservative savings.

DNV = $\left(\frac{599 \ watts - 458 \ watts}{1,000}\right) \times 3,249 \ hours$ = $458.11 \ kWh$

Per-measure, the gross summer coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \left(\frac{wats_{base} - watts_{ee}}{1,000}\right) \times CF_{summer}$$
$$= \left(\frac{599 \ watts - 458 \ watts}{1,000}\right) \times 1.00$$
$$= 0.141 \ kW$$

Per-measure, the gross winter coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \left(\frac{watts_{base} - watts_{ee}}{1,000}\right) \times CF_{winter}$$
$$= \left(\frac{599 \ watts - 458 \ watts}{1,000}\right) \times 0.00$$
$$= 0.000 \ kW$$

12.1.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 12-6.

Table 12-6. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
іх	Non-Residential Agriculture Energy Efficiency Program, DSM Phase IX	10.0	years	lowa TRM v5.0 Vol.3, 2020, p.7

12.1.1.6 Source

The primary source for this deemed savings approach is the Iowa TRM v.5.0, Vol.3.0, 2021, pp.7-9 and the BESS Database.

12.1.1.7 Update summary

Updates to this section are described in Table 12-7.

Table	12-7.	Summary	of u	pdate(s)
I UNIC	16 / .	Our finally	UI U	paarce	3,

Version	Update type	Description
2022	-	Initial release

12.1.2 High volume low-speed fan

High volume low speed (HVLS) fans provide air circulation to improve thermal comfort and indoor air quality. The measure applies to HVLS fans that are replacing multiple less efficient conventional fans in agricultural applications.

To qualify, the efficient equipment must be a fan with a diameter above 16 feet that meets program minimum efficiency requirements. Baseline is taken as the total operating wattage of conventional fans required to match the flow rate (CFM) rating of the efficient equipment. The CFM rating are estimated by HVLS fan diameter.

12.1.2.1 Impacts Estimation Approach

Per-measure, the gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \left(\frac{watts_{base} - watts_{ee}}{1,000}\right) \times HOU$$

Per-measure, the gross summer coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \left(\frac{watts_{base} - watts_{ee}}{1,000}\right) \times CF_{summer}$$

Per-measure, the gross winter coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \left(\frac{watts_{base} - watts_{ee}}{1,000}\right) \times CF_{winter}$$

Where:

ΔkWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction
Watts _{base}	= operating demand (W) of baseline fan
wattsee	= operating demand (W) of efficient fan
HOU	= equipment operating hours of use
CF _{summer}	= summer peak coincidence factor
CFwinter	= winter peak coincidence factor

12.1.2.2 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 12-8. Input variables for high volume low speed fan				
Component	Туре	Value	Units	Source(s)
watts _{base}	Variable	See Table 12-4	watts	lowa TRM v5.0, Vol.3.0, 2020, p. 14
Watta	Variable	See customer application	wotto	Customer application
	variable	For defaults see Table 12-4	walls	lowa TRM v5.0, Vol.3.0, 2020, p. 14
		See customer application	hours	Customer application
HOU Variab	Variable	For defaults see Table 12-5	annual	lowa TRM v5.0, Vol.3.0, 2020, p.15
CF _{summer}	Fixed	1.00	-	lowa TRM v5.0, Vol.3.0, 2020, p. 15 ¹⁷⁶
CFwinter	Fixed	0.00	-	lowa TRM v5.0, Vol.3.0, 2020, p. 15 ¹⁷⁷

In Table 12-9 Wattsbase is determined by assumed installed cfm for the given fan diameter.

Table 12-9. Default base and efficient fan power

Fan diameter (ft)	Watts _{base} (W)	Wattsee (W)
16-17.9 (default) ¹⁷⁸	4,497	761
18-19.9	5,026	850
20-23.9	5,555	940
24+	6,613	1,119

12.1.2.3 **Default savings**

If the proper values are not available, zero savings will be given for both the gross annual electric energy savings and the gross coincident peak demand reduction.

Effective Useful Life 12.1.2.4

The effective useful life of this measure is provided in Table 12-10.

Table 12-10. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
іх	Non-Residential Agriculture Energy Efficiency Program, DSM Phase IX	10.00	years	Iowa TRM v5.0 Vol.3, 2020, p. 13

¹⁷⁶ Iowa TRM v5.0, Vol.3.0, 2020, p. 14. Industrial Ventilation CF from eQuest

¹⁷⁷ The source TRM doesn't provide a winter demand value. The maximum ventilation is needed at temperatures above 72°F with a 67°F balance point assumed. For winter peak periods, it is assumed that little ventilation will be needed, and peak savings will be negligible.

¹⁷⁸ If fan diameter is not provided in the customer application, then smallest range is assigned as default with the most conservative savings.

Docket No. E-22, Sub 645

12.1.2.5 Source

The primary source for this deemed savings approach is the Iowa TRM v.5.0, Vol.3.0, 2020, pp.13-15.

12.1.2.6 Update summary

Updates to this section are described in Table 12-11.

Table 12-11.	Summary of	of update(s)
--------------	------------	--------------

Version	Update type	Description
2022	-	Initial release

12.1.3 Ventilation fan

Agricultural ventilation fans provide ventilation air to keep animals cool. The measure applies to newly installed ventilation fans or replacing an existing unit that reached the end of its useful life in agricultural applications. The baseline condition is assumed to be a new fan that does not meet program requirements. This characterization assumes that the baseline condition uses on/off thermostatic controls to automatically operate the fans above a designated temperature threshold and shut them off when temperature drops below setpoint. The efficient equipment must be certified by BESS Labs¹⁷⁹ with fan diameters of at least 36 inches that meet program minimum efficiency requirements. The program requirements are shown in Table 12-14 below.

Table 12-12	. Program	Qualifying	Efficiency	Requirements
-------------	-----------	------------	------------	--------------

Fan diameter (in)	Tier 1 Qualifying Ventilation Efficiency Ratio (cfm/W)	Tier 2 Qualifying Ventilation Efficiency Ratio (cfm/W)
36-47	-	21.0
48-52	23.1	25.2
52+	23.1	25.0

12.1.3.1 Impacts Estimation Approach

Per-measure, the gross annual electric energy savings are calculated according to the following equation:

$$\frac{\Delta kWh}{1,000} = \left(\frac{watts_{base} - watts_{ee}}{1,000}\right) \times HOU$$

Per-measure, the gross summer coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \left(\frac{watts_{base} - watts_{ee}}{1,000}\right) \times CF_{summer}$$

Per-measure, the gross winter coincident demand reduction is calculated according to the following equation:

¹⁷⁹ University of Illinois, Department of Agricultural and Biological Engineering. <u>http://bess.illinois.edu/</u>

DNV

$$\Delta kW_{winter} = \left(\frac{watts_{base} - watts_{ee}}{1,000}\right) \times CF_{winter}$$

Where:

ΔkWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction
Wattsbase	= operating demand (W) of baseline fan
wattsee	= operating demand (W) of efficient fan
HOU	 equipment operating hours of use
CF _{summer}	= summer peak coincidence factor
CFwinter	= winter peak coincidence factor

12.1.3.2 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Units	Source(s)
Watts _{base}	Variable	See Table 12-4	watts	BESS database ¹⁸⁰
Watte	Variable	See customer application		Customer application
WattSee	Vanable	For defaults see Table 12-4	watts	BESS database ¹⁸¹
ноц	Variable	See customer application	hours,	Customer application
1100		For defaults see Table 12-5	annual	Iowa TRM v5.0, Vol.3.0, 2020, p.11
CF _{summer}	Fixed	1.00	-	Iowa TRM v5.0, Vol.3.0, 2020, p. 11
CFwinter	Fixed	0.00	-	lowa TRM v5.0, Vol.3.0, 2020, p. 11 ¹⁸²

Table 12-13. Input variables for ventilation fans

Table	12-14.	Default	base	and	efficient	fan	power
					••••••		P

Fan Diameter (in)	watts _{base} (W)	Wattsee (W)
36-47 (default) ¹⁸³	762	542
48-52	1,321	994
52+	1,478	1,203

¹⁸⁰ BESS fan database downloaded on 2/22/2023. Average watts from models below standard (minimum efficiency requirement

detailed in the efficient equipment definition). ¹⁸¹ BESS fan database downloaded on 2/22/2023. Average watts from models above standard (minimum efficiency requirement

detailed in the efficient equipment definition). ¹⁸² The source TRM doesn't provide a winter demand value. The maximum ventilation is needed at temperatures above 72°F with a 67°F balance point assumed. For winter peak periods, it is assumed that little ventilation will be needed, and peak savings will be negligible.

¹⁸³ If fan diameter is not provided in the customer application, then smallest range is assigned as default with the most conservative savings.

Table 12-15. Ventilation fan hours of use by facility type

Facility type	HOU (hours)
Нод	4,923
Poultry	4,794
Dairy	4,205
Unknown/other (default)	4,800

12.1.3.3 Default savings

If the application does not provide the input variables, savings are calculated using default values where applicable.

Per-measure, the gross annual electric energy savings are calculated as follows:

$$\Delta kWh = \left(\frac{watts_{base} - watts_{ee}}{1,000}\right) \times HOU$$
$$= \left(\frac{762 \ watts - 542 \ watts}{1,000}\right) \times 4,800$$
$$= 1056.00 \ kWh$$

Per-measure, the gross summer coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \left(\frac{wats_{base} - watts_{ee}}{1,000}\right) \times CF_{summer}$$
$$= \left(\frac{762 \ watts - 542 \ watts}{1,000}\right) \times 1.00$$
$$= 0.220 \ kW$$

Per-measure, the gross winter coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \left(\frac{watts_{base} - watts_{ee}}{1,000}\right) \times CF_{winter}$$
$$= \left(\frac{762 \ watts - 542 \ watts}{1,000}\right) \times 0.00$$
$$= 0.000 \ kW$$

OFFICIAL COPY

12.1.3.4 Effective Useful Life

The effective useful life of this measure is provided in Table 12-16.

Table 12-16. Effective Useful Life for I	lifecycle savings calculations
--	--------------------------------

DSM Phase	Program name	Value	Units	Source(s)
іх	Non-Residential Agriculture Energy Efficiency Program, DSM Phase IX	7.00	years	Iowa TRM v5.0 Vol.3, 2020, p. 10

12.1.3.5 Source

The primary source for this deemed savings approach is the Iowa TRM v.5.0, Vol.3.0, 2020, pp.10-12 and the BESS Database.

12.1.3.6 Update Summary

Updates to this section are described in Table 12-17.

Table 12-17. Summary of update(s)

Version	Update type	Description
2022	-	Initial release

12.1.4 VFD for greenhouse ventilation fan and poultry fan

In farming facilities and greenhouses, ventilation fans are used to cool livestock and poultry to relieve the heat stress and are often used in conjunction with water sprayers or misters to enhance evaporative cooling. The airflow demand for farm animals is variable and is highly dependent on outside air temperature; fan operation at 100% fan speed is not always required. A variable frequency drive (VFD) enables the fan to operate at a reduced speed during part load conditions to match the demand; typically, there are outdoor mounted temperature sensors in the system that send control signals to the VFD. The VFD saves energy due to the cubic nature of the fan affinity laws. Fan power is proportional to the fan speed, e.g. operating at half speed theoretically requires only one-eighth of the power draw than operating at full speed.

12.1.4.1 Impacts Estimation Approach

Per-measure, the gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = HP \times ESF$$

It is assumed that the VSD will operate at 100% speed during peak period. Therefore, summer and winter peak demand reduction is not likely to result from this measure and was therefore not estimated.

Where:

ΔkWh	= per-measure gross annual electric energy savings
HP	= motor nameplate power

DNV

ESF

= deemed kWh savings per horsepower

12.1.4.2 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Units	Source(s)
НР	Variable	See customer application	horsepower	Customer application
ESF	Variable	Poultry: 1,851 Greenhouse: 1,853	kWh/hp	CA eTRM SWPR006-01 VSD for ventilation Fan and scaled the operation hours based on Iowa TRM v5.0 2020 page 11

Table 12-18. Input variables for horticultural LED

12.1.4.3 Default savings

If the proper values are not available, zero savings will be given for both the gross annual electric energy savings and the gross coincident peak demand reduction.

12.1.4.4 Effective Useful Life

The effective useful life of this measure is provided in Table 12-27.

Table 12-19.	Effective	Useful Li	ife for	lifecycle	savings	calculations

DSM Phase	Program name	Value	Units	Source(s)
IX	Non-Residential Agriculture Energy Efficiency Program, DSM Phase IX	15.00	years	CA eTRM Measure SWPR006-01

12.1.4.5 Source

The primary source for this deemed savings approach is the CA eTRM Measure SWPR006-01.

12.1.4.6 Update summary

Updates to this section are described in Table 12-20.

Table 12-20: Summary of update(s)

Version	Update type	Description
2022	-	Initial release

12.2 Lighting end use

12.2.1 Dairy lighting controls

12.2.1.1 Measure description

For agriculture applications, the lighting level are reduced using timeclock controls. Baseline is providing full illuminance for 24 hours a day, 365 days per year. This measure reduces lighting levels for six hours per day. Reduced lighting produce a sustainable increase in milk yield and save energy by reducing the power for this period.

DNV

12.2.1.2 Impacts Estimation Approach

For retrofit application:

Per-measure, gross annual electric energy savings are coincident demand reduction is calculated according to the following equation:

$$\Delta kWh = \left[\frac{Qty_{base} \times watts_{base}}{1,000 W/kW} - \left(\frac{Qty_{ee} \times watts_{ee}}{1,000 W/kW} \times (1 - ESF)\right)\right] \times HOU$$

$$ESF = F_{low} \times \left(1 - \frac{watts_{ee,low}}{watts_{ee}}\right)$$

Per-measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \left(\frac{Qty_{base} \times watts_{base} - Qty_{ee} \times watts_{ee}}{1,000 \, W/kW}\right) \times CF_{summer}$$

Per-measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\frac{\Delta k W_{winter}}{1,000 W/kW} = \left(\frac{Qty_{base} \times watts_{base} - Qty_{ee} \times watts_{ee}}{1,000 W/kW}\right) \times CF_{winter}$$

For new construction application:

Per-measure, gross annual electric energy savings are coincident demand reduction is calculated according to the following equation:

$$\frac{\Delta kWh}{1,000 W/kW} \approx ESF \times HOU$$

$$ESF = F_{low} \times \left(1 - \frac{watts_{ee,low}}{watts_{ee}}\right)$$

Per-measure, gross coincident summer peak demand reduction is calculated according to the following equation:

$$\frac{\Delta k W_{summer}}{1,000 W/kW} = \frac{Qty_{ee} \times watts_{ee}}{1,000 W/kW} \times ESF \times CF_{summer}$$

Per-measure, gross coincident winter peak demand reduction is calculated according to the following equation:

$$\frac{\Delta kW_{winter}}{1,000 W/kW} \approx ESF \times CF_{winter}$$

Where:

∆kWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction
Qty _{base}	= quantity of baseline fixtures
Qty _{ee}	= quantity of installed fixtures equipped with bi-level occupancy control
watts _{base}	= baseline wattage per fixture
watts _{ee,low}	= installed wattage per fixture at low-power output
wattsee	= installed wattage per fixture at full-power output, if bi-level occupancy controls are installed on
	existing fixtures, wattsee = wattsbase.
Flow	= proportion of annual operating time that fixture operates at low power
ESF	= energy savings factor
HOU	= hours of use per year
CF _{summer}	= summer peak coincidence factor
CF _{winter}	= winter peak coincidence factor

12.2.1.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Unit	Source(s)
Qty _{base}	Variable	See customer application	-	Customer application
Qty _{ee}	Variable	See customer application	-	Customer application
watts _{base}	Variable	See customer application	watts	Customer application
watts _{ee,low}	Variable	See customer application	watts	Customer application
wattsee	Variable	See customer application	watts	Customer application
Flow	Fixed	0.25	-	New York TRM v9, p. 834 Engineering Judgement ¹⁸⁴
НО	Variable	See customer application	hours,	Customer application
		Default: 8,760	annual	New York TRM V9, p. 834
CFsummer	Fixed	1.00	-	New York TRM v9, p. 834
CFwinter	Fixed	1.00	-	New York TRM v9, p. 834 ¹⁸⁵

Table 12-21. Input values for occupancy sensors and controls-stairwell integrated measure

12.2.1.4 Default savings

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

12.2.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 12-25.

¹⁸⁴ This value is based on the assumed ratio of hours of light that will be in low power to existing high power operation. The assumed existing is 24/7 and low power reduction is 6 hours per day. Study from 'American Society of Agricultural and Biological Engineers', p.12 - "16 to 18 hour continuous block of light. Providing illuminance for 24 hours a day does not produce a sustainable increase in milk yield and operating the lighting system more than necessary wastes energy".

¹⁸⁵ The source TRM doesn't differentiate between winter and summer peak periods. Therefore, the summer CF is also applied to winter peak periods.

Table 12-22. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
іх	Non-Residential Agricultural Energy Efficiency Program, DSM Phase IX	15.00	years	New York TRM v9, Appendix P186

12.2.1.6 Source(s)

The primary source for this deemed savings approach is the New York TRM v9, pp. 832-836.

12.2.1.7 Update summary

Updates made to this section are described in Table 12-26.

Table 12-23. Summary of update(s)

Version	Update Type	Description
2022	-	Initial release

12.2.2 Horticultural LED

12.2.2.1 Measure description

This measure replaces HID lighting with LED horticultural lighting fixtures. The applications include stacked indoor lighting, non-stacked indoor lighting and supplemented greenhouse lighting. Supplemented greenhouses use electric lighting to extend the hours of daylight, supplement low levels of sunlight on cloudy days, or disrupt periods of darkness to alter plant growth. Non-stacked indoor lighting grow plants in a single layer along the floor, under ceiling-mounted lighting. Stack indoor lighting

12.2.2.2 Impacts Estimation Approach

Per-measure, the gross annual electric energy savings are calculated according to the following equation:

$$\frac{\Delta kWh}{1,000} = \left(\frac{Qty_{base} \times watts_{base} - Qty_{ee} \times watts_{ee}}{1,000}\right) \times HOU$$

Per-measure, the gross summer coincident demand reduction is calculated according to the following equation:

$$\frac{\Delta k W_{summer}}{1,000} = \left(\frac{Q t y_{base} \times watt s_{base} - Q t y_{ee} \times watt s_{ee}}{1,000}\right) \times C F_{summer}$$

There are no per-measure gross winter coincident demand reduction for this measure.

¹⁸⁶ ComEd Luminaire Level Lighting Control IPA Program Impact Evaluation Report prepared by Navigant, 2018-06-05

DN\

2
8
N
5
_
5

HOU CF_{summer} CF_{winter}

ΔkWh

∆kW_{summer}

∆kW_{winter}

Wattsbase

Qtybase

wattsee

Qtyee

Where:

summer peak coincidence factor
 winter peak coincidence factor

12.2.2.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

= per-measure gross annual electric energy savings

= power consumption of baseline lighting fixtures

= quantity of existing or baseline fixtures/lamps

= power consumption of efficient lighting fixtures

= equipment operating hours of use

= per-measure gross coincident summer peak demand reduction

= per-measure gross coincident winter peak demand reduction

= quantity of installed energy-efficient (ee) fixtures/lamps

Component	Туре	Value	Units	Source(s)
		See customer application	-	Customer application
Qty _{base}	Variable	For new construction projects, Qty _{base} = Qty _{ee}	-	Engineering Judgement
Qty _{ee}	Variable	See customer application	-	Customer application
		See customer application		Customer application
WattS _{base}	Variable	For new construction projects, Table 12-25	watts	U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy. "Energy Savings Potential of SSL in Horticultural Applications, 2017 ¹⁸⁷
Wattsee	Variable	See customer application	watts	Customer application
ноц	Variable	See customer application ¹⁸⁸	hours,	Customer application
		For defaults see Table 12-26	annual	Wisconsin TRM 2021, p. 27
CF _{summer}	Variable	For defaults see Table 12-26	-	Wisconsin TRM 2021, p. 28

Table 12-24.	Input variables	for horticultural	LED
	input variables	ior norticultural	

Table 12-25. Default base and efficient horticultural LED lighting fixture wattage

Facility	Watts _{base} (W)
Non-Stacked Indoor	$= Watts_{ee} \times 1.43$
Stacked Indoor (default)	$= Watts_{ee} \times 1.10$

¹⁸⁷The Wisconsin TRM 2021 methodology only offers discrete wattage ranges, to accommodate various fixtures sizes, the Watts per sq. ft. weighted by lighting technology and the location. <u>https://www.energy.gov/sites/prod/files/2017/12/f46/ssl_horticulture_dec2017.pdf</u>

¹⁸⁸ The HOU = customer application hours/day x 365 days per year. The WI TRM references this study "<u>Energy Savings Potential of SSL in</u> <u>Horticultural Applications</u>", and it assumes 365 days

DNV					
Facility	Watts _{base} (W)				
Supplemented Greenhouse	$= Watts_{ee} \times 1.42$				

Table 12-26. Horticultural LED lighting fixture hours of use by facility type

Facility	HOU (hours)	CF _{summer}	
Non-stacked indoor	5,475	1.0	
Stacked indoor (default)	6,278	1.0	
Supplemented greenhouse	2,120	0	

12.2.2.4 Default savings

If the proper values are not available, zero savings will be given for both the gross annual electric energy savings and the gross coincident peak demand reduction.

12.2.2.5 Effective Useful Life

The effective useful life of this measure is provided in Table 12-27.

Table 12-27. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
IX	Non-Residential Agriculture Energy Efficiency Program, DSM Phase IX	For Non-Stacked Indoor 10.00 Supplemented Greenhouse 20.00	years	Wisconsin TRM 2021, p. 28

12.2.2.6 Source

The primary source for this deemed savings approach is the Wisconsin TRM 2021, pp.26-31.

12.2.2.7 Update summary

Updates to this section are described in Table 12-28.

Table 12-28. Summary of update(s)

Version	Update type	Description
2022	-	Initial release

Docket No. E-22, Sub 645

12.2.3 Poultry LED

12.2.3.1 Measure description

This measure applies to the replacement of high-intensity discharge (HID), incandescent, and fluorescent fixtures with light emitting diode (LED) fixtures in poultry farms.

12.2.3.2 Impacts Estimation Approach

Per-measure, the gross annual electric energy savings are calculated according to the following equation:

$$\frac{\Delta kWh}{=} \left(\frac{Qty_{base} \times watts_{base} - Qty_{ee} \times watts_{ee}}{1,000}\right) \times HOU \times Days$$

Per-measure, the gross summer coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \left(\frac{Qty_{base} \times watts_{base} - Qty_{ee} \times watts_{ee}}{1,000}\right) \times CF_{summer}$$

Per-measure, the gross winter coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \left(\frac{Qty_{base} \times watts_{base} - Qty_{ee} \times watts_{ee}}{1,000}\right) \times CF_{winter}$$

Where:

ΔkWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction
Qty _{base}	= quantity of existing or baseline fixtures/lamps
Qtyee	= quantity of installed energy-efficient (ee) fixtures/lamps
Watts _{base}	= power consumption of baseline lighting fixtures
wattsee	= power consumption of efficient lighting fixtures
HOU	= equipment operating hours of use
CFsummer	= summer peak coincidence factor
CFwinter	= winter peak coincidence factor

12.2.3.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Units	Source(s)
Qty _{base}	Variable	See customer application	-	Customer application
Qty _{ee}	Variable	See customer application	-	Customer application
watts _{base}	Variable	See customer application	watts	Customer application

Table 12-29. Input variables for Horticultural LED

Component	Туре	Value	Units	Source(s)
		Default: 60W		Minnesota TRM v3.2, p.568
Wattsee	Variable	See customer application	watte	Customer application
		Default: 10W	walls	Minnesota TRM v3.2, p.568
НОИ	Variable	See customer application	hours,	Customer application
		Default: 16	daily	Minnesota TRM v3.2, p.568
Days	Variable	See customer application	days,	Customer application
		365	annual	Minnesota TRM v3.2, p.568
CF _{summer}	Fixed	1.0	-	Minnesota TRM v3.2, p.568 ¹⁸⁹
CF _{winter}	Fixed	1.0	-	Minnesota TRM v3.2, p.568 ¹⁸⁹

12.2.3.4 Default savings

If the proper values are not available, zero savings will be given for both the gross annual electric energy savings and the gross coincident peak demand reduction.

12.2.3.5 Effective Useful Life

The effective useful life of this measure is provided in Table 12-30.

Table 12-30. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
іх	Non-Residential Agriculture Energy Efficiency Program, DSM Phase IX	7.00	years	Wisconsin TRM 2021, p. 28

12.2.3.6 Source

The primary source for this deemed savings approach is the Wisconsin TRM 2021, pp.26-31.

12.2.3.7 Update summary

Updates to this section are described in Table 12-31.

Table 12-31. Summary of update(s)

Version	Update type	Description
2022	-	Initial release

OFFICIAL COPY

¹⁸⁹ Minnesota TRM v3.2, doesn't specify the season coincidence factor (CF), we apply CF value for both summer and winter seasons.

12.2.4 T5/T8 Lamps

This measure is also provided by the Non-Residential Lighting Systems and Controls Program, DSM Phase VII. The savings are determined using the methodology described in Section 1.1.1.

12.3 Process end use

12.3.1 Automatic milker take-off

12.3.1.1 **Measure description**

This measure characterizes the energy savings for the installation of automatic milker takeoffs on dairy milking vacuum pump systems. Automatic milker takeoff measure reduces energy use by shutting off the milking vacuum pump suction once a minimum flowrate has been achieved.

This measure requires the installation of automatic milker takeoffs to replace pre-existing manual takeoffs on dairy milking vacuum pump systems. Equipment with existing automatic milker takeoffs is not eligible. In addition, the vacuum pump system serving the impacted milking units must be equipped with a variable speed drive (VSD) to qualify for incentives. Without a VSD, little or no savings will be realized.

12.3.1.2 **Impacts Estimation Approach**

Per-measure, the gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = N_{cows} \times N_{milkings} \times ESC$$

Per-measure, the gross summer coincident demand reduction is calculated according to the following equation:

$$\frac{\Delta k W_{summer}}{FLH} = \frac{\Delta k W h}{FLH} \times C F_{summer}$$

Per-measure, the gross winter coincident demand reduction is calculated according to the following equation:

$$\frac{\Delta k W_{winter}}{FLH} = \frac{\Delta k W h}{FLH} \times C F_{winter}$$

Where:

ΔkWh	= per-measure gross annual electric energy savings
ΔkW_{summer}	= per-measure gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction
Ncows	= number of cows milked per day
Nmilkings	= number of milkings per day
ESC	= annual energy savings per cow
FLH	= full load hours
CF _{summer}	= summer peak coincidence factor
CFwinter	= winter peak coincidence factor

(

12.3.1.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Units	Source(s)
ESC	Fixed	50.0 kWh/cow/milking		Iowa TRM Vol. 3, Non- Residential Measures TRM v.7, 2022, p.18
		See customer application		Customer application
N _{cows}	Variable	Default: 83 cows/farm		State Data, USDA, National Agricultural Services, Virginia state average cows per farm ¹⁹⁰
Nmilkings	Variable	See customer application		Customer application
		Default: 2.0	milkings/day	Iowa TRM Vol. 3, Non- Residential Measures TRM v.7, 2022, p.18
FLH	Fixed	2,703	hours	Iowa TRM Vol. 3, Non- Residential Measures TRM v.7, 2022, p.19
CF _{summer}	Fixed	0.793	-	Iowa TRM Vol. 3, Non- Residential Measures TRM v.7, 2022, p.19
CF _{winter}	Fixed	0.793	-	lowa TRM Vol. 3, Non- Residential Measures TRM v.7, 2022, p.19

12.3.1.4 Default savings

If the application does not provide the input variables, savings are calculated using default values where applicable.

Per-measure, the gross annual electric energy savings are calculated as follows:

$$\Delta kWh = N_{cows} \times N_{milkings} \times ESC$$

= 83 cows × 2.0 milkings × 50 kWh/cow/ milking

$$=$$
 8,300.00 *kWh*

Per-measure, the gross summer coincident demand reduction is calculated according to the following equation:

$$\frac{\Delta k W_{summer}}{FLH} = \frac{\Delta k W h}{FLH} \times C F_{summer}$$

¹⁹⁰ https://www.nass.usda.gov/Publications/AgCensus/2017/Full_Report/Volume_1,_Chapter_1_State_Level/Virginia/st51_1_0017_0019.pdf

Per-measure, the gross winter coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \frac{\Delta kWh}{FLH} \times CF_{winter}$$
$$= \frac{8,300 \ kWh}{2,703} \times 0.793$$
$$= 2.435 \ kW$$

12.3.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 12-33.

Table 12-33. E	ffective Useful Life	for lifecycle saving	s calculations
----------------	----------------------	----------------------	----------------

DSM Phase	Program name	Value	Units	Source(s)
IX	Non-Residential Agriculture Energy Efficiency Program, DSM Phase IX	10.00	years	Iowa TRM Vol. 3, Non-Residential Measures TRM v.7, 2022, p.18

12.3.1.6 Source

The primary source for this deemed savings approach is the Iowa TRM Vol. 3, Non-Residential Measures TRM v.7, 2022, p.18 Vol. 3, pp.18-19.

12.3.1.7 Update summary

Updates to this section are described in Table 12-34.

Table 12-34. Summary of update(s)

Version	Update type	Description
2022	-	Initial release

12.3.2 Dairy plate cooler

12.3.2.1 Measure description

This measure characterizes the energy savings from the installation of plate-style milk precoolers on a dairy parlor milk refrigeration system. A plate cooler uses incoming well water to precool the milk before it enters the bulk tank reducing the cooling load on the compressors and resulting in energy savings.

The criterion for this measure is the installation of a plate-style milk precooler in a dairy parlor with no additional efficiency or system requirements. The baseline is dairy parlor milk refrigeration systems, without existing plate-style milk precooler.

12.3.2.2 Impacts Estimation Approach

Per-measure, the gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \Delta kWh_{cow} \times N_{cows}$$

$$\Delta kWh_{cow} = (Days \times C_{p,milk} \times Lbs_{milk} \times \Delta T - Heat \, Recovery) \times \frac{1}{ERR} \times \frac{1 \, W}{1000 \, kW}$$

Per-measure, the gross summer coincident demand reduction is calculated according to the following equation:

$$\frac{\Delta k W_{summer}}{FLH} = \frac{\Delta k W h}{FLH} \times C F_{summer}$$

Per-measure, the gross winter coincident demand reduction is calculated according to the following equation:

$$\frac{\Delta k W_{winter}}{FLH} = \frac{\Delta k W h}{FLH} \times C F_{winter}$$

Where:

ΔkWh	= per-measure gross annual electric energy savings
∆kWh _{cow}	= per cow annual energy savings from plate-style milk precooler
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction
Ncows	= number of cows
Days	= number of milking days per year
C _{p,milk}	= specific heat of milk
Lbs _{Milk}	= the pounds of milk produced per day per cow that needs to be cooled
ΔΤ	= temperature reduction of the milk across precooler
Heat Recovery	= difference in Btu/h per cow per year recovered by heat reclaimer system with and without precooler
EER	= efficiency of the existing compressor on the milk refrigeration system
FLH	= full load hours. The refrigeration is assumed to be in operation every day of the year, but because of compressor cycling the full load hours are based on the run time of compressors for medium temperature refrigeration applications.

12.3.2.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 12-	35. Input v	ariables for	dairy p	plate cooler

Component	Туре	Value	Units	Source(s)
Ncows	Variable	See customer application For default N _{cows} = 83	cows/farm	Customer application 2017 Census of Agriculture – State Data, USDA, National Agricultural Services, Virginia state average cows per farm ¹⁹¹
Days	Fixed	365	days, annual	lowa TRM v5.0 Vol.3, 2021, p. 41
C _{p,milk}	Fixed	0.93	Btu/(Ib-°F)	lowa TRM v5.0 Vol.3, 2021, p. 41
Lbsmilk	Fixed	51.6	lb/day/cow	Iowa TRM v5.0 Vol.3, 2021, p. 41
ΔΤ	Fixed	40.0	°F	Iowa TRM v5.0 Vol.3, 2021, p. 41
Heat Recovery	Variable	See Table 12-36	Btu/h / cow/year	Customer application
EER	Variable	See Table 16-29	kBtu/kW- hour	Customer application
FLH	Fixed	3,910	-	lowa TRM v5.0 Vol.3, 2021, p. 42
CF _{summer}	Fixed	0.79	-	lowa TRM v5.0 Vol.3, 2021, p. 42
CFwinter	Fixed	0.79	-	Iowa TRM v5.0 Vol.3, 2021, p. 42 ¹⁹²

Table 12-36. Difference in Btu/h recovered by heat reclaimer (heat recovery) for water heater type

Water heater type	Heat Recovery (Btu/h-cow-year)
Non-electric	0
Electric with heat reclaimer on-site (default)	131,562

Table 12-37. Energy Efficiency Ratio (EER) for various compressor types

Compressor type	EER
Reciprocating compressor	8.4
Scroll compressor	10.9
Unknown compressor (default)	9.3

191 https://www.nass.usda.gov/Publications/AgCensus/2017/Full Report/Volume 1, Chapter 1 State Level/Virginia/st51 1 0017 0019.pdf

¹⁹² The summer CF value is applied for winter CF as the source TRM does not provided. As milkings are spread throughout the day, this assumption is reasonable.

12.3.2.4 Default savings

If the application does not provide the input variables, savings are calculated using default values where applicable. Per-measure, the gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh_{cow} = (Days \times C_{p,milk} \times Lbs_{milk} \times \Delta T - Heat \, Recovery) \times \frac{1}{ERR} \times \frac{1W}{1000 \, kW}$$
$$= (365 \, days \times (0.93Btu/(lb.\,^{\circ}F)) \times 51.6 \, lb/day/cow \times 40.0 \,^{\circ}F$$
$$- 131,562Btuh/cow/year) \times \frac{1}{9.3 \, kBtu/kW. hour} \times \frac{1W}{1000 \, kW}$$

$$= 61.2 \, kWh$$

$$\Delta kWh = kWh_{cow} \times N_{cows}$$
$$= 61.2 kWh \times 83$$
$$= 5,079.6 kWh$$

Per-measure, the gross summer coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \frac{\Delta kWh}{FLH} \times CF_{summer}$$
$$= \frac{5079.6 \, kWh}{3,910 \, hours} \times 0.79$$
$$= 1.026 \, kW$$

Per-measure, the gross winter coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = \frac{\Delta kWh}{FLH} \times CF_{winter}$$
$$= \frac{5079.6 \, kWh}{3.910 \, hours} \times 0.79$$

 $= 1.026 \, kW$

12.3.2.5 Effective Useful Life

The effective useful life of this measure is provided in Table 12-38.

Table 12-38	Effective	Useful Life	o for l	ifecycle	savings	calculations
	LILECTIVE	OSCIULEIR	5 101 1	necycle	Savings	calculations

DSM Phase	Program name	Value	Units	Source(s)
іх	Non-Residential Agricultural Energy Efficiency Program, DSM Phase IX	15.00	years	Iowa TRM v5.0 Vol.3, 2021, p. 40

12.3.2.6 Source

The primary source for this deemed savings approach is the Iowa TRM v 3, 2021, pp.40-42

12.3.2.7 Update summary

Updates to this section are described in Table 12-39.

Table 12-39. Summary of update(s)

Version	Update type	Description
2022	-	Initial release

12.3.3 Grain storage aeration fan controls

12.3.3.1 Measure description

This measure involves replacing existing manual controls on grain storage bin aeration fans with controls that use temperature and moisture sensors to modulate fan operation automatically. Electric savings are achieved by reducing the aeration fan run hours. With manual controls, the fans are run more frequently and for longer than needed. The inclusion of controls, including moisture and temperature sensors, allow the fans to be run only when needed.

Grain bins using heating grain drying are not eligible for participation in this measure. The reported height of the grain bin must be the eave height and not the height of the peak. This measure is limited to bins equal to, or less than, 105 ft. in diameter or 100 ft. in eave height.

12.3.3.2 Impacts Estimation Approach

Per-measure, the gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = hp_{fan} \times \Delta kWh_{hp}$$

Docket No. E-22, Sub 645

DNV

$$\Delta kWh_{hp} = 0.746 \times (HOU_{base} - HOU_{ee}) \times \left(\frac{1}{\eta}\right)$$

There are no gross summer and winter coincident demand reductions associated with this measure.

 $\Delta k W_{summer} = 0 \ k W$

 $\Delta k W_{winter} = 0 \ k W$

Where:

ΔkWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand savings
∆kW _{winter}	= per-measure gross coincident winter peak demand savings
hp _{fan}	= required fan brake horsepower (including motor loading) of controlled fan to provide the necessary aeration to grain bin
∆kWh _{fan}	= the kWh savings per brake horsepower for grain bin aeration fans
0.746	= conversion factor for horsepower to kilowatt
HOU _{base}	= hours of use for baseline condition
HOUee	= hours of use for energy efficient condition
η	= nameplate efficiency of the fan motor

12.3.3.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Units	Source(s)
hn.	Variable	See customer application	hn	Customer application
npfan	variable	Default: See Table 16-29	ΠΡ	Iowa TRM v.5.0, Vol 3.2, p. 52
		See customer application	hours,	Customer application
HOUbase	Vallable	720 ¹⁹³	annual	Iowa TRM v.5.0, Vol 3.2, p. 50
HOUee	Variable	See customer application	hours,	Customer application
		180 ¹⁹⁴	annual	Iowa TRM v.5.0, Vol 3.2, p. 50
η	Variable	See customer application		Customer application
		Default: 0.936195	-	Iowa TRM v.5.0, Vol 3.2, p. 50

Table 12-40. Input variables for grain storage aeration fan control

The following table provides the default fan based on the grain bin dimensions. The height of the storage bin walls is measured from before the roof begins; not to be confused with peak height, which is the top of the roof.

¹⁹³ The default manual control hours are sourced from Alliant Energy Custom Rebate Project Data from 2013-2015.

¹⁹⁴ The default hours of operation of the fans with controls is sourced from Alliant Energy Custom Rebate Project Data from 2013-2015, leveraging Integris fan control runtime models.

¹⁹⁵ Motor efficiency is based on a NEMA Premium Efficient, 60 hp, ODP, 3600 RPM motor. This is a typical fan motor for larger bin sizes, as supported by Alliant Energy Custom Rebate Project Data from 2013-2015.

	Diameter of grain bin (ft)										
Eave height (ft)	24	36	42	48	54	60	72	75	78	90	105
20	0.50	1	1	1	1	2	2	2	3	3	5
30	1	1	2	2	3	4	5	5	6	8	11
35	1	2	3	3	4	5	8	8	9	12	17
40	1	3	4	5	7	8	12	13	14	18	25
45	2	4	6	8	10	12	17	19	20	27	37
50	3	6	8	11	14	17	24	26	29	38	52
55	4	8	11	15	19	23	33	36	39	52	71
60	5	11	15	20	25	31	45	48	52	70	95
65	6	15	20	26	33	40	58	63	68	91	124
70	8	19	25	33	42	52	75	81	88	117	159
75	10	23	32	42	53	65	94	102	110	147	200
80	13	29	40	52	65	81	116	126	137	182	247
85	16	36	48	63	80	99	142	154	167	222	302
90	19	43	58	76	97	119	172	186	202	268	365
95	23	51	70	91	115	142	205	223	241	321	436
100	27	61	83	108	137	169	243	263	285	379	516

Table 12-41. Required fan brake horsepower (hp_{fan}) based on grain bin size

12.3.3.4 Default savings

There are no default savings for this measure because if the proper fan power is not available, the savings are dependent on the grain bin dimensions and corresponding default fan power that is needed to provide the necessary aeration to the grain bin.

12.3.3.5 Effective Useful Life

The effective useful life of this measure is provided in Table 12-42.

Table 12-42. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
IX	Non-Residential Agricultural Energy Efficiency Program, DSM Phase IX	7.00	years	Iowa TRM v.5.0, Vol 3.2, p. 49

12.3.3.6 Source

The primary source for this deemed savings approach is the Iowa TRM v5.0, Vol 3.2, pp. 48-53.

Docket No. E-22, Sub 645

12.3.3.7 Update summary

Updates to this section are described in Table 12-43.

Table 12-43:	Summary	of update(s)
--------------	---------	--------------

Version	Update type	Description
2022	-	Initial release

12.3.4 Low-pressure irrigation

12.3.4.1 Measure description

This measure characterizes the energy savings from the replacement of an existing irrigation system with a more energy-efficient system. Low-pressure nozzles are used to decrease the necessary pump pressure. The criterion for this measure is a new irrigation system that reduces the pump pressure of an existing system by at least 50%. The baseline for this measure is the existing irrigation system.

12.3.4.2 Impacts Estimation Approach

Per-measure, the gross annual electric energy savings are calculated according to the following equation:

$$\frac{\Delta kWh}{\left(\frac{1,714PSI \times GPM}{HP}\right) \times \eta_{pump}} \times \left(\frac{0.746 \, kW}{HP}\right)$$

Per-measure, the gross summer coincident demand reduction is calculated according to the following equation:

$$\Delta k W_{summer} = \left(\frac{\Delta k W h}{FLH}\right) \times C F_{summer}$$

Per-measure, the gross winter coincident demand reduction is calculated according to the following equation:

$$\frac{\Delta k W_{winter}}{FLH} = \left(\frac{\Delta k W h}{FLH}\right) \times C F_{winter}$$

Where:

ΔkWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction
PSI _{base}	= pump pressure before retrofit
PSIee	= pump pressure resulting from retrofit
GPM	= pump flow rate per acre for agriculture applications
Area	= Irrigated land area
HOU	= hours of use of irrigation system
η _{ee}	= pump motor efficiency
FLH	= operating hours of use
CF _{summer}	= summer peak coincidence factor

DNV

CF_{winter}

= winter peak coincidence factor

12.3.4.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 12-44. Input variables for low-pressure irrigation							
Component	Туре	Value	Units	Source(s)			
PSE _{base}	Variable	See customer application	psi	Customer application			
PSEee	Variable	See customer application	psi	Customer application			
Area	Variable	See customer application	acres	Customer application			
GPM	Fixed	5.0	gallons/ minute/acre	lowa TRM vol.3, 2021, p.36			
нои	Fixed	864	hours, annual	lowa TRM vol.3, 2021, p.36			
η _{ee}	Fixed	0.70	-	lowa TRM vol.3, 2021, p.36			
FLH	Fixed	6,768	hours, annual	Iowa TRM vol.3, 2021, p.36			
CF _{summer}	Fixed	0.793	-	Iowa TRM vol.3, 2021, p.37			
CFwinter	Fixed	0.00	-	lowa TRM vol.3, 2021, p.37			

12.3.4.4 Default savings

If the proper values are not available, zero savings will be given for both the gross annual electric energy savings and the gross coincident peak demand reduction.

12.3.4.5 Effective Useful Life

The effective useful life of this measure is provided in Table 12-45.

Table 12-45. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
IX	Non-Residential Agriculture Energy Efficiency Program, DSM Phase IX	5.00	years	lowa TRM vol.3, 2021, p.36

12.3.4.6 Source

The primary source for this deemed savings approach is the Iowa TRM vol.3, 2021, pp.36-37.

12.3.4.7 Update summary

Updates to this section are described in Table 12-46.

Table 12-46. Summary of update(s)

Version	Update Type	Description
2022	-	Initial release

12.3.5 VFD for dust collection

12.3.5.1 Measure description

This measure pertains to the installation of a variable speed drive (VSD) on an existing fan for a dust collection fan system, commonly known as a baghouse, utilized by agricultural and industrial customers. The use of a VSD for dust collection systems allows for fan speed modulation based on the real time load of the system while maintaining the air velocity needed for the particulates. Controls such as pressure transducers, flow sensors, or velocity sensors are needed to provide feedback to the VSD during operation.

12.3.5.2 Impacts Estimation Approach

Per-measure, the gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = kWh_{Baseline} - kWh_{Measure}$$

$$\frac{kWh_{Baseline}}{Eff_{Motor}} = \frac{HP \times LF \times 0.746}{Eff_{Motor}} \times Hours$$

$$kWh_{Measure} = kWh_{Baseline} \times \frac{Ave Speed \times AfflawExp}{Eff_{VFD}}$$

It is assumed that the VSD will operate at 100% speed during peak period. Therefore, summer and winter peak demand reductions are not likely to result from this measure and was therefore not estimated.

Where:

ΔkWh	= per-measure gross annual electric energy savings
∆kWh _{Baseline}	= per-measure gross annual electric energy consumption in baseline case
∆kWh _{Measure}	= per-measure gross annual electric energy consumption in measure case
HP	= motor nameplate power
LF	= load factor
Hours	= annual operation hours
Eff _{Motor}	= efficiency of the motor
Ave Speed	= average operation speed of VFD
AfflawExp	= affinity law exponent
Eff _{VFD}	= efficiency of the VFD

12.3.5.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 12-47. Input variables for dust collection

Component	Туре	Value	Units	Source(s)
НР	Variable	See customer application	hp	Customer application
		See customer application	-	Customer application
LF	Variable	Default: 0.65		CA eTRM Measure SWPR005-02, SWPR005-02, VFD for Dust Collection Fan
		See customer application	hour, annual	Customer application
Hours	Variable	Default: 5,544		CA eTRM Measure SWPR005-02, SWPR005-02, VFD for Dust
				CA ATRM Massure SW/PP005-02
EffMator	Fixed	0.94	-	SWPR005-02 VED for Dust
		0.01		Collection Fan
				CA eTRM Measure SWPR005-02,
Ave Speed	Variable	See Table 12-48	-	SWPR005-02, VFD for Dust
				Collection Fan
				CA eTRM Measure SWPR005-02,
AfflawExp	Fixed	2.7	-	SWPR005-02, VFD for Dust
				CA eTRM Measure SW/PR005-02
Effven	Fixed	0.97	-	SWPR005-02, VFD for Dust
				Collection Fan

Table 12-48. VFD Average Speed

Motor size (hp)	VFD Average operating speed
10	94.97%
15	85.26%
20	83.08%
25	73.86%
30	76.88%
40	76.71%
50	85.31%
60	75.57%
75	77.13%
100	79.92%
125	82.93%
150	86.17%

12.3.5.4 Default savings

If the proper values are not available, zero savings will be given for both the gross annual electric energy savings and the gross coincident peak demand reduction.

12.3.5.5 Effective Useful Life

The effective useful life of this measure is provided in Table 12-49.

Jun 15 2023

Page 280

Table 12-49. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
IX	Non-Residential Agriculture Energy Efficiency Program, DSM Phase IX	13.00	years	CA eTRM Measure SWPR005-02, SWPR005-02, VFD for Dust Collection Fan

12.3.5.6 Source

The primary source for this deemed savings approach is the CA eTRM Measure SWPR005-02, VFD for Dust Collection Fan.

12.3.5.7 Update summary

Updates to this section are described in Table 12-50.

Table 12-50. Summary of	update(s
-------------------------	---------	---

Version	Update type	Description
2022	-	Initial release

12.3.6 VFD for irrigation pump

12.3.6.1 Measure description

This measure pertains to the installation of a variable frequency drive (VFD) on an existing irrigation pump. The existing pump operates at constant speed while irrigating. Irrigation systems are designed to meet the worst-case hydraulic conditions. This results in the typical operation to provide more pressure than is necessary. Additionally, the number of blocks that are irrigated may vary over time. In the efficient case, the VFD adjusts the motor speed to maintain minimum setpoints while reducing the motor power.

12.3.6.2 Impacts Estimation Approach

Per-measure, the gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = HP \times ESF$$

Per-measure, the gross summer coincident demand reduction is calculated according to the following equation:

$$\Delta k W_{summer} = HP \times DSF$$

There are no gross winter coincident demand reductions for this measure.

Where:

= per-measure gross annual electric energy savings
- motor pamentate power
= deemed kvvn savings per norsepower
= deemed kW reduction per horsepower

12.3.6.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Units	Source(s)
НР	Variable	See customer application	horsepower	Customer application
ESF	Variable	For HP ≤ 75 hp: 284 For HP > 75 hp: 276	kWh/hp	CA eTRM SWP0005-02 Enhanced Variable Frequency Drive on Irrigation Pump
DSF	Variable	For HP ≤ 75 hp: 0.120 For HP > 75 hp: 0.177	kW/hp	CA eTRM SWP0005-02 Enhanced Variable Frequency Drive on Irrigation Pump

Table 12-51. Input variables for irrigation pump

12.3.6.4 Default savings

If the proper values are not available, zero savings will be given for both the gross annual electric energy savings and the gross coincident peak demand reduction.

12.3.6.5 Effective Useful Life

The effective useful life of this measure is provided in Table 12-52.

DSM Phase	Program name	Value	Units	Source(s)
IX	Non-Residential Agriculture Energy Efficiency Program, DSM Phase IX	10.00	years	CA eTRM Measure SWP0005-02 Enhanced Variable Frequency Drive on Irrigation Pump

12.3.6.6 Source

The primary source for this deemed savings approach is the Wisconsin TRM 2021, pp.26-31.

12.3.6.7 Update summary

Updates to this section are described in Table 12-53.

Table 12-53. Summary of update(s)

Version	Update type	Description
2022	-	Initial release

12.3.7 VFD for tobacco curing

12.3.7.1 Measure description

This measure pertains to the installation of a variable frequency drive (VFD) on an existing fan for the tobacco curing process. The existing fan operates at constant speed throughout the curing process. In the efficient case, the VFD adjusts the fan speed to maintain minimum setpoints while reducing the fan power.

Docket No. E-22, Sub 645

12.3.7.2 Impacts Estimation Approach

Per-measure, the gross annual electric energy savings are calculated according to the following equation:

$$\frac{\Delta kWh}{Eff_{Motor}} = \frac{HP \times LF \times 0.746}{Eff_{Motor}} \times Hours \times ESF$$

It is assumed that the VSD will operate at 100% speed during peak period. Therefore, summer and winter peak demand reductions are not likely to result from this measure and was therefore not estimated.

Where:

ΔkWh	= per-measure gross annual electric energy savings
∆kWh _{Baseline}	= per-measure gross annual electric energy consumption in baseline case
∆kWh _{Measure}	= per-measure gross annual electric energy consumption in measure case
HP	= motor nameplate power
LF	= motor load factor
Hours	= annual operation hours
Eff _{Motor}	= efficiency of the motor
ESF	= energy savings factor of VFD

12.3.7.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 12-54	. Input	variables	for tobacco	curing
-------------	---------	-----------	-------------	--------

Component	Туре	Value	Units	Source(s)
НР	Variable	See customer application	hp	Customer application
		See customer application	-	Customer application
LF Variable		Default: 0.65		Maryland/Mid-Atlantic TRM v.10, p. 297 ¹⁹⁶
Hours	Variable	See customer application	hour, annual	Customer application
		Default: 1,920		Engineering estimate ¹⁹⁷
Eff _{Motor}	Fixed	0.917	-	NEMA Standards Publication Condensed MG 1-2007 ¹⁹⁸
	Fixed			NC State University 2011 Natural
ESF		0.20	-	Resources & Conservation,
				Research Impacts, Part 1 ¹⁹⁹

12.3.7.4 Default savings

If the proper values are not available, zero savings will be given for both the gross annual electric energy savings and the gross coincident peak demand reduction.

¹⁹⁶ Assigned HVAC LF

¹⁹⁷ Assumed an eight-day cycle and 10 cycles (8 days/cycle x 24 hours x 10 cycles= 1,920 hours)

¹⁹⁸ 10 hp motor is assumed

¹⁹⁹ An estimate of 20% to 25% savings is estimated from a case study" <u>https://harvest.cals.ncsu.edu/research/?p=52403</u>

12.3.7.5 Effective Useful Life

The effective useful life of this measure is provided in Table 12-55.

Table 12-55. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
іх	Non-Residential Agriculture Energy Efficiency Program, DSM Phase IX	15.00	years	Maryland/Mid-Atlantic TRM v.10, p. 301 ²⁰⁰

12.3.7.6 Source

The primary source for this deemed savings approach is the NC State University 2011 Natural Resources & Conservation, Research Impacts, Part 1.

12.3.7.7 Update summary

Updates to this section are described in Table 12-56.

Table 12-56. Summary of update(s)

Version	Update type	Description
2022	-	Initial release

²⁰⁰ Assigned HVAC LF

Docket No. E-22, Sub 645

DNV

13 NON-RESIDENTIAL BUILDING AUTOMATION SYSTEM PROGRAM, DSM PHASE IX

The Non-Residential Building Automation System Program provides qualifying non-residential customers with incentives to install new building automation systems in facilities that do not have centralized controls or have an antiquated system that requires full replacement. With the new control system, the control strategies are customized based on the facility and HVAC system type. During the project design phase, the program provides recommended design improvements, which may include adding control points and features, and revises control sequences to capture more savings.

The building must be an existing building and at least 50,000 sq. ft. Both electric and gas heating HVAC systems are eligible. Once the new system is installed on site, the program includes a thorough system test to validate energy savings and performance.

13.1 Cross-cutting end uses

13.1.1 Building automation system

13.1.1.1 Measure description

This measure involves the replacement of existing control systems with centralized control system. Centralized controls and new control sequences allow for the more efficient operation of equipment savings energy. The new control system must be DDC control system and serve HVAC equipment.

Recommendations are made based on industry best practices. Potential measures include:

- Chilled Water Temperature Reset
- Cooling Tower Condenser Water Temperature Reset
- Variable-Speed Pumping with Valve Position Feedback
- Air Handling Unit Adaptive Optimal Start
- Single-Zone Constant-Volume AHU to Variable-Volume Conversion
- Constant-Volume Dual-Duct AHU to Variable-Volume Conversion
- Partial Airside Economizer Integration with Mechanical Cooling
- Multi-Zone VAV AHU Static Pressure Reset with Zone Damper Position Feedback
- Ventilation Optimization, Dynamic Ventilation Reset, based on ASHRAE 62.1
- CO2-based Demand Control Ventilation (DCV)
- Modulating Building Relief Control
- Dual-Maximum VAV Terminal Unit Logic
- Fan-Powered VAV Terminal Unit Fan Speed Control

13.1.1.2 Impacts Estimation Approach

The initial methodology for calculating impacts utilizes a fixed percent of whole building annual consumption. Additionally, the program develops regression models to assess and validate savings. These weather-normalized consumption models use 12 months of baseline consumption and 12 months of post installation consumption data.

Docket No. E-22, Sub 645

Due to the nature of this approach, the results are not available at the time the project is implementer. Therefore, these savings cannot be applied directly. Results will be considered in assessing if adjustments to the impact methodology is needed in the future.

Per-measure, the gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = ESF \times kWh_{whole \ facility}$$

This measure may have some gross coincident summer or winter peak demand reductions depending on which recommendations are implemented. However, impacts are assumed to be primarily focused on energy savings. No demand impacts are calculated.

Where:

∆kWh	= per-measure gross annual electric energy savings
kWhwhole facility	 whole facility annual energy consumption
ESF	= energy savings factor

13.1.1.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Units	Source(s)
kWhwhole facility	Variable	See customer application	kWh	Customer application
ESF	Fixed	0.05	-	Building Commissioning Costs and Savings Across Three Decades and 1,500 North American Buildings ²⁰¹

Table 13-1. Input variables for Building Automation System

13.1.1.4 Default savings

If the proper values are not available, zero savings will be given for gross annual electric energy savings.

13.1.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 13-2.

²⁰¹ Berkeley Lad, Building Technology & Urban Systems Division, <u>https://buildings.lbl.gov/publications/building-commissioning-costs-and</u>

Table 13-2. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
іх	Non-Residential Building Automation System Program, DSM Phase IX	5.00	years	Wisconsin TRM 2022, p. 369 ²⁰²

13.1.1.6 Source

The primary source for this Update summary

Updates to this section are described in Table 13-3.

Table 13-3. Summary of update(s)

Version	Update type	Description
2022	-	Initial release

 $^{^{202}}$ The chiller plant setpoint adjustment measure life is used as the control system will have a similar measures life.

14 NON-RESIDENTIAL BUILDING OPTIMIZATION PROGRAM, DSM PHASE IX

The Non-Residential Building Optimization Program is an expansion of the Non-Residential Office Program, DSM Phase VII. The program offers the same measures available in DSM Phase VII Non-Residential Office Program, along with seven additional measures. This program offers rebates for retro-commissioning improvements to the facilities energy management system. Participants may receive a facility assessment and measure implementation, as well as incentives to offset the cost of making recommended improvements. To qualify for this program, the customer must be responsible for the electric bill and must be the owner of the facility or reasonably able to secure permission to complete the measures. All program measures are summarized in Table 14-1.

End use	Measure	Legacy program	Manual section
Lighting	Reduce lighting schedule		Section 7.2.1
	HVAC unit scheduling		Section 7.3.1
	HVAC temperature setback		Section 7.3.2
	Condensing	Non-Residential Office	Section 7.3.3
	HVAC discharge air temperature reset	Program, DSM Phase VII	Section 7.3.4
	HVAC static pressure reset		Section 7.3.5
	HVAC VAV minimum flow reduction		Section 7.3.6
цулс	Dual enthalpy air-side economizer		Section 2.1.5
IVAC	Temperature setup		Section 14.3.8
	Chilled water reset		Section 14.3.9
	Outdoor air reduction		Section 14.3.10
	Coil cleaning	N/A	Section 14.3.11
	Pump pressure reduction		Section 14.3.12
	Schedule equipment		Section 14.3.13
	Custom retro-commissioning measure		Section 14.3.14

Table 14-1. Non-Residential Building Optimization Program measure list

Energy savings for the majority of measures are based on building model simulations. Measures that do not use this approach are Dual enthalpy air-side economizer (Section 2.1.5). Schedule Equipment, and Custom Retrocommissioning measures. The following sections describe the building model simulation approach as well as energy savings factors. Measure descriptions and how energy savings factors are applied are describing in each measure section.

14.1.1 Building model simulation description

Measures that are not from the legacy Office Program and utilize the building model simulation approach are described in this section. The U.S. Department of Energy (DOE) reference building "Medium Office" with code vintage defined as ASHRAE 90.1-2007 is used as the basis for the baseline and installed case building models.²⁰³ Current

²⁰³ U.S. Department of Energy. Office of Energy Efficiency & Renewable Energy. Commercial Reference Buildings. <u>https://www.energy.gov/eere/buildings/commercial-reference-buildings</u>, accessed on 08/03/2022

Docket No. E-22, Sub 645

energy code in Virginia is 2018 IECC and ASHRAE 90.1-2016 with amendments.²⁰⁴ It is DNV's engineering judgement that buildings and systems from the 2007 vintage would be appropriate candidates for the retrocommissioning measures in this program. This is because the end-use systems being retro-commissioned in this program are generally assumed to be functioning properly but aged and should benefit from re-programming controls.

There are baseline and efficient building models for each measure case. Energy savings are calculated using these models and simulated using TMY3 weather data for selected weather stations in Virginia and North Carolina.

14.1.1.1 Building models

The baseline energy model is derived from DOE's Commercial Medium Office Building in climate zone 4A. This model assumes a baseline annual energy consumption of 12.51 kWh/sq.ft. and 0.03 therm/sq.ft. The reference building is a medium-size office (3-stories totaling 53,627 sq. ft., 17,876 sq. ft.per floor). Savings are normalized to a unit according to the measure.

There are two different models for HVAC system types representing the most likely HVAC systems to be encountered in small offices. The HVAC system types include packaged VAV and chilled water VAV. Additionally, the heating fuel type is considered for each of these systems where the options are either electric or non-electric.

Loads on HVAC systems in offices tend to be dominated less by shell or envelop loads (e.g., passive stored heat) than internal loads such as occupants, lighting, and plug-load waste heat. Small buildings with relatively large exterior surface areas compared to floor area (or larger sprawling buildings with only one or two floors) would not be modeled as well by scaling these results.

Each measure has a baseline and efficient model. The efficient building models were created by modifying the baseline energy models in ways that the measure is intended to operate. This is done by modifying the applicable setpoints and schedules for each measure.

14.1.1.2 Impacts Estimation Approach

Modeled savings are calculated by subtracting the energy consumption of the efficient model from the baseline model, for each weather station. The total building savings are divided by the applicable model parameters to get a savings per unit (i.e. supply fan cfm or chiller tons of cooling) to produce the applicable energy savings factors. Energy savings factors are multiplied by the customer-specific units to calculate the gross savings. Additionally, the savings may be scaled to account for the level of adjustment relative to the model's assumptions. An example of this is the temperature setup measure which assumes the temperature is increased 10°F during unoccupied periods. The customer-specific temperature increase is used to scale the modeled savings. If the record has a reduction higher or lower than this, the savings are linearly scaled.

Per-measure, gross annual electric energy savings are calculated in each of the following measure sections. In general, they follow the same structure, as follows:

$$\Delta kWh = ESF \times quantity \times MAF$$

²⁰⁴ U.S. Department of Energy. Office of Energy Efficiency & Renewable Energy. Building Energy Codes Program. Virginia. https://www.energycodes.gov/status/states/virginia, accessed on 08/03/2022

Docket No. E-22, Sub 645

Per-measure, gross coincident summer demand reduction for measures in this program are shown below:

 $\Delta kW_{summer} = DRF_{summer} \times quantity \times MAF$

There are not gross coincident winter demand reductions for the measures that use the building model simulation approach.

Where:

∆kWh	= per-measure gross annual electric energy savings
$\Delta kW_{\text{summer}}$	= per-measure gross coincident demand reduction
ESF	= annual energy savings factor per unit based on measure by weather station
DRFsummer	 summer coincident demand reduction factor
DRFwinter	 winter coincident demand reduction factor
quantity	= quantity of measure-specific units
MAF	= measure adjustment factor to scale savings from the modeled assumptions to the application depth of measure

14.1.1.3 Input variables

The input variables are defined in each of the following measure sections. The ESF values for each of the modeled measures are in Table 14-2 and Table 14-3.

	Measure Name						
Weather Station	Temperature setup (kWh/cfm)	Chilled water reset (kWh/ton)	Outdoor air reduction (kWh/cfm)	Coil cleaning (kWh/cfm)	Pump pressure reduction (kWh/gpm)		
Heating type	Electric	Both	Both	Both	Both		
Charlottesville	0.280	17.798	0.026	0.106	11.356		
Sterling	0.219	15.162	0.035	0.100	11.155		
Farmville	0.250	15.662	0.039	0.110	9.345		
Norfolk	0.244	14.931	0.053	0.124	4.588		
Arlington	0.229	14.546	0.034	0.109	5.796		
Richmond	0.254	15.701	0.043	0.118	9.404		
Roanoke	0.242	16.413	0.020	0.100	12.714		
Fredericksburg	0.248	15.643	0.044	0.112	9.871		
Rocky Mount- Wilson	0.298	17.933	0.036	0.123	9.433		
Elizabeth City	0.279	16.932	0.060	0.139	8.353		

Table 14-3. Summer demand reduction factor by measure

	Measure Name				
Weather station	Outdoor air reduction (kW/cfm)	Coil cleaning (kW/cfm))			
Heating type	Both	Both			
Charlottesville	0.000051	0.000066			
Sterling	0.000092	0.000087			
Farmville	0.000085	0.000086			
Norfolk	0.000096	0.000086			
Arlington	0.000098	0.000087			
Richmond	0.000095	0.000091			
Roanoke	0.000050	0.000063			
Fredericksburg	0.000100	0.000093			
Rocky Mount-Wilson	0.000063	0.000070			
Elizabeth City	0.000086	0.000081			

14.1.1.4 Update summary

Updates made to this section are described in Table 14-4.

Table 14-4. Summary of update(s)

Version	Update type	Description
2022	-	Initial release

14.2 Lighting end use

14.2.1 Reduce lighting schedule by one hour on weekdays

This measure is also provided by the Non-Residential Office Program, DSM Phase VII. The savings are determined using the methodology described in Section 7.2.1.

14.3 Heating, Ventilation, and Air Conditioning (HVAC) end use

14.3.1 HVAC unit scheduling

This measure is also provided by the Non-Residential Office Program, DSM Phase VII. The savings are determined using the methodology described in Section 7.3.1.

14.3.2 HVAC temperature setback

This measure is also provided by the Non-Residential Office Program, DSM Phase VII. The savings are determined using the methodology described in Section 7.3.2.

14.3.3 HVAC condensing water temperature reset

This measure is also provided by the Non-Residential Office Program, DSM Phase VII. The savings are determined using the methodology described in Section 7.3.3.

14.3.4 HVAC discharge air temperature reset

This measure is also provided by the Non-Residential Office Program, DSM Phase VII. The savings are determined using the methodology described in Section 7.3.4.

14.3.5 HVAC static pressure reset

This measure is also provided by the Non-Residential Office Program, DSM Phase VII. The savings are determined using the methodology described in Section 7.3.5.

14.3.6 HVAC VAV minimum flow reduction

This measure is also provided by the Non-Residential Office Program, DSM Phase VII. The savings are determined using the methodology described in Section 7.3.6.

14.3.7 Dual enthalpy air-side economizer

This measure does not use the building simulation approach that is applied to other measures in this program. Instead, it utilizes the Non-Residential Heating and Cooling Efficiency Program, DSM Phase VII savings approach described in Section 2.1.5.

14.3.8 Temperature setup

14.3.8.1 Measure description

This measure involves modifying space cooling temperature setpoints upward during unoccupied hours. The cooling temperature setpoint must be increased at least five degrees above the occupied setpoint. If the facility is weekday based occupied, a higher unoccupied temperature setpoint in the weekend is recommended. The customer or controls vendor must provide documentation of the existing and new unoccupied temperature set points and their schedules.

In the simulations, temperature setpoints during unoccupied hours are set up by 10 degrees while the cooling temperature setpoint of occupied hours remains unchanged.

14.3.8.2 Impact Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = ESF \times scfm_{supply\,fan} \times MAF$$

$$MAF = \left(\frac{T_{unoccupied,ee} - T_{unoccuied,base}}{10^{\circ} F}\right)$$

Docket No. E-22, Sub 645

Per-measure, gross coincident summer and winter peak demand reduction is assigned as zero because these measures have a negligible demand reduction as shown below:

 $\Delta k W_{summer} = 0$

$$\Delta k W_{winter} = 0$$

Where:

ΔkWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction
ESF	= annual energy savings factor
MAF	= measure adjustment factor to scale savings from the modeled assumptions to the application depth of measure
Tunoccupied, base	= baseline unoccupied temperature setpoint
Tunoccupied., ee	= energy-efficient case unoccupied temperature setpoint
scfm _{supply fan}	= supply fan flow rate

14.3.8.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 14-5. Input values for office buildings with electric and non-electric heating fuels

Component	Туре	Value	Unit	Source(s)
ESF	Variable	See Table 14-2	kWh/scfm	EnergyPlus [™] energy modeling software outputs
Tunoccupied,base	Variable	See customer application	°F	Customer application
Tunoccupied,ee	Variable	See customer application	°F	Customer application
scfm _{supply fan}	Variable	See customer application	scfm	Customer application

14.3.8.4 Default savings

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

14.3.8.5 Effective Useful Life

The effective useful life of this measure is provided in Table 14-6.

Table 14-6. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
XI	Non-Residential Building Optimization Program, DSM Phase IX	5.00	years	Wisconsin TRM 2022, p. 369 ²⁰⁵

²⁰⁵ The chiller plant setpoint adjustment measure life is assigned for all measures in this program. The measures in this program will have a similar measures life as they are all related to retro-commissioning and controls measures.

Docket No. E-22, Sub 645

14.3.8.6 Source(s)

The primary source for this deemed savings approach is prototypical building energy models derived from DOE's Commercial Medium Office Reference Building and modified to represent Dominion Energy's Virginia and North Carolina weather zones, using typical meteorological year 3 (TMY3) data.

14.3.8.7 Update summary

Updates made to this section are described in Table 14-7.

Version	Update type	Description
2022	-	Initial release

14.3.9 Chilled Water (CHW) supply temperature reset

14.3.9.1 Measure description

This measure involves implementing a strategy to relax CHW supply temperature when cooling loads permit. Ultimately, this relaxes the lift of chiller compressors, allowing them to operate with greater efficiency. The set point temperature could be based on outdoor air temperature (OAT), schedule/time-of day, OA enthalpy, or 2-way valve position. The strategy chosen depends on the type of controls available.

In the building simulations, the baseline model sets a fixed CHW supply temperature of 44°F. The proposed model sets the CHW supply temperature at 44°F when OAT is above 80°F and implements the CHW supply temperature to 48°F when OAT is below 60°F. A supply air temperature (SAT) reset schedule was implemented in both base/proposed models to maintain sufficient approach between chilled water supply and air-system discharge air temperature (DAT).

14.3.9.2 Impact Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = ESF \times Size \times MAF$$

$$MAF = \left(\frac{T_{chiller\,reset,ee} - T_{chiller,base}}{5^{\circ}F}\right)$$

Per-measure, gross coincident summer and winter peak demand reduction is assigned as zero because these measures have a negligible demand reduction as shown below:

$$\Delta k W_{summer} = 0$$

Docket No. E-22, Sub 645

DNV

$\Delta k W_{winter} = 0$

Where:

ΔkWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction
ESF	= annual energy savings factor
MAF	= measure adjustment factor to scale savings from the modeled assumptions to the application depth of measure
T _{chiller,base}	= baseline condenser temperature setpoint
T _{chiller} reset, ee Size	 energy-efficient case condenser reset temperature setpoint chiller rated capacity
T _{chiller,base} T _{chiller reset, ee} Size	 = baseline condenser temperature setpoint = energy-efficient case condenser reset temperature setpoint = chiller rated capacity

14.3.9.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Unit	Source(s)
ESF	Variable	See Table 14-2	kWh/ton	EnergyPlus [™] energy modeling software outputs
T _{chiller,base}	Variable	See customer application	°F	Customer application
T _{chiller} reset,ee	Variable	See customer application	°F	Customer application
Size	Variable	See customer application	tons	Customer application

 Table 14-8. Input values for office buildings with electric and non-electric heating fuels

14.3.9.4 Default savings

This measure does not have default savings for this measure.

14.3.9.5 Effective Useful Life

The effective useful life of this measure is provided inTable 14-9.

Table 14-9. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
хі	Non-Residential Building Optimization Program, DSM Phase IX	5.00	years	Wisconsin TRM 2022, p. 369 ²⁰⁶

²⁰⁶ The chiller plant setpoint adjustment measure life is assigned for all measures in this program. The measures in this program will have a similar measures life as they are all related to retro-commissioning and controls measures.

Docket No. E-22, Sub 645

14.3.9.6 Source(s)

The primary source for this deemed savings approach is prototypical building energy models derived from DOE's Commercial Medium Office Reference Building and modified to represent Dominion Energy's Virginia and North Carolina weather zones, using typical meteorological year 3 (TMY3) data.

14.3.9.7 Update summary

Updates made to this section are described in Table 14-10.

Table 14-10. Summa	ry of	update(S))
--------------------	-------	---------	----	---

Version	Update type	Description
2022	-	Initial release

14.3.10 Outdoor Air (OA) reduction

14.3.10.1 Measure description

This measure involves reviewing zone fresh air requirements and system fresh air and zone damper controls (if any). Depending on the system and control types, this involves adjusting the control set points to reduce intake of fresh air according to existing occupancy requirements.

This measure might address situations in which fresh air requirements were overdesigned or building occupancy has changed resulting in a lower OA requirement. OA requirements are based on the occupant density or space type. Examples of systems that might be addressed by this would include constant volume single zone (CVSZ) systems with fixed minimum damper positions or motorized dampers, or VAV systems (packaged or built-up). For VAV systems, this measure would address OA reduction strategies that are not already addressed by the "Min Damper Position" measure of the existing DSM7 Office Program.

This measure might also include repairs or adjustments to outside air dampers. OA dampers are exposed to the outdoors and frequently fail without regular maintenance. Failures can be costly and cause operating issues if the damper is stuck too far open. Restoring the proper OA minimum after maintenance can save energy. Converting a fixed damper to a motorized damper would allow the damper to respond flexibly to air-handler volume changes.

In the simulations, the OA volumes in proposed model are all reduced by 10% and minimum outdoor air schedule is also 90% of the baseline model. Simply reducing the OA may not necessarily lead to energy reduction since during certain period of time, the OA can act as free cooling instead of load. In the simulation, this is accounted for by adding an economizer to both the baseline and the proposed models. An economizer is not required in the ASHRAE 90.1 2007 code for climate 4A, but the succeeding codes did require it. A motorized damper is assumed to deliver a fixed minimum OA under all system flow conditions.

14.3.10.2 Impact Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = ESF \times scfm_{supply fan} \times MAF$$

Docket No. E-22, Sub 645

DNV

$$MAF = 10 \times \left(\frac{(scfm_{OA,base} - scfm_{OA,ee})}{scfm_{OA,base}}\right)$$

Per-measure, gross coincident summer demand reduction is calculated according to the following equation:

 $\Delta kW_{summer} = DRF_{summer} \times scfm_{supply fan} \times MAF$

There is no gross coincident winter demand reduction for this measure.

Where:

ΔkWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
ESF	= annual energy savings factor
MAF	= measure adjustment factor to scale savings from the modeled assumptions to the
	application depth of measure
scfm _{OA, base}	= baseline outdoor air flow rate
scfm _{OA, ee}	= energy-efficient outdoor air flow rate
scfm _{supply} fan	= supply fan flow rate
DRF _{summer}	 summer coincident demand reduction factor
DRF _{winter}	= winter coincident demand reduction factor

14.3.10.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Unit	Source(s)
ESF	Variable	See Table 14-2	kWh/scfm	EnergyPlus™ energy modeling software outputs
scfm _{OA, base}	Variable	See customer application	scfm	Customer application
scfm _{OA, ee}	Variable	See customer application	scfm	Customer application
scfm _{supply fan}	Variable	See customer application	scfm	Customer application
DRF _{summer}	Variable	See Table 14-3	kW/scfm	EnergyPlus™ energy modeling software outputs
DRF _{winter}	Variable	See Table 14-3	kWh/scfm	EnergyPlus™ energy modeling software outputs

14.3.10.4 Default savings

This measure does not have default savings for this measure.

14.3.10.5 Effective Useful Life

The effective useful life of this measure is provided in Table 14-12.

Table 14-12. Effective Useful Life for Lifecycle Savings Calculations

DSM Phase	Program name	Value	Units	Source(s)
хі	Non-Residential Building Optimization Program, DSM Phase IX	5.00	years	Wisconsin TRM 2022, p. 369 ²⁰⁷

14.3.10.6 Source(s)

The primary source for this deemed savings approach is prototypical building energy models derived from DOE's Commercial Medium Office Reference Building and modified to represent Dominion Energy's Virginia and North Carolina weather zones, using typical meteorological year 3 (TMY3) data.

14.3.10.7 Update summary

Updates made to this section are described in Table 14-13.

Table 14-13. Summary of update(s)

Version	Update type	Description
2022	-	Initial release

14.3.11 Coil cleaning

14.3.11.1 Measure description

This measure involves cleaning the air-side of air-handler CHW and/or HW coils. Dirty coils require additional fan horsepower to force air through them. Cleaning coils will reduce fan power during all hours of fan operation. It will also increase coil U-value, improving cooling system performance and drying air more effectively.

In the simulations, any effect on heating is not modeled. In the proposed situation, fan motor efficiency and DX cooling coil's COP are set to 3% higher than the baseline.

14.3.11.2 Impact Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = ESF \times scfm_{supply fan}$$

Per-measure, gross coincident summer demand reduction is calculated according to the following equation:

 $\Delta kW_{summer} = DRF_{summer} \times scfm_{supply fan}$

²⁰⁷ The chiller plant setpoint adjustment measure life is assigned for all measures in this program. The measures in this program will have a similar measures life as they are all related to retro-commissioning and controls measures.

Dominion Energy North Carolina

There is no gross coincident winter demand reduction for this measure.

Where:

ΔkWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
ESF	= annual energy savings factor
DRFsummer	= summer coincident demand reduction factor
DRFwinter	= winter coincident demand reduction factor
scfm _{supply fan}	= supply fan flow rate

14.3.11.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Unit	Source(s)
ESF	Variable	See Table 14-2	kWh/scfm	EnergyPlus™ energy modeling software outputs
scfm _{supply fan}	Variable	See customer application	scfm	Customer application
DRF _{summer}	Variable	See Table 14-3	kW/scfm	EnergyPlus™ energy modeling software outputs
DRFwinter	Variable	See Table 14-3Table 7-3	kW/scfm	EnergyPlus [™] energy modeling software outputs

Table 14-14. Input values for office buildings with electric and non-electric heating fuels

14.3.11.4 Default savings

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

14.3.11.5 Effective Useful Life

The effective useful life of this measure is provided in Table 14-15.

Table 14-15. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
хі	Non-Residential Building Optimization Program, DSM Phase IX	5.00	years	Wisconsin TRM 2022, p. 369 ²⁰⁸

14.3.11.6 Source(s)

The primary source for this deemed savings approach is prototypical building energy models derived from DOE's Commercial Medium Office Reference Building and modified to represent Dominion Energy's Virginia and North Carolina weather zones, using typical meteorological year 3 (TMY3) data.

²⁰⁸ The chiller plant setpoint adjustment measure life is assigned for all measures in this program. The measures in this program will have a similar measures life as they are all related to retro-commissioning and controls measures.

Docket No. E-22, Sub 645

14.3.11.7 Update summary

Updates made to this section are described in Table 14-16.

Table 14-16.	Summary	of	update(S))

Version	Update type	Description
2022	-	Initial release

14.3.12 Pump pressure reduction

14.3.12.1 Measure description

This measure assumes that a hydronic loop (hot or chilled water) is variable-flow with 2-way valves and a variablespeed pump. The loop could be a secondary loop with a separate primary loop or a primary loop which directly serves terminal coils. The analysis bears out that the differential pressure set point, which ensures a sufficient minimum flow to the most remote terminal coils, is unnecessarily high or can be re-set depending on conditions.

There are other cases where the pump pressure might be reduced that do not involve a mere set point change. For example, the differential pressure control valve may be too close to the pump, which defeats the purpose and results in excessive pumping energy. Relocating the control valve and re-establishing a proper set point would save pumping energy. Another situation addressed by this measure includes removal of unnecessary valves, such as balancing valves, after implementing variable flow in a formerly constant-volume loop.

In the simulations, the baseline pump is changed to variable speed the design pump head is set to 60 ft H₂O comparing to DOE prototype. The design pump head pressure is reduced by 10 ft in the proposed model.

14.3.12.2 Impact Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = ESF \times flow_{pump} \times MAF$$

$$MAF = \left(\frac{pressure_{pump,base} - pressure_{pump,ee}}{10}\right)$$

Per-measure, gross coincident summer and winter peak demand reduction is assigned as zero because these measures have a negligible demand reduction as shown below:

$$\Delta k W_{summer} = 0$$

$$\Delta k W_{winter} = 0$$

Where:

ΔkWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction

Docket No. E-22, Sub 645

DNV	
ΔkW _{winter} ESF	 per-measure gross coincident winter peak demand reduction annual energy savings factor
MAF	= measure adjustment factor to scale savings from the modeled assumptions to the application depth of measure
	 = baseline pump pressure setpoint = epergy-efficient case pump pressure setpoint
flow _{pump}	= pump design flow rate

14.3.12.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Unit	Source(s)
ESF	Variable	See Table 14-2	kWh/gpm	EnergyPlus™ energy modeling software outputs
pressure _{pump, base}	Variable	See customer application	feet head	Customer application
preassure _{pump, ee}	Variable	See customer application	feet head	Customer application
Flow _{pump}	Variable	See customer application	gpm	Customer application

Table 14-17. Input values for office buildings with electric and non-electric heating fuels

14.3.12.4 Default savings

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

14.3.12.5 Effective Useful Life

The effective useful life of this measure is provided in Table 14-18.

Table 14-18. E	Effective Usef	ul Life for lif	fecycle savings	calculations
----------------	----------------	-----------------	-----------------	--------------

DSM Phase	Program name	Value	Units	Source(s)
хі	Non-Residential Building Optimization Program, DSM Phase IX	5.00	years	Wisconsin TRM 2022, p. 369 ²⁰⁹

14.3.12.6 Source(s)

The primary source for this deemed savings approach is prototypical building energy models derived from DOE's Commercial Medium Office Reference Building and modified to represent Dominion Energy's Virginia and North Carolina weather zones, using typical meteorological year 3 (TMY3) data.

14.3.12.7 Update summary

Updates made to this section are described in Table 14-19.

²⁰⁹ The chiller plant setpoint adjustment measure life is assigned for all measures in this program. The measures in this program will have a similar measures life as they are all related to retro-commissioning and controls measures.

Table 14-19. Summary of update(s)

Version	Update type	Description
2022	-	Initial release

14.3.13 Schedule equipment

14.3.13.1 Measure description

This measure involves bringing uncontrolled loads, such as ventilation fans, under control with the building operation schedule.

The deemed savings values for this measure are calculated based on the site-specific load that is being scheduled and the change in the operating schedule. The measure savings will be calculated using the kW of the actual equipment controlled and the reduction in the hours of operation.

14.3.13.2 Impact Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = ((HPD_{base} \times DPW_{base}) - (HPD_{ee} \times DPW_{ee})) \times 52 \times Load$$

The equipment load is calculated depending on the equipment type. For fans and pumps, the following equation is applied:

$$Load = \frac{hp \times 0.746 \times LF}{\eta}$$

For scheduling HVAC equipment, when the equipment is <65,000 Btu/h, the load is calculated according to the following equation²¹⁰:

$$Load = Size_{cool} \times \left[\frac{EFLH_{cool}}{SEER \times 8,760}\right] \times \frac{1 \ kBtuh}{1,000 \ Btuh}$$

For scheduling HVAC equipment, when the equipment is \geq 65,000 Btu/h, the load is calculated according to the following equation:

$$Load = Size_{cool} \times \left[\frac{EFLH_{cool}}{IEER \times 8,760}\right] \times \frac{1 \ kBtuh}{1,000 \ Btuh}$$

²¹⁰ Note that the annual average cooling equipment load is used for this measure. A cooling load factor is approximated by dividing the EFLHs hours by 8,760 hours/year. This approach does not account for when the scheduling equipment change is occurring but is intended to be representative over the course of the year.

Docket No. E-22, Sub 645

DNV

For equipment load for equipment other than fans, pumps, and HVAC, the following equation is applied:

 $Load = Size_{equipment}$

Per-measure, gross coincident summer and winter peak demand reduction is assigned as zero because these measures have a negligible demand reduction as shown below:

 $\Delta k W_{summer} = 0$

 $\Delta k W_{winter} = 0$

Where:

ΔkWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction
Load	= load being scheduled off
HPD _{base}	 baseline occupied hours per day of occupied schedule
HPDee	= energy-efficient case occupied hours per day of occupied schedule
DPW _{base}	= baseline occupied days per week of occupied schedule
DPWee	= energy-efficient case occupied per week of occupied schedule
SqFt	= condition area impacted by measure
hp	= motor rated horsepower
LF	= motor load factor (%) at fan design airflow rate or pump design flowrate
η	= NEMA-rated efficiency of motor
Sizecool	= equipment cooling capacity of HVAC equipment
SEER _{ee}	= seasonal energy efficiency ratio (SEER) of the installed air conditioning equipment. It is used for heat pumps and AC units that are smaller than 65,000 Btu/h.
IEER _{base}	 integrated energy efficiency ratio (IEER) of the existing or baseline air conditioning equipment. IEER is a weighted average of a unit's efficiency at four load points: 100%, 75%, 50%, and 25% of full cooling capacity. It is used for heat pumps and AC units that are 65,000 Btu/h or larger.
EFLH _{cool}	= equivalent full-load cooling hours
Sizeequipment	= equipment capacity that is scheduled off

14.3.13.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Unit	Source(s)
HPD _{base}	Variable	See customer application	hours/day	Customer application
HPDee	Variable	See customer application	hours/day	Customer application
DPW _{base}	Variable	See customer application	days/week	Customer application
DPWee	Variable	See customer application	days/week	Customer application
hp	Variable	See customer application	horsepower	Customer application

Table 14-20. Input values for office buildings with electric and non-electric heating fuels

Component	Туре	Value	Unit	Source(s)
LF	Fixed	0.65	-	Maryland/Mid-Atlantic TRM v.10, p. 297
η	Variable	Default see Table 2-16. Baseline motor efficiency	-	NEMA Standards Publication Condensed MG 1-2007
Sizecool	Variable	See customer application	Btu/h	Customer application
EFLH _{cool}	Variable	See Table 17-4 in Sub- Appendix F2-II: Non-residential HVAC	hours, annual	Maryland/Mid-Atlantic TRM v.10, p. 422
SEER/ IEER	Variable	See Table 17-8 in Sub- Appendix F2-III: Non-residential HVAC	kBtu/kW-hour (except COP is dimension- less)	ASHRAE 90.1 2013, Table 6.8.1-1
Sizeequipment	Variable	See customer application	kW	Customer application

14.3.13.4 Default savings

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

14.3.13.5 Effective Useful Life

The effective useful life of this measure is provided in Table 14-21.

Table 14-21. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
хі	Non-Residential Building Optimization Program, DSM Phase IX	5.00	years	Wisconsin TRM 2022, p. 369 ²¹¹

14.3.13.6 Source(s)

The primary source for this deemed savings approach relies on customer-specific inputs.

14.3.13.7 Update summary

Updates made to this section are described in Table 14-22.

Table 14-22. Summary of update(s)

Version	Update type	Description
2022	-	Initial release

²¹¹ The chiller plant setpoint adjustment measure life is assigned for all measures in this program. The measures in this program will have a similar measures life as they are all related to retro-commissioning and controls measures.

14.3.14 Custom retrocommissioning

14.3.14.1 Measure description

This measure is for HVAC or lighting measures that do not fit in any of the other measure categories and are identified through a 3rd party energy audit.

14.3.14.2 Impact Estimation Approach

Savings will be calculated using custom calculations. Implementer project files will be desk reviewed. Initially all projects will be reviewed though depending on project volume, projects may be sampled for review.

14.3.14.3 Default savings

This measure does not have default savings for this measure.

14.3.14.4 Effective Useful Life

The effective useful life of this measure is provided in Table 14-23.

Table 14-23. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
хі	Non-Residential Building Optimization Program, DSM Phase IX	5.00	years	Wisconsin TRM 2022, p. 369 ²¹²

14.3.14.5 Source(s)

The primary source for this deemed savings approach is prototypical building energy models derived from DOE's Commercial Large Office Reference Building and modified to represent Dominion Energy's Virginia and North Carolina weather zones, using typical meteorological year 3 (TMY3) data.

14.3.14.6 Update summary

Updates made to this section are described in Table 14-24.

Table 14-24. Summary of update(s)

Version	Update type	Description
2022	-	Initial release

²¹² The chiller plant setpoint adjustment measure life is assigned for all measures in this program. The measures in this program will have a similar measures life as they are all related to retro-commissioning and controls measures.

DNV

15 NON-RESIDENTIAL ENGAGEMENT PROGRAM, DSM PHASE IX

This Program engages commercial buildings in energy management best practices that increase awareness of operational and behavioral energy savings opportunities. The Program supports the Company's facility heroes to achieve energy savings by optimizing building energy performance and integrating ongoing commissioning best practices into their operations through a combination of education and training. Participants receive no-cost engineering support and targeted energy-saving suggestions intended to encourage actions or measure installations by providing information and assistance. The incentive to participate is the electric bill savings as a result of actions taken through participation in the program.

Through a customer engagement portal, building operators can also access educational content and technical resources as part of a series of operator challenges. By completing these challenges, participants will review and implement energy efficient operational best practices, earning them points while competing against facility teams from other participating buildings.

15.1 Cross-cutting end uses

15.1.1 Building operator training

15.1.1.1 Measure description

The non-residential engagement program's operator energy challenges were designed to include technical resources and advice to educate building operators on how they can evaluate their building system performance and take corrective action. The energy challenges include but are not limited to the following building retuning activities:

- Review outside air damper operation
- Minimize the introduction of outside air
- Review of supply fan operation and minimum flow setpoints
- Review of airside economizer operation and performance
- Review of air-handler supply air temperature sequences and setpoints
- Review of HVAC schedules and zone temperature setbacks
- Review lighting schedules and alignment with occupancy and use
- Review lighting levels
- Review condenser water setpoint and sequencing
- Review chilled water temperature setpoint and sequencing
- Review off-peak heating loads and lockouts
- Review AHU static pressure setpoints and sequencing
- VAV box sequencing

15.1.1.2 Impacts Estimation Approach

The initial methodology for calculating impacts utilizes a fixed percent of whole building annual consumption. Additionally, the program develops regression models to assess and validate savings. These weather-normalized consumption models use 12 months of baseline consumption and 12 months of post installation consumption data. Due to the nature of this approach, the results are not available at the time the project is implementer. Therefore,

Docket No. E-22, Sub 645

these savings cannot be applied directly. Results will be considered in assessing if adjustments to the impact methodology is needed in the future.

Per-measure, the gross annual electric energy savings are calculated according to the following equation:

 $\Delta kWh = ESF \times kWh_{whole facility}$

This measure may have some gross coincident summer or winter peak demand reductions depending on which recommendations are implemented. However, impacts are assumed to be primarily focused on energy savings. No demand impacts are calculated.

Where:

ΔkWh	= per-measure gross annual electric energy savings
kWh _{whole facility}	= whole facility annual energy consumption
ESF	= energy savings factor

Input variables 15.1.1.3

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 15-1. Input variables for	Building Operator Training
---------------------------------	-----------------------------------

Component	Туре	Value	Units	Source(s)
kWh _{whole} facility	Variable	See customer application	kWh	Customer application
ESF	Fixed	0.05	-	Building Commissioning Costs and Savings Across Three Decades and 1,500 North American Buildings ²¹³

15.1.1.4 **Default savings**

If the proper values are not available, zero savings will be given for gross annual electric energy savings.

Effective Useful Life 15.1.1.5

The effective useful life of this measure is provided in Table 15-2.

²¹³ Berkeley Lad, Building Technology & Urban Systems Division, <u>https://buildings.lbl.gov/publications/building-commissioning-costs-and</u>

Table 15-2. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
іх	Non-Residential Engagement Program, DSM Phase IX	5.00	years	Wisconsin TRM 2022, p. 369 ²¹⁴

15.1.1.6 Source

The primary source for this Update summary

Updates to this section are described in Table 15-3.

Table 15-3. Summary of update(s)

Version	Update type	Description
2022	-	Initial release

²¹⁴ The chiller plant setpoint adjustment measure life is used as the control system will have a similar measures life.

DNV

16 NON-RESIDENTIAL PRESCRIPTIVE ENHANCED PROGRAM, DSM PHASE IX

The Non-Residential Prescriptive Program provides qualifying non-residential customers with incentives for the installation of refrigeration, commercial kitchen equipment, HVAC improvements and maintenance and installation of other program specific, energy efficiency measures.

To be eligible for a rebate, you must be a Dominion Energy Virginia non-residential customer who is not exempt by statute or under a special contract.

The measures offered through this program and the sections describing the measures are listed in Table 16-1. The energy savings methodology is provided in Section 18.1. The following sections include measure descriptions.

End use	Measure	Legacy program	Section
Commercial convection oven Commercial combination oven	Commercial convection oven	Non-Residential	Section 4.1.1
	Commercial combination oven	Prescriptive Program, DSM	Section 4.1.2
	Commercial fryer	Phase VI	Section 4.1.3
Cooking	Commercial griddle		Section 4.1.4
	Commercial hot food holding cabinet		Section 4.1.5
	Commercial steam cooker		Section 4.1.6
	Variable speed drives on kitchen exhaust fan	Non-Residential Prescriptive Program, DSM Phase VI	Section 4.1.7
Domestic hot	Heat pump water heater		Section 16.2.1
water	Pre-rinse sprayer	- Non-Residential Prescriptive Program, DSM Phase VI	Section 16.2.2
	Air conditioning tune-up	Non-Residential	Section 4.2.2
HVAC	Duct test and seal	Prescriptive Program, DSM Phase VI	Section 4.2.1
	Electronically commutated motor		Section 16.3.3
	Guest room occupancy] -	Section 16.3.4
	Parking ventilation	Jon-Residential Prescriptive Program, DSM Phase VI	Section 16.3.5
	Commercial dishwasher		Section 16.4.1
Annlianae ar Dhur	Commercial dryer	_	Section 16.4.2
Load	Commercial washing machine	Non-Residential Prescriptive Program, DSM Phase VI abinet Phase VI abinet abinet	Section 16.4.3
	Food seal wrapper		Section 16.4.4
	Ozone laundry		Section 16.4.5
	Heat pump pool heater		Section 16.5.1
Recreation	Pool spa cover		Section 16.5.2
	Variable speed pool pump		Section 10.6.1
	Commercial freezers and refrigerators		Section 4.4.3
	Commercial ice maker		Section 4.4.4
	Door closer (cooler and freezer)	Non-Residential	Section 4.4.1
Refrigeration	Door gasket (cooler and freezer)	Prescriptive Program, DSM	Section 4.4.2
	Evaporator fan electronically commutated motor (ECM) retrofit		Section 4.4.5
	Low/anti-sweat door film		Section 4.4.8

Table 16-1. Non-residential prescriptive program measure list

End use	Measure	Legacy program	Section
	Refrigeration condenser coil cleaning		Section 4.4.10
	Strip curtain (cooler and freezer)		Section 4.4.12

16.1 Cooking end use

16.1.1 Commercial convection oven

This measure is also provided by the Non-Residential Prescriptive Program, DSM Phase VI. The savings are determined using the methodology described in Section 4.1.1.

16.1.2 Commercial combination oven

This measure is also provided by the Non-Residential Prescriptive Program, DSM Phase VI. The savings are determined using the methodology described in Section 4.1.2.

16.1.3 Commercial fryer

This measure is also provided by the Non-Residential Prescriptive Program, DSM Phase VI. The savings are determined using the methodology described in Section 4.1.3.

16.1.4 Commercial griddle

This measure is also provided by the Non-Residential Prescriptive Program, DSM Phase VI. The savings are determined using the methodology described in Section 4.1.4.

16.1.5 Commercial hot food holding cabinet

This measure is also provided by the Non-Residential Prescriptive Program, DSM Phase VI. The savings are determined using the methodology described in Section 4.1.5.

16.1.6 Commercial steam cooker

This measure is also provided by the Non-Residential Prescriptive Program, DSM Phase VI. The savings are determined using the methodology described in Section 4.1.6.

16.1.7 Variable speed drive on kitchen exhaust fan

This measure is also provided by the Non-Residential Prescriptive Program, DSM Phase VI. The savings are determined using the methodology described in Section 4.1.7.

16.2 Domestic hot water end use

16.2.1 Heat pump water heater

16.2.1.1 **Measure description**

This measure involves replacing an electric storage water heater with a heat-pump water heater (HPWH). The baseline condition is a new electric storage water. For this measure, the ENERGY STAR-qualified heat-pump water heater²¹⁵ is considered to be the efficient condition.

16.2.1.2 **Impacts Estimation Approach**

Per-measure, gross annual electric energy savings are calculated according to the following equations:

$$\frac{\Delta kWh}{3,412 \ Btu/kWh} \times \left(\frac{1}{UEF_{base}} - \frac{1}{UEF_{ee}}\right)$$

$$kBtu_{load} = Gallon_{day} \times 365 \ days \times 8.33 \frac{lb}{gallon} \times 1.0 \frac{Btu}{lb - {}^{\circ}\text{F}} \times (T_{out} - T_{in})$$

Per-measure, gross coincident summer peak demand reduction is fixed as follows:

$$\frac{\Delta k W_{summer}}{HOU} = \frac{\Delta k W h}{HOU} \times C F_{summer}$$

Per-measure, gross coincident winter peak demand reduction is fixed as follows:

$$\frac{\Delta k W_{winter}}{HOU} = \frac{\Delta k W h}{HOU} \times C F_{winter}$$

Where:

ΔkWh	= per-measure gross annual electric energy savings
$\Delta kW_{\text{summer}}$	= per-measure gross coincident summer peak demand savings
ΔkW_{winter}	= per-measure gross coincident winter peak demand savings
Gallon _{day}	= gallons per day of hot water use per person
EF _{base}	= uniform energy factor (UEF) of electric storage water heater based on minimum federal
	standards
EF_{ee}	 uniform energy factor of efficient heat pump water heater
Tout	= tank temperature
Tin	= incoming temperature from well or municipal system
HOU	= hours of use
CF _{summer}	= summer peak coincidence factor

²¹⁵ ENER<u>GY STAR® v3.2 Program Requirements for Residential Water Heaters</u>. Maryland/ Maryland/Mid-Atlantic TRM v10, p. 352.

DNV

CF_{winter} = winter peak coincidence factor

16.2.1.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Tahla	16_2	Innut values	for the hes	t numn	domostic	hot water	hostor	eavinge	calculations
lable	10-2.	input values	ior the nee	it pump	uomestic	not water	neater	Savings	calculations

Component	Туре	Value	Unit	Source(s)
Gallon _{day}	Variable	Schools = 180 Office = 25.0	gallon/day	Maryland/Mid-Atlantic TRM v10, p. 352
UEF _{base}	Fixed	0.904	-	Maryland/Mid-Atlantic TRM v10, p. 352
		See customer application		Customer application
UEF _{ee}	Variable	Default = 2.0	-	Maryland/Mid-Atlantic TRM v10, p. 352 ²¹⁶
T _{out}	Fixed	140.0	°F	Maryland/Mid-Atlantic TRM v10, p.352
T _{in}	Fixed	60.0	°F	Maryland/Mid-Atlantic TRM v10, p. 352
HOU	Variable	Schools =2,218 Office = 5,885		Maryland/Mid-Atlantic TRM v10, p. 353
CF _{summer}	Variable	Schools =0.58 Office = 0.63	-	Maryland/Mid-Atlantic TRM v10, p. 353
CFwinter	Variable	Schools = 180 Office = 25.0	-	Maryland/Mid-Atlantic TRM v10, p. 353 ²¹⁷

16.2.1.4 Default savings

If the proper values are not supplied, a default savings may be applied using conservative input values. The default gross annual electric energy savings will be assigned according to the sequence of equations that follow. The values used assume a office building.

$$\frac{\Delta kWh}{3,412 \ kBtu/kWh} \times \left(\frac{1}{UEF_{base}} - \frac{1}{UEF_{ee}}\right)$$

$$kBtu_{load} = Gallon_{day} \times 365 \ days \times 8.33 \frac{lb}{gallon} \times 1.0 \frac{Btu}{lb - {}^{\circ}F} \times (T_{out} - T_{in})$$

$$= 25.0 \frac{gallon}{day} \times 365 \, days \times 8.33 \frac{lb}{gallon} \times 1.0 \frac{Btu}{lb - {}^{\circ}\text{F}} \times (140.0 \, {}^{\circ}\text{F} - 60.0 \, {}^{\circ}\text{F})$$

DNV - www.dnv.com

²¹⁶ ENERGY STAR minimum qualifying requirements are used as the default value.

²¹⁷ The source TRM doesn't provide a winter CF. Therefore, the summer CF is applied as the winter CF.

DNV $\Delta kWh = \frac{kBtu_{load}}{3,412 \ kBtu/kWh} \times \left(\frac{1}{UEF_{base}} - \frac{1}{UEF_{ee}}\right)$ $= \frac{6,080,900 \ kBtu}{3,412 \ kBtu/kWh} \times \left(\frac{1}{0.904} - \frac{1}{2.0}\right)$ $= 1,080.37 \ kWh$

Per-measure, gross coincident summer peak demand reduction is fixed as follows:

$$\Delta kW_{summer} = \frac{\Delta kWh}{HOU} \times CF_{summer}$$
$$= \frac{1,080 \ kWh}{5,885 \ hour} \times 0.63$$
$$= 0.116 \ kW$$

Per-measure, gross coincident winter peak demand reduction is fixed as follows:

$$\Delta kW_{winter} = \frac{\Delta kWh}{HOU} \times CF_{winter}$$
$$= \frac{1,080 \ kWh}{5,885 \ hour} \times 0.63$$

 $= 0.116 \, kW$

16.2.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 16-3.

Table 16-3. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
IX	Non-Residential Prescriptive Enhanced Program, DSM Phase IX	10.00	years	Maryland/Mid-Atlantic TRM v10, p. 354

16.2.1.6 Source

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 352-354.

Docket No. E-22, Sub 645

16.2.1.7 Update summary

Updates to this section are described in Table 16-4.

Table 16-4.	Summary	of	update	(s)
-------------	---------	----	--------	-----

Version	Update type	Description
2022	-	Initial release

16.2.2 Pre-rinse sprayer

16.2.2.1 Measure description

Pre-rinse spray valves (PRSVs) are handheld devices that are designed to remove food waste from dishes prior to dishwashing. They reduce water consumption, water heating cost, and waste water (sewer) charges. This measure involves retrofitting existing standard flow PRSVs with new low-flow PRSVs in order to reduce hot water consumption, resulting in corresponding energy savings.

16.2.2.2 Impacts Estimation Approach

The baseline equipment is assumed to be an existing spray valve with a flow rate of 3 gallons per minute. The efficient equipment is assumed to be a pre-rinse spray valve with a flow rate of 1.6 gallons per minute, and with a cleanability performance of 26 seconds per plate or less.

Per-measure, the gross annual water savings are calculated according to the following equation:

$$\Delta Water = (FLO_{base} - FLO_{ee}) \times \frac{60 \text{ min.}}{1 \text{ hour}} \times Hours_{daily} \times Days$$

If the water heater fuel type is non-electric, there are no electric energy savings. If the water heater is electric, permeasure, the gross annual electric energy savings are calculated according to the following equation:

$$\frac{\Delta kWh}{\eta_{WH} \times 3,413 \; Btuh/kWh} = \frac{\Delta Water \times HOT \times 8.33 \times \Delta T}{\eta_{WH} \times 3,413 \; Btuh/kWh}$$

Per-measure, the gross summer coincident demand reduction is calculated according to the following equation:

$$\Delta k W_{summer} = 0$$

Per-measure, the gross winter coincident demand reduction is calculated according to the following equation:

$$\Delta k W_{winter} = 0$$

Where:

Docket No. E-22, Sub 645

НОТ	= the percentage of water used by the pre-rinse spray valve that is heated
8.33	= the energy content of heated water (BTU/gallon/°F)
ΔΤ	= temperature rise through water heater
η _{HW}	= water heater thermal efficiency
3,413	= factor to convert BTU to kwh
FLO _{base}	= the flow rate of the baseline equipment
FLO _{ee}	= the flow rate of the efficient equipment
60	= minutes per hour
Hours _{daily}	= average daily operating hours
Days	= annual days of operation

16.2.2.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Units	Source(s)
нот	Fixed	0.69	-	Maryland/Mid-Atlantic TRM v10, p. 355 ²¹⁸
ΔΤ	Fixed	70.00	°F	Maryland/Mid-Atlantic TRM v10, p. 355 ²¹⁹
ηнw	Fixed	0.97	-	Maryland/Mid-Atlantic TRM v10, p. 355 ²²⁰
FLO _{base}	Fixed	3.00	gpm	Maryland/Mid-Atlantic TRM v10, p. 356
FLee	Fixed	1.60	gpm	Maryland/Mid-Atlantic TRM v10, p. 356
Days	Fixed	365	day, annual	Maryland/Mid-Atlantic TRM v10, p. 356
Hoursdaily	Variable	See Table 16-6	hour, day	Maryland/Mid-Atlantic TRM v10, p. 356 ²²¹

 Table 16-5. Input variables for measure name

Table 16-6. Daily operation h	nours for various facility typ	bes
-------------------------------	--------------------------------	-----

Facility type	Hoursdaily
Full-service restaurant	4
Limited service (fast food) restaurant	1
Other	2

²¹⁸ Measures and Assumptions for DSM Planning (2009). Navigant Consulting. Prepared for the Ontario Energy Board. This factor is a candidate for future improvement through evaluation.

²¹⁹ Engineering judgment; assumes typical supply water temperature of 70°F and a hot water storage tank temperature of 140°F.

²²⁰ Federal Standards. http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/51

²²¹ Hours estimates based on PG&E savings estimates, algorithms, sources (2005). Food Service Pre-Rinse Spray Valves

16.2.2.4 Default savings

There are no default savings for this measure because the savings are dependent on the facility type which the equipment is servicing.

16.2.2.5 Effective Useful Life

The effective useful life of this measure is provided in Table 16-7.

Table 16-7. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
іх	Non-Residential Prescriptive Enhanced Program, DSM Phase IX	5.00	years	Maryland/Mid-Atlantic TRM v10, p. 356

16.2.2.6 Source

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 355-356

16.2.2.7 Update summary

Updates to this section are described in Table 16-8.

Table 16-8	Summary	of update(s)
------------	---------	--------------

Version	Update type	Description
2022	-	Initial release

16.3 Heating, Ventilation, Air-Conditioning (HVAC) end use

16.3.1 Air conditioning tune up

This measure is also offered through the Non-Residential Prescriptive Program, DSM Phase VI. The savings approach is described in Section 4.2.2.

16.3.2 Duct test and seal

This measure is also provided by the Non-Residential Prescriptive Program, DSM Phase VI. The savings are determined using the methodology described in Section 4.2.1.

Docket No. E-22, Sub 645

16.3.3 Electrically commutated motor

16.3.3.1 Measure description

This measure applies to the installation of an electronically commutated motor (ECM) with \geq 1 hp on air handling equipment such as exhaust fans, fan coil units, variable air volume (VAV) boxes, and cabinet heaters. These are typically induction motors and are covered by NEMA standards. Residential type furnaces with an ECM are excluded from this measure, as they are covered by other measures. Single package vertical units for multifamily are also excluded.

The baseline condition is an existing shaded pole (SP) or permanent split capacitor (PSC) motor.

16.3.3.2 Impacts Estimation Approach

Per-measure, the gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = hp \times 0.746 \times \left(\frac{1}{\eta_{base}} - \frac{1}{\eta_{ee}}\right) \times HOU$$

Per-measure, the gross summer coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = hp \times 0.746 \times \left(\frac{1}{\eta_{base}} - \frac{1}{\eta_{ee}}\right) \times CF_{summer}$$

Per-measure, the gross winter coincident demand reduction is calculated according to the following equation:

$$\Delta k W_{winter} = hp \times 0.746 \times \left(\frac{1}{\eta_{base}} - \frac{1}{\eta_{ee}}\right) \times C F_{winter}$$

Where:

ΔkWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction
0.746	= conversion factor from horsepower to kW
hp	= motor horsepower
HOU	= hours of use, annual
η_{base}	= efficiency of baseline equipment
η _{ee}	= efficiency of energy-efficient equipment
CFsummer	= summer coincidence factor
CFwinter	= winter coincidence factor

16.3.3.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 16-9. Input variables for measure name

Component	Туре	Value	Units	Source(s)
hp	Variable	See customer application	hp	Customer application
HOU	Variable	See Table 16-10	hours, annual	Wisconsin TRM 2022, p. 299
η_{base}	Fixed	0.3625	-	Wisconsin TRM 2022, p.299
η _{ee}	Fixed	0.7000	-	Wisconsin TRM 2022, p. 299
CFsummer	Variable	Default: See Table 16-10	-	Wisconsin TRM 2022, p. 299
CF _{winter}	Variable	Default: See Table 16-10	-	Wisconsin TRM 202, p. 299

Table 16-10. Hours of use (HOU) and coincidence factor (CF) for various control strategies

Fan type	Building type	HOU	CF _{summer}	CF _{winter} ²²²
Heating fan	All	2,285	0.0	0.8
Cooling fan	All	678	0.8	0.0
	Commercial	3,730		
Occupied ventilation	Industrial	4,745		0.9
	Agriculture	4,698	0.9	
	Schools and government	3,239		
	Residential-multifamily (common areas)	5,950		
24/7 ventilation	All	8,760	1.0	1.0

Assumptions and equipment descriptions are as follows:

- Heating fan includes cabinet heaters, unit heaters, and heating-only fan coil units.
- Cooling fan includes cooling-only fan coil units.
- Occupied ventilation includes any equipment that is normally on during occupied hours all year, regardless of season. This includes fan powered VAV boxes, fan coil units that provide both heating and cooling, and exhaust fans with timer controls to only run during occupied hours.
- 24/7 ventilation includes any items that run continuously year-round. Typically, this would be exhaust fans without controls, but may also include fan powered VAV boxes and fan coil units for facilities that operate 24/7.

²²² The source TRM does not provide CF_{winter} values. The following assumptions were made: summer cooling fan CF is applied to the winter CF for heating fan, cooling fan CF will be 0.0 during winter peak period, occupied ventilation summer CF is applied as the winter CF, and 24/7 ventilation has a winter CF of 1.0.

Docket No. E-22, Sub 645

16.3.3.4 Default savings

There are no default savings for this measure because the savings are dependent on the type of air handling equipment the ECM is installed on and the sector the equipment is servicing.

16.3.3.5 Effective Useful Life

The effective useful life of this measure is provided in Table 16-11.

Table 16-11.	Effective	Useful Lif	fe for li	fecvcle	savings	calculations
	E11000170			100,010	outingo	ourounditorio

DSM Phase	Program name	Value	Units	Source(s)
іх	Non-Residential Prescriptive Enhanced Program, DSM Phase IX	18.00	years	Wisconsin TRM 2022, p. 300

16.3.3.6 Source

The primary source for this deemed savings approach is the Wisconsin TRM 2022, pp. 298-302.

16.3.3.7 Update summary

Updates to this section are described in Table 16-12.

Table 16-12. Summary of update(s)	2. Summary of update(s)
-----------------------------------	-------------------------

Version	Update type	Description
2022	-	Initial release

16.3.4 Guest room occupancy

16.3.4.1 Measure description

This measure involves the installation of a control system in hotel guest rooms to automatically adjust the temperature setback during unoccupied periods. Savings are based on the management of the guest room's set temperatures and controlling the HVAC unit for various occupancy modes. The savings are per guestroom controlled, rather than per sensor, for multi-room suites.

The baseline condition is standard thermostats with no automatic temperature setbacks controlling the HVAC systems serving hotel guest rooms or similar rooms.

16.3.4.2 Savings Estimation Approach

Per-measure, the gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \Delta kWh_{cool} + \Delta kWh_{heat}$$

Docket No. E-22, Sub 645

For packaged terminal heat pumps (PTHP) and air conditioners (PTAC), the per-measure, cooling kWh energy savings are calculated according to the following equation:

$$\Delta kWh_{cool} = Size_{cool} \times EFLH_{cool} \times \frac{1}{SEER} \times ESF$$

For chilled water fan coil units, the per-measure, cooling kWh energy savings are calculated according to the following equation:

$$\Delta kWh_{cool} = Size_{cool} \times EFLH_{cool} \times \frac{kW}{ton_{IPLV}} \times ESF$$

For packaged terminal heat pumps (PTHP), the per-measure, heating kWh energy savings are calculated according to the following equation:

$$\Delta kWh_{heat} = Size_{heat} \times EFLH_{heat} \times \frac{1}{HSPF} \times ESF$$

For non-electric heating system types, there are no electric energy heating savings. For packaged terminal air conditioners (PTAC) and chilled water fan coil units that have electric heating system types, the per-measure, heating kWh energy savings are calculated according to the following equation:

$$\Delta kWh_{heat} = Size_{heat} \times EFLH_{heat} \times \frac{1}{COP \times 3.412 \frac{Btuh}{W}} \times ESF$$

Per-measure, gross coincident summer and winter peak demand reduction is assigned no reduction, as follows:

$$\Delta k W_{summer} = 0$$

$$\Delta k W_{winter} = 0$$

Where:

ΔkWh	= per-measure gross annual electric energy savings
∆kWh _{cool}	= per-measure gross cooling annual electric energy savings
∆kWh _{heat}	= per-measure gross heating annual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction
Sizecool	= cooling capacity of existing AC unit, in kBTU/hr.
Sizeheat	= heating capacity of existing heat pump or electric resistance unit, in kBTU/hr.
SEER	 seasonal energy efficiency ratio (SEER). It is used for heat pumps and AC units that are smaller than 65,000 Btu/h.
HSPF	= heating seasonal performance factor (HSPF) of existing heat pump. HSPF is used in heating savings for air-source heat pumps.
ESF	= energy savings factor

Docket No. E-22, Sub 645

$\overline{\checkmark}$
= energy efficiency of water-cooled chiller system at integrated part load value (IPLV
= coefficient of performance (heating)
= equivalent full load cooling hours

16.3.4.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

 Table 16-13. Input variables for measure name

Component	Туре	Value	Units	Source(s)
Size _{cool}	Variable	See customer application	tons of cooling capacity (per unit)	Customer application
Size _{heat}	Variable	See customer application ²²³ Default = Size _{cool} x 12 kBtu/ton	kBtu/h (per unit)	Customer application
		See customer application ²²⁴		Customer application
SEER	Variable	Default: See Table 17-8 and Table 17-9 in Sub-Appendix F2-III: Non-residential HVAC based on equipment type	kBtu/kW- hour	ASHRAE 90.1-2013
		See customer application ²²⁵		Customer application
HSPF Variable	Variable	Default: See Table 17-9 in Sub-Appendix F2-III: Non- residential HVAC based on equipment type	kBtu/kW- hour	ASHRAE 90.1-2013
СОР	Variable	See Table 17-12 in Sub- Appendix F2-II: Non- residential HVAC	-	Standard electric resistance COP
kW/ton _{IPLV}	Variable	See Table 17-11 in Sub- Appendix F2-III: Non- residential HVAC based on equipment type, assume water cooled chiller, unknown, 75 tons to 300 tons	kW/ton	ASHRAE 90.1-2013
ESF	Fixed	0.184	-	Wisconsin TRM 2022, p. 376
EFLH _{cool}	Variable	See Table 17-4 in Sub- Appendix F2-II: Non- residential HVAC	hours, annual	Maryland/Mid-Atlantic TRM v.10, p. 423
EFLH _{heat}	Variable	See Table 17-5 in Sub- Appendix F2-II: Non- residential HVAC	hours, annual	Maryland/Mid-Atlantic TRM v.10, p. 422

²²³ When customer-provided heating system size is <80% or >156% of customer-provided cooling system size, a default value will be used, instead. In such instances, it is assumed that the heating system size was incorrectly documented. The acceptable range is based on a review of the AHRI database across numerous manufacturers and heat pump types.

²²⁴ Customer application SEER values should be between 14.0 and 42.0, based on a review of AHRI equipment. If the provided value is outside of these bounds, the default value is assigned.

²²⁵ Customer application HSPF values should be between 8.0 and 9.5, based on a review of AHRI equipment. If the provided value is outside of these bounds, the default value is assigned.

16.3.4.4 Default savings

There are no default savings for this measure because the savings are dependent on the ventilation fan motor(s) installed, as well as the sector which the equipment is servicing.

16.3.4.5 Effective Useful Life

The effective useful life of this measure is provided in Table 16-14.

Table 16-14. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
IX	Non-Residential Prescriptive Enhanced Program, DSM Phase IX	8.00	years	Wisconsin TRM 2022, p. 377

16.3.4.6 Source

The primary source for this deemed savings approach is the Wisconsin TRM 2022, pp. 375-380. The equivalent full load hours are developed from the Mid-Atlantic TRM v10.

16.3.4.7 Update summary

Updates to this section are described in Table 16-15.

Table 16-15	Summary	of update(s	;)
-------------	---------	-------------	----

Version	Update type	Description
2022	-	Initial release

16.3.5 Parking ventilation

16.3.5.1 Measure description

This measure involves controlling ventilation airflow in enclosed parking garages based on carbon monoxide concentrations, while maintaining code required run hours. By controlling airflow based on need rather than running it constantly, the system will save energy and maintain a safe environment. The measure with heating applies only to garages with heated exhaust air—not to heated garages in general, which generally meet space heating needs via separate unit heaters.

The baseline condition is 24-hour garage exhaust fan operation. The efficient condition is garage exhaust fan(s) that are controlled by carbon monoxide sensor(s) with a minimum five hours of daily operation.

16.3.5.2 Savings Estimation Approach

Per-measure, gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \Delta kWh_{base} - \Delta kWh_{ee}$$

$$\Delta kWh_{base} = hp_{fan} \times 0.746 \times HOU_{base} \times Days$$

$$\Delta kWh_{ee} = hp_{fan} \times 0.746 \times HOU_{ee} \times Days$$

Per-measure, gross coincident summer and winter peak demand reduction is assigned no reduction, as follows:

$$\Delta k W_{summer} = 0$$

$$\Delta k W_{winter} = 0$$

Where:

ΔkWh	= per-measure gross annual electric energy savings
∆kW _{summer}	= per-measure gross coincident summer peak demand reduction
∆kW _{winter}	= per-measure gross coincident winter peak demand reduction
hp _{fan}	= total horsepower of garage ventilation fan motor
HOU _{base}	= daily run hours for base case
HOU _{ee}	= average daily exhaust fan run hours with carbon monoxide control system
Days	= days per year
CF _{summer}	= summer peak coincidence factor
CFwinter	= winter peak coincidence factor

16.3.5.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Units	Source(s)
hp _{fan}	Variable	See customer application	hp	Customer application
	Variable	See customer application	hours daily	Customer application
HOUbase		Default = 24.00	nours, daily	Wisconsin TRM 2021, p.308
HOUee	Fixed	7.00	hours, daily	Wisconsin TRM 2021, p.307
Days	Variable	See customer application	days, annual	Customer application
		Default = 365		Wisconsin TRM 2021, p.307

Table 16-16. Input variables for measure name

16.3.5.4 Default savings

There are no default savings for this measure because the savings are dependent on the ventilation fan motor horsepower.

16.3.5.5 Effective Useful Life

The effective useful life of this measure is provided in Table 16-17.

Table 16-17.	Effective	Useful I	Life for	lifecvcle	savings	calculations

DSM Phase	Program name	Value	Units	Source(s)
іх	Non-Residential Prescriptive Enhanced Program, DSM Phase IX	5.00	years	Wisconsin TRM 2021, p.308

16.3.5.6 Source

The primary source for this deemed savings approach is the Wisconsin TRM 2021, pp.306-310.

16.3.5.7 Update summary

Updates to this section are described in Table 16-18.

Table	16-18.	Summary	of	update(s)
-------	--------	---------	----	-----------

Version	Update type	Description
2022	-	Initial release

16.4 Appliance or Plug Load end use

16.4.1 Commercial dishwasher

16.4.1.1 Measure description

This measure describes the installation of an ENERGY STAR qualified, high-efficiency stationary and conveyor-type commercial dishwashers used in commercial kitchen establishments that use non-disposable dishes, glassware, and utensils. Commercial dishwashers can clean and sanitize a large quantity of kitchenware in a short amount of time by utilizing hot water, soap, rinse chemicals, and significant amounts of energy. Energy Star qualified models use less water and have lower idling rates than non-Energy Star rated models.

The baseline condition is a standard non-ENERGY STAR commercial dishwasher. The efficient condition is a highefficiency commercial dishwasher meeting ENERGY STAR Version 2.0 requirements.

16.4.1.2 Savings Estimation Approach

Per-measure, the gross annual electric energy savings are calculated according to the following equation:

Jun 15 2023

DNV

$$\Delta kWh = kWh_{base} - kWh_{ee}$$

Per-measure, the gross summer coincident demand reduction is calculated according to the following equation:

$$\frac{\Delta k W_{summer}}{HOU} = \frac{\Delta k W h \times C F_{summer}}{HOU}$$

Per-measure, the gross winter coincident demand reduction is calculated according to the following equation:

$$\frac{\Delta k W_{winter}}{HOU} = \frac{\Delta k W h \times C F_{winter}}{HOU}$$

Per-measure, the gross annual electric energy savings are calculated according to the following equation:

$$\Delta Water = Water_{base} - Water_{ee}$$

Where:

ΔkWh	= per-measure gross annual electric energy savings
ΔkW_{summer}	= per-measure gross summer peak coincident demand reduction
ΔkW_{winter}	= per-measure gross winter peak coincident demand reduction
∆Water	= per-measure gross annual water savings
kWh _{base}	= kWh consumption per year of the baseline unit
kWh _{ee}	= kWh consumption per year of the energy efficient unit
HOU	= hours of use, annual
CFsummer	= summer coincidence factor
CFwinterr	= winter coincidence factor
Watter _{base}	= summer coincidence factor
Wateree	= winter coincidence factor

16.4.1.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 16-19. Input variables for measure name

Component	Туре	Value	Units	Source(s)
kWh _{base}	Variable	See Table 16-29	kWh	Maryland/Mid-Atlantic TRM v10, p. 400
kWh _{ee}	Variable	See Table 16-29	kWh	Maryland/Mid-Atlantic TRM v10, p. 400
HOU	Fixed	5,634 ²²⁶	hours, annual	Maryland/Mid-Atlantic TRM v10, p. 401
CF _{summer}	Fixed	0.90	-	Maryland/Mid-Atlantic TRM v10, p. 401

²²⁶ Maryland/Mid-Atlantic TRM v10, p. 401. The ENERGY STAR default value of 365 days per year seems excessive. 6 day operation is assumed (365 * 6/7) = 313 days/year at 18 hours per day, or 5,634 hours per year.

DNV

Component	Туре	Value	Units	Source(s)
CF _{winter}	Fixed	0.90	-	Maryland/Mid-Atlantic TRM v10, p. 401 ²²⁷
Waterbase	Variable	See Table 16-21	gallons	Maryland/Mid-Atlantic TRM v10, p. 401
Wateree	Variable	See Table 16-21	gallons	Maryland/Mid-Atlantic TRM v10, p. 401

The following table provides the base and efficient case annual energy consumption by the type of dishwasher. The savings are grouped by building hot water fuel type and for high temperature dishwashers, the booster fuel type is considered.

		. ,				
Building hot water	Electric / Electric		Electric / No	on-electric	Non-electric / Electr	
water heater fuel	kWh _{base}	kWh _{ee}	kWh _{base} kWh _{ee}		kWh _{base}	kWh _{ee}
Low temperature						
Under counter	9,403	7,225	9,403	7,225	2,426	
Stationary single tank door	33,683	19,832	33,683	19,832	2,066	
Single tank conveyor	36,189	24,504	36,189	24,504	8,013	
Multi tank conveyor	42,943	26,812	42,943	26,812	9,390	
High temperature						

8,083

23,053

28,378

44,265

12,041

5,894

16,321

22,568

28,690

10,235

6,199

14,729

20,358

30,853

7,525

Table 16-20	Annual	enerav	use of	1150	(kWh)	for	various	commerci	al dish	washer ²²⁸
Table 10-20.	Annual	energy	use or	use	(KVVII)	101	various	commerci	ai uisin	washer

7,876

23,978

31,171

38,645

15,225

The following table provides the water savings by dishwasher type.

10,595

34,151

39,070

62,148

18,064

 Table 16-21. Annual water use of use for various commercial dishwasher

Dishwasher type	Water _{base} (gallons)	Wateree (gallons)
Low temperature		
Under counter	40,616	27,900
Stationary single tank door	184,008	103,374

 $^{^{227}}$ Rhe source TRM does not provide a winter CF value. Therefore, the summer CF is applied for this period.

Under counter

tank door Single tank

conveyor Multi tank

conveyor Pot, pan, and

utensil

Stationary single

2,426 2,066

8,013

9,390

4,408

10,578

16,115

21,223

6,492

²²⁸ Maryland/Mid-Atlantic TRM v10, p. 401. Savings Calculator for ENERGY STAR Certified Commercial Kitchen Equipment based on 5,634 annual hours of operation. <<u>http://www.energystar.gov/buildings/sites/default/uploads/files/commercial kitchen equipment_calculator.xlsx</u>>

Dishwasher type	Water _{base} (gallons)	Wateree (gallons)
Single tank conveyor	164,036	98,886
Multi tank conveyor	195,303	101,429
High temperature		
Under counter	25,582	20,196
Stationary single tank door	113,023	78,016
Single tank conveyor	108,909	87,666
Multi tank conveyor	182,138	101,429
Pot, pan, and utensil	61,336	50,864

16.4.1.4 Default savings

There are no default savings for this measure because the savings are dependent on the type of commercial dishwasher.

16.4.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 16-22.

Table 16-22. Effective Useful Life for lifecycle sa	vings calculations
---	--------------------

DSM Phase	Program name	Dishwasher type	Value	Units	Source(s)
	Non-	Under counter	10.00		
	Residential	Stationary single tank door	15.00	1	
IX Prescriptive Enhanced	Prescriptive	Single tank conveyor	20.00]	Manuland/Mid Atlantic TPM v10
	Enhanced	Multi tank conveyor	20.00	years	nn 399-403
	Program, DSM Phase IX	Pot, pan, and utensil	10.00		pp. 000 400

16.4.1.6 Source

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 399-403.

16.4.1.7 Update summary

Updates to this section are described in Table 16-23.

Table 16-23	. Summary	of update(s)
-------------	-----------	--------------

Version	Update type	Description
2022	-	Initial release

16.4.2 Commercial dryer

16.4.2.1 Measure description

This measure is for the installation of a residential clothes dryer, utilized in a commercial setting, meeting the ENERGY STAR® criteria. ENERGY STAR® qualified clothes dryers save energy through a combination of more efficient drying and reduced runtime of the drying cycle. More efficient drying is achieved through increased insulation, modifying operating conditions (such as air flow and/or heat input rate) improving air circulation through better drum design or booster fans, and improving efficiency of motors. Reducing the runtime of dryers through automatic termination by temperature and moisture sensors is believed to have the greatest potential for reducing energy use in clothes dryers. ENERGY STAR® provides criteria for both gas and electric clothes dryers.

The baseline condition is a clothes dryer meeting the minimum federal requirements for units manufactured on or after January 1, 2015.

16.4.2.2 Savings Estimation Approach

Per-measure, the gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = \left(\frac{Load}{CEF_{base}} - \frac{Load}{CEF_{ee}}\right) \times N_{cycles} \times Dryer_{electric}$$

Per-measure, the gross summer coincident demand reduction is calculated according to the following equation:

$$\frac{\Delta k W_{summer}}{hours_{summer}} = \frac{\Delta k W h}{hours_{summer}}$$

Per-measure, the gross winter coincident demand reduction is calculated according to the following equation:

$$\frac{\Delta k W_{winter}}{hours_{winter}} = \frac{\Delta k W h}{hours_{winter}}$$

Where:

ΔkWh	= per-measure gross annual electric energy savings
ΔkW_{summer}	= per-measure gross summer coincident demand reduction
ΔkW _{winter}	= per-measure gross winter coincident demand reduction
Load	= size of equipment
Ncycles	= number of dryer cycles per year
Dryerelectric	= the percent of overall savings coming from electricity
HOU	= hours of use, annual
CEF _{base}	= efficiency of baseline equipment
CEFee	= efficiency of energy-efficient equipment
hoursummer	= summer peak coincident hours of use to adjust from annual kWh to peak period kW
hourswinterr	= winter peak coincident hours of use to adjust from annual kWh to peak period kW

16.4.2.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 16-24. Input variables for commercial dryer

Component	Туре	Value	Units	Source(s)
Load	Variable	Compact = 3.0 Standard (default) = 8.45	lbs	Missouri TRM Vol. 2, 2019-24 MEEIA Plan, p. 11
CEF _{base}	Variable	See Table 16-25	lbs/kWh	Missouri TRM Vol. 2, 2019-24 MEEIA Plan, p. 11
		See customer application		Customer application
CEF _{ee}	Variable	Default: see Table 16-25		Missouri TRM Vol. 2, 2019-24 MEEIA Plan, p. 11
Ncycle	Variable	Laundromat (default) = 1,483 On-premise laundromat = 3,607	-	Missouri TRM Vol. 2, 2019-24 MEEIA Plan, p. 12
Dryer _{electric}	Variable	Electric dryer (default) = 1.0 Non-electric = 0.05	-	Missouri TRM Vol. 2, 2019-24 MEEIA Plan, p. 12
hours _{summer}	Fixed	7,249	hours	Missouri TRM Vol. 2, 2019-24 MEEIA Plan, p. 12 ²²⁹
hours _{winter}	Fixed	7,249	hours	Missouri TRM Vol. 2, 2019-24 MEEIA Plan, p. 12 ²³⁰

Table 16-25. Product class CEF values

Product class	CEF _{base} (lbs/kWh)	CEF _{ee} (lbs/kWh)
Compact vented, 120 V	3.01	3.80
Compact vented, 240 V	2.73	3.45
Compact ventless, 120 V	3.01	3.80
Compact ventless, 240 V	2.13	2.68
Standard vented (default)	3.11	3.93
Standard ventless	3.11	3.93

16.4.2.4 Default savings

The default per-measure gross annual electric energy savings per unit will be assigned according to the following calculation:

$$\Delta kWh = \left(\frac{Load}{CEF_{base}} - \frac{Load}{CEF_{ee}}\right) \times N_{cycles} \times Dryer_{electric}$$

$$= \left(\frac{8.45}{3.11} - \frac{8.45}{3.93}\right) \times 1,483 \times 1.0$$

Jun 15 2023

²²⁹ The source TRM provides a term as a coincind factor, as coincince factors are typically applied to kW not kWh, the factor was converted to the peak hours adjustment factor as the inverse of the coincinde factor (1/0.0001379439 = 7,249 hours).

²³⁰ The source TRM does not provide a winter peak adjustment factor, therefore the summer peak value is applied.

The default per-measure gross summer coincident demand reduction is calculated according to the following equation:

$$\Delta kW = \frac{\Delta kWh}{hours_{summer}}$$
$$= \frac{840.73}{7,249}$$
$$= 0.116 \, kW$$

The default per-measure gross winter coincident demand reduction is calculated according to the following equation:

$$\Delta kW = \frac{\Delta kh}{hours_{winter}}$$
$$= \frac{840.7}{7,249}$$
$$= 0.116 \, kW$$

16.4.2.5 Effective Useful Life

The effective useful life of this measure is provided in Table 16-26.

Table 16-26. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
IX	Non-Residential Prescriptive Enhanced Program, DSM Phase IX	14.00	years	Missouri TRM Vol. 2, 2019-24 MEEIA Plan, p. 11

16.4.2.6 Source

The primary source for this deemed savings approach is the Missouri TRM Vol. 2, 2019-24 MEEIA Plan, pp. 10-14.

16.4.2.7 Update summary

Updates to this section are described in Table 16-27.

Table 16-27. Summary of update(s)

Version	Update type	Description
2022	-	Initial release

16.4.3 Commercial washing machine

16.4.3.1 Measure description

This measure relates to the purchase (time of sale) and installation of a commercial clothes washer (i.e., softmounted front-loading or soft-mounted top-loading clothes washer that is designed for use in applications in which the occupants of more than one household will be using the clothes washer, such as multi-family housing common areas and coin laundries) exceeding the ENERGY STAR minimum qualifying efficiency standards.

The baseline for this measure is the Federal Standard for the installed load type.

16.4.3.2 Impacts Estimation Approach

Per-measure, the gross annual electric energy savings are calculated according to the following equation:

 $\Delta kWh = \Delta kWh_{CW} + \Delta kWh_{DHW} + \Delta kWh_{Drver}$

$$\Delta kWh_{CW} = (kWh_{Unit,base} - kWh_{Unit,ee}) \times CW$$

$$\Delta kWh_{DHW} = (kWh_{Unit,base} - kWh_{Unit,ee}) \times DHW \times DHW_{electric}$$

$$\Delta kWh_{Dryer} = \begin{bmatrix} (kWh_{Total,base} - kWh_{Total,ee}) - (kWh_{Unit,base} - kWh_{Unit,ee}) \end{bmatrix} \times \\ Load_{dryed} \times Dryer_{usage} \times Dryer_{usage,mod} \times Dryer_{electric} \end{bmatrix}$$

$$kWh_{Unit,i} = \frac{kWh_{Unit,rated,i} \times N_{cycles}}{N_{cycles,ref}}$$

$$kWh_{Total,i} = \frac{Size \times N_{cycles}}{MEF_i}$$

Per-measure, the gross summer coincident demand reduction is calculated according to the following equation:

$$\frac{\Delta k W_{summer}}{HOU} = \frac{\Delta k W h}{HOU} \times C F_{summer}$$

Per-measure, the gross winter coincident demand reduction is calculated according to the following equation:

DNV

 $\Delta kW_{winter} = \frac{\Delta kWh}{HOU} \times CF_{winter}$

Where:

ΔkWh	= per-measure gross annual electric energy savings
ΔkW_{summer}	= per-measure gross coincident summer peak demand savings
ΔkW _{winter}	= per-measure gross coincident winter peak demand savings
ΔkWcw	= total electrical energy savings for clothes washer
ΔkW _{DHW}	= total electrical energy savings for water heater
ΔkW _{Dryer}	= total electrical energy savings for dryer
Δ kWh _{Unit,base}	= unit electricity consumption of the baseline unit excluding the dryer
∆kWh _{Unit,ee}	= unit electricity consumption of the energy efficient unit excluding the dryer
Δ kWh _{Total,base}	 unit electricity consumption per year of the baseline unit including the dryer (assumed electric)
Δ kWh _{Total,ee}	 unit electricity consumption per year of the energy efficient unit including the dryer (assumed electric)
CW	= proportion of unit energy consumption used for clothes washer operation
DHW	= proportion of unit energy consumption used for heating water
DHWelectric	= water heater fuel type factor to account for DHW fuel type
Load _{dryed}	= proportion of washer loads dried in machine
Dryer _{usage}	= dryer usage factor
Dryerusage, mod	= dryer usage in buildings with dryer and washer
Dryer _{electric}	= dryer fuel type factor to account for dryer fuel type
kWhUnit.rated,base	= rated unit electricity consumption per year of the baseline unit
kWh _{Unit.rated,ee}	= rated unit electricity consumption per year of the energy efficient unit
Ncycles	= number of cycles per year
N _{cycles,ref}	= reference number of cycles per year
MEFi	= energy factor of baseline and energy efficient unit
Size	= clothes washer capacity
HOU	= hours of use, annual
CF _{summer}	= summer coincidence factor
CFwinterr	= winter coincidence factor

Input variables 16.4.3.3

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 16-28. Input variables for measure name						
Component	Туре	Value	Units	Source(s)		
	Variable	See customer application		Customer application		
CW		Default: 0.2		Maryland/Mid-Atlantic TRM v10, p. 364		
	Variable	See customer application	-	Customer application		
DHW		Default: 0.8		Maryland/Mid-Atlantic TRM v10, p. 364		
DHWelectric	Variable	See Table 16-30	-	Maryland/Mid-Atlantic TRM v10, p. 364		
Load _{dryer}	Fixed	1.00	-	Maryland/Mid-Atlantic TRM v10, p. 365		

T-1-1- 40 00 1

Component	Туре	Value	Units	Source(s)
Dryer _{usage}	Fixed	0.84	-	Maryland/Mid-Atlantic TRM v10, p. 365
Dryer _{usage_mod}	Fixed	0.95	-	Maryland/Mid-Atlantic TRM v10, p. 365
Dryer _{electric}	Fixed	See Table 16-31	-	Maryland/Mid-Atlantic TRM v10, p. 365
		See customer application		Customer application
kWh _{Unit} , rated. base	Variable	Default: 241	kWh/year	Maryland/Mid-Atlantic TRM v10, p. 364
		See customer application		Customer application
kWh∪nit, ee	Variable	Default: 97	kWh/year	Maryland/Mid-Atlantic TRM v10, p. 364
Ncycles	Variable	See Table 16-32	cycles/year	Maryland/Mid-Atlantic TRM v10, p. 365
N _{cycles,ref}	Fixed	392	cycles/year	Maryland/Mid-Atlantic TRM v10, p. 365
	Variable	See customer application		Customer application
Size		Default: 3.43	ft ³	Maryland/Mid-Atlantic TRM v10, p. 364
MEF _{base}	Variable	See Table 16-29	ft³/kWh	Maryland/Mid-Atlantic TRM v10, p. 364
MEFee	Variable	See Table 16-29	ft³/kWh	Maryland/Mid-Atlantic TRM v10, p. 364
HOU	Fixed	265 ²³¹	hours, annual	Maryland/Mid-Atlantic TRM v10, p. 365
CF _{summer}	Fixed	0.029 ²³²	-	Maryland/Mid-Atlantic TRM v10, p. 365
CF _{winter}	Fixed	0.029 ²³³	-	Maryland/Mid-Atlantic TRM v10, p. 365

Table 16-29. MEF based on Efficiency Level and Loading Type

	Loading type		
Efficiency level	Front loading	Top loading	
Federal standard (baseline)	>=2.0	>=1.35	
Energy Star (efficient)		>=2.20	

Table 16-30. DHW fuel factor

DHW Fuel	DHWelectric
Electric	1.00
Non-electric	0.00
Unknown (default)	0.69

231 Metered data from Navigant Consulting "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 – May 31, 2013) Appliance Rebate Program." March 21, 2014, page 36. This data applies to residential applications. In the absence of metered data specific to multifamily common area and commercial laundromat applications, this coincidence value is used as a proxy given consistency with the PJM peak definition; however, this value is likely conservatively low for commercial applications and is a candidate for update should more applicable data become available.

232 Ibid

Jun 15 2023

²³³ Source TRM does not provide a winter CF. Therefore the summer CF is applied unlit beter information is available.

Table 16-31. Dryer fuel factor

DHW Fuel	DHWelectric
Electric	1.00
Non-electric	0.00
Unknown (default) ²³⁴	0.69

Table 16-32. Number of washer cycles per year based on the building type

Building type	NCcycles
Multi-family	1,241
Laundromat (default) ²³⁵	2,190

16.4.3.4 Default savings

If the proper values are not available, zero savings will be given for both the gross annual electric energy savings and the gross coincident peak demand reduction.

16.4.3.5 Effective Useful Life

The effective useful life of this measure is provided in Table 16-33.

Table 16-33. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
IX	Non-Residential Prescriptive Enhanced Program, DSM Phase IX	7.00	years	Maryland/Mid-Atlantic TRM v10, p. 365

16.4.3.6 Source

The primary source for this deemed savings approach is the Maryland/Mid-Atlantic TRM v10, pp. 363-367.

16.4.3.7 Update summary

Updates to this section are described in Table 16-34.

Table 16-34. Summary of update(s)

Version	Update type	Description
2022	-	Initial release

Jun 15 2023

²³⁴ The source TRM does not include a default value for dryer fuel type factor. Therefore, the DHW Fuel Factor default is applied as an approximation.

²³⁵ Dominion Commercial Energy Use Survey 2019 – 2020, Appendix B, p. 72, Q39 percent of respondents with electric DHW (720/1,041 = 69%).

Docket No. E-22, Sub 645

16.4.4 Food seal wrapper

16.4.4.1 Measure description

This measure involves replacing existing food wrappers without a means of automatically turning off the equipment when not in use, with a new food wrapper with the capability to sense when the equipment is in use, and automatically turn off the equipment when not in use.

This measure is applicable to grocery, convenience store, deli, bakery, butcher, and other commercial facilities

The baseline equipment is a food wrapper without a micro-processor and optical sensor control, and for which there is no alternative automation or programmed controls to turn off the equipment when not in use.

The efficient equipment is an on-demand food wrapper with a micro-processor and optical sensor, advanced control strategy, or programming able to sense when the equipment is in use. It can automatically turn off the food wrapper equipment when the equipment is not in use.

16.4.4.2 Savings Estimation Approach

Per-measure, the gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = kWh_{base} - kWh_{ee}$$

Per-measure, the gross summer coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = (kW_{base} - kW_{ee}) \times CF_{summer}$$

Per-measure, the gross winter coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = (kW_{base} - kW_{ee}) \times CF_{winter}$$

Where:

ΔkWh	= per-measure gross annual electric energy savings
ΔkW_{summer}	= per-measure gross coincident summer peak demand reduction
ΔkW_{winter}	= per-measure gross coincident winter peak demand reduction
kWh _{base}	= average baseline energy consumption
kWhee	 average energy efficient energy consumption
kW _{base}	= average typical baseline operation profile
kW _{ee}	= average typical energy efficient operation profile
CF _{summer}	= summer coincidence factor
CFwinter	= winter coincidence factor

16.4.4.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 16-35. Input variables for measure name

Component	Туре	Value	Units	Source(s)
kWh _{base}	Fixed	1,950	kWh	CA eTRM, Commercial Hand-Wrap Machine, vSWFS010-02 ²³⁶
kWhee	Fixed	405	kWh	CA eTRM, Commercial Hand-Wrap Machine, vSWFS010-02
kW _{base}	Fixed	0.23	kW	CA eTRM, Commercial Hand-Wrap Machine, vSWFS010-02
kWee	Fixed	0.05	kW	CA eTRM, Commercial Hand-Wrap Machine, vSWFS010-02
CF _{winter}	Fixed	1.0	-	CA eTRM, Commercial Hand-Wrap Machine, vSWFS010-02 ²³⁷
CFsummer	Fixed	1.0	-	CA eTRM, Commercial Hand-Wrap Machine, vSWFS010-02

16.4.4.4 Default savings

The default per-measure, gross annual electric energy savings per unit will be assigned according to the following calculation:

$$\Delta kWh = kWh_{base} \times kWh_{ee}$$
$$= 1,950 \ kWh - 405 \ kWh$$
$$= 1,545 \ kWh$$

The default per-measure, gross summer coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = (kW_{base} - kW_{ee}) \times CF_{summer}$$
$$= (0.23 kW - 0.05 kW) \times 1.0$$
$$= 0.18 kW$$

The default per-measure, the gross winter coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{winter} = (kW_{base} - kW_{ee}) \times CF_{winter}$$

²³⁶ Original source was the Commercial Hand Wrap Machines for Food Service Applications Field Test study conducted by Southern California Edison (SCE).

²³⁷ The Source TRM uses kW values from measured peak demand values during the Database of Energy Efficient Resources (DEER) peak period of 4:00 p.m. to 9:00 p.m. as these measured values occurred during the peak period no CF was applied, or an implied CF of 1.0. There was no winter peak period data available, therefore the summer peak values are applied to the winter peak.

Docket No. E-22, Sub 645

DNV = $(0.23 \, kW - 0.05 \, kW) \times 1.0$ = $0.18 \, kW$

16.4.4.5 Effective Useful Life

The effective useful life of this measure is provided in Table 16-36.

DSM Phas	e Program name	Value	Units	Source(s)
IX	Non-Residential Prescriptive Enhanced Program, DSM Phase IX	10.00	years	CA eTRM, Commercial Hand-Wrap Machine vSWFS010-02.

16.4.4.6 Source

The primary source for this deemed savings approach is the CA eTRM, Commercial Hand-Wrap Machine, vSWFS010-02. This TRM uses a field the Commercial Hand Wrap Machines for Food Service Applications Field Test study conducted by Southern California Edison (SCE). This study monitored 10 stores across 4 chains for deli, bakery, and meat departments.

16.4.4.7 Update summary

Updates to this section are described in Table 16-37.

Table 16-37.	Summary of	of update(s)
--------------	------------	--------------

Version	Update type	Description
2022	-	Initial release

16.4.5 Ozone laundry

16.4.5.1 Measure description

A new ozone laundry system(s) is added-on to new or existing commercial washing machine(s) using hot water heated with natural gas. The system generates ozone (O3), a naturally occurring molecule, which helps clean fabrics by chemically reacting with soils in cold water. Adding an ozone laundry system(s) will reduce the amount of chemicals, detergents, and hot water needed to wash linens.

Electric savings can be realized through reduced washer cycle length and reduced pumping load at the boiler feeding the commercial washers. The increased usage associated with operating the ozone system should also be accounted for when determining total kWh impact.

The base case equipment is a conventional washing machine system with no ozone generator installed. The washing machines are provided hot water from a gas-fired boiler.

In the efficient case, a new ozone laundry system(s) is added-on to new or existing commercial washing machine(s) using hot water heated with natural gas. The ozone laundry system(s) must transfer ozone into the water through:

- Venturi Injection
- Bubble Diffusion

For laundromats, the ozone laundry system(s) must be connected to both the hot and cold water inlets of the clothes washing machine(s) so that hot water is no longer provided to the clothes washer.

The measure only applies to the following facilities with on-premise laundry operations: Hotels/motels, Fitness and recreational sports centers, Healthcare (excluding hospitals), Assisted living facilities, Laundromats.

This measure is offered through different programs listed in Table 6-13 and uses the impacts estimation approach described in this section.

16.4.5.2 Impacts Estimation Approach

Per-measure, the gross annual electric energy savings per system are calculated according to the following equation:

$$\Delta kWh = HP \times 0.746 \times HOU \times WRF$$

Per-measure, the gross annual water savings per pounds of laundry are calculated according to the following equation:

$$\Delta Water = W_{use} \times Capacity \times N_{cvcles} \times WRF$$

Per-measure, the gross summer and winter coincident demand reduction is zero²³⁸, as shown in the following equations:

 $\Delta k W_{summer} = 0$

$$\Delta k W_{winter} = 0$$

Where:

ΔkWh	= per-measure gross annual electric energy savings from reducing the pump load
ΔkW_{summer}	= per-measure gross summer peak coincident demand reduction
ΔkW_{winter}	= per-measure gross winter peak coincident demand reduction
∆Water	= per-measure gross annual water savings
HOU	= hours of use, annual
HP	= brake horsepower of boiler feed water pump
WRF	= water reduction factor: how much more efficient an ozone injection washing machine
	is compared to a typical conventional washing machine as a rate of hot and cold water reduction
WU _{base}	= water use for the base case
Capacity	= total capacity of washers

²³⁸ Illinois TRM v.9.0 Vol.2, 2020, p. 152. at this moment peak demand savings cannot be associated with this measure as not enough study has been done regarding operation of ozone laundry systems and coincident peak demand.

N_{cycles} = number of annual loads of laundry

16.4.5.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Table 16-38. Input variables for measure name

Component	Туре	Value	Units	Source(s)
		See customer application		Customer application
HP	Variable	Default: 5	hp	Illinois TRM v10.0 Vol.2, 2020, p. 186
нои	Fixed	800	hours, annual	Illinois TRM v10.0 Vol.2, 2020, p. 186
WRF	Variable	See Table 6-8	-	Illinois TRM v10.0 Vol.2, 2020, p. 186
Capacity	Variable	See customer application		Customer application
		default: 254.4	lb	Illinois TRM v10.0 Vol.2, 2020, p. 187
W _{use}	Variable	See Table 16-39	gallon/lb	Illinois TRM v10.0 Vol.2, 2020, p. 189
N _{cycles}	Variable	See Table 16-39	cycles, annual	Illinois TRM v10.0 Vol.2, 2020, p. 190

Table	16-39. \	Nater	Reduction	Factor	(WRF)	and	capacity	values	for	various applica	tions
					· · ·						

Application	WRF	W _{use} (gallon/lb)	N _{cycles} (loads/year)
Laundromat	0.10	1.09	2,190
Hotel/motel			
Fitness and recreation	0.05	2.02	A 74E
Healthcare	0.25	2.03	4,745
Assisted living			

16.4.5.4 Default savings

The default savings depend on the application type. As an example, the default calculations are provided for laundromat.

Per-measure, the gross annual electric energy savings per system of laundry are calculated as follows:

$$\Delta kWh = HP \times 0.746 \times HOU \times WRF$$

$$= 5 hp \times 0.746 \frac{kW}{hp} \times 800 hours \times 0.1$$

Docket No. E-22, Sub 645

 $= 298.40 \, kWh$

Per-measure, the gross summer and winter coincident demand reduction is zero, as shown in the following equations:

 $\Delta k W_{summer} = 0$

 $\Delta k W_{winter} = 0$

Per-measure, the gross annual water savings per pounds of laundry are calculated according to the following equation:

 $\Delta Water = W_{use} \times Capacity \times N_{cycles} \times WRF$ $= 1.09 \frac{gallon}{lb} \times 254.4 \ lb \times 2,190 \ cycles \times 0.1$

= 60,728 gallons

16.4.5.5 Effective Useful Life

The effective useful life of this measure is provided in Table 16-40.

Table 16-40.	Effective	Useful Li	fe for li	ifecycle	savings	calculations

DSM Phase	Program name	Value	Units	Source(s)
IX	Non-Residential Prescriptive Enhanced Program, DSM Phase IX	10.00	years	Illinois TRM v.10.0 Vol.2, 2020, p. 185

16.4.5.6 Source

The primary source for this deemed savings approach is the Illinois TRM v.10.0 Vol.2, 2020, pp. 184–191.

16.4.5.7 Update summary

Updates to this section are described in Table 16-41.

Table 16-41. Summary of update(s)				
Version	Update type	Description		
2022	-	Initial release		

16.5 Recreation end use

16.5.1 Heat pump pool heater

16.5.1.1 Measure description

This measure applies to the installation of a heat pump pool heater in place of a standard electric pool heater on an outdoor pool at a commercial location. The baseline equipment is a new, standard-efficiency electric resistance pool heater. To qualify for this measure, the installed equipment must be a new heat pump pool heater meeting program requirements.

16.5.1.2 Impacts Estimation Approach

Per-measure, the gross annual electric energy savings are calculated according to the following equation:

$$\Delta kWh = Q_{pool} \times \left(\frac{1}{\eta_{WH,base}} - \frac{1}{\eta_{WH,ee}}\right)$$

Per-measure, the gross summer coincident demand reduction is calculated according to the following equation:

$$\Delta kW_{summer} = \frac{\Delta kWh \times CF_{summer}}{HOU}$$

Per-measure, the gross winter coincident demand reduction is calculated according to the following equation:

$$\Delta k W_{winter} = \Delta k W h \times C F_{winter}$$

Where:

ΔkWh	= per-measure gross annual electric energy savings
ΔkW_{summer}	= per-measure gross coincident summer peak demand reduction
ΔkW_{winter}	= per-measure gross coincident winter peak demand reduction
Qpool	= required annual heat transfer to pool water (kWh)
Area	= pool area
EFF _{base}	= efficiency of electric resistance pool heater
EFFee	= efficiency (COP) of heat pump pool heater
CF _{summer}	= summer coincidence factor
CFwinterr	= winter coincidence factor

16.5.1.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

 Table 16-42. Input variables for measure name

Component	Туре	Value	Units	Source(s)
Q _{pool}	Variable	For an uncovered pool: =53.075×area+1,631.1	kWh	Customer application and Missouri TRM Vol.2, 2019-2024 MEEIA Plan, p.171

Component	Туре	Value	Units	Source(s)
		For a covered pool: =8.079×area+1,295.4		
Area	Variable	See customer application	ft ²	Customer application
EFF _{base}	Fixed	1.0 -		Missouri TRM Vol.2, 2019-2024 MEEIA Plan, p.171
		See customer application		Customer application
EFFee	Variable	For default: 3.0	-	Energy.gov Heat Pump Swimming Pool Heaters conservative value of provide range ²³⁹
CFsummer	Fixed	0.000138	-	Missouri TRM Vol.2, 2019-2024 MEEIA Plan, p.172
CF _{winter}	Fixed	0.0	-	DNV judgment

16.5.1.4 Default savings

If the proper values are not available, zero savings will be given for both the gross annual electric energy savings and the gross coincident peak demand reduction.

16.5.1.5 Effective Useful Life

The effective useful life of this measure is provided in Table 16-43.

Table 16-43. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VIII	Non-Residential Prescriptive Enhanced Program, DSM Phase IX	15.00	years	Missouri TRM Vol.2, 2019-2024 MEEIA Plan, p.171

16.5.1.6 Source

The primary source for this deemed savings approach is the Missouri TRM Vol.2, 2019-2024 MEEIA Plan, pp. 171-172. It is noted that the heat load of the pool will be dependent on the weather conditions and the pool season. The Missouri provides a reasonable estimate for this value, but this value may be calculated for Virginia and North Carolina locations in the future.

²³⁹ A range of 3.0 to 7.0 COP is provided, <u>https://www.energy.gov/energysaver/heat-pump-swimming-pool-heaters</u>. Accessed on 09/12/2022

Docket No. E-22, Sub 645

16.5.1.7 Update summary

Updates to this section are described in Table 16-44.

Table 16-44	Summary	of	update(s	5)
-------------	---------	----	----------	----

Version	Update type	Description
2022	-	Initial release

16.5.2 Pool spa cover

16.5.2.1 Measure description

This measure refers to the installation of covers on commercial use pools that are heated with electric equipment located either indoors or outdoors. By installing pool covers, the heating load will be reduced by reducing the heat loss from the water to the environment and the amount of actual water lost due to evaporation (which then requires additional heated water to make up for it).

The main source of energy loss in pools is through evaporation. This is particularly true of outdoor pools where wind plays a larger role. The point of installing pool covers is threefold. First, it will reduce convective losses due to the wind or air movement by shielding the water surface. Second, it will insulate the water from the colder surrounding air. And third, it will reduce radiative losses to the night sky (for outdoor pools). In doing so, evaporative losses will also be minimized, and the heater will not need to work as hard in replenishing the pool with hot water to keep the desired temperature.

For indoor pools, the base case is an uncovered indoor pool that operates all year, and for outdoor pools, the base case is an outdoor pool that is uncovered and is open through the summer season.

This measure can be used for pools that (1) currently do not have pool covers, (2) have pool covers that are past the useful life of the existing cover, or (3) have pool covers that are past their warranty period and have failed.

16.5.2.2 Impacts Estimation Approach

Per-measure, the gross annual electric energy savings are only for pool pump heaters with electric fuel type. Energy and water savings are calculated according to the following equation:

 $\Delta kWh = ESF \times Size_{pool}$

 $\Delta Water = WSF \times Size_{pool}$

Per-measure, the gross summer and winter coincident demand reduction is zero, as shown in the following equation:

$$\Delta k W_{summer} = 0$$

$$\Delta k W_{winter} = 0$$

Docket No. E-22, Sub 645

Where:

Sizepool

ΔkWh_{water} ΔkW_{summer}	 per-measure gross annual electric energy savings for water supply and wastewater treatment per-measure gross summer peak coincident demand reduction per-measure gross winter peak coincident demand reduction
ΔkW _{winter} Size _{pool} ESF	= size of the pool = energy savings factor
WSF ∆Water	= water savings factor = water savings

16.5.2.3 Input variables

The following table provides the inputs and the source of the inputs used for calculating impacts for this measure.

Component	Туре	Value	Units	Source(s)
ESF	Variable	See Table 16-46	kWh/sq-ft	Illinois TRM v10.0 Vol.2, p. 182 ²⁴⁰
WSF	Variable	See Table 16-46	gallons/sq- ft	Illinois TRM v10.0 Vol.2, p. 182
Sizepool	Variable	See customer application	sq-ft	Customer application

Table 16-45. Input variables for measure name

Table 16-46. Water savings factor (WSF) for various locations

Location	ESF (kWh/sq-ft)	WSF (gallons/sq-ft)
Indoor	61.2	15.28
Outdoor	23.68	8.94

16.5.2.4 **Default savings**

No default savings will be awarded for this measure if the proper values are not provided in the customer application.

16.5.2.5 **Effective Useful Life**

The effective useful life of this measure is provided in Table 16-47.

Table 16-47. Effective Useful Life for lifecycle savings calculations

DSM Phase	Program name	Value	Units	Source(s)
VIII	Non-Residential Prescriptive Enhanced Program, DSM Phase IX	6.00	years	Illinois TRM v10.0 Vol.2, p. 182

²⁴⁰ The source TRM calculates savings in therms for a gas fired pool heater. The ESF was converted to kWh assuming a gas heater efficiency of 80% and an electric heater efficiency of 100%.

Docket No. E-22, Sub 645

16.5.2.6 Source

The primary source for this deemed savings approach is the Illinois TRM v10.0 Vol.2, pp. 180–182.

16.5.2.7 Update summary

Updates to this section are described in Table 16-48.

Table 16-48. Summary of update(s)

Version	Update type	Description	
2022	-	Initial release	

16.5.3 Variable speed pool pump

This measure is also provided by the Non-Residential Multifamily Program, DSM Phase VIII. The savings are determined using the methodology described in Section 10.6.1.

16.6 Refrigeration end use

16.6.1 Commercial freezers and refrigerators

This measure is also provided by the Non-Residential Prescriptive Program, DSM Phase VI. The savings are determined using the methodology described in Section 4.4.3.

16.6.2 Commercial ice maker

This measure is also provided by the Non-Residential Prescriptive Program, DSM Phase VI. The savings are determined using the methodology described in Section 4.4.4.

16.6.3 Door closer (cooler and freezer)

This measure is also provided by the Non-Residential Prescriptive Program, DSM Phase VI. The savings are determined using the methodology described in Section 4.4.1.

16.6.4 Door gasket

This measure is also provided by the Non-Residential Prescriptive Program, DSM Phase VI. The savings are determined using the methodology described in Section 4.4.2.

16.6.5 Evaporator fan electronically commutated motor (ECM) retrofit

This measure is also provided by the Non-Residential Prescriptive Program, DSM Phase VI. The savings are determined using the methodology described in Section 4.4.5.

16.6.6 Low/anti-sweat door film

This measure is also provided by the Non-Residential Prescriptive Program, DSM Phase VI. The savings are determined using the methodology described in Section 4.4.8.

16.6.7 Refrigeration condenser coil cleaning

This measure is also provided by the Non-Residential Prescriptive Program, DSM Phase VI. The savings are determined using the methodology described in Section 4.4.10.

16.6.8 Strip curtain (cooler and freezer)

This measure is also provided by the Non-Residential Prescriptive Program, DSM Phase VI. The savings are determined using the methodology described in Section 4.4.12.

Docket No. E-22, Sub 645

17 SUB-APPENDICES

17.1 Sub-Appendix F2-I: Cooling and heating degree days and hours

This section appears in Appendix F1 as Sub-appendix F1-III: Cooling and Heating Degree Days and Hours (a.k.a. Section 24.3).

Table 17-1. Base Temperatures by Sector and End Use

This table appears in Appendix F1 as Sub-appendix F1-III: Cooling and Heating Degree Days and Hours (a.k.a. Section 24.3).

Table 17-2. Reference Cooling and Heating Degree Days

This table appears in Appendix F1 as Sub-appendix F1-III: Cooling and Heating Degree Days and Hours (a.k.a. Section 24.3).

Table 17-3. Reference Cooling and Heating Degree Hours

This table appears in Appendix F1 as Sub-appendix F1-III: Cooling and Heating Degree Days and Hours (a.k.a. Section 24.3).

DNV

17.2 Sub-Appendix F2-II: Non-residential HVAC equivalent full load hours

This sub-appendix provides the default heating and cooling the equivalent full load hours (EFLH)s for non-residential HVAC equipment and VFDs. Table 17-4 and Table 17-5 provide the EFLHs for HVAC equipment by facility type and location. Table 17-17 provides annual run hours for VFDs by facility type and VFD application.

The EFLH are determined using the methodology used in the Maryland/Mid-Atlantic TRM v.10. The methodology adapts EFLH from the Pennsylvania TRM 2016 and adjusted for locally design temperatures and degree days from 2013 ASHREA Handbook Fundamentals²⁴¹. DNV calculates EFLHs for various locations in Dominion Energy's service territory using the same adjustment method and TMY3 weather data. Baltimore is used as the reference location and EFLHs is scaled using local TMY3 weather data.

The scaling method is shown in the following example calculation, using Education – Elementary and Middle School for Richmond, VA:

Mid-Atlantic TRM Baltimore EFLHcool	<i>= 295 hour/year</i>
Baltimore CDD	<i>= 1,222 hour/year</i>
Richmond CDD	= 1,448 hour/year
STEP Richmond EFLHcool	= Richmond CDD $\times \frac{Baltimore EFLH_{cool}}{Baltimore CDD}$
	= 1,448 hour/year $\times \frac{295 \text{ hur/year}}{1,222 \text{ hour/year}}$
	= 349 hour/year

 $^{^{241}}$ See pages 422 - 423, footnote 885 and 886 $\,$ in the Maryland/Mid-Atlantic TRM v. 10 $\,$

17.2.1 Annual equivalent full-load cooling hours for unitary air conditioners, heat pumps, chiller, VRF, room/wall AC, and mini-split systems

Table 17-4. Heat pump, unitary AC, chiller, VRF, room/wall AC, and mini split equivalent full-load cooling hours for non-residential buildings

Building type	Maryland	North	Carolina	Virginia							Building	
station	Baltimore	Elizabeth City	Rocky Mount	Char- lottesville	Sterling	Farmville	Norfolk	Arlington	Richmond	Roanoke	Fredericksburg	midstream
Education – elementary and middle school	295	422	327	260	262	307	389	363	349	265	327	1.5%
Education – high school	340	486	377	300	302	354	448	419	403	306	377	1.5%
Education – college and university242	750	1,072	832	662	666	780	988	923	888	675	831	1.5%
Food sales - grocery	678	969	752	598	602	705	893	835	803	610	751	1.8%
Food sales – convenience store	923	1,320	1,023	815	820	960	1,216	1,136	1,093	831	1,023	1.8%
Food sales – gas station convenience store	923	1,320	1,023	815	820	960	1,216	1,136	1,093	831	1,023	1.8%
Food service - full service	768	1,098	852	678	682	799	1,011	946	910	691	851	4.5%
Food service - fast food	730	1,044	809	644	649	760	961	899	865	657	809	4.5%
Health care - inpatient	1,223	1,748	1,356	1,079	1,086	1,273	1,611	1,506	1,449	1,100	1,355	3.0%
Health care - outpatient	650	929	721	574	577	676	856	800	770	585	720	3.0%
Lodging – (hotel, motel	1,831	2,618	2,030	1,616	1,627	1,905	2,411	2,254	2,169	1,648	2,029	4.6%

²⁴² "Education – College and University" Baltimore, MD full load cooling hours is an average of the hours for "Education – Community College" (713 hours/year) and "Education – University" (787 hours/year) in the Maryland/Mid-Atlantic TRM v.10, p.422

													<pre>Control</pre>
													Ö
D	NV												
Building type	Maryland	North	Carolina					Virginia				Building	Ē
station	Baltimore	Elizabeth City	Rocky Mount	Char- lottesville	Sterling	Farmville	Norfolk	Arlington	Richmond	Roanoke	Fredericksburg	midstream	ľ
and dormitorv)]
Mercantile (mall)	887	1,268	983	783	788	923	1,168	1,092	1,051	798	983	0.5%	
Mercantile (retail, not mall)	911	1,302	1,010	804	809	948	1,200	1,122	1,079	820	1,009	10.5%	5 202
Multifamily (common areas)	1,521	2,175	1,686	1,343	1,351	1,583	2,003	1,873	1,802	1,369	1,685	-	it un
Office – small (<40,000 sq ft)	634	906	703	560	563	660	835	781	751	570	702	9.4%	
Office – large (≥40,000 sq ft)	733	1,048	813	647	651	763	965	902	868	660	812	9.4%	
Other243	245	350	272	216	218	255	323	302	290	220	271	19.3%]
Public assembly	945	1,351	1,048	834	840	983	1,245	1,163	1,119	850	1,047	0.9%	
Public order and safety (police and fire station)	245	350	272	216	218	255	323	302	290	220	271	0.4%	
Religious worship	245	350	272	216	218	255	323	302	290	220	271	10.5%	
Service (beauty, auto repair workshop)	923	1,320	1,023	815	820	960	1,216	1,136	1,093	831	1,023	6.1%	
Warehouse and storage ²⁴⁴	2,081	2,975	2,307	1,837	1,849	2,165	2,741	2,562	2,465	1,873	2,306	3.5%	

²⁴³ "Other" building type is mapped to the building type with the most conservative full load heating hours in the Mid-Atlantic TRM 2018, p.528 "Manufacturing – Bio Tech/High Tech."

244 "Warehouse and Storage" Baltimore, MD full load heating hours is an average of the hours for "Storage - Conditioned" (854 hours/year) and "Warehouse - Refrigerated" (342 hours/year) in the Maryland/Mid-Atlantic TRM v.10, p.423

													00 0 0 0 0
D	NV												
Building type	Maryland	North	Carolina					Virginia				Building	Ē
by weather station	Baltimore	Elizabeth City	Rocky Mount	Char- lottesville	Sterling	Farmville	Norfolk	Arlington	Richmond	Roanoke	Fredericksburg	midstream	ľ
Midstream program default	714	1,021	792	630	634	743	940	879	846	642	791	-	

17.2.2 Annual equivalent full-load heating hours for heat pumps, VRFs, and mini-split systems

17.2.2 Annual equivalent full-load heating hours for heat pumps, VRFs, and mini-split systems												
Table 17-5. Heat p	ump, VRF, a	nd mini-split	equivalent f	ull load heatin	g hours fo	or non-resi	dential bu	ildings				<u> </u>
Building type	Maryland	North Ca	arolina					Virginia				Building
by weather station	Baltimore	Elizabeth City	Rocky Mount	Char- lottesville	Sterling	Farmville	Norfolk	Arlington	Richmond	Roanoke	Fredericksburg	used for midstream
Education – elementary and middle school	668	393	428	535	696	591	492	618	558	613	662	1.5%
Education – high school	719	423	460	576	749	636	530	665	600	660	713	1.5%
Education – college and university245	622	366	398	498	648	550	458	576	519	571	617	1.5%
Food sales - grocery	980	576	627	785	1,021	867	722	907	818	899	972	1.8%
Food sales – convenience store	623	366	399	499	649	551	459	577	520	572	618	1.8%
Food sales – gas station convenience store	623	366	399	499	649	551	459	577	520	572	618	1.8%
Food service - full service	1,131	665	724	906	1,179	1,001	833	1,047	944	1,038	1,122	4.5%

²⁴⁵ "Education – College and University" Baltimore, MD full load heating hours is an average of the hours for "Education – Community College" (713 hours/year) and "Education – University" (530 hours/year) in the Maryland/Mid-Atlantic TRM v.10, p.423

												PP P
	V V											
Building type	Maryland	North Ca	arolina					Virginia				Building T weights
by weather station	Baltimore	Elizabeth City	Rocky Mount	Char- lottesville	Sterling	Farmville	Norfolk	Arlington	Richmond	Roanoke	Fredericksburg	used for midstream
Food service - fast food	1,226	721	785	982	1,278	1,085	903	1,135	1,023	1,125	1,216	4.5%
Health Care- inpatient	214	126	137	171	223	189	158	198	179	196	212	3.0%
Health Care- outpatient	932	548	596	747	971	825	687	863	778	855	924	3.0% 🎽
Lodging – (hotel, motel and dormitory)	2,242	1,319	1,435	1,797	2,337	1,984	1,652	2,075	1,871	2,058	2,223	4.6%
Mercantile (mall)	591	348	378	474	616	523	436	547	493	542	586	0.5% 号
Mercantile (retail, not mall)	739	435	473	592	770	654	545	684	617	678	733	10.5%
Multifamily (common areas)	256	151	164	205	267	227	189	237	214	235	254	-
Office – Small (<40,000 sq ft)	440	259	282	353	459	389	324	407	367	404	436	9.4%
Office – Large (≥40,000 sq ft)	221	130	141	177	230	196	163	205	184	203	219	9.4%
Other	146	86	93	117	152	129	108	135	122	134	145	19.3%
Public assembly ²⁴⁶	1,114	655	713	893	1,161	986	821	1,031	930	1,022	1,105	0.9%
Public order and safety (police and fire station) ²⁴⁷	146	86	93	117	152	129	108	135	122	134	145	0.4%
Religious worship	146	86	93	117	152	129	108	135	122	134	145	10.5%
Service (beauty, auto	623	366	399	499	649	551	459	577	520	572	618	6.1%

²⁴⁶ "Public Order and Safety (Police and Fire Station)" building type is mapped to the building type with the most conservative full load heating hours in the Maryland/Mid-Atlantic TRM v.10, p.423, "Manufacturing – Bio Tech/High Tech."

²⁴⁷ "Religious Worship" building type is mapped to the building type with the most conservative full load heating hours in the Maryland/Mid-Atlantic TRM v.10, p.423, p.529 "Manufacturing – Bio Tech/High Tech."

													000
DI	V												
Building type	Maryland	North Ca	arolina					Virginia				Building	Ë
by weather station	Baltimore	Elizabeth City	Rocky Mount	Char- lottesville	Sterling	Farmville	Norfolk	Arlington	Richmond	Roanoke	Fredericksburg	used for midstream	P
repair workshop)]
Warehouse and storage	598	352	383	479	623	529	441	553	499	549	593	3.5%	
Midstream program default	599	334	364	456	593	503	419	526	475	522	564	1.5%	5202
													ÿ
													5

OFFICIAL COPY

17.2.3 Annual hours of use for variable frequency drives

Table 17-6. Variable frequency drive annual hours of use by facility type²⁴⁸

Building type	Fan motor hours	Chilled water pumps ²⁴⁹	Hot water pumps
Education – Elementary and middle school	2,187	1,205	3,229
Education – High school	2,187	1,205	3,229
Education – College and university	2,187	1,205	4,038
Food Sales - Grocery	4,055	1,877	5,376
Food Sales – Convenience store	6,376	2,713	5,376
Food Sales – Gas station convenience store	6,376	2,713	5,376
Food Service - Full service	4,182	1,923	5,376
Food Service - Fast food	6,456	2,742	5,376
Health Care - Inpatient	7,666	3,177	8,760
Health Care - Outpatient	3,748	1,767	5,376
Lodging – (Hotel, motel, and dormitory)	3,064	1,521	5,492
Mercantile (Mall)	4,833	2,157	5,376
Mercantile (Retail, not mall)	4,057	1,878	2,344
Office – Small (<40,000 sq ft)	3,748	1,767	3,038
Office – Large (≥ 40,000 sq ft)	3,748	1,767	3,038
Other	2,857	1,446	5,376
Public assembly	1,955	1,121	5,376
Public order and safety (police and fire station)	7,665	3,177	5,376
Religious worship	1,955	1,121	5,376
Service - (Beauty, auto repair workshop)	3,750	1,768	5,376
Warehouse and storage	2,602	1,354	5,376

17.2.4 Update summary

Updates made to this section are described in Table 17-7.

Table 17-7. Summary of update(s)

Version	Update type	Description
2022	Revised table	Revised full load cooling hours and full load heating hours for some of the building types in Elizabeth City and Rocky Mount due to errors. Added Midstream program default values for full load cooling hours and full load heating hours
2021	New weather stations	To the single weather station in Richmond, VA, seven weather stations were added for Virginia: Charlottesville, Dulles International Airport (Sterling), Farmville, Norfolk, Reagan International Airport (Arlington), Roanoke, and Shannon Airport. Also, divided the previously shared

²⁴⁸ Maryland/Mid-Atlantic TRM v.10, pp. 299 - 301. The facility hours have been mapped from a facility type list in the United Illuminating Company and Connecticut Light & Power Company. 2012. Connecticut Program Savings Document – 8th Edition for 2013 Program Year. Orange, CT.
 ²⁴⁹ For condenser water pumps, use the same operating hours as chilled water pumps

DNV - www.dnv.com

Version	Update type	Description
		column—that contained the average of the two NC weather stations—into two separate columns (Elizabeth City, NC and Rocky Mount-Wilson, NC).
	Table	Updated building type for the Unitary Air Conditioners, Heat Pumps, Chiller, VRF, and Mini-split Systems
	Table	Removed the separate table for Chiller system cooling hours
2020	None	No change
	New weather stations	Replaced the Charlotte, NC weather station with the average results from two weather stations located within the Company's service territory: Elizabeth City, NC and Rocky Mount-Wilson, NC.
v10	Updated EFLHs	By-building hours of use values were updated and—in some cases, corrected—based upon revisions to HDD/CDD adjustments due to change of weather stations in NC.
	New table	A table was added for the HOU values for VFDs.

17.3 Sub-Appendix F2-III: Non-residential HVAC equipment efficiency ratings

This sub-appendix contains the minimum efficiency metrics that are required by building codes for four categories of equipment:

- Unitary air conditioners and condensing units, in Table 17-8
- Unitary and applied heat pumps, in Table 17-9
- Variable Refrigerant Flow (VRF) air conditioners and heat pumps, in Table 17-10
- Water chilling packages (a.k.a. chillers), in Table 17-11

17.3.1 Cooling efficiencies of unitary air conditioners and condensing units

Equipment type	Size category (Btu/h)	Heating system type	Subcategory	Minimum annual efficiency	Minimum demand efficiency
Air conditioners, air cooled	< 65,000 Btu/h	All	Split system/ Single package	13.0 SEER	11.1 EER ²⁵¹
Through the wall, packaged terminal air conditioners (air cooled)	≤ 30,000 Btu/h	All	Split system/ Single package	12.0 SEER	10.5 EER ²⁵¹
Small-duct, high- velocity (air cooled)	< 65,000 Btu/h	All	Split system/ Single package	11.0 SEER	9.9 EER ²⁵¹
Air conditioners, air cooled	≥ 65,000 Btu/h and < 135,000 Btu/h	Electric resistance (or none)	Split system/ Single package	12.9 IEER	11.2 EER

Table 17-0. Unitary an conditioners and condensing units - minimum enciency	Table 17-8. Unitary a	air conditioners and	condensing units -	minimum efficiency ²⁵⁰
---	-----------------------	----------------------	--------------------	-----------------------------------

²⁵⁰ ASHRAE 90.1 2013, Table 6.8.1-1 - Electrically Operated Unitary Air Conditioners and Condensing Units - Minimum Efficiency Requirement.

²⁵¹ This value was not provided in ASHRAE 90.1 2013, Table 6.8.1-1, SEER was converted to EER as an approximation.

Equipment type	Size category (Btu/h)	Heating system type	Subcategory	Minimum annual efficiency	Minimum demand efficiency
		All other	Split system/ Single package	12.7 IEER	11.0 EER
	≥ 135,000 Btu/h and	Electric resistance (or none)	Split system/ Single package	12.4 IEER	11.0 EER
	< 240,000 Btu/h	All other	Split system/ Single package	12.2 IEER	10.8 EER
	≥ 240,000 Btu/h and	Electric resistance (or none)	Split system/ Single package	11.6 IEER	10.0 EER
	< 760,000 Btu/h	All other	Split system/ Single package	11.4 IEER	9.8 EER
	≥ 760,000 Btu/h	Electric resistance (or none)	Split system/ Single package	11.2 IEER	9.7 EER
		All other	Split system/ Single package	11.0 IEER	9.5 EER
	< 65,000 Btu/h	All	Split system/ Single package	12.3 IEER	12.1 EER
	≥ 65,000 Btu/h and	Electric resistance (or none)	Split system/ Single package	13.9 IEER	12.1 EER
	< 135,000 Btu/h	All other	Split system/ Single package	13.7 IEER	11.9 EER
	≥ 135,000 Btu/h and	Electric resistance (or none)	Split system/ Single package	13.9 IEER	12.5 EER
Air conditioners, water cooled	< 240,000 Btu/h	All other	Split system/ Single package	13.7 IEER	12.3 EER
	≥ 240,000 Btu/h and	Electric resistance (or none)	Split system/ Single package	13.6 IEER	12.4 EER
	< 760,000 Btu/h	All other	Split system/ Single package	13.4 IEER	12.2 EER
	≥ 760,000 Btu/h	Electric resistance (or none)	Split system/ Single package	13.5 IEER	12.2 EER
		All other	Split system/ Single package	13.3 IEER	12.0 EER

Equipment type	Size category (Btu/h)	Heating system type	Subcategory	Minimum annual efficiency	Minimum demand efficiency
	< 65,000 Btu/h	All	Split system/ Single package	12.3 IEER	12.1 EER
	≥ 65,000 Btu/h	All other	Split system/ Single package	12.3 IEER	12.1 EER
	and < 135,000 Btu/h	Electric resistance (or none)	Split system/ Single package	12.1 IEER	11.9 EER
	≥ 135,000 Btu/h	All other	Split system/ Single package	12.2 IEER	12.0 EER
Air conditioners, evaporatively	and < 240,000 Btu/h	Electric resistance (or none)	Split system/ Single package	12.0 IEER	11.8 EER
cooled	≥ 240,000 Btu/h	All other	Split system/ Single package	12.1 IEER	11.9 EER
	and < 760,000 Btu/h	Electric resistance (or none)	Split system/ Single package	11.9 IEER	11.7 EER
		All other	Split system/ Single package	11.9 IEER	11.7 EER
	≥ 760,000 Btu/h	Electric resistance (or none)	Split system/ Single package	11.7 IEER	11.5 EER
Condensing units, air cooled ²⁵²	≥ 135,000 Btu/h	-	-	11.8 IEER	10.5 EER
Condensing units, water cooled ²⁵²	≥ 135,000 Btu/h	-	-	14.0 IEER	13.5 EER
Condensing units, evaporatively cooled ²⁵²	≥ 135,000 Btu/h	-	-	14.0 IEER	13.5 EER

17.3.2 Efficiencies of unitary and applied heat pumps

 Table 17-9. Unitary and applied heat pumps - minimum efficiency²⁵³

Equipment type	Cooling capacity/ size category	Heating system type	Subcategory or rating conditions	Minimum annual efficiency	Minimum demand efficiency
Air cooled (cooling mode)	< 65,000 Btu/h	All	Split System/ Single package	14.0 SEER	11.8 EER ²⁵⁴
Through-the- wall, packaged terminal heat pumps (air- cooled cooling mode)	≤ 30,000 Btu/h	All	Split System/ Single package	12.0 SEER	10.5 EER ²⁵⁴

²⁵² These systems types were added in ASHRAE 90.1-2013. Therefore, these systems are not retroactively used for the Non-Residential Heating and Cooling Efficiency Program offered under the DSM Phase III program, due to data requirement constraints. However, these systems will be included in the DNV analysis for the Non-Residential Heating and Cooling Efficiency Program offered under the DSM Phase VII program.

²⁵³ ASHRAE 90.1 2013, Table 6.8.1-2 - Electrically Operated Unitary and Applied Heat Pumps - Minimum Efficiency Requirement.

²⁵⁴ This value was not provided in ASHRAE 90.1 2013, Table 6.8.1-2, so SEER was converted to EER as an approximation.

Equipment type	Cooling capacity/ size category	Heating system type Conditions		Minimum annual efficiency	Minimum demand efficiency
Single-duct	< 65,000 Btu/h	All	Split System/ Single package	11.0 SEER	9.9 EER ²⁵⁴
	≥ 65,000 Btu/h and < 135,000 Btu/h	Electric resistance (or none)	Split system/ Single package	12.2 IEER	10.8 EER
		All other		12.0 IEER	10.6 EER
Air cooled (cooling mode)	≥ 135,000 Btu/h and < 240,000 Btu/h	Electric resistance (or none)	Split system/ Single package	Split system/ Single package 11.6 IEER	
		All other		11.4 IEER	10.4 EER
	≥ 240,000 Btu/h	Electric resistance (or none)	Split system/ Single package	10.6 IEER	9.5 EER
		All other		10.4 IEER	9.3 EER
	< 17,000	All	86°F	Retrofits: 14.0 SEER ²⁵⁵	Retrofits: 11.7 EER ²⁵⁴
	Btu/h		entering water	RCx: ²⁵⁶	RCx:
Water source ²⁵⁵	≥ 17,000 Btu/h and	ΔΙΙ	86°F entering water	Retrofits: 14.0 SEER ²⁵⁵	Retrofits: 11.7 EER ²⁵⁴
(cooling mode)	< 65,000	7.00		RCx:	RCx:
	≥ 65.000		86°F	Retrofits:	Retrofits:
	Btu/h and	All		12.2 IEER ²⁵⁵	10.9 EER ²⁵⁷
	< 135,000 Btu/b		entering water	RCx:	RCx:
	Btd/ff			Retrofits:	Retrofits:
	< 65,000	All	77°F	14.0 SEER ²⁵⁵	11.7 EER ²⁵⁴
Ground source ²⁵⁵	Btu/h		entering water	RCX: 17.4 FFR part load	RCx: 13.4 FFR
(cooling mode)	≥ 65,000			Retrofits:	Retrofits:
	Btu/h and	All	77°F	12.2 IEER ²⁵⁵	10.9 EER ²⁵⁷
	< 135,000 Btu/h		entering water	RCx: 14.9 FERpart-load	RCx: 13.4 FFR
Air cooled (heating mode)	< 65,000 Btu/h	-	Split system/ Single system	7.7 HSPF	N/A
Through-the- wall, packaged terminal heat pump (air-cooled heating mode)	≤ 30,000 Btu/h	-	Split system/ Single system	7.4 HSPF	N/A

²⁵⁵ Although ASHRAE values reflect the Building Code minimum, savings are calculated using the efficiencies shown. This is due to the Mid-Atlantic TRM 2019 assumption that the baseline technology—for residential ground source heat pump applications—is an air-cooled heat pump. (There is no corresponding commercial measure in the Mid-Atlantic TRM 2019.)

²⁵⁶ Two types of measures are categorized as retro-commissioning (RCx) ones: Duct Testing & Sealing and AC/HP/Chiller Tune-ups.

²⁵⁷ This value was not provided in ASHRAE 90.1 2013, Table 6.8.1-2, so IEER was converted to EER as an approximation.

Equipment type	Cooling capacity/ size category	Heating system type	Subcategory or rating conditions	Minimum annual efficiency	Minimum demand efficiency
Air cooled	≥ 65,000 Btu/h and < 135,000 Btu/h	-	47°F DBT/ 43°F WBT outdoor air	3.3 COP	N/A
(heating mode)	≥ 135,000 Btu/h (cooling capacity)	-	47°F DBT/ 43°F WBT outdoor air	3.2 COP	N/A
Water source (heating mode)	< 135,000 Btu/h (cooling capacity)	-	68°F entering water	4.3 COP	N/A
Ground source (heating mode)	All Sizes ²⁵⁸ (cooling capacity)	-	32°F entering water	3.2 COP	N/A

²⁵⁸ ASHRAE 90.1-2013 values only apply to equipment <135 kBtu/h. However, this value is used across all sizes as there is limited guidance for systems 135 kBtu/h and larger.</p>

DNV

17.3.3 Cooling efficiencies of variable refrigerant flow air conditioners and heat pumps

Table 17-10. Variable refrigerant flow air conditioners and heat pumps - minimum efficiency²⁵⁹

Equipment type	Size category	Heating section type	Subcategory or rating conditions	Minimum annual cooling efficiency	Minimum peak cooling efficiency	Minimum heating efficiency
	< 65,000 Btu/h	All	VRF Multi-split system	13.0 SEER	11.1 EER ²⁶⁰	N/A
VRF air conditioners, air cooled	≥ 65,000 Btu/h and < 135,000 Btu/h	All ²⁶¹	VRF Multi-split system	13.1 IEER	11.2 EER ²⁶⁰	N/A
	≥ 135,000 Btu/h and < 240,000 Btu/h	All ²⁶¹	VRF Multi-split system	12.9 IEER	11.0 EER ²⁶⁰	N/A
	≥ 240,000 Btu/h	All ²⁶¹	VRF Multi-split system	11.6 IEER	10.0 EER ²⁶⁰	N/A
	< 65,000 Btu/h	All	VRF Multi-split system	13.0 SEER	11.1 EER ²⁶⁰	7.7 HSPF
VRF heat pumps,	≥ 65,000 Btu/h and < 135,000 Btu/h	All ²⁶¹	VRF Multi-split system	12.9 IEER	11.0 EER ²⁶⁰	3.3 COP
	≥ 135,000 Btu/h and < 240,000 Btu/h	All ²⁶¹	VRF Multi-split system	12.3 IEER	10.6 EER ²⁶⁰	3.2 COP
	≥ 240,000 Btu/h	All ²⁶¹	VRF Multi-split system	11.0 IEER	9.5 EER ²⁶⁰	3.2 COP

²⁵⁹ ASHRAE 90.1 2013, Tables 6.8.1-9 - Electrically Operated Variable Refrigerant Flow Air Conditioners- Minimum Efficiency Requirement and 6.8.1J - Electrically Operated Variable Refrigerant Flow Heat Pumps - Minimum Efficiency Requirement.

²⁶⁰ This value was not provided in ASHRAE 90.1 2013, Table 6.8.1-9, so SEER was converted to EER as an approximation.

²⁶¹ ASHRAE 90.1 2013, only provides Electric resistance or none for Heating Section Type. This is used for all Heating Section Types to allow of other heating system types.

17.3.4 Cooling efficiencies of water chilling packages

Table 17-11.	Water chilling	ı packages–minimum	efficiencv ²⁶²
	mater entring	paonagoo mininam	onnononoy

Equipment type	Size esterony	Unito	Path A		Path B	
	Size category	Units	Full load	IPLV	Full load	IPLV
Air cooled	< 150 tons	EER	≥ 10.100	≥ 13.700	≥ 9.700	≥ 15.800
chillers	≥ 150 tons	EER	≥ 10.100	≥ 14.000	≥ 9.700	≥ 16.100
	< 75 tons	kW/ton	≤ 0.750	≤ 0.600	≤ 0.780	≤ 0.500
Water-cooled, electrically	≥ 75 tons and < 150 tons	kW/ton	≤ 0.720	≤ 0.560	≤ 0.750	≤ 0.490
operated,	≥ 150 tons and < 300 tons	kW/ton	≤ 0.660	≤ 0.540	≤ 0.680	≤ 0.440
positive	≥ 300 tons and < 600 tons	kW/ton	≤ 0.610	≤ 0.520	≤ 0.625	≤ 0.410
displacement	≥ 600 tons	kW/ton	≤ 0.560	≤ 0.500	≤ 0.585	≤ 0.380
	<150 tons	kW/ton	≥ 0.610	≤ 0.550	≤ 0.695	≤ 0.440
Water-cooled,	\ge 150 tons and < 300 tons	kW/ton	≤ 0.610	≤ 0.550	≤ 0.635	≤ 0.440
electrically	\ge 300 tons and < 400 tons	kW/ton	≤ 0.560	≤ 0.520	≤ 0.595	≤ 0.390
centrifugal	≥ 400 tons and < 600 tons	kW/ton	≤ 0.560	≤ 0.500	≤ 0.585	≤ 0.380
_	≥ 600 tons	kW/ton	≤ 0.560	≤ 0.500	≤ 0.585	≤ 0.380
	< 75 tons	kW/ton	≤ 0.750	≤ 0.600	≤ 0.780	≤ 0.500
Water-cooled,	≥ 75 tons and < 150 tons (default)	kW/ton	≤ 0.720	≤ 0.560	≤ 0.750	≤ 0.490
unknown (default)	\geq 150 tons and < 300 tons	kW/ton	≤ 0.660	≤ 0.540	≤ 0.680	≤ 0.440
(uerauri)	≥ 300 tons and < 600 tons	kW/ton	≤ 0.610	≤ 0.520	≤ 0.625	≤ 0.410
	≥ 600 tons	kW/ton	≤ 0.560	≤ 0.500	≤ 0.585	≤ 0.380

17.3.5 Heating efficiency of electric resistance heating and systems with central chilled water plants

Table 17-12. Electric heating efficiency associated with central chilled water cooling systems²⁶³

Equipment type	Size category	HSPF (Btu/Wh)	СОР
Air- or water-cooled chillers with unknown electric heating or electric resistance heat	Any	3.4	1.0

17.3.6 Update summary

Updates made to this section are described in Table 17-13.

²⁶² ASHRAE 90.1-2013, Table 6.8.1-3 - Water Chilling Packages - Efficiency Requirements. Consistent with International Energy Conservation Code 2015, Table C403.2.3(7) Water Chilling Packages, Efficiency Requirements, used in the 2019 Mid-Atlantic TRM. Compliance with this standard can be obtained by meeting the minimum requirements of Path A or Path B. However, both the full load and IPLV must be met to fulfil the requirements of Path A or Path B. For new chiller installations, Path A is used for baselines when Path A requirements are met by new equipment. If new equipment not satisfied by Path A requirements, then Path B is used as the baseline.

²⁶³ For some measures applications indicate electric heating associated with chilled water cooling systems. For these systems we assume either central electric boilers or other electric resistance type heating with an efficiency.

Table 17-13. Summary of update(s)

Version	Update type	Description
2022	Table	Expanded COP in table to include electric resistance heat
2021	Table	Added table for minimum COP for electric heating associated with central chilled water cooling systems.
2020	Standards application	Revised the VRF heating section type categories to accommodate more than just the electric resistance
v10	Standards update	Both VA and NC building codes were updated from ASHRAE 2010 to ASHRAE 2013 in 2019. This resulted in widespread increases to the minimum efficiency requirements of many equipment types.

Docket No. E-22, Sub 645

17.5 Sub-Appendix F2-IV: Non-residential lighting factors: annual equivalent hours, coincidence factors, and waste heat factors

For the purposes of this STEP Manual, Table 17-15 provides the annual lighting (interior CFL and non-CFL) hours of use, summer seasonal peak coincidence factors, and waste heat factors by building types for interior lighting fixtures that are designated for the Dominion territory. All of these are gathered from the Mid-Atlantic TRM, which pulls from a combination of the Connecticut Program Savings Document (PSD) and the EmPOWER Maryland 2014 Evaluation Report. Table 17-14 provides the same variables for exterior lights and LED exit signs.

Since the building types in the Mid-Atlantic TRM do not map directly to those used in this TRM, a separate mapping was conducted to arrive at the values. Under each TRM building type in Table 17-15 are listings of the Mid-Atlantic TRM building types that were mapped to this document.

For all non-residential lighting measures, DNV assigns these variables based on the measure characteristics in this descending order:

- Measure location (interior or exterior)
- Fixture name
- Building type

For example, when calculating savings for a specific non-residential lighting type (fixtures), variables (hours of use, coincidence factor, waste heat factors) are assigned based on if the fixture indicates it is for "exterior" use. All fixtures that contain the word "exterior" in the fixture name, from the tracking data provided to DNV, should assign parameters based on the lighting type in Table 17-14.

All fixtures that contain the phrase "24/7" in the fixture name, from the tracking data provided to DNV, shall be assigned variables appropriate for "LED Exit Sign." All fixtures that do not specify "exterior" in the fixture name are assumed to be for interior use and should be assigned variables based on the building type as shown in Table 17-15.

Summary of terms used in this section:

- CFPJM PJM summer peak coincidence factor is from June to August, weekdays between 2 p.m. and 6 p.m. EDT.
- CFSSP Summer system peak coincidence factor refers to the hour ending 5 p.m. EDT on the hottest summer weekday.
- Interior CFL lighting refers to general-purpose CFL screw-based bulbs.
- Interior Non-CFL lighting type includes:
 - T5 Lighting
 - Pulse-start metal halide fixture interior
 - Solid state lighting (LED) recessed downlight luminaire
 - Delamping
 - Occupancy sensor wall box

Table 17-14. Non-residential lighting parameters by exterior lighting type

Lighting type	Annual exterior lighting hours	CF _{summer}	CF _{winter} 264	WHFe ²⁶⁵	WHF _{d,summer}	WHF _{d,winter}	Source
Pulse start metal halide - exterior	3,604 ²⁶⁶	0.11 ²⁶⁷	0.50	1.00	1.00	1.00	Maryland/Mid- Atlantic TRM v.10, p. 242
High pressure sodium	3,604 ²⁶⁸	0.11 ²⁶⁹	0.50	1.00	1.00	1.00	Maryland/Mid- Atlantic TRM v.10, p. 242
LED Exit Sign and "24/7" lights ²⁷⁰	8,760	1.00	1.00	1.00	1.00	1.00	Maryland/Mid- Atlantic TRM v.10, p. 215; DNV judgement
LED parking garage	Canopy: 3,338 Parking garage: 8,678	Canopy: 0.00 Parking garage: 0.98	Canopy: 0.50 Parking garage: 0.98	1.00	1.00	1.00	Maryland/Mid- Atlantic TRM v.10, p. 254
Outdoor LED and roadway lighting	3,604	0.11 ²⁷¹	0.50	1.00	1.00	1.00	Maryland/Mid- Atlantic TRM v.10, p. 242

The hours and coincident factors (CF) shown in Table 17-15 apply only to the Non-Residential Lighting Systems and Controls Programs (DSM Phases III and VII) and Non-Residential Cooling and Heating Programs (DSM Phases III and VII).

²⁶⁴ The source TRM does not provide winter CF. Therefore the winter CF is estimated based on sunrise and peak period. The winter peak period occurs for the hour ending at 8:00 A.M on non-holiday Mondays in January. The latest sunrise in the period is 7:17 A.M. Given the ambient light levels during the peak period, The winter CF is estimated to be 0.50. This estimate will be revised when better information becomes available.

 ²⁶⁵ "If cooling and heating equipment types are unknown or the space is unconditioned, assume WHFd = WHFe = 1.0." Maryland/Mid-Atlantic TRM 2020, p. 215.
 ²⁶⁶ Navigant Commercial and Industrial Long-Term Metering Study

²⁶⁷ Ibid.

²⁶⁸ Ibid.

²⁶⁹ Ibid.

²⁷⁰ DNV judgement that if non-residential lighting measure name contains "24/7" in the tracking data provided to DNV, treat it the same as "LED Exit Sign" when calculating savings.

²⁷¹ Navigant Commercial and Industrial Long-Term Metering Study

Table 17-15. Non-residential interior lighting parameters by facility type

Building types	Interior lighting annual hours ²⁷²	CF _{summer} ²⁷³	CF _{winter} ²⁷⁴	WHF _{d,summer} ²⁷⁵	WHF _d , _{winter} ²⁷⁶	WHFe ²⁷⁷
Agriculture	4,698 ²⁷⁸	0.670	0.670	1.00	1.00	1.00
Education – College and university	2,233	0.360	0.330	1.44	0.710	0.960
Education – High school	2,233	0.360	0.330	1.44	0.710	0.960
Education – Elementary and middle school	2,233	0.360	0.330	1.44	0.710	0.960
Food sales – convenience store	7,272	0.970	0.930	1.35	0.740	0.930
Food Sales – Gas station convenience store	7,272	0.970	0.930	1.35	0.740	0.930
Food Sales – Grocery	7,272	0.970	0.930	1.35	0.740	0.930
Food Service - Fast food	4,696	0.830	0.930	1.27	0.740	0.950
Food Service - Full service	4,696	0.830	0.930	1.27	0.740	0.950
Health Care – inpatient	3,817	0.680	0.510	1.35	0.740	0.930
Health Care – outpatient	3,817	0.680	0.510	1.35	0.740	0.930
Lodging – (Hotel, motel and dormitory)	4,058	0.610	0.460	1.35	0.740	0.930
Mercantile (Retail, not mall)	4,696	0.830	0.560	1.27	0.740	0.950
Mercantile (Mall)	4,696	0.830	0.560	1.27	0.740	0.950
Non-Residential Multifamily ²⁷⁹	5,950	0.058	0.124	0.96	0.815	0.959
Office – Small (<40,000 sq ft)	3,044	0.690	0.490	1.36	0.750	0.940

²⁷² Maryland/Mid-Atlantic TRM v.10, p. 418 Table D-3: C&I Interior Midstream Lighting Parameters by Building Type. Midstream lighting tables are referenced because downstream table parameters require knowledge of the location of the product installation—information that is unavailable for midstream programs.

277 Ibid.

²⁷⁸ The Maryland/Mid-Atlantic TRM v.10 does not provide any values for agriculture building type; therefore the Interior Lighting Annual Hours and summer CF are from the Wisconsin TRM 2022, p. 495. The winter CF is assumed to be the same as the summer CF. Waster heat factors are assumed to be 1.00 with minimal space conditioning interactive effects.

²⁷⁹ Maryland/Mid-Atlantic TRM v.10, p.44, common areas

²⁷³ Ibid.

²⁷⁴ Ibid.

²⁷⁵ Maryland/Mid-Atlantic TRM v.10, p. 419-421. Selected waste heat factors from "Washington, D.C. All utilities", AC (utility) WHF_d and heat pump WHF_e. Waste heat factors were provided for only five building types (1. Office, 2. Retail, 3. School, 4. Warehouse, 5. Other), therefore they were mapped to the full list of building types as appropriate. Original source of waste heat factor values are from the "EmPOWER Maryland DRAFT Final Impact Evaluation Report Evaluation Year 4 (June 1, 2012 – May 31, 2013) Commercial & Industrial Prescriptive & Small Business Programs, Navigant, March 31, 2014. Values for Washington D.C. and Delaware assume values from Maryland, Pepco and Maryland, DPL, respectively."

²⁷⁶ Maryland/Mid-Atlantic TRM v.10, p. 419-421. Selected waste heat factors from "Washington, D.C. All utilities", Waste heat factors were provided for only five building types (1. Office, 2. Retail, 3. School, 4. Warehouse, 5. Other), therefore they were mapped to the full list of building types as appropriate. Original source of waste heat factor values are from the "EmPOWER Maryland DRAFT Final Impact Evaluation Report Evaluation Year 4 (June 1, 2012 – May 31, 2013) Commercial & Industrial Prescriptive & Small Business Programs, Navigant, March 31, 2014. Values for Washington D.C. and Delaware assume values from Maryland, Pepco and Maryland, DPL, respectively." Winter peak WHF₄ is not provided, therefore, the WHFe is used for no AC with electric resistance heating. This will yield the most conservative winter peak demand reduction estimate.

Building types	Interior lighting annual hours ²⁷²	CF _{summer} ²⁷³	CF _{winter} ²⁷⁴	WHFd,summer ²⁷⁵	WHF _d ,winter ²⁷⁶	WHFe ²⁷⁷
Office – Large (>= 40,000 sq ft)	3,044	0.690	0.490	1.36	0.750	0.940
Other (default)	4,058	0.610	0.460	1.35	0.740	0.930
Public assembly	4,058	0.610	0.460	1.35	0.740	0.930
Public order and safety (police and fire station)	4,058	0.610	0.460	1.35	0.740	0.930
Religious worship	4,058	0.610	0.460	1.350	0.740	0.930
Service - (Beauty, auto repair workshop)	4,696	0.830	0.460	1.270	0.560	0.950
Warehouse and storage	4,361	0.800	0.460	1.230	0.500	0.890

17.5.1.1 Update summary

Updates made to this section are described in Table 17-16.

Version	Update type	Description
2022	Inputs	Added agriculture building type to the interior lighting parameters table
	Inputs	Added winter CFwinter and WHFd,winter
2021	21	Updated page numbers / version of the Maryland/Mid-Atlantic TRM v.10
	Source	Updated Exterior Lighting Annual Hours and CF values Added a new building type in the interior lighting parameter table
2020	None	No change
v10	Source	Updated page numbers / version of the Mid-Atlantic TRM v.9

Table 17-16. Summary of update(s)

17.6 Sub-Appendix F2-V: Non-residential commercial kitchen inputs

This sub-appendix contains the commercial kitchen inputs.

Table 17-17. Operational hours by building type²⁸⁰

Facility type	Hour/day	Day/year	Weight applied for unknown facility type ²⁸¹
Education - Elementary and middle school	8.0	214	0.09
Education - High school			

²⁸⁰ Maryland/Mid-Atlantic TRM v.10, p. 383, hours/day and days/year values are used for all facility types with the exception of Unknown, which uses Dominion Energy building weights. Maryland/Mid-Atlantic TRM v.10 cites the original source as California Energy Commission, Characterizing the Energy Efficiency Potential of Gas-Fired Commercial Foodservice Equipment, Appendix E.

²⁸¹ Unknown facility type is based on a weighted average of building types from Dominion Energy 2020 Commercial Energy Survey Results Appendix B, p. 4. Question 3. Building types that are in the source TRM are used when calculating weights to avoid overweighting building types that aren't typically associated with cooking equipment. Those buildings use the Other/Miscellaneous building category from the source TRM for hours/day and days/year.

Facility type	Hour/day	Day/year	Weight applied for unknown facility type ²⁸¹
Education - College and university			
Food Sales - Grocery			
Food Sales - Convenience store	12.0	365	0.10
Food Sales - Gas station convenience store			
Food Service - Full service	13.0	342	0.17
Food Service - Fast food			
Health Care - Inpatient	11.0	365	0.11
Health Care - Outpatient			
Lodging - Hotel, motel and dormitory	20.0	365	0.17
Mercantile - Mall	9.0	325	0.00
Mercantile - Retail, non-mall			0.00
Office - Small (<40,000 sq.ft.)	12.0	250	0.36
Office - Large (≥40,000 sq.ft.)			0.50
Other			
Public assembly			
Public order and safety (police and fire station)	9.0	325	0.00
Religious worship			0.00
Service (beauty, auto-repair, workshop)			
Warehouse and storage			
Unknown (default) ²⁸²	13.1	307	0.00

17.6.1.1 Update summary

Updates made to this section are described in Table 17-16.

Table 17-18.	Summary of	f update(s)
--------------	------------	-------------

Version	Update type	Description
2022	None	No change
2021	New section	Moved tables shared by multiple measures from individual measure sections to this sub-appendix

 ²⁸² Unknown facility type is based on a weighted average of building types from DNV, Dominion Energy 2020 Commercial Energy Survey Results, Appendix B, p.
 4, Question 3

DNV

17.7 Sub-Appendix F2-V: Non-residential compressed air end use factors

This sub-appendix contains the compressed air end use factors of input variables based on type of control and coincidence factor based on operating schedule.

Bin	Load range	Default Load _{bin} proportion	Default HOU _{bin} proportion
1	100% - 90%	0.95	0.00
2	90% - 80%	0.85	0.00
3	80% - 70%	0.75	0.00
4	70% - 60%	0.65	0.50
5	60% - 50%	0.55	0.50
6	50% - 40%	0.45	0.00
7	<40%	0.30	0.00

Table 17-19. Load proportion and HOU proportion defaults by load range bins

Table 17-20. Input variables based on type of control

Control type	ηvfd	X2	X 1	С
Inlet modulation	1.00	0.007900	0.297000	0.695800
Load/no-load, 1 gal/cfm	1.00	-0.901260	1.555462	0.320416
Load/no-load, 2 gal/cfm	1.00	-0.708400	1.429375	0.284163
Load/no-load, 3 gal/cfm	1.00	-0.479030	1.213741	0.267587
Load/no-load, 4 gal/cfm	1.00	-0.383750	1.127370	0.263671
Load/no-load, 5 gal/cfm	1.00	-0.193200	0.954629	0.255839
Reciprocating	1.00	-0.000610	0.833885	0.166648
Geometric	1.00	0.227656	0.324240	0.436002
VFD	0.98	3.09E-16	0.950000	0.050000

Table 17-21. Coincidence factor (CF) based on operating schedule

Operating schedule	CF _{summer} ²⁸³	CF _{swinter} ²⁸⁴
Single shift (8/5) (default)	0.59	0.59
2-shift (16/5)	0.95	0.95
3-shift (24/5)	0.95	0.95
4-shift (24/7)	0.95	0.95

²⁸³ 2019 IL TRM v 7.0 Volume 2

²⁸⁴ Source TRM does not provide a specific winter CF. Therefore, the summer CF is applied as the winter CF.

Table 17-22. Dryer constant values, based on base dryer type and percent load

Dryer type	Load _{dryer}	R ₁	К
Non ovaling refrigerated	0%	0.000	0.00
Non-cycling, reingerated	> 0%	0.250	0.75
Cuoling refrigerated	≤ 75%	1.133	0.10
Cycling, reingerated	> 75%	0.200	0.80
VFD, refrigerated	≤ 50%	0.100	0.45
	> 50%	1.000	0.00
Digital scroll, refrigerated	0%	0.000	0.00
	> 0%	0.900	0.10

Table 17-23. %Purge_{base}, based on dryer type

Dryer type	%Purge _{base}
Non-cycling, refrigerated	0.00
Cycling, refrigerated	0.00
VFD, refrigerated	0.00
Digital scroll, refrigerated	0.00
Desiccant	0.15
Heated desiccant	0.70
Blower purge	0.00
Heated blower purge	0.00

17.7.1.1 Update summary

Updates made to this section are described in Table 17-24.

Γable 17-24. Summary of update(s)			
Version	Update type	Description	
2022	None	No change	
2021	New section	Moved tables shared by multiple measures from individual measure sections to this sub-appendix	

17.8 Sub-Appendix F2-V: Non-residential window film energy saving factors

This sub-appendix contains the Energy Saving Factor (ESF) per square foot of reflective window film by facility type, window pane type, heating system type, and window orientation. Each table is for a specific weather location.

Table 17-25. Energy savings factors for reflective window film by facility type and window orientation for Charlottesville, VA

Facility type ²⁸⁵	Window type	Heating System type ²⁸⁶	ESF _{north} (kWh/ft ²)	ESF _{east} (kWh/ft ²)	ESF _{south} ²⁸⁷ (kWh/ft ²)	ESF _{west} (kWh/ft²)
Education -	Single pape	Electric	1.86	4.09	6.83	6.05
Elementary and	Single parle	Non-electric	2.12	5.76	7.93	10.03
middle school	Double pane	Electric	0.77	1.74	3.00	2.56
		Non-electric	0.89	2.45	3.62	4.48
	Single pane	Electric	3.93	6.88	16.77	11.43
Education – High		Non-electric	3.62	6.25	10.94	13.41
school	Double pane	Electric	1.73	2.77	6.62	4.59
	Double parte	Non-electric	1.56	2.63	4.97	5.70
	Single pane	Electric	3.93	6.88	16.77	11.43
Education – College		Non-electric	3.62	6.25	10.94	13.41
and university	Double pane	Electric	1.73	2.77	6.62	4.59
		Non-electric	1.56	2.63	4.97	5.70
	Single pane	Electric	2.58	7.21	6.47	10.99
Food Sales - Grocerv		Non-electric	3.00	8.20	7.58	12.53
·····,	Double pane	Electric	13.06	4.66	5.03	3.03
		Non-electric	1.35	5.26	5.83	3.46
	Single pane	Electric	2.58	7.21	6.47	10.99
Food Sales –		Non-electric	3.00	8.20	7.58	12.53
Convenience store	Double pane	Electric	13.06	4.66	5.03	3.03
		Non-electric	1.35	5.26	5.83	3.46
Food Sales – Non-	Single pane	Electric	2.58	7.21	6.47	10.99
electric station		Non-electric	3.00	8.20	7.58	12.53
convenience store	Double pane	Electric	13.06	4.66	5.03	3.03
		Non-electric	1.35	5.26	5.83	3.46
	Single pane	Electric	0.00	6.56	8.37	11.69
Food Service - Full		Non-electric	0.00	7.26	10.23	12.86
service	Double pane	Electric	0.00	0.00	4.05	5.28
		Non-electric	0.00	3.01	4.71	5.66
	Single pane	Electric	0.00	3.72	4.68	6.57
Food Service - Fast	- 5-1	Non-electric	0.00	5.00	7.14	8.12
food	Double pane	Electric	0.00	1.60	2.38	3.00
		Non-electric	0.00	2.14	3.39	3.61
	Single pane	Electric	7.11	33.18	15.87	29.91
Health Care-inpatient		Non-electric	4.60	18.31	11.15	17.66
•••••	Double pane	Electric	3.23	14.26	7.44	11.58
		Non-electric	2.03	7.66	4.91	6.68
	Single pane	Electric	1.25	39.48	17.60	23.83
Health Care-		Non-electric	1.74	30.28	16.98	23.10
	Double pane	Electric	0.55	16.95	7.12	9.45
		Non-electric	0.79	12.93	6.59	9.18
	Single pane	Electric	3.69	11.43	13.40	10.31
Lodging – (Hotel,		Non-electric	4.30	13.43	15.02	11.13
Motel, and Dormitory)	Double pane	Electric	1.52	4.70	5.62	4.10
		Non-electric	1.71	5.43	6.33	4.34

²⁸⁵ Warehouse and storage building type DEER models do not have windows. Tracking data with this building type will be flagged for on-site verification. ²⁸⁶ Non-electric heating systems were represented by gas heating in building energy models.

²⁸⁷ Negative demand reduction is observed in some building types for south window orientation, implying that installation of window film on the south side of the buildings leads to increased energy use due to increase heating load in the winter season.

Facility type ²⁸⁵	Window type	Heating System type ²⁸⁶	ESF _{north} (kWh/ft ²)	ESF _{east} (kWh/ft ²)	ESF _{south} ²⁸⁷ (kWh/ft ²)	ESF _{west} (kWh/ft ²)
	0. 1	Electric	2.68	7.46	5.48	8.41
	Single pane	Non-electric	2.93	8.24	6.85	9.00
wercantile (mail)	Daubla nana	Electric	1.09	2.88	2.53	3.48
	Double pane	Non-electric	1.22	3.21	3.10	3.72
	Single pape	Electric	2.58	7.21	6.47	10.99
Mercantile (Retail,	Single parte	Non-electric	3.00	8.20	7.58	12.53
not mall)	Double pape	Electric	13.06	4.66	5.03	3.03
	Double parle	Non-electric	1.35	5.26	5.83	3.46
	Single pape	Electric	1.58	5.03	2.73	4.91
Office – Small	Single parte	Non-electric	1.76	5.54	3.19	5.66
(<40,000 sq ft)	Double pape	Electric	0.64	2.05	1.09	1.96
	Double parle	Non-electric	0.72	2.22	1.25	2.21
	Single pape	Electric	5.30	17.19	15.82	17.79
Office –Large (≥	Single parle	Non-electric	2.23	6.08	7.07	8.17
40,000 sq ft)	Double pane	Electric	2.15	6.83	6.06	6.70
		Non-electric	0.89	2.40	2.91	3.13
	Single pane	Electric	0.07	2.28	0.02	0.43
Othor ²⁸⁸		Non-electric	0.09	2.39	0.04	0.52
Other	Double pane	Electric	0.03	1.02	0.01	0.16
		Non-electric	0.03	1.06	0.02	0.20
	Single pape	Electric	0.46	2.49	2.49	1.24
Public assembly	Single parte	Non-electric	0.75	2.38	2.83	1.74
Fublic assembly	Double pape	Electric	0.22	1.03	1.06	0.71
		Non-electric	0.36	0.98	1.18	0.92
Public Order and	Single pape	Electric	0.07	2.28	0.02	0.43
safety (police and fire		Non-electric	0.09	2.39	0.04	0.52
station)	Double nane	Electric	0.03	1.02	0.01	0.16
Stationy		Non-electric	0.03	1.06	0.02	0.20
	Single pape	Electric	0.46	2.49	2.49	1.24
Deligious werehim		Non-electric	0.75	2.38	2.83	1.74
Religious worship	Double pape	Electric	0.22	1.03	1.06	0.71
		Non-electric	0.36	0.98	1.18	0.92
	Single name	Electric	2.68	7.46	5.48	8.41
Service (beauty, auto		Non-electric	2.93	8.24	6.85	9.00
repair workshop)	Double pape	Electric	1.09	2.88	2.53	3.48
	Double pane	Non-electric	1.22	3.21	3.10	3.72

²⁸⁸ ESF for the "Other" building type is taken from the Convenience store building energy model because it represents a conservative savings estimate and common building characteristics.

 Table 17-26. Energy savings factors for reflective window film by facility type and window orientation for

 Farmville, VA

Building type ²⁸⁹	Window type	Heating system type ²⁹⁰	ESF _{north} (kWh/ft ²)	ESF _{east} (kWh/ft²)	ESF _{south} ²⁹¹ (kWh/ft²)	ESF _{west} (kWh/ft ²)
Education -	Single pape	Electric	2.00	4.83	7.76	7.02
Elementary and		Non-electric	2.04	5.98	7.95	9.92
middle school	Double pape	Electric	0.91	1.85	3.41	3.11
		Non-electric	0.93	2.57	3.67	4.38
	Single nane	Electric	4.02	7.20	17.71	12.10
Education – High		Non-electric	3.35	6.32	11.26	13.78
school	Double pane	Electric	1.75	2.78	7.18	4.99
		Non-electric	1.47	2.73	5.24	5.89
	Single nane	Electric	4.02	7.20	17.71	12.10
Education – College		Non-electric	3.35	6.32	11.26	13.78
and university	Double pane	Electric	1.75	2.78	7.18	4.99
		Non-electric	1.47	2.73	5.24	5.89
	Single page	Electric	2.60	7.16	6.43	10.26
Food Sales - Grocery		Non-electric	3.08	8.29	7.57	11.70
	Double pane	Electric	14.74	2.15	5.09	4.19
		Non-electric	1.28	2.56	5.93	4.92
	Single pane	Electric	2.60	7.16	6.43	10.26
Food Sales –	eg.e pane	Non-electric	3.08	8.29	7.57	11.70
Convenience store	Double pane	Electric	14.74	2.15	5.09	4.19
		Non-electric	1.28	2.56	5.93	4.92
Food Sales – Non-	Single pane	Electric	2.60	7.16	6.43	10.26
electric station		Non-electric	3.08	8.29	7.57	11.70
convenience store	Double pane	Electric	14.74	2.15	5.09	4.19
		Non-electric	1.28	2.56	5.93	4.92
	Single pane	Electric	0.00	6.88	8.52	12.21
Food Service - Full		Non-electric	0.00	7.51	10.09	13.04
service	Double pane	Electric	0.00	0.00	4.19	5.58
		Non-electric	0.00	3.23	4.82	5.93
	Single pane	Electric	0.00	3.93	4.80	6.76
Food Service - Fast		Non-electric	0.00	5.18	7.10	8.22
1000	Double pane	Electric	0.00	1.68	2.41	2.98
			0.00	2.23	3.38	3.06
	Single pane		1.33	33.13	10.09	29.90
Health Care-inpatient		Non-electric	4.00	14.01	10.00	11.71
	Double pane	Non electric	3.23	14.21	1.39	6.72
		Electric	2.02	00.1	4.00	22.00
Hoalth Cara-	Single pane	Non-electric	1.32	20.00	10.02	23.90
outnationt		Flectric	0.50	<u>29.90</u> 16.01	6 75	23.33
outpatient	Double pane	Non-electric	0.09	12.02	6.73	9.40 0.20
		Electric	0.03	13.02	12 20	9.29
Lodging – (Hotel,	Single pane	Non-electric	3.0Z	11.00	14.00	10.34
Motel, and	-	Floctric	4.10	13.29	14.30 5.42	11.40
Dormitory)	Double pane	Non-electric	1.00	4.00 5.07	0.43 6 10	4.17
	1		1.75	0.27	0.12	4.55

²⁸⁹ Warehouse and storage building type DEER models do not have windows. Tracking data with this building type will be flagged for on-site verification.

 $^{^{290}}$ Non-electric heating systems were represented by gas heating in building energy models.

²⁹¹ Negative demand reduction is observed in some building types for south window orientation, implying that installation of window film on the south side of the buildings leads to increased energy use due to increase heating load in the winter season.

Building type ²⁸⁹	Window type	Heating system type ²⁹⁰	ESF _{north} (kWh/ft²)	ESF _{east} (kWh/ft²)	ESF _{south} ²⁹¹ (kWh/ft ²)	ESF _{west} (kWh/ft²)
	Single pepe	Electric	2.59	7.47	5.31	8.42
Managertile (mall)	Single parle	Non-electric	2.90	8.38	6.75	9.11
Wercantile (mail)	Doublo papa	Electric	1.09	2.89	2.43	3.49
		Non-electric	1.21	3.27	3.04	3.78
	Single pape	Electric	2.60	7.16	6.43	10.26
Mercantile (Retail,		Non-electric	3.08	8.29	7.57	11.70
not mall)	Double pape	Electric	14.74	2.15	5.09	4.19
		Non-electric	1.28	2.56	5.93	4.92
	Single pape	Electric	1.59	5.16	2.61	5.05
Office – Small	Single parte	Non-electric	1.74	5.81	3.00	5.83
(<40,000 sq ft)	Doublo papa	Electric	0.66	2.08	1.05	2.05
		Non-electric	0.75	2.33	1.24	2.32
	Single pape	Electric	5.34	17.71	15.70	18.27
Office – Large (≥	Single pane	Non-electric	2.24	6.52	7.01	8.63
40,000 sq ft)	Double pane	Electric	2.17	6.97	6.11	6.92
		Non-electric	0.90	2.61	2.78	3.17
	Single pane	Electric	0.08	2.44	0.02	0.44
Othor ²⁸⁸		Non-electric	0.10	2.55	0.04	0.54
Other	Double pape	Electric	0.03	1.10	0.01	0.18
		Non-electric	0.04	1.15	0.02	0.22
	Single pape	Electric	0.44	2.94	2.66	1.46
Public assombly	Single parte	Non-electric	0.74	2.72	2.92	1.88
Fublic assembly	Doublo papa	Electric	0.23	1.27	1.18	0.86
		Non-electric	0.37	1.13	1.29	1.03
Public order and	Single pape	Electric	0.08	2.44	0.02	0.44
safety (police and		Non-electric	0.10	2.55	0.04	0.54
fire station)	Double pape	Electric	0.03	1.10	0.01	0.18
		Non-electric	0.04	1.15	0.02	0.22
	Single pape	Electric	0.44	2.94	2.66	1.46
Poligious worship		Non-electric	0.74	2.72	2.92	1.88
Religious worship	Doublo papa	Electric	0.23	1.27	1.18	0.86
		Non-electric	0.37	1.13	1.29	1.03
	Single page	Electric	2.59	7.47	5.31	8.42
Service (Beauty, auto		Non-electric	2.90	8.38	6.75	9.11
repair workshop)	Double Pape	Electric	1.09	2.89	2.43	3.49
	Double Pane	Non-electric	1.21	3.27	3.04	3.78

Table 17-27. Energy savings factors for reflective window film by facility type and window orientation for Fredericksburg, VA

Facility type ²⁹²	Window type	Heating system type ²⁹³	ESF _{north} (kWh/ft²)	ESF _{east} (kWh/ft ²)	ESF _{south} ²⁹⁴ (kWh/ft²)	ESF _{west} (kWh/ft²)
Education – Elementary and middle school	Single pape	Electric	1.96	4.67	8.26	7.09
	Single parle	Non-electric	1.95	5.56	8.11	9.86
	Double pane	Electric	0.89	1.79	3.60	3.09
		Non-electric	0.91	2.35	3.74	4.50

²⁹² Warehouse and storage building type DEER models do not have windows. Tracking data with this building type will be flagged for on-site verification.

²⁹³ Non-electric heating systems were represented by gas heating in building energy models.

²⁹⁴ Negative demand reduction is observed in some building types for south window orientation, implying that installation of window film on the south side of the buildings leads to increased energy use due to increase heating load in the winter season.

Facility type ²⁹²	Window type	Heating system type ²⁹³	ESF _{north} (kWh/ft ²)	ESF _{east} (kWh/ft ²)	ESF _{south} ²⁹⁴ (kWh/ft ²)	ESF _{west} (kWh/ft ²)
	Cin el	Electric	3.81	7.50	15.01	11.58
Education – High school	Single pane	Non-electric	3.52	6.47	11.47	14.11
	Double none	Electric	1.77	2.29	5.86	4.63
	Double pane	Non-electric	1.42	2.75	5.29	5.63
	Single pape	Electric	3.81	7.50	15.01	11.58
Education – College	Single parle	Non-electric	3.52	6.47	11.47	14.11
and university	Double nane	Electric	1.77	2.29	5.86	4.63
		Non-electric	1.42	2.75	5.29	5.63
	Single nane	Electric	2.48	9.54	8.43	7.49
Food Sales - Grocery	Olligie parle	Non-electric	3.01	11.17	10.14	8.64
1 ood Sales - Grocery	Double pape	Electric	16.37	5.27	3.52	3.00
	Double parte	Non-electric	1.29	6.08	4.26	3.52
	Single nane	Electric	2.48	9.54	8.43	7.49
Food Sales –		Non-electric	3.01	11.17	10.14	8.64
Convenience store	Double pane	Electric	16.37	5.27	3.52	3.00
	Boable parte	Non-electric	1.29	6.08	4.26	3.52
Food Sales – Non-	Single pane	Electric	2.48	9.54	8.43	7.49
electric station		Non-electric	3.01	11.17	10.14	8.64
convenience store	Double pane	Electric	16.37	5.27	3.52	3.00
	Double parte	Non-electric	1.29	6.08	4.26	3.52
	Single pane	Electric	0.00	6.44	8.55	11.97
Food Service - Full		Non-electric	0.00	7.38	10.18	12.87
service	Double pane	Electric	0.00	0.00	4.26	5.49
		Non-electric	0.00	3.11	4.77	5.71
	Single pane	Electric	0.00	3.67	4.83	6.58
Food Service - Fast		Non-electric	0.00	4.98	7.14	8.04
food		Electric	0.00	1.64	2.41	2.98
		Non-electric	0.00	2.17	3.38	3.56
	Single pane	Electric	6.66	32.82	15.88	29.55
Health Care-inpatient		Non-electric	4.39	18.32	11.24	17.51
•	Double pane	Electric	3.34	13.91	7.30	11.47
		Non-electric	2.08	7.55	4.89	6.64
	Single pane	Electric	1.03	37.41	15.62	22.39
nealth Care-			1.61	29.19	15.53	22.23
outpatient	Double pane	Electric Ner electric	0.51	10.11	0.40	9.10
		Non-electric	0.77	12.50	0.13	9.02
Lodging – (Hotel,	Single pane	Electric Non electric	3.02	10.47	14.22	10.01
motel, and		Flootrio	3.97	12.71	14.23 5.22	10.40
dormitory)	Double pane	Non electric	1.41	<u>4.10</u>	5.22	3.01
		Floctric	2.54	5.10	5.99	4.10
	Single pane	Non-electric	2.54	6.61	6.80	8.82
Mercantile (mall)		Flectric	2.05	3.07	2.46	3.02
	Double pane	Non-electric	1.10	3.07	2.40	2 72
		Flectric	2 / 8	0.50 0.51	2.00 8./2	7 /0
Mercantile (Petail	Single pane	Non-electric	2.40	11 17	10.43	2 6/
not mall)		Flectric	16 37	5.27	2.52	3 00
not many	Double pane	Non-electric	1 20	5.21 6.08		3.00
		Flectric	1.29	/ 88	2 30	
Office - Small	Single pane	Non-electric	1.54	5 52	2.09 3 NR	5 60
(<40.000 set ft)		Flectric	0.50	1 07	0.00	1 02
	Double pane	Non-electric	0.39	2 37	1 2/	2.28
	1		0.12	2.07	1.24	2.20

Facility type ²⁹²	Window type	Heating system type ²⁹³	ESF _{north} (kWh/ft²)	ESF _{east} (kWh/ft²)	ESF _{south} ²⁹⁴ (kWh/ft²)	ESF _{west} (kWh/ft²)
	Single pape	Electric	5.31	17.28	15.43	17.60
Office – Large (≥	Single parte	Non-electric	2.19	6.61	7.45	8.35
40,000 sq ft)	Double pape	Electric	2.16	6.33	6.16	6.61
	Double parle	Non-electric	0.96	2.64	3.03	3.19
	Single pape	Electric	0.06	2.37	0.02	0.42
Othor ²⁸⁸	Single parte	Non-electric	0.08	2.52	0.04	0.53
other	Double pape	Electric	0.03	1.10	0.01	0.17
	Double parle	Non-electric	0.03	1.16	0.02	0.22
	Single page	Electric	0.43	2.91	2.55	1.57
Public assombly	Single parte	Non-electric	0.78	2.65	3.01	1.95
Fublic assembly	Double pane	Electric	0.23	1.25	1.14	0.80
		Non-electric	0.38	1.09	1.29	1.02
Public order and	Single pape	Electric	0.06	2.37	0.02	0.42
safety (police and	Single parte	Non-electric	0.08	2.52	0.04	0.53
fire station)	Double pape	Electric	0.03	1.10	0.01	0.17
	Double parle	Non-electric	0.03	1.16	0.02	0.22
	Single pape	Electric	0.43	2.91	2.55	1.57
Poligious worship	Single parte	Non-electric	0.78	2.65	3.01	1.95
Religious worship	Double pape	Electric	0.23	1.25	1.14	0.80
	Double parle	Non-electric	0.38	1.09	1.29	1.02
	Single pape	Electric	2.54	5.78	5.37	8.12
Service (Beauty, auto		Non-electric	2.85	6.61	6.80	8.82
repair workshop)	Double pape	Electric	1.10	3.07	2.46	3.44
	Double pane	Non-electric	1.22	3.50	3.06	3.72

Table 17-28. E	Energy savings factors for	reflective window	film by facility ty	pe and window o	rientation for
Norfolk, VA					

Facility type ²⁹⁵	Window type	Heating system type ²⁹⁶	ESF _{north} (kWh/ft²)	ESF _{east} (kWh/ft ²)	ESF _{south} ²⁹⁷ (kWh/ft²)	ESF _{west} (kWh/ft²)
Education	Single pape	Electric	2.00	4.60	7.20	6.75
Education –	Single parte	Non-electric	2.20	6.14	8.26	10.61
middle school	Double pape	Electric	0.82	1.67	3.15	2.69
	Double parle	Non-electric	0.87	2.23	3.67	4.32
Education – High	Single pape	Electric	4.28	7.53	17.89	11.80
	Single parte	Non-electric	3.92	6.53	ESF _{south} ²⁹⁷ (kWh/ft ²) 7.20 8.26 3.15 3.67 17.89 11.41 6.91 5.52 17.89 11.41 6.91 5.52 9.41 10.99 2.79 3.23	15.09
school	Double pane	Electric	1.84	2.86	6.91	4.59
		Non-electric	1.75	2.48	5.52	6.07
	Cingle pero	Electric	4.28	7.53	17.89	11.80
Education – College	Single parte	Non-electric	3.92	6.53	11.41	15.09
and university	Double pape	Electric	1.84	2.86	6.91	4.59
	Double parle	Non-electric	1.75	2.48	5.52	6.07
	Single pape	Electric	2.72	10.30	9.41	7.96
	Single parte	Non-electric	3.23	11.58	10.99	8.88
Food sales - grocery	Double pane	Electric	12.62	5.66	2.79	3.24
		Non-electric	1.39	6.32	3.23	3.64

²⁹⁵ Warehouse and storage building type DEER models do not have windows. Tracking data with this building type will be flagged for on-site verification.

²⁹⁶ Non-electric heating systems were represented by gas heating in building energy models.

²⁹⁷ Negative demand reduction is observed in some building types for south window orientation, implying that installation of window film on the south side of the buildings leads to increased energy use due to increase heating load in the winter season.

Facility type ²⁹⁵	Window type	Heating system type ²⁹⁶	ESF _{north} (kWh/ft²)	ESF _{east} (kWh/ft²)	ESF _{south} ²⁹⁷ (kWh/ft²)	ESF _{west} (kWh/ft²)
	Single pope	Electric	2.72	10.30	9.41	7.96
Food sales –	Single parle	Non-electric	3.23	11.58	10.99	8.88
convenience store	Double pape	Electric	12.62	5.66	2.79	3.24
	Double parle	Non-electric	1.39	6.32	3.23	3.64
Food color Non	Single pape	Electric	2.72	10.30	9.41	7.96
Pood Sales – Non-	Single parle	Non-electric	3.23	11.58	10.99	8.88
convenience store	Double pape	Electric	12.62	5.66	2.79	3.24
convenience store	Double parle	Non-electric	1.39	6.32	3.23	3.64
	Single pape	Electric	0.00	6.76	7.96	12.00
Food service - full	Olligie parle	Non-electric	0.00	7.50	9.69	13.03
service	Double pape	Electric	0.00	0.00	3.89	5.51
		Non-electric	0.00	3.19	4.55	5.90
	Single nane	Electric	0.00	4.07	4.67	6.76
Food service - fast	Olligie parle	Non-electric	0.00	5.35	7.09	8.42
food	Double nane	Electric	0.00	1.78	2.29	3.07
	Double parle	Non-electric	0.00	2.33	3.34	3.79
	Single nane	Electric	6.65	32.75	14.84	29.52
Health care-innationt		Non-electric	4.42	18.30	10.69	17.53
nearth care-inpatient	Double pape	Electric	3.33	13.99	7.03	11.45
	Double parle	Non-electric	2.10	7.64	4.78	6.67
	Single nane	Electric	1.24	38.50	14.45	23.37
Health care- outpatient		Non-electric	1.73	29.32	13.83	22.39
	Double pane	Electric	0.58	16.83	6.44	9.40
		Non-electric	0.81	12.75	5.92	8.99
Lodaina – (Hotel	Single pane	Electric	4.01	12.26	13.03	10.62
motel and		Non-electric	4.59	14.44	14.52	11.72
dormitory)	Double pape	Electric	1.63	4.67	5.49	4.02
	Double parle	Non-electric	1.82	5.67	6.13	4.68
	Single nane	Electric	2.79	6.34	5.28	8.46
Mercantile (mall)		Non-electric	3.09	7.09	6.77	9.12
mereantile (many	Double pane	Electric	1.18	3.31	2.46	3.58
	Double parte	Non-electric	1.31	3.66	3.09	3.83
	Single pane	Electric	2.72	10.30	9.41	7.96
Mercantile (Retail,		Non-electric	3.23	11.58	10.99	8.88
not mall)	Double pane	Electric	12.62	5.66	2.79	3.24
		Non-electric	1.39	6.32	3.23	3.64
	Single pane	Electric	1.60	5.24	2.63	5.13
Office – Small		Non-electric	1.78	5.69	3.05	5.71
(<40,000 sq ft)	Double pane	Electric	0.66	2.08	1.00	2.04
		Non-electric	0.74	2.32	1.20	2.34
	Single pane	Electric	5.49	16.69	14.64	17.03
Office – Large (≥		Non-electric	2.27	6.46	7.14	8.50
40,000 sq ft)	Double pane	Electric	2.22	6.39	5.89	6.37
		Non-electric	1.06	2.77	2.91	3.32
	Single pane	Electric	0.05	2.61	0.03	0.45
Other ²⁸⁸		NON-EIECTIC	0.07	2.72	0.03	0.55
	Double pane	Electric	0.01	1.11	0.02	0.18
		Non-electric	0.02	1.15	0.02	0.21
	Single pane	Electric	0.55	2.94	2.56	1.69
Public assembly		Non-electric	0.85	2.69	2.83	2.21
,	Double pane	Electric	0.26	1.27	1.11	0.91
<u> </u>		Non-electric	0.38	1.05	1.16	1.07

Facility type ²⁹⁵	Window type	Heating system type ²⁹⁶	ESF _{north} (kWh/ft²)	ESF _{east} (kWh/ft²)	ESF _{south} ²⁹⁷ (kWh/ft ²)	ESF _{west} (kWh/ft²)
Public order and	Single pape	Electric	0.05	2.61	0.03	0.45
Fublic order and	Single parle	Non-electric	0.07	2.72	0.03	0.55
fire station)	Double pape	Electric	0.01	1.11	0.02	0.18
life station)	Double parle	Non-electric	0.02	1.15	0.02	0.21
	Single pane	Electric	0.55	2.94	2.56	1.69
Policious worship		Non-electric	0.85	2.69	2.83	2.21
Religious worship	Double pape	Electric	0.26	1.27	1.11	0.91
		Non-electric	0.38	1.05	1.16	1.07
	Single pape	Electric	2.79	6.34	5.28	8.46
Service (Beauty, auto repair workshop)	Single parte	Non-electric	3.09	7.09	6.77	9.12
	Double pane	Electric	1.18	3.31	2.46	3.58
		Non-electric	1.31	3.66	3.09	3.83

Table 17-29. Energy savings factors for	reflective window film by fac	ility type and window orient	ation for
Arlington, VA			

Facility type ²⁹⁸	Window type	Heating system type ²⁹⁹	ESF _{north} (kWh/ft²)	ESF _{east} (kWh/ft²)	ESF _{south} ³⁰⁰ (kWh/ft²)	ESF _{west} (kWh/ft²)
F 1	Single pape	Electric	1.91	4.43	7.63	7.09
Education –	Single parle	Non-electric	1.99	5.79	8.00	9.99
middle school	Double pape	Electric	0.82	1.81	3.32	2.72
		Non-electric	0.86	2.09	3.58	Fsouth ³⁰⁰ Wh/ft ²) ESFwest (kWh/ft ²) 7.63 7.09 8.00 9.99 3.32 2.72 3.58 4.00 15.27 11.23 11.51 13.85 6.09 4.40 5.15 5.55 15.27 11.23 11.51 13.85 6.09 4.40 5.15 5.55 15.27 11.23 11.51 13.85 6.09 4.40 5.15 5.55 8.82 7.40 10.80 8.55 2.48 2.88 3.03 3.35 8.82 7.40 10.80 8.55 2.48 2.88 3.03 3.35 8.82 7.40 10.80 8.55 2.48 2.88 3.03 3.35 8.82 7.40 10.80 8.55 2.48
	Single pape	Electric	3.97	6.74	15.27	11.23
Education – High	Single parle	Non-electric	3.62	6.42	11.51	13.85
school	Double pape	Electric	1.70	2.40	6.09	4.40
		Non-electric	1.44	1.98	5.15	5.55
	Single pane	Electric	3.97	6.74	15.27	(kWh/ft ²) 7.09 9.99 2.72 4.00 11.23 13.85 4.40 5.55 11.23 13.85 4.40 5.55 7.40 8.55 2.88 3.35 7.40 8.55 2.88 3.35 7.40
Education – College	Single parle	Non-electric	3.62	6.42	11.51	13.85
and university	Double pape	Electric	1.70	2.40	6.09	4.40
		Non-electric	1.44	1.98	5.15	5.55
	Single pape	Electric	2.46	9.86	8.82	7.40
Food sales - Grocory	Single parle	Non-electric	3.05	11.39	10.80	8.55
Food Sales - Grocery	Double pane	Electric	16.05	5.49	2.48	2.88
		Non-electric	1.33	6.27	3.03	3.35
	Single pape	Electric	2.46	9.86	8.82	7.40
Food Sales –		Non-electric	3.05	11.39	10.80	8.55
Convenience store	Double pape	Electric	16.05	5.49	2.48	2.88
		Non-electric	1.33	6.27	3.03	3.35
Food Sales – Non- electric station convenience store	Single pane	Electric	2.46	9.86	8.82	7.40
	Single parle	Non-electric	3.05	11.39	10.80	8.55
	Double pape	Electric	16.05	5.49	2.48	2.88
	Double pane	Non-electric	1.33	6.27	3.03	3.35

²⁹⁸ Warehouse and storage building type DEER models do not have windows. Tracking data with this building type will be flagged for on-site verification.

²⁹⁹ Non-electric heating systems were represented by gas heating in building energy models. 300 to the standard sta

³⁰⁰ Negative demand reduction is observed in some building types for south window orientation, implying that installation of window film on the south side of the buildings leads to increased energy use due to increase heating load in the winter season.

Facility type ²⁹⁸	Window type	Heating system type ²⁹⁹	ESF _{north} (kWh/ft ²)	ESF _{east} (kWh/ft ²)	ESF _{south} ³⁰⁰ (kWh/ft ²)	ESF _{west} (kWh/ft ²)
	Single pape	Electric	0.00	6.20	8.10	11.37
Food service - Full		Non-electric	0.00	7.15	10.04	12.54
service	Double nane	Electric	0.00	0.00	3.90	5.15
		Non-electric	0.00	2.99	4.69	5.64
	Single pane	Electric	0.00	3.35	4.27	6.14
Food service - Fast		Non-electric	0.00	4.84	6.99	7.92
food	Double nane	Electric	0.00	1.55	2.23	2.85
	Double pulle	Non-electric	0.00	2.13	3.32	3.55
	Single pane	Electric	6.54	33.20	16.51	29.69
Health care-Innatient		Non-electric	4.33	18.36	11.38	17.54
nearth earc inpatient	Double nane	Electric	3.34	13.97	7.50	11.46
	Double pulle	Non-electric	2.08	7.56	4.94	6.64
	Single pane	Electric	1.21	38.50	16.83	23.07
Health care-		Non-electric	1.79	29.72	16.37	22.63
Outpatient	Double pane	Electric	0.45	16.60	6.86	9.08
		Non-electric	0.71	12.74	6.39	8.92
Lodaina – (Hotel	Single pane	Electric	3.51	11.22	12.71	9.41
dormitory)		Non-electric	4.03	12.75	14.26	10.41
	Double pane	Electric	1.43	4.37	5.31	3.81
	Double parte	Non-electric	1.59	5.07	5.94	3.88
	Single pane	Electric	2.53	5.84	4.97	7.91
Mercantile (mall)		Non-electric	2.92	6.71	6.75	8.74
	Double pane	Electric	1.10	3.04	2.32	3.35
		Non-electric	1.25	3.56	3.04	3.72
	Single pane	Electric	2.46	9.86	8.82	7.40
Mercantile (Retail,	S	Non-electric	3.05	11.39	10.80	8.55
not mall)	Double pane	Electric	16.05	5.49	2.48	2.88
		Non-electric	1.33	6.27	3.03	3.35
	Single pane	Electric	1.44	4.84	2.27	4.70
Office – Small		Non-electric	1.80	5.69	3.09	5.68
(<40,000 sq ft)	Double pane	Electric	0.61	1.93	0.96	1.93
		Non-electric	0.71	2.28	1.24	2.24
	Single pane	Electric	5.45	16.35	15.31	17.15
Office – Large (≥		Non-electric	2.09	6.47	7.19	8.56
40,000 Sq ft)	Double pane	Electric	2.19	6.14	6.07	6.43
		Non-electric	0.93	2.48	2.98	3.26
	Single pane		0.04	2.34	0.01	0.40
Other ²⁸⁸		Non-electric	0.06	2.49	0.04	0.52
	Double pane		0.01	1.03	0.01	0.15
	· ·	NON-Electric	0.02	1.08	0.02	0.20
	Single pane		0.49	2.81	2.32	1.53
Public assembly	'	NON-Electric	0.81	2.54	2.17	1.85
	Double pane	Electric	0.22	1.17	1.01	0.84
		Non-electric	0.37	1.03	1.15	0.90

Facility type ²⁹⁸	Window type	Heating system type ²⁹⁹	ESF _{north} (kWh/ft ²)	ESF _{east} (kWh/ft²)	ESF _{south} ³⁰⁰ (kWh/ft²)	ESF _{west} (kWh/ft ²)
B 1 P	Single pape	Electric	0.04	2.34	0.01	0.40
Public order and	Single pane	Non-electric	0.06	2.49	0.04	0.10 0.10 04 0.52 01 0.15 02 0.20 32 1.53 77 1.85
fire station)	Double pape	Electric	0.01	1.03	0.01	0.15
In c Stationy	Double parle	Non-electric	0.02	1.08	0.02	0.20
Religious worship	Single none	Electric	0.49	2.81	2.32	1.53
	Single pane	Non-electric	0.81	2.54	2.77	ESFwest (kWh/ft²) 0.40 0.52 0.15 0.20 1.53 1.85 0.84 0.90 7.91 8.74 3.35 3.72
	Daubla nana	Electric	0.22	1.17	1.01	0.84
	Double parle	Non-electric	0.37	1.03	1.15	1.53 1.85 0.84 0.90 7.91
Service (Beauty, auto repair workshop)	Single pope	Electric	2.53	5.84	4.97	7.91
	Single pane	Non-electric	2.92	6.71	6.75	8.74
	Double none	Electric	1.10	3.04	2.32	3.35
	Double pane	Non-electric	1.25	3.56	3.04	3.72

Table 17-30. Energy savings factors for reflective window film by facility type and window orientation fo	r
roanoke, VA	

Facility type ³⁰¹	Window type	Heating system type ³⁰²	ESF _{north} (kWh/ft²)	ESF _{east} (kWh/ft²)	ESF _{south} ³⁰³ (kWh/ft²)	ESF _{west} (kWh/ft²)
Education -	Single pape	Electric	1.80	4.39	7.28	5.99
Elementary and		Non-electric	1.90	5.83	7.76	9.74
middle school	Double pape	Electric	0.82	1.77	3.21	2.50
		Non-electric	0.82	2.24	3.47	3.86
	Single pape	Electric	3.91	7.10	14.39	10.93
Education – High	Single parle	Non-electric	3.36	7.57	11.09	14.03
school	Double pape	Electric	1.66	2.85	6.35	4.32
	Double parle	Non-electric	1.60	2.82	4.94	6.15
	Single pape	Electric	3.91	7.10	14.39	10.93
Education – College and university	Single parle	Non-electric	3.36	7.57	11.09	14.03
	Double pane	Electric	1.66	2.85	6.35	4.32
		Non-electric	1.60	2.82	4.94	6.15
	Single pape	Electric	4.72	7.40	6.12	4.32 6.15 10.93 14.03 4.32 6.15 8.18 9.28 3.28 3.28 3.76 8.18 9.28
Food sales - Greenry	Single parle	Non-electric	5.67	8.55	7.50	9.28
Food sales - Grocery	Doublo papa	Electric	15.20	5.16	2.82	3.28
		Non-electric	1.30	5.86	3.41	3.76
	Single pape	Electric	4.72	7.40	6.12	8.18
Food sales –		Non-electric	5.67	8.55	7.50	9.28
Convenience store	Double pape	Electric	15.20	5.16	2.82	3.28
	Double pane	Non-electric	1.30	5.86	3.41	3.76
Food sales - Non-	Single pape	Electric	4.72	7.40	6.12	8.18
electric station convenience store	Single parle	Non-electric	5.67	8.55	7.50	9.28
	Doublo papa	Electric	15.20	5.16	2.82	3.28
		Non-electric	1.30	5.86	3.41	3.76
Food Sonvice Full	Single pape	Electric	0.00	6.65	8.27	11.94
sorvico		Non-electric	0.00	7.47	10.04	13.01
Service	Double pane	Electric	0.00	0.00	3.93	5.39

³⁰¹ Warehouse and storage building type DEER models do not have windows. Tracking data with this building type will be flagged for on-site verification.

³⁰² Non-electric heating systems were represented by gas heating in building energy models.

³⁰³ Negative demand reduction is observed in some building types for south window orientation, implying that installation of window film on the south side of the buildings leads to increased energy use due to increase heating load in the winter season.

type ³⁰² (KWh/ft²) (KWh/ft²) (KWh/ft²) (KWh/ft²)	• /
Non-electric 0.00 3.15 4.67	5.86
Single pape Electric 0.00 3.67 4.61	5.39
Food service - FastSingle paneNon-electric0.005.127.10	3.04
food Electric 0.00 1.57 2.28	2.96
Non-electric 0.00 2.19 3.35	3.63
Single pape Electric 7.47 33.28 15.45 29	9.99
Health Care-inpatient Non-electric 4.93 18.79 11.14 1	3.06
Double pape Electric 3.08 14.18 7.16 1	1.60
Non-electric 2.00 7.83 4.89	5.83
Single pape Electric 1.08 38.81 16.61 23	3.40
Health Care- Non-electric 1.68 30.34 16.53 23	3.14
outpatient Double pape Electric 0.38 16.38 7.03	9.13
Non-electric 0.66 12.63 6.73	9.02
Single pape Electric 3.68 11.79 12.87 10).12
Lodging – (Hotel, Non-electric 4.25 13.72 14.48 1	1.12
motel, and dormitory) Electric 1.50 4.96 5.45	4.09
Non-electric 1.67 5.42 6.13	4.17
Single pane Electric 2.55 7.21 5.28	3.45
Mercantile (mall) Non-electric 2.93 8.10 6.79	9.21
Double pape Electric 1.13 5.04 2.48	3.52
Non-electric 1.27 5.57 3.09	3.85
Single pane Electric 4.72 7.40 6.12	3.18
Mercantile (Retail, not Non-electric 5.67 8.55 7.50	9.28
mall) Double pane Electric 15.20 5.16 2.82	3.28
Non-electric 1.30 5.86 3.41	3.76
Single pane Electric 1.55 5.26 2.32	5.04
Office – Small Non-electric 1.79 5.80 3.00	5.89
(<40,000 sq ft) Double pane Electric 0.67 2.13 0.93	2.04
Non-electric 0.74 2.31 1.16	2.35
Single pane Electric 5.65 17.39 15.96 1	1.11
Office – Large (2 Non-electric 2.27 6.71 7.37	3.80
$\begin{array}{c c} 40,000 \text{ sq ft} \\ \hline \\ Double pane \\ \hline \\ Den plastric \\ \hline \\ Den plastric \\ \hline \\ \\ A 0 2 \\ \hline \\ \\ A 0 2 \\ \hline \\ \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	0.67
Non-electric 1.03 2.70 3.05	3.50
Single pane Liectific 0.05 2.46 0.01	J.40
Other ²⁸⁸ Chapter 0.03 2.62 0.04	J.52
Double pane Departie 0.03 1.09 0.01	J. 10 J. 24
NOII-electric 0.04 1.15 0.02 Electric 0.45 2.72 2.42	J.Z I 1 40
Single pane Departie 0.45 2.75 2.42	1.40
Public assembly Electric 0.60 2.65 2.65	1.04
Double pane Departie 0.10 1.10 1.01	0.00
Electric 0.05 2.49 0.01).94) /0
Public order and Single pane Lieulic 0.03 2.40 0.01).40) 52
safety (police and fire Flectric 0.03 1.00 0.04	1 16
station) Double pane Non-electric 0.03 1.03 0.01	1 21
Homelectric 0.04 1.13 0.02 Flectric 0.45 2.73 2.42	1 40
Single pane Distric 0.40 2.43 2.42	1.84
Religious worship Flectric 0.16 1.01 1.01) 60
Double pane Double pane <thdouble pane<="" th=""> <thdouble pane<="" th=""></thdouble></thdouble>).94

Facility type ³⁰¹	Window type	Heating system type ³⁰²	ESF _{north} (kWh/ft²)	ESF _{east} (kWh/ft²)	ESF _{south} ³⁰³ (kWh/ft²)	ESF _{west} (kWh/ft²)
Service (Beauty, Auto Repair Workshop)	Cingle Deve	Electric	2.55	7.21	5.28	8.45
	Single Pane	Non-electric	2.93	8.10	6.79	9.21
	Double Pane	Electric	1.13	5.04	2.48	3.52
		Non-electric	1.27	5.57	3.09	3.85

Table 17-31. Energy savings factors for re	flective window film by facility type	e and window orientation for
Sterling, VA		

Facility type ³⁰⁴	Window type	Heating system type ³⁰⁵	ESF _{north} (kWh/ft²)	ESF _{east} (kWh/ft²)	ESF _{south} ³⁰⁶ (kWh/ft²)	ESF _{west} (kWh/ft²)
Education	Single pane	Electric	1.98	4.27	7.63	6.48
Elementary and		Non-electric	2.01	5.59	7.64	9.59
middle school	Double pape	Electric	0.93	1.73	3.40	2.90
		Non-electric	0.91	2.15	3.35	4.18
	Single pape	Electric	3.86	6.56	13.59	10.24
Education – High	Single parle	Non-electric	3.37	6.73	10.97	13.29
school	Doublo papa	Electric	1.64	2.37	6.34	4.24
	Double parle	Non-electric	1.38	2.70	4.64	5.45
	Single pape	Electric	3.86	6.56	13.59	10.24
Education – College	Single parle	Non-electric	3.37	6.73	10.97	13.29
and university	Doublo papa	Electric	1.64	2.37	6.34	4.24
		Non-electric	1.38	2.70	4.64	10.37 13.29 6.34 4.24 4.64 5.45 8.46 7.22 10.72 8.45 2.36 2.87 2.99 3.40 8.46 7.22
	Single pape	Electric	2.39	9.43	8.46	7.22
Food sales - Grocery	Single parle	Non-electric	2.99	11.00	10.72	8.45
Food sales - Grocery	Double pane	Electric	17.37	5.32	2.36	2.87
		Non-electric	1.29	6.11	2.99	3.40
	Single pape	Electric	2.39	9.43	8.46	2.87 3.40 7.22 8.45
Food sales –	Single parle	Non-electric	2.99	11.00	10.72	8.45
Convenience store	Double pane	Electric	17.37	5.32	2.36	2.87
		Non-electric	1.29	6.11	2.99	3.40
Food Salas Non	Single pape	Electric	2.39	9.43	8.46	7.22
Poou Sales - Noli-	Single parle	Non-electric	2.99	11.00	10.72	8.45
	Daubleman	Electric	17.37	5.32	2.36	2.87
convenience store	Double parle	Non-electric	1.29	6.11	2.99	3.40
	Single pape	Electric	0.00	6.35	8.25	11.54
Food service - Full	Single parle	Non-electric	0.00	7.31	10.24	12.72
Service	Doublo papa	Electric	0.00	0.00	4.06	5.23
		Non-electric	0.00	3.06	4.77	5.64
	Single pape	Electric	0.00	3.43	4.31	6.22
Food service - Fast Food	Single parle	Non-electric	0.00	4.88	7.00	7.91
	Double pape	Electric	0.00	1.45	2.21	2.73
	Double parle	Non-electric	0.00	2.11	3.30	3.47
	Single pape	Electric	6.44	33.03	16.28	29.64
Health Caro-innationt		Non-electric	4.34	18.41	11.38	17.56
Health Care-Inpatient	Doublo para	Electric	3.32	13.83	7.45	11.51
		Non-electric	2.08	7.52	4.90	6.66

³⁰⁴ Warehouse and storage building type DEER models do not have windows. Tracking data with this building type will be flagged for on-site verification.

³⁰⁵ Non-electric heating systems were represented by gas heating in building energy models.

³⁰⁶ Negative demand reduction is observed in some building types for south window orientation, implying that installation of window film on the south side of the buildings leads to increased energy use due to increase heating load in the winter season.

Facility type ³⁰⁴	Window type	Heating system type ³⁰⁵	ESF _{north} (kWh/ft ²)	ESF _{east} (kWh/ft ²)	ESF _{south} ³⁰⁶ (kWh/ft ²)	ESF _{west} (kWh/ft ²)
	Single pane	Electric	1.04	37.91	16.28	22.83
Health Care-	Single pane	Non-electric	1.66	29.45	16.06	22.62
outpatient	Double pape	Electric	0.37	16.33	6.66	8.89
	Double parle	Non-electric	0.64	12.60	6.26	8.80
	Single pape	Electric	3.43	10.46	12.34	9.39
Lodging – (Hotel,	Single parle	Non-electric	4.02	12.44	13.93	10.15
motel, and dormitory)	Double pape	Electric	1.40	4.14	5.09	3.48
		Non-electric	1.62	5.05	5.78	3.86
	Single pape	Electric	2.41	5.59	4.81	7.64
Mercantile (mall)	Single parle	Non-electric	2.86	6.62	6.69	8.63
wercantie (mail)	Double pape	Electric	1.06	3.00	2.17	3.20
		Non-electric	1.23	3.52	2.95	3.60
	Single nane	Electric	2.39	9.43	8.46	7.22
Mercantile (Retail, not		Non-electric	2.99	11.00	10.72	8.45
mall)	Double nane	Electric	17.37	5.32	2.36	2.87
		Non-electric	1.29	6.11	2.99	3.40
	Single nane	Electric	1.54	4.85	2.11	4.50
Office – Small	Single parte	Non-electric	1.70	5.36	2.89	5.48
(<40,000 sq ft)	Double nane	Electric	0.65	1.96	0.83	1.78
		Non-electric	0.70	2.15	1.12	2.13
	Single pane Double pane	Electric	5.54	16.64	15.44	16.95
Office – Large (≥		Non-electric	2.07	6.66	7.45	8.65
40,000 sq ft)		Electric	2.23	6.07	6.10	6.35
		Non-electric	0.97	2.76	3.10	3.44
	Single pane Double pane	Electric	0.08	2.35	0.02	0.38
Other ²⁸⁸		Non-electric	0.10	2.53	0.04	0.51
Ciller		Electric	0.03	1.02	0.01	0.13
		Non-electric	0.03	1.09	0.02	0.19
	Single pane	Electric	0.33	2.63	2.07	1.38
Public assembly		Non-electric	0.76	2.44	2.58	1.75
	Double pane	Electric	0.15	1.07	0.85	0.70
		Non-electric	0.35	0.96	1.05	0.90
Public order and	Single pane	Electric	0.08	2.35	0.02	0.38
safety (police and fire		Non-electric	0.10	2.53	0.04	0.51
station)	Double pane	Electric	0.03	1.02	0.01	0.13
olulion,		Non-electric	0.03	1.09	0.02	0.19
	Single pane	Electric	0.33	2.63	2.07	1.38
Religious worship		Non-electric	0.76	2.44	2.58	1.75
	Double pane	Electric	0.15	1.07	0.85	0.70
		Non-electric	0.35	0.96	1.05	0.90
	Single pane	Electric	2.41	5.59	4.81	7.64
Service (Beauty, Auto		Non-electric	2.86	6.62	6.69	8.63
Repair Workshop)	Double pane	Electric	1.06	3.00	2.17	3.20
	Double parte	Non-electric	1.23	3.52	2.95	3.60

Table 17-32. Energy savings factors for reflective window film by facility type and window orientation for Richmond, VA

Facility type ³⁰⁷	Window type	Heating system type ³⁰⁸	ESF _{north} (kWh/ft ²)	ESF _{east} (kWh/ft ²)	ESF _{south} ³⁰⁹ (kWh/ft²)	ESF _{west} (kWh/ft²)
Education -	Single pane	Electric	1.90	4.53	7.56	6.30
Elementary and		Non-electric	2.07	6.11	8.28	9.97
middle school	Double pane	Electric	0.85	1.82	3.26	2.73
		Non-electric	0.91	2.35	3.82	4.33
	Single pane	Electric	4.27	7.43	17.99	11.96
Education – High		Non-electric	3.76	7.72	11.71	14.84
school	Double pane	Electric	1.97	2.87	7.06	4.83
		Non-electric	1.67	2.70	5.17	5.94
	Single pane	Electric	4.27	7.43	17.99	11.96
Education – College		Non-electric	3.76	7.72	11.71	14.84
and university	Double pane	Electric	1.97	2.87	7.06	4.83
		Non-electric	1.67	2.70	5.17	5.94
	Single pane	Electric	2.67	10.12	8.56	8.94
Food sales - Grocerv		Non-electric	3.16	11.47	10.14	10.16
	Double pane	Electric	14.39	4.81	3.68	3.19
		Non-electric	1.38	5.41	4.39	3.63
	Single pane	Electric	2.67	10.12	8.56	8.94
Food sales –		Non-electric	3.16	11.47	10.14	10.16
Convenience store	Double pane	Electric	14.39	4.81	3.68	3.19
		Non-electric	1.38	5.41	4.39	3.63
Food Sales – Non- electric station	Single pane	Electric	2.67	10.12	8.56	8.94
		Non-electric	3.16	11.47	10.14	10.16
convenience store	Double pane	Electric	14.39	4.81	3.68	3.19
	Double parte	Non-electric	1.38	5.41	4.39	3.63
	Single pane Double pane	Electric	0.00	6.99	8.48	12.30
Food service - Full		Non-electric	0.00	7.64	10.09	13.05
service		Electric	0.00	0.00	4.06	5.58
		Non-electric	0.00	3.24	4.73	5.92
	Single pane	Electric	0.00	4.02	4.63	6.64
Food service - Fast		Non-electric	0.00	5.32	7.16	8.31
food	Double pane	Electric	0.00	1.73	2.34	2.97
		Non-electric	0.00	2.27	3.39	3.65
Health Care-inpatient	Single pane	Electric	6.70	33.01	15.30	29.63
		Non-electric	4.44	18.38	10.95	17.56
	Double pane	Electric	3.33	13.92	7.09	11.48
	Double parte	Non-electric	2.08	7.60	4.81	6.67
	Single pane	Electric	1.31	38.66	15.40	23.69
Health Care-		Non-electric	1.82	29.61	14.79	22.83
outpatient	Double pane	Electric	0.48	16.47	6.46	9.44
		Non-electric	0.72	12.44	5.93	9.04
	Single pane	Electric	3.89	12.04	13.14	10.57
Lodging – (Hotel,		Non-electric	4.44	13.90	14.71	11.55
motel, and dormitory)	Double pane	Electric	1.60	5.08	5.48	4.23
		Non-electric	1.84	5.55	6.18	4.34

³⁰⁷ Warehouse and storage building type DEER models do not have windows. Tracking data with this building type will be flagged for on-site verification.

³⁰⁸ Non-electric heating systems were represented by gas heating in building energy models.

³⁰⁹ Negative demand reduction is observed in some building types for south window orientation, implying that installation of window film on the south side of the buildings leads to increased energy use due to increase heating load in the winter season.

Facility type ³⁰⁷	Window type	Heating system type ³⁰⁸	ESF _{north} (kWh/ft²)	ESF _{east} (kWh/ft ²)	ESF _{south} ³⁰⁹ (kWh/ft²)	ESF _{west} (kWh/ft²)
	Single pane	Electric	2.70	6.08	5.22	8.25
Mercantile (mall)		Non-electric	3.03	6.93	6.84	8.99
	Double pape	Electric	1.14	3.24	2.42	3.48
		Non-electric	1.29	3.62	3.07	3.79
	Single pane	Electric	2.67	10.12	8.56	8.94
Mercantile (Retail, not		Non-electric	3.16	11.47	10.14	10.16
mall)	Double pane	Electric	14.39	4.81	3.68	3.19
		Non-electric	1.38	5.41	4.39	3.63
	Single pane	Electric	1.58	5.22	2.62	5.11
Office – Small		Non-electric	1.82	5.84	3.13	5.86
(<40,000 sq ft)	Double pape	Electric	0.69	2.15	1.06	2.07
		Non-electric	0.73	2.32	1.22	2.34
	Single pane	Electric	5.58	17.52	15.45	17.57
Office – Large (≥		Non-electric	2.28	6.37	7.24	8.60
40,000 sq ft)	Double pane	Electric	2.24	6.42	6.15	6.60
		Non-electric	1.04	2.59	2.97	3.12
	Single pane	Electric	0.07	2.58	0.03	0.46
Other ²⁸⁸		Non-electric	0.08	2.70	0.04	0.56
	Double pane	Electric	0.03	1.12	0.01	0.17
		Non-electric	0.03	1.17	0.02	0.21
	Single pane	Electric	0.58	3.12	2.70	1.43
Public assembly		Non-electric	0.86	2.77	2.97	1.98
	Double pane	Electric	0.28	1.21	1.16	0.83
		Non-electric	0.40	1.11	1.24	0.99
Public order and	Single pane	Electric	0.07	2.58	0.03	0.46
safety (police and fire		Non-electric	0.08	2.70	0.04	0.56
station)	Double pane	Electric	0.03	1.12	0.01	0.17
		Non-electric	0.03	1.17	0.02	0.21
	Single pane	Electric	0.58	3.12	2.70	1.43
Religious worship		Non-electric	0.86	2.77	2.97	1.98
	Double pane	Electric	0.28	1.21	1.16	0.83
		Non-electric	0.40	1.11	1.24	0.99
	Single pane	Electric	2.70	6.08	5.22	8.25
Service (Beauty, auto		Non-electric	3.03	6.93	6.84	8.99
repair workshop)	Double pare	Electric	1.14	3.24	2.42	3.48
		Non-electric	1.29	3.62	3.07	3.79

 Table 17-33. Energy savings factors for reflective window film by facility type and window orientation for

 Rocky Mount, NC

Facility type ³¹⁰	Window type	Heating system type ³¹¹	ESF _{north} (kWh/ft ²)	ESF _{east} (kWh/ft ²)	ESF _{south} ³¹² (kWh/ft ²)	ESF _{west} (kWh/ft ²)
	Single pane	Electric	2.03	4.55	6.75	6.10
Education -		Non-electric	2.27	6.24	8.35	10.70
middle school	Double pape	Electric	0.87	1.95	2.90	2.48
		Non-electric	1.00	2.59	3.76	4.55
	Single pape	Electric	4.47	8.10	20.13	12.97
Education – High		Non-electric	3.90	7.03	11.34	14.85
school	Double pare	Electric	1.91	3.15	7.81	5.23
		Non-electric	1.82	3.30	5.63	6.82
	Single pape	Electric	4.47	8.10	20.13	12.97
Education – College		Non-electric	3.90	7.03	11.34	14.85
and university	Double para	Electric	1.91	3.15	7.81	5.23
		Non-electric	1.82	3.30	5.63	6.82
	Single pane	Electric	3.64	7.79	6.90	10.81
Food sales - Grocery		Non-electric	4.16	8.62	7.74	11.86
Tood sales - Grocery	Double pane	Electric	10.34	2.28	5.32	3.53
		Non-electric	1.34	2.63	5.94	3.90
	Single pane Double pane	Electric	3.64	7.79	6.90	10.81
Food sales –		Non-electric	4.16	8.62	7.74	11.86
Convenience store		Electric	10.34	2.28	5.32	3.53
		Non-electric	1.34	2.63	5.94	3.90
Food Coloo Non	Single pane	Electric	3.64	7.79	6.90	10.81
electric station		Non-electric	4.16	8.62	7.74	11.86
convenience store		Electric	10.34	2.28	5.32	3.53
		Non-electric	1.34	2.63	5.94	3.90
	Single nane	Electric	0.00	7.00	8.51	12.74
Food service - Full		Non-electric	0.00	7.61	9.80	13.31
service	Double pane	Electric	0.00	0.00	3.93	5.83
		Non-electric	0.00	3.24	4.49	6.11
	Single page	Electric	0.00	4.00	4.83	6.96
Food service - Fast		Non-electric	0.00	5.27	7.11	8.43
food	Double pane	Electric	0.00	1.70	2.37	3.16
		Non-electric	0.00	2.26	3.35	3.80
	Single pane	Electric	7.19	32.81	14.02	29.48
Health care-innatient		Non-electric	4.67	18.14	10.38	17.45
	Double pare	Electric	3.20	13.82	6.70	11.43
		Non-electric	2.02	7.51	4.64	6.62

³¹⁰ Warehouse and storage building type DEER models do not have windows. Tracking data with this building type will be flagged for on-site verification.

³¹¹ Non-electric heating systems were represented by gas heating in building energy models.

³¹² Negative demand reduction is observed in some building types for south window orientation, implying that installation of window film on the south side of the buildings leads to increased energy use due to increase heating load in the winter season.

Facility type ³¹⁰	Window type	Heating system type ³¹¹	ESF _{north} (kWh/ft ²)	ESF _{east} (kWh/ft ²)	ESF _{south} ³¹² (kWh/ft ²)	ESF _{west} (kWh/ft²)
	Single pane	Electric	1.16	38.33	13.54	23.36
Health Care-		Non-electric	1.65	28.95	13.08	22.33
outpatient	Double pane	Electric	0.40	16.43	6.00	9.16
	Double parte	Non-electric	0.62	12.28	5.59	8.72
	Single pane	Electric	4.29	13.30	13.93	12.22
Lodging – (Hotel,		Non-electric	4.89	15.27	15.50	13.04
motel, and dormitory)	Double pane	Electric	1.79	5.71	5.97	4.97
	•	Non-electric	2.05	6.16	6.64	5.21
	Single pane	Electric	2.88	7.99	5.73	8.84
Mercantile (mall)		Non-electric	3.05	8.60	6.79	9.15
	Double pane	Electric	1.20	3.07	2.64	3.68
		Non-electric	1.27	3.32	3.10	3.84
	Single pane	Electric	3.64	7.79	6.90	10.81
Mercantile (Retail,		Non-electric	4.16	8.62	7.74	11.86
not mail)	Double pane	Electric	10.34	2.28	5.32	3.53
		Non-electric	1.34	2.63	5.94	3.90
	Single pane	Electric	1.75	5.48	3.32	5.40
Office – Small	Double pane	Non-electric	1.86	5.70	3.49	5.91
(<40,000 sq ft)		Electric	0.74	2.26	1.33	2.18
		Non-electric	0.75	2.29	1.36	2.29
	Single pane	Electric	5.44	17.77	15.93	18.02
Office – Large (≥		Non-electric	2.41	6.22	7.13	8.49
40,000 sq ft)		Electric	2.21	7.05	6.45	6.77
		Non-electric	1.07	2.46	2.89	3.21
	Single pane	Electric	0.11	2.61	0.03	0.51
Other ²⁸⁸		Non-electric	0.11	2.69	0.04	0.58
	Double pane	Electric	0.05	1.14	0.02	0.19
	· ·	Non-electric	0.05	1.17	0.03	0.21
	Single pane	Electric	0.53	2.69	2.92	1.45
Public assembly		Non-electric	0.85	2.63	3.27	1.90
-	Double pane	Electric	0.26	1.16	1.25	0.84
		Non-electric	0.40	1.13	1.38	1.00
Public order and safety (police and fire station)	Single pane	Electric	0.11	2.61	0.03	0.51
		Non-electric	0.11	2.69	0.04	0.58
	Double pane	Electric Non alastria	0.05	1.14	0.02	0.19
		Non-electric	0.05	1.17	0.03	0.21
Religious worship	Single pane		0.53	2.09	2.92	1.40
		Flootrio	0.00	2.03	3.27	1.90
	Double pane	Non electric	0.20	1.10	1.20	1.04
		Flectric	0.40	1.13	1.30	1.00
Samilas (Beauty and -	Single pane	Non-electric	2.00	1.33	5.73	0.04
service (Beauty, auto		Electric	3.00	0.00	0.79	3.10
	Double pane	Non-electric	1.20	3.07	2.04	3.00
	<u> </u>	NON-Electric	1.27	J.JZ	3.10	3.04

Table 17-34. Energy savings factors for reflective window film by facility type and window orie	ntation for
Elizabeth City, NC	

Facility type ³¹³	Window type	Heating system type ³¹⁴	ESF _{north} (kWh/ft ²)	ESF _{east} (kWh/ft²)	ESF _{south} ³¹⁵ (kWh/ft²)	ESF _{west} (kWh/ft²)
	Single none	Electric	1.97	5.26	7.38	6.86
Education –	Single pane	Non-electric	2.35	6.78	9.05	11.31
middle school	Daubla papa	Electric	0.87	1.98	3.24	3.04
	Double parle	Non-electric	1.00	2.50	4.12	4.64
	Single pape	Electric	4.77	9.14	20.46	14.20
Education – High		Non-electric	4.50	8.42	12.67	17.47
school	Double pape	Electric	2.07	3.27	7.93	5.56
		Non-electric	1.98	3.03	5.78	7.32
	Single pane	Electric	4.77	9.14	20.46	14.20
Education – College	Single parle	Non-electric	4.50	8.42	12.67	17.47
and university	Double pape	Electric	2.07	3.27	7.93	5.56
	Double parle	Non-electric	1.98	3.03	5.78	7.32
	Single pape	Electric	3.05	11.06	10.22	8.97
Food sales - Greenry	Single pane	Non-electric	3.44	11.99	11.43	9.66
Food sales - Grocery	Double pane	Electric	9.07	5.28	3.11	3.56
		Non-electric	1.39	5.72	3.45	3.86
	Single pane Double pane	Electric	3.05	11.06	10.22	8.97
Food sales –		Non-electric	3.44	11.99	11.43	9.66
Convenience store		Electric	9.07	5.28	3.11	3.56
		Non-electric	1.39	5.72	3.45	3.86
	Single pane Double pane	Electric	3.05	11.06	10.22	8.97
Food Sales – Non-		Non-electric	3.44	11.99	11.43	9.66
convenience store		Electric	9.07	5.28	3.11	3.56
		Non-electric	1.39	5.72	3.45	3.86
	Single pape	Electric	0.00	7.76	8.92	13.31
Food service - full	Single parle	Non-electric	0.00	8.23	10.24	13.96
service	Double pape	Electric	0.00	0.00	4.24	6.03
		Non-electric	0.00	3.50	4.77	6.31
Food service - Fast	Single pane	Electric	0.00	4.70	5.32	7.63
		Non-electric	0.00	5.84	7.52	9.14
food	Double pape	Electric	0.00	2.00	2.55	3.35
		Non-electric	0.00	2.50	3.52	4.03
	Single pane	Electric	6.84	32.68	14.58	29.43
Health care-innationt		Non-electric	4.49	18.27	10.64	17.62
neaith care-inpatient	Double pare	Electric	3.34	13.81	6.87	11.41
		Non-electric	2.10	7.57	4.75	6.71

³¹³ Warehouse and storage building type DEER models do not have windows. Tracking data with this building type will be flagged for on-site verification.

Jun 15 2023

³¹⁴ Non-electric heating systems were represented by gas heating in building energy models.

³¹⁵ Negative demand reduction is observed in some building types for south window orientation, implying that installation of window film on the south side of the buildings leads to increased energy use due to increase heating load in the winter season.

Facility type ³¹³	Window type	Heating system type ³¹⁴	ESF _{north} (kWh/ft ²)	ESF _{east} (kWh/ft ²)	ESF _{south} ³¹⁵ (kWh/ft²)	ESF _{west} (kWh/ft²)
	Single page	Electric	1.33	38.81	14.37	23.70
Health care-		Non-electric	1.79	29.62	13.78	22.67
outpatient	Double pane	Electric	0.65	18.01	6.99	9.61
		Non-electric	0.87	12.69	5.89	9.17
	Single pane	Electric	4.47	13.85	14.09	12.75
Lodging – (hotel,		Non-electric	5.03	15.70	15.59	13.63
motel, and dormitory)	Double pane	Electric	1.87	5.62	6.05	5.13
		Non-electric	2.06	6.11	6.63	5.34
	Single pane	Electric	3.12	7.06	6.21	9.43
Mercantile (mall)		Non-electric	3.25	7.50	7.17	9.76
	Double pane	Electric	1.31	3.58	2.88	3.97
		Non-electric	1.37	3.83	3.28	4.10
Maraantila (ratail nat	Single pane	Non electric	3.05	11.00	10.22	0.97
mall)		Flectric	9.07	5.28	3 11	3.56
	Double pane	Non-electric	1 30	5.20	3.11	3.86
	Single pane	Flectric	1.55	5.82	3.43	5 74
Office – Small		Non-electric	1.81	6 24	3 47	6.26
(<40.000 sq ft)		Electric	0.74	2.37	1.30	2.30
	Double pane	Non-electric	0.79	2.52	1.38	2.47
		Electric	5.59	17.97	15.44	18.46
Office – Large (≥	Single pane	Non-electric	2.37	6.58	7.21	8.91
40,000 sq ft)	Double pane	Electric	2.29	6.93	6.27	6.89
		Non-electric	1.03	2.58	2.92	3.16
	Single mana	Electric	0.06	2.83	0.03	0.56
Oth a #288	Single pane	Non-electric	0.07	2.88	0.04	0.61
Other		Electric	0.02	1.23	0.02	0.21
		Non-electric	0.03	1.25	0.03	0.23
	Single pape	Electric	0.73	3.44	3.56	1.75
Public assembly		Non-electric	0.96	3.03	3.72	2.36
i ubile assembly	Double pane	Electric	0.35	1.47	1.55	1.01
		Non-electric	0.43	1.23	1.55	1.11
Public order and	Single pane	Electric	0.06	2.83	0.03	0.56
safety (police and fire		Non-electric	0.07	2.88	0.04	0.61
station)	Double pane	Electric	0.02	1.23	0.02	0.21
		Non-electric	0.03	1.25	0.03	0.23
	Single pane	Electric	0.73	3.44	3.56	1.75
Religious worship		Non-electric	0.96	3.03	3.72	2.36
	Double pane	Electric	0.35	1.47	1.55	1.01
	· ·	Non-electric	0.43	1.23	1.55	1.11
	Single pane		3.12	7.06	6.21	9.43
Service (beauty, auto		Non-electric	3.25	7.50	/.17	9.76
repair worksnop)	Double pane		1.31	3.58	2.88	3.97
		INON-electric	1.37	3.83	3.28	4.10

Jun 15 2023

17.8.1.1 Update summary

Updates made to this section are described in Table 17-35.

Table 17-35	. Summary	of update(s)
-------------	-----------	--------------

Version	Update type	Description			
2022	None	No Change			
2021	New section	Moved ESF tables from the program section to this sub-appendix-			

17.9 Sub-Appendix F2-VI: General equations

This section appears in Appendix F1 as Sub-appendix F1-II: General Equations (a.k.a. Section 24.2).

Equation 1: Cooling Capacities – Btu/h to tons This equation appears in Appendix F1 as Sub-appendix F1-II: General Equations (a.k.a. Section 24.2).

Equation 2: Cooling Capacities – tons to Btu/h This equation appears in Appendix F1 as Sub-appendix F1-II: General Equations (a.k.a. Section 24.2).

Equation 3: Energy Efficiencies - SEER to EER, for systems < 65,000 Btu/h This equation appears in Appendix F1 as Sub-appendix F1-II: General Equations (a.k.a. Section 24.2).

Equation 4: Energy Efficiencies - EER to IEER, for systems ≥ 65,000 Btu/h This equation appears in Appendix F1 as Sub-appendix F1-II: General Equations (a.k.a. Section 24.2).

Equation 5: Energy Efficiencies - HSPF to COP This equation appears in Appendix F1 as Sub-appendix F1-II: General Equations (a.k.a. Section 24.2).

Equation 6: Energy Efficiencies - COP to HSPF This equation appears in Appendix F1 as Sub-appendix F1-II: General Equations (a.k.a. Section 24.2).

Equation 7: Energy Efficiencies - COP to EER This equation appears in Appendix F1 as Sub-appendix F1-II: General Equations (a.k.a. Section 24.2).

Equation 8: Energy Efficiencies – kW/ton_{full-load} to kW/ton_{IPLV} This equation appears in Appendix F1 as Sub-appendix F1-II: General Equations (a.k.a. Section 24.2). Jun 15 2023

Jun 15 2023

Docket No. E-22, Sub 645

Equation 9: Energy Efficiencies – $EER_{full-load}$ to EER_{IPLV} This equation appears in Appendix F1 as Sub-appendix F1-II: General Equations (a.k.a. Section 24.2).

Equation 10: Heat to electric energy - Btu/h to kW

This equation appears in Appendix F1 as Sub-appendix F1-II: General Equations (a.k.a. Section 24.2).