Duke Carbon Plan – Technical Conference

Edward Burgess

On behalf of the North Carolina Attorney General's Office

June 17, 2024

Docket E-100, Sub 190

Overview of AGO Testimony

Topics Addressed	Key Recommendations			
Interim Target	• Achieve Interim Target no later than 2032 to satisfy the statutory guidelines (while meeting challenges from new load growth).			
Coal Retirements	 Duke should pursue 4 strategies (that were not fully considered) for enabling timely retirements by 2032. 			
Renewable Additions	• Duke should pursue 6 strategies (that were not fully considered) for accelerating renewable GWh by 2032.			
Natural Gas Additions	 2 major risk factors should be considered in evaluating any new CCs: 1) New EPA Section 111 rules, 2) lack of firm fuel supply for gas fleet as a whole 			
Load Forecast and Customer Load- Reduction Programs	 We offer 2 recommendations for ensuring future load forecasts are more accurate. 4 customer load-reduction programs should be further developed 			
Transmission Planning	 10 key recommendations for minimizing costs and assisting renewable integration 			

Today's

Focu

Initial Carbon Plan Order on Coal Retirements – Mayo Case Study

TIMELINE:

- Before 5/16/2022: In Duke's initial analysis, EnCompass model selected 2026 as Mayo's optimal retirement
- 5/16/2022: Duke's 2022 CPIRP identified **2029** as the selected retirement date for Mayo (citing issues such as timeline for replacement generation or transmission upgrades)
- 12/30/2022: 2022 Order, p 9: "Duke shall take appropriate steps to optimally retire its coal fleet on a schedule commensurate with its Carbon Plan proposal filed on May 16, 2022."
- 2/13/2023: DEP General Rate Case proposal (supplemental) included:
 - No new transmission investments for enabling any coal retirements including Mayo;
 - No replacement generation resources for Mayo.
 - 8/17/2023: Duke 2023 CPIRP proposes to delay Mayo's retirement date to 2031

Coal Has a Limited Role in Addressing Large Load Increases

- Duke's "Fall Base" EnCompass model runs show Mayo capacity factors in 4-11% range in 2028.
- Mayo and other plants operate infrequently on coal and won't serve as "baseload" resources, even under increased load projections.
- Some could be ideal sites for replacement with batteries (or other peaking resource) that have imited run times, but still contribute significantly to reliability.

			Capacity Factor	Capacity Factor
Resource	Year	Capacity (MW)	(%) – P1 Fall Base	(%) – P3 Fall Base
Belews Creek 1 (coal)	2028	1,110	21.72	23.89
Belews Creek 2 (coal)	2028	1,110	27.60	29.35
Cliffside 5 (coal)	2028	546	1.44	2.34
Cliffside 6 (coal)	2028	849	17.12	22.54
Marshall 1	2028	380	6.56	14.30
Marshall 2	2028	380	2.18	4.39
Marshall 3 (coal)	2028	658	8.87	7.23
Marshall 4 (coal)	2028	660	9.68	8.55
Mayo 1	<mark>2028</mark>	<mark>713</mark>	<mark>4.12</mark>	<mark>10.77</mark>
Roxboro 1	2028	380	28.22	38.32
Roxboro 2	2028	673	43.53	55.98
Roxboro 3	2028	698	33.15	39.29
Roxboro 4	2028	711	17.57	32.69

Jun 12 2024

Importance of Timely Coal Retirements

- Aging coal plants require significant ongoing capital investments that could otherwise be avoided.
- The IRA has unlocked new opportunities that make coal replacements more economic (e.g., through the EIR program and the "energy communities" bonus tax credit).
- New EPA Section 111 rules may require coal retirements by 2032.
- Retirement of certain larger plants (e.g., Belews Creek, Roxboro) within the next 8 years likely represents a "critical path" for meeting the 70% Interim Target in accordance with statutory guidelines (i.e., 2030-2032).

Duke's proposal failed to fully consider 4 key strategies for retiring coal

More on-site battery replacement
 Off-site replacement w/ transmission (if needed)
 Staggered unit retirements
 Convert existing units to operate on gas (Belews Creek)

Strategy 1: More on-site battery replacement

- Duke's modeling assumptions inappropriately limited battery storage deployments during the "critical path" period of 2028-2032.
 - Only 4,200 MW batteries can be selected versus >25,000 MW of gas.
 - On-site replacement can speed interconnection times using "surplus interconnection" (e.g., Allen plant). Could even allow installs before full retirement.
- Batteries have high resource adequacy reliability contributions (>90% ELCC in many scenarios studied by Duke)
- Duke's modeling does not fully reflect likely benefits of IRA:
 - On-site replacement should receive full "energy communities" bonus, not a fraction of it.
 - EIR program can be leveraged for more favorable financing but was not studied.

Strategy 2: Off-site replacement + transmission

- Duke agrees that off-site generation to replace coal plants is feasible but may require transmission upgrades in some cases.
 - E.g., Duke identified conceptual transmission projects that could allow replacement generation for Roxboro/Mayo to be located in DEC and imported to DEP.
- Off-site replacement could unlock more competition among replacement options.
- Duke did not evaluate this possibility in its CPIRP (other than Mayo).
 - "these [transmission] projects are conceptual and thus not the result of any formal study. No cost estimates have been developed for these conceptual projects" (AGO Exh. 7)
 - "The companies did not conduct a competitive solicitation [for replacement generation at Roxboro]" (AGO Exh. 15)

Strategy 3: Staggered unit retirements

- Common practice in planning efforts is to stagger individual unit retirements over time to allow more time and flexibility for replacement generation to come online.
- Duke's modeling inappropriately ties certain unit retirements together: Belews Creek 1 & 2, Marshall (2 units), Roxboro (2 units)
 - Duke: "The Companies have not performed quantitative cost analysis associated with select units retiring together compared to retiring independently" (AGO DR 4-30, attached as Burgess Direct Exhibit 2).
- Individually staggered retirements would allow for more practical and gradual replacement pathways (which could reduce overall costs), and more options for meeting the Interim Target.

Strategy 4: Gas conversion (Belews Creek)

- 2022 Carbon Plan Order required study of Belews Creek 100% gas conversion "as an alternative to investing in new natural gas generating units now"
- Advantages of 100% conversion:
 - Could maintain +1,110 MW after retiring from coal and assist with Interim Target.
 - Initial capital costs considerably less than new build CC.
- Duke's analysis was limited to 1 variant of the initial P1 portfolio and had significant limitations:
 - Higher costs assumed primarily due to: 1) cost to maintain the plant through 2041, 2) cost to secure firm fuel transportation through 2045
 - Unclear why these dates were selected versus a shorter period consistent with 2022 Order calling for an "interim or bridge" solution.
 - Scenario deferred only 425 MW of CT capacity and deferred no CC capacity (or associated FT costs)

Key takeaways

- Recent inaction on Mayo's retirement are an example of how coal retirements are being systematically delayed by Duke (and against Commission direction).
- Delayed actions have created a situation where it is now more challenging & costly to meet the 2030 Interim Target consistent with statutory guidelines.
- Going forward, Duke should be directed to pursue additional strategies (such as the 4 outlined here) for achieving timely retirements while maintaining reliability.
- This should be done in concert with other recommendations the AGO has made regarding near-term additions of renewables, battery storage, transmission, and customer-side resources.

P1 Model-selected Solar Additions versus RZEP-enable Solar

