I/A

Bednarcik Direct AGO Cross Ex. 22

Docket No. E-2, Sub 1219A

11SERB114

Hart Exhibit 59 Docket No. E-2, Sub 1219

3/7/2011

OFFICIAL COPY

Opt 02 2020

DocumentID	NCD000830646		
Site Name	CAROLINA P&L CO. SUTTON STEAM		
DocumentType	PRELIMINARY ASSESSMENT/SITE INSPECTION		
RptSegment	1		
DocDate	2/1/1992		
DocRcvd	6/2/1992		
Вох	SF114		
AccessLevel	PUBLIC		
Division	WASTE MANAGEMENT		
Section	SUPERFUND		
Program	SERB		
DocCat	FACILITY		
Description			

State of North Carolina Department of Environment, Health, and Natural Resources Division of Solid Waste Management P.O. Box 27687 · Raleigh, North Carolina 27611-7687

James G. Martin, Governor William W. Cobey, Jr., Secretary William L. Meyer Director

June 2, 1992

Ms. Kathy Amoroso EPA NC CERCLA Project Officer EPA Region IV Waste Division 345 Courtland Street, NE Atlanta, Georgia 30365

RE: Phase II, Screening Site Investigation CP&L, Sutton Steam Electric Plant Wilmington, New Hanover County, North Carolina NCD 000 830 646

Dear Ms. Amoroso:

Enclosed herewith is the Phase II, Screening Site Investigation (SSI) Report by Greenhorne & O'Mara, Inc. for CP&L, Sutton Steam Electric Plant (NCD 000 830 646).

Based on the information gathered and presented in this report, and on the results of the data validation, we recommend that this site be assigned a Medium priority for an Expanded Site Investigation.

The following discussion of the analytical results from the Phase II, SSI sampling event for the subject site, reflects data validation.

A total of nine (9) environmental samples were collected to To characterize whether a release characterize the site. of occurred, a limited subsurface and surficial contaminants has investigation was conducted to obtain ground water, surface water, soil and sediment samples for laboratory analysis. The sampling locations are shown on Appendix A, Figure 2. These samples consisted of three (3) ground water sample, one (1) onsite drinking water well sample, three (3) composite soil samples and two (2) sediment samples.

-1-

<u>Soils</u>

A background surface soil sample (CLSSO1) was collected at the site. No Purgable Organics, Base Neutral Acid Extractable (BNAs) or Pesticides/PCBs were reported in this sample. See Table 1 for the inorganic results.

A composite soil sample (CLSS02) was collected from three locations in the vicinity of the inactive fly-ash pond. No Purgable Organics, BNAs or Pesticides/PCBs were reported in this sample. See Table 1 for the inorganic results.

A composite soil sample (CLSS03) was collected from three locations in the vicinity of the old fly-ash pond. No Purgable Organics or BNAs were reported in this sample. 4,4'-DDD (3.7 ppb) was the only Pesticide/PCB reported in this sample. This concentration is considered significant. See Table 1 for the inorganic results.

An observed release to soils has been documented from the data gathered relative to the soil samples. It appears that there are releases of 4,4'-DDD, aluminum, arsenic, barium, beryllium, calcium, chromium, copper, iron, lead, magnesium, manganese, nickel, selenium, thallium, vanadium and zinc. The values reported for all inorganics, except selenium, were within naturally occurring concentrations for inorganics in soils in the Eastern United States. Arsenic, chromium and lead are known to be attributable to site activities.

Sediments

An upstream sediment sample (CLSED01) was collected at the site. No Purgable Organics, BNAs or Pesticides/PCBs were reported in this sample. Barium (45/0.47 ppm) and lead (19/U ppm) were the only inorganics reported in this sample. The first value given in parenthesis is for totals and the second is for TCLP. Barium lead were reported within naturally occurring concentrations for barium and lead in soils in the Eastern United States.

A downstream sediment sample (CLSED02) was collected downstream of the site on the Cape Fear River. No Purgable Organics, BNAs or Pesticides/PCBs were reported in this sample. Arsenic (5.8/U ppm), barium (21/0.36 ppm) and lead (19/U ppm) were the only inorganics reported in a significant concentration in this sample. All inorganics reported in this sample were within naturally occurring concentrations for inorganics in soils in the Eastern United States.

An observed release to sediments has been documented from the data gathered relative to sediment samples. It appears that there are releases of arsenic. Arsenic is known to be attributable to site activities.

-2-

Ground Water

A background ground water (CLMW01) was collected from an existing monitoring well on-site. No Purgable Organics, BNAs or Pesticides/PCBs were detected in this sample. See Table 2 for the inorganic results.

A downgradient ground water sample (CLGW02) was collected from a temporary monitoring well, located at the edge of the inactive fly-ash pond. No Purgable Organics, BNAs or Pesticides/PCBs were reported in this sample. See Table 2 for the inorganic results.

A downgradient ground water sample (CLGW03) was collected from a temporary monitoring well, located at the edge of the old fly-ash pond near the aboveground storage tanks. No Purgable Organics or Pesticides/PCBs were reported in this sample. Diethylphthalate (U/1J ppb) was the only BNA reported in this sample. See Table 2 for the inorganic results.

An on-site drinking water well sample (CLDW01) was collected from an on-site drinking water well located on the southern part of the site. No Purgable Organics, BNAs or Pesticides/PCBs were reported in this sample. See Table 2 for the inorganic results.

An observed release to groundwater has been documented from the data gathered relative to ground water samples. It appears that significant releases of aluminum, arsenic, barium, beryllium, calcium, chromium, copper, iron, lead, mercury, nickel, selenium, vanadium and zinc have occurred to the groundwater. As can seen from Table 2, arsenic, barium, beryllium, chromium, iron, lead, nickel, selenium and thallium are greater than their respective North Carolina Maximum Contaminant Level (NCMCL) and/or Federal Maximum Contaminant Level (MCL). Arsenic, mercury, chromium and lead are known to be attributable to site activities.

Based on the information gathered and presented in this report, and on the results of the data validation, we recommend that this site be assigned a Medium priority for an Expanded Site Investigation. During the Expanded Site Investigation, we believe that the New Hanover County Municipal well and the nearby wetlands should be investigated to determine if any contaminants have migrated to these areas.

If you have any questions, please contact me at 919-733-2801.

Sincerely,

Grover Nicholson, Head Contracts Management Branch

Enclosures

TABLE 1 CP&L, SUTTON STEAM ELECTRIC PLANT

NCD 000 830 646

INORGANICS	SOILS NATURAL RANGE (PPM)			
ALUMINUM	0.7->10%	50U	2000	990
	<1-8.8			
	<0.1-73			
	10-1500			
	<1-7			
	0.01-0.7			
	0.01-20%			
CHROMIUM	1-1000	1U	9.8	1.1U
COBALT	<0.3-70	10	1.3	
COPPER	<1-700	0.830	27	0.88U
IRON	0.01->10%	40	9900	650
LEAD	<10-300	10	2.6	1.9
	0.005-5%			
	<2-7000			1.8
	0.01-3.4			
	<3-700			2.40
	0.005-3.7%			
	<0.1-3.9			0.22U
	0.01-5			
	0.05-5%			
THALLIUM			0.48U	
	<7-500			1.8J
	<5-2900			5.2
CYANIDE		*** "DU	5.3U	0.40

NOTES:

1) NA - NOT ANALYZED

.

- 2) N PRESENCE OF CONTAMINANT PRESUMED
- 3) J CONCENTRATION ESTIMATED
- 4) U NON-DETECT
- 5) B CONTAMINANT FOUND IN ASSOCIATED BLANK

TABLE 2 CP&L, SUTTON STEAM ELECTRIC PLANT NCD 000 830 646

INORGANICS	WATER NCMCL (PPB)			CLGW02 (PPB)	CLGWO3 (PPB)	CLDW01 (PPB)
ALUMINUM	****		2700J	100000	240000J	NA
ANTIMONY		10/5	42UJ	42U	42UJ	NA
ARSENIC	50		1UJ	160	200J	U
BARIUM	1000	5000	50UJ	1900	660J	60
BERYLLIUM		1	1UJ	20J	1UJ	NA
CADMIUM	5	5	4UJ	4UJ	4UJ	U.
CALCIUM	*****		21000J	84000	99000J	NA
CHROMIUM	50	100	5UJ	220	150J	U
COBALT	*****	an ion	5UJ		13J	NA
COPPER	1000	1300	4UJ	820	67J	NA
IRON	300	••••	1600J		92000J	
LEAD	50	50	2UJ	98	190J	U
MAGNESIUM		****		17000		NA
MANGANESE	50		890J	300	210J	
MERCURY	1.1	2	0.10UJ	0.55	0.91J	U
NICKEL	150	100	11UJ	190	50J	NA
POTASSIUM	*****	\$2000	4900J	20000	7600J	
SELENIUM	10	50	2UJ	110	43J	U
SILVER	50	*****	5UJ	50	5UJ	U
SODIUM		*****	60000J		4000UJ	NA
THALLIUM	Bêêya	2/1	2UJ	13	JUJ	NA
VANADIUM	*****		4UJ	490	360J	NA
ZINC	5000		20UJ	240	92J	NA
CYANIDE	154	200	10U	10U	10U	NA

NOTES:

.

- 1) NA NOT ANALYZED
- 2) N PRESENCE OF CONTAMINANT PRESUMED
- 3) J CONCENTRATION ESTIMATED
- 4) U NON-DETECT
- 5) R DATA UNUSABLE
- 6) B CONTAMINANT FOUND IN THE ASSOCIATED BLANK
- 7) NCMCL NORTH CAROLINA MAXIMUM CONTAMINANT LEVEL
- 8) MCL FEDERAL MAXIMUM CONTAMINANT LEVEL

PHASE II

SCREENING SITE INVESTIGATION

FOR THE

CAROLINA POWER AND LIGHT COMPANY,

SUTTON STEAM ELECTRIC PLANT

WILMINGTON, NEW HANOVER COUNTY, NORTH CAROLINA

NCD 000830646

Submitted to:

State of North Carolina Department of Environment, Health, and Natural Resources Division of Solid Waste Management Superfund Section Raleigh, North Carolina

Prepared By:

Greenhorne & O'Mara, Inc. 9001 Edmonston Road Greenbelt, Maryland 20770

December 1991 Revised February 1992

•

TABLE OF CONTENTS

1.0 INTRODUCTION
1.1 OBJECTIVES
1.2 SCOPE OF WORK
2.0 SITE CHARACTERIZATION
2.1 SITE BACKGROUND AND HISTORY
2.2 SITE DESCRIPTION
2.2.1 Site Location
2.2.2 Site Features
2.2.3 Waste Characteristics
3.0 ENVIRONMENTAL SETTING
3.1 TOPOGRAPHY
3.2 SURFACE WATER
3.2.1 Overland Drainage and Potentially Affected
Surface Water Bodies 6
3.2.2 Climatology
3.3 GROUNDWATER
3.3.1 Hydrogeology
3.3.2 Aquifer Use
3.3.3 Soils
3.4 WATER SUPPLY
3.5 POPULATION DISTRIBUTION
3.6 LAND USE
3.7 SENSITIVE ENVIRONMENTS
4.0 FIELD INVESTIGATION
4.1 DESCRIPTION OF SAMPLES AND SAMPLE LOCATIONS
4.2 FIELD MEASUREMENTS
4.3 ANALYTICAL RESULTS
5.0 CONCLUSIONS AND RECOMMENDATIONS
REFERENCES

APPENDIX AMAPS, PHOTOGRAPHS AND TABLESAPPENDIX BSITE INSPECTION FORMAPPENDIX CANALYTICAL DATA

i

•

EXECUTIVE SUMMARY

The Carolina Power and Light, Sutton Steam Electric Plant is located on State Route 1394, east of U.S. Highway 421, approximately 4 miles northwest of Wilmington, North Carolina in New Hanover County. The site is located on a relatively flat large (1200-acres) parcel of land adjacent to the Cape Fear River. The plant consists of an electric coal generation facility, two inactive fly-ash ponds and one active fly-ash pond.

The Sutton Steam Plant currently generates electrical energy by burning coal, supplemented by oil during periods of peak demand. Approximately 5,000 tons of coal is burned per day, which generates about 750 tons of The fly-ash has been disposed of on the site in coal fly-ash per day. three lagoons: the active fly-ash pond, the inactive fly-ash pond and the Both the inactive and the old fly-ash pond are not old fly-ash pond. currently used to dispose of waste, but the active fly-ash pond is still receiving fly-ash. The active fly-ash pond, covering 74.3 acres, was constructed in 1985 and has a one foot thick clay liner. The inactive pond is unlined and covers 68 acres of land. The old fly-ash pond is currently over grown with grass. An unknown amount of fly-ash has been disposed of in these lagoons.

There are two (2) 11-million gallon above-ground storage tanks on the site. One is used to store "White Liquor," and the other is used to store "Kraft Pulping Liquor." Additionally, a small drum storage area is located on the site. There are 24 monitoring wells installed at the site.

The site is located in the Atlantic Coastal Plain Physiographic Province in the southeastern portion of the state. The plant is situated on the Cape Fear River alluvial plain between the coastal dunes and the interior uplands, with local elevations ranging from 15 feet above sea level to sea level. Two aquifers are used in New Hanover County for potable water. The first aquifer, and the main source of drinking water in the area of the facility, is the water-table aquifer. The water-table aquifer consists of 30 feet of surficial deposits interconnected with the upper portion of the Peedee Formation. The second aquifer in the area is the lower portion of the Peedee Formation, generally below depths of 100 to 120 feet below the land surface.

Runoff originating from the site enters the Cape Fear River, which is approximately 700 feet from the site. The Cape Fear River enters the Atlantic Ocean more than 15 miles downstream.

The NUS Corporation conducted a Phase I Screening Site Investigation (SSI) June 30, 1989. Based on the available information, the NUS report recommended that a Phase II SSI be conducted on a medium-priority basis. Consequently, Greenhorne & O'Mara, Inc. (G&O), under contract with North Carolina Department of Environment Health, and Natural resources (NCDEHNR), conducted a Phase II SSI on June 27, 1991. A total of nine (9) environmental samples were collected at the site. Analytical results from the groundwater, sediment, and soils samples obtained indicated that significant releases of hazardous contaminants have occurred. The metals detected, including arsenic, cadmium, chromium, mercury, lead, and selenium, have been attributed to site activities. In addition, releases from the site may affect a nearby New Hanover County drinking water well

field, and fishing and sensitive environments located downstream. Therefore, G&O is recommending that the site proceed into the next stage of the pre-remedial process.

6

K

1.0 INTRODUCTION

1.1 OBJECTIVES

Greenhorne and O'Mara, Inc. (G&O) conducted a Phase II Screening Site Inspection (SSI) at the CP&L, Sutton Steam Electric Plant site located in Wilmington, New Hanover County, North Carolina. The overall objective of the Phase II SSI is to provide information to support the recommendation that a site should move onto the next stage of the pre-remedial process or be designated as "no further remedial action planned (NFRAP)" under the Federal Superfund program. Additional objectives of the Phase II SSI are the following:

- 0 Identify the types of contaminants present.
- 0 Assess whether a release of hazardous substances has occurred;
- **0** Search for evidence of actual human and environmental exposure to contaminants.
- O Determine the likelihood of the site scoring high enough on the HRS to be recommended for further pre-remedial action under the Federal Superfund program.

The SSI builds upon data obtained during the preliminary assessment (PA) and Phase I SSI stages to further characterize problems at or near the site and to support a management recommendation.

1.2 SCOPE OF WORK

The scope of work for the Phase II SSI includes the following tasks:

- 0 Reviewing both EPA and state file material.
- O Preparing an abbreviated site-specific sampling plan and Health and Safety Plan. This task included developing a site map to illustrate proposed sampling locations, the approximate number of samples, and the type of samples to be collected.
- Conducting a site reconnaissance with the NCDEHNR to determine and 0 flag actual sampling locations based on the sampling plan and existing field conditions, and the professional judgement of the NCDEHNR and the G&0 sampling During the team. site reconnaissance, G&O also developed a site layout map to illustrate of the important site features including location of all buildings, access roads, and waste source areas, as well as site drainage.
- O Performing field sampling activities by collecting up to five (5) environmental media samples and three (3) QA/QC samples. The five environmental samples usually included two (2) groundwater samples (with a maximum well depth of 15 feet) and three (3) surface soil samples. The three (3) QA/QC samples included one (1) water duplicate, one (1) surface soil duplicate, and one (1) trip blank.

- O Analyzing laboratory data and presenting the data in four summary tables: volatile organic compounds, semi-volatile organic compounds, inorganic compounds, and pesticides/PCBs. Any releases that were observed were highlighted on the tables and discussed in the Phase II SSI report.
- 0 Preparing a Phase II SSI report that presents information gathered during the site visit, field observations, and laboratory data with respect to observed releases. Any existing data gaps will be discussed in the text. Greenhorne and O'Mara was not contracted to collect additional background information.

2.0 SITE CHARACTERIZATION

2.1 SITE BACKGROUND AND HISTORY

The Carolina Power and Light Company (CP&L), Sutton Steam Electric Plant generates electricity by burning coal. Peak demand for electricity is met by the use of a supplemental oil fired generator (Ref. 24 and 27). The date that the plant was built is unknown (Ref. 1 and 21). The cooling water pond and the inactive fly ash pond were constructed in June 1972 (Appendix A, Photo #3 & 6). It is unknown when the oldest fly ash pond was constructed (Appendix A, Photo #4). The new fly ash pond was constructed in September 1985 (Appendix A, Photo #1 & 2; Ref. 22).

CP&L submitted a RCRA Part A Permit application on November 18, 1980 as a precautionary measure (Ref. 21). At the time of the submittal, CP&L did not treat, dispose of, or store hazardous waste at the plant; however, the facility managers were unsure whether future activities would generate The facility was subsequently classified as a large hazardous waste. quantity generator. The NCDEHNR conducted a RCRA Interim Status Inspection of the facility on January 12, 1982 (Ref. 1, 20, and 24). The inspection revealed that the plant did not produce hazardous waste. As part of the inspection, three water samples were collected from the plant's basins and analyzed for pH, suspended solids, arsenic, barium, cadmium, chromium, lead, mercury, and selenium. The concentrations of the inorganic metals were below the tests detection limits (Ref. 24). On August 9, 1982, the classification of the facility under RCRA was changed to delete the facility as a generator and add it as a small quantity generator (Ref. 2). CP&L currently has an NPDES Permit (No. NC0001422) effective January 1, 1990 and expiring on December 31, 1994 for the discharge of wastewater to the Cape Fear River (Ref. 23). Based on readily available information, there have been no violations to date. The NUS Corporation conducted a off-site reconnaissance of the 1,200 acre plant on February 7, 1989. Due to the proximity of the site to the Cape Fear River and the potential to adversely affect fish and endangered species habitats downstream of the site, a medium-priority Phase II SSI was recommended. Therefore, on June 27, 1991, G&O staff conducted an on-site reconnaissance and carried out a sampling plan on the site.

2.2 SITE DESCRIPTION

2.2.1 Site Location

The CP&L, Sutton Steam Electric Plant is located approximately 4 miles northwest of the City of Wilmington, along the east bank of the Cape Fear River, approximately 3,000 feet downstream of the confluence with Indian Creek (Appendix A, Figure 1). The site is shown on the Castle Hayne and the Leland, North Carolina USGS Topographic Maps at latitude 34° 17' 0"N and longitude 077° 59' 0"W (Ref. 4).

2.2.2 Site Features

The site is located on a relatively flat large parcel of land adjacent to the Cape Fear River and includes an electric coal generation facility,

three fly ash ponds (one active, two inactive), a large cooling water pond, and sections of wooded, undeveloped land that can be accessed by a system of unimproved roads. The site is completely fenced and is inaccessible to the public (Ref. 16). The site is bounded on the west by the Cape Fear River and to the southeast by the CSX Railroad (formerly Seaboard Coast Line). A chemical manufacturing company is located adjacent to the site, on the northeast, just east of the CSX Railroad. Undeveloped wetland areas border the site to the north (Ref. 4).

The Sutton Steam Electric Plant generates electricity. Fly ash is a byproduct of the coal incineration and has historically been disposed of in lined and unlined diked ponds or lagoons located on the site (Ref. 8 and 17). There are two inactive and one active fly ash ponds located on the site. The active fly ash pond covers 74.3 acres and has a volume of approximately 2,158,000 cubic yards. It was constructed with a one foot The inactive fly ash pond is unlined and has a thick clay liner in 1985. volume of approximately 500,000 cubic yards and a surface area of 68 acres at an elevation of 15.5 feet (Ref. 22). The oldest (original) fly ash pond is located adjacent to the plant at the location of the two 11-million gallon AGSTs, was apparently graded flat and is currently grassed (Ref. 17).

A large cooling water pond, located just east of the Cape Fear River, was constructed in 1972 to provide cooling water to the coal generation facility. Water is supplied by the Cape Fear River. The pond is divided by a series of stone and soil diking systems, designed to create a circular flow around the perimeter of the pond to maximize cooling efficiency (Appendix A, Figure 2, Photo #6). A concrete canal system connects the ends of the cooling pond circuit to the coal generation plant (Appendix A, Figure 2, Photo #5).

A small drum storage area was observed to contain ten 55-gallon drums. The drums are stored in a recently constructed concrete containment basin. The drums reportedly contain various types of petroleum lubricating oils and cleaning/degreasing products. There were no signs of prior spills or leaks observed in this area during G&O's Phase II field reconnaissance (Ref. 17). There are two 11 million-gallon AGSTs in the southern portion of the site, one of which is currently used to store white liquor, a liquid used in the paper industry. The other AGST, used to store "Kraft Pulping Liquor," was observed to be empty. The two AGSTs are situated adjacent to each other and are surrounded by a dike to contain any spills. No clay or impermeable liner was observed. A pipe system extends from the AGSTs to a pier, located on the Cape Fear River, which is used to transfer product from barges.

There are 24 monitoring wells, constructed of 2-inch PVC pipe, located onsite. The plant receives its potable water and boiler water from four on-site wells, two of which are currently in service. In addition, there are three county wells just offsite (Ref. 17). A large cooling water pond with open channel supply and return was constructed just east of the Cape Fear River in 1972 (Ref. 17).

2.2.3 Waste Characteristics

The Sutton Steam Electric Plant currently burns coal at a rate of 5,000 tons/day to generate electricity. Fly ash, a byproduct of the coal

incineration, is generated at a rate of 750 tons/day (Ref. 16). The fly ash has historically been disposed of in lined and unlined ponds or lagoons (Ref. 16, 17 and 22). There are two inactive and one active fly ash ponds located on the site. The fly ash disposed of onsite contains heavy metals, including arsenic, mercury, chromium, and lead (Ref. 1, 16, and 20). There are two basins of unknown size and condition used for the disposal of oil contaminants, boiler blowdown, and flashtank overflow. Monitoring wells onsite are tested for various parameters, including chloride, solvents, arsenic, selenium, iron, and total dissolved solids (Ref. 17). No hazardous wastes or substances were listed on the facility's EPA RCRA Part A Permit application (Ref. 21). According to facility representatives, the solvents 2-butanone (MEK) and varsol are used for cleaning (Ref. 17). There have been no known PCB spills onsite. In addition to coal, the plant burns waste oils (Ref. 17).

3.0 ENVIRONMENTAL SETTING

3.1 TOPOGRAPHY

The topography of the site is relatively flat, as the site is situated between the Cape Fear and Northeast Cape Fear Rivers. The site slope is less than one percent to the west. The elevation of the site ranges from approximately 3 to 25 feet Mean Sea Level (Appendix A, Figure 3).

3.2 SURFACE WATER

3.2.1 Overland Drainage and Potentially Affected Surface Water Bodies

Runoff from the site drains to the west, into the Cape Fear River (Ref. 4). Cape Fear River flows for more than 15 miles before entering the Atlantic Ocean. The Cape Fear River is classified as a Class C fresh and tidal salt water. Class C waters are protected for fish and wildlife propagation, secondary recreation, agriculture, and other uses requiring waters of lower quality (Ref. 13). The mixing of salt and fresh water extends upstream along the Cape Fear River to the southern portion of Wilmington (Ref. 12). There are commercial fisheries along the Cape Fear River within 4 miles downstream of the site. The Cape Fear River is also used for recreational fishing (Ref. 11).

3.2.2 Climatology

The Wilmington area has a mean annual precipitation of approximately 54 inches, and the mean annual lake evaporation is approximately 42 inches (Ref. 5). Therefore, the net annual rainfall for this area is 12 inches. The 2-year, 24-hour rainfall depth is 4.5 inches (Ref. 14).

3.3 GROUNDWATER

3.3.1 Hydrogeology

The site is located in the Atlantic Coastal Plain Physiographic Province (Appendix A, Figure 4). The site is underlain, in ascending order, by the upper Black Creek Formation, the Peedee Formation, and surficial deposits (Ref. 3, 7, and 15). The Black Creek Formation consists of gray to black clay, lignitic, contains thin beds and laminae of finegrained micaceous sand and thick lenses of cross-bedded sand. The formation has glauconitic, fossiliferous clayey sand lenses in the upper part (Ref. 15). The Peedee Formation consists of sand, clayey sand, and It is greenish gray to olive black, massive, glauconitic, locally clay. fossiliferous and calcareous. There are patches of sandy molluscan-mold limestone in the upper part of the formation (Ref. 15). The Peedee Formation has a fresh water sandstone aquifer with an average thickness of approximately 35 feet. The aquifer slopes from the northwest, where it is found at an elevation of approximately sea level, to Wrightsville Beach where the aquifer is approximately 190 feet below sea level. Underlying

beds of relatively impermeable clay, approximately 100 to 150 feet thick, separate the sandstone aquifer from the underlying salt water aquifers, but do not preclude salt water intrusion. Throughout most of the county, except along the Cape Fear River and Atlantic Ocean, the Peedee sandstone is a confined aquifer. Well data for this aquifer show yields above 400 gpm and the specific capacity greater than 30 gallons per minute per foot of drawdown (Ref. 3).

3.3.2 Aquifer Use

The surficial and the Peedee Formation aquifers are the two aquifers used in New Hanover County (Ref. 7). In the area of the site, the surficial aquifer is the main source of drinking water (Ref. 8). This aquifer is approximately 30 feet thick and is interconnected with the upper portion of the Peedee Formation. The depth to groundwater is approximately 10 feet (Ref. 3). Well depths average 55 feet below land surface (bls) in the area of the site (Ref. 8). CP&L has several on-site wells with depth of 53 and 30 feet bls that have yields of 480 and 1,100 gpm (Ref. 7). The Peedee Formation is generally not used for drinking water because of high chloride content resulting from salt water intrusion into the lower Peedee Formation (Ref. 7).

3.3.3 Soils

Soils in the immediate area of the power plant are classified as Urban Land soils (Ref. 6). The Urban Land soil designation is used for areas where the original soil has been extensively altered by development, thus changing or destroying the natural characteristics of the soil. These areas are typically covered by asphalt, concrete, buildings, or other impervious cover. The other soils on the site include: Lakeland sand, Kureb sand, and Dorovan soils. Lakeland sand soils are excessively drained soils with slopes ranging from 1 to 8 percent. The surface layer is consists of 2 inches of grayish brown sand and yellowish brown to brownish yellow sand up to a depth of 80 inches. The permeability of Lakeland sand is very rapid, greater than 20 inches/hour (1.4 x 10^{-2} cm/sec). Kureb sand, 1 to 8 percent slopes, is excessively drained. The surface sand is dark gray and approximately 3 inches thick. The subsoil, for approximately 23 inches, is light gray sand followed by brownish yellow to pale brown sand to a depth of approximately 89 inches. The permeability of Kereb sand is rapid; it ranges from 6.0 to 20 inches/hour (4.2 x 10^{-3} to 1.4 x 10^{-2} cm/sec). Dorovan soils are very poorly drained soil found in nearly level areas including bays and stream flood plains. These soils are typically flooded for extended periods. Dorovan soils are located in the western portion of the site adjacent to the cooling water pond. The surface layer of typically consists of a 4 inches thick layer of black muck that is very high in organic matter content. The subsurface, to a depth of approximately 64 inches, is black or very dark gray muck. The permeability of Dorovan soils is very slow, less than 0.06 inches/hour (<4.2 x 10^{-5} cm/sec) (Ref. 6).

3.4 WATER SUPPLY

Drinking water in the area of the site is provided from both surface There are 92 CP&L employees who obtain water and groundwater sources. drinking water from two on-site wells (Ref. 17). The closest off-site well is located within the 0.25-mile radius and is operated by New Hanover County (Ref. 4 and 30). The well water is blended with water from two other close by wells located within the 0.5 mile radius. These three wells serve 67 customers, mostly residential, along U.S. Route 421 (Ref. 30). Based on the pumping rates of the three county wells, 50 percent of the water supply for the 67 connections is obtained from one of the wells located within a distance of 0.25 to 0.5 miles from the site (Ref. 31). The other two wells contribute equally, or 25 percent each to the total Therefore, because the contribution of a single well to system (Ref. 31). the system is greater than 40 percent of the total, the population served by the system is apportioned to each well based on the well's relative contribution to the total blended system (Ref. 32). The number of people served by these three county wells was estimated to be 163 (67 connections or homes x 2.43 people/house) (Ref. 10 and 29). Therefore, for this system, 41 people (25 percent of 163) are assigned to the 0.0 to 0.25 mile radius and 122 people (75 percent of 163) are assigned to the 0.25 to 0.5 mile radius. The Town of Navassa has approximately 500 people who utilize groundwater (Ref. 9). The town's water supply well was assumed to be located within the town and within the 2-mile radius (Ref. 4, 9, and 29). The City of Wilmington obtains its drinking water from a surface water intake located approximately 22 miles northwest of the site; therefore, its water supply is unaffected by the site (Ref. 8 and 16). People residing in Wrightsboro obtain their drinking water from domestic wells (Ref. 8 and The population using groundwater was estimated by measuring the area 16). within each radius ring and multiplying by 383.2 people/square mile, the 1990 population density for Wrightsboro (Ref. 10 and 29). The remainder of the population in the county obtain drinking water from private wells (Ref. 8 and 16). The population utilizing private wells was estimated by multiplying the house count by the 1990 census number of people per house in New Hanover County (2.43 people/house), and by area measurements multiplied by the County population density of 382.7 people/square mile (Ref. 29).

The following is a breakdown of the estimated population believed to be relying on groundwater within a 4-mile radius of the CP&L Sutton Steam Plant site:

<u>Radius</u>	Population/Radii	Cumulative Population
onsite	92	92
1/4-mile	41	133
1/2-mile	122	255
1-mile	0	255
2-miles	566	821
3-miles	1,943	2,764
4-miles	3,951	6,715

3.5 POPULATION DISTRIBUTION

The total population within a 4-mile radius is approximately 13,110 (Ref. 29). Based on information gathered during the G&O field reconnaissance, the facility has 92 workers; therefore, the on-site population is 92. The population within each radius ring is listed below:

	County	Wilmington	Wrightsboro	Cumulative
<u>Radius</u>	Population	Population	Population	Population
onsite	92	0	0	92
1/4-mile	41	0	0	133
1/2-mile	122	0	0	255
1-mile	0	0	0	255
2-mile	566	0.	0	821
3-mile	338	1,463	1,605	4,227
4-mile	2,318	4,932	1,633	13,110

The New Hanover County population was determined by conducting a house count from the USGS topographic maps and multiplying by the 1990 census figure for number of persons/household (Ref. 10 and 29). The population of Wilmington and Wrightsboro were determined by calculating the land area for the two communities and multiplying by the corresponding 1990 census figure for persons/square mile (Ref. 29).

3.6 LAND USE

The site is located approximately 4 miles northwest of the City of Wilmington (Appendix A, Figures 1 and 3). The land use of the area surrounding the site is primarily undeveloped wetlands (Ref. 4). The nearest school is located within the corporate limits of the City of Wilmington, approximately 2.9 miles southeast of the site (Ref. 4). The nearest residence is located approximately 1.0 mile southwest of the site (Ref. 4).

3.7 SENSITIVE ENVIRONMENTS

The site contains numerous wetland areas from the Palustrine and The following wetland are found on the site: Lacustrine systems. Palustrine, scrub shrub, broad leafed deciduous, seasonally flooded (PSS1C); Palustrine, unconsolidated bottom, mud, intermittently exposed (PUB3G); Palustrine, unconsolidated bottom, mud, permanently flooded (PUB3H); Palustrine, emergent, persistent, saturated (PEM1B); and littoral, unconsolidated shore, seasonally flooded. Lacustrine. diked/impounded (L2USCh) (Ref. 33). There are approximately 500 acres of wetlands within 1 mile downstream of the site (Ref. 33). The downstream wetland that may be affected by runoff from the site are: Palustrine, forested deciduous, semipermanently flooded (PF06F); Palustrine, forested evergreen/broad-leaved deciduous, needle-leaved temporarily flooded (PF04/1A); Palustrine, scrub shrub, broad-leaved deciduous. seasonally tidal (PSS1R); Palustrine, scrub shrub, broad-leaved deciduous, temporarily

flooded (PSS1A); Palustrine, emergent, persistent, regularly flooded (PEM1M) (Ref. 33).

Endangered species that inhabit the areas around the site include: Bachman's warbler, red-cockaded woodpecker, Kemp' Ridley sea turtle, loggerhead turtle, shortnose sturgeon, manatee, and the rough-leaved loose strive plant (Ref. 12).

4.0 FIELD INVESTIGATION

4.1 DESCRIPTION OF SAMPLES AND SAMPLE LOCATIONS

environmental samples were collected to total of nine (9) characterize the site. To determine whether a release of contaminants has occurred, limited subsurface and surficial investigation was recommended to obtain soil, groundwater, surface water, and sediment samples for laboratory analysis. The locations of the sampling points were originally proposed in an abbreviated sampling plan prepared by G&O; however, the NCDEHNR made the final recommendations during the sampling effort conducted on June 27, 1991. Therefore, the final sampling locations as shown in Appendix A, Figure 2 reflects the decision of the NCDEHNR staff.

To determine whether contaminants were released into the environment, three (3) groundwater and three (3) surface soil samples were obtained by G&O (see Photographs in Appendix A). A representative of the NCDEHNR collected two (2) sediment samples and one (1) groundwater sample. All the samples collected on the site were contained, preserved and held in accordance with the Standard Operating Procedures (SOP) (Ref. 28). The locations of these samples are illustrated in Appendix A, Figure 2, and are discussed below:

BACKGROUND MONITORING WELL SAMPLE (CLMW01) - A grab background groundwater sample was collected from existing monitoring well MW-11 (CP&L ID No. 11, State well construction Permit No. 64-0036-WM-0368) located northeast of the active fly ash pond. The well is constructed of 2-inch PVC pipe with a total depth of 50. The well is screened from a depth of 40 to 50 feet with 0.010 inch slotted PVC. The well log indicates that the well is installed in the surficial sand aquifer (Ref. 18). The bottom of the well was measured to be at a depth of approximately 49.2 feet bls and groundwater was encountered at a depth of 14.05 feet bls (Appendix A, Photo **#**7).

DOWNGRADIENT GROUNDWATER SAMPLE (CLGW02) - A grab groundwater sample was collected from a temporary monitoring well located near the western-most area of the inactive fly ash pond. The well was located approximately 10 feet southwest of the outlet stand pipe for the inactive pond. The boring for the well was advanced to a depth of 10 feet bls and groundwater was encountered at a depth of 7.5 bls. Approximately 3 inches of fly ash was encountered on the water surface (Appendix A, Photo # 8).

DOWNGRADIENT GROUNDWATER SAMPLE (CLGW03) - A grab groundwater sample was collected from a temporary monitoring well located inside the diked old fly ash pond, adjacent to the main plant building and the two 11 million gallon AGSTs. The well was located east of the two AGSTs, approximately 32 feet inside the southeast corner of the diked area. The boring was advanced to a depth of 3 feet bls and groundwater was encountered at a depth of 1.5 feet bls (Appendix A, Photo $\frac{4}{9}$ 9).

BACKGROUND SURFACE SOIL SAMPLE (CLSSO1) - A background surface soil sample was collected adjacent to existing monitoring well MW-11 (sample point CLMW01) northeast of the active fly ash pond (Appendix A, Photo # 7).

DOWNGRADIENT SURFACE SOIL SAMPLE (CLSS02) - A downgradient composite surface soil sample was collected from two locations within the inactive fly ash pond and one location within the active fly ash pond.

DOWNGRADIENT SURFACE SOIL SAMPLE (CLSS03) - A downgradient composite surface soil sample was collected from three locations within the site of the old (original) fly ash pond. The sample points were in the vicinity of the two large AGSTs (Appendix A, Photo # 10, 11, & 12).

BACKGROUND SEDIMENT SAMPLE (CLSED01) - A background sediment sample was collected from the left (east) bank of the Cape Fear River, northwest of the cooling water pond.

DOWNGRADIENT SEDIMENT SAMPLE (CLSED02) - A downgradient sediment sample was collected from the left (east) bank of the Cape Fear River, just west of the cooling water intake (return), west of the main plant building.

ONSITE, DOWNGRADIENT DOMESTIC WELL (CLDW01) - A groundwater sample was collected from the on-site drinking water well. The sample point was obtained from an external spigot located on the north face of the power plant building.

4.2 FIELD MEASUREMENTS

Field measurements collected for groundwater samples include pH, temperature, and conductivity. These values are listed in Table 2.

TABLE 1

FIELD MEASUREMENTS FOR GROUNDWATER SAMPLES

CP&L, SUTTON STEAM ELECTRIC PLANT

WILMINGTON, NEW HANOVER COUNTY, NORTH CAROLINA

SAMPLE CODE	рH	TEMPERATURE (OC)	<u>CONDUCTIVITY (umhos/cm)</u>
MW01	NA	18.8	0.540
GW02	7.0	20.7	0.495
GW03	NA	25.2	0.304

4.3 ANALYTICAL RESULTS

Upon completion of the sampling effort, samples collected by G&O were taken to Industrial and Environmental Analysts, Inc. (IEA) in Research Triangle Park, North Carolina for analysis (see Volume II). Level IV Routine Analytical Service (RAS) Contract Laboratory Program (CLP) data packages and associated narratives were assembled for this project by IEA. At the request of EPA Region IV, the data were validated by the NUS Corporation in Tucker, Georgia. Samples collected by NCDEHNR were analyzed by the North Carolina State Laboratory of Public Health. The results of the sample analysis are summarized in Tables 2 & 3 (Appendix B) and discussed below:

DOWNGRADIENT GROUNDWATER (CLGW02) - A groundwater sample was collected from a hand augered well at the edge of the inactive No Volatile Organic Compounds (VOCs), fly-ash pond. Semivolatile Organic Compounds (BNAs) or Pesticides/PCBs were reported in this sample. The following inorganics were reported in significant concentrations: aluminum (100000 ppb), arsenic (160 ppb), barium (1900 ppb), beryllium (20J ppb), calcium (84000 ppb), chromium (220 ppb), copper (820 ppb), iron (41000 , (dga lead (98 ppb), mercury (0.55 ppb), nickel (190 ppb), selenium (110 ppb), thallium (13 ppb), vanadium (490 ppb) and zinc (240 ppb). The concentrations of arsenic, barium, beryllium, chromium, iron, lead, nickel, selenium and thallium exceeded their respective North Carolina Maximum Contaminant Level (NCMCL) and/or Federal Maximum Contaminant Level (MCL).

DOWNGRADIENT GROUNDWATER (CLGW03) - A groundwater sample was collected from a hand augered well at the edge of the old fly-ash pond near the above-ground storage tanks. No VOCs, BNAs or Pesticides/PCBs were reported in significant concentrations in this sample. The following inorganics were reported in significant concentrations: aluminum (240000J ppb), arsenic (200J ppb), barium (660J ppb), chromium (150J ppb), copper (67J ppb), iron (92000J ppb), lead (190J ppb), mercury (0.91J ppb), nickel (50J ppb), selenium (43J ppb), vanadium (360J ppb) and zinc (92J ppb). The concentrations of arsenic, chromium, iron, lead and selenium exceeded their respective NCMCL and/or MCL.

INACTIVE FLY-ASH POND SURFACE SOIL COMPOSITE (CLSS02) - A surface soil composite sample was collected from three locations in the vicinity of the inactive fly-ash pond. No VOCs, BNAs or Pesticides/PCBs were reported in significant concentrations in this sample. The following inorganics were reported in significant concentrations: aluminum (2000 ppm), arsenic (40 ppm), barium (47 ppm), calcium (3100 ppm), chromium (9.8 ppm), cobalt (1.3 ppm), copper (27 ppm), iron (9900 ppm), lead (2.6 ppm), magnesium (190 ppm), manganese (82 ppm), nickel (7 ppm), selenium (4.0 ppm), vanadium (11 ppm) and zinc (11 ppm). All inorganics, except selenium, were reported within naturally occurring concentrations for inorganics in soils in the Eastern United States.

OLD FLY-ASH POND SURFACE SOIL COMPOSITE (CLSS03) - A surface soil composite was collected from three locations in the vicinity of the old fly-ash pond. No VOCs or BNAs were reported in significant concentrations in this sample. 4,4'-DDD (3.7 ppb) was the only Pesticide/PCB reported in significant concentrations in this sample. The following inorganics were reported in significant concentrations: aluminum (990 ppm), calcium (4100 ppm), iron (650 ppm), lead (1.9 ppm), magnesium (140 ppm), manganese (1.8 ppm), vanadium (1.8J ppm) and zinc (5.2 ppm). All inorganics were reported within naturally occurring concentrations for inorganics in soils in the Eastern United States.

Note - The following samples were collected by NCDEHNR and analyzed at the State Laboratory of Public Health.

DOWNGRADIENT SEDIMENT SAMPLE (CLSED02) - A sediment sample was collected on the Cape Fear River downgradient of the site. No VOCs, BNAs or Pesticides/PCBs were reported in significant concentrations in this sample. Both total metals and TCLP analysis were run on this sample. Arsenic (5.8/U ppm) was the only inorganic reported in significant concentrations in this sample. The first value is for totals and the second is for TCLP. Arsenic was reported within naturally occurring concentrations for arsenic in soils in the Eastern United States.

ONSITE WELL (CLDW01) - A groundwater sample was collected on the southern part of the site. No VOCs, BNAs or Pesticides/PCBs were reported in this sample. Barium (60 ppb) was the only inorganic reported in this sample. Using CLMW01 as a background well, this value is not considered significant.

In summary, groundwater on the site appears to be contaminated with aluminum, arsenic, barium, beryllium, calcium, chromium, copper, iron, lead, mercury, nickel, selenium, vanadium and zinc. Soils from the inactive fly-ash pond appear to be contaminated with aluminum, arsenic, barium, beryllium, calcium, chromium, copper, iron, lead, magnesium, manganese, nickel, selenium, thallium, vanadium and zinc. Soils from the old fly-ash pond appear to be contaminated with 4,4'-DDD, aluminum, calcium, iron, lead, magnesium, manganese, vanadium and zinc. Sediments from the Cape Fear River downgradient of the site appear to be contaminated with arsenic. Arsenic, mercury, chromium and lead are attributable to site activities.

5.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the information available at this time, it is believed that the site may pose a threat to human health and/or the environment. The analytical results of the sampling event at the subject site revealed environmental releases of hazardous contaminants at the following areas:

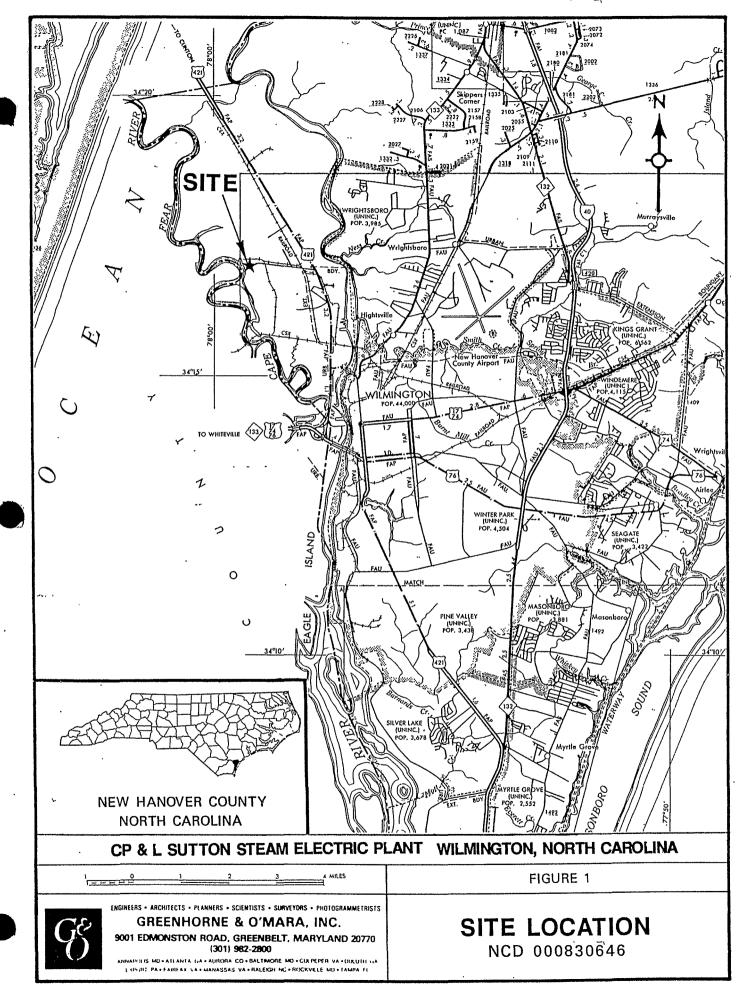
- o Groundwater in the vicinity of the inactive fly-ash pond is contaminated with significant levels of aluminum, arsenic, barium, beryllium, calcium, chromium, copper, iron, lead, mercury, nickel, selenium, thallium, vanadium and zinc. Arsenic, barium, beryllium, chromium, iron, lead, nickel, selenium and thallium exceeded their respective NCMCL and/or MCL.
- o Groundwater in the vicinity of the old fly-ash pond is contaminated with significant levels of aluminum, arsenic, barium, chromium, copper, iron, lead, mercury, nickel, selenium, vanadium and zinc. Arsenic, barium, chromium, iron, lead and selenium exceeded their respective NCMCL and/or MCL.
- Soils from the inactive fly-ash pond are contaminated with aluminum, arsenic, barium, beryllium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, selenium vanadium and zinc. All inorganics, except selenium, were within naturally occurring concentrations for inorganics in soils in the Eastern United States.
- Soils from the old fly-ash pond are contaminated with 4,4'-DDD, aluminum, calcium, iron, magnesium, manganese, vanadium and zinc. All inorganics were within naturally occurring concentrations for inorganics in soils in the Eastern United States.
- Sediment from the Cape Fear River downgradient of the site.
 is contaminated with arsenic.

Due to the fact that these contaminants are attributable to site activities, G&O is recommending that this site proceed onto the next phase of the pre-remedial process. Over 6715 residents within a 4-mile radius of the site rely on groundwater for their In addition, the nearest well is within 1000 feet potable water. of the site. This well contributes to the New Hanover County municipal water supply and serves approximately 163 people. If the fly ash were to become airborne, on-site workers, as well as nearby wetlands associated with the Cape Fear River could be affected. Finally, contaminated surface water and sediments of the Cape Fear River may adversely impact fishing and recreational activities that occur along the river.

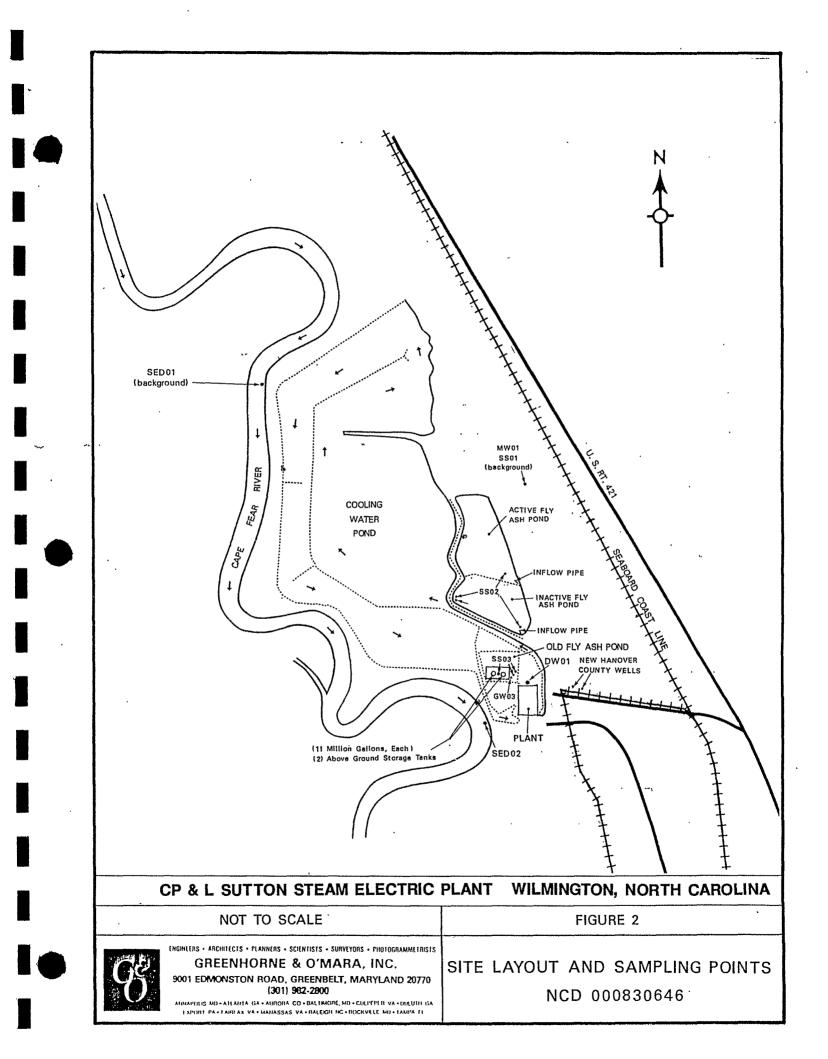
LIST OF REFERENCES FOR THE CAROLINA POWER AND LIGHT COMPANY, SUTTON STEAM ELECTRIC PLANT SITE EPA ID NUMBER - NCD 000830646

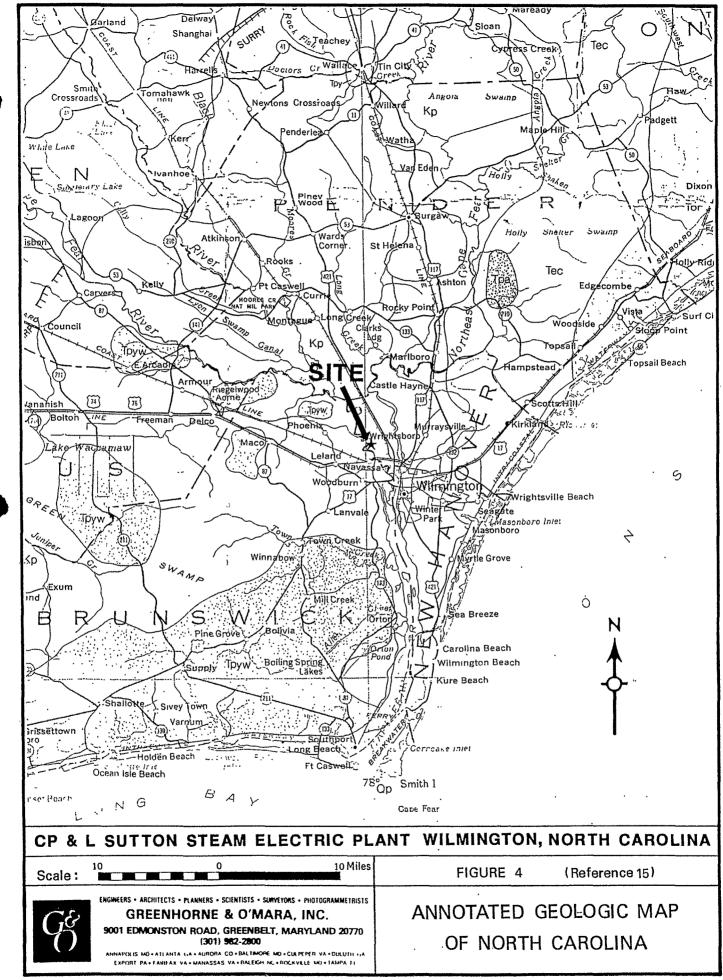
- Potential Hazardous Waste Site Preliminary Assessment (EPA Form 2070-12) for Carolina Power and Light Company - Sutton Steam Plant). Filed by Lee Crosby, North Carolina Department of Human Resources, February 26, 1985.
- 2. Strickland, O.W., Solid and Hazardous Waste Management Branch, North Carolina Department of Human Resources, letter to S.R. Zimmerman, Carolina Power and Light, August 9, 1982. Subject: Change of RCRA status.
- 3. Bain, L., "Geology and Groundwater Resources of New Hanover County, North Carolina," Groundwater Bulletin No. 17, (Raleigh, North Carolina: North Carolina Department of Water Resources, 1970), pp.1.4, Figure 4, (Geologic Cross-section B-b').
- U.S. Geological Survey, 7.5-minute series Topographic Quadrangle Map of North Carolina: Leland N.C. (1984), Castle Hayne, N.C. (1980), Wilmington, N.C. (1970), and Winnabow, N.C. (1943). Scale 1:24,000.
- 5. U.S. Department of Commerce, <u>Climatic Atlas of the United States</u>, (Washington, D.C.: GPO, June 1968), Reprint: 1988, National Oceanographic and Atmospheric Administration.
- U.S. Department of Agriculture, Soil Conservation Service, <u>Soil Survey</u> of New Hanover County. North Carolina, Wilmington North Carolina, April 1977.
- LeGrand, E., "Geology and Groundwater Resources of Wilmington=New Bern Area," Groundwater Bulletin No. 1, (Raleigh, North Carolina: North Carolina Department of Water Resources, 1960), pp.1-11, 59-66.
- 8. NUS Corporation Logbook No. F4-1249 for Carolina Power and Light (Sutton Steam), TDD No. F4-8901-46. Documentation for water usage between Cape Fear and Northeast Cape Fear Rivers.
- 9. Davis, A., Town of Navassa Water Department, telephone conversation with Cindy Poole, NUS Corporation, January 4, 1989. Subject: Navassa Water Department wells and connections.
- 10. U.S. Census Bureau, U.S. Department of Commerce, 1990 Population Data.
- 11. Mullis, T., Fishery Management Research Coordinator, North Carolina Resources Commission, telephone conversation with Cindy Poole, NUS Corporation, March 17, 1989. Subject: Fishing and recreational activity on the Cape Fear River.
- 12. Henson, T., North Carolina Wildlife Resources Commission, telephone conversation with Mary McDonald, NUS Corporation, March 17, 1989.

Subject: Endangered and Threatened Species in the Wilmington area.


- 13. North Carolina Department of Environment, Health, and Natural Resources (Division of Environmental Management), <u>Classifications and Water</u> <u>Quality Standards Assigned to The Waters of the Cape Fear River Basin</u>. March 1, 1990.
- 14. U.S. Department of Commerce, <u>Rainfall Frequency Atlas of the United</u> <u>States</u>. U.S. Government Printing Office, Technical Paper No. 40. Washington DC, 1963.
- 15. North Carolina Geological Survey, North Carolina Department of Conservation and Community Development, Division of Land Resources, Geologic Map of North Carolina. Raleigh, North Carolina. 1985.
- 16. NUS Corporation. Screening Site Inspection, Phase I for the Carolina Power and Light, Sutton Steam Plant site, Wilmington, New Hanover County, North Carolina. EPA ID No. NCD 000830646. TDD No. F4-8901-46. June 30, 1989.
- 17. Greenhorne & O'Mara, Inc. Field Notes. Site visit to the Carolina Power and Light, Sutton Steam Electric Plant site, June 27, 1991.
- 18. Well Construction Records for Monitoring Wells. Carolina Power and Light. Ezra Meir Associates, Inc., December 4, 1984; Dale Todd Well Drilling, December 15, 1986; and Richard Catlin & Associates, Inc. February 2, 1990.
- 19. U.S. Environmental Protection Agency, Office of Drinking Water, Drinking Water Regulations and Health Advisories. Washington, D.C., November 1990.
- 20. Bramble, L. E., NCDEHNR (Environmental Health Section). Letter to D. Bland, NCDEHNR, Air and Hazardous Material Division, Re: Preliminary Assessments. March 15, 1985.
- 21. U.S. EPA Hazardous Waste Permit Application (EPA Forms 3510-1 and 3510-3) for Carolina Power and Light, Sutton Steam Plant, Wilmington, North Carolina. Filed by P.W. Howe, Vice President, Technical Services. November 19, 1980.
- 22. Carolina Power and Light, Sutton Steam Plant, Lake, Fly Ash Ponds and Plant Data.
- 23. Wilms, R. P., Director, NCDEHNR. Letter to G. H. Warriner, dated December 7, 1989, enclosing NPDES Permit No NC0001422 effective January 1, 1990 and expiring December 31, 1994.
- 24. Church, R. NCDEHNR (Eastern Regional Office), letter to O. W. Strickland, NCDEHNR, enclosing the Report of Interim Status Inspection on January 12, 1982. January 27, 1982.
- 25. NUS Corporation Logbook No. F4-2392 for Carolina Power and Light (Sutton Steam), TDD No. F4-9006-07. Site visit field notes. June 21, 1990.

- 26. Church, R. New Hanover Water System, telephone conversation with Matthew McCoy, NUS Corporation, July 2, 1990. Subject: Monitoring wells at the CP&L Sutton Steam Plant.
- 27. U.S. EPA Notification of Hazardous Waste Activity (EPA Form 8700-12). Received June 25, 1986.
- 28. U.S. Environmental Protection Agency, Environmental Services Division, Environmental Compliance Branch Standard Operation Procedures and Quality Assurance Manual. Athens, Georgia, February 1, 1991.
- 29. Suhr, J. L. (G&O). 1991. Population Calculations, RE: CP&L Sutton Steam Electric Plant, Wilmington, North Carolina. December 6. Revised January 10, 1992.
- 30. Suhr. J. L. (G&O). 1991. Telephone conversation with Jim Craig, Conservation Engineer, New Hanover County Engineering Department, RE: County Potable Water Wells Near the CP&L, Sutton Steam Plant, Wilmington, North Carolina. December 6.
- 31. Suhr. J. L. (G&O). 1992. Telephone conversation with Wyatt Blanchard, County Engineer, New Hanover County Engineering Department, RE: Pumping Rates of the County Potable Water Wells Near the CP&L, Sutton Steam Plant, Wilmington, North Carolina. January 10.
- 32. National Archives and Records Administration, <u>Code of Federal</u> <u>Regulations. Protection of Environment 40: Part 300</u>, pp. 51589, 51603, and 51661. December 14, 1990. (Washington, D.C., GPO 1990).
- 33. U.S. Department of the Interior, Fish and Wildlife Service, National Wetlands Inventory Map, Castle Hayne, N.C., Draft copy, (August 23, 1988).
- 34. U.S. Congress, <u>Superfund Amendments and Reauthorization Act of 1986</u>, Section 125. Certain Special Study Wastes, pp. H.R.2005-77 and H.R.2005-78.
- 35. Kasser, H. (G&O). 1992. Telephone conversation with Art Johnson, Environmental Scientist, U.S. Environmental Protection Agency, RE: Special Study Waste classification in SARA Section 125, January 14.
- 36. Huff, C. (G&O). 1992. Memorandum regarding Wellhead Protection Areas in North Carolina. January 31.


APPENDIX A MAPS , PHOTOGRAPHS, AND TABLES


-

.

SOURCE: North Carolina Department of Transportation, County Road Maps, 1990.

SOURCE MAP: DEPARTMENT OF NATURAL RESOURCES AND COMMUNITY DEVELOPMENT (1985) COMPLIED BY: THE NORTH CAROLINA GEOLOGICAL SURVEY

COASTAL PLAIN

QUATERNARY

Qp

Tp

Tpyw

Tpy

SURFICIAL DEPOSITS, UNDIVIDED — Sand, clay, gravel, and peat deposited in marine, fluvial, eolian, and lacustrine environments. Quaternary deposits not shown at altitudes greater than approximately 25 feet above mean sea level (Suffolk Scarp, in part)

TERTIARY

PINEHURST FORMATION — Sand, medium- to coarse-grained, crossbedding and rhythmic bands of clayey sand common, unconsolidated

- TERRACE DEPOSITS AND UPLAND SEDIMENT Gravel, clayey sand, and sand, minor iron-oxide cemented sandstone
 - WACCAMAW FORMATION Fossiliferous sand with silt and clay, bluish-gray to tan, loosely consolidated. Straddles Pleistocene-Pliocene boundary

YORKTOWN FORMATION AND DUPLIN FORMATION, UNDIVIDED

Yorktown Formation: Fossiliferous clay with varying amounts of fine-, grained sand, bluish gray, shell material commonly concentrated in

and limestone, bluish gray; mainly in area south of Neuse River

- lenses; mainly in area north of Neuse River Duplin Formation: Shelly, medium- to coarse-grained sand, sandy marl,
- Tob

Tor 🖄

BELGRADE FORMATION, UNDIVIDED

- Pollocksville Member: Oyster-shell mounds in tan to orange sand matrix, indurated locally
- Haywood Landing Member: Fossiliferous clayey sand, gray to brown. Members grade into each other laterally

RIVER BEND FORMATION — Limestone, calcarenite overlain by and intercalated with indurated, sandy, molluscan-mold limestone

CASTLE HAYNE FORMATION

Spring Garden Member: Molluscan-mold limestone, indurated, very sandy. Grades downward into a calcareous sand and laterally into Comfort Member

Comfort Member and New Hanover Member, undivided Comfort Member: Bryozoan-echinoid skeletal limestone, locally dolomitized, solution cavities common

New Hanover Member: Phosphate-pebble conglomerate, micritic, thin; restricted to basal part of Castle Hayne Formation in southeastern counties

BEAUFORT FORMATION, UNDIVIDED

- Unnamed upper member: Sand and silty clay, glauconitic, fossiliferous, and locally calcareous
- Jericho Run Member: Siliceous mudstone with sandstone lenses, thin bedded; basal phosphatic pebble conglomerate

CRETACEOUS

Кр

PEEDEE FORMATION — Sand, clayey sand, and clay, greenish gray to olive black, massive, glauconitic, locally fossiliferous and calcareous. Patches of sandy molluscan-mold limestone in upper part

BLACK CREEK FORMATION ---- Clay, gray to black, lignitic; contains thin beds and laminae of fine-grained micaceous sand and thick lenses of cross-bedded sand. Glauconitic, fossiliferous clayey sand lenses in upper part

Km

MIDDENDORF FORMATION — Sand, sandstone, and mudstone, gray to pale gray with an orange cast, mottled; clay balls and iron-cemented concretions common, beds laterally discontinous, cross-bedding common

CAPE FEAR FORMATION -- Sandstone and sandy mudstone, yellowish gray to bluish gray, mottled red to yellowish orange, indurated, graded and laterally continuous bedding, blocky clay, faint cross-bedding, feldspar and mica common

ANNOTATED LEGEND FOR THE GEOLOGIC MAP OF NORTH CAROLINA

CP&L, SUTTEN STEAM ELECTRIC PLANT

PHOTO #1 - Photo of the active fly-ash pond, looking from the southern corner toward the north.

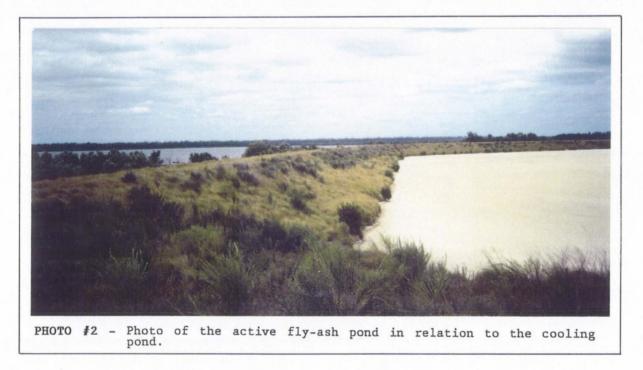
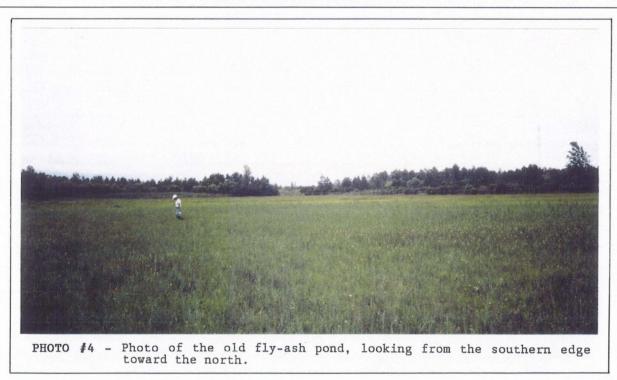



PHOTO #3 - Photo of the inactive fly-ash pond, looking from the southwest corner toward the northeast.

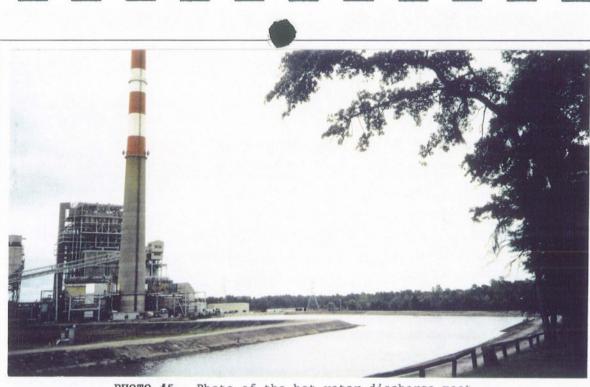


PHOTO #5 - Photo of the hot water discharge moat.

PHOTO #6 - Photo of the cooling pond, looking west from the western berm of the inactive fly-ash pond.

A SEC

and the second

The second second

PHOTO #7 - Photo of the background groundwater (MW01), and the background surface soil sample (SS01).

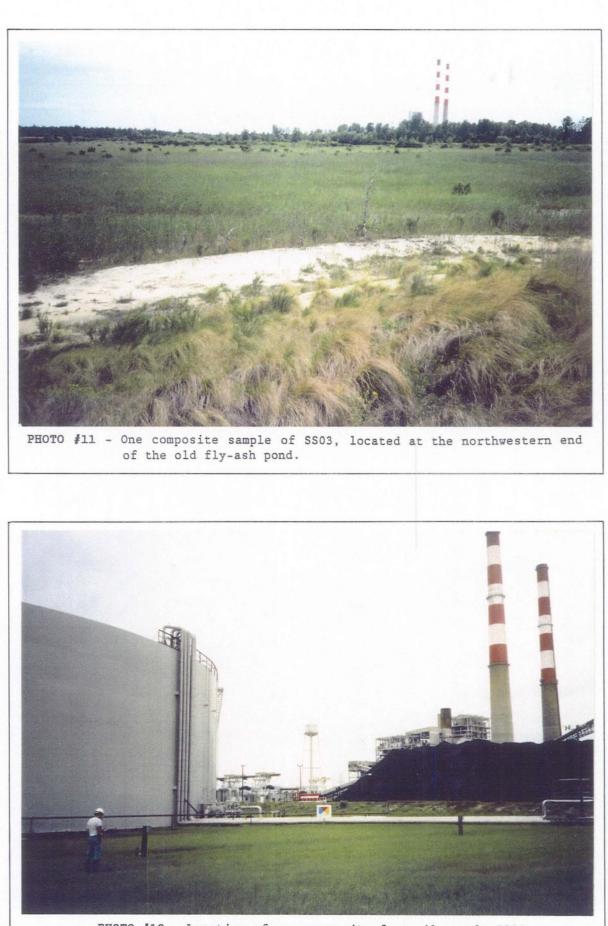

PHOTO #8 - Photo of the overflow pipe to the old fly-ash pond at the southwest corner of the site. Approximate location of GW02.

PHOTO #9 - Photo of the GW03, located near the bottom edge of the old flyash pond.

PHOTO #10 - Discharge pipe to the active fly-ash pond. Location of one composite for soil sample SS03.

and the second

PHOTO #12 - Location of one composite for soil sample SS03.

TABLE 2 SUMMARY OF CHEMICAL ANALYSES FOR CP&L, SUTTON STEAM ELECTRIC PLANT NCDOO0830646 SAMPLE IDENTIFICATION

			Sample Collection Information and Parameters	Background Monitoring Well	•	Downgradient Groundwater	-	Background Surface Soil	Inactive Fly Ash Pond Surface Soil Composite	Old Fly Ash Pond Surface Soil Composite
			Date Collected	6/25/91	6/25/91	6/25/91	6/25/91	6/25/91	6/25/91	6/25/91
			Laboratory	IEA	IEA	IEA	IEA	IEA	IEA	IEA
			Well Water Depth (feet)	14.05	7.5	1.5	NA	NA	NA	NA
			G&O Sample ID No.	CLMW01	CLGW02	CLGW03	CLTB01	CLSS01	CLSS02	CLSS03
			EPA Case No.	A3501	A3502	A3503	A3504	A3505	A3506	A3507
			Case No.	1041-033	1041-033	1041-033	1041-033	1041-033	1041-033	1041-033
Physical	Waste									
State	Characteristics*	Category	Compounds Detected							
			VOLATILE ORGANICS							
			Matrix	Water	Water	Water	Water	Soil	Soil	Soil
			Level	Low	Low	Low	Low	Low	Low	Low
			% Moisture	100	100	100	100	4	13	11
			Concentration Units	ug/l	ug/l	ug/l	ug/l	ug/kg	ug/kg	ug/kg
Gas	A,D,G,I	occ	chloromethane							
Gas	A,D,G,I	000	bromomethane							
Gas	A,D,G,I	occ	vinyl chloride							
Gas	A,D,G,I	000	chloroethane							
Liquid	A,D,H,I	SOL	methylene chloride						-	,
Liquid	E,H,I,A	SOL	acetone							
Liquid	A,H,I	SOL	carbon disulfide	•						
Liquid	A,D,G,I	SOL	1,1-dichloroethene							
Liquid	A,D,H,G	SOL	1,1-dichloroethane							
Liquid	A,D,G	SOL	1,2-dichloroethene (total)						·	
Liquid	A,D	SOL	chloroform							
Liquid	A,D,G	SOL	1,2-dichloroethane							
Liquid	A,E,G	SOL	2-butanone (MEK)							
Liquid	A,D	SOL	1,1,1-trichloroethane							
Liquid	A,D	SOL	1,1,1-trichloroethane							

.

. .

SUMMARY OF CHEMICAL ANALYSES FOR CP&L, SUTTON STEAM ELECTRIC PLANT NCDOO0830646 SAMPLE IDENTIFICATION

						Inactive Fly	
	Background				Background	Ash Pond	Old Fly Ash
Sample Collection Information	Monitoring	Downgradient	Downgradient	Trip	Surface	Surface Soil	Pond Surface
and Parameters	Well	Groundwater	Groundwater	Blank	Soil	Composite	Soil Composite

Physical	Waste		
State	Characteristics*	Category	VOLATILE ORGANICS (CONT.)
Liquid	A,D	SOL	carbon tetrachloride
Liquid	A,D,G	SOL	vinyl acetate
Liquid	A,D	000	bromodichloromethane
Liquid	A,D,G	SOL	1,2-dichloropropane
Liquid	A,D,G	SOL	cis-1,3-dichloropropene
Liquid	A,D,G,B	SOL	trichloroethene
Liquid	A,D	OCC	dibromochloromethane
Liquid	A,D	SOL	1,1,2-trichLoroethane
Liquid	A,G	SOL	benzene
Liquid	A,D,G	SOL	trans-1,3-dichloropropene
Liquid	A,D	SOL	bromoform
Liquid	A,E,G	SOL	4-methyl-2-pentanone
Liquid	A,E,G	SOL	2-hexanone
Liquid	A,D	SOL	tetrachLoroethene
Liquid	A,G,E	SOL	toluene
Liquid	A,D,E	SOL	1,1,2,2-tetrachloroethane
Liquid .	A,D,G	SOL	chlorobenzene
Liquid	A,G	SOL	ethylbenzene
Liquid	A,D,G	000	styrene
Liquid	A,G	SOL	xylenes (total)
			Tentatively Identified Compounds

TABLE 2 SUMMARY OF CHEMICAL ANALYSES FOR CP&L, SUTTON STEAM ELECTRIC PLANT NCDOO0830646 SAMPLE IDENTIFICATION

			Sample Collection Information and Parameters SEMIVOLATILE ORGANICS Matrix Level	Background Monitoring Well Water Low	•	Downgradient Groundwater Water Low	-	Background Surface Soil Soil Low	Inactive Fly Ash Pond Surface Soil Composite Soil Low	Old Fly Ash Pond Surface Soil Composite Soil Low
Physical	Waste		% Moisture	100	100	100	NA	4	13	11
State	Characteristics*	Category	Concentration Units	ug/l	ug/l /RE	ug/l /RE	NA	ug/kg	ug/kg	ug/kg
S,thick1	A,B,E	occ	phenol				NA			
Liquid	A,D,B	000	bis(2-chloroethyl)ether				NA			
Liquid	A,D,B	000	2-chlorophenol				NA			
Liquid	A,D,H	SOL	1,3-dichlorobenzene				NA			
Solid	A,D,H	000	1,4-dichlorobenzene				NA			
Liquid	A,D,H	SOL	benzyl alcohol				NA			
Liquid	A,D,H	000	1,2-dichlorobenzene				NA			
Liquid	A,B	000	2-methylphenol				NA			
	A,D	000	bis(2-chloroisopropyl)ether				NA			
Liquid	A,B	000	4-methylphenol				NA			
	A	000	n-nitroso-di-n-dipropylamine				NA			
Solid	A,D	000	hexachloroethane				NA			
Liquid	A,D	000	nitrobenzene				NA			
Liquid	A,D	000	isophorone				NA			
Solid	A,D	000	2-nitrophenol				NA			
Solid	А,В	000	2,4-dimethylphenol			-	NA			
Solid	A	000	benzoic acid				NA			
	A,D	000	bis(2-chloroethoxy)methane				NA			-
Liquid	A,D	000	2,4-dichlorophenol				NA			
Liquid	A,D	000	1,2,4-trichlorobenzene				NA			
Solid	Α	000	naphthalene				NA			
Solid	A,D	000	4-chloroaniline				NA			
Liquid	A,D,B	000	hexachlorobutadiene				NA			

.

TABLE 2 SUMMARY OF CHEMICAL ANALYSES FOR CP&L, SUTTON STEAM ELECTRIC PLANT NCD000830646 SAMPLE IDENTIFICATION

			Sample Collection Information and Parameters	Background Monitoring Well	-	: Downgradient Groundwater		Background Surface Soil	Inactive Fly Ash Pond Surface Soil Composite	Old Fly Ash Pond Surface Soil Composite
Physical	Waste									
State	Characteristics*	Category	SEMIVOLATILE ORGANICS (CONT.)							
Solid	A,D	000	4-chloro-3-methylphenol				NA			
Liquid	A,D	000	2-methylnaphthalene				NA	-		
Liquid	A,D,B	occ	hexachlorocyclopentadiene				NA			
Solid	A,D	000	2,4,6-trichlorophenol				NA			
Solid	A,D	000	2,4,5-trichlorophenol				NA			
Liquid	A,D	000	2-chloronaphthalene				NA			
Solid	A,D	occ	2-nitroaniline				NA			
Liquid	A,D	000	dimethylphthalate				NA			
Solid	A,D	000	acenaphthylene				NA			
Solid	A,D	000	2,6-dinitrotoluene				NA			
Solid	A,D	occ	3-nitroaniline		-		NA			
Solid	A,D	occ	acenaphthene				NA			
Solid	A,D,G	000	2,4-dinitrophenol				NA			
Solid	A,D	000	4-nitrophenol				NA			
Solid	A,D	000	dibenzofuran				NA			
Solid	A,D	000	2,4-dinitrotoluene			INUR	NA			
Liquid	A,D	000	diethylphthalate			-4/17	NA			
	A,D	000	4-chlorophenyl-Phenylether			\bigcirc	NA			
Solid	A,D	000	fluorene				NA			
Solid	A,D,E	occ	4-nitroaniline				NA			
Solid	A,D	occ	4,6-dinitro-2-methylphenol				NA			
Solid	A,D	occ	n-nitrosodiphenylamine				NA			
Liquid	A,D	000	4-bromophenyl-phenylether				NA			
Solid	A,D	000	hexachLorobenzene				NA			
Solid	A,D	000	pentachlorophenol				NA			
Solid	A,D	000	phenanthrene				NA			

TABLE 2 SUMMARY OF CHEMICAL ANALYSES FOR CP&L, SUTTON STEAM ELECTRIC PLANT NCDO00830646 SAMPLE IDENTIFICATION

			Sample Collection Information and Parameters	Background Monitoring Well	0	Downgradient Groundwater	Trip Blank	Background Surface Soil	Inactive Fly Ash Pond Surface Soil Composite	Old Fly Ash Pond Surface Soil Composite
Physical	Waste									
State	Characteristics*	Category	SEMIVOLATILE ORGANICS (CONT.)							
Solid	A,D	000	anthracene		_		NA			
Solid	A,D	000	carbazole		100	(IOUR)	NA			
Liquid	A,D	000	di-n-butylphthalate		(U/2BJ	ษั73ยา	NA			
Solid	A,D	000	fluoranthene		\bigcirc		NA			
Solid	A,D	000	pyrene				NA			
Liquid	A,D	000	butylbenzylphthalate				NA			
	A,D	occ	3,3-dichlorobenzidine				NA			
Solid	A,D	occ	benzo[a]anthracene				NA			
Solid	A,D	- 000 -	chrysene		TOU	(lour)	NA			
Liquid	A,D	000	bis(2-ethylhexyl)phthalate		(U/2BJ)	(U/1BJ/	NA			
Liquid	A,D	000	di-n-octylphthalate		<u> </u>	\smile	NA			
Solid	A,D	000	benzo[b]fluoranthene				NA			
Solid	A,D	000	benzo[k]fluoranthene				NA			
Solid	A,D,K,L	000	benzo[a]pyrene				NA			
Solid	A,D	000	indeno[1,2,3-cd]pyrene				NA			
Solid	A,D	000	dibenz[a,h]anthracene				NA			
Solid	A,D	000	benzo[g,h,i]perylene				NA			
			Tentatively Identified				NA			
			Compounds		U/22JN	46jn/49jn	NA ·	17324JN	8610JN	16274JN
			Unknown (total)	161JN	U/38BJN	U/38BJ	NA	2200BJN	2000BJN	1200BJN
			2h-azepin-2-one,hexadydro	940JN			NA			
			halogenated ethane			47JN/15JN	NA			490JN
			hexadecanoic.acid		U/4JN	U/4JN	NA			
			benzoic acid		-		NA	130JN		
			substituted benzene				NA	1900BJN	1400BJN	1800BJN
			octane, 3-methyl-				NA	470JN		440JN

TABLE 2 SUMMARY OF CHEMICAL ANALYSES FOR CP&L, SUTTON STEAM ELECTRIC PLANT NCDO00830646 SAMPLE IDENTIFICATION

									Inactive Fly	
				Background				Background	Ash Pond	Old Fly Ash
			Sample Collection Information	Monitoring	Downgradient	Downgradient	Trip	Surface	Surface Soil	Pond Surface
			and Parameters	Well	Groundwater	Groundwater	Blank	Soil	Composite	Soil Composite
-			PESTICIDES/PCBs							
			Matrix	Water	Water	Water	NA	Soil	Soil	Soil
			Level	Low	Low	Low	NA	Low	Low	Low
Physical	Waste		% Moisture	100	100	100	NA	4	13	11
State	Characteristics*	Category	Concentration Units	ug/l	ug/l	ug/l	NA	ug/kg	ug/kg	ug/kg
Solid	A,D	PSD	alpha BHC				NA	•		
Solid	A,D	PSD	beta BHC				NA			
Solid	A,D	PSD	delta BHC				NA			
Solid	A,D	PSD	gamma BHC (Lindane)				NA			
Solid	A,D	PSD	Heptachlor				NA			
Solid	A,D	PSD	Aldrin				NA			
Solid	A,D	PSD	Heptachlor epoxide				NA			
Solid	A,D	PSD	Endosulfan I				NA			
Solid	A,D,E	PSD	Dieldrin				NA			\bigcirc
Solid	A,D	PSD	4,4'=DDE			· · · · -	NA	- [3:4U]		f[2.2J]
Solid	A,D	PSD	Endrin				NA			·
Solid	A,D	PSD	Endosulfan II				NA			
Solid	A,D	PSD	4,4'-DDD				NA	[3.40]		(-3:7滕)
Solid	A,D	PSD	Endosulfan sulfate				NA			(<u> </u>
Solid	A,D	PSD	4,4'-DDT				NA	[3.40]		-[1:1J] -
Solid	A,D	PSD -	Methoxychlor (Mariate)				NA			•
Solid	A,D	PSD	Endrin ketone				NA			
Solid	A,D	PSD	alpha Chlordane				NA			
Solid	A,D	PSD	gamma Chlordane				NA			
Solid	A,D	PSD .	Toxaphene				NA			•
										-

TABLE 2 SUMMARY OF CHEMICAL ANALYSES FOR CP&L, SUTTON STEAM ELECTRIC PLANT NCD000830646 SAMPLE IDENTIFICATION

			Sample Collection Information and Parameters	Background Monitoring Well	Downgradient Groundwater	•	Trip Blank	Background Surface Soil	Inactive Fly Ash Pond Surface Soil Composite	Old Fly Ash Pond Surface Soil Composite
Physical	Waste			•						
State	Characteristics*	Category	PESTICIDES/PCBS (CONT.)							
Liquid	A,D	000	Aroclor 1016				NA			
Liquid	A,D	000	Aroclor 1221				NA			
Liquid	A,D	000	Aroclor 1232				NA			
Liquid	A,D	000	Aroclor 1242				NA			
Liquid	A,D	000	Aroclor 1248				NA			
Liquid	A,D	000	Aroclor 1254				NA			
Liquid	A,D	000	Aroclor 1260				NA			

TABLE 2 CP&L, SUTTON STEAM ELECTRIC PLANT NCD 000 830 646

NCMCL MCL CLMW01 CLGW02 CLG INORGANICS (PPB) (PPB) (PPB) (PPB) (PPB) (PPB)	B) MO3
ALUMINUM – – 2700J 100000 24000	оJ
ANTIMONY - 10/5 42UJ 42U 42UJ	
ARSENIC 50 - 1UJ 160 200J	
BARIUM 1000 5000 50UJ 1900 660J	
BERYLLIUM – 1 1UJ 20J 1UJ	
CADMIUM 5 5 4UJ 4UJ 4UJ	
CALCIUM 21000J 84000 99000	J
CHROMIUM 50 100 5UJ 220 15OJ	
COBALT – – 5UJ 45 13J	
COPPER 1000 1300 4UJ 820 67J	
IRON 300 – 1600J 41000 92000	J
LEAD 50 50 2UJ 9B 190J	
MAGNESIUM – – 9000J 17000 4700J	
MANGANESE 50 - 890J 300 210J	
MERCURY 1.1 2 0.10UJ 0.55 0.91J	
NICKEL 150 100 11UJ 190 50J	
POTASSIUM – – 4900J 20000 7600J	
SELENIUM 10 50 2UJ 110 43J	
SILVER 50 - 5UJ 5U 5UJ	
, SODIUM 60000J 23000 4000U	J
HALLIUM - 2/1 2UJ 13 3UJ	
ANADIUM 4UJ 490 360J	
ZINC 5000 – 20UJ 240 92J	
CYANIDE 154 200 10U 10U 10U	

NOTES:

1) NA - NOT ANALYZED

2) N - PRESENCE OF CONTAMINANT PRESUMED

3) J - CONCENTRATION ESTIMATED

4) U - NON-DETECT

5) R - DATA UNUSABLE

6) B - CONTAMINANT FOUND IN THE ASSOCIATED BLANK

7) NCMCL - NORTH CAROLINA MAXIMUM CONTAMINANT LEVEL

8) MCL - FEDERAL MAXIMUM CONTAMINANT LEVEL

CP&L, SUTTON STEAM ELECTRIC PLANT

NCD 000 830 646

INORGANICS	SOILS NATURAL RANGE (PPM)		CLSSO2 (PPM)	
	0.7->10%			
	<1-8.8			
	<0.1-73			0.22U
	10-1500			3U
	<1-7			
	0.01-0.7			
	0.01-20%			4100
	1-1000			
	<0.3-70			1.1U
COPPER	<1-700	0.830	27	
	0.01->10%			650
	<10-300			
	0.005-5%			
	<2-7000			1.8
	0.01-3.4			
	<3-700		7	2.40
	0.005-3.7%			
	<0.1-3.9			0.22U
	0.01-5		1.20	
	0.05-5%			
HALLIUM	_ <7-500		0.48U	
				1.8J
	<5-2900			
CYANIDE		4.30	5.3U	J. 4U

NOTES:

- 1) NA NOT ANALYZED
- 2) N PRESENCE OF CONTAMINANT PRESUMED
- 3) J CONCENTRATION ESTIMATED
- 4) U NON-DETECT
- 5) B CONTAMINANT FOUND IN ASSOCIATED BLANK

TABLE 3 SUMMARY OF CHEMICAL ANALYSES FOR CP&L, SUTTON STEAM ELECTRIC PLANT SITE NCD000830646 SAMPLE IDENTIFICATION Analyzed at the North Carolina State Laboratory of Public Health

.

			Sample Collection Information and Parameters	Background Sediment	Downgradient Sediment	Onsite Well
			Date Collected	6/27/91	6/27/91	6/27/91
			Laboratory	State Lab	State Lab	State Lab
			G&O Sample ID No.	SED01	SED02	DWO1
			NCDEHNR I.D. Nos.	16290	16289	16291
				14992	14991	14993
Physical	Waste			912445	912444	14994
-						912446
State	Characteristics*	Category	Compounds Detected			912447
			VOLATILE ORGANICS			
			Matrix	Soil	Soil	Water
			Concentration Units	ug/kg	ug/kg	ug/l
Gas	A,D,G,I	000	chloromethane			
Gas	A,D,G,I	000	bromomethane			
Gas	A,D,G,I	000	vinyl chloride			
Gas	A,D,G,I	000	chloroethane			
Liquid	A,D,H,I	SOL	methylene chloride			1K,C
Liquid	E,H,I,A	SOL	acetone			. .
Liquid	A,H,I	SOL	carbon disulfide			
Liquid	A,D,G,I	SOL	1,1-dichloroethene			
Liquid	A,D,H,G	SOL	1,1-dichloroethane			
Liquid	A,D,G	SOL	1,2-dichloroethene (total)			
Liquid	A,D	SOL	chloroform			1K,T
Liquid	A,D,G	SOL	1,2-dichloroethane			
Liquid	A,E,G	SOL	2-butanone (MEK)			
Liquid	A,D	SOL	1,1,1-trichloroethane			

SUMMARY OF CHEMICAL ANALYSES FOR CP&L, SUTTON STEAM ELECTRIC PLANT SITE NCDO00830646 SAMPLE IDENTIFICATION Analyzed at the North Carolina State Laboratory of Public Health

.

Sample Collection Information Background Downgradient Onsite and Parameters Sediment Sediment Well

Physical	Waste		
State	Characteristics*	Category	VOLATILE ORGANICS (CONT.)
Liquid	A,D	SOL	carbon tetrachloride
Liquid	A,D,G	SOL	vinyl acetate
Liquid	A,D	000	bromodichloromethane
Liquid	A,D,G	SOL	1,2-dichloropropane
Liquid	A,D,G	SOL	cis-1,3-dichloropropene
Liquid	A,D,G,B	SOL	trichloroethene
Liquid	A,D	000	dibromochloromethane
Liquid	A,D	SOL	1,1,2-trichloroethane
Liquid	A,G	SOL	benzene
Liquid	A,D,G	SOL	trans-1,3-dichloropropene
Liquid	A,D	SOL	bromoform
Liquid	A,E,G	SOL	4-methyl-2-pentanone
Liquid	A,E,G	SOL	2-hexanone
Liquid	A,D	SOL	tetrachloroethene
Liquid	A,G,E	SOL	toluene
Liquid	A,D,E	SOL	1,1,2,2-tetrachloroethane
Liquid	A,D,G	SOL	chlorobenzene
Liquid	A,G	SOL	ethylbenzene
Liquid	A,D,G	000	styrene
Liquid	A,G	SOL	xylenes (total)

SUMMARY OF CHEMICAL ANALYSES FOR CP&L, SUTTON STEAM ELECTRIC PLANT SITE NCDOO0830646

SAMPLE IDENTIFICATION

Analyzed at the North Carolina State Laboratory of Public Health

			Sample Collection Information	Background	Downgradient	Onsite
			and Parameters	Sediment	Sediment	Well
			SEMIVOLATILE ORGANICS			
			Matrix	Soil	Soil	Water
State	Characteristics*	Category	Concentration Units	ug/kg	ug/kg	ug/l
S,thick1	A,B,E	000	phenol			
Liquid	A,D,B	000	bis(2-chloroethyl)ether			
Liquid	A,D,B	000	2-chlorophenol			
Liquid	A,D,H	SOL	1,3-dichlorobenzene			
Solid	A,D,H	000	1,4-dichlorobenzene			
Liquid	A,D,H	SOL	benzyl alcohol			
Liquid	A,D,H	000	1,2-dichlorobenzene			
Liquid	A,B	000	2-methylphenol			
	A,D	000	bis(2-chloroisopropyl)ether			
Liquid	A,B	000	4-methylphenol			
	A	000	n-nitroso-di-n-dipropylamine			
Solid	A,D	000	hexachloroethane			
Liquid	A,D	000	nitrobenzene			
Liquid	A,D	000	isophorone			
Solid	A,D	000	2-nitrophenol			
Solid	A,B	000	2,4-dimethylphenol			
Solid	A	000	benzoic acid			
	A,D	000	bis(2-chloroethoxy)methane			
Liquid	A,D	000	2,4-dichlorophenol			
Liquid	A,D	000	1,2,4-trichlorobenzene			
Solid	A	000	naphthalene			
Solid	A,D	000	4-chloroaniline			
Liquid	A,D,B	occ	hexachlorobutadiene			

TABLE 3 SUMMARY OF CHEMICAL ANALYSES FOR CP&L, SUTTON STEAM ELECTRIC PLANT SITE NCD000830646 SAMPLE IDENTIFICATION Analyzed at the North Carolina State Laboratory of Public Health

Well

- - - - -----

_ -- --

Background Downgradient Onsite Sample Collection Information and Parameters Sediment Sediment

Physical	Waste		
State	Characteristics*	Category	SEMIVOLATILE ORGANICS (CONT.)
Solid	A,D	000	4-chloro-3-methylphenol
Liquid	A,D	000	2-methylnaphthalene
Liquid	A,D,B	000	hexachlorocyclopentadiene
Solid	A,D	000	2,4,6-trichlorophenol
Solid	A,D	000	2,4,5-trichlorophenol
Liquid	A,D	000	2-chloronaphthalene
Solid	A,D	000	2-nitroaniline
Liquid	A,D	000	dimethylphthalate
Solid	A,D	000	acenaphthylene
Solid	A,D	000	2,6-dinitrotoluene
Solid	A,D	000	3-nitroaniline
Solid	A,D	000	acenaphthene
Solid	A,D,G	000	2,4-dinitrophenol
Solid	A,D ·	000	4-nitrophenol
Solid	A,D	000	dibenzofuran
Solid	A,D	000	2,4-dinitrotoluene
Liquid	A,D	000	diethylphthalate
	A,D	000	4-chlorophenyl-Phenylether
Solid	A,D	000	fluorene
Solid	A,D,E	000	4-nitroaniline
Solid	A,D	occ	4,6-dinitro-2-methylphenol
Solid	A,D	000	n-nitrosodiphenylamine
Liquid	A,D	000	4-bromophenyl-phenylether
Solid	A,D	occ	hexachlorobenzene
Solid	A,D	000	pentachlorophenol
Solid	A,D	000	phenanthrene

TABLE 3 SUMMARY OF CHEMICAL ANALYSES FOR CP&L, SUTTON STEAM ELECTRIC PLANT SITE NCD000830646 SAMPLE IDENTIFICATION Analyzed at the North Carolina State Laboratory of Public Health

Well

Background Downgradient Onsite Sample Collection Information Sediment and Parameters Sediment

Physical	Waste		
State	Characteristics*	Category	SEMIVOLATILE ORGANICS (CONT.)
Solid	A,D	000	anthracene
Liquid	A,D	000	di-n-butylphthalate
Solid	A,D	000	fluoranthene
Solid	A,D	000	pyrene
Liquid	A,D	000	butylbenzylphthalate
	A,D	000	3,3-dichlorobenzidine
Solid	A,D	000	benzo[a]anthracene
Solid	A,D	000	chrysene
Liquid	A,D	000	bis(2-ethylhexyl)phthalate
Liquid	A,D	000	di-n-octylphthalate
Solid	A,D	000	benzo[b]fluoranthene
Solid	A,D	000	benzo[k]fluoranthene
Solid	A,D,K,L	000	benzo[a]pyrene
Solid	A,D	000	indeno[1,2,3-cd]pyrene
Solid	A,D	000	dibenz[a,h]anthracene
Solid	A,D	000	benzo[g,h,i]perylene

SUMMARY OF CHEMICAL ANALYSES FOR CP&L, SUTTON STEAM ELECTRIC PLANT SITE NCD000830646 SAMPLE IDENTIFICATION Analyzed at the North Carolina State Laboratory of Public Health

·			Sample Collection Information and Parameters	Background Sediment	Downgradient Sediment	Onsite Well
			PESTICIDES/PCBs			
			Matrix	Soil	Soil	Soil
State	Characteristics*	Category	Concentration Units	mg/kg	mg/kg	mg/l
Solid	A,D	PSD	alpha BHC	NA	NA	NA
Solid	A,D	PSD	beta BHC	NA	NA	NA
Solid	A,D	PSD	delta BHC	NA	NA	NA
Solid	A,D	PSD	gamma BHC (Lindane)	NA	NA	NA
Solid	A,D	PSD	Heptachlor	NA	NA	NA
Solid	A,D	PSD	Aldrin	NA	NA	NA
Solid	A,D	PSD	Heptachlor epoxide	NA	NA	NA
Solid	A,D	PSD	Endosulfan I	NA	NA	NA
Solid	A,D,E	PSD	Dieldrin	NA	NA	NA
Solid	A,D	PSD	4,4'-DDE	NA	NA	NA
Solid	A,D	PSD	Endrin	NA	NA	NA
Solid	A,D	PSD	Endosulfan II	NA	NA	NA
Solid	A,D	PSD	4,4'-DDD	NA	NA	NA
Solid	A,D	PSD	Endosulfan sulfate	NA	NA	NA
Solid	A,D	PSD	4,4'-DDT	NA	NA	NA
Solid	A,D	PSD	Methoxychlor (Mariate)	NA	NA	NA
Solid	A,D	PSD	Endrin ketone	NA	NA	NA
Solid	A,D	PSD	alpha Chlordane	NA	NA	NA
Solid	A,D	PSD	gamma Chlordane	NA	NA	NA
Solid	A,D	PSD	Toxaphene	NA	NA	NA

.

SUMMARY OF CHEMICAL ANALYSES FOR CP&L, SUTTON STEAM ELECTRIC PLANT SITE NCD000830646 SAMPLE IDENTIFICATION Analyzed at the North Carolina State Laboratory of Public Health

			Sample Collection Information and Parameters	Background Sediment	Downgradient Sediment	Onsite Well
Physical	Waste					
State	Characteristics*	Category	PESTICIDES/PCBS (CONT.)			
Liquid	A,D	000	Aroclor 1016	NA	NA	NA
Liquid	A,D	000	Aroclor 1221	NA	NA	NA
Liquid	A,D	000	Aroclor 1232	NA	NA	NA
Liquid	A,D	000	Aroclor 1242	NA	NA	NA
Liquid	A,D	000	Aroclor 1248	NA	NA	NA
Liquid	A,D	000	Aroclor 1254	NA	NA	NA
Liquid	A,D	000	Aroclor 1260	NA	NA	NA
Liquid	A,D	000	PCB	<0.0001	<0.0001	<0.0001

TABLE 3 SUMMARY OF CHEMICAL ANALYSES FOR CP&L, SUTTON STEAM ELECTRIC PLANT SITE NCD000830646 SAMPLE IDENTIFICATION Analyzed at the North Carolina State Laboratory of Public Health

			Sample Collection Information and Parameters ANALYTE DETECTED	Background Sediment	Downgradient Sediment	Onsite Well
			Matrix	Soil	Soil	
State	Characteristics*	Category	Concentration Units	mg/kg +/mg/l ++	mg/kg+/mg/l++	mg∕l
Solid	A,D	MES	aluminum	NA	NA	NA
Solid	A,D	MES	antimony	NA	NA	NA
Solid	A,D	MES	arsenic	U/U	5.8/[0.02]*	U
Solid	A,D	MES	barium	45/0.47	21/0.36	0.06
Solid	A,D	MES	beryllium	NA	NA	NA
Solid	A,D	MES	cadmium	U/U	U/U	U
Solid	D	MES	calcium	NA	NA	NA
Solid	A,D	MES	chromium	U/U	U/U	U
Solid	A,D	MES	cobalt	NA	NA	NA
Solid	A,D	MES	copper	NA	NA	NA
Solid	A,D	MES	iron	NA	NA	NA
Solid	A,D	MES	Lead	19/[0.50]	19/[0.50]	υ
Solid	A,D	MES	magnesium	NA	NA	NA
Solid	A,D	MES	manganese	NA	NA	NA
Liquid	A,D	MES	mercury	U/U	<0.11/[0.02]	U
Solid	A,D	MES	nickel	NA	NA	NA
Solid	D	MES	potassium	NA	NA	NA
Solid	A,D	MES	selenium	U/U	U/U	NA
Solid	A,D	MES	silver	U/U	U/U	NA
Solid	D	MES	sodium	NA	NA	NA
Solid	A,D	MES	thallium			

SUMMARY OF CHEMICAL ANALYSES FOR CP&L, SUTTON STEAM ELECTRIC PLANT SITE NCDOOO830646

SAMPLE IDENTIFICATION

Analyzed at the North Carolina State Laboratory of Public Health

			Sample Collection Information and Parameters	Background Sediment	Downgradient Sediment	Onsite Well
Physical	Waste					
State	Characteristics*	Category	ANALYTE DETECTED (CONT.)			
Solid	A,D	MES	vanadium	NA	NA	NA
Solid	A,D	MES	zinc	NA	NA	NA
Solid	A	IOC	cyanide	NA	NA	NA

- NA Not Analyzed
- * Concentrations significant, considered to be a release
- [] Below CRDL
- + Total inorganic metals
- ++ Analyzed using Toxicity Characateristic Leaching Procedure (TCLP)

.

- K Actual value is known to be less than value given
- C Possible laboratory contamination
- T Trihalomethane

DEFINITION

INTERPRETATION

U	Indicates compound was analyzed for but not detected.	Compound was not detected at or above the CRDL.
J	Indicates an estimated value.	Compound value may be semi- quantitative.
UJ	Quantitation limit is estimated due to a quality control (QC) protocol.	Compound was not detected if value is at CRDL, e.g., 10U UJ. If a value is reported with a UJ above CRDL and it is <5x blank concentration (10x for common laboratory artifacts), the compound is detected but may be a laboratory artifac and not attributable to the sample.
С	This flag applies to pesticide results where the identification has been confirmed by GC/MS. Single component pesticides ≥10 ng/uL in the final extract shall be confirmed by GC/MS.	Compound was confirmed by GC/MS and is quantitative. Use pesticide/PCB listed value.
В	This flag is used when the compound is found in the associated blank as well as in the sample. It indicates possible/probable blank contamination and warns the data user to take appropriate action.	Compound value may be semi- quantitative if it is <5x the blank concentration (<10x the blank concentrations for common laboratory artifacts: phthalates, methylene chloride, acetone, toluene, 2- butanone).

COMPOUND QUALIFIERS

•

Ľ

COMPOUND	QUALIFIERS	DEFINITION	INTERPRETATION
	E	This flag identifies compounds whose concentrations exceed the calibration range of the GC/MS instrument for the specific analysis. This flag will not apply to presticides/PCBs analyzed by GC/EC methods.	Compound value may be semi- quantitative. There should be another analysis with a D qualifier, which is to be used.
	D '	This flag identifies all compounds identified in an analysis at a secondary dilution factor.	Alerts data user to a possible change in the CRDL. Data is quantitative.
	A	This flag indicates that a TIC is a suspected aldol-condensation product.	Alerts data user of a laboratory artifact in the TICs only.
	R	Results are unusable due to a major violation of QC protocol.	Compound value is not usable.
	X	Cannot be confirmed by CLP protocols.	Compound may or may not be present.
ANALYTE	QUALIFIERS	DEFINITION	INTERPRETATION
E	E '	Estimated or not reported due to interference. See laboratory narrative.	Analyte or element was not detected, or value may be semiquantitative.
S	' S	Analysis by Method of Standard Additions.	Value is quantitative.
R	N	Spike recoveries outside QC protocols, which indicates a possible matrix problem. Data may be baised high or low. See spike results and laboratory narrative.	Value may be quantitative or semi- quantitative.

 $\widehat{}$

.

·

1

•

.....

•

.

	. 		
* *		Duplicate value outside QC protocols which indicates a possible matrix problem.	Value may be quantitative or semi- quantitative.
+ +		Correlation coefficient for standard additions is less than 0.995. See review and laboratory narrative.	Data value may be biased.
[] B		Value is real, but is above instrument DL and below CRDL.	Value may be quantitative or semi- quantitative.
UJ .		DL is estimated because of a QC protocol. DL is possibly above or below CRDL.	Compound or element was not detected.
J		Value is above CRDL and is an estimated value because of a QC protocol.	Value may be semiquantitative.
UU		Compound was analyzed for but not detected.	Compound was not detected at or above the CRDL.
М		Duplicate injection precision not met.	Value may be semiquantitative.
ឃ	1	Post-digestion spike for furnace AA analysis is out of control limits (35-115%), while sample absorbance is <50% of spike absorbance.	Value may be semiquantitative.
R		Results are unusable due to a major violation of QC protocols.	Analyte value is not usable.
	ı		

:

-

Waste Characteristics Identification*

,

A -	Toxic	D -	Persistent	G –	Flammable	J -	Explosive
B	Corrosive	E -	Soluble	Н –	Ignitable	K -	Reactive
С –	Radioactive	`F -	Infectious	I -	Highly Volatile	L -	Incompatible

APPENDIX B SITE INSPECTION FORM

~

•

5

\$epa		SITE INSPECT	DOUS WASTE SITE	- OI STATE	IFICATION OZ SITE NUMBER D000830646
TE NAME AND LOCAT					
TE NAME IL agai common or cas	ICTORIVE REATE OF SKEL		02 STREET ROUTE NO , OF	SPECIFIC LOCATION IDENTIFIER	
CP&L, Sutton Ste	am Electric Pla	int	U.S. Highwa	y 421	
Wilmington		<u></u>	NC 28405	ов соцяту Hanover	DICOUNTY OB CONG CODE DIST
09 COORDINATES	77° 59 0".	OTYPE OF OWNERSH	G 8 FEDERAL		
III. INSPECTION INFORMA					
01 DATE OF INSPECTION 6 ,27 ,91 HONTH DAY YEAR	OZ SITE STATUS"	03 YEARS OF OPERA	<u> </u>		J
04 AGENCY PERFORMING INSPEC		BEG	INNING YEAR ENDING Y	EAR	
CA. EPA CB EPACON		Yme Mara). MUNICIPAL CONTRACTOR	Harne of Jumj
OS CHIEF IN SPECTOR		Yerne of Ivm)	The (G&O)	SDOCHUI 07 ORGANIZATION	1 CB TELEPHONE NO
Jeff Tyburski			mtal Castasta		919 ¹ 782-9088
DO OTHE - ASPECTORS			ental Geologis	L GOU	1919' 782-9088
Jerry Johnson			ental Scientis		919 ¹ 782-9088
Chris Huff		Environme	ental Engineer	G&O	919)782-9088
Harvey Allen		Environme	ental Engineer	NCDEHNR	919)733-2801
					()
					()
3 SITE REPRESENTATIVES INTE Donald Ennis	RVIEWED	14 TITLE	Raleigh,	NC	\$19,546-7323
					()
					()
					()
	e tan	· · · · · · · · · · · · · · · · · · ·			()
					()
				<u></u>	
17 ACCESS GAINED BY	18 TIME OF INSPECTION	19 WEATHER CON			
Check one) XXPERMISSION	0900 hours	Fair	an i califi		
IV. INFORMATION AVAIL	ABLE FROM	1			
01 CONTACT		02 OF (Agency/Orga	n/zemen)		03 TELEPHONE NO.
Harvey Allen		NCDEHI			(919) 733-2801
Marie Fisher			06 ORGANIZATION	07 TELEPHONE NO. (301)982-2800	12 9 91

FORM 2070-13 (7-81)

4

. I. IDENTIFICATION POTENTIAL HAZARDOUS WASTE SITE **I≎EPA** 1 STATE 102 SITE YUMBER SITE INSPECTION REPORT | D000830646 NC **PART 2 - WASTE INFORMATION** STATES, QUANTITIES, AND CHARACTERISTICS STATES Check af that apply 2 DE WASTE QUANTITY AT SITE 33 WASTE CHARACTERISTICS (Check at Inal appry) Veusures or waste quantities nust de indezendents I MIGHLY VOLATILE J EXPLOSIVE X REACTIVE I UNCOMPATIBLE I M NOT APPLICABLE ... E SOLUBLE ... A TOXIC + SOL 0 . E SLURRY - B CORROSIVE - C RADIOACTIVE - FINFECTIOUS - GRITABLE - GRITABLE -ONS Unknown 3 POWDER FINES F LIQUID C SLUDGE G GAS D PERSISTENT CUBIC YARDS _____ JTHER Coecitys NO OF CRUMS ______ ŧĐ WASTE TYPE ATEGORY SUBSTANCE NAME 01 GROSS AMOUNT 02 UNIT OF MEASUREL 03 COMMENTS SLU SLUDGE . . OLW OILY WASTE SOL SOLVENTS ₽SD PESTICIDES Т occ OTHER ORGANIC CHEMICALS 4 oc NORGANIC CHEMICALS ACD ACIOS 3AS BASES i VES HEAVY METALS 1 . V. HAZARDOUS SUBSTANCES ISee Appendie for most lifeduantity cited CAS Numbers 06 MEASURE OF CONCENTRATION CATEGORY I 32 SUBSTANCE NAME 05 CONCENTRATION 03 CAS NUMBER 04 STORAGE-DISPOSAL METHOD leta1 Unlined lagoon Arsenic íetal Barium Unlined Lagoon Metal Cadmium Unlined Lagoon Chromium Unlined Lagoon letal Unlined Lagoon Lead leta Unlined Lagoon Met Mercury Unlined Lagoon Metal Selenium V. FEEDSTOCKS : See Appendix for CAS Numbers CATEGORY 01 FEEDSTOCK NAME CATEGORY 01 FEEDSTOCK NAME 02 CAS NUMBER 02 CAS NUMBER =DS FOS FCS FOS FOS FOS FOS FDS VI. SOURCES OF INFORMATION (Cite specific references, e.g. state (des sample analysis reports) 1. State File

AM 2070-13(7-81)

- <u> </u>	NTIAL HAZARDOUS WASTE SITE	1	SITE NUMBER
	SITE INSPECTION REPORT	NC D	00083064
PART 3 - DESCRIPTIC	ON OF HAZARDOUS CONDITIONS AND INCID		
HAZARDOUS CONDITIONS AND INCIDENTS			
0: I & GROUNDWATER CONTAMINATION 3 POPULATION POTENTIALLY AFFECTED 67 (4-mile r	715 COBSERVED (DATE 6/27/91) 24 NARRATIVE DESCRIPTION Cadius)	: C POTENTIAL	G ALLEGE
	nated with arsenic, barium, ber	vllium, chromi	1100. 0000
lead, mercury, nickel, seleniu	m, vanadium and zinc.	jiiii jiii jiii jiii jiii jiii jiii ji	um, copp
D1 _ B SURFACE WATER CONTAMINATION D3 POPULATION POTENTIALLY AFFECTED	0 02 C OBSERVED (DATE C4 NARRATIVE DESCRIPTION		
Sediments from the Cape Fear R	liver are contaminated with ars	enic and mercu	ry.
			······
31 II D. CONTAMINATION OF AIR IB POPULATION POTENTIALLY AFFECTED	02 C CBSERVED (DATE 04 NARRATIVE DESCRIPTION		
No air samples have been colle	cted.		
3 POPULATION POTENTIALLY AFFECTED	24 NARRATIVE DESCRIPTION		
2: XI E DIRECT CONTACT 92 et	mployee 32 G OBSERVED (DATE 6/27/91		
Soils on-site are contaminated	d with arsenic, barium, beryll	.,	
33 POPULATION POTENTIALLY AFFECTED	d with arsenic, barium, beryll	.,	
Soils on-site are contaminated nanganese, selenium, and zinc	d with arsenic, barium, beryll	.,	copper,
Soils on-site are contaminated manganese, selenium, and zinc	d with arsenic, barium, beryll: . Also 4,4-DDD.	ium, chromium,	copper,
Soils on-site are contaminated nanganese, selenium, and zinc $\frac{1}{X}$ CONTAMINATION OF SOIL C3 AREA POTENTIALLY AFFECTED	d with arsenic, barium, beryll: Also 4,4-DDD. 02:3 CBSERVED (DATE 6/27/91	ium, chromium,	copper,
See Direct Contact	d with arsenic, barium, beryll: Also 4,4-DDD. 22:3 CBSERVED (DATE <u>6/27/91</u> 34 NARRATIVE DESCRIPTION	ium, chromium,	Copper,
33 POPULATION POTENTIALLY AFFECTED Soils on-site are contaminated nanganese, selenium, and zinc C: C: CONTAMINATION OF SOIL C3 AREA POTENTIALLY AFFECTED	d with arsenic, barium, beryll: Also 4,4-DDD. 02:3 CBSERVED (DATE 6/27/91 034 NARRATIVE DESCRIPTION 02:0 OBSERVED (DATE	ium, chromium,	copper,
See Direct Contact	04 NARRATIVE DESCRIPTION d with arsenic, barium, beryll: . Also 4,4-DDD. 02:3 OBSERVED (DATE	ium, chromium,	copper,
See Direct Contact	04 NARRATIVE DESCRIPTION d with arsenic, barium, beryll: . Also 4,4-DDD. 02:3 CBSERVED (DATE	ium, chromium,	Copper,
33 POPULATION POTENTIALLY AFFECTED Soils on-site are contaminated nanganese, selenium, and zinc 2: X= CONTAMINATION OF SOIL 33 AREA POTENTIALLY AFFECTED 45:00 See Direct Contact 0:X_G DRINKING WATER CONTAMINATION ,33 POPULATION POTENTIALLY AFFECTED See Groundwater Contamination 0: X= H WORKER EXPOSURE/INJURY 3: WORKERS POTENTIALLY AFFECTED	04 NARRATIVE DESCRIPTION d with arsenic, barium, beryll: . Also 4,4-DDD. 02:3 CBSERVED (DATE 6/27/91 03:3 CBSERVED (DATE 6/27/91 04 NARRATIVE DESCRIPTION 02 COBSERVED (DATE	ium, chromium,	Copper,
See Direct Contact See Groundwater Contamination 3 POPULATION POTENTIALLY AFFECTED 3 AREA POTENTIALLY AFFECTED 3 AREA POTENTIALLY AFFECTED See Direct Contact 3 POPULATION POTENTIALLY AFFECTED See Groundwater Contamination 31 X H WORKER EXPOSURE/INJURY	04 NARRATIVE DESCRIPTION d with arsenic, barium, beryll: . Also 4,4-DDD. 02:3 CBSERVED (DATE	ium, chromium,	Copper,
33 POPULATION POTENTIALLY AFFECTED Soils on-site are contaminated nanganese, selenium, and zinc 3: x̄ CONTAMINATION OF SOIL 3: aREA POTENTIALLY AFFECTED See Direct Contact 3: G ORINKING WATER CONTAMINATION ,3: POPULATION POTENTIALLY AFFECTED See Groundwater Contamination 0: X H WORKER EXPOSURE/INJURY 3: WORKERS POTENTIALLY AFFECTED See Direct Contact	04 NARRATIVE DESCRIPTION d with arsenic, barium, beryll: . Also 4,4-DDD. 02:3 CBSERVED (DATE 6/27/91 03:3 CBSERVED (DATE 6/27/91 04 NARRATIVE DESCRIPTION 02:0 OBSERVED (DATE 04 NARRATIVE DESCRIPTION 02:0 OBSERVED (DATE 04 NARRATIVE DESCRIPTION	ium, chromium,	Copper,
33 POPULATION POTENTIALLY AFFECTED Soils on-site are contaminated nanganese, selenium, and zinc 3: X = CONTAMINATION OF SOIL 3: AREA POTENTIALLY AFFECTED See Direct Contact 3: X = GORINKING WATER CONTAMINATION ,3: POPULATION POTENTIALLY AFFECTED See Groundwater Contamination 0: X + WORKER EXPOSURE/INJURY 3: WORKERS POTENTIALLY AFFECTED See Direct Contact 2: X + POPULATION EXPOSURE/INJURY 3: POPULATION POTENTIALLY AFFECTED	04 NARRATIVE DESCRIPTION d with arsenic, barium, beryll: . Also 4,4-DDD. 02:3 CBSERVED (DATE 6/27/91 03:3 CBSERVED (DATE 6/27/91 04 NARRATIVE DESCRIPTION 02:0 OBSERVED (DATE 04 NARRATIVE DESCRIPTION 02:0 OBSERVED (DATE 04 NARRATIVE DESCRIPTION	Lum, chromium,	Copper,
33 POPULATION POTENTIALLY AFFECTED Soils on-site are contaminated nanganese, selenium, and zinc 2: X = CONTAMINATION OF SOIL 3: AREA POTENTIALLY AFFECTED See Direct Contact 3:X_G ORINKING WATER CONTAMINATION ,3:3 POPULATION POTENTIALLY AFFECTED See Groundwater Contamination 0: X + WORKER EXPOSURE/INJURY 3: WORKERS POTENTIALLY AFFECTED See Direct Contact	04 NARRATIVE DESCRIPTION d with arsenic, barium, beryll: . Also 4,4-DDD. 02:3 CBSERVED (DATE 6/27/91 03:3 CBSERVED (DATE 6/27/91 04 NARRATIVE DESCRIPTION 02:0 OBSERVED (DATE 04 NARRATIVE DESCRIPTION 02:0 OBSERVED (DATE 04 NARRATIVE DESCRIPTION	Lum, chromium,	C ALLEG
33 POPULATION POTENTIALLY AFFECTED Soils on-site are contaminated nanganese, selenium, and zinc 2: X̄ CONTAMINATION OF SOIL 33 AREA POTENTIALLY AFFECTED See Direct Contact 3: G ORINKING WATER CONTAMINATION ,3: POPULATION POTENTIALLY AFFECTED See Groundwater Contamination 0: X H WORKER EXPOSURE/INJURY :: X H WORKER SPOTENTIALLY AFFECTED See Direct Contact :: X H POPULATION EXPOSURE/INJURY :: X H POPULATION POTENTIALLY AFFECTED	04 NARRATIVE DESCRIPTION d with arsenic, barium, beryll: . Also 4,4-DDD. 02:3 CBSERVED (DATE 6/27/91 03:3 CBSERVED (DATE 6/27/91 04 NARRATIVE DESCRIPTION 02:0 OBSERVED (DATE 04 NARRATIVE DESCRIPTION 02:0 OBSERVED (DATE 04 NARRATIVE DESCRIPTION	Lum, chromium,	Copper,

	POTENTIAL HA	ZARDOUS WASTE SITE		I. IDENTIFIC	
≎EPA	SITE INSPECTION REPORT PART 3 - DESCRIPTION OF HAZARDOUS CONDITIONS AND INCIDENTS				TE NUMBER 00830646
	:	ANDOUS CONDITIONS AND INC	IDENTS	<u>NC</u> D	
II. HAZARDOUS CONDI				POTENTIAL	_ ALLEGED
ARATIVE DESCRIPT			/		
NA					
DI LIK DAMAGE TO FAI		02 C CBSERVED (DATE	, c	POTENTIAL	I ALLEGED
J4 NARRATIVE JESCRIPT	ION sinclude nameral or species:				
NA	_ ·	·	-	-	
···					·
D1 IL CONTAMINATION D4 NARRAT VE DESCRIPT		02 C; CBSERVED (DATE) :	; POTENTIAL	C ALLEGED
NA					
DI LI MIUNSTABLE CON	TAINMENT OF WASTES	02 C DESERVED (DATE		POTENTIAL	T ALLEGED
275 Funder Stander	GHOURDS LEARING CILIMS				
01 SAMAGE TO OF		32 T CESERVED (DATE		POTENTIAL	I ALLEGED
24 NARRATIVE DESCRIPT					
NA					
D4 CONTAMINATIO	IN OF SEWERS STORM DRAINS, WWTPS	02 T_ CBSERVED (DATE	,	, POTENTIAL	🗇 ALLEGED
NA					
	THORIZED DUMPING	32 ; CBSERVED (DATE		POTENTIAL	_ ALLEGED
14 NARRATIVE CESCRIP	TION				
NA					
L12.L					
35 DESCRIPTION OF AN	Y OTHER KNOWN POTENTIAL, OR ALLE	SED HAZAROS			
•					
	N POTENTIALLY AFFECTED:	6715			
IV COMMENTS	THE FUTER HALLT AFFECTED:				
		,		 	
-					
V SOURCES OF INFO	RMATION (Can specific references or goistate lass	sample analysis rapolis-			
1 (1	e File				
	ytical Data				

Ð

	POTENTIA	L HAZAF	IDOUS WASTE SITE		I. IDENTIFICATION
⇒EPA			PECTION SCRIPTIVE INFORMA		NC DO0830640
PERMIT INFORMATION	PARI 4. PERMI	I AND DE:	SCRIPTIVE INFORMA		
PE OF PERMIT ISSUED	22 PERMIT NUMBER	CI DATE IS	SUED 04 EXPIRATION DAT	E 05 COMMENTS	
("CT aff Ina' 2004)	NC0001422		1		
- NPOES					
	1	; 			
T T AIR		·····			
I RCRA	NCD00830646				
E RCRA INTERIM STATUS					
SPCC PLAN					
3 STATE . Soecily,	· · · · · · · · · · · · · · · · · · ·				<u></u>
- LOCAL Specify					
- OTHER . Saecite					
	<u></u>				
SITE DESCRIPTION STORAGE-DISPOSAL COMERCE AS INAL ADDIVIS	2 AMOUNT 33 UNIT C		CA TREATMENT (Check of In		1 OS OTHER
X + SURFACE IMPOUNDMENT 74.			•		
I B PILES	<u> </u>	<u>eres</u>	C A INCENERATION	UECTION	
2 D DRUMS, ABOVE GROUND			C CHEMICAL/PHYS		
S D TANK ABOVE GROUND 2.	11 million ga	<u>llon</u>	C D. BIOLOGICAL		
TE TANK, BELOW GROUND			E WASTE OIL PROCE		DE AREA OF SITE
	<u></u>				1200
. OPEN DUMP . OTHER Seeenve				5000044)	
				5000044)	
CONTAINMENT				5000044)	
	☐ B. MODERATE	 C. ;			CURE, UNSOUND, DANGEROUS
CONTAINMENT CONTAINMENT CA ADEQUATE, SECURE	····	2 с.;			CURE, UNSOUND, DANGEROUS
I H OPEN DUMP I. OTHER Satery: COMMENTS CONTAINMENT CONTAINMENT OF WASTES:::::::::::::::::::::::::::::::::::	····	2 с. ;			CURE, UNSOUND, DANGEROUS
I H OPEN DUMP I. OTHER Satery CONTAINMENTS CONTAINMENT OF WASTES: Cover over I 4 ADEQUATE, SECURE DESCRIPTION OF DRUMS, DIKING, LINERS, B	····	2 C.1			CURE, UNSOUND, CANGEROUS
I H OPEN DUMP I. OTHER Satery CONTAINMENTS CONTAINMENT OF WASTES: Cover over I 4 ADEQUATE, SECURE DESCRIPTION OF DRUMS, DIKING, LINERS, B	····	2 c. ;			CURE, UNSOUND, DANGEROUS
	····	2 6.1			CURE. UNSOUND. GANGEROUS
CONTAINMENT CONTAINMENT CONTAINMENT CONTAINMENT OF WASTES :Creet over L & ADEQUATE. SECURE DESCRIPTION OF DRUMS, DIKING, LINERS, B Inlined lagoons	····	2 C. 1			CURE, UNSOUND, CANGEROUS
CONTAINMENT CONTAINMENT CONTAINMENT CONTAINMENT OF WASTES :Creet over L & ADEQUATE. SECURE DESCRIPTION OF DRUMS, DIKING, LINERS, B Inlined lagoons	ARRIERS. ETC	2 c.;			CURE, UNSOUND, DANGEROUS
CONTAINMENT CONTAINMENT CONTAINMENT CONTAINMENT OF WASTES:CONCEMPIL CA ADEQUATE, SECURE DESCRIPTION OF DRUMS, DIKING, LINERS, B INTINE LAGOONS ACCESSIBILITY CONVASTE EASILY ACCESSIBLE X YES	ARRIERS. ETC	C. ;			CURE, UNSOUND, DANGEROUS
	ARRIERS. ETC	2 c. :			CURE, UNSOUND, CANGEROUS
H OPEN DUMP I. OTHER SERENVI SERENVI CONTAINMENT CONTAINMENT OF WASTES: CONTAINMENT OF WASTES: CONTAINMENT OF DRUMS, DIKING, LINERS, B Inlined lagoons ACCESSIBILITY WASTE EASILY ACCESSIBLE X YES COMMENTS	ARRIERS, ETC		NADEQUATE. POOR		CURE. UNSOUNO, DANGEROUS
H OPEN DUMP SERENT SERENT SOMMENTS CONTAINMENT SOURCESSIBILITY NASTE EASILY ACCESSIBLE X YES COMMENTS SOURCES OF INFORMATION (Creese	ARRIERS, ETC		NADEQUATE. POOR		CURE, UNSOUNO, CANGEROUS
H OPEN DUMP I. OTHER SERENVI SERENVI CONTAINMENT CONTAINMENT OF WASTES: CONTAINMENT OF WASTES: CONTAINMENT OF DRUMS, DIKING, LINERS, B Inlined lagoons ACCESSIBILITY WASTE EASILY ACCESSIBLE X YES COMMENTS	ARRIERS, ETC		NADEQUATE. POOR		CURE, UNSOUND, DANGEROUS
H OPEN DUMP I. OTHER SERVIT SERVIT SERVIT CONTAINMENT CONTAINMENT CONTAINMENT OF WASTES; CONTAINMENT OF WASTES; CONTAINMENT OF WASTES; CONTAINMENT OF DRUMS, DIKING, LINERS, B I. A ADEQUATE, SECURE A ADEQUATE, SECURE CONTAINMENT OF DRUMS, DIKING, LINERS, B Inlined lagoons A ACCESSIBILITY COMMENTS SURCES OF INFORMATION (CRess) L. State File	ARRIERS, ETC		NADEQUATE. POOR		CURE. UNSOUNO, CANGEROUS
CONTAINMENT CONTAINMENT CONTAINMENT CONTAINMENT OF WASTES:CONCEMENT CA ADEQUATE. SECURE CESCRIPTION OF DRUMS, DIKING, LINERS, B IN LINE LAGOONS ACCESSIBILITY COMMENTS ACCESSIBILITY COMMENTS SURCES OF INFORMATION (CResso	ARRIERS, ETC		NADEQUATE. POOR		CURE, UNSOUNO, DANGEROUS

-

.

•

⇒EPA		NTIAL HAZAR SITE INSPECT	ION REP	ORT			NTIFICATION TE 02 SITE NUMBER C D000830	646
DRINKING WATER SUPPLY	•	<u></u>				<u> </u>		
P DRINKING SUPPLY		32 STATUS				03	DISTANCE TO SITE	
	e well B.Xex	ENDANGERE A C	D AFFEC	-			on-site	
	0 3	5 C	Ē		F C	8	,mi)	
I. GROUNDWATER		t		·····		• <u>-</u>		
SROUNDWATER USE IN VICINITY (Chec	t onej							
	2 B DRINKING Citer sources evera COMMERCIAL, IN No differ water source	IDUSTRIAL, IRRIGATIO	<i>م</i> ن	MMERCIAL	INDUSTRIAL, IRRIGA		C D NOT USED, UNUSE	ABLE
2 POPULATION SERVED BY GROUND W	ATER6,715		03 DISTANC	E TO NEARE	ST DRINKING WATER	WELL	<u>on-site_(mi)</u>	
A DEPTH TO GROUNDWATER	05 DIRECTION OF GRO	OUNDWATER FLOW	06 DEPTH TO OF CONC		07 POTENTIAL YIE	LD	08 SOLE SOURCE AG	UIFER
1.5 (n)	unknc	wn		5	unknown		🗴 YES 🗋	NO
L (ES COMMENTS D NO COMMENTS V. SURFACE WATER SURFACE WATER USE (Check one) ESERVOIR, RECREATION RINKING WATER SOURCE		DN. ECONOMICALL	TYES JNO TC.(COMMEN		•	D. NOT CURRENTLY	USED
CONFECTED. POTENTIALLY AFFECTED	BODIES OF WATER						<u></u>	
**ME					AFFECTE	D	DISTANCE TO SITI	E
Cape Fear River					2	_	700 feet	
······································	······							(mi)
					0	-		(mı)
1. DEMOGRAPHIC AND PROPE	RTY INFORMATION							
1 TOTAL POPULATION WITHIN					2 DISTANCE TO NEA	RESTPOP	ULATION	
ONE (1) MILE OF SITE A 255 NO OF PERSONS	8 <u>821</u> c			(3) MILES OF SITE 4227 One (mi) NO OF PERSONS				
3 NUMBER OF BUILDINGS WITHIN TWO	121 MILES OF SITE		04 DISTAN	E TO NEAR	EST OFF-SITE BUILDI	٧G		
unknown					one		(mi)	
unk	nown							

EPA FORM 2070-13 (7-81)

		POTENTIAL HAZA	RDOUS WASTE	SHE	01 STA	TIFICATION	
VEFA	PART 5	- WATER, DEMOGRAPH		NMENTAL DATA	NC	D008306	546
ENVIRONMENTAL INFORMA	TION						
MEABILITY OF UNSATURATED ZO			****			······································	
		. 3 10-* - 10-5 cm/sec	C 10-* - 10-3 cm	1986 ID GREATER	THAN 10	r 3 cm/sec	
PERMEABILITY OF BEDROCK (Check or							
	EABLE	B RELATIVELY MPERMEAB	LE IC RELATIVEL	Y PERMEABLE 200 1 :m sect	Creater ina	ERMEABLE	
DEPTH TO BEDROCK	04 DEPTH OF	CONTAMINATED SOIL ZONE	05 SOIL DH	t			
<u>unknown</u> (11)		unknown		inknown			
NET PRECIPITATION	07 ONE YEAR	24 HOUR RAINFALL	OB SLOPE SITE SLOPE		SLOPE .		
(in)		<u>4.5</u> (m)	%	west		0	%
FLOOD POTENTIAL	1	0	1	L			
SITE IS IN YEAR FLO	ODPLAIN	C SITE IS ON BARR	IER ISLAND, COASTA	L HIGH HAZARD ARE	A, RIVERIN	E FLOODWAY	
DISTANCE TO WETLANDS IS acre more			12 DISTANCE TO CRIT	KAL HABITAT (of endange	(ed \$0ecies)		
ESTUARINE		OTHER		on-	<u>-site</u>	mi)	
A <u>on-site</u> (m)	з	(im)	ENDANGER				
LAND USE N VICINITY							
A (mi)		8	(mi)	C	(mi)	D	(mi)
······································			(mi)	C	(mi)	D	(mi)
topography of th	TO SURROUND he site	NGTOPOGRAPHY is relatively fl	at, as the	site is situ	ated	between tl	<u></u>
topography of thape Fear and North	he site east Cap	NGTOPOGRAPHY is relatively fl e Fear Rivers.	at, as the The site sl	site is situ opes mildly	ated to th	between ti e west. 1	<u></u>
topography of that ape Fear and Northe	he site east Cap	NGTOPOGRAPHY is relatively fl e Fear Rivers.	at, as the The site sl	site is situ opes mildly	ated to th	between ti e west. 1	he
topography of thape Fear and North	he site east Cap	NGTOPOGRAPHY is relatively fl e Fear Rivers.	at, as the The site sl	site is situ opes mildly	ated to th	between ti e west. 1	he
topography of thape Fear and North	he site east Cap	NGTOPOGRAPHY is relatively fl e Fear Rivers.	at, as the The site sl	site is situ opes mildly	ated to th	between ti e west. 1	he
topography of thape Fear and North	he site east Cap	NGTOPOGRAPHY is relatively fl e Fear Rivers.	at, as the The site sl	site is situ opes mildly	ated to th	between ti e west. 1	he
topography of thape Fear and North	he site east Cap	NGTOPOGRAPHY is relatively fl e Fear Rivers.	at, as the The site sl	site is situ opes mildly	ated to th	between ti e west. 1	he
topography of that and North	he site east Cap	NGTOPOGRAPHY is relatively fl e Fear Rivers.	at, as the The site sl	site is situ opes mildly	ated to th	between ti e west. 1	he
topography of thape Fear and North	he site east Cap	NGTOPOGRAPHY is relatively fl e Fear Rivers.	at, as the The site sl	site is situ opes mildly	ated to th	between ti e west. 1	he
topography of thape Fear and North	he site east Cap	NGTOPOGRAPHY is relatively fl e Fear Rivers.	at, as the The site sl	site is situ opes mildly	ated to th	between ti e west. 1	he
topography of that ape Fear and Northe	he site east Cap	NGTOPOGRAPHY is relatively fl e Fear Rivers.	at, as the The site sl	site is situ opes mildly	ated to th	between ti e west. 1	he
topography of thape Fear and North	he site east Cap	NGTOPOGRAPHY is relatively fl e Fear Rivers.	at, as the The site sl	site is situ opes mildly	ated to th	between ti e west. 1	he
topography of thape Fear and North	he site east Cap	NGTOPOGRAPHY is relatively fl e Fear Rivers.	at, as the The site sl	site is situ opes mildly	ated to th	between ti e west. 1	he
topography of the ape Fear and Northe levation of the side	TO SURROUND he site east Cap te range	ING TOPOGRAPHY is relatively fl e Fear Rivers. es form approxima	at, as the The site sl tely 3 to 2	site is situ opes mildly	ated to th	between ti e west. 1	he
topography of the ape Fear and Northe levation of the side	TO SURROUND he site east Cap te range	ING TOPOGRAPHY is relatively fl e Fear Rivers. es form approxima	at, as the The site sl tely 3 to 2	site is situ opes mildly	ated to th	between ti e west. 1	he
DESCRIPTION OF SITE IN RELATION T topography of th ape Fear and North elevation of the site	TO SURROUND he site east Cap te range	ING TOPOGRAPHY is relatively fl e Fear Rivers. es form approxima	at, as the The site sl tely 3 to 2	site is situ opes mildly	ated to th	between ti e west. 1	he
DESCRIPTION OF SITE IN RELATION T topography of th ape Fear and North elevation of the site , , , , , , , , , , , , , , , , , , ,	TO SURROUND he site east Cap te range	ING TOPOGRAPHY is relatively fl e Fear Rivers. es form approxima	at, as the The site sl tely 3 to 2	site is situ opes mildly	ated to th	between ti e west. 1	he
DESCRIPTION OF SITE IN RELATION T topography of th ape Fear and North elevation of the site	TO SURROUND he site east Cap te range	ING TOPOGRAPHY is relatively fl e Fear Rivers. es form approxima	at, as the The site sl tely 3 to 2	site is situ opes mildly	ated to th	between ti e west. 1	he

\$epa		POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT ART 6 - SAMPLE AND FIELD INFORMATION	I. IDENTIFICATION 01 STATE IC2 STE NUMBER NC D000830646
II. SAMPLES TAKEN		<u>,</u>	
LE TYPE	01 NUMBER OF SAMPLES TAKEN	CC SAMPLES SENT TO	D3 ESTIMATED DATE RESULTS AVALABLE
GROUNDWATER	3	IEA	12/91
Sediment Sunscrate	2	NCDEHNR - State Lab	12/91
WASTE			
AIR			
RUNOFF			
SPILL			
SOIL	3	IEA	12/91
VEGETATION	1		
CTHER domestic we	11 1	NCDEHNR - State Lab	12/91
III. FIELD MEASUREMENTS T	AKEN	*	~ ~ ~ / _ / _ / / / / / _ / _
IV. PHOTOGRAPHS AND MAR		(Toophorpo & AlMarco T	· · ·
- T-PE X GROUND Z AERIA	L	OZ IN CUSTODY OF Greenhorne & O'Mara, Ir	1C • · ·
C3 MAPS IA LOCATIO	Phase II SS	51	
V. OTHER FIELD DATA COLL			
,			
VI. SOURCES OF INFORMAT	ION (Cite specific references	e gi sisie (resi samble anersis reports)	
1. State File 2. Analytical I			
EPA FORM 2070-13 (7 81)	······	Man (1999 - Marine M	

• .

≎epa	P	SITE INSPI	ARDOUS WASTE SITE ECTION REPORT NER INFORMATION	DENTIFIC		
RENT OWNER(S)	·····		PARENT COMPANY III ADDING AD			
CPan, Sutton Steam	Electric Pl	20+BNUMBER ant	08 NAME	0	9 0 + 8 NUMBER	
STPEET ADDRESS :: 30, AFO, U.S. Highway 421		04 SIC CODE	10 STREET ADDRESS IP 0 Bos RED	/ e(c)	SIC CODE	
ilmington	OF STATE O	28405	: 2 CITY	3 STATE	A ZIP CODE	
1 44ME		2 D + B NUMBER	OB NAME	c	9 D+8 NUMBER	
STREET ADDRESS > 0 Box AFD + PIC	,	04 SIC CODE	10 STREET ADDRESS P 0 Bos. RFO	• • • • C	SIC CODE	
5 CITY	OS STATE	i 07 ZIP CODE	12 CITY	I J STATE	A ZIP CODE	
. NYAE		02 D + B NUMBER	OB NAME	(c	9 D+8 NUMBER	
3 STREET AODRESS FO Bas AFO + +10	1	J4 SIC CODE	10 STREET ADDRESS (P O Box AFO) #, eic)	11 SIC CODE	
5 C. T 1	06 STATE	1 07 ZIP CODE	12 CITY	· 3 STATE	I 4 ZIP CODE	
I NAME		22 D+8 NUMBER	08 NAME 09		090+8 NUMBER	
DI STREET ADDRESS > O Bos AFD + +:	с.	04 SIC CODE	10 STREET ADDRESS (P O Box AFD & etc.)		I I SKC CODE	
IS CITY	06 STATE	07 ZIP CODE	12 CITY	STATE	1 4 ZIP CODE	
VIOUS OWNER(S)	si (ecent lesi)		IV. REALTY OWNER(S) (# +PO	Necesire, asi most recent (rst)	- <u></u>	
INTHE		02 D+B NUMBER	01 NAME		02 D+8 NUMBER	
STREET ADDRESS > 0 Bos 460	1 c ;	04 SIC CODE	03 STREET ADDRESS (P O Bos. RF	0 / etc ;	D4 SIC CODE	
5 Cit r	OBSTATE	07 ZIP CODE	05 CITY	D6 STATE	C7 ZIP CODE	
1 NAME		32 D+B NUMBER	01 NAME		22 D - B NUMBER	
DI STREET ADDRESS PO BOL AFD .		04 SIC CODE	OJ STREET ADDRESS IP O Bos. AFD 4. MC.I		04 SIC CODE	
5 כודץ	08 STATE	07 ZIP CODE	05 CITY	06 STATE	07 ZIP CODE	
11 NAME	1	02 D+8 NUMBER	01 NAME		02 D+8 NUMBER	
3 STREET ACORESS = 0 60+ 444 +	ا	04 SIC CODE	03 STREET ADDRESS (P 0 Box AFI	D # #1C 1	04 SIC CODE	
SCITY	OBSTATE	07 ZIP CODE	05 CITY	OS STATE	07 ZIP CODE	
V. SOURCES OF INFORMATIO	N IChe specific references	• Ə , siste tess, sample analı	1 184. (epons)		·····	
1. State File						

.

2. G&O Field Notes

.

A FORM 2070-13 (7-81)

9	EF	PA
---	----	----

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 8 - OPERATOR INFORMATION

I. IDENTIFICATION OI STATE D2 SITE NUMBER NC D000830646

• •

			1				
, CURRENT OPERATOR Provide & atterent from owners				OPERATOR'S PARENT COMPANY III addression			
		1	2 D + B NUMBER	O NAME		1 D + B NUMBER	
ame as owner							
STREET ADDRESS IP 0 Bor	RFD # HIC ;		04 SIC CODE	2 STREET ADDRESS IP O BOX RED # +IC)		1 3 SIC CODE	
5 Ci 77	[c	6 STATE	07 ZIP CODE	4 CITY	15 STATE	16 ZIP CODE	
SYEARS OF OPERATION	D9 NAME OF OWNER	<u>_</u>					
nknown -							
IL PREVIOUS OPERATO				PREVIOUS OPERATORS' PARENT	COMPANIES		
I NAME			02 D+B NUMBER	ONAME		11 D+8 NUMBER	
STREET ADDRESS IP O BO	RED 4 NG 1		04 SIC CODE	2 STREET AODRESS PO Bos AFD # +1C)		13 SIC CODE	
5 CITY	le	6 STATE	07 ZIP CODE	· 4 CITY	1 5 STATE	16 ZIP CODE	
-					1		
SYEARS OF OPERATION	C9 NAME OF OWNER DU	IRING THE	REBIOD				
S I CARS OF OPERATION	US HAME OF OWNER DU	URING THIS					
NAME			02 D+8 NUMBER	ONAME		110+BNUMBER	
	····						
3 STREET ADDRESS (P O Box	, AFD # OIC)		04 SIC CODE	2 STREET ADDRESS .P 0 Box RFD # erc)		13 SIC CODE	
				·····		<u> </u>	
5 CITY	1	08 STATE	07 ZIP CODE	· 4 CITY	15 STATE	16 ZIP CODE	
				,			
OF OPERATION	09 NAME OF OWNER D	URING THI	SPERIOD	1			
-				:			
1 NAME			02 D + B NUMBER	: C NAME		11 D+8 NUMSER	
				i			
DI STREET ADDRESS P 0 80	AFO # #IC 1		04 SIC CODE	2 STREET ADDRESS .P 0 Box, AFD # +IC ;		1 3 SIC CODE	
				:			
25 CITT		08 STATE	07 ZIP CODE	1:4 CITY	15 STATE	16 ZIP CODE	
B YEARS OF OPERATION	09 NAME OF OWNER D	URING TH	I SPERIOD	1	<u>_</u>	<u>I</u>	
۲							
IV. SOURCES OF INFO	PMATION -			1	<u></u>		
		(6/6/00C85.)	e.g., slele idez, sample aneiv	14 'eooris)			
1. State File	2					-	
						-	
			•				

EPA EORM 2070-13 (7-81)

€EPA	P	OTE	DI STATE 02 S	1. IDENTIFICATION DI STAFE DO SITE NUMBER NC D000830646			
	PARTS	9 - GE	NERATOR/T	RANSPORTER INFORMATION			
CE GENERATOR			<u></u>				
		02 0+	8 NUMBER				
ame as owner		İ					
STREET ADDRESS (P O Bos. AFD + HIC)		1,	A SIC CODE				
CITY	O6 STATE	07 ZIP	CODE				
OFF-SITE GENERATOR(S)				<u></u>			
NAME		020+	BNUMBER	01 NAME		2 D+8 NUM	BER
L							
STREET ADDRESS IP O Box. RFD # wic ;		0	04 SIC CODE	03 STREET ADDRESS (P 0 Box. A+2 + arc)		04 SIC 0	JODE
Cit?	O6 STATE	07 216	CODE	05 CITY	OS STATE	D7 ZIP CODE	
NAVE		02 0 -	B NUMBER	01 NAME		02 D+8 NUN	18ER
STREET ADORESS IP O Bos. RFD # +IC		1	34 SIC CODE	03 STREET ADDRESS (P 0 Box. PF2+ +1C.		04 SIC 0	CODE
s c.••	C8 STATE	E 07 ZI	PCODE	05 CITY	OG STATE	07 ZIP CODE	;
V. TRANSPORTER(S)	i				······································		
Unknown		02 D-	+ B NUMBER	01 NAME		02 D+8 NUM	1954
ADDRESS -= 0 Box RFD + etc ;			C4 SIC CODE	03 STREET ADDRESS (P 0 Bos +== + atc.	;	04 SIC	CODE
5 C.7 ·	06 STATE	E 07 ZI	PCODE	05 CITY	06 STATE	07 ZIP CODE	5
: NAME		02 D	+B NUMBER	01 NAME	:	02 D+8 NUN	ABER
STPEET ADDRESS (P D BOX, AFD + ++C)		<u> </u>		03 STREET ADDRESS (P. 0. Bor. 40 + HIC		04 SIC	CODE
5 CITY	06 STAT	E 07 Z	IP CODE	05 CITY	06 STATE	07 ZIP COD	£
,							
SOURCES OF INFORMATION (Cres							
v. sources of INFORMATION (CR0)	10ac/HC /8/erance3	t, e g , sti	ste (fez, zample analy)	H2, /000/13)			
r. State File							

PRM 2070-13 (7-81)

•

€ EPA [°]	POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 10 - PAST RESPONSE ACTIVITIES		I. IDENTIFICATION 01 STATE 02 SITE NUMBER NC D000830646
1. PAST RESPONSE ACTIVITIES			
A WATER SUPPLY CLOSED	02 DATE	03 AGENCY	······································
NA			
2 D B TEMPORARY WATER SUPPLY PROVIDE 24 DESCRIPTION	ED 02 DATE	33 AGENCY	
C D C PERMANENT WATER SUPPLY PROVIDE	ED 02 DATE	03 AGENCY	
TE C SPILLED MATERIAL REMOVED	02 DATE	03 AGENCY	
C E CONTAMINATED SOIL REMOVED C DESCRIPTION	02 DATE	03 AGENCY	
INA I I F MASTE REPACKAGED I- DESCRIPTION	02 DATE	03 AGENCY	
	02 DATE	03 AGENCY	
C1 DH ON SITE BURIAL C4 DESCRIPTION	02 DATE	03 AGENCY	
<u>NA</u>			
	02 DATE		
1 I J IN SITU BIOLOGICAL TREATMENT	02 DATE	03 AGENCY	
NA C D K IN SITU PHYSICAL TREATMENT C DESCRIPTION NA	02 DATE	03 AGENCY	
CI DIL ENCAPSULATION C4 DESCRIPTION	02 DATE	03 AGENCY	
NA CONTRACTOR EMERGENCY WASTE TREATMENT	02 DATE	03 AGENCY	
NA C' I N CUTOFF WALLS C4 DESCRIPTION	02 DATE	03 AGENCY	
NA			
24 DESCRIPTION	R DIVERSION 02 DATE	03 AGENCY	
NA C T P CUTOFF TRENCHES/SUMP C4 DESCE:PTION NA	02 DATE	03 AGENCY	· · · · · · · · · · · · · · · · · · ·
CO SUBSURFACE CUTOFF WALL COUDESCRIPTION	02 DATE	03 AGENCY	·
NA PA FORM 2020-13-2 A11	······		

\$epa	POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 10 - PAST RESPONSE ACTIVITIES	: IDENTIFICATION
II PAST RESPONSE ACTIVITIES (Continued)		
C R BARRIER WALLS CONSTRUCTED	02 DATE	03 AGENCY
C' C S CAPPING/COVERING 34 DESCRIPTION NA	J2 DATE	03 AGENCY
31 Z T BULK TANKAGE REPAIRED 24 DESCRIPTION	02 DATE	03 AGENCY
		03 AGENCY
NA DI C V BOTTOM SEALED C4 DESCRIPTION NA	02 DATE	03 AGENCY
ンゴ W GAS CONTROL 14 DESCRIPTION NA	C2 DATE	03 AGENCY
31 C X FIRE CONTROL 34 DESCRIPTION NA	02 DATE	03 AGENCY
01 C Y LEACHATE TREATMENT 04 DESCRIPTION NA	D2 DATE	03 AGENCY
D1 C Z. AREA EVACUATED 04 DESCRIPTION	02 DATE	03 AGENCY
31 _ 1 ACCESS TO SITE PESTRICTED 34 DESCRIPTION	02 DATE	03 AGENCY
2: 2 POPULATION RELOCATED 34 DESCRIPTION	02 DATE	03 AGENCY
JI C 3. OTHER REMEDIAL ACTIVITIES 34 DESCRIPTION	02 DATE	03 AGENCY
NA ,		
III. SOURCES OF INFORMATION (Cite specific	relerences e d., siala fées sample analysis (eports)	
1. State File		
EPA FORM 2070-13 (7-81)		

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 11 - ENFORCEMENT INFORMATION

I. IDENTIFICATION OI STATE OZ SITE NUMBER NC D000830646

. .

...

FORCEMENT INFORMATION

ST REGULATORY/ENFORCEMENT ACTION 11 455 X NO

32 DESCRIPTION OF FEDERAL, STATE LOCAL REGULATORY/ENFORCEMENT ACTION

III. SOURCES OF INFORMATION (Cressbeck: references, e.g., siete lifes, sample analysis reports)

1. State File

ORM 2070-13 (7-81)

APPENDIX C ANALYTICAL DATA

•

DATA ANALYZED BY IEA See Volume II

		KECEIVED
SOLID	WASTE MANAGEMENT DIVISION SUPERFUND SECTION	OGT & 1991 CERCLA
<u>Cl</u>	nain of Custody Record	SUPERFUND SECTION
· Ha	zardous Waste Materials	
Location of Sampling:	Generator Treatment Facility Disposal Facility Other:	Landrill
Company's Name CP+1_	Other: <u>ELEC.PLANT</u> <u>SuttantSteam</u> , Telephone	a:
Address WILMINGTON	, NC	
Collector's Name	Telephone	e: 919 <u>733 - 2801</u>
Date Sampled <u>6-27</u>	- 91	pled
Type of Process Genera	ting Waste	
Field Information:		
		۰
	-	
Field Sample No. 76 289	16290 16291	
	NAN-98-88-1	
Chain of Possession:	Env. Engineer title	<u>6/27/91 -6/28</u> inclusive dates
signature	<u> </u>	<u>28 June-9/</u> inclusive dates
signature	title	inclusive dates
Results Reported:	- Obunit title	<u> </u>
Instructions: Complet	e all applicable informat:	ion including

•

i

Complete all applicable information including signatures, and submit with analysis request forms.

N.C. Department of Environment, S.	AMPLE ANALYSIS REQUEST	State Laboratory of Public Health
Ilealth, & Natural Resources	CER	P.O. Box 28047, 306 N. Wilmington Street
Solid Waste Management Division	<u>. ()</u>	
Site Number (65) 000 830	646 Field Sample Number	16289-
The of Site CP +L Sutton	Steam Elec Site Location & HIM	TNGTON SUPERFUND SECTION
· · · · · · · · · · · · · · · · · · ·		<u>6 - 27 - 9 Time 10:20</u>
Agency:Hazardous Waste	Solid WasteSuperfund	TCLP Compounds
Sample Type	Comments	Inorganic Compounds Results(mg/l)
Environmental Concentrate	Comments	$\frac{\checkmark}{\checkmark} \text{Barium} \qquad \frac{\checkmark}{0.36}$
Ground water (1) Solid (5) SED -SOUTH	\sim Cadmium \sim
	INOKGAN,	Chromium <u>40.10</u>
Surface water (2) Liquid	(6) <u>250 mL</u>	Lead
Soil (3) Sludge		Mercury <u>$\angle 0.03$</u> Selenium <u>$\angle 0.03$</u>
		$\overline{}$ Silver $\underline{}$
Other (4) SEDEMENT Other (8)	
Organic Chemistry	Inorganic Chemistry	
	morganic Chemistry	
Parameter Results(mg/l)	Parameter Results(mg/l)(mg/kg)	Organic Compounds Results(mg/l)
P&T:GC/MS	\checkmark Arsenic 5.8	benzene
Acid:B/N Ext MTBE	Barium 21	carbon tetrachloride
MIBE	Cadmium <u>(16</u> Chloride	chlordane
	Chromium 20	chloroform
	Copper	o-cresol
	Fluoride	m-cresol
	Iron Lead 19	p-cresol
	Manganese	1,4-dichlorobenzene
	$\underline{\checkmark} Mercury \underline{ \leq 0, }$	1,2-dichloroethane
	Nitrate	1,1-dichloroethylene
	Selenium (1.0	2,4-dinitrotoluene
Radiochemistry	Silver 20 Sulfates	heptachlor hexachlorobenzene
Naulochemistry	Zinc	hexachlorobutadiene
Parameter Results (PCI/I)	pH	hexachloroethane
Gross Alpha	Conductivity	methyl ethyl ketone
Gross Beta	TDS	nitrobenzene
	тос	pentachlorophenol
Microbiology		tetrachloroethylene
		trichloroethylene
Parameter Results (Col/100ml)		2,4,5-trichlorophenol
		2,4,6-trichlorophenol
		vinyl chloride
L	1	lindane
Pate Received	Reported by	methoxychlor
		toxaphene
Date Extracted	Date Reported	2,4-D 2,4,5-TP (Silvex)
Date Analyzed	Lab Number	2,4,3-11 (SHVCX)

N.C. Department of Environment, SA Itealth, & Natural Resources Solid Waste Management Division	AMPLE ANALYSIS REQUEST	P.O. Box 28047, 3	boratory of Public Health 06 N. Wilmington Street h, North Carolina 27611
Site Number <u>(65) 000 830</u>	646 Field Sample Number	162	
e of Site CP + L, Suttern	Steam ElEC Site Location) HIN	TNGTON , SUP	C 1991
Collected By HARVEN ALLEN	ID# <u>76</u> Date Collected 0	<u>6-27-91</u> Ti	ne 11:15
Agency:Hazardous Waste	Solid WasteSuperfund	TCLP Co	mpounds
Sample Type Environmental Concentrate	Comments	Inorganic Compounds	Results(mg/l) エロュロス
		🗾 🗾 Barium	0-47
Ground water (1) Solid (5) <u>SED - NORTH</u> INORGAN.	Cadmium Chromium	<u>20.08</u>
Surface water (2) Liquid ((6)	Lead	40.50
Soil (3) Sludge	(7)	Mercury Selenium	<u>×0.03</u>
		Silver	40.10
Uther (4) SEDIMENT Other (8)		
Organic Chemistry	Inorganic Chemistry		······································
Parameter Results(mg/l) P&T:GC/MS	Parameter Results(mg/l)(mg/kg) ✓ Arsenic	Organic Compounds benzene carbon tetrachlorid chlordane chlorobenzene chloroform o-cresol m-cresol p-cresol cresol	
	Manganese Mercury	1,4-dichlorobenzen 1,2-dichloroethane	
	$\frac{1}{\sqrt{2}}$ Nitrate $\frac{1}{\sqrt{2}}$ Selenium $\frac{1}{\sqrt{2}}$	1,1-dichloroethylen 2,4-dinitrotoluene	e
Radiochemistry	Silver C20 Sulfates	heptachlor hexachlorobenzene	
Parameter Results (PCI/I) Gross Alpha Gross Beta	Zinc	hexachlorobutadien hexachloroethane methyl ethyl keton nitrobenzene pentachlorophenol	e
Microbiology		pyridine tetrachloroethylene	
Parameter Results (Col/100ml)		trichloroethylene 2,4,5-trichlorophene 2,4,6-trichlorophene	
		vinyl chloride endrin	
ate Received	Reported by	lindane methoxychlor	
Date Extracted	Date Reported	toxaphene 2,4-D	
Date Analyzed	Lab Number	2,4,5-TP (Silvex)	

N.C. Department of Environment, Health, & Natural Resources Solid Waste Management Division	SAMPLE ANALYSIS REQUEST	P.O. Box 28047, 306 M	tory of Public Health N. Wilmington Street North Carolina 27611
Site Number <u>(05) 000 830</u>	646 Field Sample Numbe	16291	
mene of Site CP + L, Suttor	JSteam Elec. Site Location);]n	MENGERDAL NC	·
	ID# <u>76</u> Date Collected		
Agency:Hazardous Waste	Solid WasteSuperfund	TCLP Com	pounds
Sample Type Environmental Concentrate	Comments	Inorganic Compounds Arsenic	Results(mg/l)
Ground water (1) Solid	(5) <u>DW-01</u>	Barium Cadmium CEIVE	<u> </u>
Surface water (2) Liquid	(6) <u>Cures</u>	Lead Mercury UL 2 4 190	
Soil (3) Sludge	: (7)	SeleajupERFUND SEC	a design of the second s
	(8)		
·····	1		
Organic Chemistry	Inorganic Chemistry		
Parameter Results(mg/l) P&T:GC/MS	\checkmark Arsenic $\bigcirc 0.01$ \checkmark Barium $\bigcirc 0.05$ \checkmark Cadmium $\bigcirc 0.05$ \bigcirc Chloride $\bigcirc 0.02$ \checkmark Chromium $\bigcirc 0.02$ \bigcirc Copper \bigcirc \neg Fluoride \bigcirc \square ron $\bigcirc 0.02$ \checkmark Lead $\bigcirc 0.05$ \checkmark Manganese \bigcirc \checkmark Mercury $\checkmark 0.02$ \checkmark Selenium $\bigcirc 0.02$ \checkmark Silver $\checkmark 0.02$ \bigcirc Sulfates \square TDS \square TOC	Organic Compounds benzene carbon tetrachloride chlordane chlorobenzene chloroform o-cresol m-cresol p-cresol cresol 1,4-dichlorobenzene 1,2-dichloroethane 1,2-dichloroethylene 2,4-dinitrotoluene heptachlor hexachlorobenzene hexachlorobenzene pentachloroethane methyl ethyl ketone nitrobenzene pentachlorophenol pyridine tetrachloroethylene 2,4,5-trichlorophenol 2,4,6-trichlorophenol 2,4,6-trichlorophenol vinyl chloride endrin	Results(mg/l)
Date Received	Reported by Cull Carl	indane methoxychlor toxaphene	
Date Extracted	Datc Reported 22JJ / 9/	2,4-D 2,4,5-TP (Silvex)	
Date Analyzed D11S 3191 (Revised 2/91)	Lab Number		

N.C. Department of Environment, S. Health, & Natural Resources Solid Waste Management Division	AMPLE ANALYSIS REQUEST	State Laboratory of Public Health P.O. Box 28047, 306 N. Wilmington Street Raleigh, North Carolina 27611
	30 646 Field Sample Number PLANT	
1 of Site <u>CP+L</u> , Sutton S	team Elec. Site Location 1.) I	LMINGTON NC
Collected By	$D# \underline{\eta}_{0}$ Date Collected (6-24-91 Time 9:45
Agency: Hazardous Waste	Solid WasteSuperfund	TCLP Compounds
Sample Type Environmental Concentrate	Comments	Inorganic Compounds Results(mg/l)Arsenic
Ground water (1) Solid (5) TRIP BLANK - VOA	
Surface water (2) Liquid	(6) (Johnson Controls & CP+L)	Lead
Soil (3) Sludge	(7)	Mercury Selenium UPERFUND SECTION
Other (4) Other (8)	Silver
Organic Chemistry	Inorganic Chemistry	
Parameter Results(mg/l) V P&T:GC/MS Acid:B/N Ext.	Parameter Results (mg/l) (mg/kg) Arsenic	Organic Compounds Results(mg/l) benzene
Radiochemistry	Sulfates Zinc	hexachlorobenzene
Parameter Results (PCI/I) Gross Alpha Gross Beta	pH Conductivity TDS TOC	hexachloroethane
Microbiology		pyridine tetrachloroethylene
Parameter Results (Col/100ml)		trichloroethylene 2,4,5-trichlorophenol 2,4,6-trichlorophenol
		vinyl chloride
Date Extracted	Reported by M. New Date Reported 8-26-9 (Lab Number 912443	endrin
Date Extracted	Date Reported 8-26-9 (endrin lindane methoxychlor toxaphene 2,4-D

N.C. Department of Environment,
IIcalth, & Natural Resources
Solid Waste Management Division

SAMPLE ANALYSIS REQUEST

State Laboratory of Public Health P.O. Box 28047, 306 N. Wilmington Street Raleigh, North Carolina 27611 ,

Solid Waste Management Division CERCLA Raleigh, Nor	th Carolina 27611
Site Number 65 D 000 830 646 Field Sample Number 14991	
Site Number 65 D 000 830 646 Field Sample Number 14991 FLANT Name of Site CP + L, Sutten Steam Elec. Site Location DEL MELOTION, NC	
Collected By HARVEN ALLEN ID# 76 Date Collected 6-27-91 Time	10:20
Agency:Hazardous WasteSolid WasteSuperfund TCLP Compo	unds
Sample Type Inorganic Compounds Environmental Concentrate Comments Barium Barium	Results(mg/l)
Ground water (1) Solid (5) <u>SED</u> - <u>SOUTH</u> Cadmium Surface water (2) Liquid (6) <u>VOA</u> <u>BNA</u> <u>ACB'</u> Lead	
	12.31
Other (4) SEDIMENT Other (8)	
Organic Chemistry Inorganic Chemistry	
Parameter Results(mg/l) Parameter Results(mg/l)(mg/kg) Organic Compounds ✓ AddB/N Ext. Barium carbon tetrachloride chlordane MTBE Cadmium chlorobenzene chlorobenzene ✓ PCB'S ≤0.0001 Chloride chlorobenzene ✓ PCB'S ≤0.0001 Chloride chlorobenzene ✓ PCB'S ≤0.0001 Chloride chlorobenzene ✓ PCB'S ≤0.0001 Chorium chlorobenzene ✓ PCB'S ≤0.0001 Chorium chlorobenzene ✓ PCB'S ≤0.0001 Ead m-cresol ✓ PCB'S ≤0.0001 Lead cressol ✓ Presol Ton p-cresol cressol ✓ Hardichemistry Lead cressol 1,4-dichlorobenzene Nitrate Silver betrachlor bezachlorobenzene Silver Sulfates bezachlorobenzene petachlor Zinc hexachlorobenzene petachlorobenzene petachlorobenzene Øross Alpha TDS nitrobenzene petachlorobenzene TOC petatachlorobenzene	Results(mg/l)
PEE's BwA 912444 2,4,5-TP (Silvex)	

N.C. Ecpartment of Environment,
llealth, & Natural Resources
Solid Waste Management Division

SAMPLE ANALYSIS REQUEST

State Laboratory of Public Health P.O. Box 28047, 306 N. Wilmington Street Raleigh, North Carolina 27611

Ilealth, & Natural Resources Solid Waste Management Division	CER	August 1997
Site Number (05) 000 830	646 Field Sample Number	r <u> </u>
Name of Site $CP \neq L$, Sutton	Steam Elec Site Location); In	TINGTON, NC
,		6-27-91 Time 11:15
Agency:Hazardous Waste	Solid WasteSuperfund	TCLP Compounds
Sample Type Environmental <u>Concentrate</u>	Comments	Inorganic Compounds Results(mg Arsenic
Ground water (1) Solid (5) <u>SED-NORTH</u>	
Surface water (2) Liquid ((6) VOA/BNA/PCB's	Lead <u>1 10⁻¹</u> Mercury
Soil (3) Sludge	(7)	Selenium SHPERENND SECTION
\checkmark Other (4) SEDIMENT Other (8)	
Organic Chemistry	Inorganic Chemistry	
Parameter Results(mg/l) ✓ P&T:GC/MS ✓ Acid:B/N Ext. MTBE <0.0001	Parameter Results(mg/l)(mg/kg) Arsenic	Organic Compounds Results(m benzene
Microbiology		tetrachloroethylene
Parameter Results (Col/100ml)		2,4,5-trichlorophenol 2,4,6-trichlorophenol vinyl chloride
PCB'5 BNA atc Extracted 7-18-9190;8-1-91 AA PCB'5 BNA	Lab Number 912445	endrin

N.C. Department of Environment, SA Health, & Natural Resources Solid Waste Management Division	AMPLE ANALYSIS REQUEST	P.O. Box 28047, 306 N. Wilmington Street
Site Number <u>(05) 000 830</u>	6410 Field Sample Number	14993
Name of Site CP + L, Sutton	Steam ElEC Site Location HIm	ILIGTON NC
		6-27.91 Time 12:30
Agency:Hazardous Waste	Solid WasteSuperfund	TCLP Compounds
Sample Type <u>Environmental Concentrate</u>	Comments	Inorganic Compounds Results(mg/l)Arsenic
Ground water (1) Solid (5) Dul-01 VOA	Cadmium VE. CEWELJ
Surface water (2) Liquid (Chromium Lead 0.00000000000000000000000000000000000
Soil (3) Sludge	(7)	Mercury Selenium SUPERFUND SECTION
Other (4) Other (4)	8)	Silver
Organia Chamistry	Incorportio Chamistry	
Organic Chemistry Parameter Results(mg/l)	Inorganic Chemistry Parameter Results(mg/l)(mg/kg)	
Parameter Results(mg/l) P&T:GC/MS Acid:B/N Ext.	Parameter Results(mg/l)(mg/kg) Arsenic	Organic Compounds Results(mg/l) benzene
Radiochemistry	Sulfates	hexachlorobenzene hexachlorobutadiene
Parameter Results (PCi/l) Gross Alpha Gross Beta	pH Conductivity TDS TOC	hexachloroethane methyl ethyl ketone nitrobenzene pentachlorophenol pyridine
Microbiology		tetrachloroethylene
Parameter Results (Col/100ml)		trichloroethylene 2,4,5-trichlorophenol 2,4,6-trichlorophenol vinyl chloride endrin
Date Received 6/28/91 APM	Reported by	lindane methoxychlor
atc Extracted	Date Reported	toxaphene 2,4-D
Date Analyzed VCX 20 91 0115 3191 (Revised 2/91)	Lab Number 912446	2,4,5-TP (Silvex)

N.C. Department of Environment, Health, & Natural Resources Solid Waste Management Division	AMPLE ANALYSIS REQUEST	CLA F.O. Box 28047, 306 N. Wilmington Street Raleigh, North Carolina 27611
Site Number <u>(65) 000 830</u>	646 Field Sample Number	14994
Name of Site <u>CP+L</u> Sutton	Steam ElEC Site Location) HIm	TRIGTON, NC
Collected By HARVEY ALLEN	ID# <u>7 (o</u> Date Collected (<u>6-27-9</u> Time <u>12.30</u>
Agency:Hazardous Waste	Solid WasteSuperfund	TCLP Compounds
Sample Type Environmental <u>Concentrate</u>	Comments	Inorganic Compounds Results(mg/l) Arsenic Barium
Ground water (1) Solid (5) DW-01	Cadmium
Surface water (2) Liquid	$(6) \qquad \frac{2L}{BNA's} \rho_{CR}$	Lead Mercury SUPERFUND SECTION
Soil (3) Sludge		Selenium Silver
Other (4) Other (8)	
Organic Chemistry	Inorganic Chemistry	
Parameter Results(mg/l) P&T:GC/MS	ParameterResults(mg/l)(mg/kg)Arsenic	Organic Compounds Results(mg/l) benzene
Microbiology		pyridine tetrachloroethylene
Parameter Results (Col/100ml)		trichloroethylene 2,4,5-trichlorophenol 2,4,6-trichlorophenol vinyl chloride
PCB5 - 2-9/VP $atc Extracted - 7-27-91 AA, B.D$ $PCB5 - 7-3-9110 BVA$	Reported by Date Reported Lab Number9124477	endrin

SOLID WASTE MANAGEMENT DIVISION SUPERFUND SECTION

Chain of Custody Record

CERCLA

Hazardous Waste Materials

۰.

۰.

Tr Tr Di	enerator ceatment Facility sposal Facility cher:	Landfill
Company's Name <u>CP+L SutterLSt</u>	her:	
Address UTLMINGTON N	C	<u> </u>
Collector's Name	Telephone	: 9/9 SUPERFUNDSERION
Date Sampled <u>6-27-91</u>	Time Samp	led
Type of Process Generating Wa	nste	
Field Information:		
·		
·		•
Field Sample No. <u>/499/</u>	<u> </u>	
Chain of Possession: Alley signature Apra Mealin signature	Env. Engineer title <u>Chemist</u> title	6/24/91 - 6/28/91 (1499) 6/21/91 - 6/28/91 (1499) inclusive dates 6/28/91 inclusive dates
signature	title	inclusive dates
Results Reported:	<u>Chemist</u> title	<u>8-26-91</u> date

Instructions: Complete all applicable information including signatures, and submit with analysis request forms.

STATE LABORATORY OF PUBLIC HEALTH DIVISION OF HEALTH SERVICES, N.C. DEPARTMENT OF HUMAN RESOURCES P.O. BOX 28047 - 306 N. WILMINGTON, ST., RALEIGH, N.C. 27611

ORGANIC	CHEMICAL	ANALY	SIS

			IC CHEMICAL AN				
BASE (NEUTRAL AND ACID	LAB NO	912444	912445	912447			
KTRACTABLES	FIELD #	14991	14992	14994			
	TYPE	(4)	(4)	(1)	()		()
COMPOUND	UNITS		Int ug/kg		10/1 10/kg	<u>ua/1 ua/ka</u>	µg/1 µg/kg
nitrosodimethylamine	10/330	IN IN	Les Ka	TA	HALL HALVA	have havea	<u> </u>
s(2-chloroethyl)ether	10/ 320		- 10-			- W MB- BUBP	H 11
2-chlorophenol	-{	<u> </u>]		<u> </u>	11		
			<u> </u>	<u> </u>			<u>}</u>
abenol	╺╂╌╍╌╂╌╌╍╸	┨────┨─────	<u> </u>	 			
<u>3-dichlorobenzene</u>	- <u> </u>	↓				<u> </u>	
1,4-dichlorobenzene		<u> </u>	<u> </u>			FERFUND SEC	iiii
1,2-dichlorobenzene	-{						
s(2-chloroisopropyl)ether						 	
xachloroethane	- 					<u> </u>	
<u>N-nitroso-di-n-propylamine</u>							L
trobenzene							
ophorone					l		
2-nitrophenol							
2_4_dimethylphenol							
s(2-chloroethoxy)methane							
z,4-dichlorophenol							
1,2,4-trichlorobenzene						1	
iphthalene	1		1	[Í	1	
xachlorobutadiene			<u> </u>			 	
4-chloro-m-cresol	1						
mexachlorocyclopentadiene	+	<u> </u>	<u> </u>				
4,6-trichlorophenol				<u> </u>		{	
2-channaphthalene		<u> </u>		{	<u> </u>	<u> </u>	
acenaphthylene	+		╂───╁────	<u> </u>		}	
		}					
imethyl phthalate		<u> </u>	├───	[{		
Z,6-dinitrotoluene	+					<u> </u>	
acenaphthene			┨────┨─────				
.4-dinitrophenol	50/1650	·	ļ				
4 ,4-dinitrotoluene	10/330						
4-nitrophenol	50/1450		I	I			
luorene	10/330						
-chlorophenylphenylether							
diethyl phthalate			1	L	[
4,6-dinitro-o-cresol	50/1650						
iphenylamine	1						
azobenzene	TV I						
4-bromophenylphenylether	10/330						
exachlorobenzene	10/330						
entach lorophenol	50/1650					1	
phenanthrene	10/330		1 1	1		11	
Inthracene	1 1	1	1	1	1	1	
libuty] phthalate	-1			1-17-		t/	
fluoranthene			┼───┴───		1	1	
		<u> </u>		<u> </u>	1	L	

MDL H20/SOIL

Estimated value. $H_2O/SOIL$ Actual value is known to be less than value given. Actual value is known to be greater than value given. Material was analyzed for but not detected. The number is the Minimum Detection Limit. MDLot analyzed.

- On NRDC List of Priority Pollutants. 2/

I.C. Division of Health Services DHS 3068-0 (4/86 Laboratory)

STATE LABORATORY OF PUBLIC HEALTH DIVISION OF HEALTH SERVICES, N.C. DEPARTMENT OF HUMAN RESOURCES P.O. BOX 28047 - 306 N. WILMINGTON, SI., RALEIGH, N.C. 27611

ORGANIC CHEMICAL ANALYSIS

		ORGANI	C CHEMICAL A	AVC1212			
NEUTRAL AND ACID	LAB NO	912444	912445	912447	ſ		
EXTRACTABLES	FIELD #	14991	19992	1444			
	TYPE	(4)	(4)	(/)	()	()	()
COMPOUND	UNITS	met ug/kg)	met (ug/kg	Kug/Dug/kg	µg/1 µg/kg	μg/1 μg/kg	µg/1 µg/kg
pyrene	10/330	W	N	11			
benzidine	50/1650		1	1			
butyl benzyl phthalate	10/330			1	it's	FINE	1
penz(a)anthracene	1 1						
chrysene				1	· · · · ·	100	
3,3-dichlorobenzidine	50/1650						
bis(2-ethylhexyl)phthalate	10/330			1	SIIP	EPEIIND SECT	141
di-n-octyl phthalate	10/330			1			····
benzo(b)fluoranthene	50/1650						
benzo(k)fluoranthene	1						
benzo(a)pyrene							
indeno(1,2,3-cd)pyrene							
dibenzo(a,h)anthracene					<u> </u>	1	
benzo(g,h,i)perylene	V	V	V		1		
				1]	
aniline	50/1650	U	u	U_			
benzoic acid	1		1	1			
benzyl alcohol						· ·	
4-chloroaniline	1.			1			
diberzofuran	10/330			1	<u></u>	1	
2-n Inaphthalene	1 1			1			Í
2-methylphenol					1	1	
4-methylphenol				1	1	1	
2_nitroaniline	50/1650			1	1		
3-nitroaniline							
4-nitroaniline				1			
2,4,5-trichlorophenol		V		V			
				1			
1]					
			}				
				1	1		
		1		1	1		
	1	[1			
			[1	1		
	-1	1		1		T	
		[[1	1	1	
		1		1	1	1	
		†	†	1	1		
······		t	· •	1	· · · · · · · · · · · · · · · · · · ·	1	
•••••		· [·	<u>†</u>	1	t	1	
		<u> </u>	<u> </u>	+	1	1	1
••••••••••••••••••••••••••••••••••••••		<u> </u>	<u> </u>	<u> </u>	t	<u> </u>	
		<u> </u>	L	1	۱ 	L	l

MDL

Not analyzed.

17 - Tentative identification. 27 - On NROC List of Priority Pollutants.

N.C. Division of Health Services

N. C. DEPARTMENT OF ENVIRONMENT, HEALTH, & NATURAL RESOURCES DIVISION OF LABORATORY SERVICES, ENVIRONMENTAL SCIENCES SECTION P.O. BOX 28047 - 306 N. WILMINGTON ST, RALEIGH, N.C. 27611

Laboratory No. 912.443

PURGEABLE COMPOUNDS

Date of Analysis 8/20/91

COMPOUND	μg/1
Dichlorodifluoromethane	U
Chloromethane	
√Vinyl Chloride	
Bromomethane	
Chloroethane	
Trichlorofluoromethane	
√1,1-Dichloroethylene	V
Methylene Chloride	IK.C
tert-Butyl Methyl Ether	u
trans-1,2-Dichloroethylene	
Isopropyl ether	
1,1-Dichloroethane	
2,2-Dichloropropane	
cis-1,2-Dichloroethylene	
Chloroform	
(BCM) Bromochloromethane	
<u>√1,1,1-Trichloroethane</u>	
1,1-Dichloropropene	
√Carbon Tetrachloride	
<u>√Benzene</u>	
<u>√1,2-Dichloroethane</u>	
Trichloroethylene	
,2-Dichloropropane	
Bromodichloromethane	
Dibromomethane	
Toluene	
1,1,2-Trichloroethane	
Tetrachloroethylene	
1,3-Dichloropropane	
Dibromochloromethane	
1,2-Dibromoethane (EDB)	
1-Chlorohexane	

COMPOUND	µg/ 1		
Chlorobenzene		U	
Ethylbenzene	_		
1,1,1,2-Tetrachloroethane		1))	
p-Xylene			
m-Xylene	1001		
o-Xylene			
Styrene SUPERFIIN	D SFCTU	NA	
Bromoform			
Isopropylbenzene			
1,1,2,2-Tetrachloroethane			
Bromobenzene			
n-Propylbenzene			
1,2,3-Trichloropropane			
2-Chlorotoluene			
1,3,5-Trimethylbenzene			
4-Chlorotoluene		ļ	
tert-Butyl Benzene			
Pentachloroethane	·	<u> </u>	
1,2,4-Trimethylbenzene	. <u></u>		
sec-Butyl Benzene			
p-Isopropyltoluene			
1,3-Dichlorobenzene			
√1,4-Dichlorobenzene			
n-Butylbenzene			
1,2-Dichlorobenzene			
Bis (2-Chloroisopropyl) Ether			
1,2-Dibromo-3-Chloropropane			
1,2,4-Trichlorobenzene			
Hexachlorobutadiene		- <u> </u>	
Naphthalene			
1,2,3-Trichlorobenzene	v	/	
	<u></u>		

COMMENTS:

Unidentified peaks present

MDL - Minimum Detection Limit for water (EPA Method 502.2), is 1.0 μ g/1. C = Possible Lab contamination

- J Estimated value.
- K Actual value is known to be less than value given. L Actual value is known to be greater than value given.
- U Material was analyzed for but not detected.
- NA Not analyzed.
- 1/ Tentative identification. $\sqrt{-}$ Regulated VOC T Trihalomethane

N.C. Dept. of Environment, Health, & Natural Resources DEHNR 3068-0 (Rev. 1/91 Laboratory Services)

N. C. DEPARTMENT OF ENVIRONMENT, HEALTH, & NATURAL RESOURCES DIVISION OF LABORATORY SERVICES, ENVIRONMENTAL SCIENCES SECTION P.O. BOX 28047 - 306 N. WILMINGTON ST, RALEIGH, N.C. 27611

Laboratory No. 912446

PURGEABLE COMPOUNDS

Date of Analysis $\frac{8/20/9/}{20}$

COMPOUND	µg/1
Dichlorodifluoromethane	1/
Chloromethane	
√Vinyl Chloride	
Bromomethane	
Chloroethane	
Trichlorofluoromethane	<u> </u>
√1,1-Dichloroethylene	·V
Methylene Chloride	IK,C
tert-Butyl Methyl Ether	<u> </u>
trans-1,2-Dichloroethylene	
Isopropyl ether	
1,1-Dichloroethane	
2,2-Dichloropropane	
cis-1,2-Dichloroethylene	V
Chloroform	IK, T
(BCM) Bromochloromethane	<u> </u>
$\sqrt{1, 1, 1-Trichloroethane}$	
1,1-Dichloropropene	
<u>√Carbon Tetrachloride</u>	
<u> √Benzene</u>	
$\sqrt{1,2-Dichloroethane}$	
(Trichloroethylene	
1,2-Dichloropropane	
Bromodichloromethane	
Dibromomethane	
Toluene	
1,1,2-Trichloroethane	
Tetrachloroethylene	
1,3-Dichloropropane	
Dibromochloromethane	
1,2-Dibromoethane (EDB)	
1-Chlorohexane	
······································	
Ethyl ether	1 trace.

COMPOUND	μg	/1
Chlorobenzene	/	1
Ethylbenzene		
1,1,1,2-Tetrachloroethane		
p-Xylene	EPHP. I	<u>h</u>
m-Xylene 611.UL		2
o-Xylene		
Styrene	- 1201	
Bromoform Supervision	1.056574	
Isopropylbenzene 001LIII01	9 3E0110	N.
1,1,2,2-Tetrachloroethane		
Bromobenzene		
n-Propylbenzene		
1,2,3-Trichloropropane		
2-Chlorotoluene		
1,3,5-Trimethylbenzene		
4-Chlorotoluene		
tert-Butyl Benzene		
Pentachloroethane		
1,2,4-Trimethylbenzene		
sec-Butyl Benzene		
p-Isopropyltoluene		
1,3-Dichlorobenzene		
√1,4-Dichlorobenzene		
n-Butylbenzene		
1,2-Dichlorobenzene		
Bis (2-Chloroisopropyl) Ether		
1,2-Dibromo-3-Chloropropane		
1,2,4-Trichlorobenzene		
Hexachlorobutadiene		
Naphthalene		
1,2,3-Trichlorobenzene	1	/
••••••••••••••••••••••••••••••••••••••		

COMMENTS:

T

MDL - Minimum Detection Limit for water (EPA Method 502.2), is 1.0 µg/1.

C-Possible Lab contamination

J - Estimated value.

- K Actual value is known to be less than value given. L Actual value is known to be greater than value given. U Material was analyzed for but not detected.

NA - Not analyzed. 1/ - Tentative identification. $\sqrt{-}$ Regulated VOC

- T Trihalomethane

N.C. Dept. of Environment, Health, & Natural Resources DEHNR 3068-0 (Rev. 1/91 Laboratory Services)

STATE LABORATORY OF PUBLIC HEALTH DIVISION OF HEALTH SERVICES, N.C. DEPARTMENT OF HUMAN RESOURCES P.O. BOX 28047 - 306 N. WILMINGTON, ST., RALEIGH, N.C. 27611

ORGANIC CHEMICAL ANALYSIS

PURGEABLE COMPOUNDS	LAB NO	912444	912445				
	FIELD #	14991	14992			1	
COMPOUND	TYPE	(4)	(4)	()	()	()	()
	UNITS	49/1 (49/kg)	µg/1 µg/kg	µg/l µg/kg	µg/1 µg/kg	µg/1 µg/kg	49/1 49/k
chloromethane	10 ppb		il				
bromomethane	14						
dichlorodifluoromethane	5 ppb				合议中-	1 H + H h - h	<u>l</u> j
vinyl, chloride						· · · · · · · · · · · · · · · · · · ·	
<u>chloroethane</u>					, ,	1. 1.15	
methylene chloride							
trichlorofluoromethane					Stilbi.	DEIINI) SEPTI	E.
ethene, 1,1-dichloro							
ethane, 1,1-dichloro-							
1,2-trans_dichloroethene							
chloroform							
ethane, 1,2-dichloro-							
ethane, 1,1,1-trichloro-							
carbontetrachloride						1	
bromodichloromethane							
propane, 1,2-dichloro-							
1,3-trans-dichloropropene							
trichloroethylene							
chlorodibromomethane							
benzene							
eme, 1,1,2-trichloro-							
icis-dichloropropene	10 pph						
2-chloroethyl vinyl ether	1						
bromoform	5 pph						
ethane, 1,1,2,2-tetrachloro-	- Plan						
ethene, tetrachloro-						l	
toluene							•
chlorobenzene							
ethylbenzene		V	\checkmark				
acetone	10 pph	u	u				
2-butanone	10						
carbondisulfide	5						
2-hexanone	10						
4-methy1-2-pentanone	10						
styrene	5						
vinyl acetate	10						
xylenes (total)	5.	V	$\overline{\mathbf{V}}$				
							•
	1MDL1						
) Entrant of							

J - Estimated value.

J = Estimated value.
K = Actual value is known to be less than value given.
L = Actual value is known to be greater than value given.
U = Material was analyzed for but not detected. The number is the Minimum Detection Limit.
Pot analyzed.
Tentative identification.
Z = ON NROC List of Priority Pollutants.
C = SUSPECT LAB CONTAMINATION.
N.C. Division of Health Services

.

N.C. Division of Health Services

DHS 3068-0 (4/86 Laboratory)

I/A

Docket No. E-2, Sub 1219A

Bednarcik Direct AGO Cross Ex. 23

13SERB114

Hart Exhibit 60 Docket No. E-2, Sub 1219

OFFICIAL COPY

Opt 02 2020

3/7/2011

DocumentID	NCD000830646
Site Name	CAROLINA P&L CO. SUTTON STEAM
DocumentType	Expanded SI
RptSegment	1
DocDate	12/30/1999
DocRcvd	12/30/1999
Вох	SF114
AccessLevel	PUBLIC
Division	WASTE MANAGEMENT
Section	SUPERFUND
Program	SERB
DocCat	FACILITY
Description	

NORTH CAROLINA DEPARTMENT OF ENVIRONMENT AND NATURAL RESOURCES

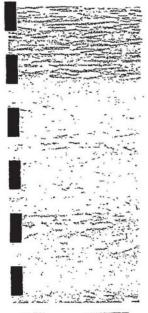
DIVISION OF WASTE MANAGEMENT

December 30, 1999

Ms. Jennifer Wendel NC Site Management Section Chief EPA Region IV Waste Division 61 Forsyth Street, SW 11th Floor Atlanta, Georgia 30303

RE: Expanded Site Inspection Report Carolina Power and Light Sutton Steam Electric Site NCD 000 830 646 Wilmington, New Hanover County, North Carolina

Dear Ms. Wendel:


This letter confirms the transmittal of the attached Expanded Site Inspection (ESI) Report by the North Carolina Superfund Section for Carolina Power and Light (CP&L) Sutton Steam Electric Plant Site, NCD 000 830 646, Wilmington, New Hanover County, North Carolina.

The CP&L Sutton Plant has been in operation since 1954, furnishing electricity for approximately 750,000 homes by using a coal-fired generating process. The waste stream of concern within this process is the fly ash that is produced from the burning of the coal. This fly ash is pumped to an active fly ash pond on the CP&L property. Prior to the use of the active lined pond, the inactive 68-acre pond and an area adjacent to the plant (the old dumping area) were both used for disposal. The size and quantity of fly ash within the old dumping area are unknown. During their respective operations, both the inactive and active fly ash ponds overflow into Lake Sutton that is adjacent to the plant and supplies water for the combustion and cooling processes. Lake Sutton is approximately 1,100 acres and frequently discharges into the Cape Fear River in accordance with a NPDES permit. There have been no Notices of Violation (NOVs) of this permit with the Department of Environment and Natural Resource, and therefore, no observed release has occurred within the Cape Fear River.

WAYNE MCDEVITT

JAMES B. HUN GOVERNOR

Ms. Wendel December 30, 1999 page 2

> Within a 1-mile radius of the site, numerous drinking water wells, including a community well, have been impacted with site contaminants. Inorganic compounds have been detected within several wells. The monitoring wells on and around the CP&L property have also been impacted.

> Therefore, because of the number of drinking water wells that are contaminated and the potential for further release of contaminants to groundwater, the Carolina Power and Light Sutton Steam Plant should be considered for further federal action under CERCLA. If you have any questions, please contact me at (919) 733-2801 ext. 315.

Sincerely,

Stephanie K. grass

Stephanie K. Grubbs/ Hydrogeologist Special Remediation Branch NC Superfund Section

enclosure

Expanded Site Inspection

Carolina Power & Light Sutton Steam Electric Plant NCD 000 830 646 Wilmington, New Hanover County, North Carolina Reference No. 0402580

December 1999

Superfund Section Division of Waste Management North Carolina Department of Environment and Natural Resources

Prepared by: phance K. Gnisps

Stephanie K. Grubbs Hydrogeologist II

Reviewed by

.

Bruce Nicholson, Branch Head Special Remediation Branch

TABLE OF CONTENTS

EXE	EXECUTIVE SUMMARY									
1.0	INTRODUCTION1									
2.0	SITE 2.1 2.2 2.3	DESCRIPTION 1 Location 1 Site Description and Regulatory History 1 Operational History and Waste Characteristics 4								
3.0	WAS7 3.1 3.2 3.3	FE/SOURCE SAMPLING .6 Sample Locations .6 Analytical Results .6 Conclusions .6								
4.0	GRO 4.1 4.2 4.3 4.4 4.5	UNDWATER PATHWAY9Hydrogeology9Groundwater Targets9Sample Locations10Analytical Results10Conclusions12								
5.0	SURF 5.1 5.2 5.3 5.4 5.5	FACE WATER PATHWAY.12Hydrologic Setting.12Surface Water Targets12Sample Locations12Analytical Results15Conclusions15								
6.0	SOIL 6.1 6.2 6.3 6.4 6.5	EXPOSURE AND AIR PATHWAY15Physical Conditions15Soil and Air Targets15Soil Sample Location16Analytical Results16Soil Exposure Pathway Conclusions17								
	SUM TOGRA									

.

REFERENCES

LIST OF TABLES

TABLE 1:	Summary of the Surface and Subsurface Soil Sampling Data from the July 1999 ESI Sampling Event
TABLE 2:	Population Using Groundwater as a Source of Potable Water within a 4-mile Radius of the Carolina Power and Light Sutton Steam Plant Site
TABLE 3:	Summary of the Groundwater Sample Data from the July 1999 ESI Sampling Event
TABLE 4:	Summary of the Surface Water and Sediment Sample Data from the July 1999 Sampling Event
TABLE 5:	Population Estimate within 4 miles of the Site

-

.

LIST OF FIGURES

FIGURE 1.	Four-Mile Radius Topographic and Sensitive Environments Map2
FIGURE 2:	Map of the Carolina Power and Light Property and the Surrounding Area $\ldots 3$
FIGURE 3.	Map of the Monitoring Well Locations
FIGURE 4.	Sampling Location Map from the 1999 ESI Sampling Event7
FIGURE 5.	Surface Water Pathway Map13

.

Executive Summary

The Carolina Power and Light (CP&L) Sutton Steam Electric Plant is located in Wilminton, New Hanover County, North Carolina. The CP&L Sutton Plant has been in operation since 1954. The plant furnishes electricity for approximately 750,000 homes by using a coal-fired generating process. A maximum of approximately 90,000 tons of coal are stored on site and 5,000 tons of coal are burned a day to produce an estimated 700 megawatts of power. The coal is initially crushed and blown to the boiler units for combustion. The combustion process produces heat which is used to convert water to steam. This steam is used to turn the turbines, which run the generators that produce electricity. The waste stream of concern within this process is the fly ash that is produced from the burning of the coal. This fly ash is pumped to an active fly ash pond on the CP&L property. This active fly ash pond is approximately 74 acres and has been active since 1985. Prior to 1985, the inactive pond, 68 acres in size, was in use since the late 1950s. Prior to the 1950s, an area adjacent to the plant was used for disposing the fly ash. The size and quantity of fly ash within the old dumping area are unknown. Both the inactive pond and the old dumping area are unlined. During their respective operations, both the inactive and active fly ash ponds overflow into Lake Sutton that is adjacent to the plant and supplies water for the combustion and cooling processes. The lake is also stocked and is a fishery open to the public. Lake Sutton is approximately 1,100 acres and frequently discharges into the Cape Fear River in accordance with a NPDES permit. The brackish Cape Fear River is a fishery and is used for recreational and commercial fishing. The immediate vicinity of Cape Fear River is surrounded by wetlands, as is the majority of the 15-mile surface water pathway. Although the surface water pathway has many environmental targets, no observed release was documented within the surface water or sediments of the Cape Fear River during the 1999 ESI.

Within a 1-mile radius of the site, there are several drinking water wells. The New Hanover community well system, which consists of two wells is located approximately 0.25 mile from the Sutton Plant. Approximately 42 to 45 homes and 20 businesses use the well water from these wells. Several other business within the 1-mile radius of the Sutton Plant use groundwater for drinking. The Maola Dairy distribution center adjacent to the community wells uses groundwater for plant activities and for housekeeping activities, but the employees stated that they do not drink the water. Another business directly behind the fly ash lagoons, Ezzell Trucking Company, uses groundwater for drinking and plant operations. The owners of the company also rents a trailer that is located behind the office. Apparently, only one person rents and resides in the trailer owned by Mr. Ezzell and approximately 15 workers are employed at Ezzell Trucking. An observed release to groundwater has been documented within the community wells, the Maola well, the Ezzel well and the monitoring wells on site. The samples collected during the ESI indicated releases of several inorganics. No organics were detected within the groundwater samples. Beryllium at 0.62J ug/l, vanadium at 1.5J ug/l, and iron at 270 ug/l were detected within the New Hanover Community well. Approximately 300 people use this well for drinking water. The Ezzell Trucking Co. drinking water well contained iron (410 ug/l), selenium (5.8 ug/l), and thallium (4.2J ug/l) at concentrations greater than three times background. Only iron in was above the NC 2L Groundwater Standards. Fifteen workers at

• *

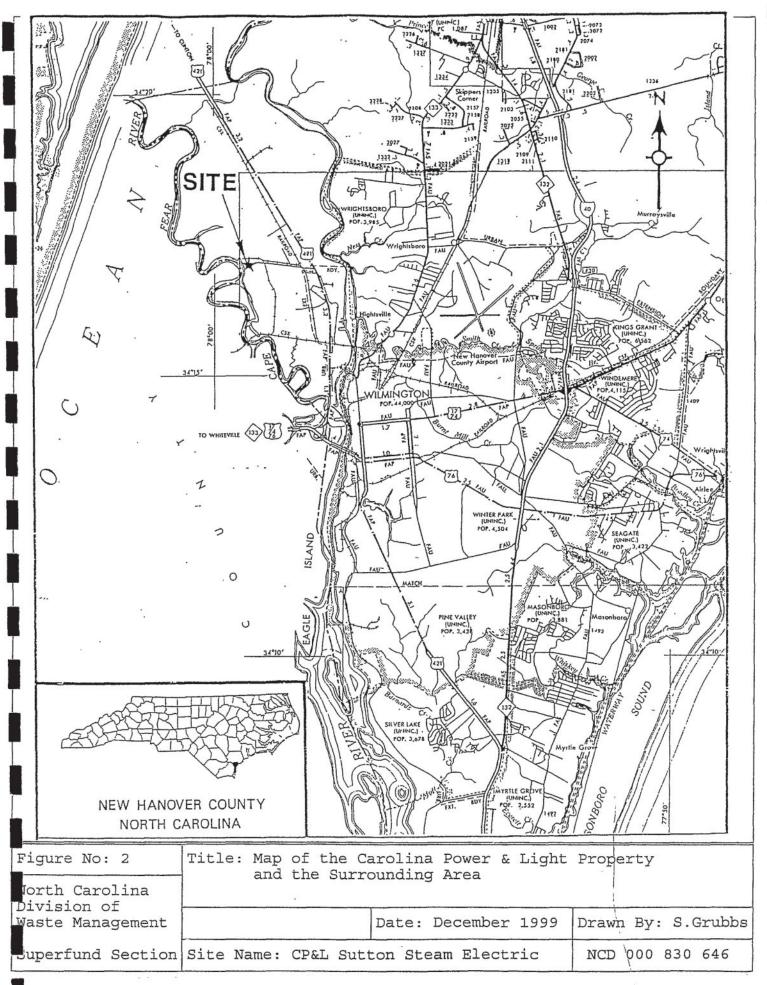
Ezzell Trucking Co. and one resident use the Ezzell well for drinking water. The Maola drinking water well contained copper, but the levels were below the NC 2L Groundwater Standards. The workers at the Maola plant do not use the water for drinking, only housekeeping activities. Several monitoring wells contained inorganic compounds, arsenic, iron, lead, chromium, thallium, and beryllium, were detected three times above background.

For purposes of site prioritization relative to other sites, the groundwater pathway appears to be of great enough concern to consider further effort under CERCLA. The site priority is in large part due to the fact that the groundwater is the source of drinking water for the New Hanover County community wells, businesses and homes within the immediate vicinity of the CP&L property. Because of the number of people drinking from wells that contain siterelated contaminants (albeit at low levels), the Carolina Power and Light Sutton Steam Electric Plant site must be considered for further federal action under CERCLA. It is important to note however that groundwater standards have not been exceeded in any sample except for iron in the Ezzell well. The Superfund Section may or may not recommend that the affected wells be closed pending health evaluations of these wells by the NC Occupational and Environmental Epidemiology Section.

1.0 INTRODUCTION

Under the authority of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), the Superfund Amendments and Reauthorization Act of 1986 (SARA), and a cooperative agreement with the United States Environmental Protection Agency (US EPA), Waste Management Division, Region IV, the North Carolina Superfund Section conducted an Expanded Site Inspection (ESI) at the Carolina Power and Light (CP&L), Sutton Steam Electric Plant in Wilmington, New Hanover County, North Carolina. The purpose of the ESI was to obtain the data necessary to assess the threat posed by the site to human health and the environment and to complete a Hazard Ranking System (HRS) score for the site to determine the need for further action under CERCLA/SARA or other authority. This investigation included reviewing existing files and sample data, conducting surface and subsurface soil sampling, surface water and sediment sampling from the surface water pathway, groundwater sampling, and potential source sampling under EPA Contract Laboratory Program (CLP) protocol, and collecting additional data needed to document HRS factors.

2.0 SITE DESCRIPTION


2.1 Location

The CP&L Sutton Steam Electric Plant site (site), NCD 000 830 646, is located approximately 4 miles northwest of the City of Wilmington, along the east bank of the Cape Fear River, approximately 3,000 feet downstream of the confluence with Indian Creek. The site coordinates are 34°17'39" north latitude and 77°59'12" west longitude (Reference 3, Figure 1). The property is owned by CP&L and the immediate vicinity of the site is rural, but within the 4-mile target radius along Highway 421 the area is mainly industrial. The 1,200-acre tract of land is located on State Road 1394 and is bordered by the Cape Fear River (Figure 2, Reference 4).

2.2 Site Description and Regulatory History

The CP&L Sutton Plant has been in operation since 1954 (Reference 5). The plant furnishes electricity for approximately 750,000 homes by using a coal-fired generating process (Reference 5). A maximum of approximately 90,000 tons of coal are stored on site and 5,000 tons of coal are burned a day to produce an estimated 700 megawatts of power (Reference 5). Fly ash is a by-product of coal incineration and historically has been disposed of into lined and unlined diked ponds located on site. The active fly ash pond is approximately 74 acres and has been active since 1985 (Reference 6). Prior to 1985, the inactive pond, 68 acres in size, was in use since the late 1950s (Reference 6). Prior to the 1950s, an area adjacent to the plant was used for disposing the fly ash (Reference 6). The size and quantity of fly ash within the old dumping area are unknown. Both the inactive pond and the old dumping area are unlined (Reference 6). In 1972, a large cooling lake, Lake Sutton, was constructed to provide cooling water for the coal generation facility (Reference 6). The water for the lake is supplied by the Cape Fear River (Reference 6). The lake is diked with stone and soil barriers, which was designed to maximize the path length and residence time in the lake and to maximize the cooling efficiency. A concrete canal system connects the ends of the cooling lake to the coal generation plant. During their respective operations, both the inactive and active fly ash ponds overflow into Lake Sutton that is adjacent to the plant and supplies water for the combustion and cooling processes (Reference 6).

Since the 1970s, CP&L had been discharging into the Cape Fear River and Lake Sutton under a National Pollutant Discharge Elimination System (NPDES) permits (Reference 7). The permits regulate and require frequent monitoring for flow, temperature, total residual chlorine,

total copper, total selenium, total arsenic, total iron, total nitrogen, total phosphorus, acute toxicity, and pH in both the lake and the river (Reference 7).

During the 1992 Site Screening Phase II Report, the drum storage area at the plant was under investigation (Reference 8). This area contained ten 55-gallon drums that reportedly contained various petroleum lubricating oils and degreasing products (Reference 8). The drums were stored in concrete containment basin and no spills were observed around the drums (Reference 8). During the 1999 ESI, no spills or evidence of spills were observed in the drum storage location (Reference 6). The area was not of concern during this investigation. In addition to the drum storage area, two 11-million gallon above-ground storage tanks (ASTs) are located in the southern portion of the property adjacent to the plant and coal piles (Reference 6). CP&l currently leases these tanks to International Paper for storing various papermaking liquors. The ASTs stores various paper liquors, a liquid used in the paper industry, that CP&L leases out the space to International Paper (Reference 6). Both ASTs are surrounded by a dike to contain any spills (Reference 6). A pipe system extends from the ASTs to a pier, located along the Cape Fear River, which is used to transfer the liquor products from barges (Reference 6).

There is some history of groundwater contamination associated with the ponds. There are 12 well locations, each location has 2 permanent 2-inch PVC monitoring wells located on site (Figure 3, Reference 6). In 1984 The Division of Water Quality in Wilmington required these wells due to exceedances the NC Groundwater 2L Standards (Reference 9). In September 1987, CP&L received Notice of Non-Compliance due to exceedances of "the total dissolved solids limit and exceedences of the chloride concentration standard in monitoring wells at the plant (References 37). Corporate neighbor, KoSa (formerly Cape Industries) has sued CP&L over groundwater contamination issues (Reference 10). The Sutton plant has two on-site wells that supply water for plant operations but are not used for drinking. The closest drinking water wells are three New Hanover County wells and the establishments along Fredrickson Road, approximately 1/4 mile away from the site (Reference 4, Figure 1).

2.3 Operational History and Waste Characteristics

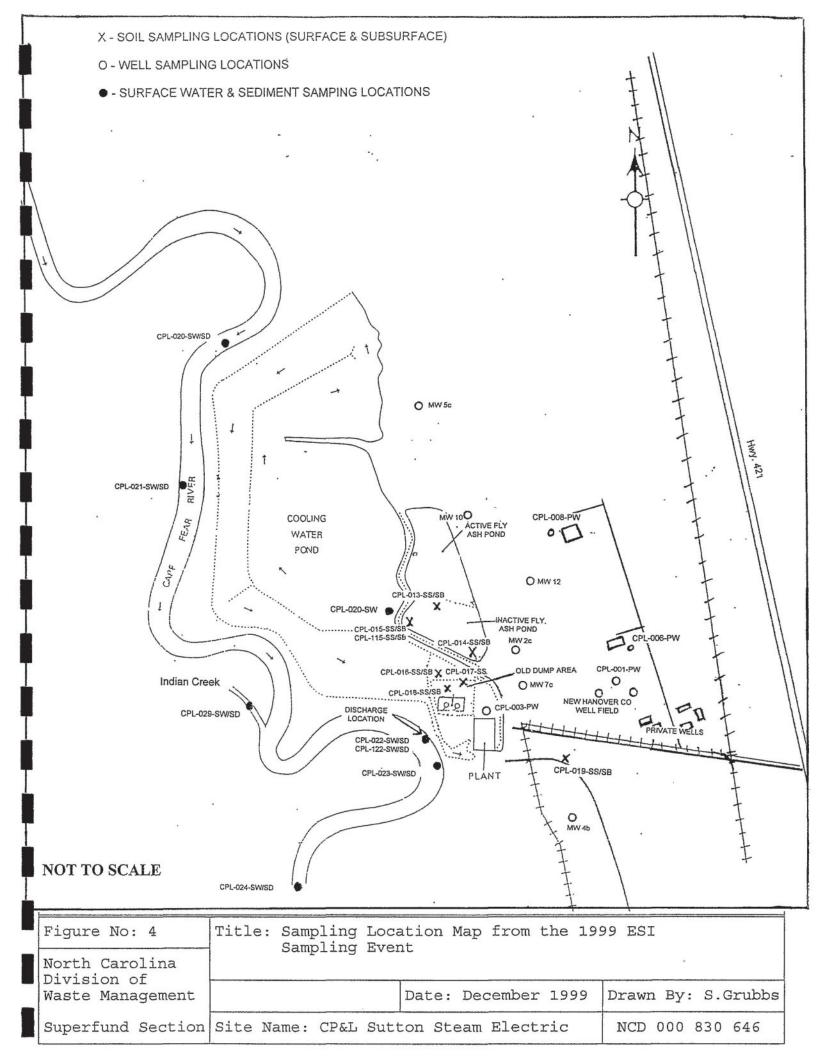
The CP&L Sutton Plant has been in operation since 1954 (Reference 5). The plant furnishes electricity for approximately 750,000 homes by using a coal-fired generating process (Reference 5). Coal is delivered to the plant by rail car and is stored on site. The coal is initially crushed and blown to the boiler units for combustion (Reference 5). The combustion process produces heat which is used to convert water to steam. This steam is used to turn the turbines which run the generators that produce electricity (Reference 5). The waste stream of concern within this process is the fly ash that is produced from the burning of the coal. Once the coal is burned most of the ash settles within the bottom of the furnace area, high pressure water is used to push the water from the furnace to the pipes that pump the water and the ash to the active fly ash pond on the property (Reference 6). The coal particles and ash that are airborne within the furnace flow out through ducts to be captured by the electrostatic precipitator (ESP) (Reference 5). The positively charged coal particles and ash are attracted to the negatively charged plates within the ESP. Once particles have accumulated, the ash is knocked off the plates and pumped away using high pressure water. This fly ash is also pumped to the active fly ash pond (Reference 6). The active pond wastewater then discharges directly to the Cape Fear River via a pipe and is then diluted by opening up the lake discharge pipe and flushing both the active pond wastewater and the lake water into the river simultaneously (Reference 6). This process had recently changed since the sampling event in July 1999. Previously, the active fly ash pond discharged into Sutton lake, which diluted the waste (Reference 6). The lake currents circulated the waste and water to the outfall and eventually discharged into the Cape Fear River. This

process was credited with causing the fish within the lake to have elevated tissue levels of selenium potentially affecting their reproduction (Reference 11). Therefore, to reduce selenium levels in the lake, the NC Division of Water Quality (DWQ) re-issued the NPDES permit to directly discharge the ash pond waste into the river (Reference 12). Both the lake and the river are fisheries and are monitored the NC Division of Marine Fisheries (Reference 12).

3.0 WASTE/SOURCE SAMPLING

3.1 Sample Locations

The Sutton Plant burns approximately 5,000 tons of coal a day to generate electricity (Reference 5). The main contaminant of concern is the fly and bottom ash that was disposed of into unlined lagoons on the CP&L property. Both the inactive pond and the former disposal area are unlined. Ashes differ in characteristics depending upon the chemical composition of the coal being burned, the extent to which the coal is prepared before it is burned, and the operating conditions of the boiler (Reference 13). But generally, more than 95 percent of ash is made up of silicon, aluminum, iron, and calcium in their oxide forms, with magnesium, potassium, sodium, and titanium representing the remaining major constituents (Reference 13). Potential trace constituents include antimony, arsenic, barium, cadmium, chromium, lead, mercury, selenium, strontium, zinc, and other metals (Reference 13). The plants inactive fly ash pond contains approximately 500,000 cubic yards of ash and a surface area of 68 acres at an elevation of 15.5 feet (Ref. 8). The old disposal area has an unknown quantity and size. The current active pond has a one foot thick clay liner that was constructed in 1985 (Reference 14). This pond can hold approximately 2,158,000 cubic yards and is 74 acres. The active fly ash pond is lined and is regulated under the NPDES permit issued by the DWQ and is, therefore, not under consideration during this investigation(Reference 14).


Source sampling of the inactive fly ash pond and the old dump area were completed during the investigation. Surface soil and subsurface soil samples were collected at each location. Three locations were sampled within each of the two source areas. Background soil samples, surface and subsurface, were collected near the entrance to the CP&L property.

3.2 Analytical Results

Analytical results from the surface and sub-surface soil samples collected by the NC Superfund Section during the ESI in July 1999, indicate the presence of the following contaminants (with their maximum concentrations in parenthesis): antimony (2.3J mg/kg), arsenic (92J mg/kg), barium (540J mg/kg), beryllium (6.3J mg/kg), cadmium (1.2J mg/kg), chromium (64J mg/kg), cobalt (18 mg/kg), copper (180J mg/kg), iron (16,000J mg/kg), lead (51J mg/kg), magnesium (1,400J mg/kg), manganese (85J mg/kg), nickel (93J mg/kg), potassium (3,200J mg/kg), selenium (95J mg/kg), silver (1.0J mg/kg), thallium (1.3J mg/kg), vanadium (170J mg/kg), zinc (560J mg/kg), toluene (5J ug/kg), naphthalene (240J ug/kg), dibenzofuran (64J ug/kg), fluoranthene (100J ug/kg), 2-methyl naphthalene (390J ug/kg), pyrene (76J ug/kg), and phenanthrene (180J ug/kg). Table 1 shows concentrations of each of the analytes present and the location for all the source samples collected by the Superfund Section in 1999. Figure 4 shows all the sample locations taken during the same sampling event in 1999.

3.3 Conclusions

As shown above, the majority of the data analyzed from the laboratory was estimated values or "J'd" data (Appendix). Upon review the data were found to be usable where

Sample Description	CPL-013-SS	CPL-013-SB	CPL-014-SS	CPL-014-SB	CPL-015-SS	CPL-015-SB	CPL-115-SS	CPL-115-SB	CPL-016-SS	CPL-016-SB	CPL-017-SS	CPL-018-SS	CPL-018-SB	CPL-019-SS	CPL-019-SI
	Inactive fly ash pond	Inactive fly ash pond	Inactive fly ash pond	Inaclive fly ash pond	Inactive fly ash pond	Inactive fly ash pond	Duplicate- Inactive fly ash pond	Duplicate- Inactive fly ash pond	Old fly ash dumping area	Background	Background				
Contaminant															
Antimony (mg/kg)	2.3J										1.0J				
Arsenic	92J	5.4J	24J		9.7J		9.8J		14J	8.2J	17J	12.00	2.60		
Barium	540J	110J	89J	7.0J	60J	6.0J	57J	7.2J	200J	140J	260J	140	30.00	1	1.20
Beryllium	6.3J	0,57J	0.85J		0.57J		0.62J		1.8J	1.1J	2.5J	1.70	0.28J		
Cadmium	1.2J			0.11J			0.15J	0.10J							
Chromium	64J	12J	16J	1.8J	5.4J	1.9J	4.9J	2.2J	8.3J	4.4J	9.7J	7.60	2.0J	0.69J	1.1J
Cobalt	18.00	2.2J	2.5J		2.6J	0.54J	2.60	0.60J	4.8J	2.8J	7.0J	4.7J	0.84J		
Copper	180J	12J	26J	4.0J	37J	2.3J	40J	2.7J	18J	10J	23J	15.00	3.4J	1.1J	1.2J
Iron	16000J	3800J	2400J	460J	910J	830J	870J	1100J	5600J	3800J	4900J	4,500	1,600	60	440
Lead	51J	2.3J	5.2J	0.83J	2.5J	1.3J	2.1J	1.8J	6.5J	4.3J	9.4J	6.60	2	1	1.10
Magnesium	1400J	310J	320J		87J	180J	82J	290J	390J	260J	420J	620.00	290	15.00	21
Manganese	85J	16J	14J	1.8J	7.0J	8.8J	6.8J	13J	46J	32J	56J	28	10.00	1.4J	1.6J
Mercury														1	
Nickel	93J	5.9J	6.3J	0.98J	7.1J	1.6J	7.7J	2.2J	10J	5.3J .	14J	9.4J	2.3J		
Potassium	3200J	940J	950J	69J	230J	110J	200J	130J	950J	560J	960J	800.00	220.00	18	30.00
Selenium	95J	2.5J	1.3J		0.63J		0.51J		2.1J	1.3J	2.1J	1.7J			
silver	1.0J			0.31J											
Thallium												1.3J			
Vanadium	170J	14J	24J	2.8J	10J	5.6J	10J	7.4J	34J	13J	42J	23	5.5J	0.93J	1.6J
Zinc	560J	15J	15J	3.8J	14J	4.5J	14J	5.3J	12J	9.4J	14J	11	4.6J	1.4J	3.1J
Toluene (ug/kg)										4J	5J				
Naphthalene (ug/kg)	240J														· · ·
Dibenzofuran	64J														
Fluoranthene	100J														
2-methylnaphthalene	390J											50J			
Pyrene	76J														
Phenanthrene	180J														

Table 1. Summary of the Surface and Subsurface Soil Sample Data from July 1999 ESI Sampling Event.

J - Estimated value

Blank Space - Material was analyzed for but not detected. Shaded Spaces- Indicate the compounds were significantly above background See Appendix for the complete analytical data set.

.

contaminants with concentrations 10 times the background level were found (Reference 15). Elevated levels of heavy metals and organics were detected in the surface and subsurface soil samples from the inactive fly ash pond and the old fly ash dumping area. Source material remains on site and the CP&L representatives have stated that a portion of the ash may be recycled by the Department of Transportation for road construction (Reference 6). Contaminated soil left on site in the ponds may continue to release to the soil and groundwater pathways.

4.0 GROUNDWATER PATHWAY

4.1 Hydrogeology

New Hanover County is located within the Southern Coastal Plain Province. The land surface is a plain which gently slopes eastward toward the Atlantic Ocean at a rate less than 3 feet per mile (Reference 16). The water bearing zones within the area are commonly separated by clay confining layers (Reference 16).

Groundwater wells within the area are usually at a depth of 15-50 feet (References 6, 17, 18). The wells in the area obtain water from the surficial aquifer. The New Hanover County community wells are approximately 55 feet deep and the former CP&L drinking water well, now used for production only, and monitoring wells are at depths ranging between 35 and 55 feet (Reference 17, 19). In the New Hanover County area, the average annual rainfall is 50 inches per year (Reference 20). The average annual lake evaporation in the area is 42 inches per year, which yields a net precipitation of 8 inches per year (Reference 21).

4.2 Groundwater Targets

There are several drinking water wells within a 1-mile radius of the site (Reference 24, The New Hanover community well system, which consists of two wells, is located 38). approximately 0.25 miles from the Sutton Plant (Reference 38, Figure 1). According to the New Hanover County Engineering Department, approximately 42 to 45 homes and 20 businesses use the well water (Reference 19). Using the number of homes and multipling those by 2.43 personsper-household (the population density for New Hanover County in the 1990 US Census), an estimated number of people consuming water from the New Hanover County community wells is 105 people. The wells pump between 160,000 to 170,000 gallons per day (Reference 19). The wells serve homes and businesses 1 mile south of the wells. These residences were connected to theses wells due to contaminated drinking water near the Flemington Landfill (Reference 19). The water from the two active wells is treated due to chlorine and high pH (Reference 19). Once the water is treated it is then sent to the distribution system and to the homes and businesses (Reference 19). Several other business within the 1 mile radius of the Sutton Plant use groundwater. The Maola Dairy distribution center adjacent to the community wells its own well for plant activities and for housekeeping activities, but the employees stated that they do not drink the water (Reference 17). Another business directly behind the fly ash lagoons, Ezzell Trucking Company, uses groundwater for drinking and plant operations. The owners of the company also rents a trailer that is located behind the office (Reference 17, 22). Apparently, only one person rents and resides in the trailer owned by Mr. Ezzell and approximately 15 workers are employed at Ezzell Trucking (Reference 17). The Ezzell well has a filter and this was by-passed for sampling (Reference 17, 22).

The City of Wilmington obtains its drinking water from a surface water intake located on the Cape Fear River, upstream of the paper plant (Reference 39). The intake location is near Kings Bluff, NC. The cities of Leland and Navassa both purchase their water from the Brunswick County sanitary district, which obtains water from the same surface water intake as the City of Wilmington (Reference 39). The remainder of the houses shown on the USGS topographic map, not provided with municipal water, use private wells to supply drinking water. These remainder of the houses were counted and multiplied by 2.43 persons-per-household (the population density for New Hanover County in the 1990 US Census) (Reference 23). Table 3 shows the total population which received drinking water from private and community wells within a 4-mile radius of the site (Reference 24). No wellhead protection areas exist in North Carolina (Reference 25).

4.3 Sample Locations

A complete trip report of the ESI can be found in reference 18 of this report. The ESI groundwater samples include the New Hanover County Community well (CPL-001-PW), Maola drinking water well (CPL-006-PW), Ezzell Trucking drinking water well (CPL-008-PW), CP&L's former drinking water well (CPL-003-PW, currently used for production purposes only), and six monitoring wells on and around the CP&L property (CPL-002-MW, CPL-004-MW, CPL-005-MW, CPL-007-MW, CPL-010-MW, and CPL-012-MW) (Reference 18). All the monitoring wells are labeled on Figure 3 and Figure 4 is a map of all the sample locations for the ESI.

Distance Ring (miles)	Population served by Private Supply Wells	Population served by Community Wells	Cumulative Population using Groundwater
0.00 - 0.25	0	0	0
0.25 - 0.50	1	0	1
0.50 - 1.00	0	300	300
1.00 - 2.00	0	0	0
2.00 - 3.00	0	4,050	4,050
3.00 - 4.00	2,076	781	2,857
TOTAL			7,208

Table 2.	Population Using Groundwater as a Source of Potable Water Within 4 Miles of
	the Carolina Power and Light Sutton Steam Plant Site.

4.4 Analytical Results

Groundwater analytical results for the samples collected during the ESI are shown in Table 3, and they indicate releases of several inorganics. No organics were detected within the groundwater samples. Beryllium at 0.62J ug/l and iron at 270 ug/l were detected within the New Hanover Community well, CPL-001-PW (Reference 41). The iron level is below NC 2L Groundwater Standards. There is no NC 2L Standard for beryllium, although the federal maximum concentration limit is 4 ug/l (Reference 2, 26). The Ezzell Trucking drinking water well contained iron (410 ug/l), selenium (5.8 ug/l), and thallium (4.2J ug/l) at concentrations three times background. Iron is the only contaminant above the NC 2L Groundwater Standards, while selenium is below the NC 2L standard of 50 ug/l. The Maola drinking water well contained

			Tabl	e 3. Summ	ary of the (Groundwate	er Sample I	Data			
				from	July 1999 S	Sampling E	vent.				
						ations in ug/kg					
1											
	CPL-001-PW	CPL-002-MW	CPL-003-PW	CPL-004-MW	CPL-005-MW	CPL-006-PW	CPL-007-MW	CPL-008-PW	CPL-010-MW	CPL-012-MW	
Sample Description	New Hanover County Comminuty Well	CP&L MW #2c	CP&L Supply Wells	CP&L MW #4b		Maola's Private Drinking Water Well	CP&L MW #7c	Ezzel Trucking's Private Drinking Water Well	CP&L MW #10	CP&L MW #12	NC 2L Standard
Contaminant											
Arsenic		83.0									50
Barium	18.0	55.0	29.0	40.0	79.0	74.0	82.0	30.0	130.0	29.0	2000
Beryllium	0.62J		20.0	40.0	10.0	14.0	02.0	00.0	0.41J	20.0	2000
Chromium	0.020								0.110		50
Cobalt					13J			4.4J	12J	6.6J	
Copper			11J			10J		3.9J			1000
Iron	270.0	2300.0		75.0	57.0		63.0	410.0	23J	620.0	300
Lead			42.0								15
Magnesium	440.0	5500.0	420.0	1000.0	3300.0	1600.0	6900.0	5700.0	3500.0	8200.0	
Manganese	16J	58J		49J	1900J	72J	570J	380J	340J	460J	50
Nickel											100
Selenium								5.8			50
Silver											18
Thallium		3.7J		4.8J			5J	4.2J	6J		
Vanadium	1.5J										
Zinc			7.5J	18J	8J	11J		19J	6.3J	10J	2100

K - Actual value is known to be less than value given. Blank Space - Material was analyzed for but not detected. Shaded Spaces- Indicate the compounds were significantly above background

1

ì

copper but the levels were below the 2L NC Groundwater Standards (Reference 26). Table 3 is a summary of the groundwater results and Figure 3 and 4 shows the sampling locations for the wells. See the Appendix for the complete data set for the 1999 ESI investigation. Figure 3 contains a map of all the monitoring wells and reference 27 contains all the groundwater data from 1990 to present from these wells.

4.5 <u>Conclusions</u>

Groundwater within the immediate vicinity of the site is being used for drinking water. Several inorganic compounds were detected within both drinking and monitoring wells surrounding the site. The New Hanover County community well is very important with regard to human health. This well serves approximately 300 people south of the community well location and are served this water due to the fact that their private drinking water wells are contaminated. The groundwater pathway is of concern due to the number of groundwater well users within the area and the large source areas still on site.

5.0 SURFACE WATER PATHWAY

5.1 Hydrologic Setting

The site lies within the 100-year flood plain of the Cape Fear River (Reference 28). The probable point of entry (PPE) is where CP&L discharges waste via a pipe directly into the Cape Fear River. The entire 15-mile surface water pathway target distance limit (TDL) is on Cape Fear River. The estimated flow rate for the Cape Fear River is 10,581 cubic feet per second (cfs) at the CP&L property, the flow rate increases as downstream after the confluence of the Northeast Cape Fear River and the Brunswick River to 13,140 cfs (Reference 29).

5.2 Surface Water Targets

Figure 5 is a map of the 15-mile surface water pathway. The site borders the Cape Fear River and waste from the fly ash lagoons is discharged directly into the river. The Cape Fear River is a major fishery, both commercially and recreationally (Reference 30). It is classified under the Classifications and Water Quality Standards Assigned to the Waters of the Cape Fear River Basin by the Division of Environmental Management as a Class C (fresh) or SC (tidal) waters (Reference 31). Waters in these classes must be protected as "aquatic life propagation and survival, fishing, wildlife, and secondary recreation and agriculture" (Reference 31). Fish monitoring by CP&L occurs within Lake Sutton and within the Cape Fear River as dictated by the NPDES permit (Reference 12).

The Cape Fear River is also lined by wetlands for a majority of the 15-mile surface water pathway. Approximately 30 miles of wetland frontage line the Cape Fear River (Reference 32). The Cape Fear is also home to several threatened and endangered plant and animal species. See Figure 1 for locations of the threatened and endangered species and Reference 33 for a list of these species.

5.3 <u>Sample Locations</u>

A trip report summary for the 1999 ESI can be found in References 18. Samples were collected at the PPE or at the effluent discharge location. Sample CPL-022-SW/SD and duplicate sample CPL-122-SW/SD were collected at the PPE. Samples were also collected at downstream of the PPE. Sample CPL-023-SW/SD and CPL-024-SW/SD were collected

					Table 4. St	ummary of	the Surface	Water & S	ediment Sa	ample Data					
							July 1999 S								
					Wate	r Concentration	ns in ug/kg and	Sediment Con	centrations in m	ng/kg					
		CPL-020-SD	CPL-021-SW	CPL-021-SD	CPL-022-SW	CPL-022-SD	CPL-122-SW	CPL-122-SD	CPL-023-SW	CPL-023-SD	CPL-024-SW	CPL-024-SD	CPL-025-SW	CPL-029-SW	CPL-029-SI
Sample Description		Farthest upstream background sample	Upstream background on Cape Fear River	Upstream background on Cape Fear River	PPE Sample	PPE Sample	Duplicate of PPE Sample	Duplicate of PPE Sample	Approximately 0.1 mile downstream of PPE	Approximately 0.1 mile downstream of PPE	Downstream of PPE	Downstream of PPE	Lake Sutton sample	Attribution sample from Indian Creek	Altribution sample from Indian Creel
Contaminant															
Arsenic						6.6J		11.0							
Barium	30.0	36.0	28.0	130.0	24.0	120.0	25.0	130.0	26.0	120.0	27.0	120.0	79.0	26,0	200.0
Beryllium		0.26J		0.96J		1.6J		1.6J		0.84J		1.4J			
Chromium		7.6		28.0		49.0		48.0		22.0		38.0			41.0
Cobalt		7.6J		23J		35J		36.0		11J		32J			30.0
Copper	4.1J	4.3J	4.3J	18.0	5.0J	27.0	4.2J	28.0	4.3J	21.0	4.8J	24.0		6.4J	28.0
Iron	1,200.0	5,400.0	740.0	20,000.0	730.0	37,000.0	790.0	38,000.0	770.0	18,000.0	870.0	30,000.0	59.0	1,100.0	33,000.0
Lead		6.8		20.0		32.0		34.0		13.0		29.0			30.0
Magnesium	2,100.0	570.0	2,300.0	1,800.0	2,000.0	5,500.0		5,500.0	2,100.0	2,000.0	2,200.0	4,300.0	6,700.0	1,800.0	2,900.0
Manganese	140J	290.0	76J	530.0	62J	1,300.0	67J	1,400.0	70J	180.0	79J	1,300.0	560J	94J	990.0
Nickel		4.2J	3,3J	13J		24J		24J		9J		20J			22J
Selenium				2.3J						1.0J					
Silver						1.5J									
Thallium	4.5J							4.8J	4.4J		3.9J		3.7J		3.1J
Vanadium	7.3J	16J	5.9J	54.0	5 3 J	100.0	5.7J	100.0	6.0J	64.0	6.4J	81.0		5.0J	92.0
Zinc	11J	25.0	20.0	100.0	10J	140.0	16J	140.0	13J	41.0	11J	120.0		15J	140.0

.

K - Actual value is known to be less than value given. Blank Space - Material was analyzed for but not detected. Shaded Spaces- Indicate the compounds were significantly above background

1

approximately 500 and 1000 feet, respectively, downstream of the PPE. An attribution sample, CPL-029-SW/SD was collected before the confluence of Indian Creek and the Cape Fear River. Upstream on Indian Creek is International Paper, a pulp and paper manufacturer. Two background samples were collected on the Cape Fear River due to the tidal influence of the river (Reference 34). Contaminants that are discharged into the river may be found upstream due to the high tidal influence of the rivers within the Cape Fear River Basin. River stage of the Cape Fear River was affected by ocean tides possibly as far as 50 to 75 miles upstream of Wilmington (Reference 34). The background samples were taken upstream of the PPE but downstream of International Paper. Figure 4 shows sample locations for the 1999 ESI sampling event.

5.4 Analytical Results

Table 4 is a summary of the surface water and sediment sample data for the 1999 ESI. Several inorganic compounds were detected within the sediments of the Cape Fear River. Although all of the contaminants found are either not three times the background (not an observed release), contaminants were also detected within the attribution samples, and/or contaminants are permittable due to the NPDES permit. A complete set of analytical data can be found in the Appendix of this report.

5.5 <u>Conclusions</u>

The analytical results from the surface water and sediment samples collected by the NC Superfund Section do not indicate an unregulated or unpermitted release to the surface water pathway. This pathway is not of concern in this investigation.

6.0 SOIL EXPOSURE AND AIR PATHWAY

6.1 Physical Conditions

The soil types located in the vicinity of the site are considered to be a Urban Land soils (Reference 40). The Urban Land designation is used for areas where the original soil has been extensively altered by development, thus changing or destroying the natural characteristics of the soil (Reference 40). The other soils on the site include Lakeland sand, Kureb sand, and Dorovan soils (Reference 40). The Lakeland sand and the Kureb sand are very well drained, while the Dorovan soils are poorly drained and are found in extensively flooded areas (Reference 40). The Lakeland sand are found in extensively flooded areas (Reference 40). The Lakeland sand are yet within the areas of the old fly ash pond. The Lakeland sand ahs very low organic matter, rapid permeability, low available water capacity, and the shrink-swell potential is low (Reference 40).

6.2 Soil and Air Targets

The areas of concern, the old and inactive fly ash ponds, are several hundreds of feet from the main plant and worker exposure is at a minimum. The site is fenced, although hunters have been known to trespass on the property during hunting season (Reference 6). The closest residence is the renter and workers at the Ezzel trucking company, approximately 0.25 mile from the CP&L property (Reference 4). No daycare facilities are located within 0.25 miles of the site. As shown in Table 6, according to Center for Geographic Information Analysis (CGIA), an estimated 11,610 people live within the four-mile target radius of the site (Reference 35).

The 7.5 USGS maps of Leland, Castle Hayne, Winnabow, and Wilmington were reviewed by NC Superfund personnel at the North Carolina Heritage Program for sensitive environments. Numerous threatened and endangered plant and animal species are located within the 4-mile radius of the site (Figure 1 and Reference 33). Refer to Figure 1 for a complete list of the plants and animals and their locations within the 4-mile target distance radius.

6.3 Soil Sample Locations

Several surface and subsurface soil samples were collected by NC Superfund Section personnel during the 1999 ESI sampling event. Figure 4 shows the location for all the samples obtained by the NC Superfund Section. The object of these soil samples was to assess the surface and subsurface constituents of the fly ash lagoons. The samples were collected in the old fly ash dumping area and in the inactive fly ash pond. Three locations were sampled in the inactive fly ash pond, with both surface and subsurface soils collected in each location (Reference 18). Three locations were also sampled in the old fly ash dumping area (Reference 18). In two of these locations, surface and subsurface soils were collected and in the third location only a surface soil sample was collected (Reference 18). The background surface and subsurface soil samples were collected near the entrance to the CP&L property away from the ash ponds, the coal piles, and the power plant itself (Reference 18). Table 1 is a summary of the soil sampling during the ESI and a complete data set is located in the Appendix of this report.

Distance from the Site (miles)	Population per Ring	Cumulative Population
0.0 - 0.25 mi.	0	0
0.25 - 0.50 mi.	1	1
0.50 - 1.00 mi.	11	12
1.00 - 2.00 mi.	262	274
2.00 - 3.00 mi.	2,509	2,783
3.00 - 4.00 mi.	8,827	11,610

Table 5: Population Estimate within 4-Miles of the CP&L Sutton Plant Sit	Table 5:	Population	Estimate within	4-Miles o	f the CP&L	Sutton Plant Sit
--	----------	------------	------------------------	-----------	------------	------------------

6.4 Analytical Results

Because the soils are the wastes in this investigation the soils data is largely discussed in Section 3 regarding waste source sampling. See Table 1 for a complete summary of the surface and subsurface soil data collected during the 1999 ESI. The Appendix contains all the analytical data for the 1999 ESI sampling event. The sources of most concern are the fly ash dumping area and the inactive fly ash pond. Analytical results indicate that surface soils from the inactive fly ash lagoon (CPL-013-SS) contain arsenic (92J mg/kg), barium (540J mg/kg), beryllium (6.3J mg/kg), cadmium (1.2J mg/kg), chromium (64J mg/kg), cobalt (18 mg/kg), iron (16,000J mg/kg), lead (51J mg/kg), magnesium (1,400J mg/kg), manganese (85J mg/kg), nickel (93J mg/kg), potassium (3,200J mg/kg), selenium (95J mg/kg), silver (1.0J mg/kg), vanadium (170J mg/kg), zinc (560J mg/kg), naphthalene (240J ug/kg), dibenzofuran (64J ug/kg), fluoranthene (100J ug/kg), 2-methyl naphthalene (390J ug/kg), pyrene (76J ug/kg), phenanthrene (180J ug/kg).

Subsurface soils (CPL-013-SB) from the inactive fly ash pond contain barium (110J mg/kg), beryllium (0.57J mg/kg), chromium (12J mg/kg), cobalt (2.2J mg/kg), copper (12J

mg/kg), magnesium (310J mg/kg), manganese (16J mg/kg), nickel (5.9J mg/kg), potassium (940J mg/kg), selenium (2.5J mg/kg), vanadium (14J mg/kg), and zinc (15J mg/kg).

Surface samples from the old fly ash dumping area contain (maximum values) of arsenic (17J mg/kg), barium (260J mg/kg), beryllium (2.5J mg/kg), chromium (9.7J mg/kg), cobalt (7.0J mg/kg), copper (23J mg/kg), iron (4900J mg/kg), lead (9.4J mg/kg), manganese (56J mg/kg), nickel (14J mg/kg), vanadium (42J mg/kg), zinc (14J mg/kg), toluene (5J ug/kg), and 2-methyl naphthalene (50J ug/kg).

The subsurface soil samples collected from the old dumping area contain (maximum values) of arsenic (8.2J mg/kg), barium (140J mg/kg), beryllium (1.1J mg/kg), chromium (4.4J mg/kg), cobalt (2.8J mg/kg), copper (10J mg/kg), iron (3,800J mg/kg), lead (4.3J mg/kg), magnesium (290 mg/kg), manganese (32J mg/kg), nickel (5.3J mg/kg), potassium (560J mg/kg), selenium (1.3J mg/kg), vanadium (13J mg/kg), zinc (9.4J mg/kg), toluene (4J ug/kg). As stated in Section 3.3, all data deemed valid was at least 10 times the background concentration.

From the surface soil sample results, levels of arsenic, beryllium, selenium, thallium, dibenzofuran, and 2-methyl naphthalene from the inactive fly ash pond are above the Soil Remediation Goals of NCDENR, Inactive Hazardous Sites Program, Guidelines for Assessment and Cleanup pursuant to N.C.G.S. 130A-310 (Reference 36).

6.5 Soil Exposure Pathway Conclusions

The analytical results indicates that an observed release of arsenic, barium, beryllium, cadmium, chromium, cobalt, iron, lead, magnesium, manganese, nickel, potassium, selenium, silver, vanadium, zinc, naphthalene, dibenzofuran, fluoranthene, 2-methyl naphthalene, pyrene, and phenanthrene in the surface soil samples on site. Although, site access is limited due to fencing of the property and "No Trespassing" signs posted, hunters and other trespassers have been able to access the property illegally (Reference 6).

7.0 SUMMARY AND CONCLUSIONS

For purposes of site prioritization relative to other sites, the groundwater pathway appears to be of great enough concern to consider further effort under CERCLA. The site priority is in large part due to the fact that the groundwater is the source of drinking water for the New Hanover County community wells, businesses and homes within the immediate vicinity of the CP&L property. Because of the number of people drinking from wells that contain siterelated contaminants (albeit at low levels), the Carolina Power and Light Sutton Steam Electric Plant site must be considered for further federal action under CERCLA. It is important to note however that groundwater standards have not been exceeded in any sample except for iron in the Ezzell well. The Superfund Section may or may not recommend that the affected wells be closed pending health evaluations of these wells by the NC Occupational and Environmental Epidemiology Section.

REFERENCES

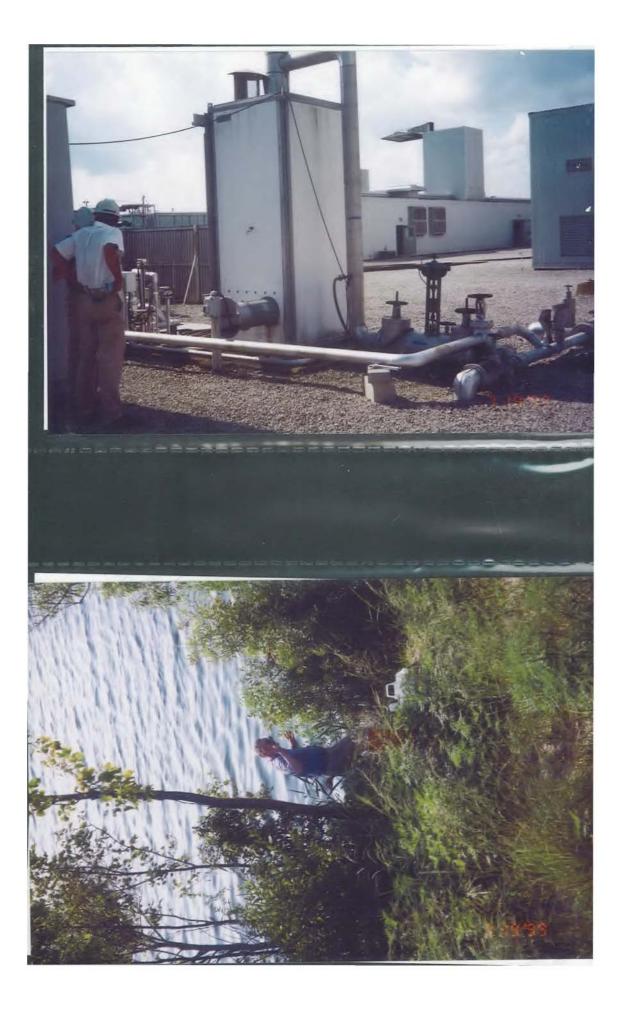
- 1. United States Environmental Protection Agency. 40 CFR Part 300, Hazard Ranking System: Final Rule, December 14, 1990
- 2. United States Environmental Protection Agency, Superfund Chemical Data Matrix
- 3. Grubbs, Stephanie K. (NC Superfund Section). Latitude and Longitude Calculation Worksheets, Carolina Power and Light Sutton Steam Plant, December 14, 1999.
- 4. 7.5 Minute USGS Topographic Quadrangle Maps of Leland (1984), Castle Hayne (1980), Winnabow (1990), and Wilmington (9170), North Carolina.
- 5. Carolina Power and Light, "The Electric Generating Plants", "Generating Interest in our Community" and "How a Coal-Fired Plant Works". Pamphlets and Fact Sheets for Community Involvement, 1999.
- 6. Grubbs, Stephanie K. (NC Superfund Section). Memorandum to File: On site Reconnaissance of the Carolina Power and Light site, June 1999.
- NC Department of Environment and Natural Resources, Division of Water Quality. 1996. Permit Renewal for the NPDES permit # NC 0001422, CP&L Sutton Steam Electric Plant. July 31, 1996.
- 8. Screening Site Inspection Report, CP&L Sutton Steam Electric Plant, Wilmington, New Hanover County, NC. NCD 000 830 646. Greenhorne and O'Mara, Inc., December 1991.
- Shiver, Rick (Division of Environmental Management). Memorandum to Preston Howard: Review of NPDES Permit, Authorization to Construct Ash Pond Modification and Expansion. April 10, 1984.
- Groundwater Litigation. Patterson, Dilthey, Clay, Cranfill, Sumner & Hartzog, Answer and Counterclaims in Cape Industries V. Carolina Power and Light Co. April 18, 1989.
- 11. Grubbs, Stephanie K. (NC Superfund Section). Memorandum to file: Teleconference with Tom Belnick regarding CP&L's NPDES permit. July 1, 1999.
- Howard, Preston (Division of Water Quality). Letter to Mr. Rowland regarding the NPDES Major Modifications on Permit No. 0001422. CP&L Sutton Steam Electric Plant. October 19, 1998.

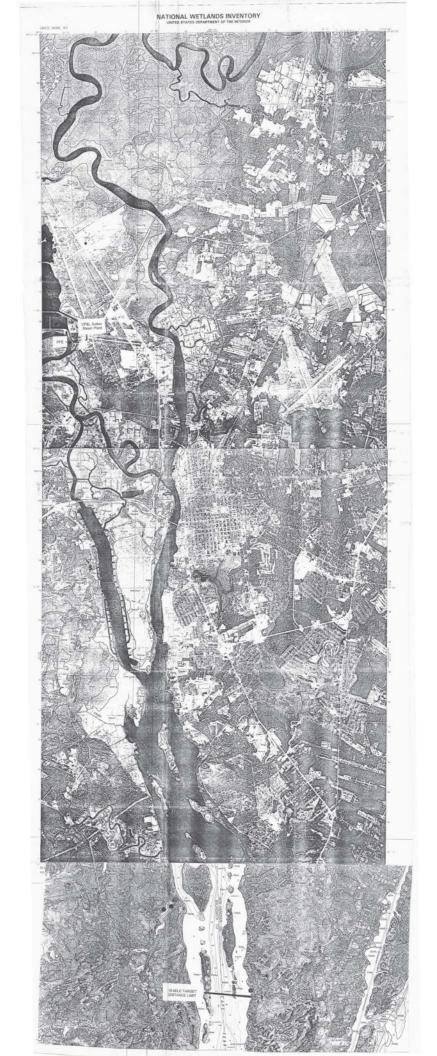
- United States Environmental Protection Agency Office of Compliance, Sector Notebook Project, "Profile of the Fossil Fuel Electric Power Generation Industry". EPA /310-R-97-007. September 1997.
- 14. Furr, B.J. (Vice President, Operations and Technical Training Services CP&L). Letter to Mr. Mills regarding the Sutton Steam Plant Ash Pond Expansion. March 26, 1984.
- 15. EPA Solid waste and Emergency Response, EPA 540-F-94-028, OSWER 9285.7-14FS PB94-963311, Using Qualified Data to Document and Observed Release and Observed Contamination, November 1996.
- 16. Geology and Groundwater of the Wilmington- New Bern Area, North Carolina. USGS Bulletin No. 1, North Carolina Department of Water Resources. 1960.
- 17. Grubbs, Stephanie K. (NC Superfund Section). Field noted from the July 1, 1999 Off-site Reconnaissance of the CP&L surrounding properties. July 1, 1999.
- 18. Grubbs, Stephanie K. (NC Superfund Section). Memorandum to File: July 1999 ESI sampling trip report. July 1999.
- Grubbs, Stephanie K. (NC Superfund Section). Memorandum to file: Teleconference with Mr Blanchard, New Hanover Co. Engineering Department, regarding the community wells near the CP&L plant. July 1, 1999.
- 20. United States Department of Commerce. Technical Paper No. 40, Rainfall Frequency Atlas of the United States, 1961.
- 21. United States Department of Commerce, The Climatic Atlas of the United States, 1983.
- 22. Grubbs, Stephanie K. (NC Superfund Section). Memorandum to file: Teleconference with Mr. Ezzell of Ezzell Trucking regarding his well. July 2, 1999.
- United States Department of Commerce Bureau of the Census, County and City Data Book. 1990.
- 24. Grubbs, Stephanie (NC Superfund Section). Memo to file: Groundwater usage within the 4-mile radius of the CP&L site. December 16, 1999.
- 25. Stanley, Jeannette (NC Superfund Section). Memo to Superfund Section Staff: Update on the Status of the Wellhead Protection Program in NC. April 23, 1999.
- 26. North Carolina Administrative Code, Department of Environment, Health, and Natural Resources, Division of Environmental Management, Title 15A Subchapter 2L, Classifications and Water Quality Standards Applicable to the Groundwaters of North Carolina. November 8, 1993.

- 27. Monitoring well data collected by the Carolina Power and Light personnel since 1990 until present as dictated by the NPDES permit. Received on June 10, 1999 during an On-Site Reconnaissance with CP&L Representatives.
- United States Federal Emergency Management Agency. Flood Insurance Rate Map, New Hanover County, North Carolina, Community-Panel Number 370168 0080, Panel 80 of 128. April 15, 1986.
- 29. Grubbs, Stephanie K. (NC Superfund Section). Memorandum to file: Stream Flow Rate Calculations for the Surface Water Pathway, CP&L Sutton Steam Plant, December 1, 1999.
- Grubbs, Stephanie K. (NC Superfund Section). Memorandum to file: Teleconference with Wildlife Commission representatives regarding the fishing in the Cape Fear River. July 5, 1999.
- 31. Classification and Water Quality Standards Assigned to the Waters of the Cape Fear River Basin, Division of Environmental Management, February 1, 1993.
- 32. Grubbs, Stephanie K. (NC Superfund Section). Memorandum to File: Wetland linear frontage. December 16, 1999.
- 33. Grubbs, Stephanie K. (NC Superfund Section). Memorandum to File: Sensitive Environments and Threatened and Endangered Species. December 16, 1999.
- North Carolina Department of Natural Resources and Community Development and US Water Resources Council. Cape Fear River Basin Study 1981-1983. Status of Water Resources. June 1983.
- 35. North Carolina State Center for Geographic Information and Analysis, Populations and Households. November 19, 1996.
- 36. NC Department of Environment and Natural Resources, Division of Waste Management, Superfund Section, Inactive Hazardous Sites Program, Guidelines for Assessment and Cleanup pursuant to the Inactive Hazardous Sites Response Act of 1987 (N.C.G.S 130A-310 *et.seq.*), July 1997.
- Wakild, Charles (Regional Supervisor, Division of Environmental Management). Letter to Mr. Warriner, CP&L, regarding a Notice of Non-Compliance Contravention of Provisions of 15 NCAC 2L. September 8, 1987.
- 38. Grubbs, Stephanie K. (NC Superfund Section). Memorandum to File: Public Water Supply data of Community wells within the 4-mile radius of the site. CP&L Sutton Steam Plant. June 21, 1999.


- 39. Grubbs, Stephanie (NC Superfund Section). Memorandum to File: New Hanover and Brunswick Counties Water Supplies. December 16, 1999.
- 40. United States Department of Agriculture, Soil Conservation Service. Soil Survey of New Hanover County, North Carolina. April 1977.
- 41. Grubbs, Stephanie (NC Superfund Section). Memorandum to File: Laboratory Information Regarding New Hanover Well Sample. December 29, 1999.

PHOTOGRAPH LOG Carolina Power & Light Sutton Steam Electric Plant Site Wilmington, New Hanover County, North Carolina


- 1. Photo of the drum storage area that was in question during the Screening Site Inspection in 1991.
- 2. Photo overlooking Lake Sutton from the CP&L tower. International Paper plant can be seen in the background of the photo along the Cape Fear River.
- 3. Photo of the two above ground storage tanks that are leased to International Paper to store black liquor.
- 4. Photo of the large fuel oil tanks owned and used by CP&L.
- 5. Photo of the Cape Fear River at the location of the intake for Lake Sutton.
- 6 & 7. Photo of sample location CPL-013-SS/SB at the tip of the inactive fly ash pond.
- 8. Photo of sample location CPL-015-SS/SB and the duplicate sample CPL-115-SS/SB within the inactive fly ash pond.
- 9. Photo of the sample location CPL-014-SS/SB within the inactive fly ash pond.
- 10. Photo of the New Hanover County Community well system off Frederickson Road. Sample CPL-001-PW was collected from these wells.
- 11. Photo of the CP&L Supply wells within the immediate vicinity of the plant.
- 12. Photo of Lake Sutton at the former discharge location for the inactive fly ash pond. Sample CPL-025-SW was collected at this location.
- 13. Photo of the sample location CPL-016-SS/SB in the old fly ash dumping area.
- 14. Photo of sample location CPL-016-SS/SB showing the high ash content of the sample within the old dumping area.
- 15. Photo of the background location CPL-019-SS/SB. Sample collected at the entrance of the CP&L property.
- 16. Photo of the discharge location for CP&L Lake Sutton, also the PPE for the 15-mile surface water pathway and sample location CPL-022-SW/SD and CPL-122-SW/SD.



107IHS113

Bednarcik Direct AGO Cross Ex. 24 Docket No. E-2, Sub 1219A

Hart Exhibit 63 Docket No. E-2, Sub 1219

3/7/2011

DocumentiD NCD0002064

NCD000830646

Site Name CAROLINA P&L CO. SUTTON STEAM

DocumentType SITE ASSESSMENT RPT

RptSegment 1

DocDate 5/25/2005

DocRcvd 5/27/2005

Box SF113

AccessLevel PUBLIC

Division WASTE MANAGEMENT

SUPERFUND

IHS

Program

DocCat FACILITY

OFFICIAL COPY

Cei \mathbb{W} 12 MAY 2 7 2005 SUPERFI

Phase II Remedial Investigation Report for the Former Ash Disposal Area

L.V. Sutton Steam Electric Plant, Wilmington, NC

Progress Energy Service Company, LLC. Raleigh, North Carolina

May 2005

CERTIFICATION STATEMENT

REGISTERED SITE MANAGER CERTIFICATION STATEMENT (.0306(b)(1))

PROGRESS ENERGY CAROLINAS INC. L.V. SUTTON STEAM ELECTRIC PLANT WILMINGTON, NORTH CAROLINA NCD 000 830 646

PHASE II REMEDIAL INVESTIGATION REPORT

"I certify under penalty of law that I am personally familiar with the information contained in this submittal, including any and all supporting documents accompanying this certification, and that the material and information contained herein is, to the best of my knowledge and belief, true, accurate and complete and complies with the Inactive Hazardous Sites Response Act G.S. 130A-310, et seq, and the voluntary remedial action program Rules 15A NCAC 13C .0300. I am aware that there are significant penalties for willfully submitting false, inaccurate or incomplete information."

Gary R. Cameron, P.E. Printed Name

Signature

6/9/05

Date

North Carolina State

Wake County

HARNETT CARUL RICKERBY, a Notary Public of said County and State, do hereby I. certify that <u>GARY R. CAMERON</u> did personally appear and sign before me this the $\underline{9^{\text{H}}}$ day of $\underline{\text{June}}$, 2005 Notary Public Signature My Commission Expires 11-30-2009, My commission expires:

CERTIFICATION STATEMENT

REMEDIATING PARTY CERTIFICATION STATEMENT (.0306(b)(2))

PROGRESS ENERGY CAROLINAS INC. SUTTON STEAM PLANT WILMINGTON, NORTH CAROLINA NCD 000 830 646

PHASE II REMEDIAL INVESTIGATION REPORT

"I certify under penalty of law that I have personally examined and am familiar with the information contained in this submittal, including any and all documents accompanying this certification, and that, based on my inquiry of those individuals immediately responsible for obtaining the information, the material and information contained herein is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for willfully submitting false, inaccurate or incomplete information."

Michael Shawn Longfellow

Printed Name Signature

5-16-05 Date

North Carolina State

New Hanover County

I, Marleve S. Long, a Notary Public of said County and State, do hereby
certify that <u>m, S, Lnez fellow</u> did personally appear and sign before me
this the 12 day of Mary, 2005.
Darlene B. Long

Notary Public Signature

My commission expires: 1 - 33 - 06

REMEDIAL INVESTIGATION COMPLETION CERTIFICATION 15A NCAC 13C.0306(b)(5)(B)

Site Name	L.V. SUTTON STEAM ELECTRIC PLASTreet Address	801 SUTTON STEAM PLANT RD.
County	NEW HANOVER	WILMINGTON, WC
Site ID No.	NCD 000 830646	

The remedial investigation, which is the subject of this certification has, to the best of my knowledge, been completed in compliance with the Inactive Hazardous Sites Response Act G.S. 130A-310, et seq. and the voluntary remedial action program Rules 15A NCAC 13C.0300, and BLASLAND, BOUCK & LEE, INC. is in compliance with Rules .0305(b)(2) and .0305(b)(3), of this section. I am aware that there are significant penalties for willfully submitting false, inaccurate or incomplete information.

RSM Signature

GARY R. CAMERON, RSM Name

BLASLAND, BOUCK & LEE, INC. REC Name

REC No.

MORTH CAROLINA (Enter State) USAKE COUNTY

I, CAROL RICKERBY	, a Notary Public of said County and State,
do hereby certify that GARY R. CAM	MERON did
personally appear and sign before me this the 23	_day of
Notary Public (signature) My Commission Expires 11-3	OFRICAL SEAD
My commission expires:	***

Form G - II

5/23/05

3700 REGENCY PKWY/SUITE (40 Mailing Address

CARY, NC 27511 City, State, ZIP

Table of Contents

.

Section	1.	Introduction	1-1
		1.1 Background	
		1.2 Purpose and Objectives	
		1.3 Report Organization	1-2
Section	2.	Phase II RI Activities	2-1
		2.1 Soil Investigation	
		2.1.1 Collection of Background Soil Samples	
		2.1.2 Additional Ash Delineation	
		2.1.3 Additional Delineation of Petroleum Hydrocarbons	
		2.2 Groundwater Investigation	
		2.2.1 Evaluation of Groundwater and Movement in the FADA	
		2.2.2 Temporary Piezometer Installation	
		2.2.3 Permanent Monitoring Well Installation	
		2.2.4 Groundwater Sampling and Analysis	
		2.2.4.1 Phase II RI Groundwater Sampling and Analysis Program	
		2.2.4.2 Groundwater Microbiological Community Data	
		2.3 Phase II RI Work Plan Variances	
		2.4 Investigation-Derived Waste	2-0
Section	3.	Phase II RI Results	3-1
		3.1 Soil Investigation Results	3-1
		3.1.1 Additional Ash Delineation	
		3.1.2 Petroleum Hydrocarbon Soil Sampling Results	
	•	3.1.3 Background Metals Soil Sampling Results	
		3.2 Groundwater Investigation Results	
		3.2.1 Evaluation of Groundwater and Movement in the FADA	3-2
		3.2.2 Groundwater Elevation and Gradient Data	3-2
		3.2.3 Groundwater Flow Data	3-3
		3.2.4 Groundwater Sampling Results	3-3
		3.2.4.1 Hydrophobic Sorption and COC Retardation	
		3.3 Quality Assurance/Quality Control Data	3-6
		3.4 Data Validation	3-6
Section	4.	Conclusions and Recommendations	4-1
Section	5.	Certifications	5-1
Section	6.	References	6-1

Tables

- 2-1 Well and Piezometer Construction Details and Water Elevation Data (February, 2005)
- 3-1 Test Pit and Soil Boring Descriptions for the Former Ash Disposal Area
- 3-2 Summary of Analytes Detected in Soil
- 3-3 Summary of Analytes Detected in Background Soil
- 3-4 Site Survey Data
- 3-5 Historical Groundwater Elevation Data
- 3-6 Stabilized Field Parameter Measurements
- 3-7 Summary of Analytes Detected in Groundwater
- 3-8 Summary of Historical Analytes Detected in Groundwater
- 3-9 Microbiological Community Data February 2005
- 3-10 Summary of Quality Control and Quality Assurance Analytical Results

Figures

- 1-1 Site Location Map
- 1-2 Site Plan
- 2-1 Background Soil Sample Location Map
- 2-2 Horizontal Extent of Ash within the Former Ash Disposal Area
- 2-3 Soil Boring Locations and Results Former Ash Disposal Area
- 2-4 Temporary Piezometers, Permanent Piezometer and Monitoring Well Location Map
- 2-5 Geologic Cross Section A A'
- 3-1 Shallow Groundwater Potentiometric Surface Map February 4, 2005
- 3-2 Deep Groundwater Potentiometric Surface Map February 4, 2005
- 3-3 Groundwater Quality Results

Appendices

- A Soil Boring Logs and Well Construction Records
- B Data Validation Reports and Laboratory Data

1. Introduction

This Phase II Remedial Investigation Report (Phase II RIR) addresses the Former Ash Disposal Area (FADA) at the Carolina Power & Light doing business as Progress Energy Carolina's (Progress Energy) L.V. Sutton Steam Electric Plant (the Site) located at 801 Sutton Steam Plant Road in Wilmington, North Carolina (NCD000830646). This Phase II RIR has been prepared pursuant to a voluntary Administrative Agreement (Docket Number 03-SF-217) signed by Progress Energy and the North Carolina Department of Environment and Natural Resources (NCDENR) Division of Waste Management, Inactive Hazardous Sites Branch (effective date December 30, 2003). The work conducted under the Administrative Agreement is intended to meet the applicable requirements of North Carolina General Statute 130-310.9(c) (Statute): 15A North Carolina Administrative Code (NCAC) 13C .0300 Rules (Rules): and 15A NCAC 13C .0300, *Registered Environmental Consultant Program Rules and Implementation Guidance* (REC Guidance), dated August 2004. Blasland, Bouck, and Lee, Inc. (BBL) has been designated as the Registered Environmental Consultant (REC) for the project.

The Sutton Site is located along the east bank of the Cape Fear River near Wilmington, New Hanover County, North Carolina. The location of the Site is shown on a portion of the United States Geological Survey (USGS) 7.5-minute topographic quadrangle maps for Castle Hayne and Leland, North Carolina, and is presented as Figure 1-1. The FADA was used between 1954 and 1972 for the placement of coal ash generated at the Site. A general site plan that includes the FADA is shown on Figure 1-2.

1.1 Background

BBL prepared a *Phase I Remedial Investigation Work Plan* (RIWP), which was submitted to the NCDENR in March 2004 (BBL, 2004a) to investigate the FADA. Field activities specified in the Phase I RIWP were conducted between May and July 2004. Phase I RI activities included:

- test pitting and soil boring advancement to delineate the FADA;
- soil boring advancement and sample collection;
- groundwater monitoring well and piezometer installation;
- groundwater sampling and analysis; and,
- surface-water and sediment sampling and analysis in the Cape Fear River.

In September 2004, BBL submitted to the NCDENR a *Phase I Remedial Investigation Report* (Phase I RIR) for the FADA that summarized the Phase I RI activities completed by BBL (BBL, 2004b). Based on the results of the Phase I RI, Progress Energy and BBL identified certain data gaps that needed to be addressed to complete the RI in accordance with the REC Guidance. Therefore, a Phase II RIWP was prepared to address the data gaps and was submitted to the NCDENR on January 25, 2005 (BBL, 2005). Field activities for the Phase II RI were conducted from January 25, 2005 to February 4, 2005. The scope of work for the Phase II RI included:

- background soil sampling;
- soil boring advancement to further delineate the FADA;
- soil boring advancement and sampling for petroleum hydrocarbons;
- groundwater monitoring well and temporary piezometer installation; and,
- groundwater sampling and analysis.

1.2 Purpose and Objectives

The purpose of the Phase II RI was to collect the data necessary to complete the RI for the FADA. To accomplish this, the Phase II RI was designed to achieve the following objectives:

- Collection of Background Soil Samples Background soil samples were collected to evaluate natural metal concentrations near the FADA.
- Additional Delineation of Ash within the FADA Additional soil borings were advanced to further characterize the horizontal and vertical extent of the coal ash within the heavily vegetated area located on the northern portion of the FADA.
- Additional Delineation of Petroleum Hydrocarbons in the FADA A thin discontinuous layer (generally < 1-inch) of petroleum hydrocarbons were observed in three areas within the FADA during test pitting and soil boring advancement activities conducted as part of the Phase I RI. Analytical results for the Phase I RI soil samples indicated that the material is consistent with a heavy petroleum hydrocarbon material, such as No. 6 fuel oil. Additional Phase II RI soil samples were collected in each of the three areas to delineate the petroleum hydrocarbons at each area.
- Evaluation of Groundwater and Movement in the FADA Additional groundwater elevation data along the western, southern, and central portions of the FADA were needed to confirm overall groundwater flow in and around the FADA.
- Horizontal and Vertical Delineation of Arsenic in Groundwater Proximate to the FADA Shallow groundwater appears to have been impacted with arsenic above the groundwater remediation goal (RG) of 10 micrograms per liter (µg/L) based on samples collected from three shallow monitoring wells (MW-13, MW-14, and MW-15) installed during the Phase I RI. Therefore, one additional shallow and four deep monitoring wells were installed to delineate arsenic in groundwater horizontally and vertically in accordance with the REC Guidance.

1.3 Report Organization

Following this introduction, Section 2 provides the details of the Phase II RI activities. Section 3 discusses the Phase II RI results. Section 4 presents the conclusions and recommendations based on the results of the Phase II RI. Section 5 presents the required certification documents and Section 6 presents the references used to prepare this Phase II RIR.

2. Phase II RI Activities

This section presents details regarding the data collected during the Phase II RI. Information is presented regarding the number and location of soil samples, soil borings, temporary piezometers, permanent groundwater monitoring wells, groundwater samples, laboratory analytical methods, and any variances from the Phase II RIWP. All site activities were conducted in accordance with the REC Guidance (NCDENR, 2004) and the U.S. Environmental Protection Agency (USEPA) Environmental Investigations Standard Operating Procedures and Quality Assurance Manual (EISOPQAM) (USEPA, 2001).

2.1 Soil Investigation

The following soil sampling activities were conducted as part of the Phase II RI.

2.1.1 Collection of Background Soil Samples

Five background soil samples (SF-2 through SF-6) were collected as required per the REC Guidance and in accordance with the procedures contained in the EISOPQAM. Background soil sample locations are depicted on **Figure 2-1**. Background soil samples were collected from 0.5 to 1.0 feet below ground surface (ft bgs) using a stainless steel hand trowel. Field equipment was decontaminated prior to and after each sample in accordance with EISOPQAM procedures. Background soil samples were analyzed for Hazardous Substance List (HSL) metals by USEPA Methods 6010B and 7470A (for mercury only). The HSL metals include:

- antimony;
- arsenic;
- beryllium;
- cadmium;
- chromium;
- copper;
- lead;
- manganese;
- mercury;
- nickel;
- selenium;
- silver;
- thallium; and
- zinc

Background soil samples were collected and stored separately from all other samples, placed on ice, and maintained under full chain-of-custody procedures. Samples were then transported directly to CompuChem Laboratory in Cary, North Carolina (CompuChem) (NC Certification No. 79).

Quality assurance/quality control (QA/QC) samples were also submitted to CompuChem for analysis along with the samples collected in the field in accordance with the REC Guidance.

2.1.2 Additional Ash Delineation

As part of the Phase I RI, 19 hand-auger borings and 20 test pits were advanced to facilitate delineation of the FADA (see Figure 2-2). Based on the Phase I RI delineation activities, three distinct units were identified above the water table as follows:

- Ash Unit The ash unit consists of a distinctive layer of dark to light grey colloids that are typically laminated in appearance.
- Definable Ash Unit and Sand This unit consists of a definable ash layer as described above combined with a grey sand and ash mixture that may be present above or below the ash layer.
- Sand and Ash Mixture This unit consists of medium grey sand mixed with ash material between sand grains with no definable ash layer present.

To further characterize these units, BBL advanced two soil borings (SB-19 and SB-20) using a stainless steel hand auger within the heavily vegetated area located on the northern portion of the FADA. Field equipment was decontaminated prior to and after borehole advancement in accordance with EISOPQAM procedures. All boreholes were backfilled with native materials upon completion. Figure 2-2 depicts the locations of all soil borings advanced within the FADA.

2.1.3 Additional Delineation of Petroleum Hydrocarbons

Petroleum hydrocarbons were observed in three areas (TP-1, TP-12, and TP-16/20) within the FADA during the Phase I RI; therefore, additional soil sampling was conducted to delineate these areas as part of the Phase II RI.

Each proposed soil boring location was staked in the field by the BBL field scientist. Final soil borings were surveyed by a North Carolina-licensed surveyor. Each of the three identified areas are described below.

Test Pit TP-1 Area

Four soil borings (SF-7 through SF-10) were advanced 20 feet north, south, east and west of former test pit TP-1 to delineate the horizontal and vertical extent of petroleum hydrocarbon impacted soil observed during the Phase I RI. No petroleum hydrocarbons were visually observed during borehole advancement.

Test Pit TP-12 Area

Four soil borings (SB-21, SB-23, SB-25, and SB-27) were advanced 20 feet north south, east, and west of former test pit TP-12 to delineate the horizontal and vertical extent of petroleum hydrocarbons observed during the Phase I RI field activities. Based on field observations, four additional soil borings (SB-22, SB-24, SB-26, and SB-28) were advanced 20 feet north south, east, and west of the initial soil borings to ensure the area proximate to TP-12 was adequately delineated.

Test Pits TP-16/20 Area

Four soil borings (SB-29, SB-30, SB-31, and SB-32) were advanced proximate to former test pit locations TP-16 and TP-20 to delineate the horizontal and vertical extent of petroleum hydrocarbons observed during the Phase I RI. No petroleum hydrocarbons were visually observed during borehole advancement.

Soil boring and test pit locations are depicted on Figure 2-3.

Field equipment was decontaminated prior to and after borehole advancement in accordance with EISOPQAM procedures. Soil borings were advanced using a stainless steel hand auger until the water table or apparent petroleum hydrocarbon impacted soils were visually observed. Continuous soil samples were collected during borehole advancement and screened for organics using an organic vapor analyzer equipped with a photo-ionization detector (PID).

Upon completion of the petroleum hydrocarbon delineation at each test pit area, representative soil samples were collected based on field observations and PID readings. All soil samples were submitted to Severn Trent Laboratory (STL) (NC Certification No. 314) in Pensacola, Florida and analyzed for extractable petroleum hydrocarbons (EPH) and volatile petroleum hydrocarbons (VPH) using Massachusetts Department of Environmental Protection (MADEP) methodology. QA/QC samples were submitted to STL for analysis along with the samples collected in the field in accordance with the REC Guidance.

2.2 Groundwater Investigation

2.2.1 Evaluation of Groundwater and Movement in the FADA

Based on the Phase I RI results, groundwater flow in the FADA appeared to converge toward the central portion of the FADA from the discharge canal to the north and Lake Sutton to the west. This groundwater flow pattern appeared to limit potential impacts to these surface-water bodies; however, additional groundwater flow data along the western, southern, and central portions of the FADA were needed to confirm overall groundwater movement proximate to the FADA. The additional data collected to confirm overall groundwater flow within the FADA are described below.

2.2.2 Temporary Piezometer Installation

BBL advanced six temporary shallow piezometers (PZ-11 through PZ-16) to facilitate the determination of shallow groundwater flow direction in and around the FADA. All piezometers were hand driven and were constructed with 1-inch-diameter flush-joint threaded schedule 80 polyvinyl chloride (PVC) riser with an appropriate length of 0.010-inch slotted PVC well screen. All temporary piezometers were completed above grade with an approximately 2-foot PVC riser stick-up. After each piezometer was installed, BBL conducted a preliminary survey of the temporary piezometers to calculate groundwater elevations at each location in order to construct a shallow potentiometric surface map for the FADA. These data, along with groundwater elevations collected from an existing piezometer (PZ-10) and shallow monitoring wells (MW-13 through 15), enabled BBL to prepare a potentiometric surface map in the field that was used to properly locate the monitoring well cluster (MW-20/20D) to assess the groundwater quality downgradient of the FADA. The locations of the temporary piezometers and monitoring wells are depicted on **Figure 2-4**.

Upon completion of the Phase II RI field activities, the temporary piezometers were manually removed, backfilled, and combined with other investigation-derived waste (IDW) generated during the Phase II RI.

2.2.3 Permanent Monitoring Well Installation

Four permanent monitoring wells (MW-13, MW-14, MW-15, and MW-16) were installed around the FADA to assess shallow groundwater quality as part of the Phase I RI. One of the wells (MW-16) was installed to assess background groundwater quality conditions near the FADA. The locations of the monitoring wells installed during the Phase I RI are depicted on **Figure 2-4**.

BLASLAND, BOUCK & LEE, INC. engineers, scientists, economists As part of the Phase II RI, one new shallow monitoring well (MW-20) and four deep monitoring wells (MW-13D, MW-15D, MW-16D, and MW-20D) were installed by a North Carolina-licensed well driller in accordance to EISOPQAM procedures to assess the horizontal and vertical groundwater quality in and around the FADA. The locations of the new monitoring wells are shown on Figure 2-4. The shallow monitoring well (MW-20) was installed using 4.25-inch-inner-diameter hollow-stem augers. All deep monitoring wells were installed utilizing mud-rotary drilling methods. Soil samples were collected at 5-foot intervals during borehole advancement using 2-inch-diameter, 2-foot-long split-spoon samplers. Each sample was screened with a Photo Ionization Detector (PID) and the results were recorded in the site logbook. Well construction details are provided in Table 2-1.

MW-20 was constructed of 2-inch-diameter flush-joint threaded schedule 40 PVC riser with a 10-foot length of 0.010-inch slotted PVC well screen. The screened interval was positioned so that it intersected the water table at the time of construction. The deep monitoring wells (MW-13D, MW-15D, MW-16D, and MW-20D) were constructed of 2-inch-diameter flush-joint threaded schedule 40 PVC riser with a 5-foot length of 0.010-inch slotted PVC well screen. A sand pack was placed from the boring terminus to two-feet above the top of the screened interval. A hydrated bentonite pellet seal (minimum of 2 feet) was placed on top of the filter pack. Grout was then pumped by the tremie method into the annular space around the casing to the ground surface. After a 24-hour period, the wells were completed by installing a surface pad and an above-grade protective steel casing. Following another 24-hour period, the wells were developed in accordance with the EISOPQAM procedures. Well construction records and boring logs are included in **Appendix A**. A generalized geologic cross-section across the FADA is provided as **Figure 2-5**. Additional FADA cross-sections are provided in the Phase I RIR (BBL, 2004b).

2.2.4 Groundwater Sampling and Analysis

As part of the Phase I RI, shallow monitoring wells MW-13, MW-14, MW-15, and MW-16 were sampled to assess the shallow groundwater quality within and around the FADA. The analysis of these samples resulted in the following:

- Five HSL metals (arsenic, chromium, copper, thallium, zinc) were detected in groundwater samples above the method detection limit (MDL) from the FADA wells; however, all metal concentrations were well below their respective RGs, with the exception of arsenic. Arsenic was detected at concentrations above the groundwater RG (10 μg/L) in groundwater samples collected from monitoring wells MW-13 (70.6 μg/L), MW-14 (10.9 μg/L), and MW-15 (41.3 μg/L). Arsenic was detected below the RG at 3.5 μg/L in the sample collected from background well MW-16.
- No target compound list (TCL) volatile organic compounds (VOCs) or semivolatile organic compounds (SVOCs) exceeded available RGs in groundwater samples from the FADA. Therefore, these parameters were not included in the Phase II RI analytical program.

2.2.4.1 Phase II RI Groundwater Sampling and Analysis Program

The Phase II RI parameter list was focused on the five HSL metals listed above and a select list of geochemical parameters.

One synoptic round of groundwater-level measurements was collected during the Phase II RI from all FADA permanent monitoring wells, permanent piezometer PZ-10, and all temporary piezometers. The measurements were made with a properly decontaminated electronic water-level probe. Depth-to-water measurements were measured from the surveyed top of inner casing to the nearest 0.01 foot and recorded in the site logbook.

All FADA monitoring wells were sampled utilizing low-flow purging and sampling methods. This involves the use of a peristaltic pump equipped with dedicated silicone and Teflon®-lined polyethylene (PE) tubing. The PE tubing was positioned in the well such that the intake was situated at the middle of the well screen. The purge rate (ranging from 200 to 300 milliliters per minute) was adjusted such that the water level within the wells was not lowered by more than 0.3 foot. The water level within the well was monitored throughout the duration of the purge. Additionally, field parameters (pH, temperature, specific conductivity, dissolved oxygen [DO], oxidation-reduction potential [ORP], and turbidity) were monitored continuously using a Hydro-Lab® water-quality meter with a flow-through-cell assembly. BBL personnel recorded all field parameters, as well as the color of the purge water, and the presence or absence of a sheen and odor throughout the duration of the purge. Each monitoring well was purged until three consecutive field measurements (taken at 5-minute intervals) of pH, specific conductivity, DO, and ORP stabilize to within 1 standard unit, 3%, 10%, and 10 millivolts, respectively. Additionally, purging continued until turbidity readings were below 10 nephelometric turbidity units (NTU). The locations of the monitoring wells are depicted on Figure 2-4.

Groundwater samples were collected from the Teflon®-lined PE tubing upon field parameter stabilization,, placed in coolers on ice, and maintained under full chain-of-custody procedures. Samples were shipped via overnight delivery to CompuChem for the following:

• Site-specific HSL metals (arsenic, chromium, copper, thallium, zinc) via USEPA SW-846 Method 6010B/3030C preparation.

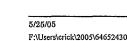
In addition, samples were analyzed for several geochemical indicator parameters as follows:

- calcium using USEPA Method 6010B;
- sulfate using USEPA Method 375.4;
- chloride using USEPA Method 325.2; and
- total organic carbon (TOC) using USEPA Method 415.1.

QA/QC samples were shipped via overnight delivery to CompuChem for analysis along with the samples collected in the field.

2.2.4.2 Groundwater Microbiological Community Data

The measurement of the biological activity of iron-reducing bacteria in groundwater was conducted during the Phase II RI groundwater sampling event to determine whether microbial populations that could support iron reduction were present in the aquifer. Reduction of iron-containing minerals associated with aquifer sediments could facilitate the release of sorbed arsenic into groundwater (Nagorski and Moore, 1999; Dowling et al., 2002). Microbial population field test kits (Iron Related Bacteria Test – IRB-BART[™], and Heterotrophic Aerobic Bacteria Biological Activity Reactivity Test – HAB-BART[™]) manufactured by Droycon Bioconcepts, Inc., Regina, SK, Canada were used to evaluate the presence of iron-utilizing bacteria and/or aerobic bacteria. A


small amount of groundwater sampled from each monitoring well was added to a dedicated test vial that contained a microbial growth substrate specific to the bacteria family of interest. The vials were observed for approximately one week to determine whether or not bacteria grew in each sample.

2.3 Phase II RI Work Plan Variances

Two variances occurred during the Phase II RI field program. First, BBL collected the five above-referenced IRB and HRB- BARTTM groundwater samples to evaluate the biological activity in the FADA. Second, four additional soil borings were advanced around TP-12 based on field observations during soil sample collection to evaluate the presence of petroleum hydrocarbons in the FADA. All other field activities were consistent with the Phase II RIWP.

2.4 Investigation-Derived Waste

Investigation-Derived Waste (IDW) (e.g., drill/soil cuttings, well development/purge water, decontamination fluids) generated as part of the Phase II RI activities were containerized in properly labeled 55-gallon United Nations-approved steel drums and staged at the Site. This material was managed in accordance with the REC and EISOPQAM guidance.

3. Phase II RI Results

This section presents the results of the soil and groundwater investigation conducted as part of the Phase II RI. Laboratory reports of the results for the samples collected during the Phase II RI are presented in **Appendix B**.

3.1 Soil Investigation Results

3.1.1 Additional Ash Delineation

BBL advanced two soil borings (SB-19 and SB-20) using a stainless steel hand auger to further characterize the horizontal and vertical extent of the coal ash within the heavily vegetated area located on the northern portion of the FADA. The findings are as follows:

- SB-19 (0 4 ft bgs): An ash unit was observed from 0.2 to 2.0 ft bgs transitioning to a definable ash and sand unit (i.e.interbedded ash layers and grey sand) to 2.5 ft bgs. Medium-grained, brown sand was present from 2.5 ft bgs to the terminal boring depth of 4 ft bgs.
- SB-20 (0 7 ft bgs): A definable ash unit and sand was observed from 0.2 to 2.0 ft bgs transitioning into a distinct ash unit to 4.0 ft bgs. From 4.0 to 5.5 ft bgs was a definable ash and sand unit, which was underlain by a definable ash unit to 6.0 ft bgs. The ash unit transitioned to a definable ash and sand unit from 6.0 to 6.5 ft bgs. Medium-grained, brown sand was present from 6.5 ft bgs to the terminal boring depth of 7 ft bgs.

Figure 2-2 depicts the spatial distribution of the three distinct units observed within the FADA based on the delineation data collected during the Phase I and Phase II RI. Soil boring descriptions are presented in Table 3-1. As shown on Figure 2-2, RI test pitting and soil boring data indicate that there is an area in the central portion of the FADA that is composed primarily of a definable ash and sand unit, which is surrounded by a sand and ash mixture. The definable ash and sand unit identified on Figure 2-2 appears to correspond to a former topographic depression in the FADA based on a review of historical topographic maps of the site.

3.1.2 Petroleum Hydrocarbon Soil Sampling Results

Sixteen soil borings were advanced proximate to test pits TP-1, TP-12, TP-16/20 to delineate the horizontal and vertical extent of petroleum hydrocarbons in the FADA. BBL collected four soil samples around each test pit within the FADA for EPH and VPH analyses by the MADEP Method. Soil analytical results are summarized in **Table 3-2** and depicted on **Figure 2-3**. Soil sampling results are summarized below.

Test Pit TP-1 Area Results

Analytical results for all EPH and VPH soil samples were below the Maximum Soil Contaminant Concentrations (MSCC) soil-to-groundwater criteria with the exception of C11-C22 (EPH) aromatics (soil-to-groundwater limit of 34 milligrams per kilogram [mg/kg]) in two soil samples. The C11-C22 aromatics (EPH) concentration in the soil sample from SF-7 (0.5 - 1.0 ft bgs) was reported as 120 mg/kg. The J-qualified (estimated) C11-C22 aromatic (EPH) concentration in the duplicate soil sample of SF-9 (SF-91) (44 mg/kg) location slightly exceeded the MSCC. It should be noted that the parent soil sample collected from SF-9 (estimated concentration of 33 mg/kg) was below the MSCC soil-to-groundwater criteria for EPH C11-C22.

Test Pit TP-12 Area Results

The four soil samples (SB-22,-24,-26, and -28) collected proximate to test pit TP-12 were all below the EPH and VPH MSCC soil-to-groundwater criteria.

Test Pits TP-16/20 Area Results

The four soil samples (SB-29,-30,-31, and -32) collected proximate to test pits TP-16 and TP-20 were all below the EPH and VPH MSCC soil-to-groundwater criteria. Laboratory data are provided in Appendix B.

3.1.3 Background Metals Soil Sampling Results

Five background soil samples (SF-2 through SF-6) were collected at the Site at the locations shown on **Figure 2-1**. Analytical results indicate that six metals (antimony, cadmium, mercury, selenium, silver and thallium) were not detected above their respective detection limits in any of the background soil samples. Eight metals (arsenic, beryllium, chromium, copper, lead, manganese, nickel, and zinc) were detected in background concentrations ranging from 0.01 mg/kg for beryllium to 2.5 mg/kg for zinc. Complete analytical results for background soil samples are provided in **Table 3-3**. Laboratory data are provided in **Appendix B**.

3.2 Groundwater Investigation Results

3.2.1 Evaluation of Groundwater and Movement in the FADA

Shallow groundwater measurements collected from six temporary piezometers, permanent piezometer PZ-10 and five permanent monitoring wells ranged from 0.90 ft bgs at PZ-16 to 3.33 ft bgs at PZ-15 on February 4, 2005. Deep groundwater measurements collected from four permanent groundwater monitoring wells ranged from 0.53 ft bgs at MW-15D to 4.97 ft bgs at MW-20D. Depth-to-groundwater measurements from the February 2005 monitoring event were converted to groundwater elevations and were used to create potentiometric surface maps for wells screened near the water table (shallow groundwater) and toward the base of the surficial aquifer unit (deep groundwater). Potentiometric surface maps for shallow and deep groundwater for the February 2005 monitoring event are presented as Figures 3-1 and 3-2. As shown, groundwater within the FADA generally flows to the south and southwest. A summary of the site survey data is provided in Table 3-4. Groundwater elevation data are provided in Table 2-1. Historical groundwater elevation data are provided in Table 3-5. Lastly, Figure 2-5 presents a geologic cross-section that illustrates the subsurface conditions along the groundwater flow path within the FADA.

3.2.2 Groundwater Elevation and Gradient Data

The horizontal component of the hydraulic gradient in the shallow and deep groundwater was determined for the Site using the February 4, 2005 groundwater elevation data presented in **Table 2-1**. The average horizontal gradient in the shallow groundwater is approximately 0.0025 foot per foot (ft/ft) towards the south and southwest. The average horizontal gradient in the deep groundwater is approximately 0.0034 (ft/ft) towards the southwest. Historical groundwater elevation data are presented in **Table 3-5**.

To evaluate the potential interaction of groundwater flow between different levels of the surficial aquifer, the vertical component of the hydraulic gradient between the shallow and deep groundwater wells was also evaluated by comparing groundwater elevations from clustered wells MW-13 (shallow well) and MW-13D

(deep well), MW-15 (shallow well) and MW-15D (deep well), MW-16 (shallow well) and MW-16D (deep well), and MW-20 (shallow well) and MW-20D (deep well). The calculated vertical gradients for each well cluster are 0.0011 ft/ft (upward), 0.0011 ft/ft (downward), 0.0029 ft/ft (downward), and 0.0005 (downward), respectively.

3.2.3 Groundwater Flow Data

The average linear groundwater velocity, or seepage velocity, (v) for the FADA can be estimated from the following relation between hydraulic conductivity (K), hydraulic gradient (i), and effective porosity (η) :

$$v = K \times i / \eta$$

Heath (1989) estimated an average transmissivity (T) value of 11,000 square feet per day (ft²/day) for the surficial sand aquifer. Assuming an aquifer thickness of 48 feet based on the boring logs for the deep wells, a typical hydraulic conductivity (K) value of 229 feet/day (ft/day) was calculated for the FADA. An average horizontal hydraulic gradient of 0.00295 ft/ft was used for (i). An effective porosity (η) of 0.30 for fine sand was assumed. Based on these values, the average linear groundwater velocity (v) in the FADA was approximately 242.6 feet/year.

3.2.4 Groundwater Sampling Results

Field Parameter Data – Shallow Groundwater

Stabilized field parameter data for the February 2005 monitoring period are presented in **Table 3-6**. Values of pH ranged from 7.85 (MW-20) to 9.65 (MW-14) std. units. These values indicate that shallow groundwater within the FADA is neutral to slightly basic. Specific conductivity ranged from 180 (MW-16) to 585 (MW-13) microseimens per centimeter (μ S/cm). DO values range from 0.28 (MW-20) to 0.51 (MW-16) milligrams per liter (mg/L). ORP ranged from 45 (MW-20) to 143 (MW-15) millivolts (mV). These data indicate that oxidizing to slightly reducing conditions are present in shallow groundwater within the FADA. Stabilized groundwater turbidity results were nine Nephelometric Turbidity Units (NTUs) or less within all shallow wells.

Field Parameter Data – Deep Groundwater

Stabilized field parameter data for the February 2005 monitoring period are presented in **Table 3-6**. Values of pH ranged from 6.68 (MW-16D) to 8.66 (MW-15) std. units. These values indicate that deep groundwater within the FADA is neutral to slightly basic. Specific conductivity ranged from 498 (MW-15D) to 898 (MW-13D) μ S/cm. DO values range from 0.28 (MW-20) to 0.51 (MW-16) mg/L. ORP ranged from 127 (MW-20D) to 252 (MW-16D) mV. These data indicate that oxidizing to slightly reducing conditions are present in shallow groundwater within the FADA. Stabilized groundwater turbidity results were seven NTUs or less within all deep wells.

HSL Metal Results

Groundwater samples from the five shallow and four deep FADA monitoring wells were analyzed for sitespecific HSL metals (arsenic, chromium, copper, thallium, and zinc) to evaluate site groundwater quality. Four of the five HSL metals were detected in groundwater samples from the FADA wells; however, all metal concentrations were well below their respective RGs with the exception of arsenic. Arsenic was detected at concentrations above the RG (10 μ g/L) in groundwater samples collected from shallow monitoring wells MW-13 (99.1 μ g/L) and MW-15 (44 μ g/L) only. HSL metals results are presented in Table 3-7 and depicted on Figure 3-3. Historical groundwater analytical results are presented in Table 3-8.

Geochemistry Data

Coal ash leachate typically contains calcium, chloride, sulfate, and total organic carbon which form its primary constituents (Conn, et al., 1999; Murarka, et al., 2002). Therefore, groundwater samples were collected for analysis of calcium, chloride, sulfate, and TOC as potential indicator compounds to evaluate whether or not leachate from coal ash may be affecting groundwater proximate to the FADA. Table 3-7 presents the results of these geochemical parameters.

Calcium concentrations in groundwater samples collected from background wells MW-16 (shallow groundwater) and MW-16D (deep groundwater) were 5.39 and 33.7 mg/L, respectively. Calcium concentrations ranged from 34.1 (MW-14) to 125 (MW-13) mg/L in shallow groundwater, and 35.9 (MW-16D) to 84.4 (MW-13D) mg/L in deep groundwater. Calcium concentrations were greater in shallow groundwater samples with the exception of the sample from MW-16 which was less than the MW-16D deep groundwater sample.

Chloride concentrations in the groundwater samples collected from background wells MW-16 and MW-16D were 21.4 and 76.4 mg/L, respectively. Chloride concentrations ranged from 2.35 (MW-20) to 46.2 (MW-14) mg/L in shallow groundwater. Chloride concentrations in deep groundwater samples ranged from 54.7 (MW-15D) to 154 (MW-13D) mg/L. Overall, chloride concentrations were greater in groundwater samples from deep monitoring wells.

Sulfate concentrations in the groundwater samples collected from background wells MW-16 and MW-16D were 25.2 and 128 mg/L, respectively. Sulfate concentrations ranged from 8.82 (MW-13) to 44.7 (MW-20) mg/L in shallow groundwater samples, and 74.5 (MW-15D) to 141 (MW-13D) mg/L in deep groundwater samples. Sulfate concentrations were greater in the samples collected from deep monitoring wells.

Groundwater concentrations of TOC in background wells MW-16 and MW-16D were 6.63 and 3.41 (estimated value) mg/L, respectively. TOC concentrations ranged from non-detect at (MW-13) to 14.0 mg/L (MW-14) in shallow groundwater, and 3.99 (MW-15D) to 9.28 (MW-13D) mg/L in deep groundwater. TOC concentrations were greater in shallow groundwater samples from MW-15 and MW-16 compared to MW-15D and MW-16D. TOC concentrations were greater in samples from MW-13D and MW-20D compared to MW-13 and MW-20.

Groundwater Microbiological Community Results

Heterotrophic aerobic bacteria were identified in groundwater samples collected at all sampled monitoring wells (Table 3-9). These results indicate that sufficient nutrients, energy sources, and oxidizing conditions exist to support the growth of these aerobic bacteria in groundwater in the vicinity of the FADA. Mixed heterotrophic iron-related bacteria (Pseudomonads and Enterics) were identified in groundwater samples collected at monitoring wells MW-13D, MW-15D, and MW-20. Mixed anaerobic bacteria including iron-related bacteria were identified in groundwater samples collected at monitoring wells MW-16D and MW-20D. The presence of mixed heterotrophic and anaerobic iron-related bacteria indicates that under proper geochemical and nutrient conditions, reduction of iron can occur.

Mixed heterotrophic aerobic and mixed anaerobic bacterial communities were observed for groundwater samples collected from MW-16D and MW-20D. The potential for the co-existence of aerobic and anaerobic bacteria in site groundwater is supported by ORP values that indicate mildly oxidizing to mildly reducing conditions.

3.2.4.1 Hydrophobic Sorption and COC Retardation

Sorption refers to the chemical transport process whereby chemicals, such as metals dissolved in groundwater, partition preferentially to solid phase aquifer materials. The quantity of chemicals that can partition to solid phase materials is directly proportional to the affinity of the dissolved chemical to sorb to the solid phase material. For metals, this affinity is described by the soil-water partition coefficient (K_d). The result of this process is that some quantity of the chemical mass is removed from groundwater during transport, and the rate of constituent, in this case arsenic, migration in groundwater can be less than the average linear groundwater velocity. Sorption is, therefore, a natural physical groundwater attenuation process that results in the retardation of arsenic relative to the average linear groundwater velocity.

To evaluate the role that sorption plays in the rate of arsenic movement relative to the average linear groundwater velocity in FADA soils, a site specific retardation factor for arsenic was estimated based on the following equation (Freeze and Cherry, 1979).

$$R_c = 1 + \left[\rho_b \, x \, K_d \,/\, n\right]$$

where R_c is the retardation factor for a specific chemical (c), ρ_b is the bulk density of the soil, K_d is the chemicalspecific soil-water partition coefficient, and *n* is the effective soil porosity. The assumed aquifer bulk density is 1.65 gm/cm³ and the assumed effective soil porosity is 0.30 (Freeze and Cherry, 1979). A K_d value of 29 mg/g for arsenic was obtained from the Risk Assessment Information System Toxicity and Chemical-Specific Factors Data Base (http://risk.lsd.ornl.gov/cgi-bin/tox/TOX_select?select=csf). The following table presents the sitespecific retardation factor for arsenic based on this equation:

Site COC	K _d (ml/g)	R _c	v _c (ft/yr)	
Arsenic	29	160.5	1.5	1

As shown, site-specific the retardation factor for arsenic was calculated to be 160.5 indicating relatively high retardation. The velocity of arsenic transport in groundwater is related to the velocity of groundwater by the following equation:

$$v_c = v_{gw} / R_c$$

where v_c is COC velocity, in this case arsenic and v_{gw} is groundwater velocity. As shown, based on the maximum estimated groundwater velocity (242.6 ft/yr), arsenic velocity in groundwater is approximately 1.5ft/yr. This indicates that arsenic is significantly less mobile in groundwater relative to the overall groundwater velocity at the site.

It should be noted that K_d values for arsenic can vary several orders of magnitude depending upon local soil type and soil organic content. The value shown is "typical" and may not be fully representative of actual site conditions. Ideally, for solute transport modeling efforts, site-specific K_d information is developed for the range of aqueous and geological conditions of the system to be modeled. However, the retardation data provided above appear to be reflective of site conditions based on the limited distribution of arsenic observed in groundwater proximate to the FADA.

3.3 Quality Assurance/Quality Control Data

QA/QC samples were collected during Phase II RI field activities, including duplicates for each media sampled, matrix spike/matrix spike duplicate (MS/MSD) samples, and field equipment (rinsate) blanks. Duplicate sample results are shown in brackets in **Tables 3-2**, **3-3** and **3-7**. **Table 3-10** presents the analytical results for equipment blank and VOC trip blank samples. Overall, duplicate samples results compare well to their corresponding samples. Equipment blank results indicated very low levels of antimony and zinc which are often detected as laboratory artifacts and are not consistent with the constituents of concern at the Site. Therefore, these constituents do not appear to be site related. An estimated concentration of C9-C10 VPH (4.9 JB μ g/L) was detected in the trip blank sample for the soil samples collected within the FADA. BBL contacted STL in Pensacola, Florida to discuss the results of the trip blank water sample. According to STL, the cause of the low level detection was due to laboratory cross-contamination during the analysis of the trip blank water sample.

3.4 Data Validation

Analytical data generated for the Phase II RI were evaluated by a BBL data validation specialist to determine the acceptability of the data generated by the analytical laboratory. A data validation/review was completed on the level III data packages submitted by the laboratory for each sample delivery group in accordance with the Quality Assurance Project Plan (QAPP) (BBL, 2004c) included as part of the Phase I RIWP. Data validation/review was conducted in accordance to the *Contract Laboratory Program National Functional Guidelines for Inorganic and Organic Data Review*. The data validation reports are included with the laboratory data in **Appendix B**. Several EPH sample results were recorded as estimated values due to the surrogate recoveries associated with the EPH analysis were determined to be outside the laboratory control limits. A "U" qualifier was given to all EPH soil samples exhibiting concentrations less than the blank action level associated with the trip blank water sample analyses. Overall, the data validation reports found the data acceptable and usable. None of the data within the data set were rejected due to any deviation cited in the data validation reports.

4.1 Conclusions

The following conclusions have been developed based on the results of the Phase I and II RI.

- The FADA has been adequately delineated horizontally and vertically based on the test pit and hand auger boring data collected as part of the Phase I and Phase II RI. Three related ash units have been identified within the FADA: a definable ash layer, definable ash layers interbedded with a sand and ash mixture, and a sand and ash mixture with no definable ash layer present. The additional Phase II RI data, combined with the Phase I RI data, indicate that an east-west channel-like feature appears to be present in the central portion of the FADA. This feature corresponds to a topographic low feature present on historical topographic maps for the area.
- The petroleum hydrocarbon material observed in soil at three former test pit areas (TP-1, TP-12, and TP-16/20) within the FADA appear to be discontinuous localized areas of a heavy residual petroleum hydrocarbon compound such as No. 6 fuel oil. This is consistent with historical records that indicate a possible release from one of the ASTs overlying the FADA. All soil samples collected proximate to the three former test pit areas were below EPH/VPH soil-to-groundwater standards with exception of two surface soil samples proximate to TP-1 which contained J-qualified (estimated) values above the soil-togroundwater standard for C11-C22 aromatic hydrocarbons. Overall, there does not appear to a significant impact to groundwater related to the residual hydrocarbons observed in soil. No light nonaqueous phase liquids have been detected in FADA monitoring wells, the permanent piezometer, or the six temporary piezometers. A possible explanation for this is that heavier petroleum hydrocarbons such as No. 6 fuel oil typically have low solubility limits in groundwater and are hydrophobic (i.e. they do not readily partition into groundwater) (Fetter, 1994; Murphy and Morrison, 2002).
- Based on the additional data collected during the Phase II RI, groundwater flow in the FADA appears to flow toward the south-southwest.
- All target HSL metals were below their respective RGs in groundwater samples collected from the nine FADA monitoring wells with the exception of arsenic, which was present in two shallow monitoring wells (MW-13 and MW-15). Arsenic was not detected in groundwater samples from any of the deep monitoring wells, or the sample from the downgradient shallow well (MW-20). Groundwater data collected in the FADA indicate that arsenic in groundwater is likely limited to localized areas within the FADA where coal ash leachate is proximate to well screens. This finding is consistent with the retardation calculations for arsenic which indicate that arsenic has very low mobility in groundwater (1.5 ft/yr) relative to the overall groundwater flow rate (242.6 ft/yr) in the FADA. In addition, the lack of arsenic in groundwater sampled at the deep FADA wells indicates that arsenic likely is not being transported from the FADA into the deeper portion of the aquifer.
- pH values above 9.0 were measured in shallow groundwater samples from MW-13, MW-14, and MW-15, possibly indicating that coal ash leachate from the FADA is creating more basic conditions in shallow groundwater. With the exception of groundwater at MW-15D, calcium concentrations were above background at all sampling locations. Chloride concentrations were above background in groundwater samples collected at MW-13D, MW-14, and MW-15D. Sulfate was above background concentration only at MW-20 while TOC concentrations were above background at MW-13D, MW-14,

4-1

MW-15, and MW-20D. These results indicate that leachate from the FADA may be contributing calcium and TOC to groundwater in the vicinity of the FADA. However, there was no clear indication of contributions of chloride or sulfate to groundwater from the FADA.

- The BART test results indicate that groundwater microbial populations included aerobic bacteria at all sampled locations. Iron reducing bacteria were observed only at upgradient well MW-16 and downgradient well MW-20D. These results are consistent with ORP values that indicated groundwater in the vicinity of the FADA was slightly aerobic to mildly reducing. These geochemical conditions shed some insight on the potential for arsenic transport in groundwater in the vicinity of the FADA. Arsenic concentrations above 2L standards were observed in shallow groundwater at two locations. At both locations, the monitoring well may have been partially screened across ash-containing layers. The observed lack of arsenic at other shallow groundwater sampling locations and in the deeper portion of the aquifer may be due to adsorption of dissolved arsenic from coal ash leachate onto mineral surfaces in the aquifer matrix. Arsenic typically is less mobile under aerobic or mildly reducing conditions, such as those observed for groundwater in the vicinity of the FADA, and sorption of arsenic is favorable under these geochemical conditions (Kneebone et al., 2002; Dowling et al, 2002). Under more reducing conditions, arsenic may be released to groundwater due to reduction of iron- and manganese oxides and release of sorbed or co-precipitated arsenic (Dowling et al., 2002). However, the more strongly reducing conditions required for these reduction reactions to occur were not observed in groundwater in the vicinity of the FADA. These results indicate that impacts from the FADA are localized and that mobility of arsenic in groundwater in the vicinity of the FADA is limited.
- Based on the above findings, arsenic impacts in groundwater within the FADA have been adequately delineated.

4.2 Recommendations

Sufficient RI data have been collected to address the soil and groundwater conditions within the FADA; therefore, BBL and Progress Energy have determined that the RI process is complete. BBL recommends that a focused remedial action plan (RAP) should be prepared and submitted to the NCDENR as required under Section .0306 (1) and applicable portions of Appendix A of the REC Guidance to address the limited arsenic impacts detected in shallow groundwater within the FADA. The RAP will likely consist of a combination groundwater monitoring, and the use of institutional controls to address the limited groundwater impacts in the FADA.

BLASLAND, BOUCK & LEE, INC

5. Certifications

Progress Energy (the Remediating party) and the Registered Site Manager (RSM) have completed the proper certification forms for the Phase II RI Report. RI Completion Certification forms (Form G-II) required under 15A NCAC 13C.0306(b)(5)(B) are provided at the front of this document. Each of these statements has been properly notarized, as required under the REC program regulations.

6. References

Blasland, Bouck & Lee, Inc. 2004a. Phase I Remedial Investigation Work Plan for the Former Ash Disposal Area, L.V. Sutton Steam Plant, Wilmington, NC. Prepared for Progress Energy Carolinas, Inc. (March 2004).

Blasland, Bouck and Lee, Inc. 2004b. Phase I Remedial Investigation Report for the Former Ash Disposal Area, L.V. Sutton Steam Electric Plant, Wilmington, NC. Prepared for Progress Energy Carolinas, Inc. (September 2004).

Blasland, Bouck and Lee, Inc. 2004c. Phase I Remedial Investigation Quality Assurance Project Plan for the Former Ash Disposal Area, L.V. Sutton Steam Electric Plant, Wilmington, NC. Prepared for Progress Energy Carolinas, Inc. (April 2004).

Blasland, Bouck & Lee, Inc. 2005. Phase II Remedial Investigation Work Plan for the Former Ash Disposal Area, L.V. Sutton Steam Plant, Wilmington, NC. Prepared for Progress Energy Carolinas, Inc. (January 2005).

Conn, R.E., K. Sellakumar, and A.E. Bland. 1999. Utilization of CFB Fly Ash for Construction Applications. In American Society of Mechanical Engineers Proceedings of the 15th International Conference on Fluidized Bed Combustion. Savannah, Georgia.

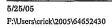
Dowling, C.B., R.J. Poreda, A.R. Basu and S.L. Peters. Geochemical study of arsenic release mechanisms in the Bengal Basin groundwater. Water Resources Research 38(9):12-1 - 12-18.

Fetter, C.W., 1994. Applied Hydrogeology. Prentice Hall, Englewood Cliffs, NJ.

Freeze, R.A., and J.A. Cherry. 1979. Groundwater. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Kneebone, P.E., P.A. O'Day, N. Jones and J.G. Hering, 2002. Deposition and fate of arsenic in iron- and arsenic-enriched reservoir sediments. Environmental science and Technology 36(2):381-386.

Murphy, B.L. and R.D. Morrison, 2002. Introduction to Environmetal Forensics. Academic Press, San Diego, CA.


Nagorski, S.A., and J.N. Moore, 1999. Arsenic mobilization in the hyporheic zone of a contaminated stream. Water Resources Research, 35(11): 3441-3450.

North Carolina Department of Environmental and Natural Resources. 2004. Registered Environmental Consultant Program Rules and Implementation Guidance (15A NCAC 13C .0300) (August 2004).

United States Environmental Protection Agency. Region 4. 2001. Environmental Investigations Standard Operating Procedures and Quality Assurance Manual (November 2001).

USEPA. 1994. Contract Laboratory Program National Functional Guidelines for Inorganic Data Review.

USEPA. 1999. Contract Laboratory Program National Functional Guidelines for Organic Data Review.

BLASLAND, BOUCK & LEE, INC. engineers, scientists, economists

Tables

Table 2-1 Well and Piezometer Construction Details and Water Elevation Data (February, 2005) Phase II Remedial Investigation - Former Ash Disposal Area Progress Energy - L.V. Sutton Steam Electric Plant Wilmington, North Carolina

Well Designation	Completion Date	Well Diameter (inches)	Screen Interval (ft bgs)	Total Boring Depth (ft bgs)	TOC/Meas. Pt. Elevation ¹ (ft msl)	Depth to Water (ft btoc)	Water Level Elevation (ft msl)	Groundwater Unit Depth
Permanent Monitor	ring Wells	······································	<u>.</u>					
MW-13	5/25/04	2	3 - 13	13.0	18.21	7.89	10.32	Shallow
MW-13D	1/28/05	2	33 - 38	38.0	18.16	7.81	10.35	Deep
MW-14	5/25/04	2	1 - 11	11.0	14.15	4.23	9.92	Shallow
MW-15	5/25/04	2	1 - 11	11.0	11.47	3.35	8.12	Shallow
MW-15D	1/31/05	2	40 - 45	45.0	11.21	3.13	8.08	Deep
MW-16	6/7/04	2	2 - 12	12.0	16.91	6.75	10.16	Shallow
MW-16D	1/27/05	2	42 - 47	47.0	16.43	6.38	10.05	Deep
MW-20	2/2/05	2	4 - 14	14.0	13.70	7.92	5.78	Shallow
MW-20D	2/2/05	2	43 - 48	48.0	13.66	7.90	5.76	Deep
Permanent Piezom	eter		· · ·					
PZ-10	5/25/04	2	1 - 11	11.0	12.82	3.43	9.39	Shallow
Temporary Piezom	eters (Abandor	ned)		· · · · · · · · · · · · · · · · · · ·	······································		•••••••••••••••••••••••••••••••••••••••	
PZ-11	1/25/05	1	1-6	6.0	18.31	7.98	10.33	Shallow
PZ-12	1/25/05	1	1-6	6.0	15.90	7.14	8.76	Shallow
PZ-13	1/25/05	1 _	1-6	6.0	16.72	6.54	10.18	Shallow
PZ-14	1/25/05	1	1-6	6.0	15.80	4.23	11.57	Shallow
PZ-15	1/25/05	1	1-6	6.0	15.30	8.58	6.72	Shallow
PZ-16	1/25/05	1	1-6	6.0	9.97	2.86	7.11	Shallow

Notes:

1. Surveyed elevations based on TWT surveys conducted June 2004 and February 2005.

ft bgs = feet below ground surface.

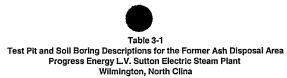
ft msl = feet above mean sea level.

ft btoc = Feet below top of casing.

TOC = Top of casing.

Water level measurements taken on February 4, 2005.

		Maximum	Depth			ayer	
		Depth	Interval		USCS	ASHLay	-
_ocation ID.	Date	(ft bgs)	(ft bgs)	Lithologic Description	Classification ¹	*	Comments
est Pit ID.	· ··· ····	·····					· · · · · · · · · · · · · · · · · · ·
	1		(0.0-0.8)	Topsoil, brown Sand with Clay and organic matter, roots, moist.	Pt		
TP-1	5/24/2004	1.8	(0.8-1.1)	SAND, black, medium grained, trace organics, roots, moist, trace oil substance visible.	SM		Petroleum staining observed.
			(1.1-1.8)	SAND, gray, medium grained, wet.	SM		Fettoledin stanning observed.
			(0.0-0.2)	Topsoil, brown Sand with Clay and organic matter, roots, moist.	Pt		
TP-2	5/24/2004	2.6	(0.2-2.6)	CLAYEY SAND, black to brown, trace organics, wet.	sc		
			(0.0-0.4)	Topsoil, brown Sand with Clay and organic matter, roots, moist.	Pt		
			(0.4-1.5)	ASH, dark gray, silty, laminated.			
			(1.5-1.55)	SAND, light gray, fine grained.	SM		
TP-3	5/24/2004	6.2	(1.55-2.05)	ASH, dark gray, silty, laminated.			
			(2.05-2.6)	SAND, dark gray, medium grained.	SM	<u></u>	
			(2.6-6,2)	ASH and SAND, dark gray, silt to fine grained, laminated.		·	Sample collected for laboratory analysis at 4 ft bgs
			(0.0-0.9)	Topsoil, brown Sand with Clay and organic matter, roots, moist,	Pt		
			(0.9-1.5)	SAND with trace ASH, brown, silt to medium grained.	1		
TP-4	5/25/2004	4	(1.5-1.6)	SAND, light gray, medium grained.	SM	ć.	
			(1.6-1.9)	ASH, dark grey, silty.	0.0		
			(1.9-4)	SAND and ASH, dark gray, silt to fine grained.			
			(0.0-0.3)	Topsoil, brown Sand with Clay and organic matter, roots, moist.	Pt		
			(0.3-1)	SAND, brown to tan, medium grained, wet.	SM		
TP-5	5/25/2004	2.6	(1-1.8)	SAND, dark brown to black, fine to medium grained, wet.	SM		
			(1.8-2.6)	SAND, black, fine to medium grained.	SM		
			(0.0-0.2)	Topsoil, brown Sand with Clay and organic matter, roots, moist.	Pt		
TP-6	5/05/0004	40	(0.2-1.7)	ASH, dark grav, silty, trace organics.		5	
12-0	5/25/2004	4.6	(1.7-2.1)	SAND, dark gray to brown to gray, medium grained, visible roots.	SM		
			(2.1-4.6)	SAND and ASH, gray, silt to medium grained.		~	
			(0.0-0.2)	Topsoil, brown Sand with Clay and organic matter, roots, moist.	Pt		
			(0.2-1.2)	SAND, dark gray, fine to medium grained.	SM		
TP-7	5/25/2004	7.0	(1.2-3.3)	SAND, dark brown, medium grained.	SM		
15-1	5/25/2004	7.0	(3.3-3.5)	SAND, tan, medium grained, wet.	SM		Perched groundwater at base of the SAND layer.
			(3.5-4.8)	SAND and ASH, fine to medium grained, laminated.			
				SAND, dark brown, medium grained, high organic content, roots.	SM	Fuf	
			(0.0-0.3)	Topsoil, brown Sand with Clay and organic matter, roots, moist.	Pt		Excavation unstable, undercaving
TP-8	5/25/2004	4.0	(0.3-0.9)	SAND, dark gray, fine to medium grained.	SM		
(1-9	5/25/2004	4.0		SAND, brown to dark gray, medium grained	SM		
			· · · · · · · · · · · · · · · · · · ·	SAND, light gray, medium to coarse grained.	SM		



		Maximum Depth	Depth Interval		USCS	ASH Laver	
Location ID.	Date	(ft bgs)	(ft bgs)	Lithologic Description	Classification ¹	<	Comments
lest Pit ID.							
			(0.0-0.2)	Topsoil, brown Sand with Clay and organic matter, roots, moist.	Pt		
TP-9	5/25/2004	4.0	(0.2-1.2)	SAND, dark gray, medium grained, organics, roots.	SM		Excavation unstable, undercaving of lower SAND unit
			(1.2-2.9)	SAND, light brown to gray, medium grained, roots.	SM		
	ļ		(2.9-4.0)	SAND, light gray, medium to coarse grained.	SM		
			(0.0-0.4)	Topsoil, brown Sand with Clay and organic matter, roots, moist.	Pt		Groundwater observed at 6.9 ft bgs. Overlying ash
			(0.4-2 6)	SAND and ASH, gray, silt to medium grained.		· · · · · · · · · · · · · · · · · · ·	layer appears to retard groundwater in this area.
TP-10	5/25/2004	7.4	(2.6-3.4)	SAND, brown, medium grained, moist.	SM		1
			(3.4-6.9)	SAND and ASH, silt to medium grained, laminated, moist.			
			(6.9-7.4)	SAND, dark gray, medium to coarse grained, organics, roots, wet.	SM		
			(0.0-0.4)	Topsoil, brown Sand with Clay and organic matter, roots, moist.	SM		
			(0.4-1.0)	SAND, light brown to dark brown, fine to medium grained.	SM		
TP-11	5/26/2004	62	(1.0-2.6)	SAND and ASH, dark brown to black, silt to medium grained.			
			(2.6-3.5)	SAND and ASH, dark gray to black, silt to fine grained.	ľ		Groundwater observed at approximately 5 ft bgs
			(3.5-6.2)	SAND and ASH, silt to fine grained, laminated.		` 	Sample collected for laboratory analysis at 5 ft bgs.
			(0.0-0.4)	Topsoil, brown Sand with Clay and organic matter, roots, moist.	Pt		Groundwater observed at approximately 8.4 ft bgs
			(0.4-1.8)	SAND and ASH, black, silt to fine grained.		· · ·	
TP-12	5/26/2004	8.6	(1.8-3.9)	SAND, light brown to black, medium grained.	SM		
			(3.9-4.6)	SAND, black, medium grained, trace organics and roots, moist.	SM		Petroleum staining observed.
			(4.6-8.6)	SAND and ASH, black and gray, fine grained, laminated.			Sample collected for laboratory analysis at 5 ft bgs.
			(0.0-0.4)	Topsoil, brown Sand with Clay and organic matter, roots, moist.	Pt		Excavation unstable, undercaving.
TP-13	5/26/2004	3.8	(0.4-1.2)	SAND, light to dark brown, medium grained.	SM		
	0.20.200	0.0	(1.2-1.6)	SAND, gray to black, medium grained.	SM		
			(1.6-3.8)	SAND, light brown to orange-brown, medium grained.	SM		
TP-14	5/26/2004	5.0	(0.0-1.1)	Topsoil, brown Sand with Clay and organic matter, roots, moist.	SM		Groundwater observed at approximately 4 ft bgs.
	CIECIECO -	6.5	(1.1-5.0)	SAND, orange-brown, fine to medium grained.	SM		
			(0.0-0.9)	SAND, gray, medium grained, organics, roots.	SM		
TP-15	5/26/2004	7.0	(0.9-3.5)	SAND, light to dark brown, medium grained.	SM		
			(3.5-7.0)	ASH, gray, silty.			
			(0.0-1.5)	SAND, gray, medium grained, organics, roots.	SM		Groundwater observed at approximately 4 ft bgs.
			(1.5-2.8)	SAND, dark brown, medium grained.	SM		
TP-16	5/26/2004	4.5	(2.8-3.0)	SAND, black, medium grained, moist.	SM		Ash beds truncate at the south end of test pit, returnin to SAND, orange-brown, medium grain at 2.8 ft bgs.
			(3.0-4.5)	SAND and ASH, gray to black, fine grained, laminated.			Petroleum staining observed at 2.8 ft bgs. Sample collected for DRO and TN EPH laboratory analysis.
70.47	F/00/0004	F 0	(0.0-0.1)	Topsoil, brown Sand with Clay and organic matter, roots, moist.	Pt		
TP-17	5/26/2004	5.0		SAND, light brown to gray, medium grained.	SM		

,

		Maximum Depth	Depth Interval		USCS	ASHLayer	Querrente
Location ID.	Date	(ft bgs)	(ft bgs)	Lithologic Description	Classification ¹	•	Comments
Test Pit ID.		1			· · · · ·		
			(0.0-0.4)	Topsoil, brown Sand with Clay and organic matter, roots, moist.	Pt		
			(0.4-1.9)	SAND, brown to gray, medium grained.	SM		SAND, grey, medium grained, truncates at westem edge. ASH layers and petroleum stained SAND
TP-18	5/26/2004	5.5	(1.9-3.8)	SAND, light brown to black, medium grained.	SM		truncates on the western edge to SAND, light brown to
			(3.8-4)	SAND, black, medium grained, moist.	SM		orange-brown.
			(4-4.8)	SAND and ASH, gray and black, silt to fine grained, laminated.			
			(4.8-5.5)	SAND, orange-brown, medium grained.	SM		·
			(0.0-0.6)	Topsoil, brown Sand with Clay and organic matter, roots, moist.	Pt		
TP-19	5/26/2004	6.0	(0.6-1.2)	SAND, brown, gray to black, medium grained, visible cross bedding.	SM		
			(1.2-1.8)	SAND, light gray to white, medium grained.	SM		
			(1.8-6)	SAND, orange-brown to gray to black, medium grained, visible cross bedding.	SM		
			(0.0-0.4)	Topsoil, brown Sand with Clay and organic matter, roots, moist.	Pt		Groundwater observed at approximately 4.5 ft bgs
			(0.4-2,3)	SAND, dark brown to gray, medium grained.	SM		Visible petroleum sheen observed in groundwater.
TP-20	5/26/2004	5.0	(2.3-3.1)	SAND and ASH, black, silt to fine grained.			
			(3.1-3.3)	SAND, black, medium grained, moist.	SM		Petroleum staining observed.
			(3.3-5)	SAND and ASH, black and gray, laminated.		· ·	
Soil Boring I	D.	,			````		-
SB-1	5/27/2004	4.0	(0.0-0.6)	Topsoil, brown Sand with Clay and organic matter, roots, moist.	Pt		
			(0.6-1.0)	SAND, gray, fine to medium grained.	SM		
			(1.0-2.6)	SAND, light brown to orange-brown, medium grained.	SM		
			(2.6-3.0)	SAND, dark brown, medium grained.	SM		
			(3.0-4.0)	SAND, black, medium grained.	SM		
			(0.0-0.6)	Topsoil, brown Sand with Clay and organic matter, roots, moist.	Pt		
			(0.6-1.0)	SAND, gray to black, medium fine grained.	SM		
			(1.0-2.0)	SAND, black to brown, fine to medium grained.	SM		
SB-2	5/27/2004	6	(2.0-4.0)	SAND and ASH, gray to brown, silt to fine grained, moist.			
			(4.0-4.25)	SAND and ASH, gray to white, medium grained.		^	
			(4.25-5.5)	SAND, gray to white, medium grained.	SM		
			(5.5-6.0)	ASH, gray, silty, wet, no odor.			
			(0.0-0.3)	Topsoil, brown Sand with Clay and organic matter, roots, moist.	Pt		
07.0	5/07/0004		(0.3-2.0)	SAND, brown, medium grained.	SM		
SB-3	5/27/2004	3.2	(2.0-3.0)	SAND, light brown to gray, medium grained.	SM		
			(3.0-3.2)	SAND, black, medium grained.	SM		
			(0.0-0.6)	Topsoil, brown Sand with Clay and organic matter, roots, moist.	Pt		
			(0.6-1.0)	SAND, brown, medium grained, trace organics.	SM		
SB-4	5/27/2004	3	(1.0-2.5)	SAND, light brown to gray, medium grained, trace fine gravel.	SM		
				SAND, orange-brown, medium grained.	SM		
			(0.0-0.6)	Topsoil, brown Sand with Clay and organic matter, roots, moist.	Pt		· · · · · · · · · · · · · · · · · · ·
SB-5	5/27/2004	3.9	(0.6-3.0)	SAND, white to gray, medium grained.	SM		
			···· · · · · · · · · · · · · · · · · ·	SAND, while to gray, medium grained. SAND, dark brown to black, fine to medium grained, wet.	SM		
			(3.0-3.9)	onixo, daix blown to black, line to medium grained, wet.			

		Maximum Depth	Depth Interval		USCS	ASHLayer	-
ocation ID.	Date	(ft.bgs)	(ft bgs)	Lithologic Description	Classification ¹	-1955	Comments
est Pit ID.							
			(0 0-0.6)	Topsoil, brown Sand with Clay and organic matter, roots, moist.	Pt		
SB-6	5/27/2004	5	(0.6-2.0)	SAND, brown, medium grained.	SM		· · · · · · · · · · · · · · · · · · ·
			(2 0-4.5)	SAND, black, medium grained, moist.	SM		Petroleum staining observed.
			(4.5-5)	ASH, black, silty.		4 (M-91)	Petroleum staining observed.
			(0.0-0.5)	Topsoil, brown Sand with Clay and organic matter, roots, moist.	Pt		
			(0.5-1.0)	SAND and ASH, black, silt to fine grained.			
SB-7	5/27/2004	4.5	(1.0-1.7)	SAND and ASH, black and gray, silt to fine grained, laminated.			
			(1.7-2.0)	SAND, light gray to brown, medium grained.	SM		
			(2.0-4.5)	SAND, light gray, medium grained.	SM		
			(0.0-0.4)	Topsoil, brown Sand with Clay and organic matter, roots, moist.	Pt		
			(0.4-0.8)	SAND and ASH, black, silt to fine grained.		Ì	-
			(0.8-1.5)	SAND and ASH, black and gray, fine grained, laminated.			
SB-8	5/27/2004	5.2	(1.5-2.5)	ASH, gray, silty.		警察	
			(2.5-3.2)	SAND and ASH, black and gray, silt to fine grained, laminated.		<u>`</u>	
			(3.2-4.8)	SAND and ASH, black, silt to fine grained.			
			(4.8-5.2)	SAND, brown to orange-brown, medium grained.	SM		-
			(0.0-0.6)	Topsoil, brown Sand with Clay and organic matter, roots, moist.	Pt		
			(0.6-1.0)	SAND, light brown, fine to medium grained.	SM		
SB-9	5/27/2004	4.5	(1.0-1.5)	SAND, light to dark brown, medium grained.	SM		
90-9	5/2/12004	4.0	(1.5-3.5)	SAND and ASH, black and gray, silt to fine grained.			
			(3 5-4.0)	ASH, black, silty.		-	
		-	(4.0-4.5)		SM		
			(0.0-0.4)	Topsoil, brown Sand with Clay and organic matter, roots, moist.	Pt		
			(0.4-2.3)		SM		
SB-10	6/9/2004	4.0	(2.3-3.1)	SAND and ASH, black, silt to fine grained.		r.	
			(3.1-3.5)		SM		Visible petroleum sheen observed in groundwater
			(3.5-4.0)		SM		Soil sample collected for laboratory analysis.
			(0.0-0.4)		Pt		
			(0.4-1.8)	SAND and ASH, black, silt to fine grained.			
SB-11	6/9/2004	4.5	(1.8-3.9)		SM		Visible petroleum sheen observed in groundwater.
			(4.0-4.5)		SM		Soil sample collected for laboratory analysis.
			(0.0-2.0)		SM		
SB-12	6/9/2004	4.0	(2.0-4.0)	SAND and ASH, light gray, fine grained with trace silts, wet.	Cini		
			(0.0-1.5)		SM		· · · · · · · · · · · · · · · · · · ·
SB-13	6/9/2004	4.0	(1.5-2.0)	SAND and ASH, gray, silt to fine grained, damp.			
					SM		
					SM		
SB-14	6/9/2004	4.0			SM		
SB-15	6/9/2004	4.2			SM		<u></u>
				SAND and ASH, light gray to gray, silt to fine grained, wet		·····	
SB-16	6/9/2004	4.0			SM		
SB-17	6/9/2004	4.0	(SAND and ASH, gray, mottled brown, silt to fine grained.	<u></u>		
						<u> </u>	
SB-18	6/9/2004	4.0	(0.0-1.5)	SAND and ASH, gray, silt to line grained.			

Leasting ID	Data	Maximum Depth	Depth Interval	Lithologic Description	USCS Classification ¹	ASH Layer	Comments
Location ID. Test Pit ID.	Date	(ft bgs);	(ft bgs)		Classification	2. S. C.	Comments
			(0.0-0.2)	Topsoil, brown organic leaf litter.	Pt		
			(0.2-2.0)	ASH, light to dark gray, trace fine grained sand.		6 773	
SB-19	1/25/2005	4.0	(2.0-2.5)	SAND and ASH, dark gray to black, fine to medium grained, wet.		-	
			(2.5-3.0)	SAND, dark brown, fine to medium grained, wet.	SM	-	
			(3.0-4.0)	SAND, brown, fine to medium grained, wet.	SM		
			(0.0-0.2)	Topsoil, brown organic leaf litter.	Pt		
			(0.2-1.0)	SAND, gray, medium grained, trace ash.	SM		
			(1.0-2.0)	SAND and ASH, dark gray to black, fine to medium grained, moist.			
			(2.0-3.0)	ASH, light to dark gray, trace fine grained sand.			
			(3.0-4.0)	ASH, light to dark gray, trace fine grained sand, wet.		2	
SB-20	1/25/2005	7.0	(4.0-4.5)	SAND and ASH, gray, fine grained, wet.			
			(4.5-5.0)	SAND and ASH, gray, medium to coarse grained, wet.		· -	
			(5.0-5.5)	SAND and ASH, gray, fine grained, wet.		<u>.</u>	
			(5.5-6.0)	ASH, light gray, trace fine grained sand, wet.			
			(6.0-6.5)	SAND and ASH, gray, medium grained, wet.	_		
	<u> </u>		(6.5-7.0)	SAND, brown, medium grained, wet.	SM		
Surface Soil	<u>ID.</u>		1	· · · · · · · · · · · · · · · · · · ·			
SF-1	6/9/2004	1.2	(0.0-1.2)	SAND, dark brown to black, fine to medium grained, damp to wet.	SM		Surface soil sample collected at 0.8'-1.2', Petroleum staining observed.
SF-2	1/25/2005	1.0	(0.5-1.0)	SAND, brown to orange-brown, fine to medium grained.	SM		Background surface soil sample collected at 0.5'-1.0'.
SF-3	1/25/2005	1.0	(0.5-1.0)	SAND, gray to light gray, fine to medium grained, loose.	SM		Background surface soil sample collected at 0.5'-1.0'.
SF-4	1/25/2005	1.0	(0.5-1.0)	SAND, gray, fine to medium grained, loose.	SM		Background surface soil sample collected at 0.5'-1.0'.
SF-5	1/25/2005	1.0	(0.5-1.0)	SAND, brown to light brown, fine to medium grained.	SM		Background surface soil sample collected at 0 5'-1.0'.
SF-6	1/25/2005	1.0	(0.5-1.0)	SAND, brown to orange-brown, fine to medium grained.	SM		Background surface soil sample collected at 0.5'-1.0'.
SF-7	1/26/2005	1.0	(0.5-1.0)	SAND, brown, fine to medium grained, wet.	SM		Surface soil sample collected at 0.5'-1.0'.
SF-8	1/26/2005	1.0	(0.5-1.0)	SAND, brown, fine to medium grained, wet.	SM		Surface soil sample collected at 0.5'-1.0'.
SF-9	1/26/2005	1.0	(0.5-1.0)	SAND, brown, fine to medium grained, wet.	SM		Surface soil sample collected at 0.5'-1.0'.
SF-10	1/26/2005	1.0	(0.5-1.0)	SAND, brown, fine to medium grained, wet.	SM		Surface soil sample collected at 0.5'-1.0'.

Notes:

- Indicates ash was observed during test pitting or hand augering.

Protector can more observed outing test plung of hand augering.
 Pr: Test Pits* performed with a backhoe.
 SB: "Soil borings* advanced with a 2-inch stainless steel hand auger.
 SF: Surface soil sample ..
 USCS: Unified Soil Classification System.
 1. Based on field observation.

Summary of Analytes Detected in Soil Phase II Remedial Investigation - Former Ash Disposal Area Progress Energy - L.V. Sutton Steam Electric Plant Wilmington, North Carolina

Date Collected: Criteria		Units	4.0 - 4.5 01/26/05	4.0 - 4.5 01/26/05	4.5 - 5.0 01/26/05	4.0 - 4.5 01/26/05	3.5 - 4.0 01/27/05	2.5 - 3.0 01/27/05	2.5 - 3.0 01/27/05	3.5 - 4.0 01/27/05	0.5 - 1.0 01/26/05	0.5 - 1.0 01/26/05	0.5 - 1.0 01/26/05	0.5 - 1.0
MADEP - EPH/VPH		Units	01/26/05	01/26/05	01/26/05	01/26/05	01/27/05	01/27/05	01/27/05	01/27/05	01/26/05	01/26/05	01/26/05	01/00/05
			· · · · · · · · · · · · · · · · · · ·								01720/00	01120/00	01/20/05	01/26/05
								,,	,					
C9-C18 Aliphatic Hydrocarbons (EPH) 9,386	3255	mg/kg	4 U	1.8 U	2.1 U	22	2.1 U [2.3 U]	1.8 U	2.1 U	2.2 U	51 J	4.4 U	9 J [13]	18 J
C11-C22 Aromatic Hydrocarbons (EPH) 469	34	mg/kg	9.2	5.9 J	5.9 J	26	7.1 J [3.3 J]	3.5 J	1.9 J	2.8 J	120 J	24 J	33 J [44 J]	20 J
C19-C36 Aliphatic Hydrocarbons (EPH) 93,860 c	considered immobile	mg/kg	28	59	12	99	20 [17]	6.4	3.5 U	4.6 U	280 J	49	82 J [98]	120 J
C5-C8 Aliphatic Hydrocarbons (VPH) 939	72	mg/kg	10	9.6	9.2	9.1	8.7 [9.2]	9.6	8.2	9.9	9.9	4.5	8.5 [10]	8.9
C9-C10 Aromatic Hydrocarbons (VPH) 469	34	mg/kg	1.6 U	1.6 U	2.8	2.3 J	16 [0.98 U]	1.1 U	0.87 U	1.4 U	6.9	1.5 U	2.2 J [5.6]	4.3
C9-C12 Aliphatic Hydrocarbons (VPH) 9,386	3255	mg/kg	5.2	5	4.8	4.7	4.5 [4.8]	5	4.3	5.1	5.1	2.4	4.4 [1.8 J]	4.6

Notes:

^a VPH samples were collected as an unmixed grab sample.

MADEP-EPH: Massachussetts Department of Environmental Protection Extractable Petroleum Hydrocarbon Method.

MADEP-VPH: Massachussetts Department of Environmental Protection Volatile Petroleum Hydrocarbon Method.

MSCC: Maximum Soil Contaminant Concentration, NCDENR 2001.

Bolded and shaded values indicate that the constituent exceeded the MSCC Soil-to-Groundwater Criteria.

mg/kg: milligrams per kilogram.

ft bgs: feet below ground surface.

SB: Soil Boring Sample.

SF: Surface Soil Sample.

NA: Not analyzed.

[]: Bracketed values are duplicate sample results.

Laboratory Qualifiers:

U: This flag indicates the analyte was analyzed for but not detected.

J: This flag indicates an estimated value.

Table 3-3

Summary of Analytes Detected in Background Soil Phase II Remedial Investigation - Former Ash Disposal Area Progress Energy - L.V. Sutton Steam Electric Plant Wilmington, North Carolina

Sample ID:			SF-2 (0.5-1.0)	SF-3 (0.5-1.0)	SF-4 (0.5-1.0)	SF-5 (0.5-1.0)	SF-6 (0.5-1.0)
Sample Depth (ft bgs): Date Collected:		RGs	0.5 - 1.0 01/25/05	0.5 - 1.0 01/25/05	0.5 - 1.0 01/25/05	0.5 - 1.0 01/25/05	0.5 - 1.0 01/25/05
HSL Metals by USEPA Meth	od 601) / 7470A (H	g only)	······································	· · · · · · · · · · · · · · · · · · ·		<u> </u>
Antimony	mg/kg	6.2	0.2 U	0.21 U [0.2 U]	0.21 U	0.2 U	0.22 U
Arsenic	mg/kg	4.4	0.26 B	0.21 U [0.2 U]	0.21 U	0.38 B	0.43 B
Beryllium	mg/kg	30	0.02 B	0.01 U [0.01 U]	0.01 B	0.01 U	0.02 B
Cadmium	mg/kg	7.4	0.03 U	0.03 U [0.03 U]	0.03 U	0.03 U	0.03 U
Chromium	mg/kg	24000	1.8	0.06 U [0.06 U]	0.07 B	0.78 B	0.93 B
Copper	mg/kg	580	0.44 B	0.25 B [0.14 B]	0.19 B	0.27 B	0.31 B
Lead	mg/kg	400	2.4	0.42 [0.42]	0.84	2.3	1.7
Manganese	mg/kg	360	2.2	0.39 B [0.37B]	0.66 B	1.3	1.5
Mercury	mg/kg	4.6	0.016 U	0.015 U [0.015 U]	0.017 U	0.016 U	0.018 U
Nickel	mg/kg	320	0.36 B	0.08 U [0.08 U]	0.24 B	0.08 U	0.17 B
Selenium	mg/kg	78	0.26 U	0.27 U [0.26 U]	0.27 U	0.26 U	0.29 U
Silver	mg/kg	78	0.08 U	0.08 U [0.08 U]	0.08 U	0.08 U	0.09 U
Thallium	mg/kg	1.04	0.29 U	0.3 U [0.29U]	0.3 U	0.29 U	0.32 U
Zinc	mg/kg	4600	2.5	0.85 U [1.1 U]	0.87 U	1.5 B	1.4 B

Notes:

mg/kg: milligrams per kilogram.

RGs: Soil Remediation Goals, Inactive Hazardous Sites Branch, updated August 2003.

HSL: Hazardous Substance List.

[]: Bracketed values are duplicate sample results.

SF: Surface soil sample.

ft bgs: feet below ground surface.

Laboratory Qualifiers:

U: This flag indicates the analyte was analyzed for but not detected.

B: The analyte was less than the contract required detection limit, but greater than or equal to the instrument detection limit.

Table 3-4 Site Survey Data Phase II Remedial Investigation - Former Ash Disposal Area Progress Energy - L.V. Sutton Steam Electric Plant Wilmington, North Carolina

Well Designation	Northing	Easting	Ground ¹ Elevation (ft msl)	Top of Casing Elevation (ft msl)
Permanent Monito	ring Wells			
MW-13	197948.14	2305008.16	15.09	18.21
MW-13D	197965.38	2305017.45		18.16
MW-14	197252.17	2306178.43	10.96	14.15
MW-15	196475.65	2306044.01	8.53	11.47
MW-15D	196476.98	2306061.06	8.61	11.21
MW-16	196975.93	2306753.16	14.11	16.91
MW-16D	196962.70	2306758.11	14.00	16.43
MW-20	196257.98	2305318.10	10.78	13.70
MW-20D	196256.89	2305326.09	10.73	13.66
Permanent Piezom	leter			
PZ-10	196897.50	2306271.49	10,15	12.82
Temporary Piezom	ieters			·
PZ-11	197824.56	2305109.88	15.76	18.31
PZ-12	197004.43	2305068.36	11.17	15.90
PZ-13	197188.14	2305495.92	11.21	16.72
PZ-14	196911.31	2305327.01	10.58	15.80
PZ-15	196508.86	2305223.83	10.05	15.30
PZ-16	196384.40	2305681.97	8.01	9.97
Surface Water and	Sediment Sampl	le Locations		
SW-1/SD-1	196378.52	2302994.45	-1.00	NA
SW-2/SD-2	193800.36	2304984.17	-1.00	NA

Notes:

Surveyed elevations based on TWT survey conducted in June 2004 and February 2005.

ft msl = feet above mean sea level.

NA = Not applicable.

1. SW-1/SW-2 elevation is feet below mean sea level.

Table 3-5 Historical Groundwater Elevation Data Phase II Remedial Investigation - Former Ash Disposal Area Progress Energy - L.V. Sutton Steam Electric Plant Wilmington, North Carolina

Well Designation	Date	Top of Casing Elevation (ft amsl)	Depth to Water (ft btoc)	Groundwater Elevation (ft msl)
Permanent Monitor	ing Wells			
MW-13	6/04	18.21	8.96	9.25
	2/04	18.21	7.89	10.32
MW-13D	2/04	18.16	7.81	10.35
NA1A7 4 A	6/04	14.15	5.16	8.99
MW-14 –	2/04	14.15	4.23	9.92
MW-15 -	6/04	11.47	2.94	8.53
CI-VVV	2/04	11.47	3.35	8.12
MW-15D	2/04	11.21	3.13	8.08
MAL 1C	6/04	16.91	7.60	9.31
MW-16 -	2/04	16.91	6.75	10.16
MW-16D	2/04	16.43	6.38	10.05
MW-20	2/04	13.70	7.92	5.78
MW-20D	2/04	13.66	7.90	5.76
Permanent Piezom	eter			· · · · · · · · · · · · · · · · · · ·
D7 10	6/04	12.82	4.31	8.51
PZ-10	2/04	12.82	3.43	9.39

Notes:

ft amsi = feet above mean sea level.

ft msl = feet mean sea level.

ft btoc = feet below top of casing.

D denotes deep groundwater monitoring well.

Table 3-6

Stabilized Field Parameter Measurements - February 2005 Phase II Remedial Investigation - Former Ash Disposal Area Progress Energy - L.V. Sutton Steam Electric Plant Wilmington, North Carolina

Sample Designation	pH (Std. Units)	Specific Conductivity (µS/cm)	Temperature (°F)	Dissolved Oxygen (mg/L)	ORP (mV)	Turbidity (NTUs)
MW-13	9.18	585	61.0	0.40	94	5,0
MW-13D	8.30	898	66.0	0.32	158	7.0
MW-14	9.65	360	52.0	0.40	110	9.0
MW-15	9.13	296	57.0	0.31	143	9.0
MW-15D	8.66	498	65.0	0.29	175	1.0
MW-16	8.45	180	60.0	0.51	107	9.0
MW-16D	6.68	528	68.0	0.31	252	0.0
MW-20	7.85	326	63.1	0.28	45	4.0
MW-20D	7.80	561	62.7	0.55	127	5.0

Notes:

Field parameter measurement collected utilizing an Horiba U-22 water quality meter.

ORP = Oxidation-reduction potential.

uS = Microsiemens.

°F = Degrees Fahrenheit.

mg/L = Milligrams per liter.

mV = Millivolts.

NTU = Nephelometric turbidity units.

Table 3-7 Summary of Analytes Detected in Groundwater Phase II Remedial Investigation - Former Ash Disposal Area Progress Energy- L.V. Sutton Steam Electric Plant Wilmington, North Carolina

Sample ID: Date Collected:	RGs	Units	MW-13 02/02/05	MW-13D 02/02/05	MW-14 02/02/05	MW-15 02/02/05	MW-15D 02/02/05	MW-16 02/02/05	MW-16D 02/02/05	MW-20 02/04/05	MW-20D 02/04/05
HSL Metals by USEPA Method 6010B										<u> </u>	
Arsenic	10	ug/L	99.1 [103]	3.6 U	9.6 B	. 44	3.6 U	3.6 U	4.3 B	3.6 U [3.6 U]	3.6 U
Chromium	50	ug/L	0.9 UJ [0.9 UJ]	0.9 UJ	0.9 UJ	0.9 UJ	0.9 UJ	0.9 UJ	0.9 UJ	0.9 UJ [0.9 UJ]	0.9 UJ
Copper	1000	ug/L	0.55 B [0.5 U]	0.5 U	0.59 B	0.5 U	0.5 U	0.65 B	0.5 U	0.59 B [0.91 B]	1.1 B
Thallium	NL	ug/L	10 UJ [6.2 UJ]	10 UJ	6.2 UJ	10 UJ	6.2 UJ	6.9 UJ	8 UJ	6.2 UJ [6.2 UJ]	6.2 UJ
Zinc	2100	ug/L	20 U [20 U]	20 U	20 U	20 U	20 U	23 U	35.3 U	24.3 U [26.2 U]	21.9 U
Geochemical Parameters				· · · ·					~		
Calcium	NL	mg/L.	125 [129]	84.4	34.1	63.4	35.9	5.39	33.7	79.9 [84.2]	65.3
Chloride	NL	mg/L	3.11 [3.14]	154	46.2	2.84	54.7	21.4	76.4	2.35 [2.08]	68.7
Sulfate	NL.	mg/L	8.82 [8.0]	141	9.87	16.8	74.5	25.2	128	44.7 [43.5]	96.8
Total Organic Carbon	NL	mg/L	5 U [2.91 J]	9.28	14	13.7	3.99 J	6.63	3.41 J	5.27 [5.51]	9.08

Notes:

ug/L: micrograms per liter.

mg/L: milligrams per liter.

RGs: Remediation Goals based on NCAC 2L Groundwater Standards.

HSL: Hazardous Substance List.

[]: Bracketed values are duplicate sample results.

NL: No established RG.

Shaded and bolded values indicate that the constituent exceeded the groundwater RGs.

Organic Laboratory Qualifiers:

U: This flag indicates the analyte was analyzed for but not detected.

J: This flag indicates an estimated value.

Inorganic Laboratory Qualifiers:

UJ: This flag indicates the analyte was not detected and the detection limit is an estimated value.

U: This flag indicates the analyte was analyzed for but not detected.

B: The analyte was less than the contract required detection limit, but greater than or equal to the instrument detection limit.

J: This flag indicates an estimated value.

Table 3-8

Summary of Historical Analytes Detected in Groundwater Phase II Remedial Investigation - Former Ash Disposal Area Progress Energy- L.V. Sutton Steam Electric Plant Wilmington, North Carolina

second													
Sample ID:	RGs	MW-13	MW-13	MW-13D	MW-14	MW-14	MW-15	MW-15	MW-15D	MW-16	MW-16D	MW-20	MW-20D
Date Collected:		06/21/04	02/02/05	02/02/05	06/21/04	02/02/05	06/21/04	02/02/05	02/02/05	06/21/04	02/02/05	02/02/05	02/02/05
/olatile Organic Compounds by USEPA Method 8260													
2-Hexanone	+-	2.5 U	NS	NS	0.5 J	NS	2.5 U [0.53 J]	NS	NS	2.5 U	NS	NS	NS
Acetone	700	3.3	NS	NS	6.6	NS	5.5 [6.2]	NS	NS	2.5 U	NS	NS	NS
Methylene Chloride	5	0.26 J	NS	NS	0.25 J	NS	0.24 J [0.13 J]	NS	NS	0.19 J	NS	NS	NS
Toluene	1000	0.39 J	NS	NS	0.38 J	NS	0.56 [0.56]	NS .	NS	0.26 J	NS	NS	NS
Semi-Volatile Organic O	SemI-Volatile Organic Compounds by USEPA Method 8270												
None Detected			NS	NS		NS		NS	NS		NS	NS	NS
HSL Metals by USEPA	Method 6010												
Antimony		1.9 U*	NS	NS	1.9 U*	NS	1.9 U* [2.1 B*]	NS	NS	2.8 B*	NS	NS	NS
Arsenic	10	70.6 *	99.1 [103]	3.6 U	10.9 *	9.6 B	41.3* [44.1*]	<u>44</u>	3.6 U	3.5 B*	4.3 B	3.6 U [3.6 U]	3.6 U
Chromium	50	0.8 U*	0.9 UJ [0.9 UJ]	0.9 UJ	1.1 B*	0.9 UJ	0.8 U* [2.4 B*]	0.9 UJ	0.9 UJ	0.8 U*	0.9 UJ	0.9 UJ [0.9 UJ]	U.9 UJ
Copper	1000	1.3 U*	0.55 B [0.5 U]	0.5 U	1.3 U*	0.59 B	1.4 B* [1.3 U*]	0.5 U	0.5 U	1.4 B*	0.5 U	0.59 B [0.91 B]	1.1 B
Nickel	100	0.7 U*	NS	NS	0.72 B*	NS	0.7 U* [0.70 U]	NS	NS	0.93 B*	NS	NS	NS
Thallium		3.2 UN*	10 UJ [6.2 UJ]	10 UJ	3.2 UN*	6.2 UJ	3.2 UN* [3.2 U]	10 UJ	6.2 UJ	4.7 BN*	8 UJ	6.2 UJ [6.2 UJ]	6.2 UJ
Zinc	2100	10.2 B*	20 U [20 U]	20 U	11.2 B*	20 U	11.7 B* [11.7 B*]	20 U	20 U	11.6 B*	35.3 U	24.3 U [26.2 U]	21.9 U
Notes:													<u></u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

All concentrations in micrograms per liter (ug/L).

RGs: Remediation Goals based on NCAC 2L Groundwater Standards.

HSL: Hazardous Substance List.

Bold values indicates that the constituent was detected.

Shaded values indicates that the constituent exceeded the RGs.

Organic Laboratory Qualifiers:

U: This flag indicates the analyte was analyzed for but not detected.

J: This flag Indicates an estimated value.

Inorganic Laboratory Qualifiers:

U:). This flag indicates that the analyte was not detected and the detection limit is an estimated value. U: This flag indicates the analyte was analyzed for but not detected.

B: The analyte was less than the contract required detection limit, but greater than or equal to the instrument detection limit.

N: This flag indicates the sample spike recovery is outside of control limits.

*: This flag is used for duplicate analysis when the sample and the sample

duplicate results are not within the control limits.

Table 3-9

Microbiological Community Data - February 2005 Phase II Remedial Investigation - Former Ash Disposal Area Progress Energy - L.V. Sutton Steam Electric Plant Wilmington, North Carolina

Sample Designation	Sample Date	Present or Absent	Dominant Bacteria						
Heterotrophic Aerobic Bacteria (HAB) Results ¹									
MW-13D	2/2/05	Present	Aerobic						
MW-15D	2/2/05	Present	Aerobic						
MW-16D	MW-16D 2/2/05		Aerobic						
MW-20	2/4/05	Present	Aerobic						
MW-20D	2/4/05	Present	Aerobic						
Iron Related Bacteria (IRB) Results ¹									
MW-13D	2/2/05	Present	Pseudomonads & Enterics						
MW-15D	2/2/05	Present	Pseudomonads & Enterics						
MW-16D 2/2/05		Present	IRB						
MW-20	MW-20 2/4/05 P		Pseudomonads & Enterics						
MW-20D	2/4/05	Present	IRB						

Notes:

Aerobic: Characterized by the presence of free oxygen.

IRB: Iron Related Bacteria.

1. All samples collected per manufacturer specifications.

Table 3-10 Summary of Quality Assurance and Quality Control Analytical Results Phase II Remedial Investigation - Former Ash Disposal Area Progress Energy - L.V. Sutton Steam Electric Plant Wilmington, North Carolina

Sample ID: Date Collected:	Units	EB-012505 01/25/05	EB-012605 01/26/05	EB-020205 02/02/05	TB-012705 01/27/05
HSL Metals by USEPA Method 6010	-		· · · · · · · · · · · · · · · · · · ·		
Antimony	ug/L	13	NA	NA	NA
Copper	ug/L	1.4 B	NA	0.5 U	NA
Lead	ug/L	1.6 B	NA	NA	NA
Manganese	ug/L	0.24 B	NA	NA	NA
Zinc	ug/L	20.6	NA	13 B	NA
MADEP-VPH/EPH					
C11-C22 Aromatic Hydrocarbons (EPH)	ug/L	NA	49 J	NA	NA
C19-C36 Aliphatic Hydrocarbons (EPH)	ug/L	NA	68 B	NA	NA
C9-C18 Aliphatic Hydrocarbons (EPH)	ug/L	NA	21 JB	NA	NA
C9-C10 Aromatic Hydrocarbons (VPH)	ug/L	NA	5.8 JB	NA	4.9 JB

Notes:

MADEP-EPH: Massachussetts Department of Environmental Protection Extractable Petroleum Hydrocarbon Method. MADEP-VPH: Massachussetts Department of Environmental Protection Volatile Petroleum Hydrocarbon Method.

HSL: Hazardous Substance List.

NA: Not analyzed for constituent.

EB: Equipment Rinsate Blank.

TB: VOC Trip Blank.

Organic Laboratory Qualifiers:

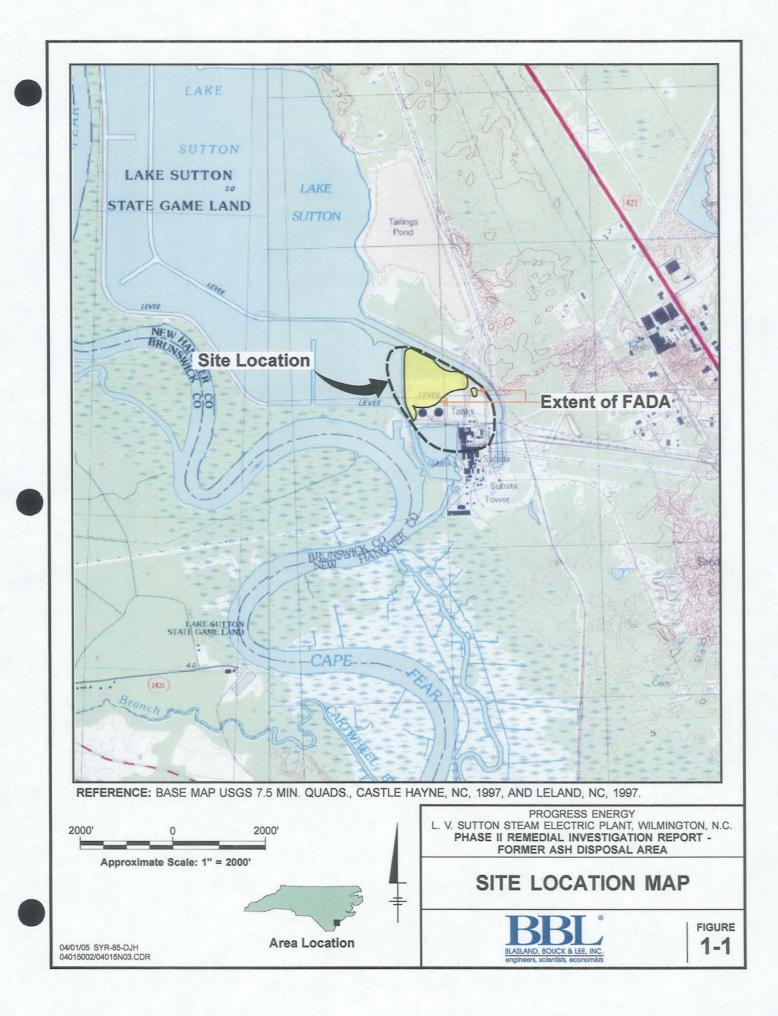
J: This flag indicates an estimated value.

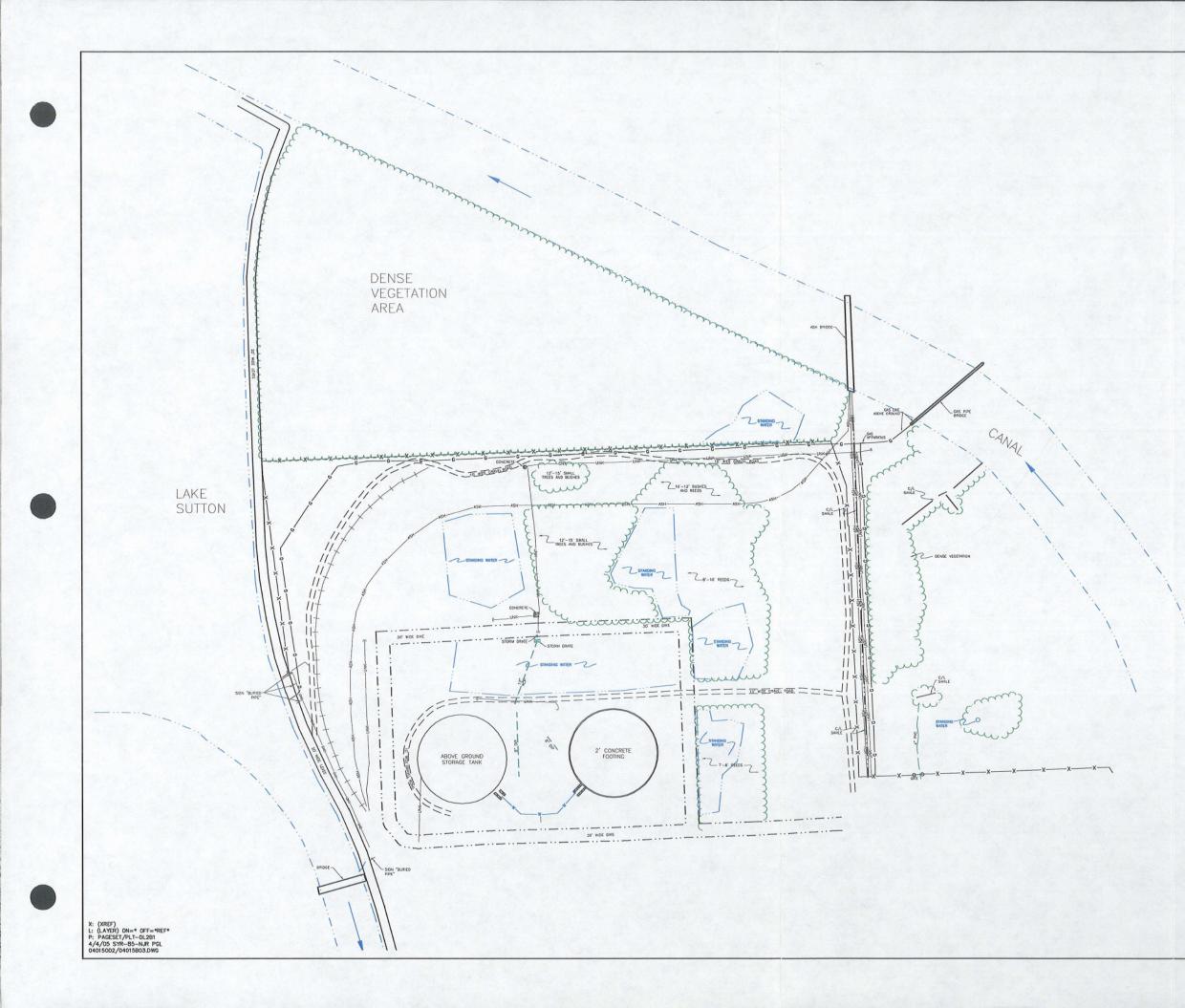
B: The analyte was found in the associated method blank.

Inorganic Laboratory Qualifiers:

U: This flag indicates the analyte was analyzed for but not detected.

B: The analyte was less than the contract required detection limit, but greater than or equal to the instrument detection limit.

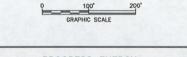



.

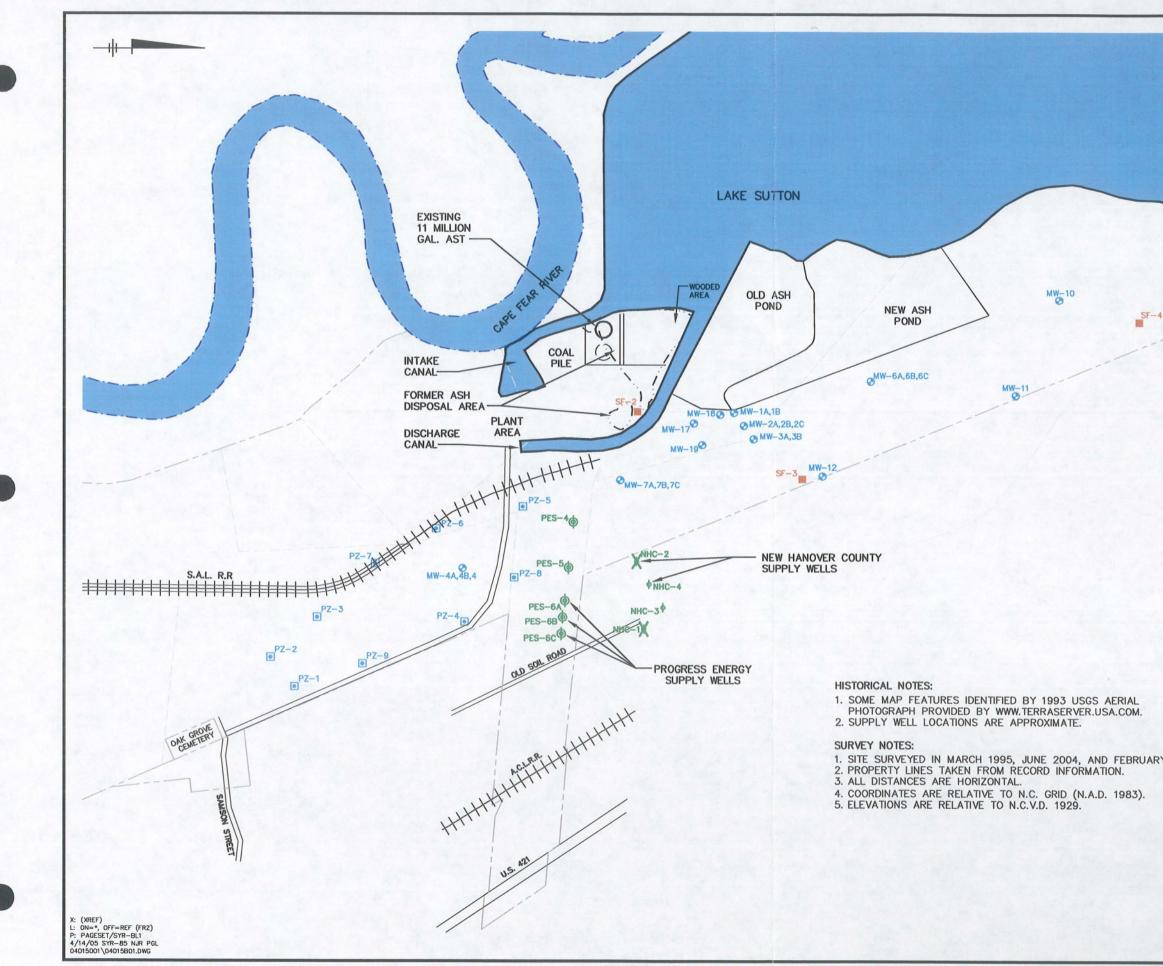
.

Figures

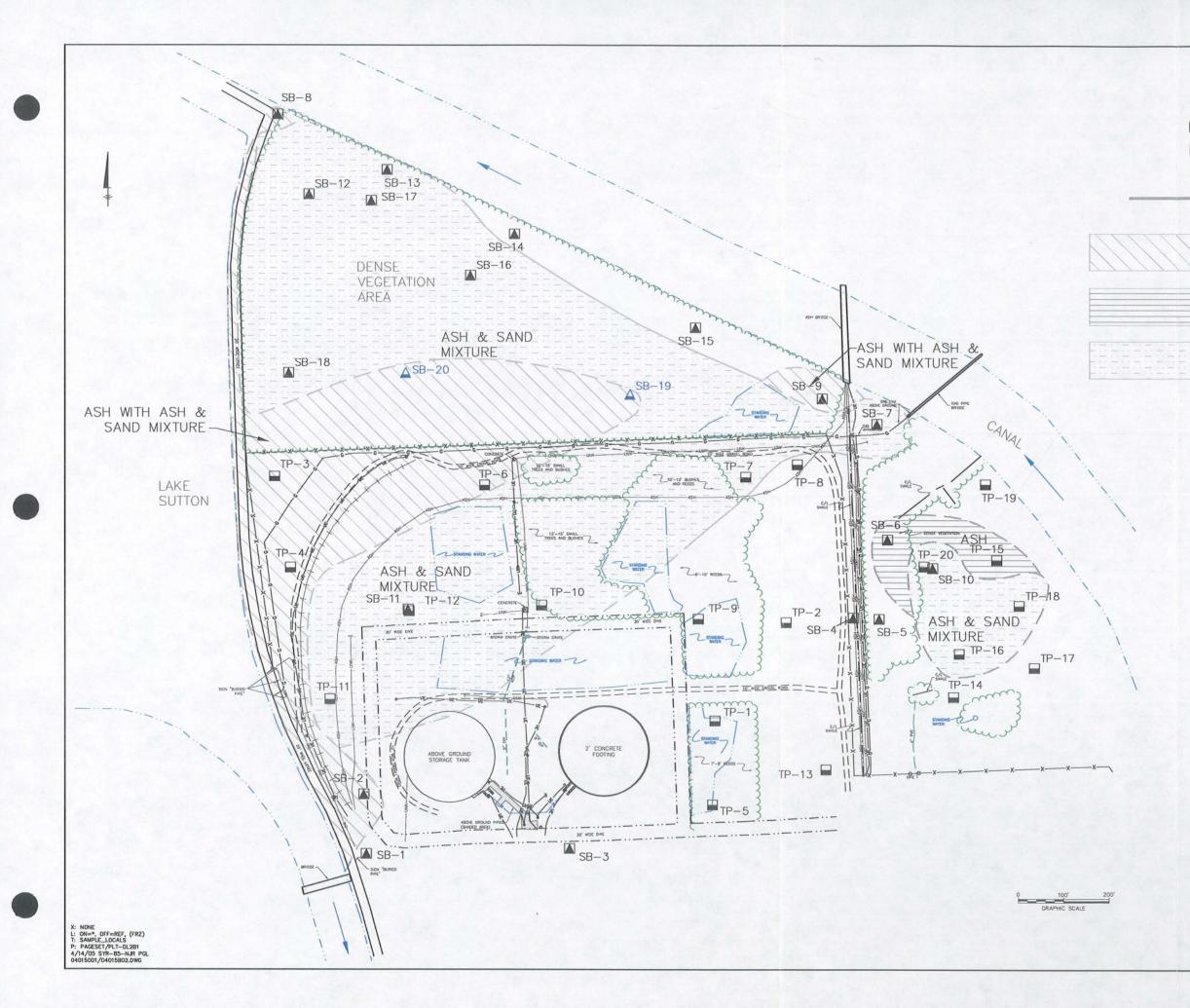
BBBL® BLASLAND, BOUCK & LEE, INC. engineers, scientists, economists



LINE LEGEND


xxx	
G G	GAS LINE
	ASH LINE
CND CND CND	GROUND WIRE LINE
	UNDERGROUND ELECTRIC
w	WATER LINE
	DIKE LINE
	STANDING WATER
	STORM PIPE
- 	RAILROAD TRACK (C/L)
	TREE/VEGETATION LINE
UNKUNKUNK	UNKNOWN LINE
	GRAVEL ROAD

NOTE:


1. SOURCE: SURVEY PROVIDED BY 'TAYLOR, WISEMAN & TAYLOR', 3500 Regency Parkway, Suite H, Cary N.C., 919–297–0085, (PROJECT NO. 70488.0005) DATED JUNE 23, 2004. REVISIONS MADE ON JULY 7, 2004 AND FEB. 23, 2005.

	1 '	
		1.1.1
		1.0
~	SF-6 SF-5	
C	WW-5A,5B,5C	
	MW-8	
	0	
	1-	
		and and a
MW-9 -		
IF	GEND:	
SF-6	PHASE II RI BACKGROUND SOIL SAMPLE	
	SINGLE MONITORING WELL LOCATION	
MW-2A,2B,2C @	MONITORING WELL CLUSTER	
PZ-8 •	PIEZOMETER	
PES-6C	PROGRESS ENERGY SUPPLY WELL	
ALLO AV	CLOSED NEW HANOVER COUNTY	
NHC-2	SUPPLY WELL	
NHC-40	ACTIVE NEW HANOVER COUNTY	
	SUPPLY WELL	
	PROPERTY BOUNDARY	
-++++++++++	RAILROAD TRACKS	
	RIVER BOUNDARY	
	0' 1400' 2800	
Y 2005		
	APPROXIMATE SCALE IN FEET	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
		Contraction of
	PROGRESS ENERGY	
L.V. SUT	TON STEAM ELECTRIC PLANT, WLMIN	GTON, N.C.
PHAS	E II REMEDIAL INVESTIGATION REL	PORT -
	FORMER ASH DISPOSAL AREA	
		IE
	ACKGROUND SOIL SAMP	LE
B	LOCATION MAP	
B	LOVATION MAP	
B	LOCATION MAP	
B	BBI '	FIGURE
B	BBL	
B	BBBL BASIAND, BOUCK & LEE, INC. ongineers, scientists, economists	FIGURE

SYMBOL LEGEND

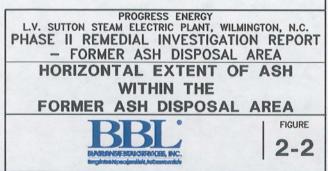
- UTILITY RISER
- * LIGHT POLE
- PHASE I RI TEST PIT LOCATION
- PHASE I RI SOIL BORING LOCATION
- A PHASE II RI SOIL BORING LOCATION

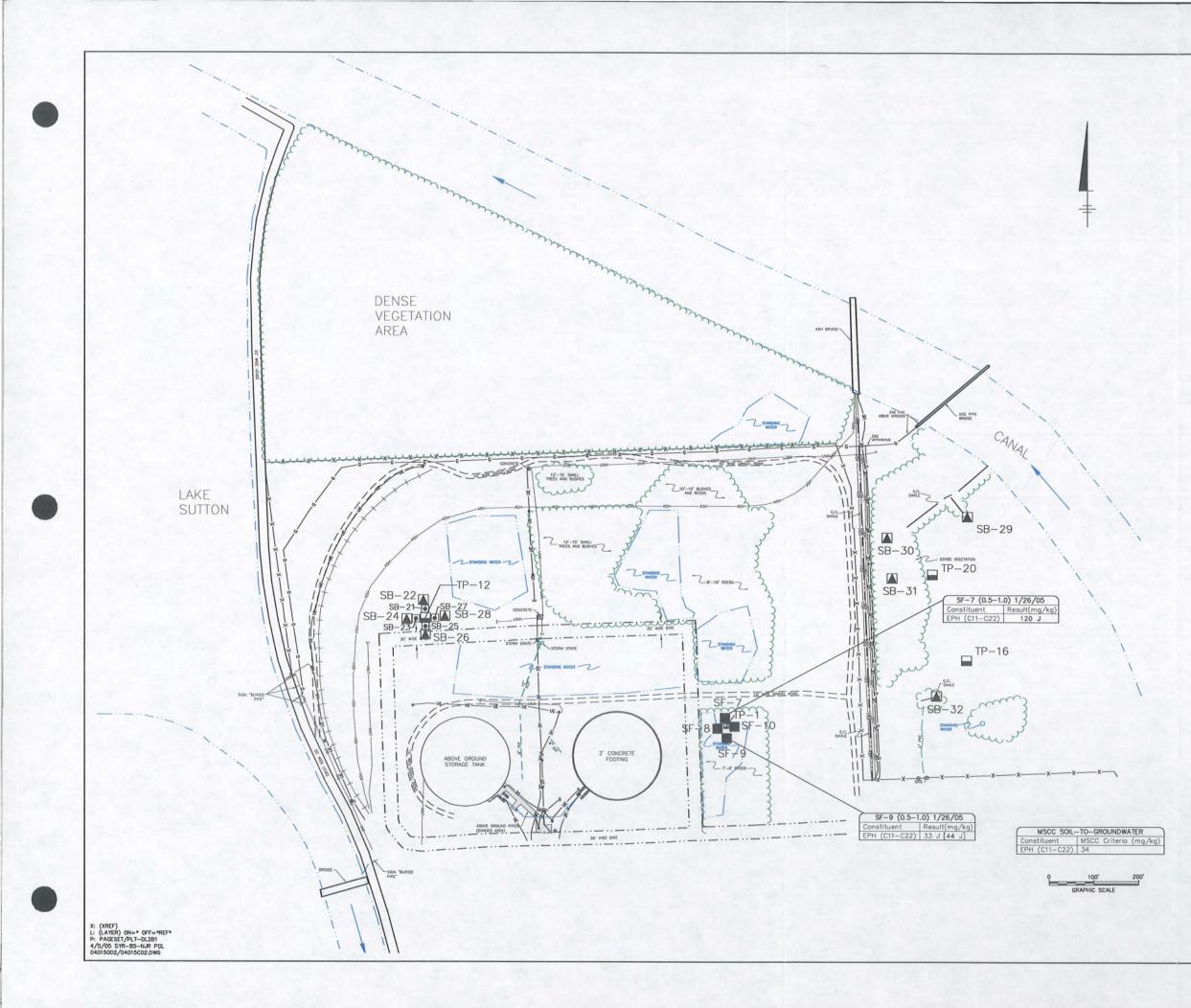
APPROXIMATE EXTENT OF ASH; ASH & SAND MIXTURE (DASHED WHERE INFERRED)

DEFINABLE ASH LAYER PRESENT WITH ALTERNATING LAYERS OF SAND AND ASH MIXTURE

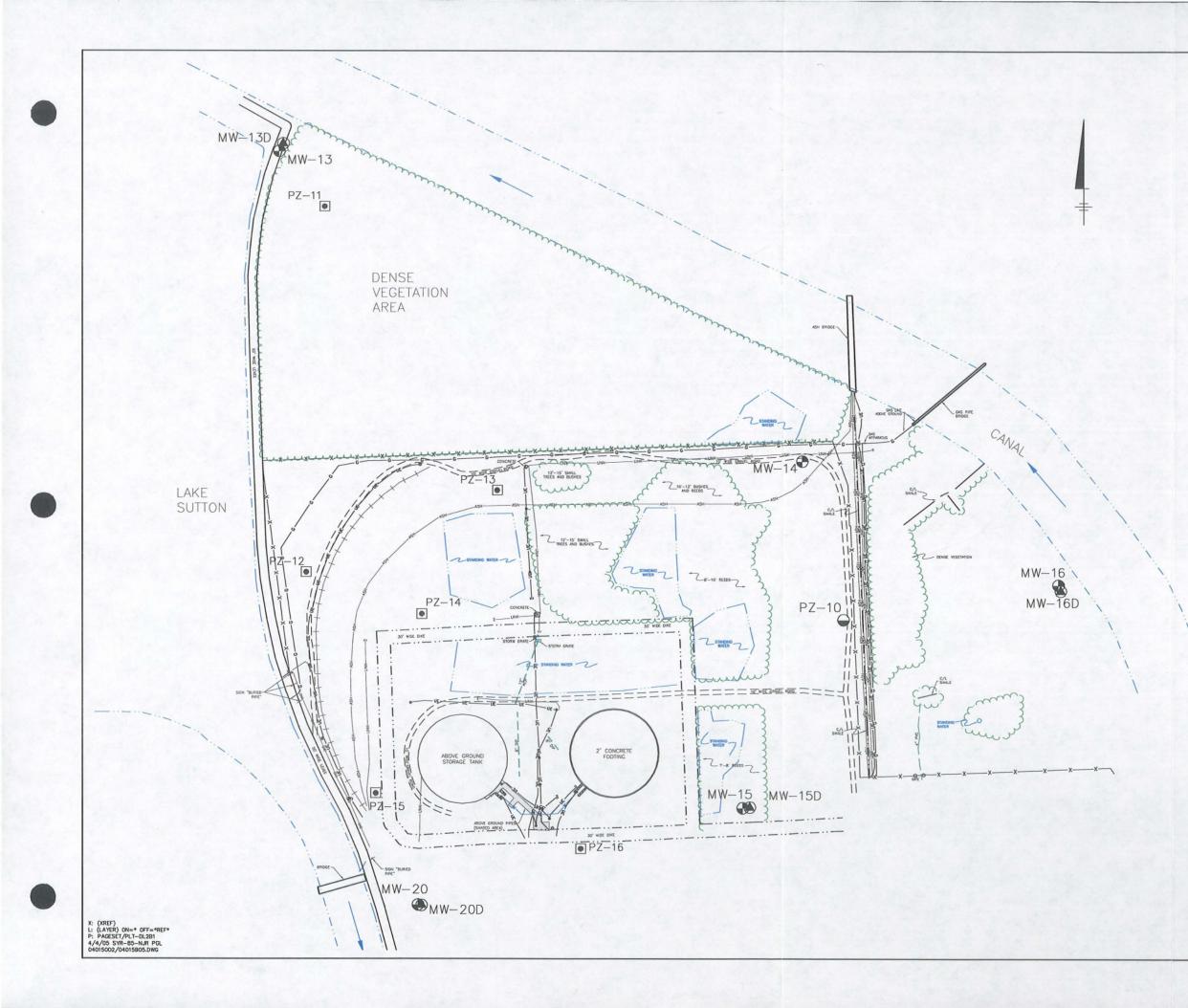
DEFINABLE ASH LAYER VARYING IN DEPTH AND THICKNESS AND BOUND BY SAND LAYERS

ALTERNATING LAYERS OF AN ASH & SAND MIXTURE WITH INTERBEDDED SANDS; A DISTINCT ASH LAYER IS NOT PRESENT


LINE LEGEND


xxx	FENCE LINE
G	GAS LINE
ASH ASH	ASH LINE
	GROUND WIRE LINE
UE UE	UNDERGROUND ELECTRIC
w	WATER LINE
	DIKE LINE
	STANDING WATER
	STORM PIPE
	RAILROAD TRACK (C/L)
.mmm.	TREE/VEGETATION LINE
	UNKNOWN LINE
	GRAVEL ROAD

NOTES:

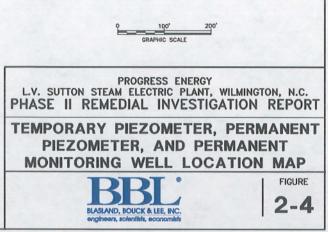

1. DELINEATION BASED ON TEST PIT, SOIL BORING, AND WELL INSTALLATION DURING PHASE I AND II REMEDIAL INVESTIGATION (MAY 2004 THROUGH FEBRUARY 2005).

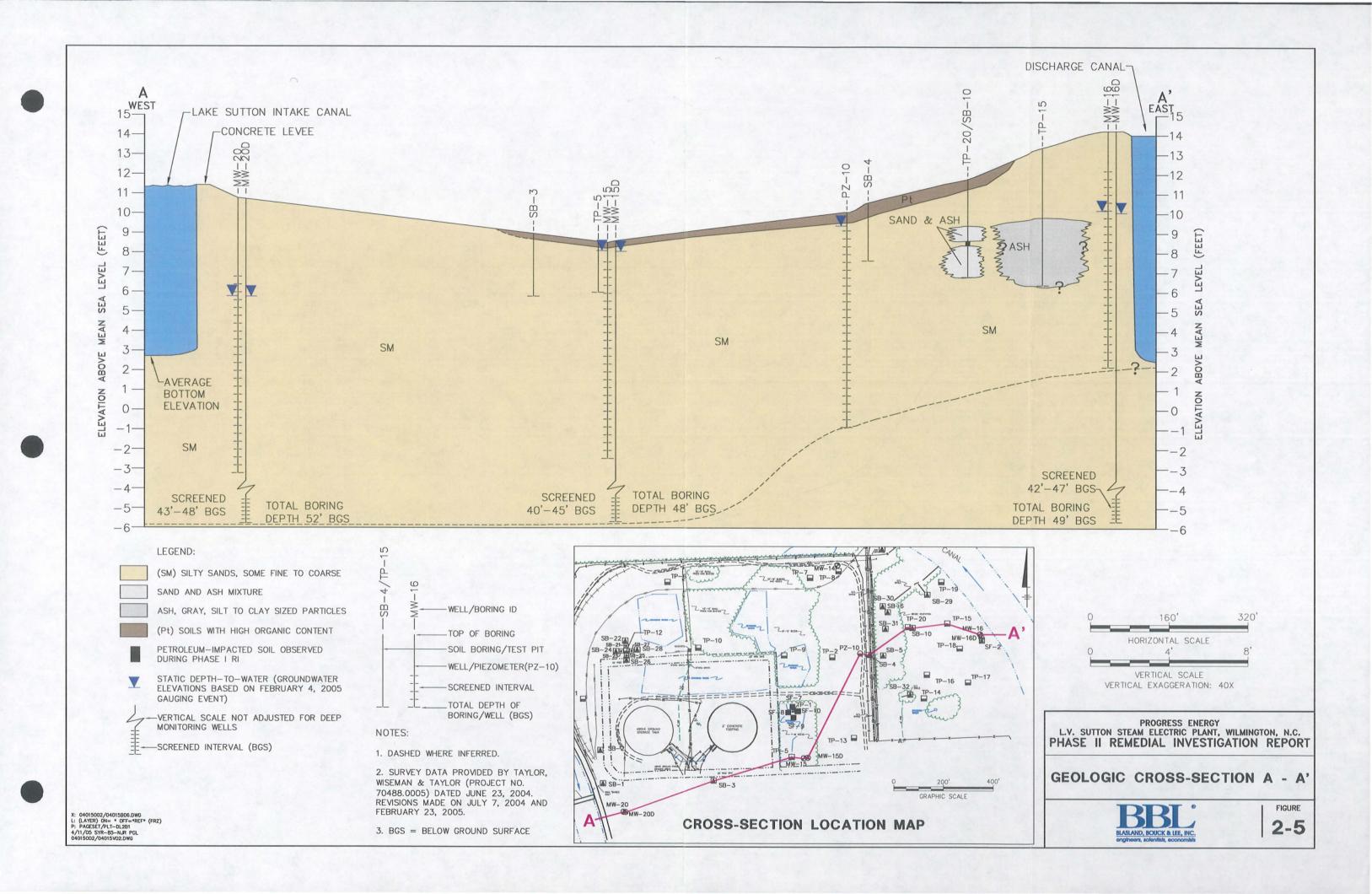
2. SOURCE: SURVEY PROVIDED BY 'TAYLOR, WISEMAN & TAYLOR', 3500 Regency Parkway, Suite H, Cary N.C., 919–297–0085, (PROJECT NO. 70488.0005) DATED JUNE 23, 2004. REVISIONS MADE ON JULY 7, 2004 AND FEB. 23, 2005.

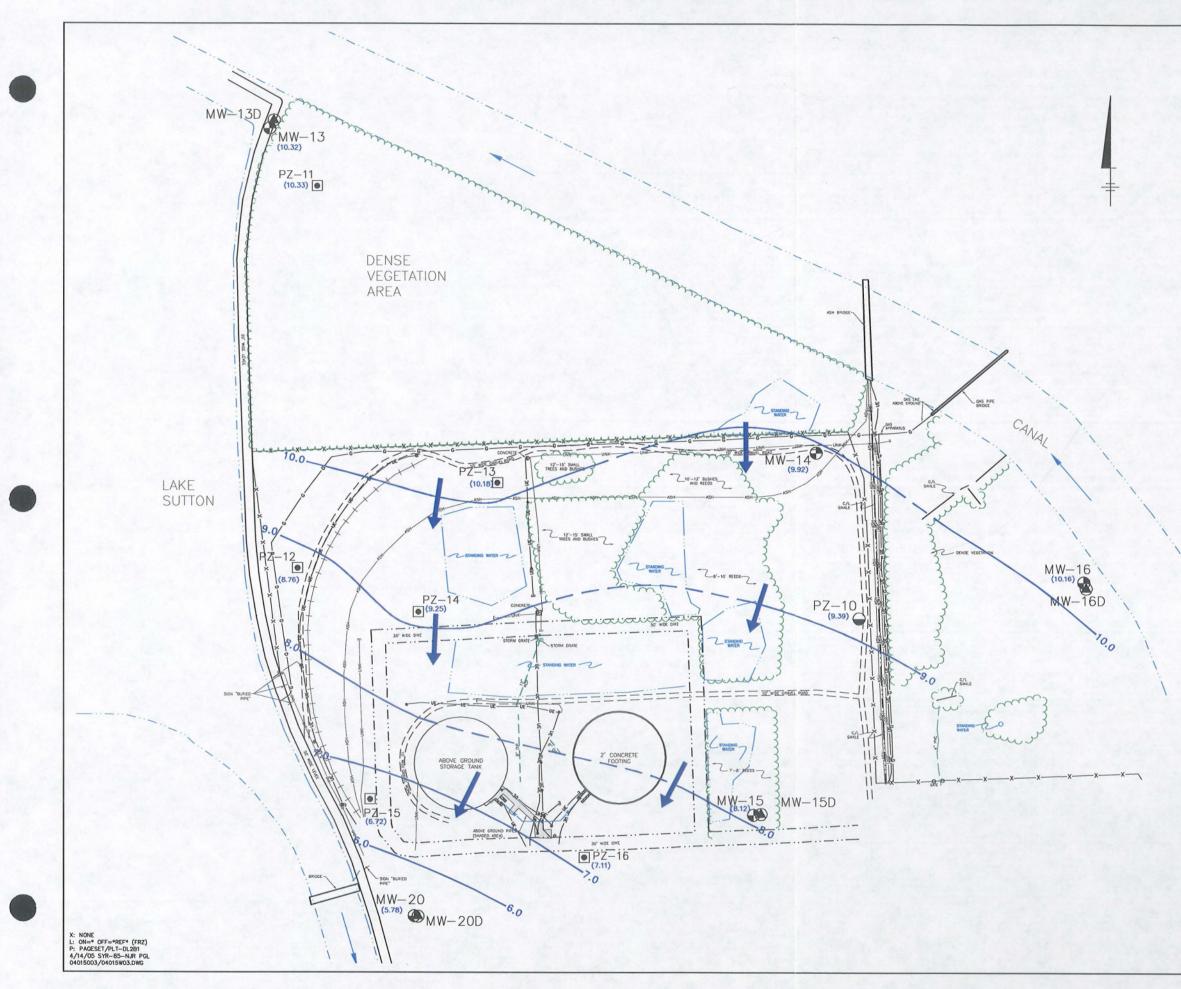
SYMBOL LEGEND PHASE I RI TEST PIT LOCATION WHERE PETROLEUM HYDROCARBONS WERE OBSERVED PHASE II RI SOIL BORING LOCATION PHASE II RI BORING LOCATION WITH SOIL SAMPLE PHASE II RI SURFACE SOIL SAMPLE LOCATION UTILITY RISER LIGHT POLE LINE LEGEND FROM FERCE LINE GAS LINE	_							
 PHASE II RI BORING LOCATION WITH SOIL SAMPLE PHASE II RI SURFACE SOIL SAMPLE LOCATION UTILITY RISER LIGHT POLE LIGHT POLE CASA LINE ASH LINE GROUND WIRE LINE GROUND WIRE LINE GROUND WIRE LINE GROUND WIRE LINE MASH LINE STANDING WATER STANNING WATER STANNING WATER STANNING WATER STANNING WATER STANNING WATER STANDING WATER MARANA KANANA KANANA KANANA KANANANANANANAN		5	PHASE I RI TEST PIT LOCATION WHERE PETROLEUM HYDROCARBONS					
 SOIL SAMPLE PHASE II RI SURFACE SOIL SAMPLE LOCATION UTILITY RISER LIGHT POLE LINE LEGEND LINE LINE GROUND WRE LINE UNKELINE STANDING WATER STANDING WATER STANDING WATER STORM PIPE RAILROAD TRACK (C/L) MELION MELION MACE: SURVEY PROVIDED BY 'TAYLOR, WISEMAN & ATAYLOR', 3500 Regency Parkway, Suite H, Cary N.C., 919-297-0085, (PROJECT NO. 70488.0005) DATED JUNE 23, 2004. REVISIONS MADE ON JULY 7, 2004 AND FEB. 23, 2005. J = ESTIMATED VALUE. SOTHER CONSTITUENTS WERE NOT IDENTIFIED IN SOIL AT CONCENTRATIONS GREATER THAN MSCCS. I] = BRACKETED VALUE IS A DUPLICATE RESULT. SEPH = EXTRACTABLE PETROLEUM HYDROCARBON BY MADEP METHOD. MADEP = MASSACHUSSETS DEPARTMENT OF ENVIRONMENTAL PROTECTION. MADEP = MASSACHUSSETS DEPARTMENT OF ENVIRONMENTAL PROTECTION. MADEP = MASSACHUSSETS DEPARTMENT OF ENVIRONMENTAL PROTECTION. MADEP = MALUGRAM PER KILOGRAM. BOLDED VALUES INDICATE THAT THE CONSTITUENT EXCEEDED THE MSCC SOIL-TO-GROUNDWATER CRITERIA. BOLDED VALUES INDICATE THAT THE CONSTITUENT EXCEEDED THE MSCC SOIL-TO-GROUNDWATER CRITERIA. BOLDED VALUES INDICATE THAT THE CONSTITUENT EXCEEDED THE MSCC SOIL-TO-GROUNDWATER CRITERIA. PROGRESS ENERGY LV. SUTTON STEAM ELECTRIC PLANT, WILMINGTON, N.C. PHASE II REMEDIAL INVESTIGATION REPORT AREA FOURE 	0		PHASE II RI SOIL BORING LOCATION					
 LOCATION UTILITY RISER LIGHT POLE LINE LEGEND LINE LINE Geode GROUND WRE LINE GROUND WRE LINE LINE LINE STANDING WATER STANDING WATER STORM PIPE LINE CYCEGTATION LINE STANDING WATER STANDATIONS GREATER THAN MSCS. J = BRACKETED VALUE IS A DUPLICATE RESULT STH = EXTRACTABLE PETROLEUM HYDROCARBON BY MADE PMETHOD. MADEP = MASSACHUSSETS DEPARTMENT OF ENVIRONMENTAL PROTECTION. MSCC = MAXIMUM SOIL CONTAMINANT CONCENTRATION, NC. PHASE II REMEDIAL INVESTIGATION REPORT SOIL BORING LOCATIONS AND RESUL								
 LIGHT POLE LINE LEGEND FENCE LINE GAS LINE GROUND WIRE LINE GROUND WIRE LINE UNDERGROUND ELECTRIC WATER LINE DIKE LINE STANDING WATER SOURCE SURVEY PROVIDED BY 'TAYLOR, WISEMAN & TAYLOR', SSOO Regency Parkway, Suite H. Cary N.C., 199–297–0085, (PROJECT NO. 70488.005) DATED JUNE 23, 2004. REVISIONS MADE ON JULY 7, 2004 AND FEB. 23, 2004. REVISIONS MADE ON JULY 7, 2004 AND FEB. 23, 2004. REVISIONS MADE ON JULY 7, 2004 AND FEB. 23, 2005. J = ESTIMATED VALUE. OTHER CONSTITUENTS WERE NOT IDENTIFIED IN SOLA AT CONCENTRATIONS GREATER THAN MSCCS. I = BRACKETED VALUE IS A DUPLICATE RESULT. SEDAE MASSACHUSSETS DEPARTMENT OF ENVIRONMENTAL PROTECTION. MADEP = MASSACHUSSETS DEPARTMENT FILMINGTON, N.C. PROGRESS ENERGY LV. SUTION STEAM ELECTRIC PLANT, WILMINGTON, N.C. PHASE II REMEDIAL INVESTIGATION REPORT SOLL BORING LOCATIONS AND REPORT SOLL BORING LOCATIONS AND REPORT SOLL BORING LOCATIONS AND REPORT AREA 		•						
LINE LEGEND 		8	UTILITY RISER					
 Yender Standinger St	,	¢						
GAS LINE ASH LINE ASH LINE GROUND WIRE LINE UNDERGROUND ELECTRIC WATER LINE UNDERGROUND ELECTRIC WATER LINE DIKE LINE STANDING WATER STORM PIPE RAILROAD TRACK (C/L) TRE/VEGETATION LINE UNKNOWN LINE GRAVEL ROAD NOTES: 1. SOURCE: SURVEY PROVIDED BY 'TAYLOR, WISEMAN & TAYLOR', 3500 Regency Parkway, Suite H, Cary N.C., 919–297–0085, (PROJECT NO. 70488.0005) DATED JUNE 23, 2004. REVISIONS MADE ON JULY 7, 2004 AND FEB. 23, 2005. 2. J = ESTIMATED VALUE. 3. OTHER CONSTITUENTS WERE NOT IDENTIFIED IN SOIL AT CONCENTRATIONS GREATER THAN MSCCS. 4. [] = BRACKETED VALUE IS A DUPLICATE RESULT. 5. EPH = EXTRACTABLE PETROLEUM HYDROCARBON BY MADEP METHOD. 6. MADEP = MASSACHUSSETS DEPARTMENT OF ENVIRONMENTAL PROTECTION. 7. MSCC = MAXIMUM SOIL CONTAMINANT CONCENTRATION, NCDENR 2001. 8. mg/kg = MILLIGRAM PER KILOGRAM. 9. BOLDED VALUES INDICATE THAT THE CONSTITUENT EXCEEDED THE MSCC SOIL-TO-GROUNDWATER CRITERIA. PROGRESS ENERGY L.V. SUTTON STEAM ELECTRIC PLANT, WILMINGTON, N.C. PHASE II REMEDIAL INVESTIGATION REPORT SOIL BORING LOCATIONS AND RESULTS - FORMER ASH DISPOSAL AREA			LINE LEGEND					
GAS LINE ASH LINE ASH LINE GROUND WIRE LINE UNDERGROUND ELECTRIC WATER LINE UNDERGROUND ELECTRIC WATER LINE DIKE LINE STANDING WATER STORM PIPE RAILROAD TRACK (C/L) TRE/VEGETATION LINE UNKNOWN LINE GRAVEL ROAD NOTES: 1. SOURCE: SURVEY PROVIDED BY 'TAYLOR, WISEMAN & TAYLOR', 3500 Regency Parkway, Suite H, Cary N.C., 919–297–0085, (PROJECT NO. 70488.0005) DATED JUNE 23, 2004. REVISIONS MADE ON JULY 7, 2004 AND FEB. 23, 2005. 2. J = ESTIMATED VALUE. 3. OTHER CONSTITUENTS WERE NOT IDENTIFIED IN SOIL AT CONCENTRATIONS GREATER THAN MSCCS. 4. [] = BRACKETED VALUE IS A DUPLICATE RESULT. 5. EPH = EXTRACTABLE PETROLEUM HYDROCARBON BY MADEP METHOD. 6. MADEP = MASSACHUSSETS DEPARTMENT OF ENVIRONMENTAL PROTECTION. 7. MSCC = MAXIMUM SOIL CONTAMINANT CONCENTRATION, NCDENR 2001. 8. mg/kg = MILLIGRAM PER KILOGRAM. 9. BOLDED VALUES INDICATE THAT THE CONSTITUENT EXCEEDED THE MSCC SOIL-TO-GROUNDWATER CRITERIA. PROGRESS ENERGY L.V. SUTTON STEAM ELECTRIC PLANT, WILMINGTON, N.C. PHASE II REMEDIAL INVESTIGATION REPORT SOIL BORING LOCATIONS AND RESULTS - FORMER ASH DISPOSAL AREA			xx					
ASH LINE GROUND WIRE LINE WE WE WATER LINE STANDING WATER STANDING WATER SOURCE: SURVEY PROVIDED BY 'TAYLOR, WISEMAN & TAYLOR', 3500 Regency Parkway, Suite H, Cary N.C., 919–297–0085, (PROJECT NO. 70488.0005) DATED JUNE 23, 2004. REVISIONS MADE ON JULY 7, 2004 AND FEB. 23, 2005. 2. J = ESTIMATED VALUE. 3. OTHER CONSTITUENTS WERE NOT IDENTIFIED IN SOIL AT CONCENTRATIONS GREATER THAN MSCCS. 4. [] = BRACKETED VALUE IS A DUPLICATE RESULT. 5. EPH = EXTRACTABLE PETROLEUM HYDROCARBON BY MADEP METHOD. 6. MADEP = MASSACHUSSETS DEPARTMENT OF ENVIRONMENTAL PROTECTION. 7. MSCC = MAXIMUM SOIL CONTAMINANT CONCENTRATION, NCDENR 2001. 8. mg/kg = MILLIGRAM PER KILOGRAM. 9. BOLDED VALUES INDICATE THAT THE CONSTITUENT EXCEEDED THE MSCC SOIL—TO-GROUNDWATER CRITERIA. PROGRESS ENERGY L.Y. SUTTON STEAM ELECTRIC PLANT, WILMINGTON, N.C. PHASE II REMEDIAL INVESTIGATION REPORT SOIL BORING LOCATIONS AND RESULTS - FORMER ASH DISPOSAL AREA FIGURE			CAS LINE					
GROUND WIRE LINE UNDERGROUND ELECTRIC WATER LINE UNDERGROUND ELECTRIC WATER LINE DIKE LINE STANDING WATER STORM PIPE RAILROAD TRACK (C/L) TREE/VEGETATION LINE UNKNOWN LINE GRAVEL ROAD NOTES: 1. SOURCE: SURVEY PROVIDED BY 'TAYLOR, WISEMAN & TAYLOR', 3500 Regency Parkway, Suite H, Cary N.C., 919–297–0085, (PROJECT NO. 70488.0005) DATED JUNE 3, 2004. REVISIONS MADE ON JULY 7, 2004 AND FEB. 3, 2005. 2. J = ESTIMATED VALUE. 3. OTHER CONSTITUENTS WERE NOT IDENTIFIED IN SOIL AT CONCENTRATIONS GREATER THAN MSCCs. 4. [] = BRACKETED VALUE IS A DUPLICATE RESULT. 5. EPH = EXTRACTABLE PETROLEUM HYDROCARBON BY MADEP METHOD. 6. MADEP = MASSACHUSSETS DEPARTMENT OF ENVIRONMENTAL PROTECTION. 7. MSCC = MAXIMUM SOIL CONTAMINANT CONCENTRATION, NCDENR 2001. 8. mg/kg = MILLIGRAM PER KILOGRAM. 9. BOLDED VALUES INDICATE THAT THE CONSTITUENT EXCEEDED THE MSCC SOIL—TO-GROUNDWATER CRITERIA. PROGRESS ENERGY L.Y. SUTTON STEAM ELECTRIC PLANT, WILMINGTON, N.C. PHASE II REMEDIAL INVESTIGATION REPORT SOIL BORING LOCATIONS AND RESULTS - FORMER ASH DISPOSAL AREA			ASHASHASHASH_LINE					
WATER LINE DIKE LINE STANDING WATER STANDING WATER STORM PIPE RAILROAD TRACK (C/L) TREE/VEGETATION LINE UNKNOWN LINE UNKNOWN LINE CRAVEL ROAD NOTES: 1. SOURCE: SURVEY PROVIDED BY 'TAYLOR, WISEMAN & TAYLOR', 3500 Regency Parkway, Suite H, Cary N.C., 919–297–0085, (PROJECT NO. 70488.0005) DATED JUNE 23, 2004. REVISIONS MADE ON JULY 7, 2004 AND FEB. 23, 2005. 2. J = ESTIMATED VALUE. 3. OTHER CONSTITUENTS WERE NOT IDENTIFIED IN SOIL AT CONCENTRATIONS GREATER THAN MSCCS. 4. [] = BRACKETED VALUE IS A DUPLICATE RESULT. 5. EPH = EXTRACTABLE PETROLEUM HYDROCARBON BY MADEP METHOD. 6. MADEP = MASSACHUSSETS DEPARTMENT OF ENVIRONMENTAL PROTECTION. 7. MSCC = MAXIMUM SOIL CONTAMINANT CONCENTRATION, NCDENR 2001. 8. mg/kg = MILLIGRAM PER KILOGRAM. 9. BOLDED VALUES INDICATE THAT THE CONSTITUENT EXCEEDED THE MSCC SOIL-TO-GROUNDWATER CRITERIA. PROGRESS ENERGY L.Y. SUTTON STEAM ELECTRIC PLANT, WILMINGTON, N.C. PHASE II REMEDIAL INVESTIGATION REPORT SOIL BORING LOCATIONS AND RESULTS - FORMER ASH DISPOSAL AREA			GND					
 DIKE LINE STANDING WATER STORM PIPE RAILROAD TRACK (C/L) TREE/VEGETATION LINE UNKNOWN LINE GRAVEL ROAD NOTES: SOURCE: SURVEY PROVIDED BY 'TAYLOR, WISEMAN & TAYLOR', 3500 Regency Parkway, Suite H, Cary N.C., 919–297–0085, (PROJECT NO. 70488.0005) DATED JUNE 23, 2004. REVISIONS MADE ON JULY 7, 2004 AND FEB. 23, 2005. J = ESTIMATED VALUE. OTHER CONSTITUENTS WERE NOT IDENTIFIED IN SOIL AT CONCENTRATIONS GREATER THAN MSCCS. [] = BRACKETED VALUE IS A DUPLICATE RESULT. EPH = EXTRACTABLE PETROLEUM HYDROCARBON BY MADEP METHOD. MADEP = MASSACHUSSETS DEPARTMENT OF ENVIRONMENTAL PROTECTION. MSCC = MAXIMUM SOIL CONTAMINANT CONCENTRATION, NCDENR 2001. mg/kg = MILLIGRAM PER KILOGRAM. BOLDED VALUES INDICATE THAT THE CONSTITUENT EXCEEDED THE MSCC SOIL-TO-GROUNDWATER CRITERIA. PROGRESS ENERGY LV. SUTTON STEAM ELECTRIC PLANT, WILMINGTON, N.C. PHASE II REMEDIAL INVESTIGATION REPORT SOIL BORING LOCATIONS AND RESULTS - FORMER ASH DISPOSAL AREA REGULT * 			UNDFRGROUND FLFC	TRIC				
STANDING WATER STORM PIPE RAILROAD TRACK (C/L) TREE/VEGETATION LINE UNKNOWN LINE GRAVEL ROAD NOTES: 1. SOURCE: SURVEY PROVIDED BY 'TAYLOR, WISEMAN & TAYLOR', 3500 Regency Parkway, Suite H, Cary N.C., 919–297–0085, (PROJECT NO. 70488.0005) DATED JUNE 23, 2004. REVISIONS MADE ON JULY 7, 2004 AND FEB. 23, 2005. 2. J = ESTIMATED VALUE. 3. OTHER CONSTITUENTS WERE NOT IDENTIFIED IN SOIL AT CONCENTRATIONS GREATER THAN MSCCS. 4. [] = BRACKETED VALUE IS A DUPLICATE RESULT. 5. EPH = EXTRACTABLE PETROLEUM HYDROCARBON BY MADEP METHOD. 6. MADEP = MASSACHUSSETS DEPARTMENT OF ENVIRONMENTAL PROTECTION. 7. MSCC = MAXIMUM SOIL CONTAMINANT CONCENTRATION, NCDENR 2001. 8. mg/kg = MILLIGRAM PER KILOGRAM. 9. BOLDED VALUES INDICATE THAT THE CONSTITUENT EXCEEDED THE MSCC SOIL-TO-GROUNDWATER CRITERIA. PROGRESS ENERGY L.V. SUTTON STEAM ELECTRIC PLANT, WILMINGTON, N.C. PHASE II REMEDIAL INVESTIGATION REPORT SOIL BORING LOCATIONS AND RESULTS - FORMER ASH DISPOSAL AREA			www.www.water Line					
 STORM PIPE RAILROAD TRACK (C/L) TREE/VEGETATION LINE UNKNOWN LINE GRAVEL ROAD SOURCE: SURVEY PROVIDED BY 'TAYLOR, WISEMAN & TAYLOR', '3500 Regency Parkway, Suite H, Cary N.C., '919–297–0085, (PROJECT NO. 70488.0005) DATED JUNE 23, 2004. REVISIONS MADE ON JULY 7, 2004 AND FEB. 23, 2005. J = ESTIMATED VALUE. OTHER CONSTITUENTS WERE NOT IDENTIFIED IN SOIL AT CONCENTRATIONS GREATER THAN MSCCS. J = BRACKETED VALUE IS A DUPLICATE RESULT. EPH = EXTRACTABLE PETROLEUM HYDROCARBON BY MADEP METHOD. MADEP = MASSACHUSSETS DEPARTMENT OF ENVIRONMENTAL PROTECTION. MSCC = MAXIMUM SOIL CONTAMINANT CONCENTRATION, NCDENR 2001. mg/kg = MILLIGRAM PER KILOGRAM. BOLDED VALUES INDICATE THAT THE CONSTITUENT EXCEEDED THE MSCC SOIL-TO-GROUNDWATER CRITERIA. PROGRESS ENERGY L.V. SUTTON STEAM ELECTRIC PLANT, WILMINGTON, N.C. PHASE II REMEDIAL INVESTIGATION REPORT SOIL BORING LOCATIONS AND RESULTS - FORMER ASH DISPOSAL AREA INDICATE T ASH DISPOSAL AREA 								
 RAILROAD TRACK (C/L) TREE/VEGETATION LINE UNKNOWN LINE GRAVEL ROAD NOTES: SOURCE: SURVEY PROVIDED BY 'TAYLOR, WISEMAN & TAYLOR', 3500 Regency Parkway, Suite H, Cary N.C., 919–297-0085, (PROJECT NO. 70488.0005) DATED JUNE 23, 2004. REVISIONS MADE ON JULY 7, 2004 AND FEB. 23, 2005. J = ESTIMATED VALUE. OTHER CONSTITUENTS WERE NOT IDENTIFIED IN SOIL AT CONCENTRATIONS GREATER THAN MSCCs. [] = BRACKETED VALUE IS A DUPLICATE RESULT. SEPH = EXTRACTABLE PETROLEUM HYDROCARBON BY MADEP METHOD. MADEP = MASSACHUSSETS DEPARTMENT OF ENVIRONMENTAL PROTECTION. MSCC = MAXIMUM SOIL CONTAMINANT CONCENTRATION, NCDENR 2001. mg/kg = MILLIGRAM PER KILOGRAM. BOLDED VALUES INDICATE THAT THE CONSTITUENT EXCEEDED THE MSCC SOIL-TO-GROUNDWATER CRITERIA. PROGRESS ENERGY L.V. SUTTON STEAM ELECTRIC PLANT, WILMINGTON, N.C. PHASE II REMEDIAL INVESTIGATION REPORT SOIL BORING LOCATIONS AND RESULTS - FORMER ASH DISPOSAL AREA FIGURE 								
TREE/VEGETATION LINE UNKNOWN LINE GRAVEL ROAD NOTES: 1. SOURCE: SURVEY PROVIDED BY 'TAYLOR, WISEMAN & TAYLOR', 3500 Regency Parkway, Suite H, Cary N.C., 919–297–0085, (PROJECT NO. 70488.0005) DATED JUNE 23, 2004. REVISIONS MADE ON JULY 7, 2004 AND FEB. 23, 2005. 2. J = ESTIMATED VALUE. 3. OTHER CONSTITUENTS WERE NOT IDENTIFIED IN SOIL AT CONCENTRATIONS GREATER THAN MSCCs. 4. [] = BRACKETED VALUE IS A DUPLICATE RESULT. 5. EPH = EXTRACTABLE PETROLEUM HYDROCARBON BY MADEP METHOD. 6. MADEP = MASSACHUSSETS DEPARTMENT OF ENVIRONMENTAL PROTECTION. 7. MSCC = MAXIMUM SOIL CONTAMINANT CONCENTRATION, NCDENR 2001. 8. mg/kg = MILLIGRAM PER KILOGRAM. 9. BOLDED VALUES INDICATE THAT THE CONSTITUENT EXCEEDED THE MSCC SOIL-TO-GROUNDWATER CRITERIA. PROGRESS ENERGY L.V. SUTTON STEAM ELECTRIC PLANT, WILMINGTON, N.C. PHASE II REMEDIAL INVESTIGATION REPORT BOIL BORING LOCATIONS AND RESULTS - FORMER ASH DISPOSAL AREA	•							
UNKNOWN LINE GRAVEL ROAD NOTES: 1. SOURCE: SURVEY PROVIDED BY 'TAYLOR, WISEMAN & TAYLOR', 3500 Regency Parkway, Suite H, Cary N.C., 919–297–0085, (PROJECT NO. 70488.0005) DATED JUNE 23, 2004. REVISIONS MADE ON JULY 7, 2004 AND FEB. 23, 2005. 2. J = ESTIMATED VALUE. 3. OTHER CONSTITUENTS WERE NOT IDENTIFIED IN SOIL AT CONCENTRATIONS GREATER THAN MSCCS. 4. [] = BRACKETED VALUE IS A DUPLICATE RESULT. 5. EPH = EXTRACTABLE PETROLEUM HYDROCARBON BY MADEP METHOD. 6. MADEP = MASSACHUSSETS DEPARTMENT OF ENVIRONMENTAL PROTECTION. 7. MSCC = MAXIMUM SOIL CONTAMINANT CONCENTRATION, NCDENR 2001. 8. mg/kg = MILLIGRAM PER KILOGRAM. 9. BOLDED VALUES INDICATE THAT THE CONSTITUENT EXCEEDED THE MSCC SOIL-TO-GROUNDWATER CRITERIA. PROGRESS ENERGY L.V. SUTTON STEAM ELECTRIC PLANT, WILMINGTON, N.C. PHASE II REMEDIAL INVESTIGATION REPORT SOIL BORING LOCATIONS AND RESULTS - FORMER ASH DISPOSAL AREA		+ +						
NOTES: 1. SOURCE: SURVEY PROVIDED BY 'TAYLOR, WISEMAN & TAYLOR', 3500 Regency Parkway, Suite H, Cary N.C., 919–297–0085, (PROJECT NO. 70488.0005) DATED JUNE 23, 2004. REVISIONS MADE ON JULY 7, 2004 AND FEB. 23, 2005. 2. J = ESTIMATED VALUE. 3. OTHER CONSTITUENTS WERE NOT IDENTIFIED IN SOIL AT CONCENTRATIONS GREATER THAN MSCCS. 4. [] = BRACKETED VALUE IS A DUPLICATE RESULT. 5. EPH = EXTRACTABLE PETROLEUM HYDROCARBON BY MADEP METHOD. 6. MADEP = MASSACHUSSETS DEPARTMENT OF ENVIRONMENTAL PROTECTION. 7. MSCC = MAXIMUM SOIL CONTAMINANT CONCENTRATION, NCDENR 2001. 8. mg/kg = MILLIGRAM PER KILOGRAM. 9. BOLDED VALUES INDICATE THAT THE CONSTITUENT EXCEEDED THE MSCC SOIL-TO-GROUNDWATER CRITERIA. PROGRESS ENERGY L.V. SUTTON STEAM ELECTRIC PLANT, WILMINGTON, N.C. PHASE II REMEDIAL INVESTIGATION REPORT SOIL BORING LOCATIONS AND RESULTS - FORMER ASH DISPOSAL AREA FIGURE °		m	TREE/VEGETATION L	INE				
NOTES: 1. SOURCE: SURVEY PROVIDED BY 'TAYLOR, WISEMAN & TAYLOR', 3500 Regency Parkway, Suite H, Cary N.C., 919–297–0085, (PROJECT NO. 70488.0005) DATED JUNE 23, 2004. REVISIONS MADE ON JULY 7, 2004 AND FEB. 23, 2005. 2. J = ESTIMATED VALUE. 3. OTHER CONSTITUENTS WERE NOT IDENTIFIED IN SOIL AT CONCENTRATIONS GREATER THAN MSCCS. 4. [] = BRACKETED VALUE IS A DUPLICATE RESULT. 5. EPH = EXTRACTABLE PETROLEUM HYDROCARBON BY MADEP METHOD. 6. MADEP = MASSACHUSSETS DEPARTMENT OF ENVIRONMENTAL PROTECTION. 7. MSCC = MAXIMUM SOIL CONTAMINANT CONCENTRATION, NCDENR 2001. 8. mg/kg = MILLIGRAM PER KILOGRAM. 9. BOLDED VALUES INDICATE THAT THE CONSTITUENT EXCEEDED THE MSCC SOIL-TO-GROUNDWATER CRITERIA. PROGRESS ENERGY L.V. SUTTON STEAM ELECTRIC PLANT, WILMINGTON, N.C. PHASE II REMEDIAL INVESTIGATION REPORT SOIL BORING LOCATIONS AND RESULTS - FORMER ASH DISPOSAL AREA FIGURE °		-	UNKNOWN LINE					
 SOURCE: SURVEY PROVIDED BY 'TAYLOR, WISEMAN & TAYLOR', 3500 Regency Parkway, Suite H, Cary N.C., 919–297–0085, (PROJECT NO. 70488.0005) DATED JUNE 23, 2004. REVISIONS MADE ON JULY 7, 2004 AND FEB. 23, 2005. J = ESTIMATED VALUE. OTHER CONSTITUENTS WERE NOT IDENTIFIED IN SOIL AT CONCENTRATIONS GREATER THAN MSCCs. [] = BRACKETED VALUE IS A DUPLICATE RESULT. EPH = EXTRACTABLE PETROLEUM HYDROCARBON BY MADEP METHOD. MADEP = MASSACHUSSETS DEPARTMENT OF ENVIRONMENTAL PROTECTION. MSCC = MAXIMUM SOIL CONTAMINANT CONCENTRATION, NCDENR 2001. mg/kg = MILLIGRAM PER KILOGRAM. BOLDED VALUES INDICATE THAT THE CONSTITUENT EXCEEDED THE MSCC SOIL-TO-GROUNDWATER CRITERIA. PROGRESS ENERGY L.V. SUTTON STEAM ELECTRIC PLANT, WILMINGTON, N.C. PHASE II REMEDIAL INVESTIGATION REPORT SOIL BORING LOCATIONS AND RESULTS - FORMER ASH DISPOSAL AREA IFIGURE ° 	•		GRAVEL ROAD					
 TAYLOR', 3500 Regency Parkway, Suite H, Cary N.C., 919–297–0085, (PROJECT NO. 70488,0005) DATED JUNE 23, 2004. REVISIONS MADE ON JULY 7, 2004 AND FEB. 23, 2005. 2. J = ESTIMATED VALUE. 3. OTHER CONSTITUENTS WERE NOT IDENTIFIED IN SOIL AT CONCENTRATIONS GREATER THAN MSCCS. 4. [] = BRACKETED VALUE IS A DUPLICATE RESULT. 5. EPH = EXTRACTABLE PETROLEUM HYDROCARBON BY MADEP METHOD. 6. MADEP = MASSACHUSSETS DEPARTMENT OF ENVIRONMENTAL PROTECTION. 7. MSCC = MAXIMUM SOIL CONTAMINANT CONCENTRATION, NCDENR 2001. 8. mg/kg = MILLIGRAM PER KILOGRAM. 9. BOLDED VALUES INDICATE THAT THE CONSTITUENT EXCEEDED THE MSCC SOIL-TO-GROUNDWATER CRITERIA. PROGRESS ENERGY L.V. SUTTON STEAM ELECTRIC PLANT, WILMINGTON, N.C. PHASE II REMEDIAL INVESTIGATION REPORT SOIL BORING LOCATIONS AND RESULTS - FORMER ASH DISPOSAL AREA FIGURE	١	101	ES:					
 2. J = ESTIMATED VALUE. 3. OTHER CONSTITUENTS WERE NOT IDENTIFIED IN SOIL AT CONCENTRATIONS GREATER THAN MSCCS. 4. [] = BRACKETED VALUE IS A DUPLICATE RESULT. 5. EPH = EXTRACTABLE PETROLEUM HYDROCARBON BY MADEP METHOD. 6. MADEP = MASSACHUSSETS DEPARTMENT OF ENVIRONMENTAL PROTECTION. 7. MSCC = MAXIMUM SOIL CONTAMINANT CONCENTRATION, NCDENR 2001. 8. mg/kg = MILLIGRAM PER KILOGRAM. 9. BOLDED VALUES INDICATE THAT THE CONSTITUENT EXCEEDED THE MSCC SOIL-TO-GROUNDWATER CRITERIA. PROGRESS ENERGY L.Y. SUTTON STEAM ELECTRIC PLANT, WILMINGTON, N.C. PHASE II REMEDIAL INVESTIGATION REPORT SOIL BORING LOCATIONS AND RESULTS - FORMER ASH DISPOSAL AREA FIGURE	T UILA	AYI 919- 23,	LOR', 3500 Regency Parkway, Suite H, Cary N -297-0085, (PROJECT NO. 70488.0005) DATE 2004. REVISIONS MADE ON JULY 7, 2004 AN	I.C.,				
CONCENTRATIONS GREATER THAN MSCCS. 4. [] = BRACKETED VALUE IS A DUPLICATE RESULT. 5. EPH = EXTRACTABLE PETROLEUM HYDROCARBON BY MADEP METHOD. 6. MADEP = MASSACHUSSETS DEPARTMENT OF ENVIRONMENTAL PROTECTION. 7. MSCC = MAXIMUM SOIL CONTAMINANT CONCENTRATION, NCDENR 2001. 8. mg/kg = MILLIGRAM PER KILOGRAM. 9. BOLDED VALUES INDICATE THAT THE CONSTITUENT EXCEEDED THE MSCC SOIL-TO-GROUNDWATER CRITERIA. PROGRESS ENERGY L.Y. SUTTON STEAM ELECTRIC PLANT, WILMINGTON, N.C. PHASE II REMEDIAL INVESTIGATION REPORT SOIL BORING LOCATIONS AND RESULTS - FORMER ASH DISPOSAL AREA PIGURE		2. J	= ESTIMATED VALUE.					
 5. EPH = EXTRACTABLE PETROLEUM HYDROCARBON BY MADEP METHOD. 6. MADEP = MASSACHUSSETS DEPARTMENT OF ENVIRONMENTAL PROTECTION. 7. MSCC = MAXIMUM SOIL CONTAMINANT CONCENTRATION, NCDENR 2001. 8. mg/kg = MILLIGRAM PER KILOGRAM. 9. BOLDED VALUES INDICATE THAT THE CONSTITUENT EXCEEDED THE MSCC SOIL-TO-GROUNDWATER CRITERIA. PROGRESS ENERGY L.Y. SUTTON STEAM ELECTRIC PLANT, WILMINGTON, N.C. PHASE II REMEDIAL INVESTIGATION REPORT SOIL BORING LOCATIONS AND RESULTS - FORMER ASH DISPOSAL AREA FIGURE		0011	AFNITRATIONS OFFATER THAN HORS	SOIL AT				
MADEP METHOD. 6. MADEP = MASSACHUSSETS DEPARTMENT OF ENVIRONMENTAL PROTECTION. 7. MSCC = MAXIMUM SOIL CONTAMINANT CONCENTRATION, NCDENR 2001. 8. mg/kg = MILLIGRAM PER KILOGRAM. 9. BOLDED VALUES INDICATE THAT THE CONSTITUENT EXCEEDED THE MSCC SOIL-TO-GROUNDWATER CRITERIA. PROGRESS ENERGY L.Y. SUTTON STEAM ELECTRIC PLANT, WILMINGTON, N.C. PHASE II REMEDIAL INVESTIGATION REPORT SOIL BORING LOCATIONS AND RESULTS - FORMER ASH DISPOSAL AREA FIGURE	4	ŧ. [] = BRACKETED VALUE IS A DUPLICATE RE	SULT.				
ENVIRONMENTAL PROTECTION. 7. MSCC = MAXIMUM SOIL CONTAMINANT CONCENTRATION, NCDENR 2001. 8. mg/kg = MILLIGRAM PER KILOGRAM. 9. BOLDED VALUES INDICATE THAT THE CONSTITUENT EXCEEDED THE MSCC SOIL—TO—GROUNDWATER CRITERIA. PROGRESS ENERGY L.V. SUTTON STEAM ELECTRIC PLANT, WILMINGTON, N.C. PHASE II REMEDIAL INVESTIGATION REPORT SOIL BORING LOCATIONS AND RESULTS - FORMER ASH DISPOSAL AREA FIGURE				ON BY				
NCDENR 2001. 8. mg/kg = MILLIGRAM PER KILOGRAM. 9. BOLDED VALUES INDICATE THAT THE CONSTITUENT EXCEEDED THE MSCC SOIL-TO-GROUNDWATER CRITERIA. PROGRESS ENERGY L.Y. SUTTON STEAM ELECTRIC PLANT, WILMINGTON, N.C. PHASE II REMEDIAL INVESTIGATION REPORT SOIL BORING LOCATIONS AND RESULTS - FORMER ASH DISPOSAL AREA FIGURE								
9. BOLDED VALUES INDICATE THAT THE CONSTITUENT EXCEEDED THE MSCC SOIL-TO-GROUNDWATER CRITERIA. PROGRESS ENERGY L.V. SUTTON STEAM ELECTRIC PLANT, WILMINGTON, N.C. PHASE II REMEDIAL INVESTIGATION REPORT SOIL BORING LOCATIONS AND RESULTS - FORMER ASH DISPOSAL AREA FIGURE				TRATION,				
EXCEEDED THE MSCC SOIL-TO-GROUNDWATER CRITERIA. PROGRESS ENERGY L.V. SUTTON STEAM ELECTRIC PLANT, WILMINGTON, N.C. PHASE II REMEDIAL INVESTIGATION REPORT SOIL BORING LOCATIONS AND RESULTS - FORMER ASH DISPOSAL AREA FIGURE	8. mg/kg = MILLIGRAM PER KILOGRAM.							
L.V. SUTTON STEAM ELECTRIC PLANT, WILMINGTON, N.C. PHASE II REMEDIAL INVESTIGATION REPORT SOIL BORING LOCATIONS AND RESULTS - FORMER ASH DISPOSAL AREA FIGURE								
RESULTS - FORMER ASH DISPOSAL AREA								
FIGURE *		1	RESULTS - FORMER ASH DISP					
KK			TATAT .	FIGURE				
and in some of good and state of some sources and a			BAREANDE BERAUGISER DER, INC.					

	EXISTING	DEEP	MONITORING	WEL	L	
0	EXISTING	SHALL	OW MONITOR	RING	WFI	i

■ TEMPORARY PIEZOMETER (1-INCH)


- ➡ PERMANENT PIEZOMETER
- UTILITY RISER
- ✤ LIGHT POLE


LINE LEGEND


xxx	FENCE LINE
C	GAS LINE
ASH-ASH-ASH-	ASH LINE
CNDCNDCND	GROUND WIRE LINE
UE UE	UNDERGROUND ELECTRIC
w	WATER LINE
	DIKE LINE
	STANDING WATER
	STORM PIPE
	RAILROAD TRACK (C/L)
	TREE/VEGETATION LINE
UNKUNK	UNKNOWN LINE
	GRAVEL ROAD

NOTE:

1. SOURCE: SURVEY PROVIDED BY 'TAYLOR, WISEMAN & TAYLOR', 3500 Regency Parkway, Suite H, Cary N.C., 919–297–0085, (PROJECT NO. 70488.0005) DATED JUNE 23, 2004. REVISIONS MADE ON JULY 7, 2004 AND FEB. 23, 2005.

EXISTING DEEP MONITORING WELL

EXISTING SHALLOW MONITORING WELL

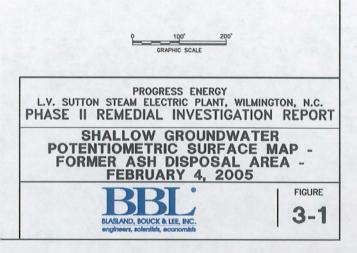
■ TEMPORARY PIEZOMETER (1-INCH)

● PERMANENT PIEZOMETER

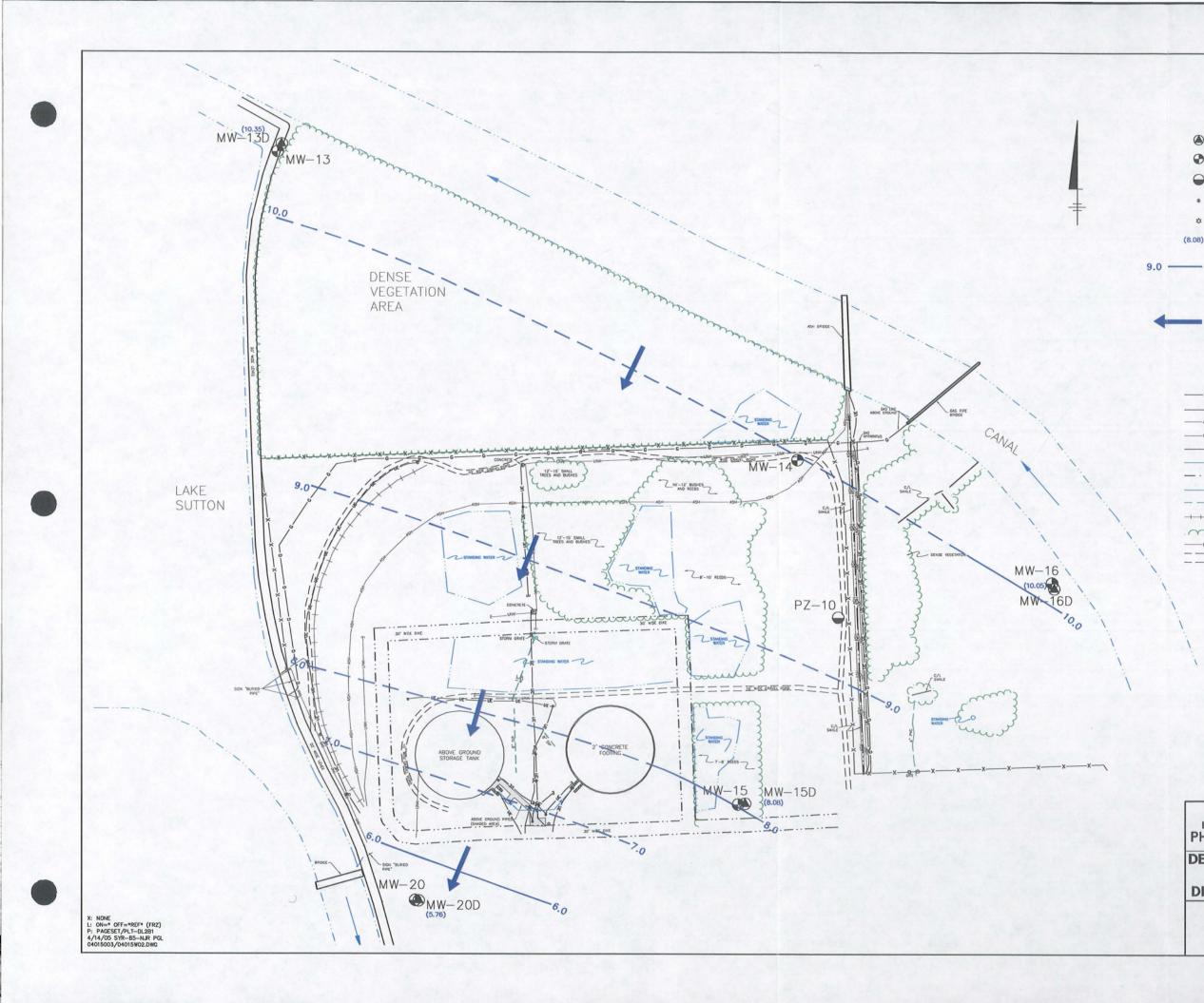
- UTILITY RISER
- ✤ LIGHT POLE

(9.39) GROUNDWATER ELEVATION

- GROUNDWATER ELEVATION CONTOUR LINE (DASHED WHERE INFERRED). CONTOUR INTERVAL = 1.0 FT.


DIRECTION OF GROUNDWATER FLOW

LINE LEGEND


w	GAS LINE ASH LINE GROUND WIRE LINE UNDERGROUND ELECTRIC WATER LINE DIKE LINE STANDING WATER

NOTE:

1. SOURCE: SURVEY PROVIDED BY 'TAYLOR, WISEMAN & TAYLOR', 3500 Regency Parkway, Suite H, Cary N.C., 919–297–0085, (PROJECT NO. 70488.0005) DATED JUNE 23, 2004. REVISIONS MADE ON JULY 7, 2004 AND FEB. 23, 2005.

9.0 -

EXISTING DEEP MONITORING WELL

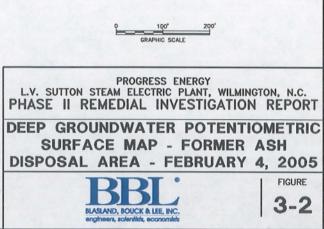
EXISTING SHALLOW MONITORING WELL

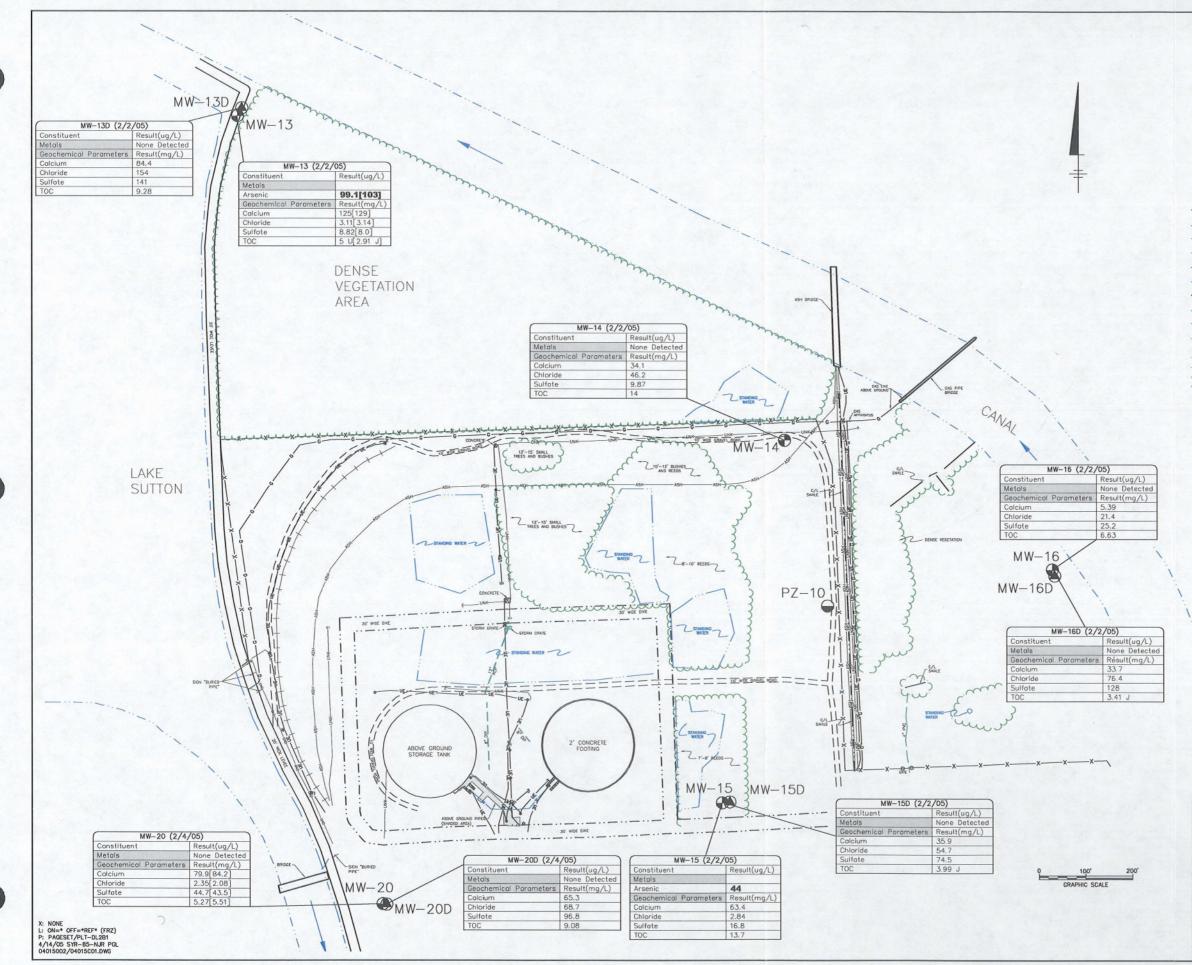
● PERMANENT PIEZOMETER

- UTILITY RISER
- ✤ LIGHT POLE

(8.08) GROUNDWATER ELEVATION

GROUNDWATER ELEVATION CONTOUR LINE (DASHED WHERE INFERRED). CONTOUR INTERVAL = 1.0 FT.


DIRECTION OF GROUNDWATER FLOW


LINE LEGEND

UE UE UE	GAS LINE ASH LINE GROUND WIRE LINE UNDERGROUND ELECTRIC WATER LINE DIKE LINE STANDING WATER

NOTE:

1. SOURCE: SURVEY PROVIDED BY 'TAYLOR, WISEMAN & TAYLOR', 3500 Regency Parkway, Suite H, Cary N.C., 919–297–0085, (PROJECT NO. 70488.0005) DATED JUNE 23, 2004. REVISIONS MADE ON JULY 7, 2004 AND FEB. 23, 2005.

EXISTING DEEP MONITORING WELL

EXISTING SHALLOW MONITORING WELL

● PERMANENT PIEZOMETER

UTILITY RISER

* LIGHT POLE

LINE LEGEND

WATER LINE WATER LINE WATER LINE DIKE LINE STANDING WATER ALLROAD TRACK (C/L) TREE/VEGETATION LINE UNKNOWN LINE GRAVEL ROAD	W W	GAS LINE ASH LINE GROUND WIRE LINE UNDERGROUND ELECTRIC WATER LINE DIKE LINE STANDING WATER STORM PIPE RAILROAD TRACK (C/L) TREE/VEGETATION LINE UNKNOWN LINE
---	-----	---

 Remediation Goals (RG)

 Constituent
 RG
 Units

 Arsenic
 10
 ug/L

NOTE:

1. SOURCE: SURVEY PROVIDED BY 'TAYLOR, WISEMAN & TAYLOR', 3500 Regency Parkway, Suite H, Cary N.C., 919–297–0085, (PROJECT NO. 70488.0005) DATED JUNE 23, 2004. REVISIONS MADE ON JULY 7, 2004 AND FEB. 23, 2005.

2. J = ESTIMATED VALUE.

3. U = ANALYTE WAS ANALYZED FOR BUT NOT DETECTED.

4. [] = REPRESENTS A DUPLICATE SAMPLE.

5. BOLD RESULTS EXCEED 2L GROUNDWATER STANDARDS.

6. TOC = TOTAL ORGANIC CARBON.

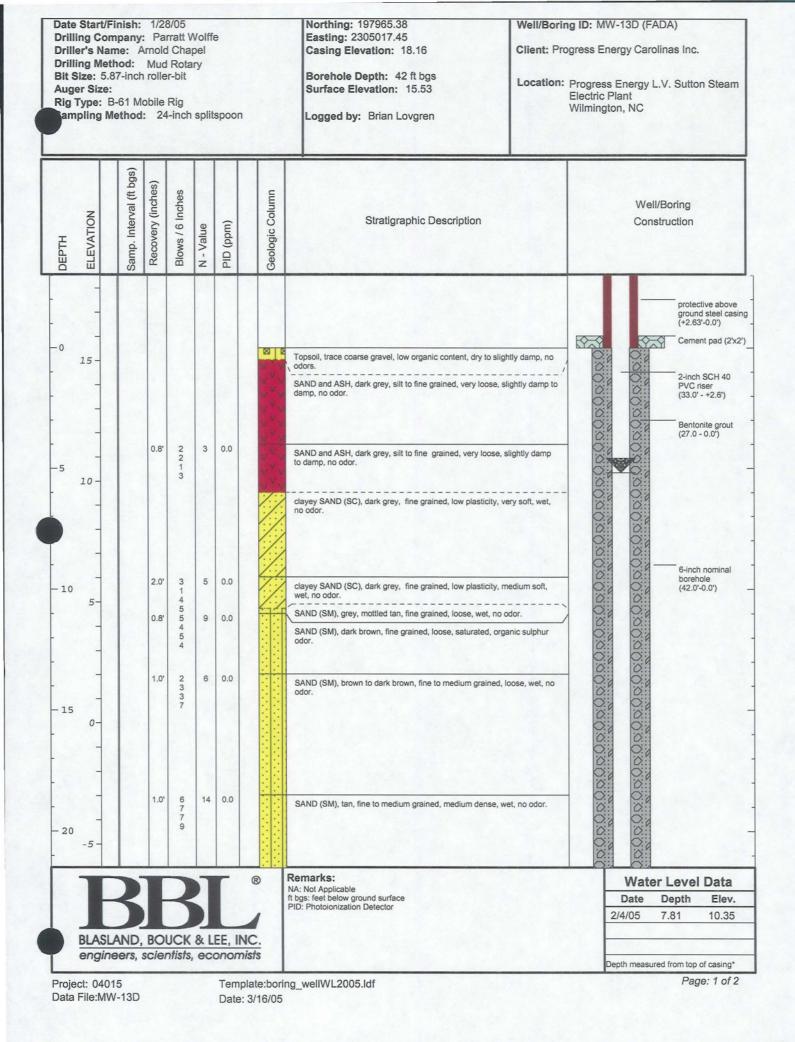
7. mg/L = MILLIGRAMS PER LITER.

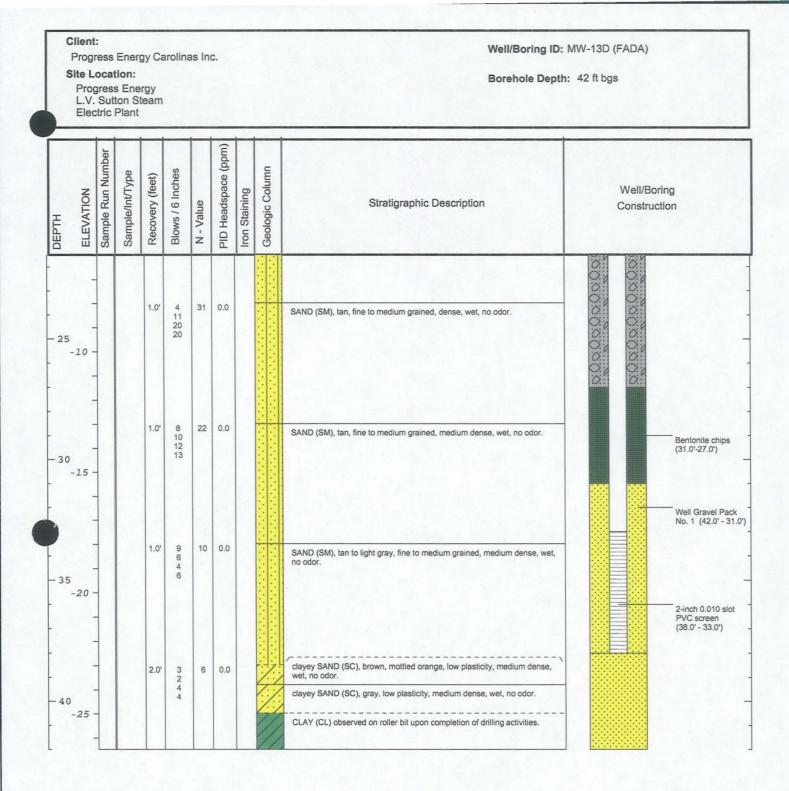
8. ug/L = MICROGRAMS PER LITER.

9. OTHER METALS CONSTITUENTS WERE NOT IDENTIFIED IN GROUNDWATER AT CONCENTRATIONS GREATER THAN REMEDIATION GOALS.

PROGRESS ENERGY L.Y. SUTTON STEAM ELECTRIC PLANT, WILMINGTON, N.C. PHASE II REMEDIAL INVESTIGATION REPORT

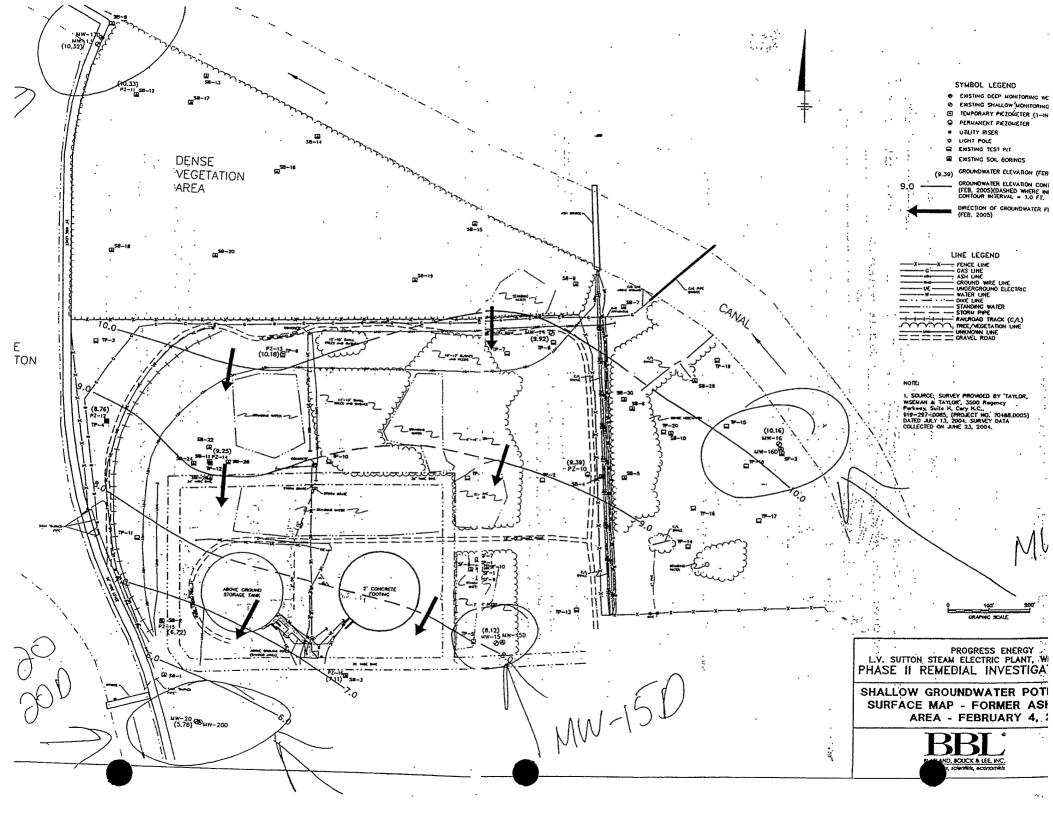
GROUNDWATER QUALITY RESULTS

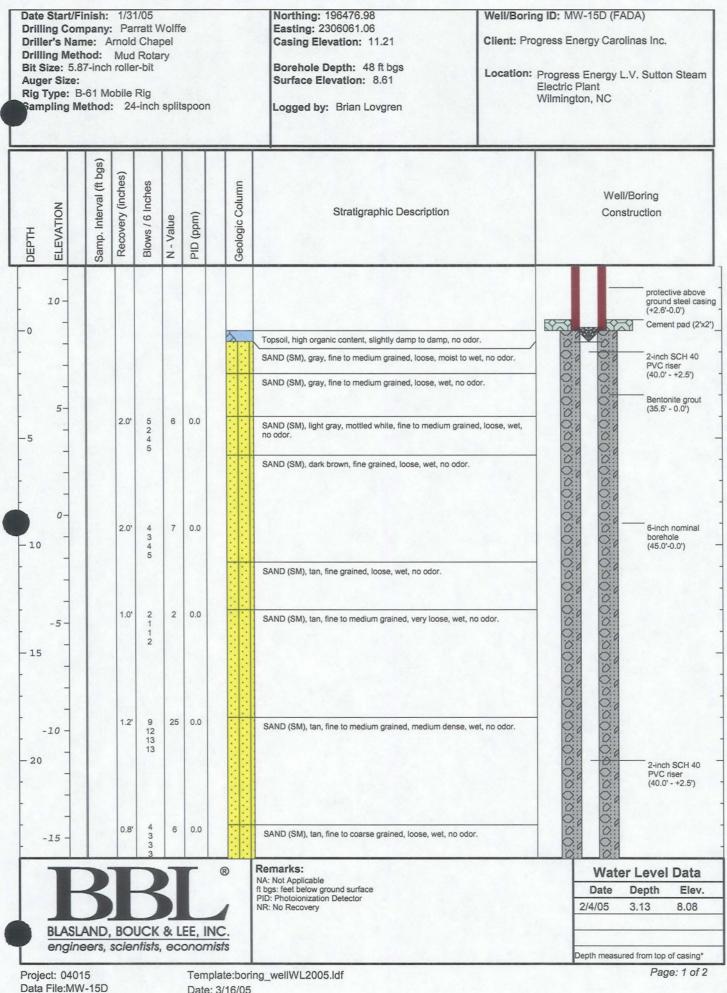



FIGURE

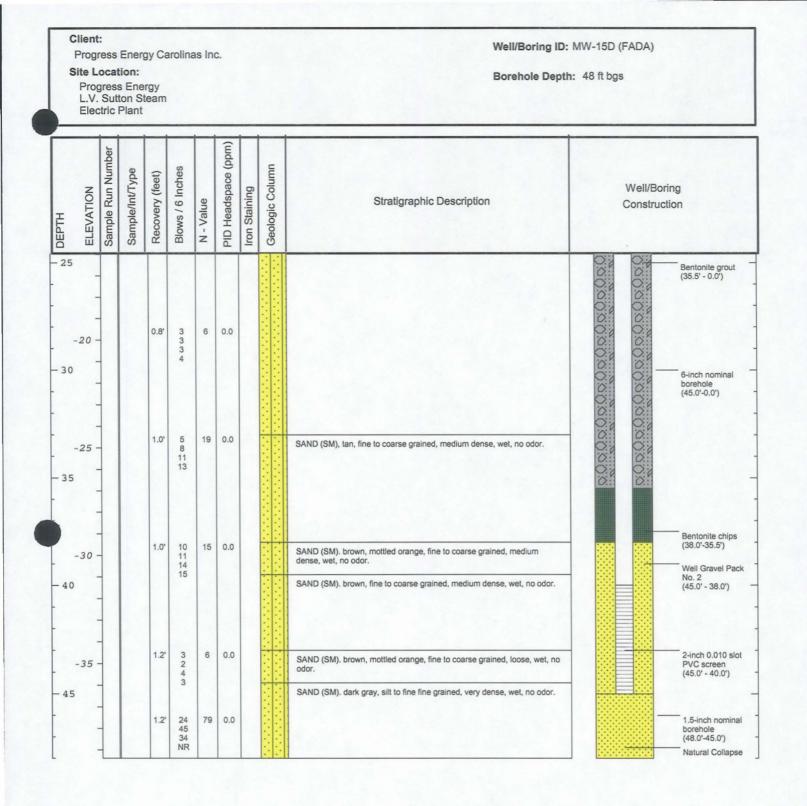
Appendix A

Soil Boring Logs and Well Construction Records



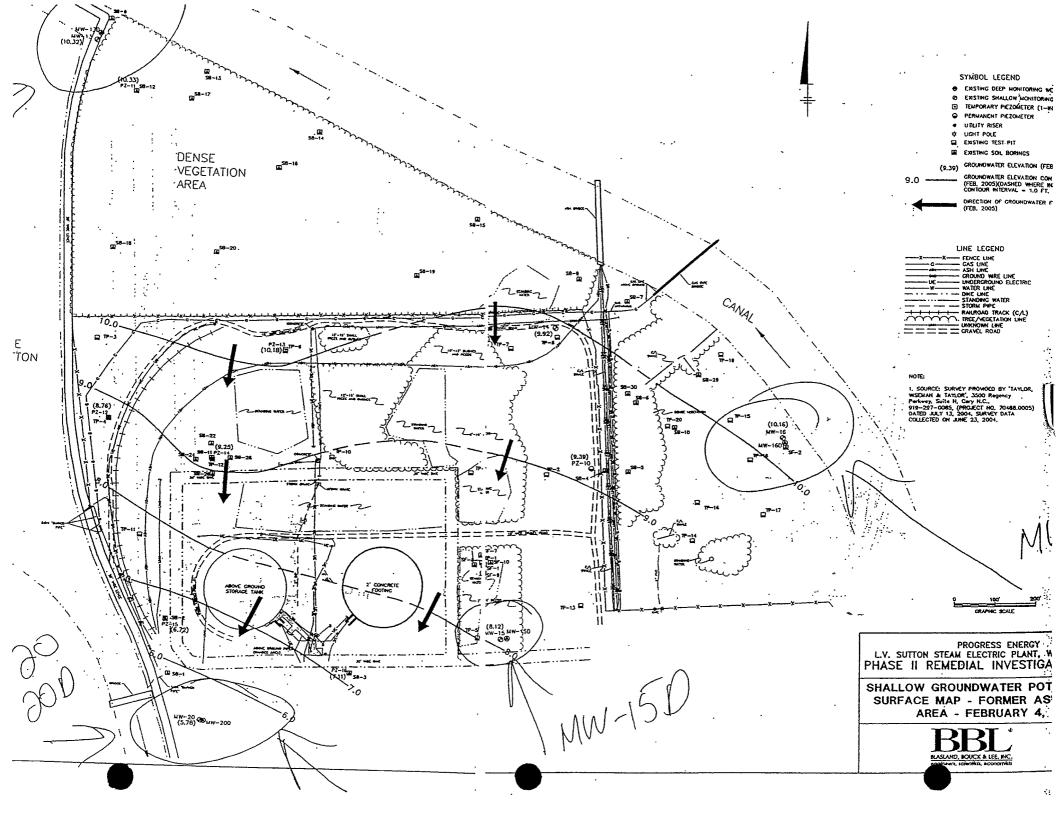

Date	Depth	Elev.
2/4/05	7.81	10.35

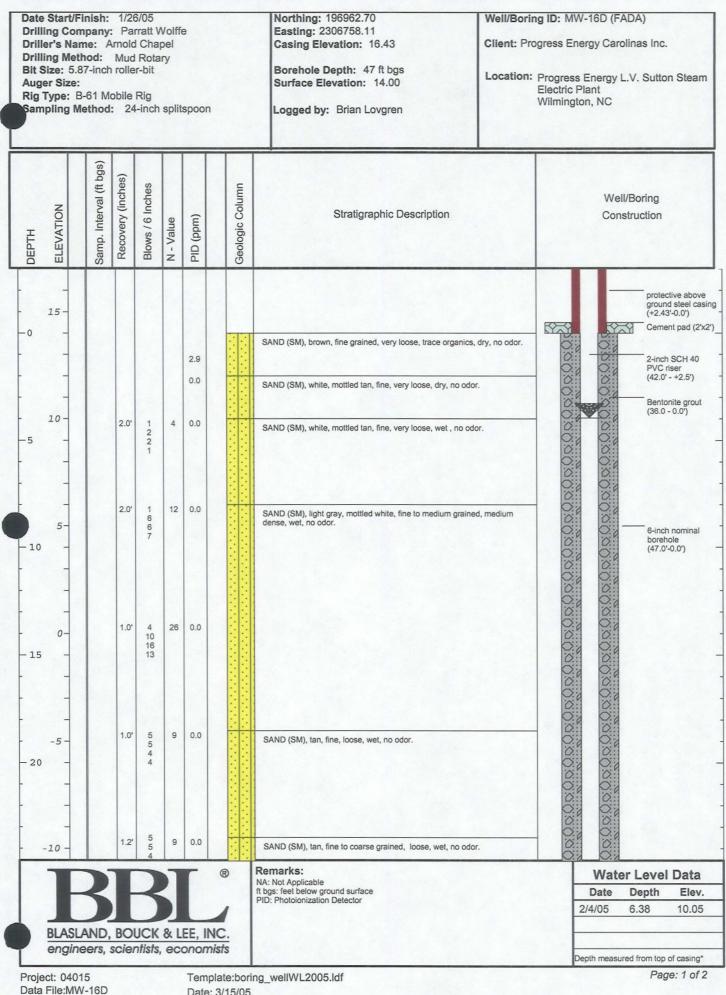
Project: 04015 Data File:MW-13D Template:boring_wellWL2005.ldf Date: 3/16/05 Page: 2 of 2


WELL CONSTRUCTION RECORD

VELL CONTRACTOR (INDIVIDUAL) NAME (print) ARNOLD CHAPEL VELL CONTRACTOR COMPANY NAME PARRATT-WOLFF, INC.	• . • •	CERTIFICATION # 2487 PHONE # (919) 644-2814
	ASSOCIATED WQ PERMIT#	
(if applicable)	(if applicable)	······································
	• ``	
. WELL USE (Check Applicable Box): Residential 🖾 Municipa	al/Public 🛛 Industrial 🗆	Agricultural
Monitoring K Recovery T Heat Pump Water Injection	Other LI If Other, List Us	se
. WELL LOCATION:	Tonoom	his/I and actting
Nearest Town: WILMINGTON County NEW HANOVER		bhic/Land setting
801 SUTTON STEAM PLANT ROAD		appropriate box)
(Street Name, Numbers, Community, Subdivision, Lot No., Zip Code)		itude of well location
		99'/W77 58.98'
OWNER: PROGRESS ENERGY		/minutes/seconds)
Address 801 SUTTON STEAM PLANT ROAD (Street or Route No.)	Lautude/longitude sou	rce:□GPS⊠Topographic m (check box)
WILMINGTON NC 28401	DEPTH	DRILLING LOG
City or Town State Zip Code	From To	Formation Description
()-		-
Area code-Phone number	0 14.0'	Black/brown, moist, mediu
. DATE DRILLED 1/27-1/28/05 5. TOTAL DEPTH: 43.0'		dense, fine/coarse SAND
5. DOES WELL REPLACE EXISTING WELL? YES \Box NO E	n	trace fine/coarse gravel
STATIC WATER LEVEL Below Top of Casing: 5.0 FT		
(Use "+" if Above Top of Casing)	···	· ·····
B. TOP OF CASING IS 0 FT. Above Land Surface*		
*Top of casing terminated at/or below land surface requires a variance in accordance with 15A NCAC 2C .0118.	a server production and a server and a server production and a server and a server and a server and a server a	·,
9. YIELD (gpm): N/A METHOD OF TEST_N/A	······································	ar <u>ti</u>
	^	ION SKETCH
). WATER ZONES (depth): N/A	LOCAT Show direction and d	istance in miles from at least
). WATER ZONES (depth): N/A	LOCAT Show direction and d two State Roads or C	istance in miles from at least ounty Roads. Include the roa
D. WATER ZONES (depth): N/A I. DISINFECTION: Type N/A Amount N/A 2. CASING: Wall Thickness Depth Diameter or Weight/Ft. Materi	LOCAT Show direction and d two State Roads or C	istance in miles from at least ounty Roads. Include the roa
D. WATER ZONES (depth): N/A 1. DISINFECTION: Type N/A Amount N/A 2. CASING: Wall Thickness Depth Diameter or Weight/Ft. Materia From 0 To 33.5 Ft. 2" SCH 40 PVC	LOCAT Show direction and d two State Roads or C	istance in miles from at least ounty Roads. Include the roa
D. WATER ZONES (depth): N/A A. DISINFECTION: Type N/A Amount N/A CASING: Wall Thickness Depth Diameter From 0 To 33.5 Ft. 2" SCH 40 PVC From To Ft.	LOCAT Show direction and d two State Roads or C	istance in miles from at least ounty Roads. Include the roa
D. WATER ZONES (depth): N/A A. DISINFECTION: Type_N/A Amount N/A CASING: Wall Thickness Depth Diameter or Weight/Ft. Materi From_0 To 33.5 Ft. 2" SCH 40 PVC FromToFt. Ft.	LOCATT Show direction and d two State Roads or C al numbers and common	istance in miles from at least ounty Roads. Include the roa
D. WATER ZONES (depth): N/A A. DISINFECTION: Type_N/A Amount N/A CASING: Wall Thickness Depth Diameter or Weight/Ft. Materi From_0 To 33.5 Ft. 2" SCH 40 PVC FromToFt Ft	LOCATT Show direction and d two State Roads or C al numbers and common	istance in miles from at least ounty Roads. Include the roa
D. WATER ZONES (depth): N/A A. DISINFECTION: Type N/A Amount N/A CASING: Wall Thickness Depth Diameter or Weight/Ft. From To 33.5 Ft. From To Ft. From To Ft. 3. GROUT: Depth Material From To Ft. 3. GROUT: Depth Material From To ZT From To TREMIE	LOCATT Show direction and d two State Roads or C al numbers and common	istance in miles from at leas ounty Roads. Include the roa
D. WATER ZONES (depth): N/A A. DISINFECTION: Type_N/A Amount_N/A CASING: Wall Thickness Depth Diameter or Weight/Ft. From_0 To_33.5 Ft. 2" SCH 40 PVC From_ To_ Ft.	LOCATT Show direction and d two State Roads or C numbers and common	istance in miles from at least ounty Roads. Include the roa
D. WATER ZONES (depth): N/A A. DISINFECTION: Type_N/A Amount_N/A CASING: Wall Thickness Depth Diameter or Weight/Ft. From_0 To_33.5 Ft. From_To_Ft. Ft. From_To_Ft. Ft. 3. GROUT: Depth Material From_0 To_27 Ft. From_27 To_30 Ft. BENTONITE TREMIE 4. SCREEN: Depth Diameter	LOCATT Show direction and d two State Roads or C numbers and common	istance in miles from at least ounty Roads. Include the roa
D. WATER ZONES (depth): N/A A. DISINFECTION: Type_N/A Amount_N/A CASING: Wall Thickness Depth Diameter or Weight/Ft. From_0 To_33.5 Ft. 2" SCH 40 PVC FromTo Ft.	LOCATT Show direction and d two State Roads or C numbers and common	istance in miles from at least ounty Roads. Include the roa
D. WATER ZONES (depth): N/A A. DISINFECTION: Type_N/A Amount_N/A 2. CASING: Wall Thickness Depth Diameter or Weight/Ft. From_0 To_33.5 Ft. 2" SCH 40 PVC FromToFt SCH 40 PVC FromToFt SCH 40 PVC FromToFt SCH 40 PVC FromToFt	LOCATT Show direction and d two State Roads or C numbers and common	istance in miles from at least ounty Roads. Include the roa
D. WATER ZONES (depth): N/A Amount N/A I. DISINFECTION: Type N/A Amount N/A 2. CASING: Wall Thickness Depth Diameter or Weight/Ft. From 0 To 33.5 Ft. 2" SCH 40 From 10 To 33.5 Ft. 2" SCH 40 From 10 To 70 Ft. PVC From 10 To 27 Ft. PORTLAND TREMIE From 27 To 30 Ft. BENTONITE TREMIE From 33.5 To 38.5 Ft. 2 in. .010 in. PVC From 33.5 To 58.5 Ft. 2 in. .010 in. PVC From 20 Ft. in. in.	LOCATT Show direction and d two State Roads or C numbers and common	istance in miles from at least ounty Roads. Include the roa
D. WATER ZONES (depth): N/A Amount N/A CASING: Wall Thickness Depth Diameter or Weight/Ft. From 0 To 33.5 Ft. 2" SCH 40 PVC From 10 To 33.5 Ft. 2" SCH 40 PVC From 10 To 33.5 Ft. 2" SCH 40 PVC From 10 To 27 Ft.	LOCATT Show direction and d two State Roads or C numbers and common	istance in miles from at least ounty Roads. Include the roa
D. WATER ZONES (depth): N/A Amount N/A DISINFECTION: Type N/A Amount N/A CASING: Wall Thickness Depth Diameter or Weight/Ft. From 0 To 33.5 Ft. 2" SCH 40 From 10 To 33.5 Ft. 2" SCH 40 From 10 To 27 Ft. PVC From 27 To 30 Ft. BENTONITE TREMIE From 33.5 To 38.5 Ft. 2 in. .010 in. PVC From 33.5 To 38.5 Ft. 2 in. .010 in. PVC From 27 To 38.5 Ft. 1 Interial Material Materia Diameter Slot Size Material From 33.5 To 38.5 Ft. 2 in. .010 in. SAND/GRAVEL PACK: Depth Size Material	LOCATT Show direction and d two State Roads or C numbers and common	istance in miles from at least ounty Roads. Include the roa
D. WATER ZONES (depth): N/A A. DISINFECTION: Type_N/A Amount_N/A 2. CASING: Wall Thickness Depth Diameter or Weight/Ft. From_0 To_33.5 Ft. 2" From_ToToFt.	LOCATT Show direction and d two State Roads or C numbers and common	istance in miles from at least ounty Roads. Include the roa
D. WATER ZONES (depth): N/A A. DISINFECTION: Type_N/A Amount_N/A 2. CASING: Wall Thickness Depth Diameter or Weight/Ft. From_0 To_33.5 Ft. From_To Ft. From To From To From To From To To Ft. From To 3. GROUT: Depth Material From_0 To_27 Ft. PORTLAND TREMIE From_27 To_30 Ft. BENTONITE TREMIE From_33.5 To_38.5 Ft. 2 in. .010 in. PVC From	LOCATT Show direction and d two State Roads or C numbers and common	istance in miles from at least ounty Roads. Include the roa
D. WATER ZONES (depth): N/A A. DISINFECTION: Type_N/A Amount_N/A 2. CASING: Wall Thickness Depth Diameter or Weight/Ft. From_0 To_33.5 Ft. From_To_Ft. SCH 40 PVC From_To_Ft. Y SCH 40 From_To_Ft. Ft. SCH 40 From_To_Ft. PORTLAND TREMIE From_0_To_27 Ft. PORTLAND TREMIE From_27 To_30 Ft. BENTONITE TREMIE From_33.5 To_38.5 Ft.2 in. 010 in. From_33.5 To_38.5 Ft.2 in. 010 in. PVC From_30 To_43 Ft. #1 SAND From_30 To_5 Ft. #1 SAND From_30 To_6 Ft. SEE MAP ON BACK 6. REMARKS: MW-13D	LOCATT Show direction and d two State Roads or C numbers and common	istance in miles from at leas ounty Roads. Include the roa n road names.
D. WATER ZONES (depth): N/A A. DISINFECTION: Type_N/A Amount_N/A CASING: Wall Thickness Depth Diameter or Weight/Ft. From To 33.5 Ft. From To Ft. SCH 40 From To Ts. SCH 40 From To St. Pt. Sch 40 PVC From Prom To Ft. SCH 40 PVC From To St. Pt. Sch 40 PVC From Prom To Ft. SCH 40 PVC From To Ft. SCH 40 PVC From To Ft. SCH 40 PVC From To Ft. SCH 40 PVC From 0 To 27 Ft. PORTLAND TREMIE TREMIE From 33.5 To 38.5 Ft. 2 in. 010 in. From To Ft. in. . . . SAND/GRAVEL PACK: De	LOCATT Show direction and d two State Roads or C numbers and common al al	istance in miles from at least ounty Roads. Include the roa n road names.
D. WATER ZONES (depth): N/A A. DISINFECTION: Type_N/A Amount_N/A 2. CASING: Wall Thickness Depth Diameter or Weight/Ft. From_0 To_33.5 Ft. From_To_Ft. SCH 40 PVC From_To_Ft. Y SCH 40 From_To_Ft. Ft. SCH 40 From_To_Ft. PORTLAND TREMIE From_0_To_27 Ft. PORTLAND TREMIE From_27 To_30 Ft. BENTONITE TREMIE From_33.5 To_38.5 Ft.2 in. 010 in. From_33.5 To_38.5 Ft.2 in. 010 in. PVC From_30 To_43 Ft. #1 SAND From_30 To_5 Ft. #1 SAND From_30 To_6 Ft. SEE MAP ON BACK 6. REMARKS: MW-13D	LOCATT Show direction and d two State Roads or C numbers and common al al	istance in miles from at least ounty Roads. Include the roa n road names. A NCAC 2C, WELL D TO THE WELL OWNER
D. WATER ZONES (depth): N/A A. DISINFECTION: Type_N/A Amount_N/A CASING: Wall Thickness Depth Diameter or Weight/Ft. From To 33.5 Ft. From To Ft. SCH 40 From To Ts. SCH 40 From To St. Pt. Sch 40 PVC From Prom To Ft. SCH 40 PVC From To St. Pt. Sch 40 PVC From Prom To Ft. SCH 40 PVC From To Ft. SCH 40 PVC From To Ft. SCH 40 PVC From To Ft. SCH 40 PVC From 0 To 27 Ft. PORTLAND TREMIE TREMIE From 33.5 To 38.5 Ft. 2 in. 010 in. From To Ft. in. . . . SAND/GRAVEL PACK: De	LOCATT Show direction and d two State Roads or C numbers and common al al	istance in miles from at least ounty Roads. Include the roa n road names. A NCAC 2C, WELL D TO THE WELL OWNER
D. WATER ZONES (depth): N/A A. DISINFECTION: Type_N/A Amount_N/A CASING: Wall Thickness Depth Diameter or Weight/Ft. From To 33.5 Ft. From To Ft. SCH 40 From To Ts. SCH 40 From To St. Pt. Sch 40 PVC From Prom To Ft. SCH 40 PVC From To St. Pt. Sch 40 PVC From Prom To Ft. SCH 40 PVC From To Ft. SCH 40 PVC From To Ft. SCH 40 PVC From To Ft. SCH 40 PVC From 0 To 27 Ft. PORTLAND TREMIE TREMIE From 33.5 To 38.5 Ft. 2 in. 010 in. From To Ft. in. . . . SAND/GRAVEL PACK: De	LOCATT Show direction and d two State Roads or C numbers and common al al al	istance in miles from at least ounty Roads. Include the roa n road names.
D. WATER ZONES (depth): N/A Amount N/A Amount N/A CASING: Wall Thickness Depth Diameter or Weight/Ft. Materia From 0 To 33.5 Ft. 2" From 10 To 33.5 Ft. 2" From 0 To 33.5 Ft. 2" SCH 40 PVC From 70 To 70 From 70 Ft. 2" SCROUT: Depth Material Method From 0 To 27 Ft. PORTLAND TREMIE From 27 To 30 Ft. BENTONITE TREMIE From 33.5 To 38.5 Ft. 2 ASCREEN: Depth Diameter Slot Size Material From 10 In. PVC From 33.5 To 38.5 Ft. 2 in. 010 in. PVC From 30 To 43 Ft. 41 SAND From 30 To 43 Ft. #1 SAND From 30 To 5 Ft. 41 SAND From 70 Ft. SIGNATURE OR PACK Material	LOCATT Show direction and d two State Roads or C numbers and common al al al	istance in miles from at least ounty Roads. Include the road a road names. A NCAC 2C, WELL TO THE WELL OWNER 2/18/05 DATE
D. WATER ZONES (depth): N/A A. DISINFECTION: Type_N/A Amount_N/A 2. CASING: Wall Thickness Depth Diameter or Weight/Ft. From_0_To_33.5 Ft. 2"SCH 40 PVC From_ToToFt.	LOCATT Show direction and d two State Roads or C numbers and common al al al	istance in miles from at least ounty Roads. Include the roa n road names. A NCAC 2C, WELL TO THE WELL OWNER 2/18/05 DATE
D. WATER ZONES (depth): N/A Amount N/A 2. CASING: Wall Thickness Depth Diameter or Weight/Ft. From 0 To 33.5 Ft. 2" SCH 40 PVC From 10 To 33.5 Ft. 2" SCH 40 PVC From 10 To 33.5 Ft. 2" SCH 40 PVC From 10 To 23.5 Ft. 2" SCH 40 PVC From 20 To 27 Ft. PORTLAND TREMIE Method From 27 To 30 Ft. BENTONITE TREMIE From 33.5 To 38.5 Ft. 2 in. 010 in. PVC From 33.5 To 38.5 Ft. 2 in. 010 in. PVC From 33.5 To 38.5 Ft. 2 in. 010 in. PVC From 30 To 43 Ft. 41 SAND From 30 To 43 Ft. 41 SAND From 30 To 5 Ft. SIGNATURE OF PERSON CONSTRUCTED IN 6. REMARKS: MW-13D SEE MAP ON BACK Multicleared DO HEREBY CERTIFY THAT THIS WELL WAS CONSTRUCTED I	LOCATT Show direction and d two State Roads or C numbers and common al al al	istance in miles from at least ounty Roads. Include the roa n road names. A NCAC 2C, WELL TO THE WELL OWNER 2/18/05 DATE

Date: 3/16/05


Remarks: NA: Not Applicable ft bgs: feet below ground surface PID: Photoionization Detector NR: No Recovery


Date	Depth	Elev.
2/4/05	3.13	8.08

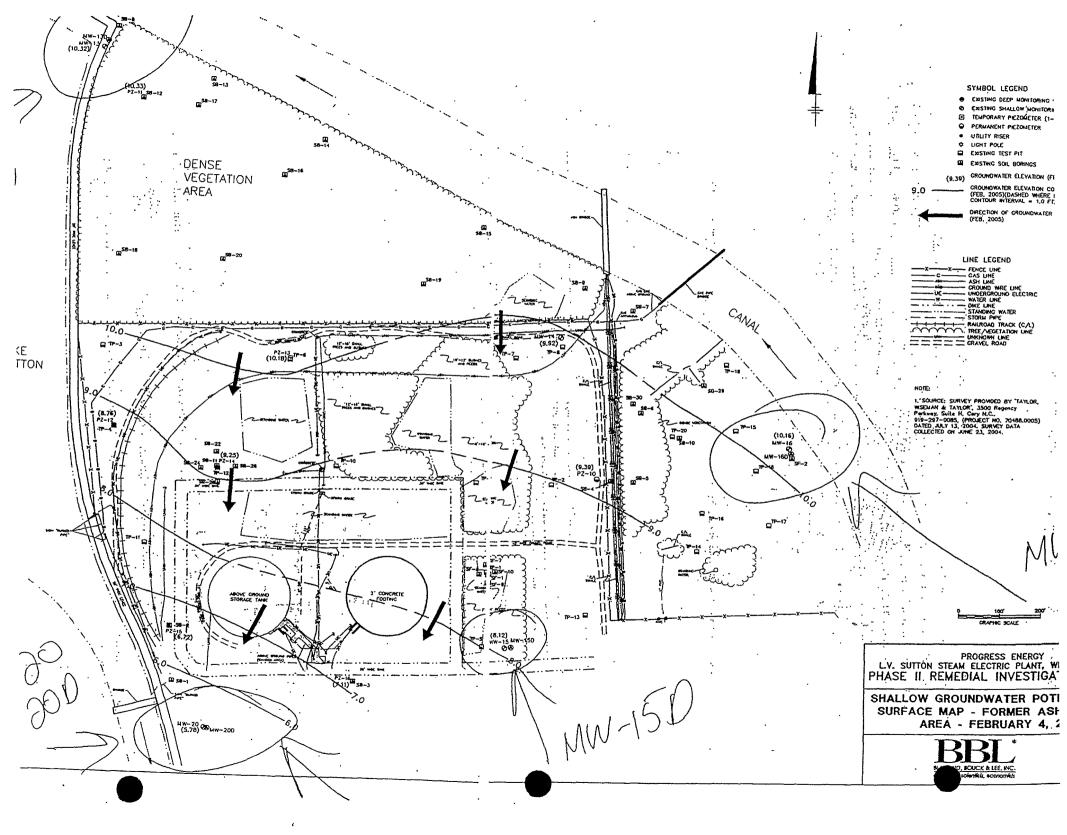
Project: 04015 Data File:MW-15D Template:boring_wellWL2005.ldf Date: 3/16/05 Page: 2 of 2

WELL CONSTRUCTION RECORD

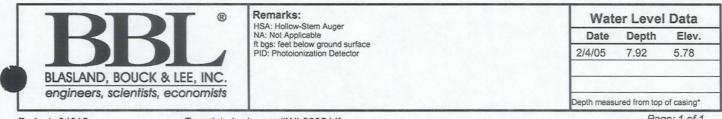
	CTOR COMPAN	NY NAME PAR	RATT-WOLFF, INC.		PHONE # <u>(919)</u> 644-2814
STATE WELL CO		PERMIT#	· · · · · · · · · · · · · · · · · · ·	ASSOCIATED WQ PER	RMIT#
(if a	pplicable)	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	(if applicable)	· · · · · · · · · · · · · · · · · · ·
1 10001 1 1000	(0) 1 1 11				
					trial 🗆 , Agricultural 🗆
Monitoring	A Recovery	LI Heat Pu	mp Water Injection 🗆	Other LI If Other,	List Use
2 WELLOC					
2. WELL LOC			County NEW HANOVER		pographic/Land setting
	N STEAM PLAN		County NEW HAROVER		□Slope □Valley □Flat (check appropriate box)
			, Lot No., Zip Code)	Latitud	le/longitude of well location
(,	,		, 2011, 0, 2, p 0000)		134 16.99'/W77 58.98'
3. OWNER: P	ROGRESS EN	ERGY			(degrees/minutes/seconds)
Address 80	01 SUTTON ST		OAD	Latitude/longitu	ide source:□GPS⊠Topographic m
Mail Maria	(Street or F			DEDTU	(check box)
WILMING City or 7			B401 Jip Code	<u>DEPTH</u> From To	DRILLING LOG Formation Descriptio
()-					r of mation bosonptio
Area code- Pho				0 13.	0' White/brown/gray, wet, ve
4. DATE DRII		; ·			loose/dense, fine/coarse
5. TOTAL DE	The second s			·····	SAND; trace silt
			WELL? YES INO		
7. STATIC W	ATER LEVEI		of Casing: <u>2.0</u> F "if Above Top of Casing)	Γ. <u>.</u>	and fine SAND; trace clay
8. TOP OF CA	SING IS 0		Above Land Surface*	·	· · · · · · · · · · · · · · · · · · ·
*Top of casin	g terminated at/	or below land su	irface requires a		
	ccordance with 1			<u> </u>	
9. YIELD (gpi 10. WATER ZO			JF IESI NA		
IU. WATER 20	ines (depui).				OCATION SKETCH
11. DISINFECT		V/A	Amount N/A		and distance in miles from at least
12. CASING:			Wall Thickness		is or County Roads. Include the roa
	Depth	Diamete		ial numbers and c	ommon road names.
From_0	To40	Ft"	SCH 40 PVC		
From	To	_ Ft			
•••••		Ft			
From	To		rial Metho	1.	
From 13. GROUT:	Depth	Mater		•	
From 13. GROUT: From 0	Depth To 35.5	Ft. PORTLA	ND TREMIE		
From	Depth To 35.5 To 37.5	Ft. PORTLA	ND TREMIE TREMIE	- <u></u>	
From 13. GROUT: From 0 From 35.5 14. SCREEN:	Depth To 35.5 To 37.5 Depth	Ft. PORTLA Ft. BENTON Diameter	ND TREMIE ITE TREMIE Slot Size Mater	- <u></u>	
From 13. GROUT: From 0 From 35.5 14. SCREEN: From 40	Depth To 35.5 To 37.5 Depth To 45	Ft. PORTLA Ft. BENTON Diameter Ft. 2 ir	ND TREMIE ITE TREMIE Slot Size Mater h010 in. PVC	- <u></u>	
From 13. GROUT: From 0 From 35.5 14. SCREEN: From 40 From	Depth To 35.5 To 37.5 Depth To 45 To To	Ft. PORTLA Ft. BENTON Diameter Ft. 2 ir Ft. ir	ND TREMIE ITE TREMIE Slot Size Mater h010 in. PVC	- <u></u>	
From 13. GROUT: From 0 From 35.5 14. SCREEN: From 40 From	Depth To 35.5 To 37.5 Depth To 45 To To	Ft. PORTLA Ft. BENTON Diameter Ft. 2 ir Ft. ir	ND TREMIE ITE TREMIE Slot Size Mater h010 in. PVC	- <u></u>	
From 13. GROUT: From 0 From 35.5 14. SCREEN: From 40 From	Depth To 35.5 To 37.5 Depth To 45 To AVEL PACK: Depth	Ft. PORTLA Ft. BENTON Diameter Ft. 2 ir Ft. ir	ND TREMIE ITE TREMIE Slot Size Materi n010 in. PVC h. in.	- <u></u>	
From 13. GROUT: From 0 From 35.5 14. SCREEN: From 40 From 15. SAND/GR/	Depth To 35.5 To 37.5 Depth To 45 To AVEL PACK: Depth	Ft. PORTLA Ft. BENTON Diameter Ft. 2 ir Ft. ir Size	ND TREMIE ITE TREMIE Slot Size Materi n010 in. PVC n. in	- <u></u>	
From 13. GROUT: From 0 From 35.5 14. SCREEN: From 40 From 15. SAND/GR/ From 37.5 From	Depth To 35.5 To 37.5 Depth To 45 To AVEL PACK: Depth To 47.5 To	Ft. PORTLA Ft. BENTON Diameter Ft. 2 ir Ft. ir Size Ft. #1 Ft.	ND TREMIE ITE TREMIE Slot Size Materi a010 in. PVC in Material SAND	- <u></u>	
From 13. GROUT: From 0 From 35.5 14. SCREEN: From 40 From 15. SAND/GR/ From 37.5 From	Depth To 35.5 To 37.5 Depth To 45 To AVEL PACK: Depth To 47.5 To	Ft. PORTLA Ft. BENTON Diameter Ft. 2 ir Ft. ir Size Ft. #1 Ft.	ND TREMIE ITE TREMIE Slot Size Materi n010 in. PVC n. in	- <u></u>	
From 0 From 0 From 35.5 14. SCREEN: From 40 From 15. SAND/GR/ From 37.5 From 16. REMARKS	Depth To 35.5 To 37.5 Depth To 45 To AVEL PACK: Depth To 47.5 To S: MW-15D	Ft. PORTLA Ft. BENTON Diameter Ft. 2 ir Ft. ir Size Ft. #1 Ft. SEE MAP	ND TREMIE ITE TREMIE Slot Size Materia n010 in. PVC in in Material SAND ON BACK	al	
From 0 From 35.5 14. SCREEN: From 40 From 15. SAND/GR/ From 37.5 From 37.5 From 16. REMARKS	Depth To 35.5 To 37.5 Depth To 45 To AVEL PACK: Depth To 47.5 To S: MW-15D	Ft. PORTLA Ft. BENTON Diameter Ft. 2 ir Ftir Size Ft Ft SEE MAP	ND TREMIE ITE TREMIE Slot Size Material a. .010 in. PVC Material SAND ON BACK WAS CONSTRUCTED I	al N ACCORDANCE W	ITH 15A NCAC 2C, WELL
From 0 From 35.5 14. SCREEN: From 40 From 15. SAND/GR/ From 37.5 From 37.5 From 16. REMARKS	Depth To 35.5 To 37.5 Depth To 45 To AVEL PACK: Depth To 47.5 To S: MW-15D	Ft. PORTLA Ft. BENTON Diameter Ft. 2 ir Ftir Size Ft Ft SEE MAP	ND TREMIE ITE TREMIE Slot Size Material a. .010 in. PVC Material SAND ON BACK WAS CONSTRUCTED I	al N ACCORDANCE W	ITH 15A NCAC 2C, WELL VIDED TO THE WELL OWNER
From 0 From 35.5 14. SCREEN: From 40 From 15. SAND/GR/ From 37.5 From 37.5 From 16. REMARKS	Depth To 35.5 To 37.5 Depth To 45 To AVEL PACK: Depth To 47.5 To S: MW-15D	Ft. PORTLA Ft. BENTON Diameter Ft. 2 ir Ftir Size Ft Ft SEE MAP	ND TREMIE ITE TREMIE Slot Size Material a. .010 in. PVC Material SAND ON BACK WAS CONSTRUCTED I	al N ACCORDANCE W	
From 0 From 35.5 14. SCREEN: From 40 From 15. SAND/GR/ From 37.5 From 37.5 From 16. REMARKS	Depth To 35.5 To 37.5 Depth To 45 To AVEL PACK: Depth To 47.5 To S: MW-15D	Ft. PORTLA Ft. BENTON Diameter Ft. 2 ir Ft. ir Size Ft. #1 Ft. SEE MAP T THIS WELL DS, AND THAT	ND TREMIE ITE TREMIE Slot Size Material a. .010 in. PVC Material SAND ON BACK WAS CONSTRUCTED I	al N ACCORDANCE W ORD HAS BEEN PRC	VIDED TO THE WELL OWNER
From 13. GROUT: From 0 From 35.5 14. SCREEN: From 40 From 15. SAND/GR/ From 37.5 From 37.5 From 16. REMARKS I DO HEREBY CONSTRUCTIO	Depth To 35.5 To 37.5 Depth To 45 To AVEL PACK: Depth To 47.5 To 3: MW-15D ERTIFY THA' N STANDARE	Ft. PORTLA Ft. BENTON Diameter Ft. 2 ir Ftir Size Ft. #1 Ft SEE MAP T THIS WELL DS, AND THAT Ch. I SIGNATUR	ND TREMIE ITE TREMIE Slot Size Material n. .010 in. Material SAND ON BACK WAS CONSTRUCTED I T A COPY OF THIS REC E OF PERSON CONSTR	al N ACCORDANCE W ORD HAS BEEN PRC	DVIDED TO THE WELL OWNER 2/19/05 DATE
From 13. GROUT: From 0 From 35.5 14. SCREEN: From 40 From 15. SAND/GRA From 37.5 From 37.5 From 16. REMARKS I DO HEREBY CONSTRUCTIO	Depth To 35.5 To 37.5 Depth To 45 To AVEL PACK: Depth To 47.5 To S: MW-15D CERTIFY THA' N STANDARE	Ft. PORTLA Ft. BENTON Diameter Ft. 2 ir Ft. ir Size Ft. #1 Ft. SEE MAP T THIS WELL DS, AND THAT Charlen SIGNATUR	ND TREMIE ITE TREMIE Slot Size Material . .010 in. Material SAND ON BACK WAS CONSTRUCTED I T A COPY OF THIS REC E OF PERSON CONSTR ater Quality, Groundy	al N ACCORDANCE W ORD HAS BEEN PRC	DVIDED TO THE WELL OWNER 2 19 05 DATE Mail Service Center - Raleigh, NC
From 13. GROUT: From 0 From 35.5 14. SCREEN: From 40 From 15. SAND/GR/ From 37.5 From 37.5 From 16. REMARKS I DO HEREBY CONSTRUCTIO	Depth To 35.5 To 37.5 Depth To 45 To AVEL PACK: Depth To 47.5 To S: MW-15D CERTIFY THA' N STANDARE	Ft. PORTLA Ft. BENTON Diameter Ft. 2 ir Ft. ir Size Ft. #1 Ft. SEE MAP T THIS WELL DS, AND THAT Charlen SIGNATUR	ND TREMIE ITE TREMIE Slot Size Material . .010 in. Material SAND ON BACK WAS CONSTRUCTED I T A COPY OF THIS REC E OF PERSON CONSTR ater Quality, Groundy	al N ACCORDANCE W ORD HAS BEEN PRC	DVIDED TO THE WELL OWNER 2/19/05 DATE

Date: 3/15/05

	Remarks: NA: Not Applicable	Water Level Data
RRI	ft bgs: feet below ground surface	Date Depth Elev.
	PID: Photoionization Detector	2/4/05 6.38 10.05
BLASLAND, BOUCK & LEE, INC.		
engineers, scientists, economists		Depth measured from top of casing*


Project: 04015 Data File:MW-16D

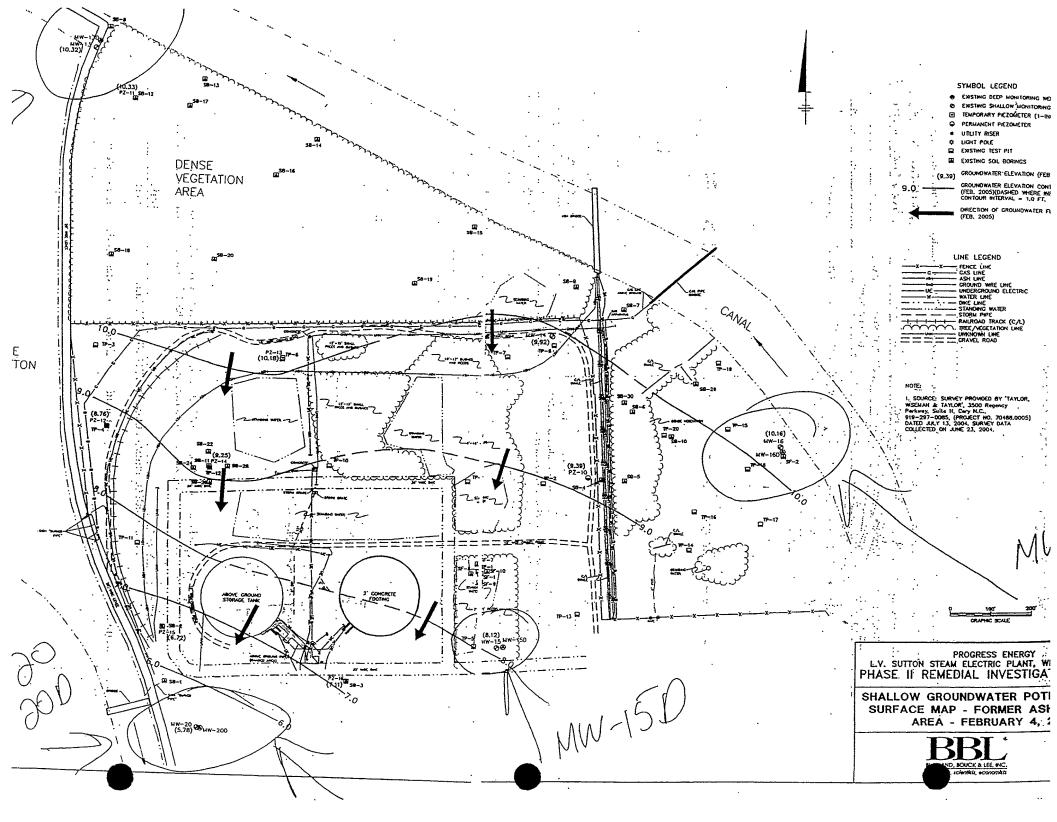
Template:boring_wellWL2005.ldf Date: 3/15/05

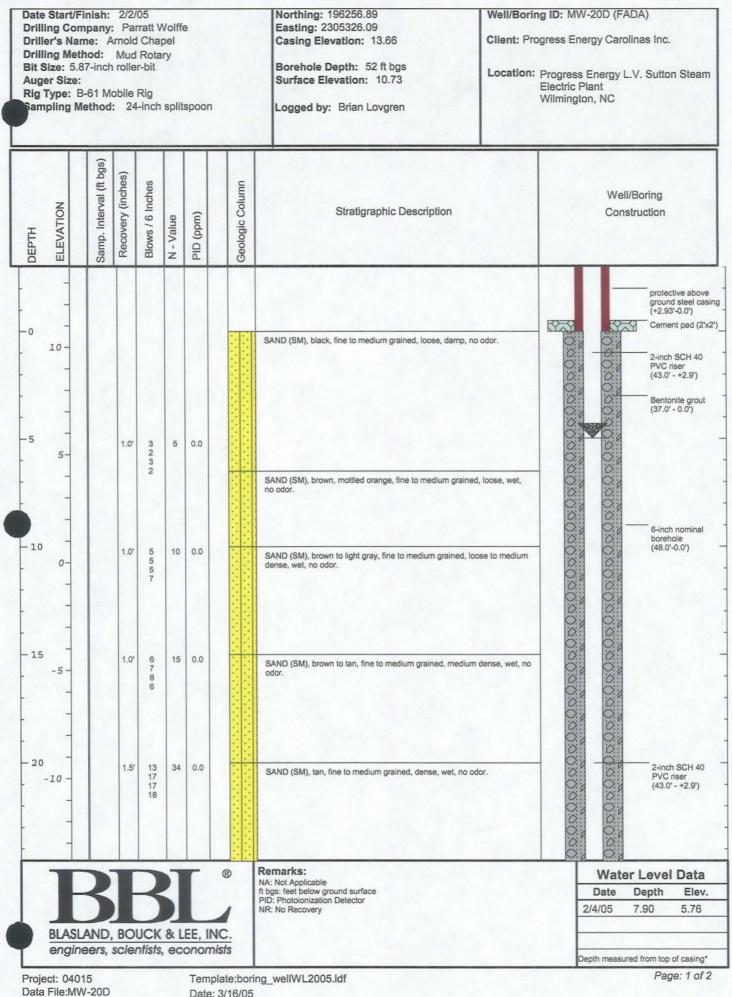

aye. z

WELL CONSTRUCTION RECORD

WELL CONTRACTOR COMPA	NY NAME PARRATT-WOLFF, INC		PHONE # (919) 644-28
STATE WELL CONSTRUCTION	· · · ·		#
(if applicable)		(if applicable)	······································
	· · · · · · · · · · · · · · · · · · ·		/
	icable Box): Residential □ M □ Heat Pump Water Injection		
2. WELL LOCATION:	· · ·		1 · / · · · ·
Nearest Town: WILMINGT		NOVER CRidge	aphic/Land setting Slope 🗆 Valley 🗆 Flat
801 SUTTON STEAM PLAN			eck appropriate box)
(Sireet Name, Numbers, Comm	unity, Subdivision, Lot No., Zip Code)		ngitude of well location 6.99'/W77 58.98'
3. OWNER: PROGRESS EN	ERGY		ees/minutes/seconds)
Address 801 SUTTON S			ource: CIGPS & Topographic
	Route No.)		(check box)
WILMINGTON NC		DEPTH .	DRILLING LO
City or Town Stat	e · . Zip Code	From To	Formation Descript
()		·	
Area code- Phone number	27/05	0 16.0'	White/brown/gray, wet, id
4. DATE DRILLED 1/26-1/ 5. TOTAL DEPTH: 50.5'			medium dense, fine/co
	EXISTING WELL? YES	NO 67	SAND; some fine grave
7. STATIC WATER LEVE		D00	trace silt
7. STATIC WATER LEVE	(Use "+" if Above Top of Casi	FT. <u>16.0</u> 49.0	Green, wet, very dense
8. TOP OF CASING IS 0		•.	medium SAND; trace s
*Top of casing terminated at	/or below land surface requires a		
variance in accordance with			
9. YIELD (gpm): N/A			
10. WATER ZONES (depth)	<u></u>		TION SKETCH
			<u>TION SKETCH</u> distance in miles from at le
11. DISINFECTION: Type_		•	County Roads. Include the
12. CASING:	Wall Thickness		
Depth	Diameter or Weight/Ft. Ft. 2" SCH 40	Material numbers and comn	ion road names.
From 0 To 42			
From To	Ft		
From To			
13. GROUT: Depth From ⁰ To 36		Method MIE	
From 36 To 40		MIE	
14. SCREEN: Depth		Material	
From 42 To 47		VC	
From To			
15. SAND/GRAVEL PACK		······	
Depth	Size Material		
From 40 To 50.5	Ft. #1 SAND		
From To			
110m1V			
16. REMARKS; MW-16D	SEE MAP ON BACK		
			· · · · · · · · · · · · · · · · · · ·
I DO HEREBY CERTIFY THA	T THIS WELL WAS CONSTRUC	TED IN ACCORDANCE WITH	15A NCAC 2C. WELL
	DS, AND THAT A COPY OF THIS		
	<u>^</u>	· · · · · · · · · · · · · · · · · · ·	
	thent.		2/18/05
	SIGNATURE OF PERSON CO	NSTRUCTING THE WELL	DATE
e e e e e e e e e e e e e e e e e e e		v.	
Submit the original to the I 27699-1636 Phone No. (919) 7	Division of Water Quality, Gro	oundwater Section, 1636 Mail	Service Center - Raleigh, NC GW-1 REV. 07/200

Drill Drill Drill Bit \$ Aug Rig	e Start/l ing Col er's Na ing Me Size: N er Size Type: 1 ppling M	mpany me: A thod: A : 3.25 B-61 M	: Pa Arnolo HSA -inch	rratt V d Cha A (ID)		8		Northing: 196257.98 Easting: 2305318.10 Casing Elevation: 13.70 Borehole Depth: 14 ft bgs Surface Elevation: 10.78 Logged by: Brian Lovgren	Well/Boring ID: MW-20 (FADA) Client: Progress Energy Carolinas Inc. Location: Progress Energy L.V. Sutton Stear Electric Plant Wilmington, NC			linas Inc.
DEPTH	ELEVATION	Samp. Interval (ft bgs)	Recovery (inches)	Blows / 6 Inches	N - Value	PID (ppm)	Geologic Column	Stratigraphic Description				I/Boring struction
-0			1.0'	3 2 3 2	5	0.0		SAND (SM), black, fine to medium grained, loose, damp, no o	odor.			protective above ground steel casing (+2.92'-0.0') Cement pad (2'x2') Bentonite grout (1.0' - 0.0') Bentonite chips (3.0'-1.0') 2-inch Sch 40 PVC riser (4.0' - 0.0')
- 10	- - - - -		1.0'		10	0.0		SAND (SM), brown, mottled orange, fine to medium grained, no odor. SAND (SM), brown to light gray, fine to medium grained, loos dense, wet, no odor.				Well Gravel Pack No. 1 (14.0' - 3.0') 7-inch nominal borehole (14.0'-0.0') 2-inch 0.010 slot PVC screen (14.0' - 4.0')


Project: 04015 Data File:MW-20 Template:boring_wellWL2005.ldf Date: 3/16/05


Page: 1 of 1

WELL CONSTRUCTION RECORD

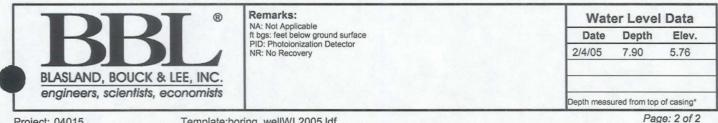
•

WÉ	LL CONTRACTOR COMPANY NAME PARRATT-WOLFF, INC.	PHONE # (919) 644-28
ST/		OCIATED WQ PERMIT#
	(if applicable)	(if applicable)
	WELL USE (Check Applicable Box): Residential □ Municipal/I Monitoring ☑ Recovery □ Heat Pump Water Injection □ O	
	WELL LOCATION: Nearest Town: WILMINGTON County NEW HANOVER 801 SUTTON STEAM PLANT ROAD (Street Name, Numbers, Community, Subdivision, Lot No., Zip Code)	Topographic/Land setting Ridge Slope Valley Flat (check appropriate box) Latitude/longitude of well location N34 16.99'/W77 58.98'
3.	OWNER: PROGRESS ENERGY	(degrees/minutes/seconds)
	Address 801 SUTTON STEAM PLANT ROAD (Street or Route No.)	Latitude/longitude source: □GPS⊠Topographic (check box)
	WILMINGTON NC 28401	DEPTH DRILLING LC
	City or Town State Zip Code	From To Formation Descrip
	Area code- Phone number	NO SAMPLES TAKEN
4,	DATE DRILLED 2/2/05	
	TOTAL DEPTH: 14.0'	
6.	DOES WELL REPLACE EXISTING WELL? YES IN NO	······································
7.	STATIC WATER LEVEL Below Top of Casing: <u>5.5</u> FT.	
<u>,</u>	(Use "+" if Above Top of Casing)	·
8.	TOP OF CASING IS FT. Above Land Surface*	
•	*Top of casing terminated at/or below land surface requires a variance in accordance with 15A NCAC 2C .0118.	····
9.	YIELD (gpm): N/A METHOD OF TEST_N/A	
	WATER ZONES (depth): N/A	
	· · ·	LOCATION SKETCH
11.	DISINFECTION: Type N/A Amount N/A	Show direction and distance in miles from at le
	CASING: Wall Thickness	two State Roads or County Roads. Include the
	Depth Diameter or Weight/Ft. Material	numbers and common road names.
	From_0To_4Ft. 2"SCH 40PVC	_
	FromToFt	_
	FromToFt	_
13.	GROUT: Depth Material Method	
	From 0 To 1 Ft. PORTLAND TREMIE	<u>ــــ</u>
1 4	From 1 To 3 Ft, BENTONITE TREMIE	
14.	SCREEN:DepthDiameterSlot SizeMaterialFrom 4To 14Ft, 2in.010in.PVC	
	From 4 To 14 Ft, 2 in. .010 in. PVC From To Ft, in. in. in. in. in. in.	· ·
15	SAND/GRAVEL PACK:	
19,	Depth Size Material	
	From 3 To 14 Ft. #1 SAND	
	FromToFt	
16.	REMARKS: MW-20 SEE MAP ON BACK	
	O HEREBY CERTIFY THAT THIS WELL WAS CONSTRUCTED IN A	
- CO	NSTRUCTION STANDARDS, AND THAT A COPY OF THIS RECOR	
	Umollel. Chant	2/18/05
· .		
	SIGNATURE OF PERSON CONSTRUC	TING THE WELL DATE

Date: 3/16/05

Client:

Progress Energy Carolinas Inc.

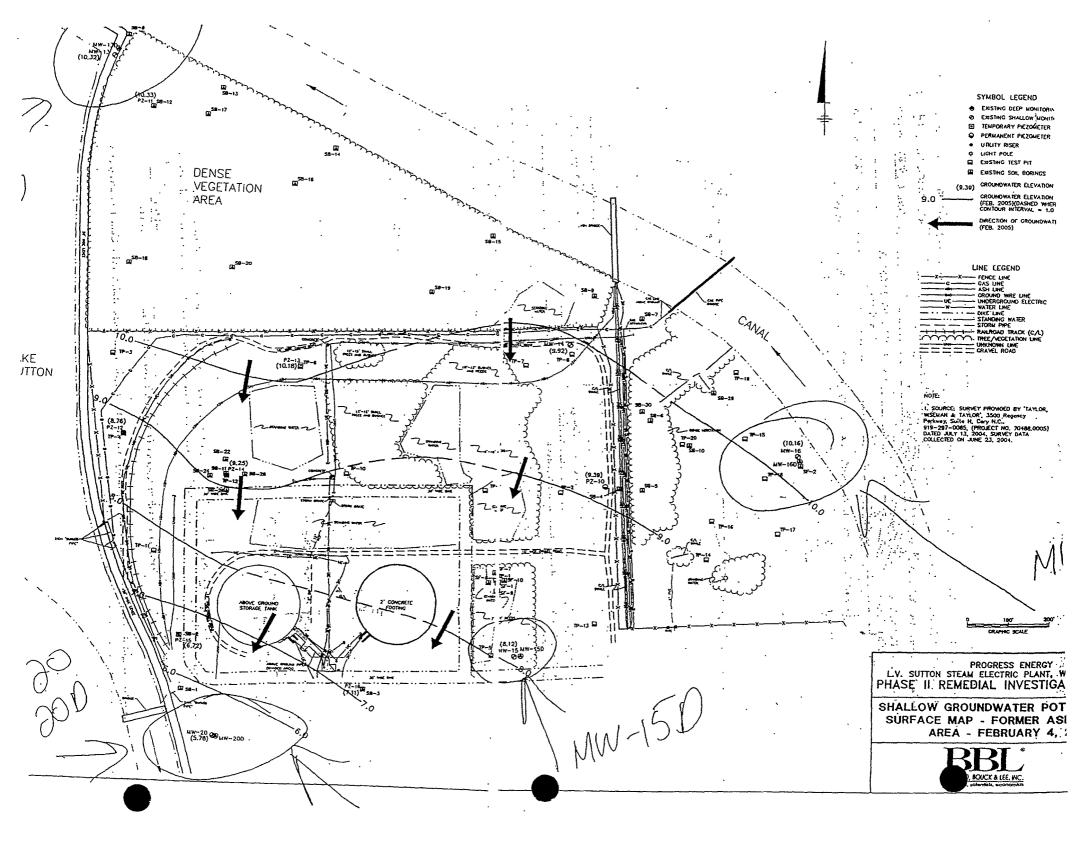

Site Location:

Progress Energy L.V. Sutton Steam Electric Plant

Well/Boring ID: MW-20D (FADA)

Borehole Depth: 52 ft bgs

PID Headspace (ppm) Sample Run Number Geologic Column Blows / 6 Inches Sample/Int/Type Recovery (feet) Well/Boring Iron Staining ELEVATION Stratigraphic Description N - Value Construction DEPTH - 25 Bentonite grout (37.0' - 0.0') 1.5 4 18 0.0 x0x0x0x0x0x0x0x0x0x0x0x0 x0x0x0x0x0x0x0x0x0x0x0x0x0 SAND (SM), tan, fine to medium grained, medium dense, wet, no odor. 10 -15 8 13 - 30 6-inch nominal 1.0 33 6 0.0 SAND (SM), tan, fine to medium grained, loose, wet, no odor. borehole (48.0'-0.0') -20 34 - 35 1.0' 2 0.0 SAND (SM), dark brown, fine to medium grained, very loose, wet, no odor. -25 Bentonite chips (41.0'-37.0') 40 1.0' 2 0.0 1 -30 1 Well Gravel Pack No. 1 (48.0' - 41.0') . 2-inch 0.010 slot PVC screen (48.0' - 43.0') 45 0.8 47 14 0.0 SAND (SM), dark brown, fine to medium grained, medium dense, wet, no -35 odor. 1.5-inch nominal 8 borehole (48.0'-45.0') Natural Collapse 50 0.0 1.5 50 14 SAND (SM), green to dark gray, silt to fine grained, very dense, wet, no 26 24 -40 odor 19 Boring terminated at 52.0 ft bls



Project: 04015 Data File:MW-20D Template:boring_wellWL2005.ldf Date: 3/16/05

WELL CONSTRUCTION RECORD

WE	LL CONTRACTOR COMPANY NAME P	ARRATT-WOLFF, INC.	·	• •	PHONE # (919) 644-281
ST.	ATE WELL CONSTRUCTION PERMIT#_	<u> </u>	ASS	OCIATED WQ PERMIT#	
	(if:applicable)			(if applicable)	
1	WELLUSE (Chash Ambientis Dev)	· Desidential 🗔 Mar			/ A contraction of 1
1.	WELL USE (Check Applicable Box) Monitoring I Recovery Heat				
r	WELL LOCATION:	••			a been aa
	Nearest Town: WILMINGTON	County NEW HANC	DVER		ic/Land setting e □Valley □Flat
•	801 SUTTON STEAM PLANT ROAD				propriate box)
	(Street Name, Numbers, Community, Subdivis	ion, Lot No., Zip Code)			ide of well location
	OWNER DROODERS ENERGY	•			/W77 58.98'
3.	OWNER: PROGRESS ENERGY Address 801 SUTTON STEAM PLANT			degrees/n/ Latitude/longitude sourc	inutes/seconds)
	(Street or Route No.)	RUAD	·	Latitude/longitude sourc	(check box)
	WILMINGTON NC	28401		DEPTH	DRILLING LOC
	City or Town State	Zip Code	······ .	From To	Formation Descript
	()	<u> </u>			
4	Area code- Phone number DATE DRILLED 2/1/05			0 5.0'	Black/brown, wet, dense/log
	TOTAL DEPTH: 52.0'	· · ·			fine/coarse SAND; trace
	DOES WELL REPLACE EXISTING	GWELL? YES DN	VO. 🖾 ·	5.0 25.0	Gray, wet, dense/loose,
7.	STATIC WATER LEVEL Below To	op of Casing: 5.5	FT.		coarse SAND
		"+" if Above Top of Casing		25.0 42.0	Gray, wet, very loose, fi
8.		T. Above Land Surfac	ce*.	· · : : · · · ·	SAND
	*Top of casing terminated at/or below land variance in accordance with 15A NCAC 20			42.0 52.0	Green, wet, very dense,
<u>9</u> .	YIELD (gpm): N/A METHO	D OF TEST N/A		·	SAND; trace clay and s
10,	WATER ZONES (depth): N/A	·····		• .	·····
					N SKETCH
	DISINFECTION: Type N/A	Amount <u>N/A</u>			ance in miles from at lea inty Roads. Include the r
12.	CASING: Depth Diam	• Wall Thickness eter or Weight/Ft. M	Material	numbers and common i	
	Depth Diam From 0 To 43 Ft. 2"		PVC	numbers and common i	oud numob.
	From To Ft.			-	
	From To Ft.			-	
13.			fethod	-	
	From 0 To 37 Ft. PORT			_	
	From 37 To 41 Ft. BENT			_ •.	
14.	SCREEN: Depth Diamete		Aaterial	. '	
	From 43 To 48 Ft. 2	_in010in	<u> </u>		
1 4	FromToFt SAND/GRAVEL PACK:	_in in			
13.	Depth Size	e Material			
	From 41 To 52 Ft. #1	SAND			
	From To Ft.				
16.	. REMARKS: MW-20D SEE M	AP ON BACK		<u></u>	
		•,			
	O HEREBY CERTIFY THAT THIS WE				
CU	INSTRUCTION STANDARDS, AND TH	IAT A COPY OF THIS	RECORI		
•	(molth Chapt		· :	борона, на страница и с Страница и страница и ст Страница и страница и с	2/18/05
	SIGNATI	JRE OF PERSON CON	ISTRUCT	TING THE WELL	DATE
				•	

Ó

Appendix B

Data Validation Reports and Laboratory Data

To: Scott Davies

Date: 3/21/2005

From: Dennis Capria

Re: Data Review

Data for sample collected from the Progress Energy-Sutton site in North Carolina during January 2005 were reviewed for quality assurance/quality control compliance. The data report from CompuChem, Inc. of Cary, North Carolina was reviewed. Included in the review are data from the following sample delivery group (SDG): C501739. The following summarizes the findings of the QA/QC review:

Volatile/Semi-volatile

- One data set was reviewed, including 14 soil sample 1 equipment blank and 1 trip blank.
- Samples were analyzed for following:

Analysis	Method
Volatile Petroleum Hydrocarbons (MADEP- VPH)	MADEP-VPH-04-1.1
Extractable Petroleum Hydrocarbons (MADEP-EPH)	MADEP-EPH-04-1.1

- All samples were analyzed within the method-specified holding time.
- All reported laboratory control sample recoveries were within control limits.
- Several target compounds were detected in the method blanks within this SDG. Associated Sample results less than the blank action level have been qualified as non-detect.
- Several surrogate recoveries associated with the EPH analysis were outside of the control limits. The associated sample results were either qualified estimated.
- No calibration data was provided.

The data were presented in a reduced deliverables format. Therefore, only a limited data review could be performed. Since no raw data were provided, no verification of compound identification and quantitation could be performed.

Other than for the deviations noted in this review, the reported data quality is within method specifications and the data is considered acceptable for use as reported by the laboratory.

.

.

.

.

	•		Analytical I	ata Report				
Lab Samiple ID	Description			Mat	rix Date R	ceived	Date Sample	ed SDG#
01739-1	SF-7 (0.5-1.0)			\$01	ld 01/28/0)5	01/26/05 0	9:00
01739-2	SF-8 (0.5-1.0)			Sol	id 01/28/0)5	01/26/05 0	9:15
01739-3	\$F-9 (0.5-1.0)			Sol	id 01/28/0)5	01/26/05 0	9:40
01739-4	SF-10 (0.5-1.0)			Sol	id 01/28/0)5	01/26/05 1	0;00
01739-5	SF-91 (0.5-1.0)			Sol	id 01/28/0)5	01/26/05	
	• •		Sample I	D				
Parameter		Units	01739-1 SF-7 (0.5-1.0)	01739-2 SF-8 (0.5-1.0)	01739-3 SF-9 (0.5-1.4	0173 0) SF-1		01739-5 SF-91 (0.5-1.0
Volatile	Petroleum Hydroc	arbons (NADEF	»-VPH)					**********
C5-C8 Aliphati	ic Hydrocarbons	•						
(Unadjusted)	-	mg∕kg dw	<9,9	<4,5	<8.5	<8.9	1	<10
C9-C12 Aliphat	tic Hydrocarbons							•
(Unadjusted)	1	mg/kg dw	<5.1	<2.4	<4.4	<4.6	;	1.8J
C9-C10 Aromati	ic Hydrocarbons							*
(Unadjusted))	mg/kg dw	6.98	1.5B V	2.2.18	4.3E	Ś	5.68
Surrogate-a.a.	a-Trifluorotolue	•		₹	3	1		ł
ne (PID) *		%	122 %	112 %	99 %	107	*	117 %
Surrogate-a,a,	a-Trifluorotolue	ŧ						
ne (FID) *		%	123 %	113 %	100 %	109	%	117 %
Percent Solids	5		78	81	79	77		80
Dilution Facto	אר		143	68	125	127		150
Prep Date			02/01/05	02/02/05	02/01/05	02/0	2/05	02/02/05
Analysis Date			02/01/05	02/02/05	02/01/05	02/0	2/05	02/02/05
Batch ID			TRS009B	TRS009B	TRS0098	TRSC	X09B	TRS009B
Prep Method			MADEP-VPH	MADEP-VPH	MADEP-VPH	MADE	EP-VPH	MADEP-VPH
Analyst			CP	CP	CP	CP		CP
Quantitation F	Factor		183	84	158	165		188
Extractat	ble Petroleum Hyd	Irocarbons (M	ADEP-EPH)					
C9-C18 Al iphat	tic Hydrocarbons		a ayuuu	·	1		5	A
)	mg∕kg dw	518 J	4.4B U -SP	9\$ J	189	1	138
(Unadjusted)					~			
(Unadjusted) C19-C36 Allpha	stic		2808/ 5	495	828 J		سيد م	988

Analytical	Data	Report
------------	------	--------

Lab Sample ID	Description		Mat	trix Date I	Received	Date Samp	led	SDG#
01739-1	SF-7 (0.5-1.0)		So	lid 01/28,	/05	01/26/05	09:00	
01739-2	SF-8 (0.5-1.0)		So	lid 01/28/	/05	01/26/05	09:15	
01739-3	SF-9 (0.5-1.0)		So	11d 01/28,	/05	01/26/05	09:40	
01739-4	SF-10 (0.5-1.0)		Sol	id 01/28/	/05	01/26/05	10:00	
01739-5	SF-91 (0.5-1.0)		So	lid 01/28,	/05	01/26/05		
	-	Sample i	D					*
Parameter	Units	01739-1	01739-2	01739-3	0173	9-4	01739-	5
		SF-7 (0.5-1.0)	SF-8 (0.5-1.0)	SF-9 (0.5-1	.0) SF-1	0 (0.5-1.0)) SF-91	(0.5-1.0)

Extractable Petroleum Hydrocartons (MADEP-EPH)

Surrogate -						
1-Chioro-octadecane *	%	13 %D	76 %	39 %D	39 %D	84 %
Percent Solids		78	81	79	77	80
Dilution Factor		5	1	2	2	1
Prep Date		02/01/05	02/01/05	02/01/05	02/01/05	02/01/05
Analysis Date		02/04/05	02/03/05	02/04/05	02/04/05	02/03/05
Batch 10		FPS2008	FPS2008	FPS2008	FPS2008	FPS2008
Prep Method		35508	35508	3550B	35508	3550B
Analyst		(E	IE	IE	IE	IE
Quantitation Factor		6.4	1.2	2.5	2.5	1.3
Extractable Petroleum Hyd	irocarbons (M	VDEP-EPH)				
C11-C22 Aromatic Hydrocarbons		معمد بعد ا			elever	بسرينير
(Unadjusted)	mg/kg dw	120 J	24 J	33 J	. 20 J	44 5
Surrogate - o-Terphenyl *	%	69 %	80 %	104 %	6 5 %	96 %
Surrogate - 2-Fluorobiphenyl *	*	112 %	135 %	~154 [X 4]	44 %	6749 ⁻³ 8***
Surrogate -						
2-Bromonaphthalene *	%	<28::%**	85-X-3	&6%%*	600%* ⁶⁰	#:36°%*
Percent Solids		78	81	79	77	80
Dilution Factor		7	1	1	1	1
Prep Date		02/01/05	02/01/05	02/01/05	02/01/05	02/01/05
Analysis Date		02/04/05	02/03/05	02/03/05	02/03/05	02/03/05
Batch 1D		FPS2008	FPS2008	FPS2008	FPS2008	FPS2008
Prep Method		3550	3550	3550	3550	3550
Analyst		IE	IE	IE	IE	IE
Quantitation Factor		1.3	1.2	1.3	1.3	1.3

.

.

. .

1

STL Pensacola 3355 McLemore Drive - Pensacola FL 32514 Telephone: (850) 474-1001 Fax: (850) 478-2671

			Analytical D	ata Report					
Lab Sample ID	Description			,	Watrix	Date Recei	ived Date Sar	pled	SDG#
01739-6	SB-22 (4.0-4.5)	*****			Solld	01/28/05	01/26/05	5 13:00	
01739-7	\$8-24 (4.0-4.5)			\$	Solid	01/28/05	01/26/05	5 13:55	
01739-8	SB-26 (4.5-5.0)			5	Solid	01/28/05	01/26/05	5 15:25	
01739-9	SB-28 (4.0-4.5)			5	Solid	01/28/05	01/26/09	5 16:00	
01739-10	SB-29 (3.5-4.0)			9	Solid	01/28/05	01/27/0	07:45	
			Sample 1	D					
Parameter		Units	01739-6	017397	01739	-8	01739-9	01739	-10
			SB-22 (4.0-4.5)	SB-24 (4.0-4	.5) \$8-26	(4.5-5.0)	58-28 (4.0-4	.5) \$8-29	(3.5-4.(
Volatile	Petroleum Hydroc	arbons (MADE	'Р-VPH)		<u></u>		999999		
C5-C8 Aliphati	c Hydrocarbons								
(Unadjusted)	-	mg/kg dw	<10	<9.6	<9.2		<9.1	<8.7	
• •	ic Hydrocarbons								
(Unadjusted)		mg/kg dw	<5.2	<5.0	<4.8		<4,7	<4.5	
C9-C10 Aromati		• •						,	
(Unadjusted)	·	mg/kg dw	1.6JB 🗸	1.5JB V	2.88		2.3.15	16 9	
	a-Trifluorotolue		•		1		•	*	
ne (P1D) *		%	118 %	112 %	116 %		114 %	105 %	6
Surrogate-a.a,	a-Trifluorotolue								
ne (FID) *		*	118 %	111 %	118 %		115 %	106 9	4
Percent Solids			78	81	81		80	82	
Dilution Facto	r		145	143	139		135	132	
Prep Date			02/02/05	02/02/05	02/02	/05	02/02/05	02/02	2/05
Analysis Date			02/02/05	02/02/05	02/02	/05	02/02/05	02/02	2/05
Batch ID			TRS0098	TR\$009B	TRSOO	98	TR\$009B	TRSOC	19B
Prep Method			MADEP-VPH	MADEP-VPH	MADEP	-VPH	MADEP-VPH	MADEF	>-VPH
Analyst			CP	CP	ĆP		CP	CP	
Quantitation F	actor		186	177	171		169	161	
Extractat	le Petroleum Hyd	irocarbons (1	MADEP-EPH)						
C9-C18 Al iphat	ic Hydrocarbons						*		
(Unadjusted)		mg∕kg dw	4.0B t/	1.0-8218 (, § U	2,15	v	228	2.18	V
C19-C36 Alipha			,				,		
Hydrocarbons	(Unadjusted)	mg/kg dw	26B ⁷	59B	12B		99 \$	208	

Page 5 of 17

STL Pensacola 3355 McLemore Drive - Pensacola FL 32514 Telephone: (860) 474-1001 Fax: (850) 478-2671

SB-22 (4.0-4.5) SB-24 (4.0-4.5) SB-26 (4.5-5.0) SB-28 (4.0-4.5) SB-29 (3.5-4.0)

SDG#

,

			Analytica	Il Data Report				
Lab Sample ID	Description				Watrix	Date Receiv	ed Date San	npled SDG
01739-6	\$8-22 (4.0-4.5)	,	4		Solid	01/28/05	01/26/05	5 13:00
01739-7	SB-24 (4.0-4.5)				Solid	01/28/05	01/26/05	5 13:55
01739-8	SB-26 (4.5-5.0)	F			Solid	01/28/05	01/26/05	5 15:25
01739-9	SB-28 (4.0-4.5)				Solid	01/28/05	01/26/05	5 16:00
01739-10	SB-29 (3.5-4.0)				Solid	01/28/05	01/27/05	5 07:45
			Sampl	le ID				
Parameter		Units	01739-6	017397	0173	9-8 0	1739-9	01739-10

.

Extractable Petroleum Hydrocarbons (MADEP-EPH)

An annual state of the second state of the sec						
Surrogate -	**	0F W		07 M	70.0	70 %
1-Chloro-octadecane *	*	85 %	77 %	67 %	70 %	
Percent Solids		78	81	81	80	82
Dilution Factor		1	1	1	1	1
Prep Date		02/01/05	02/01/05	02/01/05	02/01/05	02/01/05
Analysis Date		02/04/05	02/04/05	02/04/05	02/04/05	02/04/05
Batch 1D		FPS2008	FPS2008	FPS2008	FPS2008	FPS2008
Prep Method		3550B	35508	3550B	35508	3550B
Analyst		IE	1E	IE	IE	IE
Quantitation Factor		1.3	1.2	1.2	1.3	1.2
· .						
C11-C22 Aromatic Hydrocarbon	s		منديين			-
C11-C22 Aronatic Hydrocarbon (Unadjusted)	s mg/kg dw	9.2	5.9 J	5.9 J	26	7.1 J
*		9.2 97 %	5.9 J 90 %	5.9 J 90 x	26 103 %	94 %
(Unadjusted)	mg∕kg dw %			219 -		
(Unadjusted) Surrogate - o-Terphenyl *	mg∕kg dw %	97 %	90 %	90 % 90 %	103 %	94 %
(Unadjusted) Surrogate - o-Terphenyl * Surrogate - 2-Fluoroblphenyl	mg∕kg dw %	97 %	90 %	90 % 90 %	103 %	94 %
(Unadjusted) Surrogate - o-Terphenyl * Surrogate - 2-Fiuorobiphenyl Surrogate -	mg/kg dw % *%	97 % 139 %	90 % • 146 ***	90 % -146 %*	103 % 138 %	94 % \$42.54
(Unadjusted) Surrogate - o-Terphenyl * Surrogate - 2-Fiuorobiphenyl Surrogate - 2-Bromonaphthalene *	mg/kg dw % *%	97 % 139 % 43 %	90 % 146 % 75 %	90 % 148.%****	103 % 138 % 51 %	94 % 442 % 77 %
(Unadjusted) Surrogate - o-Terphenyl * Surrogate - 2-Fiuorobiphenyl Surrogate - 2-Bromonaphthalene * Percent Solids	mg/kg dw % *%	97 % 139 % 43 % 78	SO % -146-*** 75 % 81	90 % -146 <u>-8</u> * 75 % 81	103 % 138 % 51 % 80	94 % 942 77 % 82 1
(Unadjusted) Surrogate - o-Terphenyl * Surrogate - 2-Fiuorobiphenyl Surrogate - 2-Bromonaphthalene * Percent Solids Dilution Factor Prep Date	mg/kg dw % *%	97 % 139 % 43 % 78 1	SO % 146 \$* 75 % 81 1	90 % •148 <u>*8</u> **** 75 % 81 1	103 % 138 % 51 % 80 1	94 % 142 % 77 % 82 1 02/01/05
(Unadjusted) Surrogate - o-Terphenyl * Surrogate - 2-Fiuorobiphenyl Surrogate - 2-Bromonaphthalene * Percent Solids Dilution Factor	mg/kg dw % *%	97 % 139 % 43 % 78 1 02/01/05	SO % 146 \$* 75 % 81 1 02/01/05	90 % 448 <u>8</u> **** 75 % 81 1 02/01/05	103 % 138 % 51 % 80 1 02/01/05	94 % 942 % 77 % 82
(Unadjusted) Surrogate - o-Terphenyl * Surrogate - 2-Fiuorobiphenyl Surrogate - 2-Bromonaphthalene * Percent Solids Dilution Factor Prep Date Analysis Date	mg/kg dw % *%	97 % 139 % 43 % 78 1 02/01/05 02/04/05	SO % 146 55 5 81 1 02/01/05 02/04/05	90 % 448_%*** 75 % 81 1 02/01/05 02/04/05	103 % 138 % 51 % 80 1 02/01/05 02/04/05	94 % 142 % 82 1 02/01/05 02/04/05
(Unadjusted) Surrogate - o-Terphenyl * Surrogate - 2-Fiuorobiphenyl Surrogate - 2-Bromonaphthalene * Percent Solids Dilution Factor Prep Date Analysis Date Batch ID	mg/kg dw % *%	97 % 139 % 43 % 78 1 02/01/05 02/04/05 FPS2008	SO % 146 % 81 1 02/01/05 02/04/05 FPS2008	90 % 448 % 81 1 02/01/05 02/04/05 FPS2008	103 % 138 % 51 % 80 1 02/01/05 02/04/05 FPS2008	94 % 142 1 82 1 02/01/05 02/04/05 FPS2008

Page 6 of 17

ι

Analytical Data Report

Lab Sample ID	Description			Matrix	Date Receiv	ed Date Sampled	SDG#
01739-11	SB-30 (2.5-3.0)			Solid	01/28/05	01/27/05 08:10	()
01739-12	SB-32 (3.5-4.0)			Solid	01/28/05	01/27/05 11:10	
01739-13	SB-31 (2.5-3.0)			Solid	01/28/05	01/27/05 08:55	
01739-14	SB-92 (3,5-4,0)			Solid	01/28/05	01/27/05	
		Sample	10				-
Parameter	Units	01739-11 SB-30 (2.5-3.1	01739-12 0) \$8-32 (3.5			11739-14 B-92 (3.5-4.0)	

....

Volatile Petroleum Hydrocarbons (MADEP-VPH)

C5-CB Aliphatic Hydrocarbo	ns				
(Unadjusted)	mg/kg dw	<9.6	<9.9	<8.2	<9.2
C9-C12 Aliphatic Hydrocarb	ions				
(Unadjusted)	mg/kg dw	<5.0	<5.1	<4.3	<4.8
C9-C10 Aromatic Hydrocarbo	กร				
(Unadjusted)	mg/kg dw	1.1.18	1.4JB U	0.87JB V	0.98,18 U
Surrogate-a,a,a-Trifluorot	olue				-
ne (PID) *	*	103 %	94 %	96 %	96 %
Surrogate-a.a,a-Trifluorot	olue				
ne (FID) *	я	104 %	95 %	97 %	97 %
Percent Solids		78	76	82	84
Dilution Factor		139	139	125	144
Prep Date		02/03/05	02/03/05	02/03/05	02/03/05
Analysis Date		02/03/05	02/03/05	02/03/05	02/03/05
Batch ID		TRS009B	TRS0098	TRS009B	TR\$0098
Prep Method		MADEP-VPH	MADEP-VPH	MADEP-VPH	MADEP-VPH
Analyst		CP	CP	CP	CP
Quantitation Factor		178	183	152	171

Extractable Petroleum Hydrocarbons (MADEP-EPH)

C9-C18 Aliphatic Hydrocarbons (Unadjusted)	mg∕kg dw	1.85 V	1.5+52.20	0.8758 2.10	2.38 V
C19-C36 Allphatic		n	1 mm ²⁴ . 3	a	
Hydrocarbons (Unadjusted)	mg/kg dw	6.4B	4.6 ^{5*} ()	3.58′ V	178
Surrogate -					
1-Chioro-octadecane *	%	78 %	72 %	77 %	72 %
Percent Solids		78	76	82	84
Dilution Factor		1	1	1	1
Prep Date		02/01/05	02/01/05	02/01/05	02/01/05
Analysis Date		02/04/05	02/04/05	02/04/05	02/04/05
Batch 1D		FPS2008	FPS2008	FPS2008	FPS2008
Prep Method		3550B	3550B	35508	35508
Analyst		IE	IE	IE	IE
Quantitation Factor		1.3	1.3	1.2	1.2

Page 7 of 17

Analytical Data Report

Lab Sample ID	Description		Watr	ix Date Rece	ived Date Sampled	SDG#
01739-11	SB-30 (2,5-3.0)	,	Soli	d 01/28/05	01/27/05 08:10	
01739-12	SB-32 (3.5-4.0)		Soli	d 01/28/05	01/27/05 11:10	
01739-13	SB-31 (2.5-3.0)		So11	d 01/28/05	01/27/05 08:55	
01739-14	SB-92 (3.5-4.0)		Soli	d 01/28/05	01/27/05	
		Sample I	D			~
Parameter	Units	01739-11 \$8-30 (2.5-3.0)	01739-12 SB-32 (3.5-4.0)	01739-13 SB-31 (2.5-3.0)	01739-14 SB-92 (3.5-4.0)	

Extractable Petroleum Hydrocarbons (MADEP-EPH)

.

C11-C22 Aromatic Hydrocarbons	;				
(Unadjusted)	mg∕kg dw	3.5 7	2.8 J	1.9 🕽	3.3 J
Surrogate - p-Terphenyl *	%	170 🕺	126 %	108 %	98 %
Surrogate - 2-Fluorobiphenyl	• %	115 %	186 %*	151 %*	114 %
Surrogate -					
2-Bromonaphthalene *	%	17 %*	32 %*	24 %*	9 %*
Percent Solids		78	76	82	84
Dilution Factor		1	1	1	1
Prep Date		02/01/05	02/01/05	02/01/05	02/01/05
Analysis Date		02/04/05	02/04/05	02/04/05	02/04/05
Batch ID		FPS2008	FPS2008	FPS2008	FPS2008
Prep Method		3550	3550	3550	3550
Analyst		IE	IE	IE	16
Quantitation Factor		1.3	1.3	1.2	1.2

Page 8 of 17

3355 McLemore Drive - Pensacola FL 32514 Telephone: (850) 474-1001 Fax: (850) 478-2671 STL Pensacola

Analytical Data Report							
Lab Sample ID	Description			Matrix	Date Received	Date Sampled	SDG#
01739-15	EB-012605	***************************************	****	Liquid	01/28/05	01/26/05 16:15	1922911-2-2011-1921(
			Sample ID				
Parameter		Units	0173915 EB-012605				

.

C5-C8 Aliphatic Hydrocarb	ons	
(Unadjusted)	ug/1	<26
C9-C12 Aliphatic Hydrocarl	bons	
(Unadjusted)	ug/1	<11
C9-C10 Aromatic Hydrocarb	ons	
(Unadjusted)	ug/1	5.8JB
Surrogate-a.a.a-Trifluoro	tolue	
ne (PID) *	%	100 %
Surrogate-a.a.a-Trifluoro	tolue	
ne (FID) *	*	103 %
Dilution Factor		1
Prep Date		02/01/05
Analysis Date		02/01/05
Batch ID		TRW012A
Prep Method		MADEP-VPH
Analyst		CP
Quantitation Factor		1
*		

Volatile Petroleum Hydrocarbons (MADEP-VPH)

Extractable Petroleum Hydrocarbons (MADEP-EPH)

C9-C18 Allphatic Hydrocarbons		
(Unadjusted)	ug/1	21JB
C19-C36 Aliphatic		
Hydrocarbons (Unadjusted)	ug/1	68B
Surrogate -		
1-Chloro-octadecane *	*	88 %
Dilution Factor		3
Prep Date		02/01/05
Analysis Date		02/04/05
Batch ID		FPS2008
Prep Method		3550B
Analyst		IE
Quantitation Factor		1.0

Page 9 of 17

•

3355 McLemore Drive - Pensacola FL 32514 Telephone: (850) 474-1001 Fax: (850) 478-2671 STL Pensacola

			Analytical Data Repor	t			
Lab Sampie ID	Description			Matrix	Date Received	Date Sampled	SDG#
01739-15	EB-012605		۲۵٬۰۰۰ - ۲۰۰۹ میروند - ۲۰۰۰ - ۲۰۰۹ میروند - ۲۰۰۹ میرون مربوع	Liquid	01/28/05	01/26/05 16:15	
			Sample ID				-
Parameter		Units	01739-15 EB012605				

Extractable Petroleum Hydrocarbons (MADEP-EPH)

C11-C22 Aromatic Hydrocarbons		
(Unadjusted)	ug/I	49.)
Surrogate - o-Terphenyl *	%	117 %
Surrogate - 2-Fluorobiphenyl *	*	137 %
Surrogate -		
2-Bromonaphthalene *	%	13 %*
Dilution Factor		1
Prep Date		02/01/05
Analysis Date		02/04/05
Batch 1D		FPS2008
Prep Method		3550
Analyst		IE
Quantitation Factor		1

.

. .

,

STL Pensacola 3355 McLemore Drive - Pensacola FL 32514 Telephone: (850) 474-1001 Fax: (850) 478-2671

			Analytical Data Repor	t			
Lab Sample II) Description			Matrix	Date Received	Date Sampled	SDG#
01739-16	TB-012705	**************************************	######################################	Liquid	01/28/05	01/27/05	
			Sample ID				
Paraneter		Units	01739-16 TB-012705				

Volatile	Petroleum	Hydrocarbons	(MADEP-VPH)
----------	-----------	--------------	-------------

C5-C8 Aliphatic Hydroca	rbons	
(Unadjusted)	ug/1	<26
C9-C12 Aliphatic Hydroc	arbons	
(Unadjusted)	ug/I	<11
C9-C10 Aromatic Hydroca	rbons	
(Unadjusted)	ug/1	4.9JB
Surrogate-a,a,a-Trifluo	rotolue	
ne (PID) *	%	93 %
Surrogate-a,a,a-Trifluo	rotolue	
ne (FID) *	*	95 %
Dilution Factor		1
Prep Date		02/01/05
Analysis Date		02/01/05
Batch 10		TRW012A
Prep Method		MADEP-VPH
Analyst		CP
Quantitation Factor		7

Page 11 of 17

Analytical Report

For: Mr. Scott Davies Blasland, Bouck & Lee, Inc. 3700 Regency Parkway, Suite 140 Cary, NC 27511 CC:

> Order Number: C501739 SDG Number: Client Project ID: SUTTON STEAM PLANT Project: FADA-PHASE II Report Date: 02/10/2005 Sampled By: Client Sample Received Date: 01/28/2005 Requisition Number: Purchase Order:

SCAKERS

Stephanie Akers, Project Manager SAkers@stl-inc.com

The test results in this report meet all NELAP requirements for parameters for which ccreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

TL Pensacola

3355 McLemore Drive - Pensacola FL 32514 Telephone: (850) 474-1001 Fax: (850) 478-2671

Sample Summary

Order:	C501739	Client:	Blasland,	Bouck	& Lee,	Inc.
Date Received:	01/28/2005	Project:	FADA-PHAS	E II		

Client Sample ID	Lab Sample ID	Matrix	Date Sampled
SF-7 (0.5-1.0)	C501739*1	Solid	01/26/2005 09:00
SF-8 (0.5-1.0)	C501739*2	Solid	01/26/2005 09:15
SF-9 (0.5-1.0)	C501739*3	Solid	01/26/2005 09:40
SF-10 (0.5-1.0)	C501739*4	Solid	01/26/2005 10:00
SF-91 (0.5-1.0)	C501739*5	Solid	01/26/2005
SB-22 (4.0-4.5)	C501739*6	Solid	01/26/2005 13:00
SB-24 (4.0-4.5)	C501739*7	Solid	01/26/2005 13:55
SB-26 (4.5-5.0)	C501739*8	Solid	01/26/2005 15:25
SB-28 (4.0-4.5)	C501739*9	Solid	01/26/2005 16:00
SB-29 (3.5-4.0)	C501739*10	Solid	01/27/2005 07:45
SB-30 (2.5-3.0)	C501739*11	Solid	01/27/2005 08:10
SB-32 (3.5-4.0)	C501739*12	Solid	01/27/2005 11:10
SB-31 (2.5-3.0)	C501739*13	Solid	01/27/2005 08:55
SB-92 (3.5-4.0)	C501739*14	Solid	01/27/2005
EB-012605	C501739*15	Liquid	01/26/2005 16:15
TB-012705	C501739*16	Liquid	01/27/2005

STL Pensacola 3355 McLemore Drive - Pensacola FL 32514 Telephone:(850) 474-1001 Fax:(850) 478-2671

Analytical Data Report

Lab Sample ID	Description			M	atrix	Date Rece	eived	Date Sample	ed	SDG#
01739-1	SF-7 (0.5-1.0)			S	olid	01/28/05		01/26/05 09	9:00	<u></u>
01739-2	SF-8 (0.5-1.0)			S	olid	01/28/05		01/26/05 09	9:15	
01739-3	SF-9 (0.5-1.0)			S	olid	01/28/05		01/26/05 09	9:40	
01739-4	SF-10 (0.5-1.0)			S	olid	01/28/05		01/26/05 10	0:00	
01739-5	SF-91 (0.5-1.0)			S	olid	01/28/05		01/26/05		
			Sample 1	[D						·
Parameter		Units	0173 9 –1	0173 9 -2	01739)-3	0173	9-4	01739-	-5
			SF-7 (0.5-1.0)	SF-8 (0.5-1.0)) SF-9	(0.5-1.0)	SF-1	0 (0.5–1.0)	SF-91	(0.5-1.0)
Volatile F	Petroleum Hydroc	arbons (MADE	P-VPH)							
C5-C8 Aliphatic	: Hydrocarbons									
(Unadjusted)	-	mg/kg dw	<9.9	<4.5	<8.5		<8.9		<10	
C9-C12 Aliphati	ic Hydrocarbons									
(Unadjusted)		mg/kg dw	<5.1	<2.4	<4.4		<4.6		1.83	
C9-C10 Aromatic	: Hydrocarbons									
(Unadjusted)		mg/kg dw	6.9B	1.5B	2.2JB	5	4.3B		5.6B	
ogate-a,a,a	a-Trifluorotolue									
ne (PID) *		%	122 %	112 %	99 %		107 %	6	117 %	
Surrogate-a,a,a	a-Trifluorotolue									
ne (FID) *		%	123 %	113 %	100 %	6	109 %	6	117 %	
Percent Solids			`78	81	79		77		80	
Dilution Factor	-		143	68	125		127		150	
Prep Date			02/01/05	02/02/05	02/01	./05	02/02	2/05	02/02/	05
Analysis Date			02/01/05	02/02/05	02/01	./05	02/02	2/05	02/02/	′05
Batch ID			TRS009B	TRS009B	TRSOC	19B	TRS00)9B	TRS009	В
Prep Method			MADEPVPH	MADEP-VPH	MADEF	PVPH		P-VPH	MADEP-	·VPH
Analyst			СР	СР	CP		CP		СР	
Quantitation Fa	actor		183	84	158		165		188	
Extractab	le Petroleum Hyd	rocarbons (M	ADEP-EPH)							
C9-C18 Aliphati	ic Hydrocarbons									
(Unadjusted) C19-C36 Aliphat	tic	mg/kg dw	51B	4.4B	9B		18B		13B	
Hydrocarbons	(Unadjusted)	mg/kg dw	280B	49B	82B		120B		98B	

STL Pensacola

3355 McLemore Drive - Pensacola FL 32514 Telephone:(850) 474-1001 Fax:(850) 478-2671

Analytical Data Report

Lab Sample II	D Description			٩	l atrix	Date Recei	ved Date Sampi	ed SDG#
01739-1	SF-7 (0.5-1.0)		S	Solid	01/28/05	01/26/05 0	9:00
01739-2	SF-8 (0.5-1.0)		S	Solid	01/28/05	01/26/05 0	9:15
01739-3	SF-9 (0.5-1.0)		S	Solid	01/28/05	01/26/05 0	
01739-4	SF-10 (0.5-1.	0)		S	Solid	01/28/05	01/26/05 1	0:00
01739-5	SF-91 (0.5-1.	0)		S	Solid	01/28/05	01/26/05	
			Sample 3	ÍD				
Parameter		Units	01739-1	01739-2	01739) -3	0173 9 -4	01739-5
			SF-7 (0.5-1.0)	SF-8 (0.5-1.0)) SF-9	(0.5-1.0)	SF-10 (0.5-1.0)	SF-91 (0.5-1.0
Extracta	able Petroleum H	lydrocarbons (MA	DEP-EPH)					
Surrogate -								
1-Chloro-od	ctadecane *	%	13 %D	76 %	39 %I)	39 %D	84 %
Percent Solid	ds		78	81	79		77	80
Dilution Fact	tor		5	1	2		2	1
Prep Date			02/01/05	02/01/05	02/01	/05	02/01/05	02/01/05
Analysis Date	e		02/04/05	02/03/05	02/04	/05	02/04/05	02/03/05
h ID			FPS2008	FPS2008	FPS20	08	FPS2008	FPS2008
rep Method			3550B	3550B	3550E	3	3550B	3550B
Analyst			IE	IE	IE		IE	IE
Quantitation	Factor		6.4	1.2	2.5		2.6	1.3
Extracta	able Petroleum H	lydrocarbons (MA	Dep-eph)					
C11-C22 Aroma	atic Hydrocarbon	S						
(Unadjusted	d)	mg/kg dw	120	24	33		20	44
Surrogate - o	o-Terphenyl *	%	69 %	80 %	104 %	b	66 %	96 %
Surrogate - 2	2-Fluorobiphenyl	* %	112 %	135 %	154 %	6*	44 %	149 %*
Surrogate -								
2-Bromonapl	hthalene *	%	28 %*	35 %*	26 %	÷	6 %*	36 %*
Percent Solid	ds		78	81	79		77	80
Dilution Fact	tor		1	1	1		1	1
Prep Date			02/01/05	02/01/05	02/01	L/05	02/01/05	02/01/05
Analysis Date	e		02/04/05	02/03/05	02/03	3/05	02/03/05	02/03/05
Batch ID			FPS2008	FPS2008	FPS20	008	FPS2008	FPS2008
			3550	3550	3550		3550	3550
Prep Method								
Prep Method Analyst			IE	IE	IE		IE	IE

TL Pensacola 3355 McLemore Drive - Pensacola FL 32514 Telephone: (850) 474-1001 Fax: (850) 478-2671

Analytical Data Report

Lab Sampile ID	Description					Matrix	Date Recei	ved	Date Sampil	ed	SDG#
01739-6	SB-22 (4.0-4.5)					Solid	01/28/05		01/26/05 1	3:00	
01739-7	SB-24 (4.0-4.5)					Solid	01/28/05	(01/26/05 13	3:55	
01739-8	SB-26 (4.5-5.0)					Solid	01/28/05	(01/26/05 1	5:25	
01739-9	SB-28 (4.0-4.5)					Solid	01/28/05	(01/26/05 10	5:00	
01739-10	SB-29 (3.5-4.0)					Solid	01/28/05	(01/27/05 0	7:45	
				Sample I	D						~
Parameter		Units		01739-6	01739-7	01739		01739	-	01739 -	
				SB-22 (4.0-4.5)	SB-24 (4.0-4	1.5) SB-26	(4.5-5.0)	SB-28	(4.0-4.5)	SB-29	(3.5-4.0)
Volatile	Petroleum Hydroc	arbons	(MADEPVP	H)							
C5-C8 Aliphati	c Hydrocarbons										
(Unadjusted)		mg/kg	dw	<10	<9.6	<9.2		<9.1		<8.7	
C9-C12 Aliphat	ic Hydrocarbons										
(Unadjusted)		mg/kg	dw	<5.2	<5.0	<4.8		<4.7		<4.5	
C9-C10 Aromati	c Hydrocarbons										
(Unadjusted)		mg/kg	dw	1.6JB	1.6JB	2.8B		2.3JB		16B	
ogate-a,a,	a-Trifluorotolue										
(PID) *		%		118 %	112 %	116 %		114 %		105 %	
Surrogate-a,a,	a-Trifluorotolue										
ne (FID) *		%		118 %	111 %	118 %		115 %		106 %	
Percent Solids				78	81	81		80		82	
Dilution Facto	r			145	143	139		135		132	
Prep Date				02/02/05	02/02/05	02/02,	/05	02/02	/05	02/02/	05
Analysis Date				02/02/05	02/02/05	02/02,	/05	02/02	/05	02/02/	05
Batch ID				TRS009B	TRS009B	TRS00	9B	TRS00	9B	TRS009	В
Prep Method				MADEP-VPH	MADEP-VPH	MADEP	-VPH	MADEP	VPH	MADEP-	VPH
Analyst				СР	СР	CP		СР		СР	
Quantitation F	actor			186	177	171		169		1.61	
Extractab	le Petroleum Hyd	rocarbo	ons (MADEP	-EPH)							
-	ic Hydrocarbons										
(Unadjusted)		mg/kg	dw	4.OB	0.82JB	2.1B		22B		2.1B	
	tic										
C19-C36 Alipha											

STL Pensacola

3355 McLemore Drive - Pensacola FL 32514 Telephone:(850) 474-1001 Fax:(850) 478-2671

Analytical Data Report

Lab Sample ID	Description			ł	Matrix	Date Rece	ived	Date Sample	ed SDG#
01739-6	SB-22 (4.0-4.5)				Solid	01/28/05		01/26/05 1	3:00
01739-7	SB-24 (4.0-4.5)			:	Solid	01/28/05		01/26/05 13	8:55
01739-8	SB-26 (4.5-5.0)			:	Solid	01/28/05		01/26/05 1	5:25
01739- 9	SB-28 (4.0-4.5)				Solid	01/28/05		01/26/05 10	5:00
01739-10	SB-29 (3.5-4.0)				Solid	01/28/05		01/27/05 0	7:45
			Sample I	D					
Parameter		Units	0173 9-6	01739-7	01739	-8	01739	9-9	01739-10
	·····		SB-22 (4.0-4.5)	SB-24 (4.0-4	.5) SB-26	(4.5-5.0)	SB-28	8 (4.0-4.5)	SB-29 (3.5-4.0
Extractab	le Petroleum Hyd	lrocarbons (MA	DEP-EPH)						
Surrogate -									
1-Chloro-oct	adecane *	%	85 %	77 %	67 %		70 %		70 %
Percent Solids			78	81	81		80		82
Dilution Facto	r		1	1	1		1		1
Prep Date			02/01/05	02/01/05	02/01	/05	02/03	1/05	02/01/05
Analysis Date			02/04/05	02/04/05	02/04	/05	02/04	4/05	02/04/05
h ID			FPS2008	FPS2008	FPS20	08	FPS20	208	FPS2008
rep Method			3550B	3550B	3550B		3550	В	3550B
Analyst			IE	IE	IE		IE		IE
Quantitation F	actor		1.3	1.2	1.2		1.3		1.2
Extractab	le Petroleum Hyd	lrocarbons (MA	DEP-EPH)						
C11-C22 Aromat	ic Hydrocarbons								
(Unadjusted)		mg/kg dw	9.2	5.9	5.9		26		7.1
Surrogate - o-		%	97 %	90 %	90 %		103 %		94 %
Surrogate - 2- Surrogate -	Fluorobiphenyl *	* %	139 %	146 %*	146 %	*	138 %	%	142 %*
2-Bromonapht	halene *	%	43 %	75 %	75 %		51 %		77 %
			78	81	81		80		82
Percent Solids				1	1		1		1
			1		-				
Dilution Facto			1 02/01/05	- 02/01/05	02/01	/05	02/0	1/05	02/01/05
Dilution Facto Prep Date			-		—		02/0: 02/0	•	02/01/05 02/04/05
Dilution Facto Prep Date Analysis Date			02/01/05	02/01/05	02/01	/05		4/05	
Dilution Facto Prep Date Analysis Date Batch ID			02/01/05 02/04/05	02/01/05 02/04/05	- 02/01 02/04	/05	02/04	4/05 008	02/04/05
Percent Solids Dilution Facto Prep Date Analysis Date Batch ID Prep Method Analyst			02/01/05 02/04/05 FPS2008	02/01/05 02/04/05 FPS2008	02/01 02/04 FPS20	/05	02/04 FPS20	4/05 008	02/04/05 FPS2008

TL Pensacola 3355 McLemore Drive - Pensacola FL 32514 Telephone: (850) 474-1001 Fax: (850) 478-2671

SDG#

~

Lab Sample ID	Description				Matrix	Date Rece	rived 1	Date Sampled
01739-11	SB-30 (2.5-3.0)	1.01 1.00		·· ····	Solid	01/28/05	(01/27/05 08:10
01739-12	SB-32 (3.5-4.0)				Solid	01/28/05		01/27/05 11:10
01739-13	SB-31 (2.5-3.0)				Solid	01/28/05	(01/27/05 08:55
01739-14	SB-92 (3.5-4.0)				Solid	01/28/05		01/27/05
			Sample I	D				
Parameter		Units	01739-11	01739-12	01739	-13	01739	-14
			SB-30 (2.5-3.0)	SB-32 (3.5-4	4.0) SB-31	(2.5-3.0)	SB-92	(3.5-4.0)
Volatile	Petroleum Hydroc	arbons (MADE	?-VPH)					
C5-C8 Aliphati	ic Hydrocarbons							
(Unadjusted))	mg/kg dw	<9.6	<9.9	<8.2		<9.2	
C9-C12 Aliphat	ric Hydrocarbons							
(Unadjusted))	mg/kg dw	<5.0	<5.1	<4.3		<4.8	
C9-C10 Aromati	ic Hydrocarbons							
(Unadjusted))	mg/kg dw	1.1JB	1.4JB	0.873	В	0.983	В
Surrogate-a,a,	a-Trifluorotolue	:						
(PID) *		%	103 %	94 %	96 %		96 %	
Fogate-a,a,	a-Trifluorotolue	2						
ne (FID) *		%	104 %	95 %	97 %		97 %	
Percent Solids	5		78	76	82		84	
Dilution Facto	or		139	139	125		144	
Prep Date			02/03/05	02/03/05	02/03	/05	02/03	/05
Analysis Date			02/03/05	02/03/05	02/03	/05	02/03	/05
Batch ID			TRS009B	TRS009B	TRS00	9B	TRS00	9B
Prep Method			MADEP-VPH	MADEPVPH	MADEP	-VPH	MADEP	-VPH
Analyst			CP	СР	СР		СР	
Quantitation F	Factor		178	1.83	152		171	
Extractat	ole Petroleum Hyd	lrocarbons (M	ADEP-EPH)					
C9-C18 Aliphat	tic Hydrocarbons							
(Unadjusted)	-	mg/kg dw	1.8B	1.53B	0.873	В	2.3B	
C19-C36 Alipha								

Analytical Data Report

rogate-a, a, a-friffuorotoit	ie –				
ne (FID) *	%	104 %	95 %	97 %	97 %
Percent Solids		78	76	82	84
Dilution Factor		139	139	125	144
Prep Date		02/03/05	02/03/05	02/03/05	02/03/05
Analysis Date		02/03/05	02/03/05	02/03/05	02/03/05
Batch ID		TRS009B	TRS009B	TRS009B	TRS009B
Prep Method		MADEP-VPH	MADEPVPH	MADEPVPH	MADEP-VPH
Analyst		СР	CP	СР	СР
Quantitation Factor		178	1.83	152	171
Extractable Petroleum Hy	/drocarbons (MAI	DEP-EPH)			
C9-C18 Aliphatic Hydrocarbons	5				
(Unadjusted)	mg/kg dw	1.8B	1.53B	0.87JB	2.3B
C19-C36 Aliphatic					
Hydrocarbons (Unadjusted)	mg/kg dw	6.4B	4.6B	3.5B	17B
Surrogate -	(
1-Chloro-octadecane *	%	78 %	72 %	77 %	72 %
Percent Solids		78	76	82	84
Dilution Factor		1	1	1	1
Prep Date		02/01/05	02/01/05	02/01/05	02/01/05
Analysis Date		02/04/05	02/04/05	02/04/05	02/04/05
Batch ID		FPS2008	FPS2008	FPS2008	FPS2008
Prep Method		3550B	3550B	3550B	3550B
fyst		IE	IE	IE	IE
Quantitation Factor		1.3	1.3	1.2	1.2

TL Pensacola

3355 McLemore Drive - Pensacola.FL 32514 Telephone:(850) 474-1001 Fax:(850) 478-2671

Analytical Data	a Report
-----------------	----------

Lab Sample ID	Description			Matrix	Date Receive	ed Date Sampiled	SDG#
01739-11	SB-30 (2.5-3.0)			Solid	01/28/05	01/27/05 08:10	
01739-12	SB-32 (3.5-4.0)			Solid	01/28/05	01/27/05 11:10	
01739-13	SB-31 (2.5-3.0)			Solid	01/28/05	01/27/05 08:55	
01739-14	SB-92 (3.5-4.0)			Solid	01/28/05	01/27/05	
		Sample	e ID				
Parameter	Units	01739-11 SB-30 (2.5-3.	01739-12 .0) SB-32 (3.5		19-13 01 1 (2.5-3.0) Si	1739-14 3-92 (3.5-4.0)	

Extractable Petroleum Hydrocarbons (MADEP-EPH)

C11-C22 Aromatic Hydrocarbons					
(Unadjusted)	mg/kg dw	3.5	2.8	1.9	3.3
Surrogate – o-Terphenyl *	%	110 %	126 %	108 %	98 %
Surrogate - 2-Fluorobiphenyl	* %	115 %	186 %*	151 %*	114 %
Surrogate -					
2-Bromonaphthalene *	%	11 %*	32 %*	24 %*	9 %*
Percent Solids		78	76	82	84
tion Factor		1	1	1	1
Date		02/01/05	02/01/05	02/01/05	02/01/05
Analysis Date		02/04/05	02/04/05	02/04/05	02/04/05
Batch ID		FPS2008	FPS2008	FPS2008	FPS2008
Prep Method		3550	3550	3550	3550
Analyst		IE	IE	IE	IE
Quantitation Factor		1.3	1.3	1.2	1.2

.

¥.

STL Pensacola 3355 McLemore Drive - Pensacola FL 32514 Telephone:(850) 474-1001 Fax:(850) 478-2671

			Analytical Data Repor	t				
Lab Sample ID	Description			Matrix	Date Received	Date Sampiled	SDG#	
01739-15	EB-012605		<u> </u>	Liquid	01/28/05	01/26/05 16:15		
			Sample ID					~
Parameter	、	Units	01739-15 EB-012605					

Volatile Petroleum Hydrocarbons (MADEP-VPH)

C5-C8 Aliphatic Hydrocarbons		
(Unadjusted)	ug/l	<26
C9-C12 Aliphatic Hydrocarbons		
(Unadjusted)	ug/T	<11
C9-C10 Aromatic Hydrocarbons		
(Unadjusted)	ug/1	5.8JB
Surrogate-a,a,a-Trifluorotolue		
ne (PID) *	%	100 %
Surrogate-a,a,a-Trifluorotolue	ŧ	
ne (FID) *	%	103 %
Leftition Factor		1
Date Date		02/01/05
Analysis Date		02/01/05
Batch ID		TRW012A
Prep Method		MADEP-VPH
Analyst		СР
Quantitation Factor		1

Extractable Petroleum Hydrocarbons (MADEP-EPH)

C9-C18 Aliphatic Hydrocarbons		
(Unadjusted)	ug/l	21JB
C19-C36 Aliphatic		
Hydrocarbons (Unadjusted)	ug/l	68B
Surrogate -		
1-Chloro-octadecane *	%	88 %
Dilution Factor		1
Prep Date		02/01/05
Analysis Date		02/04/05
Batch ID		FPS2008
Prep Method		3550B
Analyst		IE
Quantitation Factor		1.0

. -'

3355 McLemore Drive - Pensacola FL 32514 Telephone:(850) 474-1001 Fax:(850) 478-2671

,

			Analytical Data Report	:			
Lab Sample ID	Description			Matrix	Date Received	Date Sampiled	SDG#
01739-15	EB-012605			Liquid	01/28/05	01/26/05 16:15	
			Sample ID				~
Parameter		Units	01739-15 EB-012605				

Extractable Petroleum Hydrocarbons (MADEP-EPH)

C11-C22 Aromatic Hydrocarbons		
(Unadjusted)	ug/l	493
Surrogate - o-Terphenyl *	%	117 %
Surrogate - 2-Fluorobiphenyl *	%	137 %
Surrogate ~		
2-Bromonaphthalene *	%	13 %*
Dilution Factor		1
Prep Date		02/01/05
Analysis Date		02/04/05
Batch ID		FPS2008
Method		3550
yst		IE
Quantitation Factor		1

.

STL Pensacola

3355 McLemore Drive - Pensacola FL 32514 Telephone:(850) 474-1001 Fax:(850) 478-2671

,

			Analytical Data Report					
Lab Sample ID	Description			Matrix	Date Received	Date Sampled	SDG#	
01739-16	TB012705			Liquid	01/28/05	01/27/05		-
			Sample ID					~
Parameter		Units	01739-16 TB-012705					

Volatile Petroleum Hydrocarbons (MADEP-VPH)

C5-C8 Aliphatic Hydrocarbons		
(Unadjusted)	ug/1	<26
C9-C12 Aliphatic Hydrocarbons		
(Unadjusted)	ug/1	<11
C9-C10 Aromatic Hydrocarbons		
(Unadjusted)	ug/l	4.9JB
Surrogate-a,a,a-Trifluorotolu	e	
ne (PID) *	%	93 %
Surrogate-a,a,a-Trifluorotolu	e	
ne (FID) *	%	95 %
mution Factor		1
Date		02/01/05
Analysis Date		02/01/05
Batch ID		TRW012A
Prep Method		MADEP-VPH
Analyst		СР
Quantitation Factor		1

STL Pensacola

3355 McLemore Drive - Pensacola FL 32514 Telephone:(850) 474-1001 Fax:(850) 478-2671

Analytical Data Report

Lab Sample ID	Description				Matrix	Date Received	Date Sampled	SDG#
01739-17	Method Blank		····· ··· ··· <u>······</u> ·····		Solid	01/28/05	<u> </u>	
01739-18	Lab Control St	andard % Recovery	y		Solid	01/28/05		
01739-19	LCS Accuracy C	Control Limit (%R))		Solid	01/28/05		
			Sample	ID				
Parameter		Units	01739-17	01739-18		9–19		
			Method Blank	Lab Control	StanLCS	Accuracy Con		
Volatile	Petroleum Hydro	carbons (MADEP-VI	PH)					
C5-C8 Aliphat	ic Hydrocarbons							
(Unadjusted))	mg/kg dw	<2.7	101 %	70-1	.30		
C9-C12 Aliphat	tic Hydrocarbons	;						
(Unadjusted))	mg/kg dw	<1.4	130 %	70-1	30		
C9-C10 Aromat	ic Hydrocarbons							
(Unadjusted))	mg/kg dw	0.34J	100 %	70-1	.30		
-	a-Trifluorotolu							
ne (PID) *		%	109 %	107 %	70-1	30		
rogate-a,a	a-Trifluorotolu	e						
e (FID) *		%	110 %	109 %	70-1	30		
Dilution Facto	or		50					
Prep Date			02/02/05					
Analysis Date			02/02/05					
Batch ID			TRS009B	TRS009B				
Prep Method			MADEP-VPH					
Analyst			СР					
Quantitation	Factor		50					
Extractal	ole Petroleum Hy	drocarbons (MADE	P-EPH)					
C9-C18 Aliphat	tic Hydrocarbons	;						
(Unadjusted)		mg/kg dw	1.2]	79 %	40-1	.40		
C19-C36 Alipha								
	s (Unadjusted)	mg/kg dw	0.87]	96 %	40-1	40		
Surrogate -		-						
1-Chloro-oc	tadecane *	%	71 %	70 %	40-1	40		
Dilution Facto	or		1					
Prep Date			02/01/05					
Analysis Date			02/03/05					
Batch ID			FPS2008	FPS2008				
Prep Method			3550B					
Analyst			IE					
	Factor		1.0					

TL Pensacola

3355 McLemore Drive - Pensacola FL 32514 Telephone:(850) 474-1001 Fax:(850) 478-2671

.

.

the public to	Description				Matrix	Date Received	Date Sampled	SDG#
01739-17	Method Blank		······		Solid	01/28/05		
01739-18	Lab Control St	andard % Recovery	/		Solid	01/28/05		
01739-19	LCS Accuracy C	ontrol Limit (%R)			Solid	01/28/05		
			Sample	ID				
Parameter		Units	01739-17 Method Blank	01.739-18 Lab Control	0173 StanLCS	9-19 Accuracy Con		
C11-C22 Aromat	cic Hydrocarbons			20, 222	10.1	10		
(Unadjusted)		mg/kg dw 🔍	<1.6	28.333	40-1	40		
Constant and the second	The second second second second	0/	74 0/		40.1	10		
Surrogate - o-	• -	%	74 %	125.000	40-1			
Surrogate - 2-	·Terphenyl * ·Fluorobiphenyl		74 % 108 %	125.000 100.000	40-1. 40-1.			
Surrogate - 2- Surrogate -	Fluorobiphenyl	* %	108 %	100.000	40-1	40		
Surrogate - 2- Surrogate - 2-Bromonapht	Fluorobiphenyl		108 % 18 %*			40		
Surrogate - 2- Surrogate - 2-Bromonapht Dilution Facto	Fluorobiphenyl	* %	108 % 18 %* 1	100.000	40-1	40		
Surrogate - 2- Surrogate - 2-Bromonapht Dilution Facto Prep Date	Fluorobiphenyl	* %	108 % 18 %* 1 02/01/05	100.000	40-1	40		
Surrogate - 2- Surrogate - 2-Bromonapht Dilution Facto Prep Date	Fluorobiphenyl	* %	108 % 18 %* 1 02/01/05 02/03/05	100.000 100.000	40-1	40		
Surrogate - 2- Surrogate - 2-Bromonapht Dilution Facto Prep Date Vysis Date h ID	Fluorobiphenyl	* %	108 % 18 %* 1 02/01/05	100.000	40-1	40		
Surrogate - 2- Surrogate - 2-Bromonapht Dilution Facto Prep Date	Fluorobiphenyl	* %	108 % 18 %* 1 02/01/05 02/03/05 FPS2008	100.000 100.000	40-1	40		

.

STL Pensacola 3355 McLemore Drive - Pensacola FL 32514 Telephone: (850) 474-1001 Fax: (850) 478-2671

Lab Sample ID	Description				Matrix	Date Received	Date Sampled	SDG#
01739-20	Method Detecti	on Limit (MDL)	<u> </u>		Solid	01/28/05	· · · · · · · · · · · · · · · · · · ·	
01739-21	Reporting Limi	t (RL)			Solid	01/28/05		
			Samp	le ID				
Parameter		Units	01739-20	01739-21				
			Method Dete	ctionReporting	Limit			
Volatile	Petroleum Hydro	carbons (MADEP-	VPH)					
C5-C8 Aliphati	ic Hydrocarbons							
(Unadjusted))	mg/kg dw	0.011	0.054				
C9-C12 Aliphat	ric Hydrocarbons	;						
(Unadjusted))	mg/kg dw	0.0093	0.028				
C9-C10 Aromati	ic Hydrocarbons							
(Unadjusted))	mg/kg dw	0.0053	0.015				
Extractab	ole Petroleum Hy	drocarbons (MAD	ep-eph)					
18 Aliphat	ric Hydrocarbons	;						
(unadjusted))	mg/kg dw	0.37	1.6				
C19-C36 Alipha	atic							
Hydrocarbons	(Unadjusted)	mg/kg dw	0.44	1.6				
Extractab	ole Petroleum Hy	drocarbons (MAD	ep-eph)					
C11-C22 Aromat	cic Hydrocarbons							
(Unadjusted)	-	mg/kg dw	0.37	1.6				
	-		0.37	1.6				

STL Pensacola

.

3355 McLemore Drive - Pensacola FL 32514 Telephone:(850) 474-1001 Fax:(850) 478-2671

	Data	Donout
Analytical	Dala	Report

Lab Sample ID	Description			Matrix	Date Received	Date Sampled	SDG#
01739-22	Method Blank			Liquid	01/28/05		
01739-23	Lab Control Standard % Re	covery		Liquid	01/28/05		
01739-24	LCS Accuracy Control Limi	t (%R)		Liquid	01/28/05		
		Sample	ID				
Parameter	Units	01739-22	01739-23	0173	9-24		
		Method Blank	Lab Contro	ol StanLCS	Accuracy Con		
Volatile	Petroleum Hydrocarbons (MA	DEP-VPH)					
C5-C8 Aliphati	c Hydrocarbons						
(Unadjusted)	ug/l	<26	109 %	70-1	30		
C9-C12 Aliphat	tic Hydrocarbons						
(Unadjusted)	ug/l	<11	98 %	70-1	30		
C9-C10 Aromati	c Hydrocarbons						
(Unadjusted)	ug/1	<7.0	90 %	70-1	30		
Surrogate-a,a,	a-Trifluorotolue						
ne (PID) *	%	100 %	99 %	70-1	30		
	a-Trifluorotolue						
e (FID) *	%	102 %	102 %	70-1	30		
Dilution Facto	r	1					
Prep Date		02/01/05					
Analysis Date		02/01/05					
Batch ID		TRW012A	TRW012A				
Prep Method		MADEP-VPH					
Analyst		СР					
Ouantitation F	actor	1					

TL Pensacola 3355 McLemore Drive - Pensacola FL 32514 Telephone:(850) 474-1001 Fax:(850) 478-2671

Analytical Data Report

Lab Sample 1	D Description			Matrix	Date Received	Date Sampled	SDG#
01739-25	Method Detection Limit (MDL)	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	Liquid	01/28/05		
01739-26	Reporting Limit (RL)			Liquid	01/28/05		
		SampT	e ID				
Parameter	Units	01739-25	01739-26				
		Method Detec	tionReporting	Limit			

Volatile Petroleum Hydrocarbons (MADEP-VPH)

C5-C8 Aliphatic Hydrocarbons			
(Unadjusted)	ug/l	4.5	26
C9-C12 Aliphatic Hydrocarbons			
(Unadjusted)	ug/1	4.2	11
C9-C10 Aromatic Hydrocarbons			
(Unadjusted)	ug/1	4.6	7.0

TL Pensacola

3355 McLemore Drive - Pensacola FL 32514 Telephone:(850) 474-1001 Fax:(850) 478-2671

Order Number: C501739

These test results meet all the requirements of NELAC. All questions regarding this test report should be directed to the STL Project Manager who signed this test report.

Client Name	BBL	Laboratory Name	STL PENSACOLA
Project Name	FADA-PHASE II	NC Certification # (Lab)	<u>314</u>
Site Location	NC	Sample Matrix	SÓIL

	Ş	Sample Inf	ormation a	and Analytic	al Results		······································			
Method for Ranges: MAI	DEP VPH	Sar	nple Identific	ation	C501739-1	C501739-2	C501739-3	C501739-4		
		Collec	tion Option (for soil)*	OPTION 3	OPTION 3	OPTION 3	OPTION 3		
VPH Surrogate Standard	ds		Date Collecte	d	1/26/05	1/26/05	1/26/05	1/26/05		
Aliphatic: aaa-trifluoroto	oluene]	Date Receive	d	1/28/05	1/28/05	1/28/05	1/28/05		
Aromatic: aaa-trifluoroto	bluene	C	Date Extracte	d	1/26/05	1/26/05	1/26/05	1/26/05		
		Date Analyze	d	2/1/05	2/2/05	2/1/05	2/2/05			
	% Dry Solids			78	81	79	77			
			Dilution Factor		143	68	125	127		
Hydrocarbon Ranges	Units of Measure	MDL	RL	Blank						
C5 - C8 Aliphatics**	mg/kg_dw	0.56	2.7	<0.56	<9.9	<4.5	<8.5	<8.9		
C9 - C12 Aliphatics**	mg/kg_dw	0.47	1.4	<0.47	<5.1	<2.4	<4.4	<4.6		
C9 - C10 Aromatics**	mg/kg_dw	0.27	0.75	0.34 J	6.9 B	1.5 B	2.2 J B	4.3 B		
Sample Surrogate Accept	ptance Range			70-130%	70-130%	70-130%	70-130%	70-130%		
Aromatic Surrogate	% Recovery - PID			109%	122%	112%	99%	107%		
Aliphatic Surrogate	% Recovery - FID			110%	123%	113%	100%	109%		
* Option 1 = Established fill I						Field weight of s				
	** Unadjusted value. Should exclude the concentration of any surrogate(s), internal standards, and/or concentrations of other ranges that elute within the specified range.									
MDL = Method Detection Lin	nit RL = Repor	ting Limit	Blank = Labor	atory Method Bla	ank or Trip Blank	whichever is high	ier (indicate type)		

VPH rev. 11/00

Were all performance/acceptance standards for required QA/QC procedures achieved? Were any significant modifications to the VPH method made? Yes

Yes - Method Modifications are specified in STL Pensacola SOP 435

~

Client Name	BBL	Laboratory Name	STL PENSACOLA
Project Name	FADA-PHASE II	NC Certification # (Lab)	<u>314</u>
Site Location	<u>NC</u>	Sample Matrix	SOIL

Sample Information and Analytical Results									
Method for Ranges: MAD	DEP VPH	Sample Identification			C501739-5	C501739-6	C501739-7	C501739-8	
		Collec	tion Option (f	or soil)*	OPTION 3	OPTION 3	OPTION 3	OPTION 3	
VPH Surrogate Standard	s	C	ate Collecte	d	1/26/05	1/26/05	1/26/05	1/26/05	
Aliphatic: aaa-trifluoroto	luene	[Date Received	3	1/28/05	1/28/05	1/28/05	1/28/05	
Aromatic: aaa-trifluoroto	luene	Ľ	ate Extracte	d	1/26/05	1/26/05	1/26/05	1/26/05	
		[Date Analyzed	3	2/2/05	2/2/05	2/2/05	2/2/05	
	-	% Dry Solids		80	78	81	81		
		Dilution Factor		150	145	143	139		
Hydrocarbon Ranges	Units of Measure	MDL	RL	Blank					
C5 - C8 Aliphatics**	mg/kg_dw	0.56	2.7	<0.56	<10	<10	<9.6	<9.2	
C9 - C12 Aliphatics**	mg/kg_dw	0.47	. 1.4	<0.47	1.8 J	<5.2	<5.0	<4.8	
C9 - C10 Aromatics**	mg/kg_dw	0.27	0.75	0.34 J	5.6 B	1.6 J B	1.6 J B	2.8 B	
Sample Surrogate Accep	otance Range			70-130%	70-130%	70-130%	70-130%	70-130%	
Aromatic Surrogate 9	% Recovery - PID			109%	117%	118%	112%	116%	
Aliphatic Surrogate %	% Recovery - FID			110%	117%	118%	111%	118%	
* Option 1 = Established fill li ** Unadjusted value. Should exc	lude the concentration of a	ny surrogate(s),	internal standard	s, and/or concentr	ations of other ran		n the specified ran		
MDL = Method Detection Lim	nit RL = Report	ing Limit	Blank = Labora	atory Method Bla	ank or Trip Blank	whichever is high	er (indicate type))	

VPH rev. 11/00

Were all performance/acceptance standards for required QA/QC procedures achieved? Were any significant modifications to the VPH method made?

Yes - Method Modifications are specified in STL Pensacola SOP 435

Yes

Client Name	<u>BBL</u>
Project Name	FADA-PHASE II
Site Location	<u>NC</u>

Laboratory NameSTL PENSACOLANC Certification # (Lab)314Sample MatrixSOIL

		Sample Inf	ormation a	nd Analytic	al Results				
Method for Ranges: MAI	DEP VPH	Sar	nple Identific	ation	C501739-9	C501739-10	C501739-11	C501739-12	
		Collec	tion Option (or soil)*	OPTION 3	OPTION 3	OPTION 3	OPTION 3	
VPH Surrogate Standard	ls	Γ	Date Collecte	d	1/26/05	1/27/05	1/27/05	1/27/05	
Aliphatic: aaa-trifluoroto	oluene	Γ	Date Receive	d	1/28/05	1/28/05	1/28/05	1/28/05	
Aromatic: aaa-trifluoroto	luene	Γ	Date Extracte	d	1/26/05	1/27/05	1/27/05	1/27/05	
		I	Date Analyze	d	2/2/05	2/2/05	2/3/05	2/3/05	
		% Dry Solids			80	82	78	76	
		Dilution Factor		135	132	139	139		
Hydrocarbon Ranges	Units of Measure	MDL	RL	Blank		<u> </u>			
C5 - C8 Aliphatics**	mg/kg_dw	0.56	2.7	<0.56	<9.1	<8.7	<9.6	<9.9	
C9 - C12 Aliphatics**	mg/kg_dw	0.47	1.4	<0.47	<4.7	<4.5	<5.0	<5.1	
C9 - C10 Aromatics**	mg/kg_dw	0.27	0.75	0.34 J	2.3 J B	16 B	1.1 J B	1.4 J B	
Sample Surrogate Accept	otance Range			70-130%	70-130%	70-130%	70-130%	70-130%	
Aromatic Surrogate	% Recovery - PID			109%	114%	105%	103%	94%	
Aliphatic Surrogate % Recovery - FID				110%	115%	106%	104%	95%	
* Option 1 = Established fill I									
	** Unadjusted value. Should exclude the concentration of any surrogate(s), internal standards, and/or concentrations of other ranges that elute within the specified range.								
MDL = Method Detection Lin	MDL = Method Detection Limit RL = Reporting Limit Blank = Laboratory Method Blank or Trip Blank whichever is higher (indicate type)								

VPH rev. 11/00

Were all performance/acceptance standards for required QA/QC procedures achieved? Were any significant modifications to the VPH method made? Yes

Yes - Method Modifications are specified in STL Pensacola SOP 435

Client Name	<u>BBL</u>
Project Name	FADA-PHASE II
Site Location	NC

Laboratory NameSTL PENSACOLANC Certification # (Lab)314Sample MatrixSOIL

		Sample Inf	ormation a	nd Analytic	cal Results						
Method for Ranges: MAD	DEP VPH	Sar	nple Identific	ation	C501739-13	C501739-14					
		Collec	tion Option (f	or soil)*	OPTION 3	OPTION 3					
VPH Surrogate Standard	s	C	Date Collecte	d	1/27/05	1/27/05					
Aliphatic: aaa-trifluoroto		C	Date Receive	t	1/28/05	1/28/05	····				
Aromatic: aaa-trifluoroto		C	Date Extracte	d	1/27/05	1/27/05	<u> </u>				
]	Date Analyzed	łk	2/3/05	2/3/05					
			% Dry Solids		82	84					
			Dilution Facto	or	125	144					
Hydrocarbon Ranges	Units of Measure	MDL	RL	Blank			<u></u>				
C5 - C8 Aliphatics**	mg/kg_dw	0.56	2.7	<0.56	<8.2	<9.2					
C9 - C12 Aliphatics**	mg/kg_dw	0.47	1.4	<0.47	<4.3	<4.8	<u> </u>				
C9 - C10 Aromatics**	mg/kg_dw	0.27	0.75	0.34 J	0.87 J B	0.98 J B					
Sample Surrogate Accept	otance Range			70-130%	70-130%	70-130%					
Aromatic Surrogate 9	% Recovery - PID			109%	96%	96%					
Aliphatic Surrogate %				110%	97%	97%					
* Option 1 = Established fill li											
** Unadjusted value. Should exc											
MDL = Method Detection Lin	DL = Method Detection Limit RL = Reporting Limit Blank = Laboratory Method Blank or Trip Blank whichever is higher (indicate type)										

VPH rev. 11/00

Were all performance/acceptance standards for required QA/QC procedures achieved? Were any significant modifications to the VPH method made?

Yes - Method Modifications are specified in STL Pensacola SOP 435

Yes

Client Name	<u>BBL</u>
Project Name	FADA-PHASE II
Site Location	<u>NC</u>

Laboratory Name NC Certification # (Lab) Sample Matrix STL PENSACOLA 314 LIQUID

		Sample Inf	ormation a	and Analytic	cal Results		
Method for Ranges: MAD	DEP VPH	San	nple Identific	ation	C501739-15	C501739-16	
-		Collec	tion Option (or soil)*	N/A	N/A	
VPH Surrogate Standard	s	C	Date Collecte	d	1/26/05	1/27/05	
Aliphatic:		[Date Receive	d	1/28/05	1/28/05	
Aromatic:		. [ate Extracte	d	N/A	N/A	
		Γ	Date Analyze	d	2/1/05	2/1/05	
			% Dry Solid	5	N/A	N/A	
			Dilution Fact	or	1	1	
Hydrocarbon Ranges	Units of Measure						
C5 - C8 Aliphatics**	ug/l	4.45	26	<4.5	<26	<26	
C9 - C12 Aliphatics**	ug/l	4.24	11	<4.2	<11	<11	
C9 - C10 Aromatics**	ug/l	4.59	7.0	<4.6	5.8 J	4.9 J	
Sample Surrogate Accept	otance Range			70-130%	70-130%	70-130%	
Aliphatic Surrogate 9	& Recovery - PID			100%	100%	93%	
Aromatic Surrogate	% Recovery - FID			102%	103%	95%	
* Option 1 = Established fill li	•	• -	•			-	
** Unadjusted value. Should exc MDL = Method Detection Lin		• • • •			rations of other ran ank or Trip Blank		

VPH rev. 11/00

Were all performance/acceptance standards for required QA/QC procedures achieved? Were any significant modifications to the VPH method made? Yes

Yes - Method Modifications are specified in STL Pensacola SOP 435

Client Name <u>BBL</u>	 Laboratory Name	STL PENSACOLA
Project Name FADA-PHASE II «	NC Certification # (Lab)	314
Site Location _ NORTH CAROLINA	Sample Matrix	SOIL

	S	ample Info	rmation ar	nd Analytical	Results								
Method for Ranges: NC EPH	1	Sa	mple Identifie	ation	C501739-1	C501739-2	C501739-3	C501739-4	C501739-5	C501739-6	C501739-7	C501739-8	C501739-9
EPH Surrogate Standards			Date Collecte	d									
Aliphatic: 1-CHLORO-OCTA	DECANE		Date Receive	d	1/26/2005	1/26/2005	1/26/2005	1/26/2005	1/26/2005	1/26/2005	1/26/2005	1/26/2005	1/26/2005
Aromatic:O-TERPHENYL			Date Extracte	ed	2/1/2005	2/1/2005	2/1/2005	2/1/2005	2/1/2005	2/1/2005	2/1/2005	2/1/2005	2/1/2005
EPH Fractionation Surrogate	es		Date Analyze	d	2/4/2005	2/3/2005	2/4/2005	2/4/2005	2/3/2005	2/4/2005	2/4/2005	2/4/2005	2/4/2005
#1:2-FLUOROBIPHENYL			% Dry Solid	s	78%	81%	79%	77%	80%	78%	81%	81%	80%
#2:2-BROMONAPHTHALEN	E		Dilution Fac	tor	X5/X1	X1	X2/X1	X2/X1	X1	X1	X1	X1	X1
Hydrocarbon Ranges	Units of Measure	MDL	RL	Blank									
C9 - C18 Aliphatics*	mg/kg	0.37	1.6	1.2J	51B	4.4B	9.0B	18B	13B	4.0B	0.82JB	2.1B	22B
C19 - C36 Aliphatics*	mg/kg	0.44	1.6	0.87J	280B	49B	82B	120B	98B	28B	5.9B	12B	99B
C11 - C22 Aromatics*	mg/kg	0.37	1.6	<1.6	120	24	33	20	44	9.2	4.1	5.9	26
Sample Surrogate Acceptan	ice Range			40-140%	40-140%	40-140%	40-140%	40-140%	40-140%	40-140%	40-140%	40-140%	40-140%
Aliphatic Surrogate	e % Recovery			71%	13%D	76%	39%D	39%D	84%	`85%	77%	67%	70%
Aromatic Surrogate	e % Recovery			74%	69%	80%	104%	66%	96%	97%	120%	90%	103%
Fractionation Surrogate Acc	ceptance Range			40-140%	40-140%	40-140%	40-140%	40-140%	40-140%	40-140%	40-140%	40-140%	40-140%
Fractionation Surrogat	e #1 % Recovery			108%	112%	135%	154%*	44%	139%	139%	152%*	146%*	138%
Fractionation Surrogat	Fractionation Surrogate #2 % Recovery 18%*						26%*	6%*	43%	43%	65%	75%	51%
	* Unadjusted value. Should exclude the concentration of any surrogate(s), internal standards, and/or concentrations of other ranges that elute within the specified range.												
MDL = Method Detection Limit	RL = Reporting Limit	Blank = Labora	tory Method Bla	nk									

EPH rev. 11/00

Were all performance/acceptance standards for required QA/QC procedures achieved?

•

.

Yes

Yes

Were any significant modifications to the EPH method made?

Was blank correction applied as a significant modification of the method ?

Yes - Method Modifications are specified in STL Pensacola SOP 646

.

Client Name <u>BBL</u> Project Name <u>FADA-PHASE II</u> Site Location <u>NORTH CAROLINA</u>

.

Laboratory Name <u>STL PENSACOLA</u> NC Certification # (Lab) <u>314</u> Sample Matrix <u>SOIL</u>

Sample Information and Analytical Results												
Method for Ranges: NC EPH	1	Sa	mple Identifi	cation	C501739-10	C501739-11	C501739-12	C501739-13	C501739-14			
EPH Surrogate Standards	[Date Collect	ed								
Aliphatic: 1-CHLORO-OCTAL	DECANE		Date Receive	ed	1/27/2005	1/27/2005	1/27/2005	1/27/2005	1/27/2005			
Aromatic:O-TERPHENYL			Date Extract	ed	2/1/2005	2/1/2005	2/1/2005	2/1/2005	2/1/2005			
EPH Fractionation Surrogate	s		Date Analyze	ed	2/4/2005	2/4/2005	2/4/2005	2/4/2005	2/4/2005			
#1:2-FLUOROBIPHENYL			% Dry Solid	ls	82%	78%	76%	82%	84%			
#2:2-BROMONAPHTHALENE			Dilution Fac	tor	X1	X1	X1	X1	X1			
Hydrocarbon Ranges	Units of Measure	MDL	RL	Blank								
C9 - C18 Aliphatics*	mg/kg	0.37	1.6	1.2 J	2.1 B	1.8 B	1.5 JB	0.87 JB	2.3 B			
C19 - C36 Aliphatics*	mg/kg	0.44	1.6	0.87 J	20 B	6.4 B	4.6 B	3.5 B	17 B			
C11 - C22 Aromatics*	mg/kg	0.37	1.6	<1.6	7.1	3,5	2.8	1.9	3,3			
Sample Surrogate Acceptant	ce Range			40-140%	40-140%	40-140%	40-140%	40-140%	40-140%			
Aliphatic Surrogate	% Recovery			71%	70%	78%	72%	77%	72%			
Aromatic Surrogate	% Recovery			74%	94%	110%	126%	108%	98%			
Fractionation Surrogate Acc	eptance Range			40-140%	40-140%	40-140%	40-140%	40-140%	40-140%			
Fractionation Surrogate	#1 % Recovery			108%	142%*	115%	186%*	151%*	114%			
Fractionation Surrogate	#2 % Recovery	18%*	77%	11%*	32%*	24%*	9%*					
* Unadjusted value. Should exclu					rations of other n	anges that elute v	vithin the specified	range.				
MDL = Method Detection Limit RL = Reporting Limit Blank = Laboratory Method Blank												

EPH rev. 11/00

Were all performance/acceptance standards for required QA/QC procedures achieved?

.

--- - ----

Yes Yes

Was blank correction applied as a significant modification of the method ?

Were any significant modifications to the EPH method made?

Yes - Method Modifications are specified in STL Pensacola SOP 646

.

:

Client Name <u>BBL</u> Project Name <u>FADA-PHASELL</u> Site Location <u>NORTH CAROLINA</u>

 Laboratory Name
 STL PENSACOLA

 NC Certification # (Lab)
 314

 Sample Matrix
 WATER

	San	ple Inform	ation and	Analytical	Results		****	· · · · · · · · · · · · · · · · · · ·	
Method for Ranges: NC EPH	I	San	nple Identific	ation	C501739-15				
EPH Surrogate Standards		C	Date Collecte	d	1/26/2005		1		
Aliphatic: 1-CHLORO-OCTA	DECANE	1	Date Receive	d					
Aromatic:O-TERPHENYL		E	Date Extracte	d	2/1/2005				
EPH Fractionation Surrogate	es	C	Date Analyze	d	2/4/2005				
#1:2-FLUOROBIPHENYL			% Dry Solid	S				·····	
#2:2-BROMONAPHTHALENI	E	1	Dilution Fact	or	X1		1		
Hydrocarbon Ranges	Units of Measure	MDL	RL	Blank					
C9 - C18 Aliphatics*	μg/L	9.49	50	1.2 J	21 BJ				
C19 - C36 Aliphatics*	μg/L	10.75	50	0.87 J	68 B				
C11 - C22 Aromatics*	μg/L	11.33	50	< 1.6	49 J				
Sample Surrogate Acceptan	ce Range			40-140%	40-140%		1		
Aliphatic Surrogate				71%	88%				
Aromatic Surrogate				74%	117%				
Fractionation Surrogate Acc				40-140%	40-140%				
Fractionation Surrogat				108%	137%				
Fractionation Surrogat				18%*	13%*				
* Unadjusted value. Should exclude the concentration of any surrogate(s), internal standards, and/or concentrations of other ranges that elute within the specified range. MDL = Method Detection Limit RL = Reporting Limit Blank = Laboratory Method Blank									

EPH rev. 11/00

Were all performance/acceptance standards for required QA/QC procedures achieved?

Was blank correction applied as a significant modification of the method ?

Were any significant modifications to the EPH method made?

Yes - Method Modifications are specified in STL Pensacola SOP 646

Yes

Yes

																				SEF	RIAL	NUME	BER: 19	45	
					CUSTOD	YRE	co	RD				T		5 M	cLe	mo	re	Drive		Fax	: 850)-478-			
	S E T F	V E R N R E N T	S	TL	4							QU	Pen OTE N			FL	. 32	2514 BOT	LE ORD			www.	stl-inc.com ORDER - LC C 57		59
CLIENT BROJECT NAM FADA- M SAMPLED BY	nc.		ADDRESS 3700	Regency 1	Ywy Su	ite/	40	Car	••	N	_	2	75	1				REQUE	STED AN	ALYSI	S		PAGE	^{of} 2	
PROJECT NAM	E	PROJECT NO		CLIENT/PRO.	ECT MANAGER				7+	IP	ROJ	ECTI	.OC. (S	TAT	E)	T	T						POSSIBLE H	IAZARD	
EADA-A	hase 11	Sitton	Steen Pla	+ 50	tt Dave	25					J	the	· .	مەن (IDENTIFICA	TION	
SAMPLED BY	169011		CONTRACT /	P.O. NO.		T T	P	RESER	VATI			11	MATI	RIX	1								∆ NON-HA	ZARD	
R	l altantia		00111111011				T		T		T	╢─┐	<u> </u>	Ī	-								∆ FLAMMA	RIE	l 🗄
Brian CLIENT PHONE	Levyran	<u> </u>	CLIENT E-MA			+		¥													1				LÅB HSE ONLY - SAMPI FAILMAFR
910 JLG		7						or H3PO4 xide		lfat					etc.		N								N.
919-469- TAT REQUEST			SFDer	DE LEC.C	OM		2	 Sulfuric Acid or H. Sodium Hydroxide 		NAHSO4 - Sodium Bisulfate NA2S203 - Sodium Thiosulfate	ŝ		Aqeuous GW, SW, WW Solid. Semisolid. Sediment		NonAqueous (Oil,Solvent, etc.)	MAVPH	FPH								Idv
					DINE 33 DATS		<u> </u>	V dr		i a la c	= =		Sedii V		Sel Sel	¥.	MA						△ OTHER:	YIN	SAN S
D 1 DAY D 2 D. SAMPLE DISPO							Acid	in T	CH3OH - Methanol	lin i		Drinking Water	NO I	ſſ	ē		2						NO. OF COC		<u> </u>
SAMFLE DISFC			U DISFUSAL			- Lati	iti	Sulf.	Met	S-S	2	Vate	niso Niso		sno	¥	ビ						SHIPMENT:	LERS PER	NO
SAN		(; T			<u> </u>	ese		- N	Ŧ	200		. je	Ser		due	4								STRUCTIONS	
	TIME	□ 5 DAYS □ 20 DAYS (Package) □ OTHER: 90 Flow (Package) RN TO CLIENT □ DISPOSAL BY LAB 90 Flow (Package) RN TO CLIENT □ DISPOSAL BY LAB 90 Flow (Package) RN TO CLIENT □ DISPOSAL BY LAB 90 Flow (Package) State 90 Flow (Package) SAMPLE IDENTIFICATION 00 Flow (Package)					AOI AOI	E	AHS	Other	rink	olid.	Air	Ano		N	IUMBER OF CC	NTAINE	RS SU	BMITTE	D		S OF RECEIP		
		SF.7 (0.5-1.0)					<u> </u>	ΞZ	•		210	2				3	1			<u> </u>					
1-26-05	0900					2	+-		2	┝─┼─	+-	╢╌╢	Ť	┼─┤		_	÷					┼╌┼╸			-
1-26-05	0915		0.5-1.0)			2			2			╢─┤	_	+		3	1								_
1-26-05	0940		0.5-1.0			2			2	┥┥	_		_ ∕			3	1	╍╋╌╂╼╄	_						
1-26-05	1000		0.5-1.0)			2	-		2		_		<u> </u>		_	3	1								
1-26-05	1000		(0.5-1.0)			2			2				<u> </u>	1		3	1								
1-26-05	0001	SF-10 (0.5-1.0)	MSD		2			2				<u> </u>		;	3	1								
1-26-05	RIR	SF-91	(0.5-1.0)		2			2				<u> </u>			3	1								
1-26-05	1300	58-22	(4.0-4.5	5)		2			2				\checkmark			3	1								1.
1-26-05	1355		(4.0 - 4.			2			2				V			3	1								
1-26-05	1525		- 14.5-5			2			2			\square	7			3	1								
1-26-05	1600		(4.0-4.5			2			à							<u>_</u>	1								
1-26-05	1615	EB-DIS				5			Ť		+	╢─┤					2						-		
1-26-05	NIR	TB-01									+	╢┼	+	\square		2	~						1	<u>_</u>	
RELINQUISHED	BY: (SIGNATU		DATE	TIME	RELINQUISHE		_	ATURE)	L			-05	TIM	Ξ.	00	ļ		BY: (SIC	GNATU	JRE)	.[]	DATE	TIME	
RECEIVED BY:	(SIGNATURE)		DATE	TIME	RECEIVED BY		ATUR	E)			DA	TE		TIM	1	00		RECEIVED BY:	(SIGNAT	URE)			DATE	TIME	
			L	<u> </u>	100	LABO	RATO	RY ⊎S	E/ON	JI-Y. J.	ΠĊ	01	05	<u> </u>	12,		<u></u>					-	1		<u>_</u>
RECEIVED FOR	LABORATORY	BY:	DATE	TIME	CUSTODY INT	P - 1							REMA	RKS:	<u>.</u>		<u> </u>			<u></u>	···· `				
Chew	nnbuh	Amin e	128/05	0945	X YES A	NÓ	φ t i	3700Y 444	128	358			,	•••	• • •				en en la	• • •	· · ·	. '	· . ·		
Ĵ		and the second state of th							-				·····	é											August 12.2.2

.

.

					SERIAL NUM	BER: 1944	
	ND CHAIN OF CUSTOD	YRECORD		emore Drive	Phone: 850-47 Fax: 850-478-	-2671	
SEVERN	CTI		Pensacola	v.stl-inc.com	أجمعهم		
SEVERN TRENT	SIL		QUUIENU	C S	RDER NO. SCA	ORDER-LOG-IN-NO. C501724	3
CLIENT ADDRE ADDRE 33L, The 3700 PROJECT NAME PROJECT NO.	ss Resency PKwy Suites Iclient project manager	40 Cary, NC 2751	1	REQUESTED	ANALYSIS	PAGE OF 2	
FADA-Phasell Sutton Steam	Plant	PROJE	CT LOC. (STATE)			POSSIBLE HAZARD	
	ACT / P.O. NO.	PRESERVATIVE	MATRIX			△ NON-HAZARD	ľæ
	E-MAIL OR FAX	ate D04	c.)			△ FLAMMABLE △ RADIOACTIVE	NUMBEI
19-469-1952 × 17 SEC TAT REQUESTED: RUSH NEEDS LAB PREAPPROVAL □ 1 DAY □ 2 DAYS □ 3 DAYS □ 5 DAYS □ 20 DAYS		 No Preservative HCL - Hydrochloric Acid HLN03 - Nitric Acid HN03 - Nitric Acid HN2504 - Sulfuric Acid or H3P04 NAOH - Sodium Hydroxide CH3OH - Methanol NAHS04 - Sodium Bisulfate NA2S203 - Sodium Thiosulfate Other: 	Drinking Water Aqeuous GW, SW, WW Solid, Semisolid, Sediment Air NonAqueous (Oli,Solvent, etc.	макрн		Δ POISON B Δ UNKNOWN Δ OTHER:	LAB-USE ONLY - SAMPLE NUMBER
SAMPLE DISPOSAL: RETURN TO CLIENT DISPO		No Preservative HCL - Hydrochloric Acid HNO3 - Nitric Acid or H2SO4 - Sulfuric Acid or NACH - Sodium Hydroxi CH3CH - Methanol NAHSO4 - Sodium Bisulf NA2S2O3 - Sodium Thio Other:	J Water s GW, SV emisolid, leous (Oil	1 22		NO. OF COOLERS PER SHIPMENT:	
SAMPLE SAMP	LE IDENTIFICATION	No Pres HCL - H H2SO4 NAOH - CH3OH NA1SO2 NA2S22 Other	Drinking Aqeuou Solid, S Air NonAqu	NUMBER OF CONTAI	NERS SUBMITTED	SPECIAL INSTRUCTIONS CONDITIONS OF RECEIF	יז ייי LAB-US
1-27-05 0745 58-29 (3.5	-4.0)	a a a		3 1			а л. Т
1-27-05 0810 58-30 (2.5		2 2		31			
1-27-05 1110 58-32(3.5		2 2		31			
1-27-05 0855 58-31 (2.5.		2 2		31			
1-27.05 NIR 50-92 (3.5	-4.0)	2 2		3 1			<u> </u>
		┝╌┼╌┼╌┼╌┼╌┤╌┥					
		┟╍┼╍┽╾╃╾╃╾╃╼╉╼┩					
							, , , , , , , , , , , , , , , , ,
							, li
RELINQUISHED BY: (SIGNATURE) DATE	05 1410 73=			RELINQUISHED BY:		DATE TIME	
RECEIVED BY: (SIGNATURE) DATE	of 1700 RECEIVED BY:	× 1-1		RECEIVED BY: (SIGN	-	DATE TIME	
RECEIVED FOR LABORATORY BY. DATE			REMARKS:				

STL Pensacola PROJECT SAMPLE INSPECTION FORM

ab Order #:	Date Received: 01 28/05										
1. Was there a Chain of Custody? Yes No*	8. Were samples checked for preservative? (Check pH of all H ₂ O requiring preservative (STL-PN SOP 917) except VOA vials that										
2. Was Chain of Custody properly Ves Not filled out and relinquished?	9. Is there sufficient volume for Analysis requested?										
 Were all samples properly (Yes) No* labeled and identified? 	10. Were samples received within (Yes) No ⁺ Holding Time? (REFER TO STL-SOP 1040)										
4. Were samples received cold? No* N/A (Criteria: 0.1° - 6°C: STL-SOP 1055)	11. Is Headspace (bubble) visible Yes* No N/A > ¼ " diameter in VOA vial(s)?*										
5. Did samples require splitting or Yes* (No)	12. Were Trip Blanks Received? Yes No N/A										
compositing*?	13. If yes, was analysis of Trip Blanks requested?										
6. Were samples received in proper containers for analysis	14. Were MS/MSD-specific bottles Yes No* N/A provided?										
7. Were all sample containers received intact?	15. If any issues, how was PM PSIF Uverbal Unotified?										
Airbill Number(s): <u>848373385328</u>	Delivery By: UPS Eder HD BUS DHL PE										
alor Number(a) & Temp(a) 80, (1), and (1)	(HD - Hand Delivery)										
Coler Number(s) & Temp(s) °C: Current Q.3 and D. D°C <u>TR-1</u>											

Comments (reference item numbers above and list sample IDs/Tests where appropriate):

	ŧ								
									
		·, · · · · · · · ·				··· ··································			
·····				<u></u>			······································		
<u> </u>	·····				····		······		
	**	·······			······································		······		
		•••			······	······································			
<u></u>			<u></u>			·····			
		····							
			 	<u></u>					
				۰					
Inspe	cted By:	ORW		Date: a	<u>281</u> 05	Logged B	y: LLK		-JAn-05
	CL) as out of ho	ld time, therefore, th	ionable events rese samples	on Comment Section of this will not be documented on t	his PSIF.		-		
+				isited must be done in the V ted projects are to be recom			luzs mey be compromise	d due to sample splitting (;	<u>empositinal"</u>
•	According to EP	A, a bubble of %" o	r less is accej	otable in 40 ml vials requiring ProjectManagemento				liquid TCLP volatile contail	ners shall be documented.
				, systematic granterio				, [.]	

ANY PERSONI MAKING OF ADDING COMMENTS TO ANY PART OF THIS PSIF MUST INITIAL AND DATE ALL CORRECTIONS. COMMENTS AND/OR INSTRUCTIONS.

Organic Data Qualifiers for Final Report

STL

RENT

В	The analyte was detected in the method blank and in the client's sample.
D	The result was obtained from a dilution.
Е	The result exceeds the calibration range.
J	Estimated value because the analyte concentration is less than the reporting limit.
M	A matrix effect was present.
N	Presumptive evidence of a compound. The compound was identified qualitatively or as a Tentatively
	Identified Compound.
N/C	Not Calculable. Either the sample spiked was > 4X spike concentration, or the compound was diluted out, or
	the results of sample duplicate analysis were <rl.< td=""></rl.<>
Ρ.	Second-column or detector confirmation exceeded method criteria. Appropriate value is reported and data
	is flagged/qualified as instructed by method/regulation.
U or < or ND	The analyte was not detected.
*	The result is not within control limit(s).

Inorganic Data Qualifiers for Final Report

B E J	The analyte was detected in the method blank and in the client's sample. The reported value is estimated because of the presence of interference. Estimated value because the analyte concentration is less than the reporting limit.
Ν	The spiked sample recovery is not within control limits.
N/C	Not Calculable. Either the sample spiked was > 4X spike concentration, or the compound was diluted out, or the results of sample duplicate analysis were <rl.< td=""></rl.<>
👝 < or ND	The analyte was not detected.
	Duplicate analysis not within control limits
Μ	The duplicate injection precision was not met.
S	The reported value was determined by the Method of Standard Addition (MSA).
W	Post-digestion spike for Furnace AA analysis is out of control limits (85-115%), while sample absorbance is
	less than 50% of spike absorbance and post spike recovery is greater than or equal to 40%, the sample is
	flagged with a "W" and no further action is required.
+	The Standard Additions Correlation Coefficient is <0.995.
L	The result is not within control limit(s).

It is permissible to submit an Out-of-Control Events/Corrective Action form and/or Case Narrative in lieu of using above qualifiers.

When the laboratory receives a sample that does not meet EPA requirements for sample collection, preservation or holding time, the laboratory is required to reject the samples. The client must be notified and asked whether the lab should proceed with analysis, Data from any samples that do not meet sample acceptance criteria (collection, preservation and holding time), must be flagged, or noted on a corrective action form or case narrative, or addressed on the Project Sample Inspection Form (PSIF) in an unambiguous manner clearly defining the nature and substance of the variation. NPDES samples from North Carolina that do not meet EPA requirements for sample collection, preservation or holding time are non-reportable for NPDES compliance monitoring.

Abbreviations

ND	Not Detected at or above the STL Pensacola reporting limit (RL)
NS	Not Submitted
NA	Not Applicable
MDL	STL Pensacola Method Detection Limit
RL	STL Pensacola Reporting Limit
NoMS	Not enough sample provided to prepare and/or analyze a method-required matrix spike (MS) and/or duplicate (MSD)
TIC	Tentatively Identified Compound

Florida Projects Inorganic/Organic

Refer to FL DEP 62-160; Table 4 Data Qualifier Codes. FL DEP Rule 62-160, Table 1 lists the Florida sites which require data qualifiers.

ona DEQ Projects

Any qualified data submitted to Arizona DEQ (ADEQ) after January 1, 2001 must be designated using the Arizona Data Qualifiers as developed by the Arizona ELAC technical subcommittee. Refer to the ADEQ qualifier list.

Severn Trent Laboratories Inc.

STL Pensacola • 3355 McLemore Dr • Pensacola, FL 32514 Tel 850 474 1001 Fax 850 484 5315 • www.stl-inc.com

STL PENSACOLA Certifications, Memberships & Affiliations

Alabama Department of Environmental Management, Laboratory ID No. 40150 (Drinking Water by Reciprocity with FL) Arizona Department of Health Services, Lab ID No. AZ0589 (Hazardous Waste & Wastewater) Arkansas Department of Pollution Control and Ecology, (88-0689) (Environmental) California Department of Health Services, ELAP Laboratory ID No. 2510 (Hazardous Waste and Wastewater) Connecticut Department of Health Services, Connecticut Lab Approval No. PH-0697 (D W, H W and Wastewater) Florida DOH, NELAP Laboratory ID No. E81010 (Drinking Water, Hazardous Waste and Wastewater) Florida DEP/DOH CompQAP # 980156 Illinois Environmental Laboratory Accreditation Program (ELAP), NELAP Laboratory ID No. 200041 (Wastewater and Hazardous Waste) Iowa Department of Natural Resources, Laboratory ID No. 367 (Wastewater, UST, Solid Waste, & Contaminated Sites) Kansas Department of Health & Environment, NELAP Laboratory ID No. E10253 (Wastewater and Hazardous Waste) Kentucky NR&EPC, Laboratory ID No. 90043 (Drinking Water) Kentucky Petroleum Storage Tank Env Assurance Fund, Laboratory ID No. 0053 (UST) Louisiana DEQ, LELAP, NELAP Laboratory ID No. 02075, Agency Interest ID 30748 (Environmental) Maryland DH&MH Laboratory ID No. 233 (Drinking Water by Reciprocity with Florida) sachusetts DEP, Laboratory ID No. M-FL094 (Wastewater) Michigan Bureau of E&OccH, Laboratory ID No.9912 (Drinking Water by Reciprocity with Florida) New Hampshire DES ELAP, NELAP Laboratory ID No. 250502 (Drinking Water & Wastewater) New Jersey DEP&E, NELAP Laboratory ID No. FL006 (Wastewater and Hazardous Waster) North Carolina DENR, Laboratory ID No. 314 (Hazardous Waste and Wastewater) North Dakota DH&Consol Labs, Laboratory ID No. R-108 Wastewater and Hazardous Waste by Reciprocity with Arizona) Oklahoma Department of Environmental Quality, Laboratory ID No. 9810 (Hazardous Waste and Wastewater) Pennsylvania Department of Environmental Resources, NELAP Laboratory ID No. 68-467 (Drinking Water & Wastewater) South Carolina DH&EC, Laboratory ID No. 96026 (Wastewater & Solids/Hazardous Waste by Reciprocity with FL) Tennessee Department of Health & Environment, Laboratory ID No. 02907 (Drinking Water) Virginia Department of General Services, Laboratory ID No. 00008 (Drinking Water by Reciprocity with FL) West Virginia DOE, Office of Water Resources, Laboratory ID No. 136 (Haz Waste and Wastewater) EPA ICR (Information Collection Rule) Approved Laboratory, Laboratory ID No. ICRFL031 NFESC (Naval Facilities Engineering Services Center) USACE (United States Army Corps. of Engineers), MRD Pensacola also has a foreign soil permit to accept soils from locations other than the continental United States. Permit No. S-37599

certlist condcert.lst revised 7/13/04

Total Pages of Report

To: Scott Davies

Date: 3/21/2005

From: Dennis Capria

Re: Data Review

Data for sample collected from the Progress Energy-Sutton site in North Carolina during February 2005 were reviewed for quality assurance/quality control compliance. The data report from CompuChem, Inc. of Cary, North Carolina was reviewed. Included in the review are data from the following sample delivery group (SDG): 5634 and 5635. The following summarizes the findings of the QA/QC review:

<u>Metals</u>

- One data set was reviewed, including 6 soil sample 1 equipment blank.
- Samples were analyzed for following:

Analysis	Method
Metals	EPA SW-846 6010B

- All samples were analyzed within the method-specified holding time.
- Matrix spike (MS) and laboratory duplicate analyses was performed on the sample location SF-6 (0.5-1.0). MS recoveries and laboratory duplicate relative percent differences were within control limits.
- All reported laboratory control sample recoveries were within control limits.
- Several target analytes were detected in the method blanks within this SDG. Associated Sample results of Zinc less than the blank action level, associated sample results of Thallium and Zinc data have been qualified as non-detect.
- No calibration data was provided.

The data were presented in a reduced deliverables format. Therefore, only a limited data review could be performed. Since no raw data were provided, no verification of compound identification and quantitation could be performed.

Other than for the deviations noted in this review, the reported data quality is within method specifications and the data is considered acceptable for use as reported by the laboratory.

4598R.doc

-1-

INORGANIC ANALYSES DATA SHEET

						EPA SAMPLE NO.
						SF-3-0.5-1.0
					L	
Lab Name:	COMPUCHEM		Contract;			

Lab Code:	LIBRTY	Case No.:	SAS No	.:	SDG No.:	5634
	and the second		~~~~~	ALLOWARD CONTRACTOR OF CONTRACTOR		And a state of the
Matrix (soi)	1 too toom) .	SOIL	т	ab Sample ID:	563402	
PACELX (SOL.	The result :	<u>SATR</u>	ىلەپ سەرىپ بىلەردارى بىلەر		×* **** **	
Tana Arasak		•	÷.	ate Received:	01/28/05	
Level (low/	med): LOW	f	2	are deperved.	V2/20/05	

% Solids: 95.3

Concentration Units (ug/L or mg/kg dry weight):

MG/KG

Cas No.	Analyte	Concentration	С	Q	м
7440-36-0	Antimony	0.21	ln		P
7440-38-2	Arsenic	0.21	JΩ	l <u> </u>	P
7440-41-7	Beryllium	0.01	lα	[] P
7440-43-9	Cadmium	0.03	Įσ	l	P
7440-47-3	Chromium	0.06	10	1	2
7440-50-8	Copper	0,25	В	}	P
7439-92-1	Lead	0,42			P
7439-97-6	Mercury	0.015	σ		CV
7439-96-5	Manganese	0.39	В		P
7440-02-0	Nickel	0.08	ען		P
7782-49-2	Selenium	0.27	Ju	1	P
7440-22-4	Silver	0.08	טן	1	P
7440-28-0	Thallium	0.30	טן	l	1 P
7440-66-6	Zinc	0.85	J₿∕	þν	P

Color Before:	BLACK	Clarity Before:		Texture:	COARSE
Color After:	YELLOW	Clarity After:	alla Mananta ana ang ang ang ang ang ang ang ang an	Artifacts:	ananya mananya kata ang kata ang kata ang kata kata kata kata kata kata kata kat
Comments:					
	*****	***************************************			

					_

9. SW-846

-1-

.

INORGANIC ANALYSES DATA SHEET

							EPA SAMPLE NO.
,						<u> </u>	SF-4-0.5-1.0
Lab Name:	COMPUCHEM	the second with the second	Con	tract:		L	
Lab Code:	LIBRTY	Case No.:	4	SAS No.:		SDG No.	5634
Matrix (soi	1/water):	SOIL		Lab	Sample ID:	563403	and the second
Level (low/	med): LO	<u>×7</u>		Date	Received:	01/28/0)5
<pre>% Solids:</pre>	95.7						

Concentration Units (ug/L or mg/kg dry weight):

MG/KG

.

÷

CAS No.	Analyte	Concentration	С	Q	м
7440-36-0	Antimony	0.21	σ	1	P
7440-38-2	Arsenic	0.21	ļσ	1	P
7440-41-7	Beryllium	0.01	B]] P
7440-43-9	Cadmium	0.03	រុប		P
7440-47-3	Chromium	0.07	ļв		₽
7440-50-8	Copper	0.19	B	1	q
7439-92-1	Lead	0.84	1	1	P
7439-97-6	Mercury	0.017	שן]	cv
7439-96-5	Manganese] 0.66	B]	P
7440-02-0	Nickel	0.24	B]	P
7782-49-2	Selenium	0.27	١a	l	P
7440-22-4	Silver] 0.08	la] P
7440-28-0	Thallium	0.30	IJ] P
7440-66-6	Zinc	0.87	JB	10	P

Color Before:	BROWN	Clarity Before:		Texture:	COARSE
Color After:	YELLOW	Clarity After:	ay no an an and the second static data and	Artifacts:	
Comments:					
		·····		¥ ** {** {** •	

-1-

.

INORGANIC ANALYSES DATA SHEET

						epa sample no.	
						SF-5-0.5-1.0	
Lab Name:	COMPUCHEM	al den de la maneta de la desta de la d	. Contract:			99999999999999999999999999999999999999	u,u,una unia de la constante
Lab Code:	LIBRTY	Case No.:	SAS No.:		SDG No.:	5634	
Matrix (soi	l/water):	SOIL	Lab Sam	ple ID:	563404	****	
Level (low/	med): L	OW	Date Rec	seived:	01/28/05		
<pre>% Solids:</pre>	94.9						

Concentration Units (ug/L or mg/kg dry weight):

MG/KG

CAS No.	Analyte	Concentration	c	Q	M
7440-36-0	Antimony	. 0.20	שן		T P I
7440-38-2	Arsenic	0.38	B		P
7440-41-7	Beryllium	0.01	ע ו		P
7440-43-9	Cadmium	0.03	מן		2
7440-47-3	Chromium	0.78	B		2
7440-50-8	Copper	0.27	B		P
7439-92-1	[Lead	2.3] P
7439-97-6	Mercury	0.016	JΩ	1	CV
7439-96-5	Manganese	1.3	1	}	P
7440-02-0	Nickel	0.08	Ju]	P
7782-49-2	Selenium	0.26	lΩ	1	P
7440-22-4	Silver	,0.08	ប្រ	1	P
7440-28-0	Thallium	0.29	U]	P
7440-66-6	Zinc	1.5	В	1) P

Color Before:	gray	Clarity Before:		Toxture:	COARSE
Color After;	YELLOW	Clarity After:	amerinan managan kang kang kang kang kang kang kan	Artifacts:	eunstein Construction de la constru
Comments:	******		······		****
			,,		
	***************************************		//	······	

.

-1-

INORGANIC ANALYSES DATA SHEET

EPA SAMPI	E NO.
SF-6-0.5	-1.0
	<u> </u>
Lab Name: COMPUCHEM Contract:	
Lab Code: LIBRTY Case No.: SAS No.: SDG No.: 5634	
Matrix (soil/water): SOIL Lab Sample ID: 563406	-
Level (low/med): LOW Date Received: 01/28/05	

% Solids: <u>93.6</u>

.

Concentration Units (ug/L or mg/kg dry weight):

MG/KG

CAS No.	Analyte	Concentration	c	Q	м
7440-36-0	Antimony	0,22	Įυ		P
7440-38-2	Arsenic	0.43]B	l	P
7440-41-7	Beryllium	0.02]B	l	P
7440-43-9	Cadmium	0.03	זע	l	P
7440-47-3	Chromium	0,93	B	[P
7440-50-8	Copper	0.31	 B	[P
7439-92-1	Lead	1.7	1		9
7439-97-6	Mercury	0.018	ln	1	CV
7439-96-5	Manganese	1.5		1] P
7440-02-0	Nickel	0.17	B]	P
7782-49-2	Selenium	0.29	שן	1	P
7440-22-4	Silver	0.09	ען.	1	P
7440-28-0	Thallium	0.32	שן	1	12
7440-66-6	Zinc	1.4	B]	P

Color Before:	BROWN	Clarity Before:	CP1405 -070,014-070,000,000,000,000,000,000,000,000,000	Texture:	COARSE	
Color After:	YELLOW	Clarity After:	and a second	Artifacts:	Zaniki Ministra da katika mangangan katika	
Comments:						

	\u.\		<u>ng pupulan kana kana kana kana kana kana kana k</u>		****	

.

-1-

INORGANIC ANALYSES DATA SHEET

1					E	PA SAMPLE NO.	
					S	F-90-0.5-1.0	
					L		ŧ
Lab Name:	COMPUCHEM		Contract:		diset front for the second		
Lab Code:	LIBRTY	Case No.:	SAS No.:	. <u></u>	SDG No.:	5634	
Matrix (soi)	l/water):	SOIL	Lab Sa	ample ID:	563405		
Level (low/	med): LO	Ŵ	Date F	Received:	01/28/05		
Level (low/	med): LO	W	Date F	leceived:	01/28/05		

% Solids: 96.2

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration	с	Q	м
7440-36-0	Antimony	0.20	U		ŢЪ.
7440-38-2	Arsenic	0.20	וס	I	P
7440-41-7	Beryllium	0.01	าบ		₽
7440-43-9	Cadmium	0,03	۱a]	P
7440-47-3	Chromium	0.06	ĮΩ		P
7440-50-8	Copper	0.14	B		P
7439-92-1	Lead	0.42	ļ		P
7439-97-6	Mercury	[0.015	שן	ľ	CV
7439-96-5	Manganese	0.37] B	1	P
7440-02-0	Nickel	0.08	ען	J	P
7782-49-2	Selenium	0.26	שן]	P
7440-22-4	Silver	0.08	۵]	B
7440-28-0	Thallium	0.29	שן	1	P
7440-66-6	Zinc	1.1	JB	10	P

Color Before:	BROWN	Clarity Before:	76	Texture:	COARSE
Color After:	YELLOW	Clarity After:	an <u>uur aanna aanaan ay ay aa ay aa ahaadaanaan</u> aan.	Artifacts:	ann bhlaidean ann an ann an air agus gu ann an a' bhaileal ann ann ag
Comments:					and a standard and a
	••••••••••••••••••••••••••••••••••••••	<u></u>			
		·······			

SW-846 -1-

INORGANIC ANALYSES DATA SHEET

1		INOP	GANIC ANALISES DATA SHEP	×1	EPA SAMPLE NO.
					EB-012505
Lab Name:	COMPUCHEM		Contract:		annan an a
Lab Code:	LIBRTY	Case No.:	SAS No.:	SDG No.:	5635
Matrix (soi	1/water):	WATER	Lab Sample	ID: <u>563501</u>	9949411-1949-1949-1949-1949-1949-1949-1
Level (low/	med): <u>L</u>	<u>ow</u>	Date Receiv	ed: 01/28/0	5

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight):

UG/L

CAS No.	Analyte	Concentration	c	Q	м
7440-36-0	Antimony	13.0	1		P
7440-38-2	Arsenic	2.1	ען		P
7440-41-7	Beryllium	0.10	ןט]] P
7440-43-9	Cadmium	0.30	שן	l	P
7440-47-3	Chromium) 0.60	ļυ]	P
7440-50-8	Copper] 1.4	JB]	P
7439-92-1	Lead	1.6	B		P
7439-97-6	Mercury	0.10	Įΰ	1	CV
7439-96-5	Manganese	0.24	B]	P
7440-02-0	Nickel	0.80	lΩ	J	P
7782-49-2	Selenium	2.7	ln	ł] P
7440-22-4	Silver	0.80	JU	1	P
7440-28-0	Thallium	3.0	JU]	P
7440-66-6	Zinc	20.6		1	P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	414-1444,
Comments:		uyun antara a	nan ny teoremana amin'ny tanàna amin'ny tanàna amin'ny tanàna amin'ny tanàna mandritry dia dia dia dia dia dia		
		***************************************	***************************************	******	

a division of Liberty Analytical Corp.

10-Feb-05

SCOTT DAVIES BLASLAND, BOUCK & LEE, INC. 3700 REGENCY PARKWAY SUITE 140 Cary, NC 27511

Subject:

Report of Data-Project: SUTTON STEAM Workorder: 5634

Attn.: SCOTT DAVIES

Enclosed are the results of analytical work performed in accordance with the referenced account number.

This report covers sample(s) appearing on the attached listing.

Thank you for selecting CompuChem for your sample analysis. If you should have questions or require additional analytical services, please contact your representative at 1-800-833-5097.

Sincerely,

Marlene J. Sun

CompuChem 'A Division of Liberty Analytical

Attachment

TOTAL NUMBER
OF PAGES

501 Madison Avenue, Cary, NC 27513 Tel: 919-379-4100 Fax: 919-379-4050

CompuChem, a division of Liberty Analytical											
Hsn 563401 563402 563403	Client ID	Wordorder	Matrix	Account	Project	Report					
563401	SF-2-0.5-1.0	5634	S	BB&L	SUTTON STEAM						
563402	SF-3-0.5-1.0	5634	S	BB&L	SUTTON STEAM						
563403	SF-4-0.5-1.0	5634	s	BB&L	SUTTON STEAM						
563404	SF-5-0.5-1.0	5634	S	BB&L	SUTTON STEAM						
563405	SF-90-0.5-1.0	5634	S	BB&L	SUTTON STEAM						
563406	SF-6-0.5-1.0	5634	S	BB&L	SUTTON STEAM						

2

.

COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

Name :	COMPUCHEM	Contract:
ab Code:	LIBRTY Case No.:	SAS No.: SDG No.: 5634
OW No.:	<u>SW-846</u>	
	EPA Sample No.	Lab Sample ID.
	SF-2-0.5-1.0	563401
	SF-3-0.5-1.0	563402
	SF-4-0.5-1.0	563403
	SF-5-0.5-1.0	563404
	SF-6-0.5-1.0	563406
	SF-6-0.5-1.0D	59118
	SF-6-0.5-1.0D	59123
	SF-6-0.5-1.0S	59119
	SF-6-0.5-1.0S	59124
	SF-6-0.5-1.0SD	59120
	SF-6-0.5-1.0SD	59125
	SF-90-0.5-1.0	563405

were ICP interelement corrections applied?	Yes/No	IES
Were ICP background corrections applied? If yes-were raw data generated before	Yes/No	YES
	Yes/No	NO
Comments:		

---- --

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Sinature:	Thomas R. Cole	Name:	Thomas R. Cole	
Date:	February 10,2005	Title:	Data Reviewer II	
		PAGE - IN		SW- \$ 46

CompuChem a Division of Liberty Analytical Corp. 501 Madison Avenue Cary, NC 27513

INORGANIC CASE SUMMARY NARRATIVE SDG # 5634 PROTOCOL # SW-846

The indicated Sample Delivery Group (SDG) consisting of six (6) soil samples was received into the laboratory management system (LIMS) on January 28, 2005 intact and in good condition with Chain of Custody (COC) records in order. Sample ID's reported in this data package are noted by the receiving department on the COC if they differ from those listed by the samplers on the COC.

The samples were analyzed for total antimony, arsenic, beryllium, cadmium, chromium, copper, lead, manganese, mercury, nickel, selenium, silver, thallium, and zinc using analytical methods delineated in SW-846 (Third Edition)-Update III.

NOTE: Thallium in the method blank was found to be below the negative side of the reporting limit; however, no thallium was found in the samples.

SAMPLE IDs:

Customer IDs and correlating laboratory IDs are listed on the cover page.

INSTRUMENTAL QUALITY CONTROL:

All calibration verification solutions (ICV & CCV), blanks (ICB, & CCB), and interference check samples (ICSA & ICSAB) associated with this data were confirmed to be within SW-846 allowable limits.

SAMPLE PREPARATION QUALITY CONTROL:

The above note modifies the following statement.

The sample preparation procedure verifications (LCSS & PBS) were found to be within acceptable ranges and all field samples were prepared and analyzed within the contract specified holding times.

MATRIX RELATED QUALITY CONTROL:

The sample matrix spike, CCN = 59119 and 59124 (SF-6-0.5-1.0S) and the sample matrix spike duplicate, CCN = 59120 and 59125 (SF-6-0.5-1.0SD) were found to be inside control limits for the requested analytes.

SW-846 control limits for matrix spike recoveries are set at 75% to 125% of the analyte quantity added unless original sample concentrations exceed the true values of these "spikes" by a factor of four or more. In this case, affected analytes are not flagged even if recoveries are outside percentage recovery control limits.

The sample matrix duplicate, CCN = 59118 and 59123 (SF-6-0.5-1.0D) was inside control limits for the requested analytes.

SW-846 control limits for duplicate determinations are +/- 20% Relative Percent Difference (RPD) for concentrations greater than or equal to five times the PQL in both the original and duplicate samples, and +/- the PQL for concentrations less than five times the PQL. The RPD is not calculated if both the original and duplicate values fall below the IDL.

A five-fold serial dilution of sample, CCN = 563406 (SF-6-0.5-1.0L) was performed in accordance with SW-846 requirements for ICP analysis.

The adjusted sample concentrations were inside control limits for the requested analytes.

SW-846 control limits for serial dilution are defined as a deviation less than or equal to 10% in the dilution-adjusted concentrations from the original values for all analyte concentrations with values greater than fifty (50) times their respective Instrument Detection Limit (IDL) in the original sample.

The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package. γ

Thomas R. Cale

Thomas R. Cole Data Reviewer II February 10, 2005

· · ·																	N	0 0	050	109		
						CE	IAI	N ()F C	UST	OD	Y					Pag	e	of			
CompuChem								501 N	Aadiso1	n Ave.					Couri	er						
a division of Liberty Analyt	ical Co	rp.							, NC 2						Airbil							
					I	hone	: 919	-379-4	100 I		-379-40)40	ير مورد		Samp	ling Co	mplete	?Y (or N		1 10 No et 1	
Company Name	Project N	lame))					1998 (N) 19	and a sector	1.11.12	Sec. 16 10.	ante a as	12 A.S. 144		1.23174		GW - C		water
Company Name BBL, Inc		FADA	- Pha	isc 1	11	107	1055	En	cr94											ww-		
Address 3700 Regency PKwy Suite 140 City Cary NC 27511	Samplin	Location				5.	+to	n	7	2										SW - S SO - So	oil/Sedi	liment
City State Zip Cary NC 27511 Project Contact	Turnarou	Stan								1.4.9										TB - Tr RI - Rii	nsate	nk
Project Contact Sonth Davies	Batch Q	C or Projec	et Specific	? If Sp	ecific,	which	Samp	ole ID?		ビビ										WP - W O - Oth	· • •	
Phone # <u>919-469-1952</u> × 17 Sampley's Name	Are aque	ous sampl	es field fi	ltered f	or meta	uls? Y	or N	1			1											
Sampler's Name Srign Lovgren	Are high	concentra	tions expe	cted?	Y or N	lf ye	s, whi	ich ID(s)?	Metak												
 A state of the state state state of the state state state of the state /li>	lection				Numbe	r of Pi	eserve	ed Bot	les] ຊັ	1										1997 - 1997 States - 1997	
							4			L						,						
Field ID Date	Time	Matrix	# of bottles	HCI	NaOH	HN03	H2SO4	MEOH	Other	HSL												
543401 SF-2(0.5-1.0) +2500	1640	Soil	1						}	1												
563402 SF-3 (0.5-1.0) 125-05	1650	Soil	1						ł	1												
	1715	Soil	1						I	1												
563404 SF-5 (0.5-1.0) 1-25-55	1745	Soil	1						1	1												
	1810	Soil	1.						ł	1												
SF-6 (0.5-1.0)MS/1001-250	1810	Soil	_						ł	1												
563405 SF-90(0.5-1.0) 1-2505	NR	Soil							4	1												
54350 EB-012505 12505	1750	Water																		2		
																					\square	
									** **** ** **	**********	Traha H-G				M - anto-fitte				SECOLUMN I			
Sample Unpacked By		Cyanide s								1995年1953年	prove 4 set							din series and a ser			1999 (P. 1992)	
Sample Order Entry By: Man long &. Sull		625 & Phe							1			- <u></u>					<u></u>					+
Samples Received in Good Condition Y or N	Y T	608 sampl																			······	
If no, explain:	ا 										·····											
		48.172												Crein.	4. JU					的形态		
Relinquished by: 3-3-(Brian Lovgree		Date/Tim		17/0	5	500			ved by:		VE	1 .								105		
Relinquished by:		Date/Tim	ie:						ved by:	_	v~~							<u>'ime:</u>			<u>/c'.</u> L	
Subcontact? Y or N If yes, where? Samples stored 60 days after date report mailed at no extra charge.			······		[0	usto	iy Se	al(s) i	ntact7	¥or N			Vhite &		(000)(Temp:				°C

-

: . . .

a division of Liberty Analytical Corp.

WORKORDER SUMMARY REPORT

Workorder: 5634	Account: BB&L	Project:	SUTTON STEAM
SDG-Case: PROGRES	SS Status:	QC Type:	CLIENT SPECIFIC MS/MSD
Report Style: COMPU	CHEM STYLE 3 WITH EDD		
SAMPLE ID CLIENT I	D COLLECT RECEIVE	DUE	COMMENTS

SAWIPL		DATE	DATE	DATE	COMMENTS
563401	SF-2-().5-1.()	1/25/2005	1/28/2005	2/10/2005	** HSL METALS=Sb,As,Be,Cd,Cr, Cu,Pb,Hg,Ni,Se,Ag,T1,Zn
S	DRY WEIGHT	Dry Weight			
S	MS6010VAR	METAL 6010B V	ARIABLE SOIL		
S	MS7471HG	MERCURY ONI	Y 7471A SOIL		
563402	SF-3-0.5-1.0	1/25/2005	1/28/2005	2/10/2005	HSL METALS=Sb,As,Be,Cd,Cr, Cu,Pb,Hg,Ni,Se,Ag,Tl,Zn
S	DRY WEIGHT	Dry Weight			• •
S	MS6010VAR	METAL 6010B V	ARIABLE SOIL		
S	MS7471HG	MERCURY ON	Y 7471A SOIL		
563403	SF-4-0.5-1.0	1/25/2005	1/28/2005	2/10/2005	HSL METALS=Sb,As,Be,Cd,Cr, Cu,Pb,Hg,Ni,Sc,Ag,Tl,Zn
S	DRY WEIGHT	Dry Weight			
s	MS6010VAR	METAL 6010B V	ARIABLE SOIL		
S	MS7471HG	MERCURY ON	LY 7471A SOIL	·	
563404	SF-5-0.5-1.0	1/25/2005	1/28/2005	2/10/2005	HSL METALS=Sb,As,Be,Cd,Cr, Cu,Pb,Hg,Ni,Se,Ag,Tł,Zn
s	DRY WEIGHT	Dry Weight			
s	MS6010VAR	METAL 6010B V	ARIABLE SOIL		
S	MS7471HG	MERCURY ON	LY 7471A SOIL		
563405	SF-90-0.5-1.0	1/25/2005	1/28/2005	2/10/2005	HSL METALS=Sb,As,Bc,Cd,Cr, Cu,Pb,Hg,Ni,Sc,Ag,Tl,Zn
s	DRY WEIGHT	Dry Weight			
s	MS6010VAR	• •	ARIABLE SOIL		
s	MS7471HG	MERCURY ON	LY 7471A SOIL		•
563406	SF-6-0.5-1.1	1/25/2005	1/28/2005	2/10/2005	**USE FOR QC** HSL METALS=Sb,As,Be,Cd,Cr, Cu,Pb,Hg,Ni,Se,Ag,Tl,Zn
s	DRY WEIGHT	Dry Weight			
5	MS6010VAR	METAL 6010B	VARIABLE SOIL		
s	QCS-6010	QC-6010B MET	ALS SOIL		
S	MS7471HG	MERCURY ON			
S	QCS-7471HG	QC-7471 HG SC	DIL		

Friday, January 28, 2005

.

5

a division of Liberty Analytical Corp.

WORKORDER SUMMARY REPORT

Workorder: 5635 Account: BB&L SDG-Case: PROGRESS Status: Report Style: COMPUCHEM STYLE 3 WITH EDD Project: SUTTON STEAM

QC Type: CLIENT SPECIFIC MS/MSD

SAMPL	E ID CLIENT ID	COLLECT DATE	RECEIVE DATE	DUE DATE	COMMENTS		
563501	EB-012505	1/25/2005	1/28/2005	2/10/2005	**REQUIRES 3030C PREP FOR HSL METALS=Sb,As,Be,Cd,Cr, Cu,Pb,Hg,Ni,Se,Ag,Tl,Zn		
W	MW6010VAR	METAL 6010B \	ARIABLE WAT				
W	MW7470HG	MERCURY ONLY 7470A WATER					

Enday, January 28 2005

CompuChem

a Division of Liberty Analytical Corp.

501 Madison Avenue Cary, NC 27513

DATA REPORTING QUALIFIERS FOR INORGANICS

On Form I, under the column labeled "C" for concentration qualifier and "Q" for qualifier, each result is flagged with the specific data reporting qualifiers listed below, as appropriate. Up to five qualifiers may be reported on Form I for each analyte.

The C (concentration) qualifiers used are:

- U: This flag indicates the analyte was analyzed for but not detected. This reported value was obtained from a reading that was less than the Instrument Detection Limit (IDL). The IDL will be adjusted to reflect any dilution and, for soils, the percent moisture.
- B: This flag indicates the analyte was analyzed for and the reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL) but greater than or equal to the Instrument Detection Limit (IDL).

The Q qualifiers used are:

- E: This flag indicates an estimated value. This flag is used:
 - 1. When the serial dilution (a five fold dilution for CLP and a five fold dilution for SW-846 method 6010B) results are not within 10%. The analyte concentration must be sufficiently high (minimally a factor of 50X above the IDL in the original sample).
- N: This flag indicates the sample spike recovery is outside of control limits:
- *: This flag is used for duplicate analysis when the sample and the sample duplicate results are not within control limits.

The extensions: D, S, SD, L. A, added to the end of the client ID represent as follows:

- D: matrix duplicate
- S: matrix spike
- SD: matrix spike duplicate
- L: serial dilution
- A: post digestion spike

Method Codes:

- P: ICP PLASMA
- CV: MERCURY COLD VAPOR AA
- CA: MIDI-DISTILLATION SPECTROPHOTOMETRIC

SW-846 -1-

INORGANIC ANALYSES DATA SHEET

					E	PA SAMPLE NO.	
				Γ		SF-2-0.5-1.0	folionin "Films
Lab Name:	COMPUCHEM		Contract:	L	·		
Lab Code:	LIBRTY	Case No.:	SAS No.:	SDG N	No.:	5634	-
Matrix (soi	l/water):	SOIL	Lab Sample ID:	5634	01		
Level (low/	med): LOW	ſ	Date Received:	01/2	8/05		

% Solids: 96.6

Concentration Units (ug/L or mg/kg dry weight):

MG/KG

CAS No.	Analyte	Concentration	С	Q	м
7440-36-0	Antimony	0.20	ש		P
7440-38-2	Arsenic	0.26	В	l	P
7440-41-7	Beryllium	0.02	В	1	P
7440-43-9	Cadmium	0.03	ען		P
7440-47-3	Chromium	1.8			P
7440-50-8	Copper	0.44	в		P
7439-92-1	Lead	2.4			P
7439-97-6	Mercury	0.016	שן		CV
7439-96-5	Manganese	2.2	1]	P
7440-02-0	Nickel	0.36	В		P
7782-49-2	Selenium	0.26	ע		P
7440-22-4	Silver	0.08	ט	1	P
7440-28-0	Thallium	0.29	ע		P
7440-66-6	Zinc	2.5			P

Color Before: GR	RAY	Clarity H	Before:	 Texture:	COARSE
Color After: YE	ELLOW	Clarity A	After:	 Artifacts:	
Comments:		·····		 	
	······································			 ·····	

-1-

INORGANIC ANALYSES DATA SHEET

					EPA SAMPLE NO.
					SF-3-0.5-1.0
Lab Name:	COMPUCHEM		Contract:		
Lab Code:	LIBRTY	Case No.:	SAS No.:	SDG No.:	5634
Matrix (soil	./water): S	OIL	Lab Sample ID:	563402	
Level (low/m	ned): LOW		Date Received:	01/28/05	
<pre>% Solids:</pre>	95.3				

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration	С	Q	М
7440-36-0	Antimony	0.21	U		P
7440-38-2	Arsenic	0.21	ען		P
7440-41-7	Beryllium	0.01	ען	1	P
7440-43-9	Cadmium	0.03	שן		P
7440-47-3	Chromium	0.06	ח	1	P
7440-50-8	Copper	0.25	В		P
7439-92-1	Lead	0.42	Τ		P
7439-97-6	Mercury	0.015	ח		CV
7439-96-5	Manganese	0.39	В	1	P
7440-02-0	Nickel	0.08	ט	[P
7782-49-2	Selenium	0.27	U	1	P
7440-22-4	Silver	0.08	טן	1	P
7440-28-0	Thallium	0.30	ען		P
7440-66-6	Zinc	0.85	Ιв		P

Color Before:	BLACK	Clarity Before:	 Texture:	COARSE
Color After:	YELLOW	Clarity After:	 Artifacts:	
Comments:	••• \security		 	
		·····	 	

SW-846 -1-

INORGANIC ANALYSES DATA SHEET

			EPA SAMPLE NO.
			SF-4-0.5-1.0
Lab Name:	COMPUCHEM	_ Contract:	
Lab Code:	LIBRTY Case No.:	SAS No.:	SDG No.: 5634
Matrix (soi)	1/water): SOIL	Lab Sample ID:	563403
Level (low/	med): LOW	Date Received:	01/28/05

% Solids: 95.7

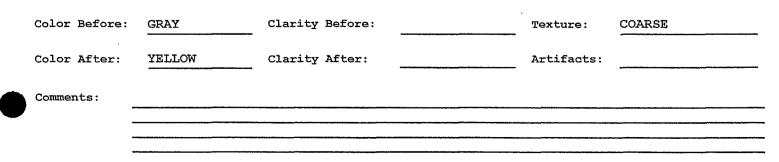
Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration	с	Q	м
7440-36-0	Antimony	0.21	U		P
7440-38-2	Arsenic	0.21	ט		P
7440-41-7	Beryllium	0.01	В		P
7440-43-9	Cadmium	0.03	ע		P
7440-47-3	Chromium	0.07	В		P
7440-50-8	Copper	0.19	в		P
7439-92-1	Lead	0.84			P
7439-97-6	Mercury	0.017	ען		CV
7439-96-5	Manganese	0.66	В	1	P
7440-02-0	Nickel	0.24	В	1	P
7782-49-2	Selenium	0.27	שן	1	P
7440-22-4	Silver	0.08	U	ĺ	P
7440-28-0	Thallium	0.30	υ	1	P
7440-66-6	Zinc	0.87	В	1	P

Color Before:	BROWN	Clarity Before:		Texture:	COARSE
Color After:	YELLOW	Clarity After:	<u> </u>	Artifacts:	
Comments:					
•					
		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·

SW-846 -1-

INORGANIC ANALYSES DATA SHEET


			EPA SAMPLE NO.
			SF-5-0.5-1.0
Lab Name:	COMPUCHEM	Contract:	
Lab Code:	LIBRTY Case No.	: SAS No.:	SDG No.: 5634
Matrix (soi	.1/water): SOIL	Lab Sample II	D: 563404
Level (low/	med): LOW	Date Received	d: 01/28/05

% Solids: 94.9

.

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration	С	Q	м
7440-36-0	Antimony	0.20	U		P
7440-38-2	Arsenic	0.38	В	ł	P
7440-41-7	Beryllium	0.01	U	1	P
7440-43-9	Cadmium	0.03	שן	1	P
7440-47-3	Chromium	0.78	B		P
7440-50-8	Copper	0.27	В]	P
7439-92-1	Lead	2.3			P
7439-97-6	Mercury	0.016	שן	[cv
7439-96-5	Manganese	1.3	1		P
7440-02-0	Nickel	0.08	ע	1	P
7782-49-2	Selenium	0.26	ען	1	P
7440-22-4	Silver	.0.08	ט	1	P
7440-28-0	Thallium	0.29	ען	1	P
7440-66-6	Zinc] 1.5	В	1	P

-1-

INORGANIC ANALYSES DATA SHEET

			EPA SAMPLE NO.
			SF-6-0.5-1.0
Lab Name:	COMPUCHEM	Contract:	L
Lab Code:	LIBRTY Case No.:	SAS No.:	SDG No.: 5634
Matrix (soi	l/water): SOIL	Lab Sample ID:	563406
Level (low/	med): LOW	Date Received:	01/28/05

% Solids: 93.6

.

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration	С	Q	м
7440-36-0	Antimony	0.22	U		P
7440-38-2	Arsenic	0.43	В		P
7440-41-7	Beryllium	0.02	В		P
7440-43-9	Cadmium	0.03	ען	[P
7440-47-3	Chromium	0.93	В	[P
7440-50-8	Copper	0.31	B	1	P
7439-92-1	Lead	1.7	1	1	P
7439-97-6	Mercury	0.018	ען]	CV
7439-96-5	Manganese	1.5			P P
7440-02-0	Nickel	0.17	В		P
7782-49-2	Selenium	0.29	ש	1	P
7440-22-4	Silver	0.09	<u>υ</u> .		P
7440-28-0	Thallium	0.32	ט		P
7440-66-6	Zinc	1.4	В		P

Color Before:	BROWN	Clarity Before:	<u></u>	Texture:	COARSE
Color After:	YELLOW	Clarity After:		Artifacts:	
Comments:					
	······	······			

SW-846 -1-

INORGANIC ANALYSES DATA SHEET

			EPA SAMPLE NO.
			SF-90-0.5-1.0
Lab Name:	COMPUCHEM	Contract:	
Lab Code:	LIBRTY Case No.:	SAS No.:	SDG No.: 5634
Matrix (soi	l/water): SOIL	Lab Sample ID:	563405
Level (low/	med): LOW	Date Received:	01/28/05

% Solids: 96.2

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration	С	Q	м
7440-36-0	Antimony	0.20	U		P
7440-38-2	Arsenic	0.20	ען		P
7440-41-7	Beryllium	0.01	ט		P
7440-43-9	Cadmium	0.03	שן	Ī	P
7440-47-3	Chromium	0.06	μ	[P
7440-50-8	Copper	0.14	В	1	P
7439-92-1	Lead	0.42	1	l	P
7439-97-6	Mercury	0.015	υ	1	CV
7439-96-5	Manganese	0.37	В		P
7440-02-0	Nickel	0.08	ע		P
7782-49-2	Selenium	0.26	ען	1	P
7440-22-4	Silver	0.08	ען		P
7440-28-0	Thallium	0.29	ען		P
7440-66-6	Zinc	1.1	В		₽

Color Before:	BROWN	Clarity Before:		Texture:	COARSE
Color After:	YELLOW	Clarity After:	•	Artifacts:	
Comments:		•			

3

\mathbf{BLANKS}^{\cdot}

.

 Lab Name:
 COMPUCHEM
 Contract:

 Lab Code:
 LIBRTY
 Case No.:
 SAS No.:
 SDG No.:
 5634

 Preparation Blank Matrix (soil/water):
 '
 SOIL
 SOIL

 Preparation Blank Concentration Units (ug/L or mg/kg):
 MG/KG

	Initial Calib. Blank (ug/L)			Co	ntinuing Cal Blank (ug/		Preparation Blank				
Analyte	(ug/b)	с	1	С	2	С	3	с		c	м
Antimony	2.1	υ	2.1	υ	2.1	U	2.1	υ	0.308	в	P
Arsenic	2.1	U	2.1	U	2.1	ש	2.1	υ	-0.270	в	Р
Beryllium	0.1	ប	0.1	ע	0.2	в	0.2	в	0.010	ע	Р
Cadmium	0.3	U	0.3	U	0.3	U	0.3	υ	-0.055	в	P
Chromium	-1.7	в	-1.6	в	-1.7	в	-1.6	в	0.060	U	P
Copper	-0.5	в	0.4	ט	0.4	U	0.4	υ	0.040	U	Р
Lead	1.3	υ	1.3	ע	1.3	U	1.3	U	0.130	υ	Р
Mercury	0.100	U	0.100	U	0.100	U	0.100	υ	0.017	ប	CV
Manganese	0.2	υ	0.2	ប	0.2	U	0.2	υ	0.060	в	P
Nickel	0.8	υ	0.8	ប	0.8	U	0.8	υ	0.080	υ	P
Selenium	2.7	U	2.7	U	2.7	U	2.7	υ	0.270	υ	Р
Silver	0.8	υ	0.8	υ	0.8	υ	0.8	ע	0.080	υ	P
Thallium	3.0	υ	3.0	ש	3.0	U	3.0	ד ו	-1.181		P
Zinc	1.2	υ	1.2	U	1.2	ש	1.2	υ	0.247	в	P

5A

SPIKE SAMPLE RECOVERY

							SAMPLE	NO.		
							SF-6-0.!	5-1.0s		
Lab Na	ame: <u>COMPUCH</u>	EM		Cont	tract:	<u>н</u>	······································		d	·
Lab Co	de: <u>LIBRTY</u>	Case N	o.: SAS	No).:	5	SDG No.: 56	34		
	(soil/water ds for Sample		Le [,]	vel	(low/med): LOW					
		Conc	entration Units (ug/	'L c	or mg/kg dry weight	:):	_MG/K	· ·		
1	Analyte	Control Limit %R	Spiked Sample Result (SSR)	с	Sample Result (SR)	с	Spike Added (SA)	%R	Q	м
	Antimony	75 - 125	44.4235		0.2244	υ	53.42	83.2		P
	Arsenic	75 - 125	4.0775		0.4321	в	4.27	85.4		P
	Beryllium	75 - 125	5.3995		0.0187	в	5.34	100.8		P
	Cadmium	75 - 125	4.9634		0.0321	υ	5.34	92.9		P
	Chromium	75 - 125	22.1959		0.9314	в	21.37	99.5		Р
	Copper	75 - 125	25.7008		0.3097	в	26.71	95.1		P
	Lead	75 - 125	3.5967		1.7057		2.14	88.4		P
	Mercury	75 - 125	0.1937		0.0178	υ	0.18	107.6		CV
	Manganese	75 - 125	55.2713		1.5453		53.42	100.6		P
	Nickel	75 - 125	51.0065		0.1702	в	53.42	95.2		P
	Selenium	75 - 125	1.0070		0.2885	ע	1.07	94.1		P
	Silver	75 - 125	4.8446		0.0855	ע	5.34	90.7		Р
	Thallium	75 - 125	4.0766		0.3205	ען	5.34	76.3		P
	Zinc	75 - 125	52.6503		1.3831	в	53.42	96.0		P

Comments:

÷

5A

SPIKE SAMPLE RECOVERY

							SAMPLE	NO.		
							SF-6-0.5	-1.0SD		
						L			J	
Lab Na	me: <u>COMPUCH</u>	EM	(Cont	tract:	·····.		<u> </u>		
Lab Co	de: <u>LIBRTY</u>	Case N	D.: SAS	No	».:	5	SDG No.: 56	34		
Matrix	(soil/water): <u>soil</u>	Le	vel	(low/med): LOW					
% Soli	ds for Sample	e: <u>93.6</u>								
		Conc	entration Units (ug/	′Ъс	or mg/kg dry weight	:):	_MG/K	· ·		
Í	Analyte	Control	Spiked Sample		Sample		Spike			
l		Limit %R	Result (SSR)	С	Result (SR)	C	Added (SA)	%R	2	M
	Antimony	75 - 125	44.7850		0.2244	U	53.42	83.8		Р
	Arsenic	75 - 125	3.9261		0.4321	в	4.27	81.8		Р
	Beryllium	75 - 125	5.3690		0.0187	в	5.34	100.2		Ρ
	Cadmium	75 - 125	4.9106		0.0321	υ	5.34	92.0		P
	Chromium	75 - 125	22.0633	1	0.9314	в	21.37	98.9		P
	Copper	75 - 125	25.6256		0.3097	в	26.71	94.8		P
	Lead	75 - 125	3.7131	Ī	1.7057		2.14	93.8		P
	Mercury	75 - 125	0.1891	Ī	0.0178	υ	0.18	105.1		cv
	Manganese	75 - 125	54.8590	i	1.5453		53.42	99.8		P
	Nickel	75 - 125	50.5042	;	0.1702	B	53.42	94.2	i	P
	Selenium	75 - 125	1.1657		0.2885	บ	`1.07	108.9	<u> </u>	P
	Silver	75 - 125	4.8114		0.0855	υ	5.34	90.1		P
	Thallium	75 - 125	4.2037		0.3205	บ	5.34	78.7		P
	Zinc	75 - 125	52.3219	[1.3831	в	53.42	95.4	1	P

Comments:

6

DUPLICATES

						SAMPLE NO.			
					. sı	F-6-	0.5-1.0D)	
La	b Name: <u>COMPUCE</u>	IEM	Contract:				<u></u>		,
La	b Code: LIBRTY	Case No.:	SAS No	.:	SDG No.:	56	34		
Ma	Matrix (soil/water): SOIL		Level (10	ow/me	ed): <u>LOW</u>				
	<pre>% Solids for Sample:93.6</pre>		* % Solids for	Dup	licate: 93.6				
	_	Concentration	n Units (ug/L or mg/kg	dry	weight): MG/I	KG	-		
;	Analyte	Control Limit	Sample (S)	с	Duplicate (D)	с	RPD	Q	м
	Antimony		0.2244	ט	0.2414	в	200.0		Р
	Arsenic		0.4321	в	0.2244	υ	200.0		Р
	Beryllium		0.0187	в	0.0151	в	21.3		P
	Cadmium		0.0321	U	0.0321	υ			Р
	Chromium	1.1	0.9314	в	1.1639		22.2		P
	Copper		0.3097	в	0.3825	в	21.0		P
	Lead	0.3	1.7057		1.4985		12.9		P
	Mercury		0.0178	ប	0.0178	ប			CV
	Manganese	1.1	1.5453		1.7263		11.1		P
	Nickel		0.1702	в	0.3289	в	63.6		P
	Selenium		0.2885	υ	0.2885	υ			P
	Silver		0.0855	υ	0.0855	υ			P
	Thallium		0.3205	υ	0.3205	υ			P
	Zinc		1.3831	в	2.1277	в	42.4		P

7

LABORATORY CONTROL SAMPLE

Lał	Lab Name: <u>COMPUCHEM</u>				_ Contract:	<u> </u>			
Lał	b Code: LIBRTY	Case	No.:		SAS No.: _		SDG No.: <u>5</u>	534	
Sol	lid LCS Source:	EPA							
Αqı	ueous LCS Source	:	<u></u>						
ſ		Aqueou	ıs (ug/L)			Solid	(mg/kg)	-	
	Analyte	True	.Found	%R	True	Found C	Limi	ts	%R
Ī	Antimony				68.9	49.41	18.8	119.0	71.7
Ì	Arsenic				136.0	121.55	101.0	171.0	89.4
j	Beryllium				95.3	92.56	74.7	116.0	97.1
ĺ	Cadmium			1	118.0	113.30	90.4	145.0	96.0
Í	Chromium				89.3	81.53	71.3	107.0	91.3
Í	Copper			1	117.0	120.35	95.7	138.0	102.9
ĺ	Lead				138.0	125.75	105.0	170.0	91.1
ĺ	Mercury			1	2.5	2.5	1.7	3.3	100.8
	Manganese				341.0	312.73	272.0	409.0	91.7
	Nickel				156.0	149.74	122.0	190.0	96.0
	Selenium				87.6	80.63	64.9	110.0	92.0
ĺ	Silver				119.0	118.97	88.8	150.0	100.0
ĺ	Thallium				139.0	124.06	79.6	199.0	89.3
	Zinc			1	66.0	53.30	42.9	89,1	80.8

9 ICP SERIAL DILUTIONS

SAMPLE	NIC
OWNETE	INC.

SF-6-0.5-1.0L

Lab Name: COMPUCHEM

.

Contract:

Lab Code: LIBRTY Cas Matrix (soil/water): SOIL SAS No.: _____ SDG No.: 5634___

Level (low/med):

LOW

Concentration Units: ug/L

.

Case No.:

Analyte	Initial Sample Result (I)	с	Serial Dilution Result (S)	с	% Differ- ence	Q	м
Antimony	2.10	U	10.50	ען			P
Arsenic	4.04	B	10.50	U	100.0	1	P
Beryllium	0.17	в	0.50	U	100.0	1	P
Cadmium	0.30	ע	1.50	U			P
Chromium	8.72	В	3.00	ט	100.0	1	P
Copper	2.90	В	4.23	В	45.9	1	P
Lead	15.97		14.37	B	10.0	1	P
Manganese	14.46		14.84	В	2.6		P
Nickel	1.59	B	4.00	שן	100.0	1	P
Selenium	2.70	U	13.50	סן		1	P
Silver	0.80	U	4.00	ש	1		P
Thallium	3.00	U	15.00	ש		1	P
Zinc	12.95	B	21.10	B	62.9		P

1	0
_	-

INSTRUMENT DETECTION LIMITS (QUARTERLY)

Lab Name: COMPUCHEM	Contract:
Lab Code: LIBRTY Case No.:	SAS No.: SDG No.: 5634
ICP ID Number: <u>P4</u>	Date: 01/15/05
Flame AA ID Number:	
Furnace AA ID Number:	

_

Analyte	Wave- length (nm)	Back- ground	CRQL (ug/L)	IDL (ug/L)	м
Antimony	206.84		10	2.1	Ρ
Arsenic	189.04		10	2.1	P
Beryllium	313.04		5	0.1	Р
Cadmium	226.50		5.0	0.3	Ρ
Chromium	267.72		10	0.6	Ρ
Copper	324.70		5	0.4	P
Lead	220.35		3	1.3	P
Manganese	257.61		10	0.2	P
Nickel	231.60		40	0.8	Р
Selenium	196.03		5	2.7	P
Silver	328.07		5	0.8	P
Thallium	190.86	1	10	3.0	Р
Zinc	206.20		20	1.2	Р

Comments:

1	0	

INSTRUMENT DETECTION LIMITS (QUARTERLY)

Lab Name: COMPUCHEN	1	Contract	z:		
Lab Code: LIBRTY	Case No.:	SAS No.:		SDG No.:	5634
ICP ID Number:		Date:	01/15/05		
Flame AA ID Number: Furnace AA ID Number:	<u>v3</u>				
rundet in ib number.			<u></u>		

Analyte	Wave- length (nm)	Back- ground	CRQL (ug/L)	IDL (ug/L)	м
Mercury	253.70		0.20	0.10	CV

٢

Comments:

10-Feb-05

SCOTT DAVIES BLASLAND, BOUCK & LEE, INC. 3700 REGENCY PARKWAY SUITE 140 Cary, NC 27511

Subject:

Report of Data-Project: SUTTON STEAM Workorder: 5635

Attn.: SCOTT DAVIES

Enclosed are the results of analytical work performed in accordance with the referenced account number.

This report covers sample(s) appearing on the attached listing.

Thank you for selecting CompuChem for your sample analysis. If you should have questions or require additional analytical services, please contact your representative at 1-800-833-5097.

Sincerely,

J. Sult Narlenes

CompuChem # A Division of Liberty Analytical

Attachment

TOTAL NUMBER
OF PAGES

501 Madison Avenue, Cary, NC 27513 Tel: 919-379-4100 Fax: 919-379-4050

CompuChem, a division of Liberty Analytical						
Hsn	Client ID	Wordorder	Matrix	Account	Project	Report
563501	EB-012505	5635	w	BB&L	SUTTON STEAM	

.

.

COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

Name:	COMPUCHEM	Contract:
Lab Code:	LIBRTY Case No.:	SAS No.: SDG No.: 5635
SOW No.:	SW-846	
	EPA Sample No.	Lab Sample ID.
	EB-012505	563501

Were ICP interelement corrections applied?	Yes/No	YES
Were ICP background corrections applied? If yes-were raw data generated before	Yes/No	YES
application of background corrections?	Yes/No	<u>NO</u>

Comments:

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

gnature:	Thomas R. Cole	Name:	Thomas R. Cole	
Date:	Feleman 10, 2005	Title:	Data Reviewer II	
	\mathbf{v}	PAGE - IN		s

SW-\$46

CompuChem

a Division of Liberty Analytical Corp. 501 Madison Avenue Cary, NC 27513

INORGANIC CASE SUMMARY NARRATIVE SDG # 5635 PROTOCOL # SW-846

The indicated Sample Delivery Group (SDG) consisting of one (1) water sample was received into the laboratory management system (LIMS) on January 28, 2005 intact and in good condition with Chains of Custody (COC) records in order. Sample ID's reported in this data package are noted by the receiving department on the COC if they differ from those listed by the samplers on the COC.

The sample was analyzed for total antimony, arsenic, beryllium, cadmium, chromium, copper, lead, manganese, mercury, nickel, selenium, silver, thallium, and zinc using analytical methods delineated in SW-846 (Third Edition)-Update III.

SAMPLE IDs:

Customer IDs and correlating laboratory IDs are listed on the cover page.

INSTRUMENTAL QUALITY CONTROL:

All calibration verification solutions (ICV & CCV), blanks (ICB, CCB), and interference check samples (ICSA & ICSAB) associated with this data were confirmed to be within SW-846 allowable limits.

SAMPLE PREPARATION QUALITY CONTROL:

The sample preparation procedure verifications (LCSW & PBW) were found to be within acceptable ranges and all field samples were prepared and analyzed within the contract specified holding times.

MATRIX RELATED QUALITY CONTROL:

No matrix quality control samples were prepared and analyze in this case.

The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Thomas R. Cele

Thomas R. Cole Data Reviewer II February 10, 2005

a divísion of Liberty Analytical Corp.

.

WORKORDER SUMMARY REPORT

Workor	der: 5634	Account: I	3B&L	Project:	SUTTON STEAM
SDG-Ca	se: PROGRESS	Status:		QC Type:	CLIENT SPECIFIC MS/MSD
Report	Style: COMPUCH	EM STYLE 3 WIT	TH EDD	•	
SAMPL	E ID CLIENT ID	COLLECT DATE	RECEIVE DATE	DUE DATE	COMMENTS
563401	SF-2-0.5-1.0	1/25/2005	1/28/2005	2/10/2005	** HSL METALS=Sb,As,Be,Cd,Cr, Cu,Pb,Hg,Ni,Se,Ag,Tl,Zn
S	DRY WEIGHT	Dry Weight			
S	MS6010VAR	METAL 6010B V			
S	MS7471HG	MERCURY ONL	Y 7471A SOIL		
563402	SF-3-0.5-1.0	1/25/2005	1/28/2005	2/10/2005	HSL METALS≕Sb,As,Be,Cd,Cr, Cu,Pb,Hg,Ni,Se,Ag,Tl,Zn
s	DRY WEIGHT	Dry Weight		~	
S	MS6010VAR	METAL 6010B V			
8	MS7471HG	MERCURY ONL	X 7471A SOIL		
563403	SF-4-0.5-1.0	1/25/2005	1/28/2005	2/10/2005	HSL METALS = Sb,As,Be,Cd,Cr, Cu,Pb,Hg,Ni,Sc,Ag,Tì,Zn
S	DRY WEIGHT	Dry Weight			
S	MS6010VAR	METAL 6010B V	ARIABLE SOIL		
S	MS7471HG	MERCURY ONL	X 7471A SOIL		
563404	SF-5-0.5-1.0	1/25/2005	1/28/2005	2/10/2005	HSL METALS=Sb,As,Be,Cd,Cr, Cu,Pb,Hg,Ni,Se,Ag,Tl,Zn
S	DRY WEIGHT	Dry Weight			
S	MS6010VAR	METAL 6010B V	ARIABLE SOIL		
S	MS7471HG	MERCURY ONL	Y 7471A SOIL		
563405	SF-90-0.5-1.0	1/25/2005	1/28/2005	2/10/2005	HSL METALS=Sb,As,Bc,Cd,Cr, Cu,Pb,Hg,Ni,Se,Ag,Tl,Zn
s	DRY WEIGHT	Dry Weight			
s	MS6010VAR	METAL 6010B V	ARIABLE SOIL		
S	MS7471HG	MERCURY ONI	<i>X</i> 7471A SOIL		
563406	SF-6-0.5-1.1	1/25/2005	1/28/2005 [.]	2/10/2005	**USE FOR QC** HSL METALS=Sb,As,Be,Cd,Cr, Cu,Pb,Hg,Ni,Se,Ag,Tl,Zn
s	DRY WEIGHT	Dry Weight			
5	MS6010VAR	METAL 6010B V	ARIABLE SOIL		
s	QCS-6010	QC-6010B MET/	ALS SOIL		
s	MS7471HG	MERCURY ONI			
S	QCS-7471HG	QC-7471 HG SO	IL .		

Friday, January 28, 2005

4-

a division of Liberty Analytical Corp.

WORKORDER SUMMARY REPORT

Workorder: SDG-Case:		Account: Status:	BB&L	-	SUTTON STEAM						
SDG-Case: PROGRESS Status: QC Type: CLIENT SPECIFIC MS/M Report Style: COMPUCHEM STYLE 3 WITH EDD											
SAMPLE ID	CLIENT ID	COLLECT DATE	RECEIVE DATE	DUE DATE	COMMENTS						
563501	EB-012505	1/25/2005	1/28/2005	2/10/2005	**REQUIRES 3030C PREP FOR HSL METALS=Sb,As,Be,Cd,Cr, Cu,Pb,Hg,Ni,Se,Ag,Tl,Zn						

WMW6010VARMETAL 6010B VARIABLE WATERWMW7470HGMERCURY ONLY 7470A WATER

Enday, January 28, 2025

5

CompuChem a Division of Liberty Analytical Corp. 501 Madison Avenue Cary, NC 27513

DATA REPORTING QUALIFIERS FOR INORGANICS

On Form I, under the column labeled "C" for concentration qualifier and "Q" for qualifier, each result is flagged with the specific data reporting qualifiers listed below, as appropriate. Up to five qualifiers may be reported on Form I for each analyte.

The C (concentration) qualifiers used are:

- U: This flag indicates the analyte was analyzed for but not detected. This reported value was obtained from a reading that was less than the Instrument Detection Limit (IDL). The IDL will be adjusted to reflect any dilution and, for soils, the percent moisture.
- B: This flag indicates the analyte was analyzed for and the reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL) but greater than or equal to the Instrument Detection Limit (IDL).

The Q qualifiers used are:

- E: This flag indicates an estimated value. This flag is used:
 - 1. When the serial dilution (a five fold dilution for CLP and a five fold dilution for SW-846 method 6010B) results are not within 10%. The analyte concentration must be sufficiently high (minimally a factor of 50X above the IDL in the original sample).
- N: This flag indicates the sample spike recovery is outside of control limits:
- *: This flag is used for duplicate analysis when the sample and the sample duplicate results are not within control limits.

The extensions: D, S, SD, L. A, added to the end of the client ID represent as follows:

- D: matrix duplicate
- S: matrix spike
- SD: matrix spike duplicate
- L: serial dilution
- A: post digestion spike

Method Codes:

- P: ICP PLASMA
- CV: MERCURY COLD VAPOR AA
- CA: MIDI-DISTILLATION SPECTROPHOTOMETRIC

SW-846 -1-

INORGANIC ANALYSES DATA SHEET

	INORGA	NIC ANAL/ISES DATA SHEET	EPA SAMPLE NO.
			EB-012505
Lab Name:	COMPUCHEM	Contract:	
Lab Code:	LIBRTY Case No.:	SAS No.:	SDG No.: 5635
Matrix (soi	1/water): WATER	Lab Sample ID:	563501
Level (low/	med): LOW	Date Received:	01/28/05

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight):

UG/L

CAS No.	Analyte	Concentration	с	Q	м
7440-36-0	Antimony	13.0	1	İ	P
7440-38-2	Arsenic	2.1	שן	l	P
7440-41-7	Beryllium	0.10	ש	1	P
7440-43-9	Cadmium	0.30	שן		P
7440-47-3	Chromium	0.60	ש	l	P
7440-50-8	Copper	1.4	в	ł	P
7439-92-1	Lead	1.6	В	1	₽
7439-97-6	Mercury	0.10	שן		cv
7439-96-5	Manganese	0.24	В	1	P
7440-02-0	Nickel	0.80	ש		P
7782-49-2	Selenium	2.7	ח	1	P
7440-22-4	Silver	0.80	שן		P
7440-28-0	Thallium	3.0	ש	l	P
7440-66-6	Zinc	20.6			P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:
Color After:	COLORLESS	_ Clarity After:	CLEAR	Artifacts:
Comments:				,
-		······································		

3 BLANKS

Lab Name: COMPUCHEM Contract: Lab Code: LIBRTY Case No.: SDG No.: Preparation Blank Matrix (soil/water): WATER______

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

Initial Calib. Blank			Continuing Calibration Blank (ug/L)					Preparation Blank		
Analyte	(ug/L)	С	1	С	2	С	3	с	с	м
Antimony	4.2	в	3.1	в	3.7	в	3.2	в	2.100 U	P
Arsenic	2.1	υ	2.1	ש	2.1	U	2.1	υ	2.100 U	P
Beryllium	0.1	U	0.1	ט ן	0.1	в	0.1	υ	0.100 U	P
Cadmium	0.3	υ	0.3	ע	0.3	U	0.3	υ	0.300 U	P
Chromium	-0.6	в	0.6	ע ו	-0.6	В	0.6	ប	0.600 U	P
Copper	0.4	υ	0.4	ע	0.4	U	0.4	υ	0.510 B	P
Lead	1.3	υ	1.3	ע	1.3	U	1.3	υ	1.300 U	P
Mercury	0.100	U	0.100	ן ש	0.100	U	0.100	υ	0.100 U	CV
Manganese	0.2	υ	0.2	ע	0.2	U	0.2	U	1.165 B	P
Nickel	0.8	υ	0.8	ע ן	0.8	U	0.8	ប	0.800 U	P
Selenium	2.7	ប	2.7	ט	2.7	U	2.7	υ	2.700 ^U	P
Silver	0.8	ប	0.8	ש	0.8	U	0.8	υ	0.800 U	P
Thallium	3.0	υ	3.0	ש	3.0	U	3.0	ប	3.000 U	P
Zinc	1.2	υ	1.2	ש	1.2	ש	1.6	в	7.692 B	P

7

LABORATORY CONTROL SAMPLE

~

	Aqueous	(ug/L)			Solid	L (mg/kg)	
Analyte	True	Found	%R	True	Found	С	Limits	%R
Antimony	6000.0	5890.08	98.2					
Arsenic	1000.0	1008.64	100.9					
Beryllium	500.0	511.42	102.3					
Cadmium	500.0	468.42	93.7					
Chromium	1000.0	954.02	95.4			1		
Copper	2500.0	2413.54	96.5				1	
Lead	300.0	281.38	93.8			1		
Mercury	3.0	2.76	92.0					
Manganese	1500.0	1461.37	97.4					
Nickel	4000.0	3728.60	93.2					
Selenium	500.0	501.94	100.4			1		
Silver	1000.0	969.88	97.0					
Thallium	1000.0	887.34	88.7			1		
Zinc	2000.0	1852.63	92.6			1		

1	A
r	U

INSTRUMENT DETECTION LIMITS (QUARTERLY)

Lab	Name:	COMPUCHEM		Contract			
Lab	Code:	LIBRTY	Case No.:	SAS No.:		SDG No.:	5635
ICP	ID Numb	er: <u>P4</u>		Date:	01/15/05		
Fla	ne AA ID	Number:					
Furi	nace AA	ID Number:					

Analyte	Wave- length (nm)	Back- ground	CRQL (ug/L)	IDL (ug/L)	м
Antimony	206.84		10	2.1	P
Arsenic	189.04		10	2.1	Р
Beryllium	313.04		5	0.1	Р
Cadmium	226.50		5.0	0.3	P
Chromium	267.72		10	0.6	P
Copper	324.70		5	0.4	Р
Lead	220.35		3	1.3	Р
Manganese	257.61		10	0.2	P
Nickel	231.60		40	0.8	P
Selenium	196.03		5	2.7	P
Silver	328.07		5	0.8	P
Thallium	190.86		10	3.0	P
Zinc	206.20		20	1.2	P

Comments:

í

SW-846

.

10

INSTRUMENT DETECTION LIMITS (QUARTERLY)

Lab Name: COMPUCHEM	Contract:
Lab Code: LIBRTY Case No.:	SAS No.: SDG No.: _5635
ICP ID Number:	Date: 01/15/05
Flame AA ID Number: <u>V3</u> Furnace AA ID Number:	

t

Analyte	Wave- length (nm)	Back- ground	CRQL (ug/L)	IDL (ug/L)	м
Mercury	253.70		0.20	0.10	CV

Comments:

To: Scott Davies

Date: 3/21/2005

From: Dennis Capria

Re: Data Review

Data for sample collected from the Progress Energy-Sutton site in North Carolina during February 2005 were reviewed for quality assurance/quality control compliance. The data report from CompuChem, Inc. of Cary, North Carolina was reviewed. Included in the review are data from the following sample delivery group (SDG): 5674. The following summarizes the findings of the QA/QC review:

<u>Metals</u>

- One data set was reviewed, including 11 water sample 1 equipment blank.
- Samples were analyzed for following:

Analysis	Method
Metals	EPA SW-846 6010B
Sulfate	EPA 375.4
Chloride	EPA 325.2
TOC	EPA 415.1

- All samples were analyzed within the method-specified holding time.
- Matrix spike (MS) and laboratory duplicate analyses was performed on the sample location MW-16. The MS recovery of thallium exhibited a recovery less than the control limit. All associate thallium sample results were qualified as estimated. The laboratory duplicate analysis of chromium exhibited a relative percent difference (RPD) greater than the control limit. All associated sample results were qualified as estimated. All other MS recoveries and laboratory duplicate RPDs were within control limits
- All reported laboratory control sample recoveries were within control limits.
- Several target analytes were detected in the method blanks within this SDG. Associated Sample results of Thallium and Zinc less than the blank action level, associated sample results of Thallium and Zinc data have been qualified as non-detect.
- No calibration data was provided.

The data were presented in a reduced deliverables format. Therefore, only a limited data review could be performed. Since no raw data were provided, no verification of compound identification and quantitation could be performed.

Other than for the deviations noted in this review, the reported data quality is within method specifications and the data is considered acceptable for use as reported by the laboratory.

•

.

INORGANIC ANALYSES DATA SHEET

				NW	-13
Lab Name:	COMPUCHEM		Contract:		
Lab Code:	LIBRTY	Case No.:	SAS No.:	SDG No.: 5674	****
Matrix (soi	1/water):	WATER	Lab Sample ID;	567406	
Level (low/	med): 10	W.	Date Received:	02/03/05	****
% Solids:	0.0				

Concentration Units (ug/L or mg/kg dry weight):

UG/L

.

EPA SAMPLE NO.

CAS No.	Analyte	Concentration	с	Q	м
7440-38-2	Arsenic	99.1	† –	1	₽
7440-70-2	Calcium	125000	1]	P
7440-47-3	Chromium	0.90	la `	KT	P
7440-50-8	Copper	0.55	B		P
7440-28-0	Thallium	1 10 8.9	1B	IN 115	P
7440-66-6	Zinc	1,20 -9.9	B	10	P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	anna a constantina da la calego da calego
Comments:					

	<u> </u>				

· · ·

			1- .YSES DATA SHEET	· · ·
		INORGANIC ANAL	A SEŞ DATA SHEET	EPA SAMPLE NO.
				MW-13D
Lab Name:	COMPUCHEM	Conti	cact:	
Lab Code:	LIBRTY Case	No.:	AS No.:	SDG No.: 5674
Matrix (so	il/water): WATER		Lab Sample ID:	567407
Level (low,	/med): LOW		Date Received:	02/03/05
% Solids:	0.0			

Concentration Units (ug/L or mg/kg dry weight):

UG/L

CAS No.	Analyte	Concentration	c	Q	м
7440-38-2	Arsenic	3.6	σ		P
7440-70-2	Calcium	84400	J	1	P
7440-47-3	Chromium	0.90	U	K.J	P
7440-50-8	Copper	0.50	JU	1	P
7440-28-0	Thallium	10 8.2	B	IND J	P
7440-66-6	Zinc	1 .20 18-3-	†B	10	[₽

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	~
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:		****	un ann an	annen an	
	+				
	**************************************		***************************************		******

7

INORGANIC ANALYSES DATA SHEET

		A1 (1	ORGAINC MI	ALLOSS DA	CA GILBEST		EFA SAMPLE NO.
							MW-14
Lab Name:	COMPUCHEM		Co:	ntract:		E <i>milesepe</i>	
Lab Code:	LIBRTY	Case No.:	, 4/22/11.11/11.11/11.11/11.11/11.11/11	SAS No.:		SDG No.:	5674
Matrix (soi	l/water):	WATER		Lab S	Sample ID:	567401	
Level (low/	'med): <u>Ľ</u>	WC		Date	Received:	02/03/05	1919-1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1
% Solids:	0.0						

Concentration Units {ug/L or mg/kg dry weight}:

UG/L

С Concentration Analyte Q М CAS No. 7440-38-2 9.6 B Arsenic Р 7440-70-2 34100 Calcium P 1 7440-47-3 Chromium 0.90 U 🗲 p 7440-50-8 Copper 0.59 B P 7440-28-0 62.5-2 13-24 131 Thallium P 17-8 BIU 7440-66-6 P Zinc 20

1

Color Before:	COLORLESS	Clarity Before:	CLOUDY	Texture:	
Color After:	COLORLESS	Clarity After:	CFORDZ	Artifacts:	9 89-9-544
Comments:		, 	ang shundha a shunna na sa gangan yakuna yakuna shunna 104		
	«				

INORGANIC ANALYSES DATA SHEET

		LIUK	GANIC ANALISES I	AIASHEEL		EPA SAMPLE NO.
						MW-15
Lab Name:	COMPUCHEM		Contract:		••••••••••••••••••••••••••••••••••••••	
Lab Code:	LIBRTY	Case No.:	SAS No.:	•	SDG No.:	5674
Matrix (soi	l/water):	WATER	Та	b Sample ID:	567408	
Level (low/	med): <u>LO</u>	W	Da	te Received:	02/03/05	
% Solids:	0.0					

Concentration Units (ug/L or mg/kg dry weight):

UG/L

CAS NO.	Analyte	Concentration	c	Q	M
7440-38-2	Arsenic	44.0	1		P
7440-70-2	Calcium	63400	1	[P
7440-47-3	Chromium	0.90	U	W.T	P
7440-50-8	Copper	0.50	ען י	1	P
7440-28-0	Thallium	1 10 55	18-	NUJ	P
7440-66-6	Zinc	1 20 13.8	B	1400 U	P

Color Before:	COLORLESS	Clarity Before:	CLOUDY	Texture:	<u></u>
Color After:	COLORLESS	Clarity After:	CLOUDY	Artifacts:	Contraction of the second sec second second sec
Comments:					
	<u></u>		*****		

. .

.

.:

INORGANIC ANALYSES DATA SHEET

			OUTO DI ADI OR	5 47 7% 1 7% (53.16/10/1			EPA SAMPLE NO.
						[MW-15D
Lab Name: <u>C</u>	OMPUCHEM		Contract:			L	4/4/10_2********************************
Lab Code: L	IBRTY	Case No.:	SAS N		SDG	No.:	5674
Matrix (soil/w	watez):	WATER		Lab Sample iD:	567	40.9	
Level (low/med	a): <u>Low</u>			Date Received:	02/	03/05	Market
t Solids: 0	.0						

Concentration Units (ug/L or mg/kg dry weight):

UG/L

CAS No.	Analyte	Concentration	C	Q	м
7440-38-2	Arsenic	3.6	U	l	P
7440-70-2	Calcium	35900	1	1	P
7440-47-3	Chromium	0.90	U	14.1	P
7440-50-8	Copper	0.,50	<u>סן</u>		P
7440-28-0	Thallium	6.2] ש	C R	P
7440-66-6	Zinc) 20 13-6	JB	$\left \right\rangle$	P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:		ng gang ang ang ang ang ang ang ang ang			agaan ahaa ay ahaa ay ahaa ay ahaa ay ahaa ahaa ahaa ahaa ahaa ahaa ahaa ahaa ahaa ahaa ahaa ahaa ahaa ahaa ah
	*******	******			

• • • .	· ' - ,		SW-846 -1-		
		INORGAN	VIC ANALYSES DATA SHEET		EPA SAMPLE NO. EB-020205
Lab Name:	COMPUCHEM		Contract:		######################################
Lab Code:	LIBRTY	Case No.:	SAS No.:	SDG No.:	5674
Matrix (so	il/water):	WATER	Lab Sample ID:	567404	
Level (low,	/med): <u>L(</u>	<u>wc</u>	Date Received:	02/03/05	
% Solids:	0.0				

Concentration Units (ug/L or mg/kg dry weight):

UG/L

CAS No.	Analyte	Concentration	c	Q	м
7440-38-2	Arsenic	3.6	U	<u> </u>	P
7440-70-2	Calcium	104	18	Be	P
7440-47-3	Chromium	0.90	1U	IF J	P
7440-50-8	Copper	0,50	U	1	P
7440-28-0	Thallium	6.2	lα	IN J	P
7440-66-6	Zinc	13.0	B	[P

Color Before	COLORLESS	Clarity Before:	CLEAR	Texture:	**************************************
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	•
Comments:	<u></u>				
	i			-i	
			<u>.</u>		
	·		•		

1

INORGANIC ANALYSES DATA SHEET

				10 1 10 10 10 10 10 10 10 10 10 10 10 10	L (1, ULL192/ 1		EPA SAMPLE NO.
							พศ-20
Lab Name:	COMPUCHEM		Con	tract:		L	
Lab Code:	LIBRTY	Case No.:		SAS No.:	****	SDG No.:	5674
Matrix (soi	l/water):	WATER		Lab	Sample ID:	567410	
Level (low/	med): LC	W		Ďate	Received:	02/04/05	
<pre>% Solids:</pre>	<u>0.0</u>						

Concentration Units (ug/L or mg/kg dry weight):

7440-66-6

Zinc

Ċ м CAS No. Analyte Concentration Q 7440-38-2 3.6 JU P Arsenic Calcium 7440-70-2 79900 ₽ 7440-47-3 0.90 U X P Chromium 15 0.59 B P 7440-50-8 Copper 7440-28-0 Thallium 6.2 U JNJ P

24.3

10

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					
	`				

*

UG/L

₽

- SW-846

-1-INORGANIC ANALYSES DATA SHEET

		21,0	******	20 222222 VALA		EPA SAMPLE NO.	
						· MW-20D	
Lab Name:	COMPUCHEM		Contract	· •			
Lab Code:	LIBRTY	Case No.:	SAS 1	No.:	SDG No.:	5674	•
Matrix (soi	.1/water):	WATER		Lab Sample ID:	567411		
Level (low/	(med): \underline{L}	<u> </u>		Date Received:	02/04/05	, Milli Lil Maaya, aa ahaa ahaa ahaa ahaa ahaa ahaa a	
•				-	02/04/05	2000 1995 1997 1997 1997 1997 1997 1997 1997	

% Solids: 0.0

,

• .

• • •

.

.

1

Concentration Units (ug/L or mg/kg dry weight):

М Concentration С Q Analyte CAS No. U P 7440-38-2 Arsenic 3.6 7440-70-2 65300 Ý Calcium 0.90 U + 7440-47-3 Chronium Ð 7440-50-8 1.1 B P Coppez 6.2 U P 7440-28-0 Thallium NY J Zinc 7440-66-6 21.9 Þ | l()

UG/L

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	1551 Mile 49-1 - Conception and Addition Million and Addition a
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				

٢

SW-846

-1-

INORGANIC ANALYSES DATA SHEET

		live	WAINC ANALISE	DATA SHEET	EPA I	SAMPLE NO.
					1	1W-90
Lab Name:	COMPUCHEM		Contract	**************************************		12
Lab Code:	LIBRTY	Case No.:	SAS N	.	SDG No.: 567	14
Matrix (soil	l/water):	WATER		Lab Sample ID:	567405	
Level (low/	med): <u>LO</u>	A		Date Received:	02/03/05	,
% Solids:	0.0					

Concentration Units (ug/L or mg/kg dry weight):

UG/L

CAS No.	Analyte	Concentration	c	Q	м
7440-38-2	Arsenic	103	\uparrow		P
7440-70-2	Calcium	129000	1	1	P
7440-47-3	Chromium	0.90	la	V.J	P
7440-50-8	Copper	0.50	lΩ	1	P
7440-28-0	Thallium	6.2	טן	IN J	P
7440-66-6	Zinc	120 16-4-	┢╝	10	P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	euriteiteiteiteiteiteiteiteiteiteiteiteitei
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	Sensing of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense
Comments:					
	te-sates and the second s				
		••••••••••••••••••••••••••••••••••••••			

· ·		INORG	ANIC ANALYSES DATA SHEET	`	1	EPA SAMPLE NO.
				Γ		MW-91
Lab Name:	COMPUCHEM		Contract:		*********	
Lab Code:	LIBRTY	Case No.:	SAS No.:	SDG N	ío.:	5674
Matrix (soi	.1/water): W	ATER	Lab Sample ID:	56741	12	
Level (low/	med): LOW	119.0.1100.1111/1.1111.1111.1111	Date Received:	02/04	1/05	64
% Solids:	0.0					

Concentration Units (ug/L or mg/kg dry weight):

UG/L

С CAS No. Analyte Concentration Q М 7440-38-2 3.6 U Arsenic P 7440-70-2 84200 ₽ Calcium 7440-47-3 Chromium 0.90 שן P 1. B 7440-50-8 0.91 P Copper 6.2 U 7440-28-0 Thallium N P 7440-66-6 Zinc 26_2-P 26,

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	~abyRearch~abeacheragettergtbabe #RMaagdaartigettergtbabeacherad
Comments:	Valiga (1997) (1997) - 1997 - 1997) - 1977)	nan an			and where an a start of the start of the start of the start of the start of the start of the start of the start
	****	الم می دوند از این این این این این این این این این این	9-77 9-76 N., Alexandra M. M. Garage and San Constant and San San San San San San San San San San	***************************************	۵۰، ۵۰٬۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰
		Form I	- IN	*****	S222846

SW-846

-1-

INORGANIC ANALYSES DATA SHEET

. .

.

		71.11			epa sample no.
				ſ	MW-16
Lab Name:	COMPUCHEM		Contract:		
Lab Code:	LIBRTY	Case No.:	SAS No.:	SDG N	io.: <u>5674</u>
Matrix (soi	1/water):	WATER	Lab Sample 3	D: <u>5674</u>	02
Level (low/:	med): L	OW	Date Receive	ad: <u>02/0</u>	3/05

% Solids: 0.0

.

.

Concentration Units (ug/L or mg/kg dry weight):

UG/L

CAS No.	Analyte	Concentration	c	Q	м
7440-38-2	Arsenic	3.6	 		P
7440-70-2	Calcium	5390	1]	P
7440-47-3	Chromium .	0,90	JU	KI	P
7440-50-8	Copper	0.65	B]	P
7440-28-0	Thallium	6.9	B_	CV M	P
7440-66-6	Zinc	23.0	1	113	P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	X
Comments:	annananananananananananananananananana				
					<i></i>

. SW-846 -1-

.

UG/L

		1140	JRGANIC AN	ALISES DA	IA SHEET	• •	EPÀ SAMPLE NO.	
							MW-16D	
Lab Name:	COMPUCHEM		Cor	itract:		L		
Lab Code:	LIBRTY	Case No.:		SAS No.:		SDG No.:	5674	
Matrix (soi	1/water):	WATER		Lab	Sample ID:	567403		
Level (low/	med): LC	W		Date	Received:	02/03/05		
% Solids:	0.0							

Concentration Units (ug/L or mg/kg dry weight):

.

c М Analyte Concentration Q CAS No. 7440-38-2 B Arsenic 4.3 ₽ 33700 7440-70-2 Calcium P 7440-47-3 0.90 U P Chromium 18 -שן P 7440-50-8 0.50 Copper 7440-28-0 Thallium 8.0 1B-INVJ P 7440-66-6 35.3 P Zinc 50:)

Color After: COLORLESS Clarity After: CLEAR Artifacts:	Color Before:	COLORLESS	Clarity Before	: <u>CLEAR</u>	Texture:	
Comments:	Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	Berlinter and Collinson - Supervise - Made Mandalander - Made Mandalander - Made Mandalander - Made Mandalander
	Comments:	eloundus anna aitheon an aitheon an aitheon an aitheon an aitheon an aitheon an aitheon an aitheon an aitheon a				
		41.000				
				<u>.</u>		**************************************

.

.

r---

EPA SAMPLE NO.

1A-IN INORGANIC ANALYSIS DATA SHEET

INORGANIC ANALI	MW-14
Lab Name: COMPUCHEM Contr	act: <u>PROGRESS</u>
Lab Code: CompuChe Case No.: PROGRESS NRA	S No.: SDG No.: PROGRESS E
Matrix: (soil/water) WATER	Lab Sample ID: 567401
Level: (low/med) LOW	Date Received: 02/03/2005

% Solids: 0.0

.

Concentration Units (ug/L or mg/kg dry weight): mg/L

CAS No.	Analyte		Concentratio	n C	Q	М
300.0-CL	Chloride		46.	2		T
300.0-504	Sulfate		9.8	7		
415.1-TOC	TOC		14.	0		
	· ······					
ngʻagiatti tilih dan mannan ^k anan na galayin	-		······································			
	+				<u> </u>	
			·······			
			·			
1. jaga Managa ang dinaké na mang mang katiké katiké ng katiké katiké ng katiké katiké katiké ng katiké katiké	·					
	1					
·····						
					<u> </u>	
		· · · · · · · · · · · · · · · · · · ·				
or Before:	~.k	Clarity	Before	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Texture:	
or After:	**************************************	Clarity			Artifacts:	
	*********					1(1)1111111111111111111111111111111111
ments:						
······		*****				

FORM IA-IN

÷

	1A-IN			
INORGANIC ANALYS	INORGANIC ANALYSIS DATA SHEET			
Lab Name: COMPUCHEM Contra	ct: PROGRESS	*****		
Lab Code: CompuChe Case No.: PROGRESS NRA:	3 No.:	SDG No.: PROGRESS E		
Matrix: (soil/water) <u>NATER</u>	Lab Sample ID:	567402		
Level: (low/med) LOW	Date Received:	02/03/2005		

% Solids: 0.0

.

Concentration Units (ug/L or mg/kg dry weight): mg/L____

CAS No.	Analyte		Concen	tration	С	Q	<u>.</u> N
300.0-CL	Chloride			21.4			
300.0-SO4	Sulfate			25.2			
415.1-TOC	TOC			6.63			
-							
	· ·						
	1						
					<u> </u>		
					L		
·····					L	L	
					ļ		
					<u> </u>		
					 		
					ļ		
·····					ļ	<u> </u>	
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Ļ	 	
					ļ		
			Į		ļ		
					ļ	L	
		······			ļ		
			ļ		ļ		
······		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
			<u>) </u>		[1	
lor Before:		Clarity	Before:			Textuze:	
lor After:	******	Clarity	After:		-	Artifacts:	
nments:						,	
			, 			****	

FORM IA-IN

·

.

1A-IN INORGANIC ANALYSIS DATA SHEET EPA SAMPLE NO.

.

Lab Name: <u>CO</u>	MPUCHEM Contra	ct: <u>PROGRESS</u>	
Lab Code: Co	pmpuChe Case No.: PROGRESS NRAS	No.: 8	SDG No.: PROGRESS E
Matrix: (soi	1/water) MATER	Lab Sample ID: <u>567</u>	/403
Level: (low/	med) LÓW	Date Received: 02/	/03/2005

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): mg/L

CAS No.	Analyte		Concentrat			Q	1
300.0-CL	Chloride			6.4			
300.0-504	Sulfate			128			
415.1-TOC	TOC		3	3.41 J	<u> </u>		
14 / 14 / 24 / 24 - 24 - 24 - 24 - 24 - 24 - 2							
(+))(1))) ¹ -/							
	· · · · · · · · · · · · · · · · · · ·	······································					
							{

		w					
·····							
or Before:	······	Clarity	Before:		Text	ure:	
or After:		Clarity	After:		Arti	facts:	
ments:						•-	

FORM IA-IN

.

.

	1A-I	EPA SAMPLE NO.	
	INORGANIC ANALYS	IS DATA SHEET	EB-020205
Lab Name:	COMPUCHEM Contra	ct: PROGRESS	······
Lab Code:	CompuChe Case No.: PROGRESS NRAS	S No.:	SDG No.: PROGRESS E
Matrix: (s	soil/water) WATER	Lab Sample ID:	567404
Level: (1c	w/med) LOW	Date Received: (02/03/2005

% Solids: 0.0

.....

Concentration Units (ug/L or mg/kg dry weight): mg/L

CAS No.	Analyte		Concentration	C ·	Q	M
300.0-CL	Chloride		2.00	. U		
300.0-504	Sulfate		5.00	υ		
415.1-TOC	TOC		5.00	U		<u> </u>
						<u> </u>
	1					+
	1					
<u></u>						
			······	<u> </u>	1	\uparrow
				ļ		
			11/7	[
·			Ninte			
				┢────		+-
				<u> </u>		
						+
						1
	1			<u> </u>		
Lor Before:	م کار میں میں میں میں میں میں میں میں میں میں	Clarity E	Sefore:		Texture:	
lor After:		Clarity A	fter:		Artifacts:	
ments:		-				

.

ILM05.2

.

1A-IN INORGANIC ANALYSIS DATA SHEET Γ

INORGANIC ANALYS	IS DATA SHEET	MW-90
Lab Name: COMPUCHEM Contra	act: <u>PROGRESS</u>	den name i den name i den name i den name i den name i den name i den name i den name i den name i den name i d
Lab Code: CompuChe Case No.: PROGRESS NRA	S No.:	SDG NO.: PROGRESS E
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	567405
Level: (low/med) LOW	Date Received:	02/03/2005

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): mg/L

CAS No.	Analyte	·····	Concen	tration	С	Q	M
300.0-CL	Chloride		concen	3.14			+===
				8.00			
300.0-504	Sulfate				J		
415.1-TOC	TOC			2.91			
			[

]						<u> </u>
	[
	<u> </u>						
							<u> </u>
					L		
·····					ļ		<u> </u>
, 					L		
			[ļ		
		<			<u> </u>		_
					<u> </u>		
					1		
					<u> </u>		1
		******			<u> </u>		1
	1		<u> </u>				
			<u> </u>		<u> </u>		
]		1
or Before:		Clarity	Before:			Texture:	
or After:	*****	Clarity	After:			Artifacts:	
ments:					-		
anel16.8 :							

ILM05.2

.

EPA SAMPLE NO.

.

.

1A-IN INORGANIC ANALYSIS DATA SHEET EPA SAMPLE NO. MW-13

Lab N	lame:	COMPUCHEM	¢¢	ontract: ,	PROGRESS		
Lab C	code:	CompuChe Case No.	PROGRESS	NRAS NO.	:	SDG No.:	PROGRESS E
Matri	.x: (s	oil/water) <u>WATER</u>		Lab	Sample ID:	567406	
Level	.: (lo	w/med) LOW		Date	Received:	02/03/2005	

% Solids: 0.0

7

.

Concentration Units (ug/L or mg/kg dry weight): mg/L

CAS No.	Analyte		Concentration	C	Q	M
300.0-CL	Chloride		3.11]	
300.0-SO4	Sulfate		8.82			
415.1-TOC	TOC		5.00	U		

						+-
			······································			
		·····				
		<u></u>				
······································						
					······································	
				<u> </u>		
or Before:		Clarity	Before:		Texture:	
or After:	Window,	Clarity	After:		Artifacts:	
ments:						
		11-12-2-2-2-2-2-2-2-2-11-12-2-2-2-2-2-2	**	-		

.

1A-IN INORGANIC ANALYSIS DATA SHEET

 Lab Name:
 COMPUCHEM
 Contract:
 PROGRESS

 Lab Code:
 CompuChe
 Case No.:
 PROGRESS
 SDG No.:
 PROGRESS E

 Matrix:
 (soil/water)
 WATER
 Lab Sample ID:
 567407

 Level:
 (low/med)
 LOW
 Date Received:
 02/03/2005

% Solids: <u>0.0</u>

Concentration Units (ug/L or mg/kg dry weight): mg/L

CAS No.	Analyte		Concentration	С	Q	м
300.0-CL	Chloride		154			
300.0-504	Sulfate		141			
415.1-TOC	TOC		9.28			
h	4					
	+					
-	+				<u> </u>	
	*			[[
				<u> </u>		
				ļ		
<u> </u>				<u></u>		
		{	······································	<u> </u>		
}				<u> </u>		
				t		
			·····	ļ		
ļ		· · · · · · · · · · · · · · · · · · ·				
Į				L	1	<u>I</u>
lor Before:	*******	Clarity	Before:		Texture:	
lor After:		Clarity	After:		Arțifacts:	
	4c., and the contract of the c	-		•	•	**************************************
nments:						
				*****	«	
_						

FORM IA-IN .

ILM05.2

EPA SAMPLE NO.

1A-IN INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

		•			
Lab Name:	COMPUCHEM		ntract: <u>PROGRESS</u>		
Lab Code:	CompuChe Case No.:	PROGRESS	NRAS NO.:	SDG No.:	PROGRESS E
Matrix: (s	soil/water) <u>WATER</u>		Lab Sample ID:	567407	the state of the
Level: (14	w/med) LOW	· · ·	Date Received:	02/03/2005	
<pre>% Solids:</pre>	0.0				

Concentration Units (ug/L or mg/kg dry weight): mg/L

CAS No.	Analyte		Concentration	С	Q	м
300.0-CL	Chloride		154		}	
300.0-504	Sulfate		<u>.</u> 141			
415.1-TOC	TOC		9.28			
	· · · · ·					
					<u>]</u>	
				ļ		

· · · · · · · · · · · · · · · · · · ·		••••••••••••••••••••••••••••••••••••••		}		
					<u> </u>	
······································			······································	ļ		
			······································	ļ		
100 list tartagar azərə 1849 işi fasfan filmanın yarışı və sənədələri				Į		
			······································	<u> </u>		
				<u> </u>		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				<u> </u>		
······		******				
- 10.45				4		
·				┼───		
		•	······································			
			1			l
or Before:	· · · · · · · · · · · · · · · · · · ·	Clarity	Before:	-	Texture:	
or After:		Clarity	After:		Artifacts:	
	<u></u>		eshinging in an	-	******	****
ments:						
	w.			~~		
	* • • • · · ·	<u>.</u>				******
******					*******	



ILM05.2

,

# IA-IN

IA-		EPA SAMPLE NO.
INORGANIC ANALY:	SIS DATA SHEET	MW-15
Lab Name: COMPUCHEM Contr	act: <u>PROGRESS</u>	
Lab Code: CompuChe Case No.: PROGRESS NRA	S No.:	SDG No.: PROGRESS E
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	567408
Level: (low/med) LOW	Date Received:	02/03/2005

Concentration Units (ug/L or mg/kg dry weight): mg/L

% Solids: 0.0

•. •

CAS No.	Analyte		Concentration	С	Q	M
300.0-CL	Chloride		2.84			
300.0-504	Sulfate		16.8			
415.1-TOC	TOC		13.7			
			·			
			····			
		****	······		<u> </u>	
	h			[		
**************************************						
	<u></u>	•		ļ		<u> </u>
	·			<b> </b>		
		<u></u>				
				<u> </u>	-	
·····	1			[		
·····						
				<u> </u>		
	+		<u> </u>			
L	1		1	.1	1	
lor Before:		Clarity	Before:		Texture:	
lor After:		Clarity	After:	-	Artifacts:	
aments:						

.

1

FORM IA-IN

1A-IN INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

•

Lab Name: CON	MPUCHEM Contrac	t: PROGRESS	
Lab Code: Cor	mpuChe Case No.: PROGRESS NRAS	No.:	SDG No.: PROGRESS E
Matrix: (soi)	1/water) WATER 1	Lab Sample ID: 5	67409
Level: (low/m	med) LOW I	Date Received: <u>O</u>	2/03/2005
* Solids: 0.0	0		

.

Concentration Units (ug/L or mg/kg dry weight): mg/L

CAS NO.	Analyte	ĺ	Concentr	ation	C	Q	M.
300.0-CL	Chloride			54.7			
300.0-504	Sulfate			74.5		,	-
415.1-TOC	TOC			3.99	J	······································	
							_
					· 1999/10.6		
	<u> </u>		······				
						······································	
******							
***************************************					·····		
		·····					
·····							
			ļ				
**************************************							
*****		******					
							1
	1		I				
	<u> </u>						
or Before:		Clarity	Before:	••••••••••••••••••••••••••••••••••••		Texture:	
or After:		Clarity	After:			Artifacts:	
ments:							
mments:		-	********			••••••••••••••••••••••••••••••••••••••	



1A-IN INORGANIC ANALYSIS DATA SHEET EPA SAMPLE NO. MW-20

Lab Name:	COMPUCHEM	Contract: PROGRESS	fueliti
Lab Code:	CompuChe Case No.: PROGRES	SS NRAS No.:	SDG No.: PROGRESS E
Matrix: (s	moil/water) <u>WATER</u>	Lab Sample ID:	567410
Level: (lo	w/med) LOW	Date Received:	02/04/2005
% Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): mg/L

• •

:

CAS No.	Analyte		Concentration	C	<u>Q</u>	1
300.0-CL	Chloride		2.35			
300.0-504	Sulfate		44.7			
415.1-TOC	ŤOC		5.27			
****						
·····						
			1			
				ļ		
1				┼───		
				1		
				ļ		
				<del> </del>		
lor Before;		Clarity	Before:		Texture:	
lor After:		Clarity	After:	-	Artifacts:	
nments:						



.

.

.

٠

#### 1A-IN INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO. MW-20D

.

Lab Name:	COMPUCHEM	Contract:	PROGRESS	L	
Lab Code:	CompuChe Case No.: PF	ROGRESS NRAS No.	:	SDG No.:	PROGRESS E
Matrix: (s	oil/water) <u>WATER</u>	Lab	Sample ID:	567411	
Level: (lo	w/med) LOW	Date	Received:	02/04/2005	
<pre>% Solids:</pre>	0.0				

Concentration Units (ug/L or mg/kg dry weight): mg/L

.

CAS No.	Analyte		Concen	tration	C	Q	M
300.0-CL	Chloride			68.7			
300.0-SO4	Sulfate			96.8			1
415.1-TOC	TOC			9.08			
							<u></u>
······································	·	······	<u> </u>				
	1						
·····							
	<u> </u>						
			1				
		*****			<b> </b>		-1
						····	
					[		
			<u>}</u>		Į		
			·}			<u> </u>	
	· [				<u> </u>		
					ļ		
			*		<u> </u>		
Lor Before:		Clarity	Before:		<u>.</u>	Texture:	
lor After:		Clarity				Artifacts:	
mments:							
Western Prover and again and History and						- Martine - Martine	

FORM IA-IN

.

۰, ۲

# 1A-IN

la-I	
INORGANIC ANALYS	IS DATA SHEET MW-91
Lab Name: COMPUCHEM Contra	act: PROGRESS
Lab Code: CompuChe Case No.: PROGRESS NRAS	5 No.: SDG No.: PROGRESS E
Matrix: (soil/water) WATER	Lab Sample ID: 567412
Level: (low/med) LOW	Date Received: 02/04/2005

% Solids: 0.0

.

Concentration Units (ug/L or mg/kg dry weight): mg/L____

CAS No.	Analyte		Concenta	cation	c	Q	м
300.0-CL	Chloride			2.08			
300.0-504	Sulfate			43.5			1
415.1-TOC	TOC			5.51			
				**************************************			
**************************************		······		······			
	+						
	<u> </u>	·····					
				*******			
	1			******			
		<u></u>			t	······································	
					[		
					ļ		
					<u>]</u> .		
			L		ļ		
······································						[	
							<u></u>
······						· · · · · · · · · · · · · · · · · · ·	
					<b> </b>		
Lor Before:		Clarity	Before:		*	Texture:	
lor After:		Clarity	After:			Artifacts:	-t
ments:							

FORM IA-IN

.



17-Feb-05

SCOTT DAVIES BLASLAND, BOUCK & LEE, INC. 3700 REGENCY PARKWAY

CARY, NC 27511

Subject:

Report of Data-Project: PROGRESS

Workorder: 5674

Attn.: SCOTT DAVIES

Enclosed are the results of analytical work performed in accordance with the referenced account number.

This report covers sample(s) appearing on the attached listing.

Thank you for selecting CompuChem for your sample analysis. If you should have questions or require additional analytical services, please contact your representative at 1-800-833-5097.

Sincerely,

marlene . Surft

CompuChem 'A Division of Liberty Analytical

Attachment

TOTAL NUMBER

OF PAGES 26

501 Madison Avenue, Cary, NC 27513 Tel: 919-379-4100 Fax: 919-379-4050

	CompuChem, a division of Liberty Analytical										
Hsn	Client ID	Wordorder	Matrix	Account	Project	Report					
567401	MW-14	5674	w	BB&L	PROGRESS						
567402	MW-16	5674	w	BB&L	PROGRESS						
567403	MW-16D	5674	w	BB&L	PROGRESS						
567404	EB-020205	5674	w	BB&L	PROGRESS						
567405	MW-90	5674	w	BB&L	PROGRESS						
567406	MW-13	5674	w	BB&L	PROGRESS						
567407	MW-13D	5674	W	BB&L	PROGRESS						
567408	MW-15	5674	w	BB&L	PROGRESS						
567409	MW-15D	5674	W	BB&L	PROGRESS						
567410	MW-20	5674	w	BB&L	PROGRESS						
567411	MW-20D	5674	w	BB&L	PROGRESS						
567412	MW-91	5674	W	BB&L	PROGRESS						

.

•

..

.

••

-

# NOTICE!

# CompuChem's Wet Chemistry reports have a new look.

# Please contact your CompuChem Project Manager if you have questions.



# Wet Chemistry Notice

WO No	56	71

Case/SDG_5/674_____

# The C (concentration) qualifiers used in this report are:

- J = The reported value was obtained from a reading that was less than the reporting limit but greater than or equal to the MDL.
- U = The analytical result was less than the MDL.

# The Q qualifiers used in this report are:

- N = Spiked sample recovery is not within control limits.
- * = Duplicate analysis not within control limits.

### Notice:

CompuChem's wet chemistry reporting policy is consistent with the current US EPA contract laboratory program (CLP) inorganic statement of work (SOW) ILM05.2/ILM05.3 requirements.

The SOW requires a set number of decimal places for the Forms 3, 5, and 6. For this reason, more decimal places may be reported on these forms than were found in the raw data.

The SOW requires the RPD and %R values to be rounded to the nearest whole number on the Forms 5, 6, and 7.

# **Additional Comments:**

I certify that this data package and these test results comply with the requirements of NELAC and CompuChem's QA Program unless otherwise indicated. The laboratory manager or designee has authorized the release of this data package and any associated electronic deliverables, as verified by the following signature.

Signature Jamptin

<u>2-14-05</u> Date

1A-IN INORGANIC ANALYSIS DATA SHEET EPA SAMPLE NO.

MW-14

Lab Name: <u>COMPUCHEM</u>	Contract: PROGRESS	
Lab Code: <u>CompuChe</u> Case	e No.: <u>PROGRESS</u> NRAS No.:	SDG No.: PROGRESS E
Matrix: (soil/water) W	ATER Lab Sample ID:	567401
Level: (low/med) LOW	Date Received:	02/03/2005
% Solids: 0.0		

Concentration Units (ug/L or mg/kg dry weight): mg/L

CAS No.	Analyte		Concer	tration	С	Q	М
300.0-CL	Chloride			46.2			
300.0-SO4	Sulfate			9.87			
415.1-TOC	TOC			14.0			
					ļ		
		· · · · · · · · · · · · · · · · · · ·			<u> </u>		
· · · · · · · · · · · · · · · · · · ·							
	L		l		L	1	ł
lor Before:	<del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del>	Clarity	Before:			Texture:	
lor After:	<u> </u>	Clarity	After:			Artifacts:	
mments:							

#### 1A-IN INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

MW-16

		·
Lab Name: COMPUCHEM	Contract: PROGRESS	
Lab Code: <u>CompuChe</u> Case No.:	PROGRESS NRAS No.:	SDG No.: PROGRESS E
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	567402
Level: (low/med) LOW	Date Received:	02/03/2005
% Solids: <u>0.0</u>		

Concentration Units (ug/L or mg/kg dry weight): mg/L

.

CAS No.	Analyte		Concentration	С	Q	М
300.0-CL	Chloride		21.4			
300.0-SO4	Sulfate		25.2			
415.1-TOC	TOC		6.63			
,						
		· · · · · · · · · · · · · · · · · · ·				
	<u> </u>					
					· · · · · · · · · · · · · · · · · · ·	
				<b>_</b>	·····	
·····						
· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	
					·····	
	I.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		I	ll		l
or Before:		Clarity	Before:	Т	exture:	
or After:		Clarity	After:	A	rtifacts: _	
ments:						

.

#### 1A-IN INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

MW-16D

Lab Name:	COMPUCHEM Co	ntract: <u>PROGRESS</u>	
Lab Code:	CompuChe Case No.: PROGRESS	NRAS No.:	SDG No.: PROGRESS E
Matrix: (s	oil/water) <u>WATER</u>	Lab Sample ID:	567403
Level: (lo	w/med) LOW	Date Received:	02/03/2005
% Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): mg/L

Analyte		Conce	ntration	С	Q	м
Chloride			76.4			
Sulfate			128			
TOC			3.41	J		
		'				
		······				_
				ļ		
		ļ		<u> </u>		
·				<b> </b>		
				[		
				<b> </b>	· · · · · · · · · · · · · · · · · · ·	
	······			<b> </b>		
		<u> </u>				
			·······		·····	
				<b> </b>	·····	
		<u> </u>		<u> </u>		
<u></u>	Clarity	Before:			Texture:	
	Clarity	After:			Artifacts:	
	Chloride Sulfate TOC	Chloride Sulfate TOC	Chloride Sulfate TOC	Chloride         76.4           Sulfate         128           TOC         3.41	Chloride         76.4           Sulfate         128           TOC         3.41           J	Chloride       76.4         Sulfate       128         TOC       3.41         J

.

• .

••

#### 1A-IN INORGANIC ANALYSIS DATA SHĖET

EPA SAMPLE NO.

EB-020205

Lab Name: <u>COMPUCHEM</u>	Contract: PROGRESS	
Lab Code: <u>CompuChe</u> Case No.:	PROGRESS NRAS No.:	SDG No.: PROGRESS E
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	567404
Level: (low/med) LOW	Date Received:	02/03/2005

% Solids: 0.0

.

Concentration Units (ug/L or mg/kg dry weight): mg/L

CAS No.	Analyte		Conce	ntration	С	Q	М
300.0-CL	Chloride			2.00	ប		
300.0-SO4	Sulfate			5.00	U		
415.1-TOC	TOC			5.00	U		
	[						
		· · · · · · · · · · · · · · · · · · ·					1
or Before:		Clarity	Before:			Texture:	·
or After:		Clarity	After:			Artifacts:	
ments:							

ILM05.2

•

#### 1A-IN INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

MW-90

Lab Name:	COMPUCHEM	Contract:	PROGRESS	
Lab Code:	CompuChe Case No.: PROGRES	<u>ss</u> nras no	.:	SDG No.: PROGRESS E
Matrix: (s	soil/water) <u>WATER</u>	· Lab	Sample ID:	567405
Level: (lo	w/med) LOW	Dat	e Received:	02/03/2005
% Solids:	0.0			

Concentration Units (ug/L or mg/kg dry weight): mg/L

.

CAS No.	Analyte		Concent	ration	С	Q	М
300.0-CL	Chloride			3.14			
300.0-SO4	Sulfate			8.00			
415.1-TOC	TOC			2.91	J		
· · · · · · · · · · · · · · · · · · ·							
							_
						·····	
							_
	·						_
· · · · · · · · · · · · · · · · · · ·		<b>_</b> ,,,					
·····							
			·				
						·····	
						,	
	······································						
	····	·····					
· · · · · · · · · · · · · · · · · · ·							
						····	
	I		I		L.,	L ,	
or Before:	<u> </u>	Clarity	Before: _			Texture:	
or After:	<b></b>	Clarity	After:			Artifacts:	
ments:							



•

ILM05.2

•

.

1A-IN INORGANIC ANALYSIS DATA SHEET EPA SAMPLE NO.

Lab Name: COMPUCHEM Contra	act: PROGRESS
Lab Code: CompuChe Case No.: PROGRESS NRA	S No.: SDG No.: PROGRESS E
Matrix: (soil/water) WATER	Lab Sample ID: <u>567406</u>
Level: (low/med) LOW	Date Received: 02/03/2005
% Solids: 0.0	

_____

,

.

Concentration Units (ug/L or mg/kg dry weight): mg/L

Analyte	Concer	ntration	С	Q	М
Chloride		3.11			
Sulfate		8.82			
TOC		5.00	U		
					-
				·····	
				· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·					
· · · · · · · · · · · · · · · · · · · ·					
			l		l
C1	larity Before:		Te	xture:	
C1	larity After:		Ar	tifacts: _	
	Chloride Sulfate TOC	Chloride Sulfate TOC	Chloride       3.11         Sulfate       8.82         TOC       5.00	Chloride       3.11       Image: State state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state st	Chloride       3.11



1A-IN INORGANIC ANALYSIS DATA SHEET EPA SAMPLE NO.

MW-13D

Lab Name: <u>C</u>	OMPUCHEM Contra	ect: PROGRESS	
Lab Code: <u>C</u>	compuChe Case No.: PROGRESS NRAS	3 No.:	SDG No.: PROGRESS E
Matrix: (so:	il/water) <u>WATER</u>	Lab Sample ID:	567407
Level: (low,	/med) LOW	Date Received:	02/03/2005
% Solids: <u>0</u>	.0		

Concentration Units (ug/L or mg/kg dry weight): mg/L

:

CAS No.	Analyte	Concer	ntration	С	Q	м
300.0-CL	Chloride		154			-
300.0-SO4	Sulfate		141			
415.1-TOC	TOC		9.28			
		•				
						_
						_
	1				···· ,	
					•	
L	1					1
olor Before:	(	larity Before:	۰.	Te	xture:	
	•					
lor After:		larity After:	<u> </u>	Ar	tifacts:	·····
mments:						
<u> </u>		· · · · · · · · · · · · · · · · · · ·			•	· · · · · · · · · · · · · · · · · · ·
· ·					· · · · · · · · · · · · · · · · · · ·	:
		·	· · · · · · · · · · · · · · · · · · ·			
	•		•	•	•	

FORM IA-IN .

ILM05.2

÷ .

÷. 11 . . , . . . ·.... - . . . • • • • •

<u>ج</u>-

	1A-IN	EPA SAMPLE NO.
INORO	GANIC ÄNALYSIS DATA SHEET	. MW-13D
Lab Name: COMPUCHEM	Contract: PROGRESS	·····-
Lab Code: CompuChe Case No.: P	ROGRESS NRAS No.:	SDG No.: PROGRESS E
Matrix: (soil/water) WATER	Lab Sample ID:	567407
Level: (low/med) LOW	Date Received:	02/03/2005
% Solids: 0.0		

Concentration Units (ug/L or mg/kg dry weight): mg/L

CAS No.	Analyte		Conce	ntration	С	Q	м
300.0-CL	Chloride			154			
300.0-SO4	Sulfate		• .	141			
415.1-TOC	TOC			9.28			
			•				
	<u> </u>						
			· · ·				
	l .						
·····	· · · · · · · · · · · · · · · · · · ·	······································		······			
					ļ		
					[		
	1	••••••••••••••••••••••••••••••••••••••	·				
					<b> </b>		
· · · · · · · · · · · · · · · · · · ·					<b> </b>		
· · · · · · · · · · · · · · · · · · ·					<b> </b>		
					<b> </b>		
	.L				1	1	l
lor Before:	·	Clarity	Before:	<u></u>		Texture:	
lor Àfter: '	: : 	Clarity	After:			Artifacts: _	
ments:							
	<u></u> .						
· · · · · · · · · · · · · · · · · · ·			<u></u>	<u></u>			··



٠.

ILM05.2

## 1A-IN INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

MW-15

.

.

Lab Name: COMPUCHEM Contr	act: PROGRESS	
Lab Code: CompuChe Case No.: PROGRESS NRA	S No.: SDG No.: PROGRES	SE
Matrix: (soil/water) WATER	Lab Sample ID: <u>567408</u>	
Level: (low/med) LOW	Date Received: 02/03/2005	······
% Solids: 0.0		

Concentration Units (ug/L or mg/kg dry weight): mg/L

CAS No.	Analyte		Concentr	·	С		Q	м
300.0-CL	Chloride			2.84				
300.0-SO4	Sulfate			16.8				
415.1-TOC	TOC			13.7				
								Τ
								1
								T
							•	
	,						_	
	·							
					ļ			ļ
			·					
l <u></u>			l		<u> </u>			1
lor Before:	·····	Clarity	Before:			Texture	e:	
lor After:		Clarity	After:			Artifac	ets:	
ments:		•						

•

•

## 1A-IN INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

MW-15D

Lab Name:	COMPUCHEM	Contract: PROGRESS	
Lab Code:	CompuChe Case No.: PROGRE	<u>SS</u> NRAS NO.:	SDG No.: <u>PROGRESS E</u>
Matrix: (s	soil/water) <u>WATER</u>	Lab Sample ID:	567409
Level: (lo	w/med) LOW	Date Received:	02/03/2005
% Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): mg/L

CAS No.	Analyte	Concent		с	Q	M
300.0-CL	Chloride		54.7			
300.0-SO4	Sulfate		74.5			
415.1-TOC	TOC		3.99	J		
						_
						- <u> </u>
						_
L	l	<b>_</b>		<u>l</u> _		
lor Before:	Cla	rity Before: _		5	lexture:	
lor After:	Cla	rity After: _		ž	Artifacts:	
mments:						
maents:						

.

## 1A-IN INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

MW-20

Lab Name: COMPUCHEM Contra	act: PROGRESS	
Lab Code: <u>CompuChe</u> Case No.: <u>PROGRESS</u> NRAS	5 No.:	SDG No.: <u>PROGRESS E</u>
Matrix: (soil/water) WATER	Lab Sample ID:	567410
Level: (low/med) LOW	Date Received:	02/04/2005
% Solids: 0.0		

Concentration Units (ug/L or mg/kg dry weight): mg/L____

CAS No.	Analyte	Concentration	С	Q	М
300.0-CL	Chloride	2.35			
300.0-SO4	Sulfate	44.7			
415.1-TOC	TOC	5.27			
				······································	
		····			
				·	
L				·	
lor Before:	Clarit	y Before:	Те	xture:	
lor After:	Clarit	y After:	Ar	tifacts:	
mments:					

## 1A-IN INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

MW-20D

Lab Name: COMPUCHEM Contra	act: PROGRESS	
Lab Code: <u>CompuChe</u> Case No.: <u>PROGRESS</u> NRAS	3 No.:	SDG No.: PROGRESS E
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	567411
Level: (low/med) LOW	Date Received:	02/04/2005
% Solids: 0.0		

Concentration Units (ug/L or mg/kg dry weight): mg/L

CAS No.	Analyte		Concentrat.		Q	M
300.0-CL	Chloride			3.7		
300.0-SO4	Sulfate		90	5.8		
415.1-TOC	TOC ·		9.	.08		
•						
				<u> </u>		
·····						
			<u> </u>			
			<u> </u>			
	·			1	- <b>J</b>	
or Before:		Clarity	Before:		Texture:	· · ·
or After:		Clarity	After:		Artifacts:	
ments:						

#### 1A-IN INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

•

MW-91

		1111 51
Lab Name: COMPUCHEM	Contract: PROGRESS	Land,
Lab Code: <u>CompuChe</u> Case No.:	PROGRESS NRAS No.:	SDG No.: PROGRESS E
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	567412
Level: (low/med) LOW	Date Received:	02/04/2005
% Solids: <u>0.0</u>		

Concentration Units (ug/L or mg/kg dry weight): mg/L

	Analyte	Concer	tration	cl	Q	М
CAS No. 300.0-CL	Chloride	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	2.08		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
300.0-SO4	Sulfate		43.5			
415.1-TOC	TOC		5.51			
					····	
	, 					
	<u> </u>					
					·····	
	······································					
	··· , , <del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del>					
L		LL				
lor Before:	C1	arity Before:		T	exture:	
lor After:	ci	larity After:		A	rtifacts:	
mments:						

.

.

3-IN BLANKS

Lab Name:	COMPUCHEM	Contract:	PROGRESS			
Lab Code:	CompuChe Case No.: PROGRESS	NRAS No.:	SDG No.: PROGRESS E			
Preparatio	on Blank Matrix (soil/water):	WATER				

Preparation Blank Concentration Units (ug/L or mg/kg): mg/L

	Initial Calibration Blank (ug/L)			Preparation Blank							
Analyte		с	1	С	2	С	3	С		С	М
TOC									0.180	J	
						ļ					
											∦
											<u> </u>
······································											
											Į
					· · · · · · · · · · · · · · · · · · ·						<b> </b>
									· · · · · · · · · · · · · · · · · · ·		
						<b>]</b>				L	<b> </b>
											╂
											╂{
						<u> </u>					<b> </b>
								· · ·			<b>↓</b>
			· · · · · · · · · · · · · · · · · · ·							<b> </b>	╂[
						}		<u> </u>	H		╂───┤
l											╂───┦
	· · ·										



3-IN BLANKS

L	ab N	lame:	COMPUCHEN	1				. 1	Contract:	PROGRE	SS	<u> </u>	_
L	ab C	Code:	CompuChe	Case	No.:	PROGRESS	NRAS	No.	:	SDG	No.:	PROGRESS	E
P	repa	aratio	n Blank M	latrix	(soi	l/water):	WAT	ER	_				

Preparation Blank Concentration Units (ug/L or mg/kg): mg/L

	Initial Calibrati Blank (ug		Continuing Calibration Blank (ug/L)								
Analyte		с _.	1	С	2	С	3	С		С	М
Chloride									0.000	U	<b>  </b>
Sulfate									0.000	Ū	
Juliu		····								<u> </u>	1
										<u> </u>	
			· · · · · · · · · · · · · · · · · · ·		· · ·	1			· · · · · · · · · · · · · · · · · · ·		
						<u> </u>					
										1	
								1			
						1		1			



.

.

	5A-IN MATRIX SPIKE SAMPLE RECOVERY							EPA SAMPLE NO.			
								MW-16MS			
Lab Name:	COMPUCHEM		Co	mtract:	PROGRESS	<u> </u>					
Lab Code:	CompuChe C	ase No.: <u>I</u>	PROGRESS	NRAS No.	.:	Si	DG No.:	PROGRESS	E		
Matrix: (s	soil/water)	WATER				Level:	(low/me	d) <u>LOW</u>			
% Solids :	Eor Sample:	0.0									

Concentration Units (ug/L or mg/kg dry weight): mg/L

Analyte	Control Limit %R	Spiked Sampl Result (SSR	Le } C	Sample Result (SF	ι) C	Spike Added (SA)	%R	Q	м
Chloride	80-120	55.2000		21.4000		40.00	84		
Sulfate	80-120	63.6000		25.2000		40.00	96		
				•					
				······					
							· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·									
					· · · · · ·				
······································									
·····									
		·····							
		····							
				· · · · · · · · ·					[
		······································							
					l	l			
	1	·····	· · · · ·	·				<u> </u>	r
					l	·			

.

Comments:

FORM VA-IN

.

5A-IN MATRIX SPIKE SAMPLE RECOVERY EPA SAMPLE NO.

MW-16MSD

Lab Name: COMPUCHEM	Contract: PROGRESS
Lab Code: <u>CompuChe</u> Case No	.: PROGRESS NRAS No.: SDG No.: PROGRESS E
Matrix: (soil/water) <u>WATER</u>	Level: (low/med) LOW
% Solids for Sample: 0.0	_

Concentration Units (ug/L or mg/kg dry weight): mg/L

Analyte	Control Limit %R	Spiked Samp Result (SSR	Le ) C	Sample Result (SF	κ) C	Spike Added (SA)	%R	Q	М
		E4 2000	<u> </u>	01 4000		40.00			
Chloride	80-120	54.3000		21.4000		40.00	82		
Sulfate	80-120	63.5000		25.2000		40.00	96		
						······			
h									
						,,,,,,,,			
		·······			· · · · · · · · · · · · · · · · · · ·				
				·····					
	·								
		·····							
	L				I				
					I		·		
	1							1	

Comments:

FORM VA-IN

# 5A-IN MATRIX SPIKE SAMPLE RECOVERY

EPA SAMPLE NO.

MW-16MS

		•							
Lab Name:	COMPUCHEM		Co	ontract:	PROGRESS				
Lab Code:	CompuChe Ca	ase No.:	PROGRESS	NRAS No.	.:	SE	G No.:	PROGRESS	E
Matrix: (s	;oil/water)	WATER			Le	vel:	(low/me	d) <u>LOW</u>	
% Solids f	for Sample:	0.0							

Concentration Units (ug/L or mg/kg dry weight): mg/L

Analyte	Control Limit %R	Spiked Samp Result (SSR	le ) · C	Sample Result (SF	ι) C	Spike Added (SA)	۶R	Q	м
TOC	75-125	57.4000		6.6300		50.00	102		
······································				······································					
				·····					
· · · · · · ·									
						·····			
		·····							
					·				
				·····					
								[	
				· · · · · · · · · · · · · · · · · · ·					
			l	· ·				l	
									<b> </b>
	[								
			[		t				{
l									<u> </u>
			t						

## Comments:

5A-IN MATRIX SPIKE SAMPLE RECOVERY EPA SAMPLE NO.

.

MW-16MSD

Lab Name: <u>COMPUCHEM</u>	Contract:	PROGRESS	
Lab Code: <u>CompuChe</u> Ca	se No.: PROGRESS NRAS No	.; SI	DG No.: <u>PROGRESS E</u>
Matrix: (soil/water)	WATER	Level:	(low/med) LOW
% Solids for Sample:	0.0		

Concentration Units (ug/L or mg/kg dry weight): mg/L

.

Analyte	Control Limit %R	Spiked Samp Result (SSR	le ) C	Sample Result (SF	ι) C	Spike Added (SA)	ቶR	Q	м
TOC	75-125	. 57.3000		6.6300	[	50.00	101		
100	13 123	- 07.0000		0.0500			101	····.	
······									
······									
······································									
	1								
	1								
	1								
······································									
	1								
	1					······································			
	1								
	1								
	1								
	1								
	1								

## Comments:

## 7-IN LABORATORY CONTROL SAMPLE

Lab Name:	COMPUCHEM	1	··		Contract:	PROGRESS	
Lab Code:	CompuChe	Case No.:	PROGRESS	NRAS	No.:	SDG No.:	PROGRESS E
Solid LCS	Source: _						
Aqueous LO	CS Source:	NA					

 Aqueous (ug/L)
 Solid (mg/kg)

 Analyte
 True
 Found
 %R
 True
 Found
 C
 Limits
 %R

 TOC
 50.0
 51.50
 103

 <td



7-IN LABORATORY CONTROL SAMPLE

Lab Name	: COMPUCHI	GM				C	ontract:	PRO	GRES	S		
Lab Code	: CómpuChe	e Case	No.:	PROGRESS	NRAS	No.:			SDG	No.:	PROGRESS	E
Solid LC	S Source:											

Aqueous LCS Source: NA

	Aque	eous (ug/L)			So	lid (	mg/kg)	
Analyte	True	Found	%R	True	Found	С	Limits	%R
Chloride	25.0	23.40	94		1			
Sulfate	50.0	49.00	98			1		
						1		
· · · · · · · · · · · · · · · · · · ·						ļ		
						I		
		·				<u> </u>		
· · · · · · · · · · · · · · · · · · ·								
·····				<u></u>	<u> </u>	ļ		
		· · · · · · · · · · · · · · · · · · ·						
······							[	
							······	
			~~~			+		
					1			
						1		
					1	1		
					1	1		
						1		
· · · · · · · · · · · · · · · · · · ·					1			
						1		

.

.

.

.

								CL	TAT	NG)F (UST	OD	v					,		<u>.</u> .		
	Compatible							U										<u> </u>	e	<u>0</u>	<u>< </u>		٦
	CompuChem	A								501 N	Aadisor	AV	N N	77() V	•		rier					<u> </u>	-
	a division of Liberty	Anaiyu	cal Co	rp.			г)hana	10	Cary	7, NC 2	75199	170 A	Ĕ ₀₄₀		Air	bill No.	omplete	2 V 0	TNT			-
	end Reporting Universities				Pro	ect In	r Ormali	-none	- 919- 副学師	-379 的評価	+100 1	ax area	-579-4 8 - R i	AUCRE	Analysis (1	nclude n	elliog an	I boule ty	, i 0 (⊅c) (, ,;:	Signation of	M.	urices.	
Company Name BBL, Inc			Project N	Name Al		2		~				13 1	l l	Γ							GW - Gro	ound wate	-
Address			FAD	A-MA	<u>& [</u>	1071	155 1	<u>Enc</u>	<u>~∕</u>			- č	2	s								aste water face water	
3700 Rear	wer Prover Suite 1	40		g Location	n Na	: 5	the	~ 5	i tram	PL	-t-	11 i'm, Zr 3030C	325.	h								/Sediment	
City	state Zip		Turnarou	A-Pha g Location ning to and time			01.4		100,00	<u>, , , , </u>		1 mil	j č	8						+ I	TB - Trip		
City	NC 27511			514	ndanc							12 0									RI - Rins		
Project Contact	Pavics			C or Proje	-	•				_		A lab	Chlorid								WP - Wig O - Other		
Phone # 919 - 469 - 19	52-X17			ous sampl								1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -											
Sampler's Name Brian Lovare	-		Are high	concentra	tions expe	cted?	Y or N	? If yo	es, whi	ch ID	(s)?	16010B	5016ete 3254	2							Surface, Manager		
1Jrian Covera		Coll	1 ection	1	<u> </u>		Numbe	r of P	reserve	d Rot	tles	3 2	, M	(41 5 .									
			I		-							Kranic, c	1	ີ່ງ									
					#of		H	03	H2SO4	MEOH	La la	Arsenic + Cakiva	516	Ŏ			1					1.12	
	Field ID	Date	Time	Matrix		HCI	NaOH	HN03	H2S	WE	Other	× ¥	∖ň										
56THD	MW-14	2-2-05	0905	Aques	5			1	3		1	1	1	3						4	2/2		
567402	MW-16			Agrans				Ł	3		1	1	1	3						4	2 22		
	MW-16(MS)			Aquas				1	3		1	l	l	3						4	2 22		
	MW-16 (MSD)	2-2-05	1050	Aguas	5			l	3		l	ι	ι	3						Z	242		
5107403	MW-160	2.205	1150	Agros	5			l	3		1	1	I	3						4	.2 02		
547404	EB-020205	2.2.05	1215	Agros	5			I	3		1	L	1	3						4	242		
567405	MW-90	2.2.05	NIR	Aques	5			1	3		1	11	1	3						4	24		
]
											_											╾┼╼╋╸	1
																					-+-+	-+-+-	1
			18 17-90			1.202 (C)	2019	GTAN)	K 15 FFE	144334	1953 (P) - CU	Carlon and	Sec. 2018			COLUMN STREET		inents -	TUSEN D		-		
Sample Unpacked H				Cyanide												86633635 SPA1	7. 5. Contraction of the	1000		CONTRACTOR OF STREET	82494749499	a den sin se se se se se	1
	By: Manlene	Luit		625 & Ph				•		· · .	1												1
	n Good Condition? Y or N			608 samp								U)MC										1
If no, explain:	MWIM ROO		oken		SAL		R				16		Bec		Witz	Br	oKer	<u>, L.</u>	d				1
		6-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1			Pier de la company		CHCS		Enste	dy	出来的问题	i feithean					140 AN 10	1 2205	制度和即				E.
Relinquished by:	3=3-Brian Lov	ignen		Date/Tir	ne: 2/2	105		183	0	Rece	ived by	<u> Fg</u>	IEX,	1				Date/I	'ime: 🕻	212105		30	1
Relinquished by:	······································			Date/Tit	ne:					Rece	ived by	X4	nd	Len-	<u>~</u>				ime:2			, ol)	
Subcontact? Y or							I	Custo	xdy Se	al(s)	intact?	Y or N	I	On Ice	Y or N				Temp:		3.9	°C	
Samples stored 60 day	after date report mailed at no extr	a charge.								<u> </u>					White & Y	ellow co	py to lab	• Pink	copy fo	or custo:	mer	-	

• •

R

and the second second second second second second second second second second second second second second second							~	* . *										Nº Page	ÖÖ	50 07	1
							CE				UST	OD	Y		r	<u> </u>]	Page	<u></u>	<u>~</u>	
a division of Liberty	A 1									ladiso					-	Courier					
	Anaiyu	car Co	rp.			т	hono	. 010		, NC 2	7513 Fax 919	270 11	040		_	Airbill No		lete? Y	or (A)		
Chen/Reporting Internation	的 你们的问题。			Pro	ect In									Analysis	finclud	cincthod	and bou	le type)			Aaurices (
Company Name BBL, Inc		Project I		and P	inc. Co	46 F		. ./				a									Fround wate Waste wate
Address 0 0		Samplin	g Location			<u>77 F</u>	ner	7		····	m , 21m 30300	325.2								1	urface wat
3700 Regency PKuy Suite 1	10	Wilmi	nyton,	K 54	tton.	Ster	n f	lant	-		ι- 0 ε Μ	3								1	oil/Sedimer
Address 3700 Regency PKwy Suite 14 City State Zip Cary NC 27511		Turnarou	inti time	radard							1 2 1	L								RI - Ri	ip Blank nsate
Project Contact Scoft Davies		Batch Q	C or Projec			ecific,	which	Sampl	le ID?		49	Chloride								WP - W	
		Are aque	ous sampl	es field fil	tered f	or met	als? Y	orN	5-			5								O - Oth	er
919-469-1952 X17									-		N i	T									
Sampler's Name Brien Lorgren		Are high	concentra	tions expe	cted?	Y or N	? If ye	s, which	ch ID(s)?	108	375.	(HIS.				1).).
	Coll	ection	<u></u>		1	Numbe	r of P	reserve	d Bott	les	12 3	3	<u>ث</u>								
			1					4	F		14.0	لخ ا	105								
Field ID	Date	Time	Matrix	# of bottles	HCI	NaOH	HN03	H2SO4	MEOH	Other	Arsaire, chromium, cooper, Thulli decleium /6010B with 1eb Aco	Sulfate									
547406 MW-13		1315	1	5		-2	 	3	<u> </u>	<u> </u>			3							2z < z	
547407 MW-130	2.205	r .	Agens	5		- 1	1	3		1	1		3							44 22	
567408 MW-15	2-205		1 1	5			1	3		1	1	1	3						-	2×2	┇╴┤╴┤
5107409 MW-150	2-205	1					i	3				1	3						1	K2K2	
	0000	100-	174.002	<u> </u>			-1			<u>_</u>	 •	-	-							+	
· · · · · · · · · · · · · · · · · · ·						·{											-+-			+	┼╌┼╌┼
						-+					<u> </u>										┢╌┟╼╋
																	<u> </u>		_	┼╌┼╼	╞╌╿╌┤
-											ļ										
01						.															
		610. 10										网络影响					Distriction	的 同時間			
Sample Unpacked By: X			Cyanide :	-							´										
Samples Received in Good Condition? Y or N	All the second		625 & Ph 608 samp	enol samp																	
If no, explain:	/		Loop antil							<u> </u>											
												-				能特定的					
	Lovgren			ne: 2/2	/05	18	30				<u>: Fe</u> g	JAX-	<u> </u>		~		_	te/Time:			830
Relinquished by:			Date/Tir	ne:		1				ved by		$\lambda \mu \gamma$		T		·····-		te/Time: oler Tem	L'S-C	~	
Subcontact? Y or N If yes, where? Samples stored 60 days after date report mailed at no ex	tra charge.					I	Custo	uy se	ai(S) 1		Y or N	<u></u>		7 V or White &		copy to I	lab • F	Pink copy	for cust	omer	5.00

24

* : * * .

CompuChem

a division of Liberty Analytical Corp.

WORKORDER SUMMARY REPORT

Vorkord		Account:	BB&L	Project:	PROGRESS
DG-Ca	se: PROGRESS	Status:		QC Type:	CLIENT SPECIFIC MS/MSD
teport \$	Style: COMPUCH	IEM STYLE 3 WIT	TH EDD	•	
AMPL	E ID CLIENT ID	COLLECT DATE	RECEIVE DATE	DUE DATE	COMMENTS
567401	MW-14	2/2/2005	2/3/2005	2/16/2005	REQ'S 3030C PREP RPT HSL MTLS=As,Cr,Cu,Tl,Zn,Ca, RPT BY 6010**RPT SULFATE;CHLORIDE AND TOC**
w	MW6010VAR	METAL 6010B V	ARIABLE WAT	FER	
W	WW300.0-1	300.0 IC WATER	OPTION 1		
W	WW415.1TOC	TTL ORGNC CI	RBN (TOC) 415.	.1 W	
567402	MW-16	2/2/2005	2/3/2005	2/16/2005	**USE FOR QC**REQ'S 3030C PREP RPT HSL MTLS=As,Cr,Cu,Tl,Zn,Ca, RPT BY 6010**RPT SULFATE;CHLORIDE AND TOC**
W	MW6010VAR	METAL 6010B V	ARIABLE WAT	FER	
W	WW415.1TOC	TTL ORGNC CE	RBN (TOC) 415	.1 W	
W	WW300.0-1	300.0 IC WATER	OPTION 1		
567403	MW-16D	2/2/2005	2/3/2005	2/16/2005	REQ'S 3030C PREP RPT HSL MTLS=As,Cr,Cu,Tl,Zn,Ca, RPT BY 6010**RPT SULFATE;CHLORIDE AND TOC**
w	MW6010VAR	METAL 6010B V	ARIABLE WAT	TER	
W	WW300.0-1	300.0 IC WATER	ROPTION 1		
W	WW415.1TOC	TTL ORGNC CI	RBN (TOC) 415	.1 W	
567404	EB-020205	2/2/2005	2/3/2005	2/16/2005	REQ'S 3030C PREP RPT HSL MTLS=As,Cr,Cu,Tl,Zn,Ca, RPT BY 6010**RPT SULFATE;CHLORIDE AND TOC**
W	MW6010VAR	METAL 6010B V	ARIABLE WA	TER	
Ŵ	WW300.0-1	300.0 IC WATEI			
W	WW415.1TOC	TTL ORGNC C	RBN (TOC) 415	.1 W	
567405	MW-90	2/2/2005	2/3/2005	2/16/2005	REQ'S 3030C PREP RPT HSL MTLS=As,Cr,Cu,Tl,Zn,Ca, RPT BY 6010**RPT SULFATE;CHLORIDE AND TOC**

Friday, February 04, 2005

Page 1 of 2

CompuChem

a division of Liberty Analytical Corp.

WORKORDER SUMMARY REPORT

Workore	der: 5674	Account:	BB&L	Project:	PROGRESS
BDG-Ca	se: PROGRESS	Status:		QC Type:	CLIENT SPECIFIC MS/MSD
Report	Style: COMPUCH	IEM STYLE 3 W	TH EDD		
SAMPL	EID CLIENTID	COLLECT DATE	RECEIVE DATE	DUE DATE	COMMENTS
W	WW415.1TOC	TTL ORGNC C	RBN (TOC) 415	.1 W	
W	MW6010VAR	METAL 6010B	VARIABLE WAT	FER	
W	WW300.0-1	300.0 IC WATE	R OPTION 1		
567406	MW-13	2/2/2005	2/3/2005	2/16/2005	REQ'S 3030C PREP RPT HSL MTLS=As,Cr,Cu,Tl,Zn,Ca, RPT BY 6010**RPT SULFATE;CHLORIDE AND TOC**
W	MW6010VAR	METAL 6010B	VARIABLE WAT	TER	
W	WW300.0-1	300.0 IC WATE			
<u>w</u>	WW415.ITOC	TTL ORGNC C	RBN (TOC) 415	.1 W	
567407	MW-13D	2/2/2005	2/3/2005	2/16/2005	REQ'S 3030C PREP RPT HSL MTLS=As,Cr,Cu,Tl,Zn,Ca, RPT BY 6010**RPT SULFATE;CHLORIDE AND TOC**
W	WW415.1TOC	TTL ORGNC C	RBN (TOC) 415	.1 W	
w	MW6010VAR	METAL 6010B	VARIABLE WA	TER	
W	WW300.0-1	300.0 IC WATE	R OPTION 1		
567408	MW-15	2/2/2005	2/3/2005	2/16/2005	REQ'S 3030C PREP RPT HSL MTLS=As,Cr,Cu,Tl,Zn,Ca, RPT BY 6010**RPT SULFATE;CHLORIDE AND TOC**
w	MW6010VAR	METAL 6010B	VARIABLE WA	ГER	
W	WW300.0-1	300.0 1C WATE	R OPTION 1		
W	WW415.1TOC	TTL ORGNC C	RBN (TOC) 415	.1 W	
567409	MW-15D	2/2/2005	2/3/2005	2/16/2005	REQ'S 3030C PREP RPT HSL MTLS=As,Cr,Cu,Tl,Zn,Ca, RPT BY 6010**RPT SULFATE;CHLORIDE AND TOC**
w	WW415.1TOC	TTL ORGNC C	RBN (TOC) 415	5.1 W	
w	MW6010VAR		VARIABLE WA		
w	WW300.0-1	300.0 IC WATE	R OPTION 1	•	

Friday, February 04, 2005

.

17-Feb-05

SCOTT DAVIES BLASLAND, BOUCK & LEE, INC. 3700 REGENCY PARKWAY

CARY, NC 27511

Subject:

Report of Data-Project: PROGRESS

Workorder: 5674

Attn.: SCOTT DAVIES

Enclosed are the results of analytical work performed in accordance with the referenced account number.

This report covers sample(s) appearing on the attached listing.

Thank you for selecting CompuChem for your sample analysis. If you should have questions or require additional analytical services, please contact your representative at 1-800-833-5097.

Sincerely,

Marlene J. Swift

CompuChem A Division of Liberty Analytical

Attachment

TOTAL NUMBER

OF PAGES 33

501 Madison Avenue, Cary, NC 27513 Tel: 919-379-4100 Fax: 919-379-4050

CompuChem, a division of Liberty Analytical											
Hsn	Client ID	Wordorder	Matrix	Account	Project	Report					
567401	MW-14	5674 .	w	BB&L	PROGRESS						
67402	MW-16	5674	w	BB&L	PROGRESS	•					
67403	MW-16D	5674	w	BB&L	PROGRESS						
567404	EB-020205	5674	w	BB&L	PROGRESS						
567405	MW-90	5674	w	BB&L	PROGRESS						
567406	MW-13	5674	w	BB&L	PROGRESS						
67407	MW-13D	5674	W	BB&L	PROGRESS						
67408	MW-15	5674	w	BB&L	PROGRESS						
567409	MW-15D	5674	w	BB&L	PROGRESS						
567410	MW-20	5674	w	BB&L	PROGRESS						
567411	MW-20D	5674	w	BB&L	PROGRESS						
567412	MW-91	5674	w	BB&L	PROGRESS						

.

.

SW-846

COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

b Name: (COMPUCHEM	Contract:	
Lab Code:]	LIBRTY Case No.:	SAS No.:	SDG No.: 5674
SOW No.:	SW~846		
	EPA Sample No.	Lab Sample ID.	
	ЕВ-020205	567404	
	MW-13	567406	
	MW-13D	567407	
	MW-14	567401	
	MW-15	567408	
	MW-15D	567409	
	MW-16	567402	
	MW-16D	59417	
	MW-16D	567403	
	MW-16S	59418	
	MW-16SD	59419	
	MW-20	567410	
	MW-20D	567411	
	MW-90	567405	
	MW-91	567412	

Were	ICP interelement corrections applied?	Yes/No	YES
Were	ICP background corrections applied? If yes-were raw data generated before	Yes/No	YES
	application of background corrections?	Yes/No	NO

Comments:

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature:	Ohoma R. Cole Name:	Thomas R. Cole
Date:	Itomary 14, 2005 Title:	Data Reviewer II
	COVER PAGE - I	

CompuChem

a Division of Liberty Analytical Corp. 501 Madison Avenue Cary, NC 27513

INORGANIC CASE SUMMARY NARRATIVE SDG # 5674 PROTOCOL # SW-846

The indicated Sample Delivery Group (SDG) consisting of twelve (12) water samples was received into the laboratory management system (LIMS) on February 3, 2005 intact and in good condition with Chain of Custody (COC) records in order. Sample ID's reported in this data package are noted by the receiving department on the COC if they differ from those listed by the samplers on the COC.

The samples were prepared by 3030C and then analyzed for total arsenic, calcium, chromium, copper, thallium, and zinc using analytical methods delineated in SW-846 (Third Edition)-Update III.

NOTE: Thallium in the LCSW was found to be outside the control limits; however, no re-preparation was possible for the samples.

SAMPLE IDs:

Customer IDs and correlating laboratory IDs are listed on the cover page.

INSTRUMENTAL QUALITY CONTROL:

All calibration verification solutions (ICV & CCV), blanks (ICB, & CCB), and interference check samples (ICSA & ICSAB) associated with this data were confirmed to be within SW-846 allowable limits.

SAMPLE PREPARATION QUALITY CONTROL:

The above note modifies the following statement.

The sample preparation procedure verifications (LCSW & PBW) were found to be within acceptable ranges and all field samples were prepared and analyzed within the contract specified holding times.

MATRIX RELATED QUALITY CONTROL:

The sample matrix spike, CCN = 59418 (MW-16S) and the sample matrix spike duplicate, CCN = 59419 (MW-16SD) were found to be outside control limits for thallium. The reported concentrations are flagged with an "N" on all associated Form 1 and on Form 5a.

SW-846 control limits for matrix spike recoveries are set at 75% to 125% of the analyte quantity added unless original sample concentrations exceed the true values of these "spikes" by a factor of four or more. In this case, affected analytes are not flagged even if recoveries are outside percentage recovery control limits.

The sample matrix duplicate, CCN = 59417 (MW-16D) was outside control limits for chromium. The reported concentrations are flagged with an "*" on all associated Form 1 and on Form 6.

SW-846 control limits for duplicate determinations are +/- 20% Relative Percent Difference (RPD) for concentrations greater than or equal to five times the PQL in both the original and duplicate samples, and +/- the PQL for concentrations less than five times the PQL. The RPD is not calculated if both the original and duplicate values fall below the IDL.

A five-fold serial dilution of sample, CCN = 567402 (MW-16L) was performed in accordance with SW-846 requirements for ICP analysis.

The adjusted sample concentrations were inside control limits for the requested analytes.

SW-846 control limits for serial dilution are defined as a deviation less than or equal to 10% in the dilution-adjusted concentrations from the original values for all analyte concentrations with values greater than fifty (50) times their respective Instrument Detection Limit (IDL) in the original sample.

The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package. \mathcal{A}

And. Lob

Thomas R. Cole Data Reviewer II February 14, 2005

Ball, Tor.c. Prod Name Prod Name <th></th> <th>CompuChem a division of Liberty A</th> <th>•</th> <th></th> <th>-</th> <th></th> <th></th> <th>F</th> <th>Phone</th> <th>: 919-</th> <th>501 N Cary -379-4</th> <th>Aadison , NC 2 4100 - H</th> <th>UST Ave 7519</th> <th>Q 22 5 5 5 79-40</th> <th>40</th> <th></th> <th></th> <th>Courie Airbil Sampl</th> <th>l No. ling Co</th> <th>Pag</th> <th>e</th> <th>_of_d</th> <th>006 2</th> <th></th> <th></th>		CompuChem a division of Liberty A	•		-			F	Phone	: 919-	501 N Cary -379-4	Aadison , NC 2 4100 - H	UST Ave 7519	Q 22 5 5 5 79-40	40			Courie Airbil Sampl	l No. ling Co	Pag	e	_of_d	0 06 2		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Company Name			Project N	Name	all and a second			1.10	-LABORTON DE	E A LUS	1000			A subgast	e Antalyz		1	ico and	boule i	/pc)				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		- -		FAD	A-Pha	<u>211 f</u>	1091	155	Enci	<u>~/</u>			1 1	R									ww - W	laste w	ater
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3700 Regen	er Arwy Suite 14	ю		g Location	n No	: 5	utto,	~ <i>5</i>	tran	, pl	mt-	30.11	ېر لار											
Start Auries Bach QC or Project Specific/II Bigeoffe, which Sample ID? Start Auries WP-Wipe Start Auries Are aqueous samples field filtered for metal? Y or QD Y Y Y Order Strien Cover Are aqueous samples field filtered for metal? Y or QD Y <td>City</td> <td>State Zip</td> <td></td> <td>Turnarou</td> <td>and time</td> <td>د ، برد</td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td><u></u></td> <td>14 2</td> <td>(n)</td> <td>ł</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>ĸ</td>	City	State Zip		Turnarou	and time	د ، برد					<u> </u>	<u></u>	14 2	(n)	ł				-					-	ĸ
Sect1 Flavics Are aqueous samples field filtered for metals?? Y or CD 0 - Other T19 - H51 - F15 - X17 Are aqueous samples field filtered for metals?? Y or CD 0 - Other Stepher's Nume Are high concentrations expected? Y or N? If yes, which ID(0)? 0 - Other Stepher's Nume Collection Mumber of Preserved Bodies	Upprint (Contact		<u></u>	Batch O			? If Sp	ecific.	which	Samn	le ID?		1. 4	ride					}						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Soft	Pavics				-			_		_		100 1	A lo						Í					
Number of reserves pointsNumber of reserves pointsField IDDateTimeMatrixbottles $\frac{1}{2}$	Phone # 919 - 469 - 19:	52-117		Are aque																			i		
Number of reserves pointsNumber of reserves pointsField IDDateTimeMatrixbottles $\frac{1}{2}$	Sampler's Name Brien Lovgre	<u>^</u>		<u> </u>	igh concentrations expected? Y or N? If yes, which ID(s)?																				
International control International control <thinternating control<="" th=""> International contr</thinternating>			Coll	ection	-			Numbe	r of P	reserve	d Bot	tles			E.]					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Field ID	Date	Time	Matrix	F	HCI	NaOH	HNO3	H2SO4	MEOH	Other	Krænic + Cakin	Sulfa	700							-		ی بر ۲	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	567401	MW-14	2.2-05	0905	Acres				1			1		1	3							4	2/2		Π
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				1					1					1	_								12 12		+ +
$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{100$	J I I I								- <u>-</u>			1		<u> </u>								f			++
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						5			-			<u> </u>		<u>+</u>	_										+-1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- V					2			<u> </u>																++
Slo 7405 MW-90 2.2.05 N/R Agains 5 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 </td <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>1</td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td></td> <td></td> <td>+</td>			1		1				1			1		<u> </u>								4			+
Ample Unpacked By: Date/Time: Cyanide samples checked for sulfide & chlorine? Y or Val Sample Order Entry By: Mahlon of Mahlon			2-2-05	2121	Agres	5			1	_		1	1	1	3							4			
Sample Unpacked By: Cyanide samples checked for sulfide & chlorine? Y or Value Gample Order Entry By: Cyanide samples checked for sulfide & chlorine? Y or Value Gample Order Entry By: Cyanide samples checked for sulfide & chlorine? Y or Value Gamples Received in Good Condition? Y or N f no, explain: Multic Received by: Gamples Received by: Cyanide samples checked for pH between 5.0-9.0? Y or NA) Relinquished by: Date/Time: Custody Seal(s) intact? Y or N Gustody Seal(s) intact? Y or N Cost of Seal (S) intact? Y or N Cost of Seal (S) intact? Y or N	567405	MW-90	2.2.05	NIR	hynes	5			1	3		1	1	1	3							4	.743		
Sample Unpacked By: Cyanide samples checked for sulfide & chlorine? Y or W Gample Order Entry By: MONTON of No. Gamples Received in Good Condition? Y or N Gamples Received in Good Condition? Y or N f no, explain: MUM Received by: For North Provider Date/Time: 2/2/05 Received by: Date/Time: Date/Time: Date/Time: Custody Seal(s) intact? Y or N On Ice? Y or N																			_						
Sample Unpacked By: Cyanide samples checked for sulfide & chlorine? Y or W Gample Order Entry By: MONTON of No. Gamples Received in Good Condition? Y or N Gamples Received in Good Condition? Y or N f no, explain: MUM Received by: For North Provider Date/Time: 2/2/05 Received by: Date/Time: Date/Time: Date/Time: Custody Seal(s) intact? Y or N On Ice? Y or N												-													
Sample Unpacked By: Cyanide samples checked for sulfide & chlorine? Y or W Gample Order Entry By: MONTON of No. Gamples Received in Good Condition? Y or N Gamples Received in Good Condition? Y or N f no, explain: MUM Received by: For North Provider Date/Time: 2/2/05 Received by: Date/Time: Date/Time: Date/Time: Custody Seal(s) intact? Y or N On Ice? Y or N		Λ.																							Π
Sample Order Entry By: Mahler of Xullift 625 & Phenol samples checked for chlorine? Y of No Samples Received in Good Condition? Y of N 608 samples checked for pH between 5.0-9.0? Y of No f no, explain: M W M Received for pH between 5.0-9.0? Y of No Relinquished by: Date/Time: 2/2/05 1830 Received by: Date/Time: 2/2/05 1830 Received by: Date/Time: 2/2/05 1830 Subcontact? Y or N If yes, where? Custody Seal(s) intact? Y or N On Ice? Y or N															Star Life			2546	Com	1 2015,83					
Samples Received in Good/Condition? Y & N. 608 samples checked for pH between 5.0-9.0? Y of NA H & M. f no, explain: M W M Received for pH between 5.0-9.0? Y of NA H & M. September 2010 Received by: Received by: Received by: Received by: Received by: Date/Time: 2/2/05 1830 Received by: Date/Time: Date/Time: Received by: Received by: Date/Time: 2-3-05 9', 4U Subcontact? Y or N If yes, where? Custody Seal(s) intact? Y or N On Ice? Y or N Cooler Temp: 3, 9 °C	Sample Unpacked E	W May Lengt	Turt	È	Cyanide	samples cl	ecked	for sul	fide &	chlori	ine? Y	or NA	'											······································	
f no, explain: MW 14 Reck Broken 1 40 mL W 140 Reck With Broken Lid Relinquished by: Date/Time: Date/Time: 0 ate/Time:	Sample Order Entry	DY: MULTURA CON /	yung											MC		<u></u>						<u></u>	<u>.</u>		
Relinquished by: Date/Time: 2/2/05 1830 Received by: Date/Time: Date/Time: 2/2/05 1830 Reclinquished by: Date/Time: Date/Time: 2/2/05 1830 Received by: Date/Time: Date/Time: 2/2/05 1830 Reclinquished by: Date/Time: Date/Time: Received by: Date/Time: Date/Time: 2/2/05 1830 Subcontact? Y or N If yes, where? Custody Seal(s) intact? Y or N On Ice? Y or N Cooler Temp: 3, 9 °C	If no, explain:		- Bro	oken				X		Tr	JW	the summer of the local division of the loca				w.t	<u>م</u> آ	3(0)	65		2				
Received by: Date/Time: Date/Time:<		3=3- Brienhow	1.1.1		Date/Tir	ne: 2/2	/05					ived by	:I Fe	Ex .	1	2011		449 Web 200	7/449-2012-2	Date/I	ime: 🕻	2/2/0			<u></u>
ubcontact? Y or N If yes, where? Custody Seal(s) intact? Y or N On Ice? Y or N Cooler Temp: 3.9 °C	Relinguished by:												177	al	'en	~									
amples stored 60 days after date report mailed at no extra charge.									Custo	xdy Se	al(s)	intact?	Y or N							Cooler	Temp:		2.1		°C

•

.

97

	~ ~							CE	IAI	N C	F C	UST	OD.	Ŷ			r				005 0) 7		
	CompuChem		. ~				•			501 N	ladisor	n Ave.					Couri								
	a division of Liberty	Analyti	cal Co	rp.							, NC 2						Airbi			0. 17		·····			
				i de la compañía de la	N State	26 981						Fax 919				nis (urc			omplete				Mip	ices -	265 F.
Company Name BBL, Tr		مدينية المحمد بين المارك	Project N	Inme											T	T	T				Γ	GW	- Grou	ind wa	ater
ISISLI Lr	<u>اد</u>		FAU	<u>A - Phy</u> g Location		10411	55 F	ner	24	<u> </u>		8 3	325.2										/ - Was - Surfa		
3700 Regin	cy PKwy Suite 1ª	ю			NC 54	ton	Steen		lent	-		um, 2 inc 30300	22										- Soil/S		
			Turnarou	ind time			- 1-10	<u></u>				- E M											- Trip I		
Cary Project Contact	JC 27511		Detable Of		rndard				0	1. 7720		120	1 72										Rinsat - Wipe		
Scott	Devics		Turnaroundi time Structure Batch QC or Project Specific? If Specific, which Sample ID?										1		1					- wipe Other					
Phone # 919-469-1956	2 x17		Are aqueous samples field filtered for metals? Y or N																						
Sampler's Name Brign Lovy			Are high	concentra	tions expe	cted?	Y or N?	? If yo	s, whi	ch ID(s)?	1.8	5.4	15					1				in the second		
1 Drien hory	<i>ir (n</i>	Colle	ction				Numbe	c of D		d Bet		Į	375.	3	7						Ì				
		Colle	-cuon					i of P	CSCIVE	Joa Do	105	15 2	4												
					#of		H	33	64	HO	ĸ	12 3	Sulfate		2						·			25.30km 2111年1月	
	Field ID	Date	Time	Matrix		HCI	NaOH	HN03	H2SO4	MEOH	Other	53	ふ	`						1					
547406	MW-13	2.200	1315	49400	5			1	?		1	1	1	3	1		1					Zz	22	Ţ	\square
517407	MW-13D	2.205			5			1	3		1			3	1					1	<u> </u>	4	« 2		H
				49+007	5				3				<u>└</u>	3							 	E	27	+	+
567408	MW-15	2.205			-			-	-			┼┹━									<u> </u>	22	T	+	╋━┥
5107409	MW-15D	2-2-05	1630	Aquerz	5			1_	3		1	1	1	3		+					┼	Ħ		+	$\left - \right $
																					┼	$\left - \right $	+	+	H
	······································																+					$\left - \right $		╶┼╌┥	+
																	+							+-	$\left[- \right]$
																	<u> </u>	<u> </u>				$\left \cdot \right $	+	-	
	<u> </u>														\uparrow		1						+	+!	\square
			516-20				201											-600	nenis (2000	業態
Sample Unpacked B				Cyanide s								/													
Sample Order Entry	By: Thanklonic & Si	111-		625 & Ph	enol samp	les ch	cked fo	or chl	orine?	Y or	支														
Samples Received in	Good Condition? Y or N	1		608 samp	les checke	d for	H betw	veen 5	.0-9.0	?Yor	NA)														
lf no, explain:	~		200 August	7700 (A) (a		and the second	191.54			1000	Since and Ale					Carlor Pr-		A COLORIDA	Inchest Law		27 - July and a state	121010101	COMPANY NO.	At all she	
													5 Ø.	I NORM				計進設		「東京」の登	<u></u>		192		
Relinquished by	S= 5- 12rin	hoveren			ne: 2/2	103	18	30			ved by		1 Br								2/2/0		9	00	-+
Relinquished by:				Date/Tir	ne:		<u> </u>				ved by		Yle		1				Date/	1 ime: -	2-3-0 3:1-14	2		3.9.0	
Subcontact? Y or M Samples stored 60 days	N If yes, where? after date report mailed at no ex	tra charge.					[0	Custo	ну Se	eal(s)	ntace?	Y or N	(On Ic		or N 3 & Yell	OW CODY	to lab	 Pink 	c copy f	for cus	(· · ·	<u> </u>	· ()	<u> </u>

••

· · · · .

									-													
																		1	Nº Ó	0 50)8	
بمستري بيهانية «اعتمال المتعالم» المقالي ويسماليا التركيبي المثلا المتحدد المستري المثلا								CF	IAI	N ()F C	UST	ODY	Y				Pag	e	of		
	CompuChem									501 N	Aadiso.	n Av	-Y	-		Cor	rier					
	a division of Liberty A	Analyti	cal Co	rp.						Cary	, NC 2	n Av 751 Fax 919	â	E C		Airl	bill No.					
]	Phone	: 919-	379-4	4100	Fax 919-	379-40)40 え		San	pling C	omplete	? Y or	N		
Company Name	CARE TO A DOMESTIC REAL		Project I				14 <u>211</u> 11		(4) 关注					1.1204	Analyzes (J			d bonkest				ind water
Company Name BBL, Inc			ELO	A-Ph	asell	Pro	9105	5 É	End		1	15 õ	્ર									ste water
Address	A14 / 1		Samplin	g Location	1							The live	325.2							SV	/ - Surfa	ice water
3700 Keg	state PKwy Suite NC 27511	: 140	Wilm	mor	NC.	50	ton	Sta	m.	Pki	nt	r Thellium	L (r									Sediment
Carv	NC 27511		Turnarou	and time	Stan	لمہ مل	L									ļ		1			- Trip I - Rinsat	
riojeci Contaci			Batch Q	C or Proje	ct Specific	? If Sp	ecific,	which	Samp	le ID?			/ Chbride			ļ				1	- Wipe	
500	ott Davies																			0.	Other	
Phone # 919 - 469 - 1	952 117		Are aque																			
Sampler s ivame		Are high	concentra	ations expe	cted?	Y or N	? If v	s whi	ch ID	(1)7	12 3	S,								1		
Brian Lov	gren										5 5	3754	עןוציו) דער		1							
		Coll	ection		1		Numbe	r of P	reserve	ed Bot	tles	15 3	J	E								
47 - 6-44 8 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -									4	-		5 3	Solfalc	Ū						đ.		
					#of		NaOH	HN03	H2SO4	MEOH	Other	Arsenic, Finch Ca	hς	Ō,						3.3Er		
	Field ID	Date	Time	Matrix	bottles	E	N.	臣	E	Σ.	<u> </u>	₹.i?	<u>v</u>		ļ				 	<u></u>		
567410	MW-20	2405	0910	A	5				3		1	11	1	3						4	2	
507411	MW-200		1	Anos	5				3		1	1	1	3				1				
		1				<u> </u>			3				<u> </u>	3	<u> </u>					- ,	╢╆╴	++
567412	Mw-91	2405	PIK	hysens	5			<u> </u>	2				•	5			_		┞───┼─	V	14	
											Į											
		+	<u> </u>			<u> </u>									┟╾╍╌┠╌╌		+		┝━━╾┟╌		┝╌┼╌	┨╼╊╼┥
		<u> </u>	ļ		ļ	<u> </u>									ļ		_				$\left - \right $	┩╌┥╾┥
					1	1																
i					<u> </u>															_		
		<u> </u>	t												<u>├</u>			+	├ <u>├</u>			+
			ļ	ļ	ļ	ļ				L		<u> </u>			└── 		_		┝		\vdash	+
															_							
		in nebe o	101010						-		-75										的設置	
Sample Unpacked B		<u> </u>		Cyanide	samples cl	hecked	for su	fide &	chlori	ine? Y	or₩A				······							
Sample Order Entry	By: V TYALDOND . A	wyt	<u> </u>	1	tenol sam						FI										,	
Samples Received in	1 Good Condition? Y or N	Ų		608 sam	oles check	ed for	pH bet	ween 5	.0-9.0	?Yor	NA)_	<u>`</u>							·····			
If no, explain:			Venteronie	A STATISTICS		1. State	is whether	ç- 0-0 ()	Total State	an constant	-	ALL DESCRIPTION OF			and the second second	-	Columbia	a Mariana an	and the states	1	ANNER	SALAR COM
Relinquished by:					me:)/4					Deec	ivad be	r: M		NO. O	A C.	uD	STREETS		Time: a			
Relinquished by:	3=3-Brian	L607				203		20					NIVO	<u>nu</u>	A. M.	μz	<u></u>			7/05	_/5	80
يرجده بهامي ويتبعد ويتباد والمتحد والمتحد	AT TExas when 0			Date/Ti	me:			<u>.</u>			ived by			<u>.</u>	1			Date/1			R	<u>3.</u> c
Subcontact? Y or I Samples stored 60 days	N If yes, where? s after date report mailed at no extra	charge						Custo	xay Se	ai(s)	intact?	Y or N		Un Ice	Y or N White & Y		ny to let		r Temp:	oustom		
amples stored on traff	and, date report maneu at no extra	a charge.													AARTIG OF L	SHOW CO	hà in igr	/ = mu(K	oopy ior i	Gastonit	•	-

6

a division of Liberty Analytical Corp.

WORKORDER SUMMARY REPORT

Workorder:5674Account:BB&LSDG-Case:PROGRESSStatus:

Project: PROGRESS QC Type: CLIENT SPECIFIC MS/MSD

Report Style: COMPUCHEM STYLE 3 WITH EDD

SAMPL	EID CLIENT ID	COLLECT DATE	RECEIVE DATE	DUE DATE	COMMENTS
567401	MW-14	2/2/2005	2/3/2005	2/17/2005	REQ'S 3030C PREP RPT HSL MTLS=As,Cr,Cu,Tl,Zn,Ca, RPT BY 6010**RPT SULFATE;CHLORIDE AND TOC**
W	MW6010VAR	METAL 6010B V	ARIABLE WAT	TER	
W	WW300.0-1	300.0 IC WATEF	R OPTION 1		
W	WW415.1TOC	TTL ORGNC CI	RBN (TOC) 415.	.1 W	
567402	MW-16	2/2/2005	2/3/2005	2/17/2005	**USE FOR QC**REQ'S 3030C PREP RPT HSL MTLS=As,Cr,Cu,Tl,Zn,Ca, RPT BY 6010**RPT SULFATE;CHLORIDE AND TOC**
W	MW6010VAR	METAL 6010B V	ARIABLE WAT	rer	
w	WW415.1TOC	TTL ORGNC C	RBN (TOC) 415	.1 W	
W	WW300.0-1	300.0 IC WATER	R OPTION 1		
567403	MW-16D	2/2/2005	2/3/2005	2/17/2005	REQ'S 3030C PREP RPT HSL MTLS=As,Cr,Cu,Tl,Zn,Ca, RPT BY 6010**RPT SULFATE;CHLORIDE AND TOC**
w	MW6010VAR	METAL 6010B	ARIABLE WAT	FER	
W	WW300.0-1	300.0 IC WATER	ROPTION 1		
W	WW415,1TOC	TTL ORGNC C	RBN (TOC) 415	.1 W	
567404	EB-020205	2/2/2005	2/3/2005	2/17/2005	REQ'S 3030C PREP RPT HSL MTLS=As,Cr,Cu,Tl,Zn,Ca, RPT BY 6010**RPT SULFATE;CHLORIDE AND TOC**
w	MW6010VAR	METAL 6010B		fer	
W	WW300.0-1	300.0 IC WATEI			
W	WW415.1TOC	TTL ORGNC C		······································	
567405	MW-90	2/2/2005	2/3/2005	2/17/2005	REQ'S 3030C PREP RPT HSL MTLS=As,Cr,Cu,Tl,Zn,Ca, RPT BY 6010**RPT SULFATE;CHLORIDE AND TOC**

Page 1 of 3

Friday, February 04, 2005

7

a division of Liberty Analytical Corp.

WORKORDER SUMMARY REPORT

Workorder: 5674 Account: BB&L **SDG-Case:** PROGRESS Status:

Project: PROGRESS QC Type: CLIENT SPECIFIC MS/MSD

Report Style: COMPUCHEM STYLE 3 WITH EDD

SAMPL	E ID CLIENT ID	COLLECT DATE	RECEIVE DATE	DUE DATE	COMMENTS
W W W	WW415.1TOC MW6010VAR WW300.0-1	TTL ORGNC C METAL 6010B 300.0 IC WATEI	VARIABLE WAT		
567406	MW-13	2/2/2005	2/3/2005	2/17/2005	REQ'S 3030C PREP RPT HSL MTLS=As,Cr,Cu,Tl,Zn,Ca, RPT BY 6010**RPT SULFATE;CHLORIDE AND TOC**
w	MW6010VAR	METAL 6010B	VARIABLE WAT	ER	
W	WW300.0-1	300.0 IC WATE	R OPTION 1		
W	WW415.ITOC	TTL ORGNC C	RBN (TOC) 415.	1. W	
567407	MW-13D	2/2/2005	2/3/2005	2/17/2005	REQ'S 3030C PREP RPT HSL MTLS=As,Cr,Cu,Tl,Zn,Ca, RPT BY 6010**RPT SULFATE;CHLORIDE AND TOC**
w	WW415.1TOC	TTL ORGNC C	RBN (TOC) 415.	1 W	
W	MW6010VAR		VARIABLE WAT		
w	WW300.0-1	300.0 IC WATE	R OPTION 1		
567408	MW-15	2/2/2005	2/3/2005	2/17/2005	REQ'S 3030C PREP RPT HSL MTLS=As,Cr,Cu,Tl,Zn,Ca, RPT BY 6010**RPT SULFATE;CHLORIDE AND TOC**
w	MW6010VAR	METAL 6010B	VARIABLE WAT	ſER	
W	WW300.0-1	300.0 IC WATE	R OPTION 1		
W	WW415.1TOC	TTL ORGNC C	RBN (TOC) 415.	.1 W	· · ·
567409	MW-15D	2/2/2005	2/3/2005	2/17/2005	REQ'S 3030C PREP RPT HSL MTLS=As,Cr,Cu,Tł,Zn,Ca, RPT BY 6010**RPT SULFATE;CHLORIDE AND TOC**
w	WW415.1TOC	TTL ORGNC C	RBN (TOC) 415	.1 W	
w	MW6010VAR	METAL 6010B	VARIABLE WA	FER	
W	WW300.0-1	300.0 IC WATE	R OPTION 1		

Page 2 of 3

Friday, February 04, 2005

a division of Liberty Analytical Corp.

WORKORDER SUMMARY REPORT

Workorder: 5674 Account: BB&L SDG-Case: PROGRESS Status:

Project: PROGRESS QC Type: CLIENT SPECIFIC MS/MSD

Report Style: COMPUCHEM STYLE 3 WITH EDD

SAMPL	EID CLIENTID	COLLECT DATE	RECEIVE DATE	DUE DATE	COMMENTS
567410	MW-20	_ 2/4/2005	2/4/2005	2/17/2005	REQ'S 3030C PREP RPT HSL MTLS=As,Cr,Cu,Tl,Zn,Ca, RPT BY 6010**RPT SULFATE;CHLORIDE AND TOC**
w	MW6010VAR	METAL 6010B	ARIABLE WAT	FER	
w	WW300.0-1	300.0 IC WATER	ROPTION 1		
w	WW415.1TOC	TTL ORGNC C	RBN (TOC) 415	.1 W	
567411	MW-20D	2/4/2005	2/4/2005	2/17/2005	REQ'S 3030C PREP RPT HSL MTLS=As,Cr,Cu,Tl,Zn,Ca, RPT BY 6010**RPT SULFATE;CHLORIDE AND TOC**
w	MW6010VAR	METAL 6010B	ARIABLE WAT	FER	
w	WW300.0-1	300.0 IC WATE	R OPTION 1		
w	WW415.1TOC	TTL ORGNC C	RBN (TOC) 415	.t W	
567412	MW-91	2/4/2005	2/4/2005	2/17/2005	REQ'S 3030C PREP RPT HSL MTLS=As,Cr,Cu,TI,Zn,Ca, RPT BY 6010**RPT SULFATE;CHLORIDE AND TOC**
W	MW6010VAR	METAL 6010B	ARIABLE WAT	TER	
w	WW300.0-1	300.0 IC WATE	R OPTION 1		
w	WW415.1TOC	TTL ORGNC C	RBN (TOC) 415	.1 W	

Page 3 of 3

Friday, February 04, 2005

CompuChem a Division of Liberty Analytical Corp. 501 Madison Avenue Cary, NC 27513

DATA REPORTING QUALIFIERS FOR INORGANICS

On Form I, under the column labeled "C" for concentration qualifier and "Q" for qualifier, each result is flagged with the specific data reporting qualifiers listed below, as appropriate. Up to five qualifiers may be reported on Form I for each analyte.

The C (concentration) qualifiers used are:

- U: This flag indicates the analyte was analyzed for but not detected. This reported value was obtained from a reading that was less than the Instrument Detection Limit (IDL). The IDL will be adjusted to reflect any dilution and, for soils, the percent moisture.
- B: This flag indicates the analyte was analyzed for and the reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL) but greater than or equal to the Instrument Detection Limit (IDL).

The Q qualifiers used are:

- E: This flag indicates an estimated value. This flag is used:
 - 1. When the serial dilution (a five fold dilution for CLP and a five fold dilution for SW-846 method 6010B) results are not within 10%. The analyte concentration must be sufficiently high (minimally a factor of 50X above the IDL in the original sample).
- N: This flag indicates the sample spike recovery is outside of control limits:
- *: This flag is used for duplicate analysis when the sample and the sample duplicate results are not within control limits.

The extensions: D, S, SD, L. A, added to the end of the client ID represent as follows:

- D: matrix duplicate
- S: matrix spike
- SD: matrix spike duplicate
- L: serial dilution
- A: post digestion spike

Method Codes:

- P: ICP PLASMA
- CV: MERCURY COLD VAPOR AA
- CA: MIDI-DISTILLATION SPECTROPHOTOMETRIC

SW-846 -1-

INORGANIC ANALYSES DATA SHEET

Lab Name: COMPUCHEM Contract: Lab Code: LIBRTY Case No.: SAS No.: SDG No.: 5674				EPA SAMPLE NO.
				EB-020205
Lab Code: LIBRTY Case No.: SAS No.: SDG No.: 5674	Lab Name:	COMPUCHEM	Contract:	
	Lab Code:	LIBRTY Case No.:	SAS No.:	SDG No.: 5674
Matrix (soil/water): WATER Lab Sample ID: <u>567404</u>	Matrix (soil	/water): WATER	Lab Sample ID:	567404
Level (low/med): LOW Date Received: 02/03/05	Level (low/mo	ed): LOW	Date Received:	02/03/05

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight):

UG/L

CAS No.	Analyte	Concentration	С	Q	м
7440-38-2	Arsenic	3.6	ש	1	P
7440-70-2	Calcium	104	В		P
7440-47-3	Chromium	0.90	la	*	P
7440-50-8	Copper	0.50	שן	1	P
7440-28-0	Thallium	6.2	Ju	N	P
7440-66-6	Zinc	13.0	В	1	P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					
•		· · · · · · · · · · · · · · · · · · ·			

SW-846 -1-

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE	<u> </u>
MW-13	
Lab Name: COMPUCHEM Contract:	2
Lab Code: LIBRTY Case No.: SAS No.: SDG No.: 5674	
Matrix (soil/water): WATER Lab Sample ID: 567406	
Level (low/med): LOW Date Received: 02/03/05	

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight):

UG/L

.

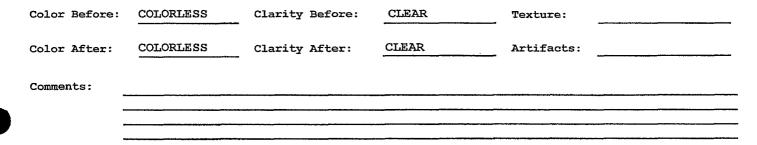
CAS No.	Analyte	Concentration	С	Q	м
7440-38-2	Arsenic	99.1		1	P
7440-70-2	Calcium	125000	1	1	P
7440-47-3	Chromium	0.90	ע	*	P
7440-50-8	Copper	0.55	B	1	P
7440-28-0	Thallium	8.9	B	N	P
7440-66-6	Zinc	9.9	B	1	P

•

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:		·····			····
_					
_					
-					

SW-846 -1-

INORGANIC ANALYSES DATA SHEET

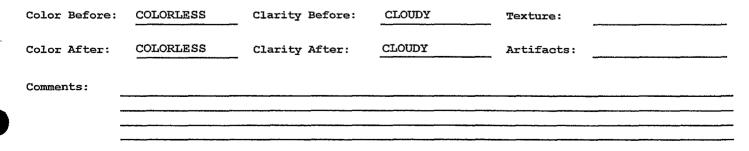

Lab Name: <u>COMPUCHEM</u>	monoAnic	ANALISES DATA SHEET		EPA SAMPLE NO.			
						MW-13D	
,	Lab Name:	COMPUCHEN	4	Contract:			
	Lab Code:	LIBRTY	Case No.:	SAS No.:	SDG No.:	5674	
	Matrix (soi	l/water):	WATER	Lab Sample ID:	567407		
	Level (low/	med):	LOW	Date Received:	02/03/05	i	

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight):

UG/L

CAS No.	Analyte	Concentration	С	Q	м
7440-38-2	Arsenic	3.6	U		P
7440-70-2	Calcium	84400	1	1	P
7440-47-3	Chromium	0.90	ש	*	P
7440-50-8	Copper	0.50	ש	1	P
7440-28-0	Thallium	8.2	В	N	P
7440-66-6	Zinc	18.3	B	1	P


INORGANIC ANALYSES DATA SHEET

http://		ITOROALITE ANALISES DATA SHEET	EPA SAMPLE NO.
			MW-14
Lab Name:	COMPUCHEM	Contract:	<u></u>
Lab Code:	LIBRTY Case No.	: SAS No.:	SDG No.: 5674
Matrix (soi)	l/water): <u>WATER</u>	Lab Sample ID:	567401
Level (low/r	ned): LOW	Date Received:	02/03/05

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration	С	Q	м
7440-38-2	Arsenic	9.6	в	1	P
7440-70-2	Calcium	34100	1		P
7440-47-3	Chromium	0.90	U	*	P
7440-50-8	Copper	0.59	B		P
7440-28-0	Thallium	6.2	υ	N	P
7440-66-6	Zinc	17.8	B	1	P

INORGANIC ANALYSES DATA SHEET

	LI II	ORGANIC ANALISES DATA SHEET	I	SPA SAMPLE NO.	
				MW-15	٦
Lab Name:	COMPUCHEM	Contract:	•••••••••••		لحصد
Lab Code:	LIBRTY Case No.:	SAS No.:	SDG No.:	5674	
Matrix (soi	1/water): WATER	Lab Sample ID:	567408		
Level (low/	med): LOW	Date Received:	02/03/05		

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight):

UG/L

CAS No.	Analyte	Concentration	c	Q	м
7440-38-2	Arsenic	44.0	+		P
7440-70-2	Calcium	63400	1	[P
7440-47-3	Chromium	0.90	ע	*	P
7440-50-8	Copper	0.50	U	1	P
7440-28-0	Thallium	6.6	В	N	P
7440-66-6	Zinc	13.8	В	1	P

Color Before:	COLORLESS	Clarity Before:	CLOUDY	Texture:	
Color After:	COLORLESS	Clarity After:	CLOUDY	Artifacts:	
Comments:					
-					
-			· · · · · · · · · · · · · · · · · · ·		······································

-1-

.

INORGANIC ANALYSES DATA SHEET

	-		
			MW-15D
Lab Name:	COMPUCHEM	Contract:	
Lab Code:	LIBRTY Case No.:	SAS No.:	SDG No.: 5674
Matrix (soi	l/water): WATER	Lab Sample ID:	567409
Level (low/	med): LOW	Date Received:	02/03/05

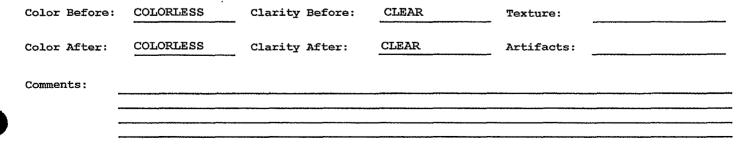
% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight):

UG/L

CAS No.	Analyte	Concentration	С	Q	м
7440-38-2	Arsenic	3.6	U		P
7440-70-2	Calcium	35900	Ì	İ	P
7440-47-3	Chromium	0.90	U	*	P
7440-50-8	Copper	0.50	U	1	P
7440-28-0	Thallium	6.2	JU	N	P
7440-66-6	Zinc	13.6	В	1	P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:


INORGANIC ANALYSES DATA SHEET

	INOXOA	INC ANALIGES DATA SHEET	EPA SAMPLE NO.
			MW-16
Lab Name:	COMPUCHEM	Contract:	
Lab Code:	LIBRTY Case No.:	SAS No.:	SDG No.: 5674
Matrix (soi	1/water): WATER	Lab Sample ID:	567402
Level (low/	med): LOW	Date Received:	02/03/05

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration	с	Q	м
7440-38-2	Arsenic	3.6	υ	1	P
7440-70-2	Calcium	5390	1		P
7440-47-3	Chromium	0.90	μ	*	P
7440-50-8	Copper	0.65	В	1	P
7440-28-0	Thallium	6.9	В	N	P
7440-66-6	Zinc	23.0	1	1	P

-1-

INORGANIC ANALYSES DATA SHEET

		MOROMIC MULLIDED DATH SHE	EPA SAMPLE NO.
			MW-16D
Lab Name:	COMPUCHEM	Contract:	
Lab Code:	LIBRTY Case	No.: SAS No.:	SDG No.: 5674
Matrix (soi	.1/water): WATER	Lab Sample	ID: <u>567403</u>
Level (low/	med): LOW	Date Receiv	ed: 02/03/05

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight):

UG/L

-

CAS No.	Analyte	Concentration	С	Q	м
7440-38-2	Arsenic	4.3	в	1	P
7440-70-2	Calcium	33700	1	1	P
7440-47-3	Chromium	0.90	ען	*	P
7440-50-8	Copper	0.50	ע	1	P
7440-28-0	Thallium	8.0	В	N	P
7440-66-6	Zinc	35.3	T	1	P

Color Before: COLORLESS Clarity Before: CLEAR Texture:	
Color After: COLORLESS Clarity After: CLEAR Artifacts:	
Comments:	

-1-

INORGANIC ANALYSES DATA SHEET

				EPA SAMPLE NO. MW-20 SDG No.: 5674 567410	
					MW-20
Lab Name:	COMPUCHEM	(Contract:		
Lab Code:	LIBRTY C	ase No.:	SAS No.:	SDG No.:	5674
Matrix (soil	L/water): WAI	FER	Lab Sample ID:	567410	
Level (low/n	ned): LOW		Date Received:	02/04/05	

% Solids: 0.0

.

Concentration Units (ug/L or mg/kg dry weight):

.

UG/L

-

CAS No.	Analyte	Concentration	С	Q	м
7440-38-2	Arsenic	3.6	ש		P
7440-70-2	Calcium	79900	Ī	1	P
7440-47-3	Chromium	0.90	U	*	P
7440-50-8	Copper	0.59	B	J	P
7440-28-0	Thallium	6.2	σ	N	P
7440-66-6	Zinc	24.3	T	1	P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					
-					
-			······		
-					

-1-

INORGANIC ANALYSES DATA SHEET

]	EPA SAMPLE NO)
						MW-20D	
Lab Name:	COMPUCHEM		Contract:		I		
Lab Code:	LIBRTY Ca	se No.:	SAS No.:	SDG	No.:	5674	
Matrix (soi	1/water): WATE	R	Lab Sample ID:	567	411		
Level (low/	med): LOW		Date Received:	02/	04/05	·····	

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration	С	Q	м
7440-38-2	Arsenic	3.6	Ū	1	P
7440-70-2	Calcium	65300	1	1	P
7440-47-3	Chromium	0.90	Ju	*	P
7440-50-8	Copper	1.1	В	1	P
7440-28-0	Thallium	6.2	שן	N	P
7440-66-6	Zinc	21.9	1		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					
					·····
		· · · · · · · · · · · · · · · · · · ·			······································

-1-

INORGANIC ANALYSES DATA SHEET

			EPA SAMPLE NO.	
			MW-90	
Lab Name: COMPUCHEM	Contract:		·····	
Lab Code: LIBRTY Case No.:	SAS No.:	SDG No.:	5674	
Matrix (soil/water): WATER	Lab Sample ID:	567405	·	
Level (low/med): LOW	Date Received:	02/03/05		

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration	С	Q	м
7440-38-2	Arsenic	103			P
7440-70-2	Calcium	129000	Τ	1	P
7440-47-3	Chromium	0.90	ש	*	P
7440-50-8	Copper	0.50	ען	1	P
7440-28-0	Thallium	6.2	ש	N	P
7440-66-6	Zinc	16.4	В	1	P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:				·····	
			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·

INORGANIC ANALYSES DATA SHEET

Lab Name: <u>COMPUCHEM</u> Lab Code: <u>LIBRTY</u> Case No.:		EPA SAMPLE NO.	
			MW-91
Lab Name:	COMPUCHEM	Contract:	
Lab Code:	LIBRTY Case No.	: SAS No.:	SDG No.: 5674
Matrix (soi)	l/water): WATER	Lab Sample ID:	567412
Level (low/)	med): LOW	Date Received:	02/04/05

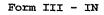
% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration	С	Q	м
7440-38-2	Arsenic	3.6	σ		P
7440-70-2	Calcium	84200	1	[P
7440-47-3	Chromium	0.90	U	*	P
7440-50-8	Copper	0.91	в	1	P
7440-28-0	Thallium	6.2	שן	N	P
7440-66-6	Zinc	26.2	1		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					
-					
-					
-					

3 BLANKS


 Lab Name:
 COMPUCHEM
 Contract:

 Lab Code:
 LIBRTY
 Case No.:
 SAS No.:
 SDG No.:
 5674

 Preparation Blank Matrix (soil/water):
 WATER

 Preparation Blank Concentration Units (ug/L or mg/kg):
 UG/L

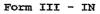
	Initial Calib. Blank			Continuing Calibration Blank (ug/L)					- Preparation Blank	
Analyte	(ug/L)	с	1	С	2	С	3	с	с	м
Arsenic	3.6	υ	3.6	ען	3.6	ע ו	3.6	U	3.600 Ŭ	P
Calcium	23.6	υ	29.8	B	25.8	В	35.7	в	93.287 B	P
Chromium	-1.4	в	0.9	U	0.9	υ	0.9	<u></u> ד	0.900 U	P
Copper	0.5	υ	-0.5	В	-0.6	В	-0.8	В	0.500 0	Р
Thallium	6.2	υ	6.2	U	6.2	υ	7.4	в	6.734 B	P
Zinc	. 3.6	υ	3.6	U	3.6	ប	3.6	ד	8.492 B	P

-

3

.

BLANKS


 Lab Name: COMPUCHEM
 Contract:

 Lab Code: LIBRTY
 Case No.:
 SAS No.:
 SDG No.:
 5674

 Preparation Blank Matrix (soil/water):
 WATER

 Preparation Blank Concentration Units (ug/L or mg/kg):
 UG/L

	Initial Calib. Blank			Continuing Calibration Blank (ug/L)					Preparation Blank				
Analyte	(ug/L)	С	1	С	2	с	3	с	с	м			
Arsenic	2.1	. U	2.1	U	2.1	ש	2.1	υ	2.100 0	P			
Calcium	17.0	U	17.0	υ	17.0	ប	17.0	Ú	76.827 B	P			
Chromium	-0.6	В	0.6	U	-0.7	в	0.6	U	0.600 U	P			
Copper	-0.7	B	-0.8	в	-0.6	в	-0.8	в	-0.403 B	P			
Thallium] 3.0	U	3.0	υ	3.0	υ	3.0	U	3.000 U	P			
Zinc	1.2	2 0	1.2	U	1.2	U	1.2	U	8.164 B	P			

5A

SPIKE SAMPLE RECOVERY

											SAMPI	e no	».		
											MŴ	-168	3		
Lab Na	me:	COMPUCH	EM			_ c	lon	tract:							
Lab Co	de:	LIBRTY	Case N	o.:		SAS	No	·.:		:	SDG No.:	5674	1		
	-	.1/water) r Sample				Lev	el	(low/med):	LOW						
0 DOTI	.43 10	r Sambre		centratio	on Units	(ug/I	Lс	or mg/kg dr	y weight	t);	UG/	′ <u>ı.</u>	•		
	Ana]	lyte	Control Limit %R	Spiked Result	-		с	Sample Result (С	Spike Added (SA)		%R	Q	м
Ī	Arse	nic	75 - 125		39.3	617	1		3.6000	ប	40.	00	98.4		P
j	Chro	mium	75 - 125		178.6	466			0.9000	υ	200.	00	89.3		₽

178.6466 125 0.900010 15 Copper 75 - 125 225.6006 0.6511 B 250.00 Thallium 75 - 125 34.8071 6.9232 B 50.00 Zinc 75 - 125 467.7613 22.9609 500.00

Comments:

.

90.0

89.0

55.8 N

Ρ

 ${\bf P}$

P

5A

SPIKE SAMPLE RECOVERY

							SAMP	LE NO.			
							MW	-16SD			
Lab Na	ame: <u>COMPUCH</u>	IEM		Con	tract:						
Lab Co	ode: <u>LIBRTY</u>	Case N	ío.:	SAS No	».:		SDG No.:	5674			
Matriz	k (soil/water)			Level	(low/med):	LOW					
% Soli	ds for Sample	e: <u>0.0</u>									
		Conc	centration Units	(ug/L d	or mg/kg dry w	eight):	UG	/I	-		
Í	Analyte	Control Limit %R	Spiked Sample Result (SSR)	С	Sample Result (SR)	с	Spike Added (SA) %F	2	Q	м

	DTHE OK		165426 (51)	Added (SA)		· *	
Arsenic	75 - 125	40.3958	3.6000 U	40.00	101.0		P
Chromium	75 - 125	186.4589	0.9000 U	200.00	93.2		P
Copper	75 - 125	233.6648	0.6511 B	250.00	93.2		P
Thallium	75 - 125	34.8625	6.9232 B	50.00	55.9	N	P
Zinc	75 - 125	495.4473	22.9609	500.00	94.5		P

5B

POST DIGEST SPIKE SAMPLE RECOVERY

SAMPLE NO.

MW-16A

Lab Name:	COMPUCHEM		Contract:			
Lab Code:	LIBRTY	Case No.:	SAS No.:	SDG	No.:	5674
Matrix (soi)	l/water):	WATER	Leve	1 (low/med):	LOW	

Concentration Units: ug/L

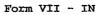
Analyte	Control Limit %R	Spiked Sampl Result (SSR)	e C	Sampl Result	.e (SR)	С	Spike Added (SA)	%R	Q	м
Thallium			26.61		6.92	B	20.0	98.4		P

6

DUPLICATES

					SAM	PLE NO.		
					M	1-16 D		
Lab Name: <u>COM</u>	1PUCHEM	Contract:						
Lab Code: LIBE	RTY Case No.	: SAS No	».:	SDG No.:	56	74		
Matrix (soil/wat	ter): <u>WATER</u>	Level (1	ow/m	ed): LOW				
% Solids for Sam	nple: <u>0,0</u>	% Solids for	• Dup	licate: 0.0		<u></u>		
	Concentratio	on Units (ug/L or mg/kg	dry	weight): UG/1	<u>د</u>	•		
Analyte	Control Limit	Sample (S)	с	Duplicate (D)	с	RPD	Q	м
Arsenic		3.6000	U	3.6000	υ			Р
Calcium	5000.0	5385.1920		5792.8940		7.3		P
Chromium	10.0	0.9000	U	116.5681		200.0	*	P
Copper		0.6511	в	0.7347	в	12.1		P
Thallium		6.9232	в	6.2000	U	200.0		P
Zinc		22.9609		13.2792	в	53.4		P

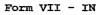
.



7

LABORATORY CONTROL SAMPLE

La	b Name: <u>COME</u>	UCHEM			_ Contract:	······			
La	b Code: LIBR	TY Case	No.:		SAS No.:	<u> </u>	SDG	No.: <u>5674</u>	
So	lid LCS Source	•							
Aq	ueous LCS Sour	ce: <u>HIPUR</u>							
		Aqueor	15 (ug/L)			Solid	i (mg/	/kg)	
	Analyte	True	Found	%R	True	Found	С	Limits	*R
	Arsenic	1000.0	891.39	89.1					
	Calcium	50000.0	46365.96	92.7			11	1	1
	Chromium	1000.0	848.80	84.9			11	1	1
	Copper	2500.0	2122.94	84.9					
	Thallium	1000.0	744.67	74.5			11	<u> </u>	
	Zinc	2000.0	1732.77	86.6					J



7

,

LABORATORY CONTROL SAMPLE

La	b Name: <u>COMPUC</u>	HEM	······		_ Contract:					
La	b Code: LIBRTY	Case	No.:		SAS No.:	<u></u>	SDG	No.: 5	5674	
So	lid LCS Source:									
Aq	ueous LCS Source	: <u>HIPUR</u>								
		Aqueou	s (ug/L)			Solic	l (mg,	/kg)		
	Analyte	True	Found	%R	True	Found	с	Lim	its	&R
	Arsenic	1000.0	1082.70	108.3			1			
	Calcium	50000.0	53257.11	106.5					1	1
	Chromium	1000.0	1009.59	101.0			T		1	1
	Copper	2500.0	2576.04	103.0			11			1
	Thallium	1000.0	994.27	99.4			11			1
	Zinc	2000.0	2061.25	103.1			TI		1	1

· .

•

9 ICP SERIAL DILUTIONS

					SAMPLE NO.		
					MW-16L		
ab Name: COMPUCH	ЕМ		Contract:				
Lab Code: LIBRTY	Case No.:		SAS No.:	SDG No	.: 5674		
Matrix (soil/water)	: WATER		Level (low/med):	LOW			
	Concentrat	ion	Units: ug/L				
Analyte	Initial Sample Result (I)	с	Serial Dilution Result (S)	с	<pre>% Differ- ence</pre>	Q	M
Arsenic	3.60	υ	1	8.00 U	1	1	P
Calcium	5385.19		547	1.05 B	1.6	1	P
Chromium	0.90	υ		4.50 U	1		P
Copper	0.65	в	1	2.50 0	100.0	í	P
Thallium	6.92	в	1	31.00 U	100.0	1	P
	A	· · · · · · · · · · · · · · · · · · ·	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9.41 B	15.5		P

10

INSTRUMENT DETECTION LIMITS (QUARTERLY)

Lab Name: <u>C(</u>	OMPUCHEM	Contract:		
Lab Code: L	LIBRTY Case No.:	SAS No.:	SDG No.: 5674	
ICP ID Number	r: <u>P3</u>	Date: 01/15/05		
Flame AA ID Number:				
Furnace AA ID) Number:			

Analyte	Wave- length (nm)	Back- ground	CRQL (ug/L)	IDL (ug/L)	м
Arsenic	189.04		10	3.6	P
Calcium	317.93		5000	23.6	P
Chromium	267.72		10	0.9	P
Copper	324.70		5	0.5	P
Thallium	190.86		10	6.2	P
Zinc	213.86		20	3.6	Р

.

Comments:

10

INSTRUMENT DETECTION LIMITS (QUARTERLY)

Lab Name:	COMPUCHEM	Contract:		
Lab Code:	LIBRTY Case No.:	SAS No.:		SDG No.: 5674
ICP ID Numb	per: <u>P4</u>	Date:	01/15/05	
Flame AA ID Number:				
Furnace AA	ID Number:			

Analyte	Wave- length (nm)	Back- ground	CRQL (ug/L)	IDL (ug/L)	м
Arsenic	189.04		10	2.1	P
Calcium	317.93		5000	17.0	P
Chromium	267.72		10	0.6	P
Copper	324.70		5	0.4	P
Thallium	190.86		10	3.0	P
Zinc	206.20		20	1.2	Р