J. L. Jarvis
Chief Clerk
North Carolina Utilities Commission
430 N. Salisbury Street
Raleigh, NC 27603-5918

Re: Direct Testimony and Exhibits of Wilfred Arnett, NCUC Docket No. EC-23, Sub 50

Dear Ms. Jarvis:

Enclosed herewith, for filing on behalf of Blue Ridge Electric Membership Corporation, please find the Direct Testimony of Wilfred Arnett. Should you have any questions or comments, please do not hesitate to call me. Thank you in advance for your assistance and cooperation.

Regards,
/s Charlotte Mitchell

4815-1013-4589, v. 1

STATE OF NORTH CAROLINA
 UTILITIES COMMISSION
 RALEIGH

DOCKET NO. EC-23, Sub 50

DIRECT TESTIMONY
OF
WILFRED ARNETT

DIRECT TESTIMONY OF WILFRED ARNETT

Table of Contents
I. BACKGROUND AND EXPERIENCE 1
II. SUMMARY 3
III. THE TVA RATE FORMULA. 4
IV. APPLICATION OF THE TVA FORMULA TO BLUE RIDGE 18
V. CONSIDERATION OF OTHER RATE FORMULAS 25
VI. POLE ATTACHMENT RATES DO NOT INCLUDE RECOVERY OF "BUT FOR" COSTS 46

Exhibits

Exhibit No.	Description
WA-1	Wil Arnett Job Duties
WA-2.1	Blue Ridge 2014 TVA Rate Calculation
WA-2.2	Blue Ridge 2015 TVA Rate Calculation
WA-2.3	Blue Ridge 2016 TVA Rate Calculation
WA-2.4	Blue Ridge 2016 Transmission Pole Cost
WA-2.5	BREMC FCC Cable Default
WA-3	TVA Regulation of Pole Attachments
WA-4	Joint Use of Facilities - REA and Telephone
WA-5	BREMC Average Attaching Entities
WA-6	Blue Ridge Average Pole Height
WA-7	REA-USDA
WA-8	1987 FCC Order - Bare Pole
WA-9	BREMC 2016 Appurtenance Factor
WA-10	Charter Communications 2016 Avgerage Space
WA-11	AT\&T OSP Engineering Handbook - Aerial Plant
WA-12	Spanmaster Program Description
WA-13	CommScope Spanmaster
WA-13.1	BREMC 2014 Sag Calculation
WA-13.2	BREMC 2015 Sag Calculation
WA-13.3	BREMC 2016 Sag Calculation
WA-13.4	RUS Pole-Setting Depths

Exhibit No.	Description
WA-14	Rental Formula Space Allocation
WA-15	APPA Pole Attachment Workbook
WA-16	NRECA JU Toolkit
WA-17	ATT-VZ 2008 ex parte
WA-18.1	Arkansas PSC Order (6-24-2016) Part 1
WA-18.2	Arkansas PSC Order (6-24-2016) Part 2
WA-19	NC UC Mission Statement
WA-20	NC Co-Op Enabling Statute
WA-21	FCC Report on CATV Prices 12-27-2006
WA-22	AT\&T OSP Engineering Handbook - Buried Plant
WA-23	S. Rep. No. 95-580

DIRECT TESTIMONY

OF

WILFRED ARNETT

I. BACKGROUND AND EXPERIENCE

Q. PLEASE STATE YOUR NAME, BUSINESS ADDRESS AND POSITION.

A. My name is Wilfred ("Wil") Arnett. I am currently a Director at TRC Engineers, Inc., located at 6095 Professional Parkway, Suite 102-B, Douglasville, Georgia 30134.

Q. PLEASE DESCRIBE TRC.

A. TRC is a national engineering, consulting and construction management firm providing integrated services to the power, oil and gas, environmental and infrastructure markets. I manage a portion of TRC that specializes in joint use and pole attachment consulting services to investor-owned electric utilities ("IOUs"), electric cooperatives and municipally-owned power providers. Our clients range from very small municipal and cooperative power providers to regionally owned IOUs serving millions of customers. As Director - Joint Use Services at TRC, I provide advice regarding pole attachment issues, pole attachment rate calculations, contract interpretation, contract negotiation assistance, rights of way assistance, and various other consulting services. TRC also provides engineering design, inspection, outside plant construction management and rights of way services to IOUs, electric transmission companies, electric cooperatives, municipal power providers and communications companies, throughout the entire USA.

Q. PLEASE DESCRIBE YOUR PROFESSIONAL BACKGROUND AND EXPERIENCE.

A. My experience in joint use and pole attachment issues spans almost 51 years. I spent 30 of those years working on such issues for BellSouth, an Incumbent Local Exchange Carrier ("ILEC") headquartered in Atlanta. I spent 17 years in BellSouth's Engineering Department, performing and managing all aspects of outside plant engineering. I spent 12 years in headquarters positions, both at the state and company levels. I managed joint use, right of way, and engineering contracts for BellSouth's North Sector (Georgia, South Carolina and North Carolina) from 1987 until 1995. I concluded my career with BellSouth in the BellSouth Entertainment/BellSouth Broadband groups, with the mission of re-entry into the cable television business in BellSouth's 9-state area. Upon retirement from BellSouth in 1996, I became involved in consulting on joint use matters. In that capacity, I have for the last 21 years supported Investor-Owned Utilities, Municipally-Owned Utilities, and Electric Coops with design, inspection, and joint use services. I am well experienced in joint use and pole attachment matters, including, but not limited to, operational matters, design of traditional ILEC facilities, and the evolution of joint use rate methodologies. A complete list of my work record is attached as WA Exhibit No. 1 .

II. SUMMARY

Q. FOR WHOM ARE YOU TESTIFYING IN THESE PROCEEDINGS?
A. Blue Ridge Electric Membership Corporation ("Blue Ridge").
Q. WHAT IS THE PURPOSE OF YOUR TESTIMONY IN THIS PROCEEDING?
A. The purpose of this testimony is to identify the just and reasonable rate for Blue Ridge to charge Charter Communications Properties, LLC, ("Charter") for attachments of its facilities to Blue Ridge's distribution poles.

Q. PLEASE SUMMARIZE YOUR CONCLUSIONS.

A. The rate formula recently adopted in 2016 by the Tennessee Valley Authority ("TVA"), described below, should be used by the Commission to determine the rate for Blue Ridge to charge Charter for attachments to Blue Ridge's distribution poles. The TVA formula properly allocates the annual costs of utility poles between electric cooperatives and attachers, such as Charter, based on a true understanding of the amount of space on the distribution poles they actually use. For instance, the TVA formula allocates the costs associated with the so-called "support space" on the pole (the portion used to achieve ground clearance), equally among all attaching entities, because all attachers require a pole that is a certain number of feet off the ground and therefore benefit equally from this space. As a result, the TVA formula ensures electric rate payers do not subsidize communications attachers' businesses.

The rate calculations attached hereto as WA Exhibit Nos. 2.1, 2.2, and 2.3 reflect the proper calculation of Blue Ridge's annual distribution pole costs for years 2014, 2015 and 2016, respectively, and an appropriate allocation of those costs for each of those years based upon the TVA formula.

III. THE TVA RATE FORMULA

Q. WHAT IS THE PROPER FORMULA TO DETERMINE A JUST AND REASONABLE RATE FOR ATTACHMENTS TO BLUE RIDGE'S DISTRIBUTION POLES?

A. The proper formula to calculate a just and reasonable rate for attachments to Blue Ridge's distribution poles is the formula adopted by the TVA in February of 2016 for approximately 165 electric cooperatives and municipally-owned utilities that it regulates. A copy of the TVA Board's February 2016 resolution is attached at WA Exhibit No. 3. It is marked "Proposed Board Resolution" and "TVA Restricted Information Confidential and Business Sensitive," but is available publically at: https://www.tva.gov/About-TVA/Guidelines-and-Reports (scroll down to "Legal Reports").

Q. WHY IS IT PROPER TO USE TVA'S RATE FORMULA RATHER THAN THE FCC CABLE FORMULA CHARTER HAS PROPOSED?

A. TVA's decision regarding pole attachment rates is a federal decision far more relevant than any Federal Communications Commission ("FCC") decision because the FCC has no jurisdiction over attachments to electric cooperative
poles and so its decisions do not affect electric cooperatives anywhere, much less in North Carolina.

TVA is a corporate agency of the United States operating in seven southeastern states, including North Carolina. TVA is the exclusive rate regulator for electric cooperatives that distribute TVA power, and has jurisdiction over three electric cooperatives and one municipally-owned system, serving North Carolina, (Blue Ridge Mountain Electric Membership Corp., Tri-State Membership Corp., Mountain Electric Cooperative, and the City of Murphy).

Further, TVA's guidance is consistent with Rural Electrification Administration ("REA") policies originating with the dawn of joint use between electric coops and communications companies. Specifically, REA stated "...even though power system poles are already in place and can accommodate telephone facilities with little, if any, extra cost, telephone companies should be required to make payments representing their fair share of the costs of the poles so that saving can accrue to the consumers of electricity as well as to the telephone subscribers. In other words, the power consumers should not be asked to subsidize telephone subscribers." (See WA Exhibit No. 4, at p. 2). As explained in TVA's decision attached at WA Exhibit No. 3, TVA's pole attachment rate formula was approved to ensure electric cooperatives are "appropriately compensated for the use of electric system assets," and that "failure to do so will have a direct impact on retail electric rates because electric ratepayers will be forced to subsidize the
business activities of those entities that are utilizing electric system assets." (WA Exhibit No. 3, at Attachment A, p. 1, Determination By TVA Board). The TVA decision explains very carefully the formula it adopted, including a diagram of a pole indicating which space on the pole each attaching entity should pay for. TVA adopted this formula only after considering, fully analyzing, and rejecting the FCC formula.

Q. DID TVA FULLY CONSIDER THE FCC FORMULA BEFORE

 ADOPTING ITS OWN RATE FORMULA?A. Yes. After reviewing the FCC's rate formulas and the FCC's rationale, TVA's Regulatory Staff determined that "because the FCC formulas are designed to further the policy goal of encouraging broadband investment, particularly in rural areas, they do not appropriately compensate the electric utility for the attachment." WA Exhibit No. 3, at Attachment B, p. 1. However, the TVA, like electric cooperatives and this Commission, recognized that it is "charged with keeping electric rates as low as feasible, and ensuring that electric ratepayers do not subsidize other business activities is important in achieving this objective." WA Exhibit No. 3, at Attachment B, p. 1. Accordingly, it found the FCC formula insufficient to fully compensate cooperatives for communication attachers' use of their poles.

Q. PLEASE DESCRIBE THE RATE CALCULATION APPROVED BY TVA.

A. Like the pole attachment rate calculations used by FCC, the TVA formula calculates an attachment rate for distribution poles by multiplying three
factors: (i) net cost of a bare distribution pole; (ii) carrying charges; and (iii) the space allocation percentage (i.e., the percentage of the total pole costs to be paid for by the attacher). TVA's rate calculation uses the same net cost of a bare distribution pole and carrying charge calculations used by the FCC, except that TVA specifies an average 3-year maintenance cost and further specifies an 8.5% rate of return on investment for purposes of calculating the carrying charges. The FCC currently presumes a 10.75% rate of return. Those distinctions aside, the principal difference between the TVA and FCC formulas arises from TVA's regulatory philosophy that (a) the parties benefitting from the various sections of the pole should be responsible for those costs, and (b) where multiple parties derive benefit, those respective costs should be shared equally. In other words, while the "annual carrying charge" calculations are the same, the way those costs are allocated among the attaching entities differs.

Q. DOES THE TVA RATE PROVIDE FOR A PER POLE, OR PER ATTACHMENT, RENTAL RATE?

A. The TVA rate method provides for a "maximum rate per pole," instead of a "per attachment" rate. Like the FCC formulas, TVA provides for a rebuttable presumption of one foot occupied by a third-party attacher.
Q. HOW DO THE TVA AND FCC FORMULAS DIVIDE THE POLE FOR PURPOSES OF DETERMINING THE SPACE ALLOCATION?
A. While the TVA formula allows for the use of actual figures, both the TVA and FCC formulas start with the presumption that a pole is 37.5 feet tall, and that
if there are three attachers (the electric utility, a cable company, and a telephone company), the pole should be divided as follows:

- "Support Space" (Presumed to be 24 feet) - The lower portion of the pole, including (a) that portion which is buried, and (b) the portion that is necessary to provide sufficient clearance above the ground for attachers' facilities. Those portions are presumed to be 6^{\prime} and 18^{\prime}, respectively.
- "Usable Space" (Presumed to be 13.5 feet) - The upper portion of the pole, above the minimum point of attachment required by the NESC or regulatory authorities for minimum ground clearance, to which electric utilities and communication service providers may attach their lines. Assuming there are three attachers-an electrical utility, a cable provider, and a telephone provider-this "Usable Space" is presumed (illustrated in TVA's documentation) to be subdivided as follows:
- Electrical "Supply Space" (7.17 feet) - The space in which the electric utility may attach its lines, transformers, and other facilities.
o "Communications Worker Safety Zone" (3.33 feet) - A fortyinch clearance zone which between any communications and electrical facilities, required by the NESC to protect communications workers from contact with a utility's electrical facilities.
\circ Cable (one foot) - One foot allocated to the cable provider's attachment.
- Telephone (two feet) - Two feet allocated to the telephone provider's attachment.

Figure 1, below, is a diagram of a pole showing this division:

Q. HOW DOES TVA'S SPACE ALLOCATION PERCENTAGE DIFFER

 FROM THE FCC'S SPACE ALLOCATION PERCENTAGE?A. TVA recognizes that certain portions of the pole are of equal benefit to all attaching parties. Specifically, all attaching entities require, and derive equal benefit from, the "Support Space"-the portion of the pole in the ground and the portion of the pole necessary to provide for the minimum ground clearance required by state or local law and the National Electrical Safety Code
("NESC"). The TVA formula therefore apportions the costs associated with the Support Space equally among all attaching entities, including the pole owner. Under the FCC's Telecom rate formula, however, only two-thirds of the Support Space is allocated equally among all attachers, which includes the pole owner. The remaining one-third of the Support Space is then allocated entirely to the pole owner as well. In essence, the FCC Telecom rate formula implies that the power company pole-owner has a greater need for ground clearance than the attaching communications companies. Obviously, this is not the case.

Under the FCC's Cable rate formula, which Charter has proposed in this matter, only 7.4% of the Support Space is allocated to the cable attacher, even though all attachers require, and benefit equally from, that space. The result is that on Blue Ridge poles with one foreign attaching entity, such as Charter, Blue Ridge would be responsible for the remaining 92.6% of the costs associated with the common space. Figure 2, below, is a comparison showing how the TVA and FCC Cable Rate allocate space on the pole.

Figure 2
(Comparison of Space Allocated to Cable Attacher
Under TVA Formula and FCC Cable Rate)

A. Yes. All attaching entities benefit equally from the Support Space on the pole and therefore should pay an equal share of those costs. All attaching entities need the pole 6' below ground (for stability) and need their facilities at least 18' above ground (for NESC compliance and public safety). In addition, all attachers use the common space to (a) install their cable "risers" (transitions between overhead and underground cable facilities), (b) as "climbing space" for workmen to reach aerial facilities to install new services and for maintenance of existing facilities, and (c) to install hardware such as power supplies, terminals, crossboxes / interfaces, meters, telephone load coils and capacitors, aerial to buried service wires, etc.

Q. HOW ELSE DOES TVA'S SPACE ALLOCATION PERCENTAGE DIFFER FROM THE FCC'S SPACE ALLOCATION PERCENTAGE?

A. TVA and the FCC differ in how they allocate costs associated with 40-inch Communications Worker Safety Zone, which is the 40 -inch separation between communications attachments and energized electric facilities required by the NESC. The Communications Worker Safety Zone space exists only to protect communications workers and would not be required if there were no communications companies attached to the pole. Yet, despite this, the FCC counts the Communications Worker Safety Zone as a portion of the usable space, and thus allocates the costs of this space predominantly to the electric utility. The TVA formula instead allocates costs associated with the Communications Worker Safety Zone equally among, and solely to, communications attachers.

Q. DOES IT MAKE SENSE THAT TVA WOULD ALLOCATE COSTS

ASSOCIATED WITH THE 40-INCH SAFETY SPACE ONLY AMONG COMMUNICATIONS ATTACHERS?

A. Yes. It makes a lot of sense to allocate the costs associated with the 40-inch Communications Worker Safety Zone to the communications attachers alone, and not to the electric utility. The 40 -inch safety space creates a 40 -inch separation between communications attachments and energized electric facilities. The purpose of this space is to protect communications workers, who are neither qualified, nor equipped, to work with energized conductors. Power company workmen are trained and properly equipped to work in hazardous voltages. They wear appropriate clothing, use appropriately insulated tools, and operate out of insulated buckets on aerial lift vehicles. The safety space would not be required, nor would it be provided on the pole, but for the presence of communications attachments.

The Communications Worker Safety Zone therefore exists solely to protect communications workers-i.e., the cable company's personnel. It would not be necessary but for the presence of the communications attachments. That is why the NESC calls the 40-inch safety space the "Communications Worker Safety Zone." The costs associated with this space therefore should be allocated to the communications attachers, not the electric utility.

Q. HOW DO YOU RECONCILE THE INSTALLATION OF STREETLIGHTS AND SECURITY LIGHTS IN THE COMMUNICATIONS WORKER SAFETY ZONE AND ALLOCATING

THE COST OF THAT SPACE SOLELY TO THE COMMUNICATIONS COMPANIES?
A. The purpose of the 40 -inch Communications Worker Safety Zone is to protect the communications worker from hazardous voltages. In order to comply with the NESC, a pole must include this additional 40-inch space any time a communications attachment is placed on the pole-even if it is merely a service wire. The NESC also requires a separation of one foot (1^{\prime}) between communications attachments. Thus, the presence of a single communications attachment results in the cooperative having to install a pole that is at least 52 inches (4.33') taller than it would otherwise need.

It is true that the NESC permits utilities to install streetlights or other security lights in the 40-inch space, but it also permits the installation of those lights in the electric supply space, below communications attachments, or anywhere else on the pole. In other words, even if there were no Communications Worker Safety Zone, an electric cooperative could still install a streetlight without having to install a taller pole. Put another way, a cooperative could install shorter poles if there were no communications attachers and still install streetlights. The only reason the cooperative has to install a pole that includes the 40 -inch Communications Worker Safety Zone, and is thus taller than it otherwise needs, is that a communications attacher, like Charter, has attached to its pole.

Perhaps more to the point, Blue Ridge does not have a practice of installing streetlights in the Communications Worker Safety Zone. I understand that

Greg Booth, who is also testifying in this matter, reviewed a substantial portion of the poles to which Charter has attached on Blue Ridge's system and found that almost all of the streetlights on Blue Ridge's system are installed in the electrical Supply Space. Thus, the mere fact that the NESC allows streetlights to be installed anywhere on the pole, even though Blue Ridge does not have a practice of installing lights in the Communications Worker Safety Zone, should not alter the conclusion that the costs of the Communications Worker Safety Zone should be allocated entirely to the communications attachers.

Q. HOW ARE COSTS ASSOCIATED WITH THE USABLE SPACE ON THE POLE ALLOCATED BY TVA?

A. Like the FCC, TVA presumes that the average pole height is 37.5 feet. Like the FCC, TVA presumes that 24 feet of that pole is Support Space. The FCC presumes that the remaining 13.5 feet, including the 40 -inch Communications Worker Safety Zone, is all "usable space" that should be apportioned equally among all attaching entities, including the electric utility. As explained above, TVA allocates costs associated with the 40 -inch Safety Space entirely to communications attachers, which leaves 10.17 feet of usable space. TVA and the FCC then allocate the costs associated with these usable space figures based on the amount of space each attacher is presumed to occupy. Both formulas presume that cable companies' attachments use one foot (1') of space. The TVA formula, however, treats this number as a rebuttable presumption. Thus, Charter's rebuttable share of usable space costs under the

TVA formula is $1 / 10.17$ (9.8%), and its share under both the FCC Cable formula and the FCC Telecom formulas is 1/13.5 (7.4\%).

Q. WHAT ARE THE SPACE FACTOR PERCENTAGES THAT THE TVA FORMULA GENERATES?

A. Under TVA's formula, the percentage of total annual distribution pole costs (for the entire pole) that a cable company attacher would pay on a pole with three attaching entities (including the electric cooperative pole owner) is 28.44%. TVA's calculation resulting in 28.44% appears at WA Exhibit No. 3, Attachment A, Appendix 2 (Pole Attachment Formula Example). This presumes that each pole has three attaching entities (the electric utility, a telephone company, and a cable company). It also uses a presumed pole height of 37.5 feet and that the Support Space is 24 feet. The percentage, however, can change, up or down, if the pole owner or attacher has data sufficient to rebut any of these presumptions.
Q. HOW DOES THE SPACE FACTOR PERCENTAGE THAT THE TVA FORMULA GENERATES CHANGE WHEN THE AVERAGE NUMBER OF ATTACHING ENTITIES IS PROVEN TO BE

GREATER OR LESS THAN THREE?

A. Under the TVA formula, the percentage increases if the average number of attaching entities is less than three, and it decreases if the average number of attaching entities is greater than three.
Q. IS THAT CONSISTENT WITH THE FCC CABLE FORMULA?
A. Yes it is.
IV. APPLICATION OF THE TVA FORMULA TO BLUE RIDGE
Q. YOU SAID THE TVA USES CERTAIN REBUTTABLE PRESUMPTIONS. WHAT ARE THOSE REBUTTABLE PRESUMPTIONS?
A. The TVA formula uses several rebuttable presumptions. First, it presumes there is an average of three attachers on the cooperative's poles (the cooperative, a telephone company, and a cable company). Second, the TVA formula assumes that the average height of a cooperative's distribution poles is 37.5 feet. Third, it presumes that the cooperatives poles are spaced in such a way that the first attacher will attach 18 feet off the ground, and that the inground depth of the pole is 6 feet. Fourth, it presumes a "non-pole" appurtenance factor of 15%. Finally, the TVA formula presumes that cable companies' attachments occupy exactly one foot of space.

Q. DOES BLUE RIDGE HAVE DATA SUFFICIENT TO REBUT THE

 PRESUMPTION THAT THERE ARE THREE ATTACHING ENTITIES ON ITS DISTRIBUTION POLES?A. Yes, it does. Blue Ridge completed an inventory of its entire system in 2016, and the data necessary to calculate the average number of attaching entities to its distribution poles is available from the inventory results. The average number of attaching entities on Blue Ridge's system is 2.35 . A spreadsheet showing the calculation of the number of attaching entities is provided in WA Exhibit No. 5.

Q. HOW DOES THAT CHANGE THE SPACE FACTOR PERCENTAGE USING THE TVA FORMULA?

A. The average number of attaching entities is less than TVA's presumption of 3. Therefore allocations of cost associated with the common (or "unusable") space, and the "Safety Space" are higher than under the presumption because there are fewer entities sharing those total costs. As stated above, as the average number of attaching entities decreases, the rental rate increases.

Q. HAVE YOU MADE ANY ADJUSTMENTS TO OTHER REBUTTABLE PRESUMPTIONS EMBODIED IN THE TVA FORMULA TO REFLECT ACTUAL DATA?

A. Yes, I have also used actual numbers for three other rebuttable presumptions utilized by the TVA method. Specifically, I have used (1) the actual average distribution pole height of $36.83^{\prime}, 36.85^{\prime}$ and 36.87^{\prime} for 2014, 2015 and 2016 respectively, (2) a "bare pole" or, appurtenance factor, of $87.0 \%, 87.29 \%$ and 87.41% for 2014,2015 , and 2016, respectively, and (3) an "occupied" space allocation of 1.11 ' for Charter in all 3 periods.

Q. PLEASE EXPLAIN HOW YOU ARRIVED AT THE AVERAGE DISTRIBUTION POLE HEIGHT?

A. Blue Ridge maintains, in its Continuing Property Records (CPRs), a running balance of unique pole sizes and types, as well as the cumulative expenditures for those surviving poles. By multiplying the number of poles at each unique height by the specified height, summing the resulting "feet of distribution poles", and finally dividing the total footage by the number of units, one
arrives at the average distribution pole height. See WA Exhibit No. 6 for the above calculation for yearend 2016.

Q. COULD YOU ALSO EXPLAIN HOW YOU DETERMINED THE APPURTENANCE FACTOR FOR BLUE RIDGE'S ACCOUNT $364 ?$

A. As stated above, Blue Ridge's CPRs maintain a running record of the number of units and the related dollars in Account 364, which is the asset account for "Poles, Towers and Fixtures." In addition to poles, Blue Ridge's CPRs track other items of plant that are appropriately capitalized to Account 364 (See WA Exhibit No. 7 - REA Uniform System of Accounts for Account 364). In the rental formulas, only items in Account 364 that are of benefit to both parties are included in the determination of "bare pole costs." The industry assumes that 85% of Account 364 represents the average "bare pole cost," or the appropriate pole costs exclusive of "appurtenances." FCC 87-209 explains that poles, anchors and guys are the appropriate items of plant to be included in "bare pole costs" (See WA Exhibit No. 8). After (1) totaling the dollar balances in the CPRs for "bare pole" items (poles, anchors and guys), and (2) dividing the resulting number by the total capital $\$$ in the account, the actual appurtenance factor is derived. See WA Exhibit No. 9 for the Blue Ridge 2016 calculations.

Q. AND PLEASE ALSO EXPLAIN YOUR CALCULATION OF

CHARTER'S "OCCUPIED" SPACE ALLOCATION OF 1.11 FEET INSTEAD OF THE PRESUMED 1 FOOT?
A. The system inventory completed in 2016 captured not only the Blue Ridge poles with Charter attachments, but also the number of Charter's attachments on each pole. Charter is attached to 24,888 Blue Ridge poles with 27,674 attachments (see WA Exhibit No. 10), indicating an average of 1.11 attachments per pole. Based on the assumption that each attachment occupies 1 foot of space, Charter's average occupied space allocation is 1.11 feet.

Q. ARE THERE ANY OTHER ADJUSTMENTS MADE TO THE ASSUMPTIONS USED IN THE TVA FORMULA?

A. Yes, because Blue Ridge's typical 257-foot span length-the system average distance between poles-is longer than those used in the assumptions (which is approximately 150 feet), attachers are required to attach higher on the pole to ensure ground clearance in the middle of the span which is presumed to be the point where maximum sag occurs. I have adjusted the Support Space to reflect this.

Q. PLEASE EXPLAIN HOW YOU ARRIVED AT THE ADJUSTMENTS TO BOTH THE COMMON SPACE AND ALLOCATED SPACE ON BLUE RIDGE'S POLES.

A. I calculated the maximum sag under two different industry-standard methods: (1) AT\&T's Outside Plant Engineering Handbook, (see WA Exhibit No. 11 AT\&T OSP Engineering Handbook - Section 10 - Aerial Plant), and (2) a CATV industry-standard program known as "Spanmaster" which is available online from CommScope, a manufacturer and suppliers of cable television coaxial and fiber optic cables. The Spanmaster program which can be
downloaded from CommScope's website at the following web address: http://www.commscope.com/resources/calculators.

Q. WHICH METHOD DID YOU DETERMINE TO BE MOST APPROPRIATE?

A. Although the results under both methods were very similar, we selected the CommScope Spanmaster program because necessary information was readily available with respect to cable sizes and weights on the CommScope site. Using the AT\&T method required calculations of the average cable sizes and weights using ARMIS data, which had not been updated since 2008. While we were confident in our results using the AT\&T method, the Spanmaster results were based on the most current information.

Q. PLEASE DESCRIBE THE COMMSCOPE PROGRAM AND YOUR INPUTS USED TO THE DETERMINE THE MAXIMUM SAG.

A. A general overview of the program was downloaded from the CommScope site and is provided as WA Exhibit No. 12. We calculated the average span lengths of Blue Ridge's distribution system for years 2014, 2015 and 2016 (using CPRs and Form 7 data for each year), and determined that the resulting spans were $258.51^{\prime}, 257.53^{\prime}$ and 257.01^{\prime} respectively. We also selected a $1 / 4^{\prime \prime}$, 6.6M EHS (Extra High Strength) strand (a standard choice for catv systems), one standard coaxial cable (.565" jacketed), and one typical fiber optic cable (96 fibers), from CommScope's tables as the typical "bundle" for sag/design considerations. Our other inputs to the program were the NESC Storm Loading (Rule 251) for Medium ice loading (.25 " radial ice on conductors),
and an initial installation sag of 1.5% ($1 \%-2 \%$ is typical). Spanmaster calculated the "worst-case" or design "sag" for the respective years to be $5.80^{\prime}, 5.78^{\prime}$ and 5.76^{\prime}. A summary of the Spanmaster calculations are provided as WA Exhibits No. 13.1, 13.2 and 13.3.

The required point of attachment ("POA") on Blue Ridge's poles is determined by adding the calculated "sag" to the NESC minimum ground clearance of 15.5^{\prime}, resulting in NESC minimum POAs of 21.3', 21.28' and 21.26^{\prime} in each respective year. RUS requires a minimum depth of installation of 6^{\prime} for 35^{\prime} and 40' poles. (See WA Exhibit No. 13.4 for RUS Standards). By adding the above POAs to the minimum depth of installation, we determined that the "common" space on a typical Blue Ridge pole was 27.3', 27.28^{\prime} and 27.26^{\prime} for the subject years. By subtracting the above "common space" utilization from the average pole height, one can determine the remaining average usable space.

Q. THE TVA RATE USES AN 8.5% RATE OF RETURN. WHY IS AN 8.5\% RATE OF RETURN APPROPRIATE?

A. The 8.5% rate or return is the rate required by the TVA formula. This return is appropriate because of how electric cooperatives finance their businesses. The rate at which electric cooperatives borrow money (i.e., its "cost of debt") does not fully account for co-op financing, since co-op members also finance the business of the co-op. Each co-op member finances the business of the cooperative by contributing capital, which they do by using cooperative services and by allowing the cooperative to retain for future growth of the
core business any money collected in excess of actual operating costs. This money, identified in the cooperative's financial reports as "patronage capital," is used to build and maintain the facilities needed to serve the cooperative's members and to service the cooperative's long-term debt. Patronage capital is appropriately considered equity capital furnished by the members, a portion of which will be returned to the members at a later date in the form of capital credits. To account for this unique financing of electric cooperatives, TVA prescribed a non-rebuttable presumptive rate of return of 8.5%. That 8.5% rate of return, it should be noted, is considerably less than the FCC's current 10.75% presumptive rate of return.

Q. HAVE YOU PERFORMED THE TVA FORMULA RATE CALCULATION USING THE COOPERATIVES' COSTS UNDER THE ABOVE DESIGN CONSIDERATIONS?

A. Yes, I have. Those calculations are attached hereto as WA Exhibit Nos. 2.1, $\underline{2.2}$ and 2.3 for years 2014, 2015 and 2016, respectively, which also includes all the cost data used to support those calculations.
Q. WHAT RATES ARE GENERATED USING THE TVA FORMULA?
A. Under the TVA Formula, the annual attachment rates are $\$ 27.08, \$ 26.75$ and $\$ 26.56 /$ pole for years 2014, 2015, and 2016 respectively.
Q. DO THE ABOVE RATES ADDRESS ALL THE POLE COSTS INCURRED BY BLUE RIDGE IN PROVIDING ATTACHMENT SPACE FOR CHARTER?
A. As to distribution poles, yes. However, the 2016-2016 inventory revealed that Charter is attached to a significant number (442) of Blue Ridge's transmission poles.

Q. IS THERE A SIGNIFICANT DIFFERENCE IN THE COSTS OF

 TRANSMISSION AND DISTRIBUTION POLES?A. Absolutely. In 2016, the average installed cost of a transmission pole was $\$ 3,633.24$ (see WA Exhibit No. 2.4), compared to the net bare distribution pole cost of $\$ 258.30$ (see WA Exhibit No. 2.3).

Q. DOES THE RATE YOU HAVE PROPOSED INCLUDE THE COSTS OF TRANSMISSION POLES TO WHICH CHARTER HAS ATTACHED?

A. No. The TVA rate formula, and the rate that I have proposed, does not include the costs of the transmission poles to which Charter is attached, which, as stated above, are substantially more than distribution poles. Accordingly, the requested TVA rate for attachments to distribution poles is not appropriate or fair for attachments to transmission poles. The FCC rate proposed by Charter is likewise inapplicable to attachments to transmission poles. It therefore would be appropriate for Blue Ridge to charge a rate that reflects the actual cost of transmission poles for such attachments.

V. CONSIDERATION OF OTHER RATE FORMULAS

Q. HAVE YOU CONSIDERED THE TVA FORMULA IN LIGHT OF

 OTHER RATE FORMULAS?A. Yes. I have compared the TVA formula to a number of other potential rate formulas, including the formula adopted by the American Public Power Association ("APPA"), the "Telecom Plus" formula considered by the United States House of Representatives, and the formula adopted by the Arkansas Public Service Commission, and the FCC Cable rate.

A. APPA RATE FORMULA

Q. IS THE TVA FORMULA CONSISTENT WITH THE APPA RATE

 FORMULA?A. Yes it is. It is similar to the method adopted by the APPA for municipal power systems in its 2002 Pole Attachment Workbook. The APPA formula recognizes the inherent value of the pole distribution system to the attachers, as well as the costs that the attachers avoided by not being required to engineer and construct pole distribution systems of their own. A comparison of the various rate methods that I discuss in the testimony is provided as WA Exhibit No. 14.

Q. WHAT FACTORS DOES THE APPA FORMULA USE IN DETERMINING ATTACHMENT RENTALS.

A. The APPA developed a rental rate method for use by its municipal utility members that follows the rationale of a decision made in 1998 in a Washington State Court (97-2-02395-5SEA, TCI Cablevision vs. City of Seattle). Published in the October 2002 "APPA Pole Attachment Work Book", that rate methodology is known as the "APPA Rate." (See WA Exhibit No. 15, APPA Pole Attachment Workbook). An extract of the annual
attachment rates section of the APPA Pole Attachment Work Book is the subject of WA Exhibit No. 15. Like TVA, the APPA Rate allocates costs associated with "assigned space" (a/k/a "usable space") and the Support Space separately. Like the TVA formula, the APPA rate is based on the recognition that the 40 -inch Communication Worker Safety Zone is required by the NESC to separate communications attachments from electric attachments. Under the APPA formula, the Communications Worker Safety Zone is considered part of the "common space" on poles, and therefore shared equally by all attaching parties, including the electric utility.

On a presumptive 37.5 -foot pole, therefore, the APPA Rate presumes the common space to be 27.33 feet (6 feet underground plus 18 feet minimum height above ground for the first attachment, plus 3.33 feet for communications worker safety zone), and the assigned space to be 10.17 feet. Like the TVA formula, the costs associated with the common space $(\mathrm{a} / \mathrm{k} / \mathrm{a}$ "support space" and "unusable space") on the poles are shared equally among all attachers. The costs associated with the assigned space ($\mathrm{a} / \mathrm{k} / \mathrm{a}$ "usable space") are allocated based on the percentage of that space that is used by the attacher. Thus, on a pole with a presumed height of 37.5 feet and three attachers, each attacher would be required to contribute 27.0% to the annual costs of owning and operating the poles.

This 27.0% figure is derived as follows. The APPA Rate presumes an average pole height of 37.5 feet, with 10.17 feet of assigned space $(\mathrm{a} / \mathrm{k} / \mathrm{a}$ "usable space"), 27.33 feet of common space ($\mathrm{a} / \mathrm{k} / \mathrm{a}$ 'support space" and
"unusable space") and "communications worker's safety space, one foot occupied by the cable company, and three attaching entities. Accordingly, the assigned space component is calculated as $(1.0 \div 10.17) \mathrm{X}(10.17 \div 37.5)=$ 2.71%. The common space component is calculated as $27.33 \div 37.5 \div 3=$ 24.29%. Adding the assigned space and common space components together equals $27.0 \%(2.71 \%+24.29 \%=27.0 \%)$, which is comparable to the 28.44% generated by the TVA formula.

Q. DID APPA ACKNOWLEDGE IN THE WORKBOOK THAT THE RATE METHODOLOGY EXCEEDS THE FCC CABLE RATE?

A. Yes. Section IV of the Work Book, titled "Pole Attachment Fees and Rate Methodology", explains in paragraph B.1.(d) that "
....The cable television rate is a holdover from a desire in the late 1970s to assist the (then) nascent cable television industry by establishing a low rate for cable attachments. The cable formula does not reflect the actual cost to utilities of providing pole space, nor does it compensate utilities fairly for the value of their assets. Instead, the cable formula only recognizes the incremental cost of providing pole attachment space. As a result, under federal rules, cable pole attachment rates are, in effect, subsidized by utility customers. Conditions have changed dramatically since the enactment of the cable attachment formula in 1978. Cable operators no longer need financial incentives and protection, and in the increasingly competitive utility environment, it is even more difficult to justify the additional costs absorbed by utilities and their customers for services that are unrelated to their core electric service.
(See WA Exhibit No. 15 (emphasis added)).

B. TELECOM PLUS FORMULA

Q. WHAT IS THE TELECOM PLUS FORMULA?

A. The so-called "Telecom Plus" formula is a formula considered by the United States House of Representatives prior to passage of the Telecommunications Act of 1996, 47 U.S.C. § 151, et seq.

Q. HOW IS THE TVA FORMULA CONSISTENT WITH THE TELECOM PLUS RATE FORMULA?

A. Like the TVA (and FCC) formula, the Telecom Plus Rate Formula calculates the annual costs of owning and operating the poles by multiplying the "Net Cost of a Bare Pole" times the annual "Carrying Charges." The primary difference from the other formulas lies in the allocation of those annual pole costs to the attachers (i.e., the Space Factor Percentage).

Contrary to the FCC formulas but consistent with the TVA formula and the APPA formula, the Telecom Plus Formula allocates 100% of the "support component" costs (called "common space" by TVA and "unusable space" by the FCC) equally among all attachers, including the pole owner. The Telecom Plus Formula assumes that the clearance component is 18^{\prime} and 6^{\prime} buried in the ground, on a 37.5 foot pole, consistent with both the TVA and FCC formulas. The remaining 13.5 feet is considered "usable space." The Telecom Plus Formula recognizes that the support component on the pole is of equal value to all attachers, and that attachers would incur significant pole costs -- far beyond the costs of simply attaching to the utility's poles -- if they were required to build their own pole distribution system. As a result, the Telecom Plus method equitably requires all attachers to share those avoided costs
equally. (A copy of NRECA'S Joint Use Toolkit explaining the formula is provided as WA Exhibit No. 16).

The Telecom Plus methodology divides the 13.5 ' of usable space to attachers based on the amount "allocated to (an) attaching entity." Under this methodology, each communications attacher is presumed to occupy one foot of space on the pole. On a power pole with two communications attachers, the pole owner is therefore charged with the costs associated with the remaining 11.5 feet of the "usable space", including the 40 " Communications Worker Safety Space.

Under this formula, assuming there are three attachers on the pole, (one power utility, aka Owner, and two communications attachers), the Telecom Plus/USHR pole attachment rate would allocate 24.00% of the pole costs to the communications attacher. This 24.00% figure is derived as follows. Using a presumptive average pole height of 37.5 feet, with 18 feet of clearance and 6 feet of pole underground adds up to 24 feet for the support component. That leaves 13.5 feet of usable space. The total space occupied by the attacher is calculated as one foot. Accordingly, the usable space component is calculated as $(1.0 \div 13.5) \mathrm{X}(13.5 \div 37.5)=2.7 \%$. The support space component is calculated as $24 \div 37.5 \div 3=21.3 \%$ Adding the usable space and support space components together equals $24.0 \%(2.7 \%+21.3 \%)$, which is comparable to the 28.44% that the TVA formula generates. The difference between USHR and the APPA method is the way the Communications Worker Safety Space is allocated. Under the APPA method,
the safety space is added to the Unusable, or common space. In the USHR formula, it is treated as a part of the usable space.

Q. HAS THERE BEEN ANY OTHER INDUSTRY SUPPORT FOR THE TELECOM PLUS FORMULA.

A. Yes, both AT\&T and Verizon recommended this formula to the FCC in their joint 2008 ex parte comments. Although their comments do not refer to the method as the "FCC Telecom Plus Formula," their recommended revision to the FCC Telecom Formula provided for an equal allocation among all attachers of the costs related to the "unusable space." (See WA Exhibit No. 17).

Q. DID AT\&T AND VERIZON PROPOSE ANY OTHER CHANGES TO THE ORIGINAL FCC TELECOM FORMULA.

A. Yes, they also recommended that the "rebuttable presumption" of attaching entities be changed to "presume" 4 attachers in both urban and rural locations, instead of the FCC's "presumption" of 5 and 3, respectively.

Q. IS THE ONLY DIFFERENCE IN THE ABOVE 3 FORMULAS THE TREATMENT OF THE COMMUNICATIONS WORKER'S SAFETY

 ZONE?A. Yes. The TVA Method allocates the Communications Worker Safety Zone solely to the communications attachers; the APPA Method includes the Communications Worker Safety Zone in the "common space", and therefore allocates that cost equally to all attachers, including the power company pole
owner; and the Telecom Plus Method includes the Communications Worker Safety Zone in the "usable", or "allocated" space on the pole.

Q. IS THE TELECOM PLUS ALLOCATION OF COSTS ASSOCIATED WITH THE COMMUNICATIONS WORKER SAFETY ZONE FAIR AND REASONABLE?
 A. No. The proportional costs associated with the 40 -inch Communications Worker's Safety Space should be allocated to the benefiting parties, i.e. the communications attachers. When the Communications Worker Safety Zone is included in the "usable space," and the cable attacher is assumed to use only one foot of space, the costs associated with the safety" space default to the power company pole owner, not to the beneficiaries-the communications attachers.
 Q. IS THE TELECOM PLUS ALLOCATION OF COSTS ASSOCIATED WITH THE COMMON SPACE FAIR AND REASONABLE?

A. Yes. By allocating the costs associated with the other support components (a/k/a common space or unusable space) equally to all attachers, including the pole owner, the USHR formula appropriately allocates those costs among the benefitting parties and takes into consideration the value of the distribution system to the attachers
C. ARKANSAS PUBLIC SERVICE COMMISSION FORMULA

Q. THE ARKANSAS PUBLIC SERVICE COMMISSION RECENTLY

 ADOPTED A POLE ATTACHMENT RATE METHODOLOGY.
WOULD YOU PLEASE EXPLAIN THE ARKANSAS

METHODOLOGY?

A. On June 24, 2016, the Arkansas Public Service Commission adopted a rate calculation that uses the same three factors (Net Cost of a Bare Pole X Carrying Charges X Space Allocation Percentage) that the TVA, APPA and FCC rate calculations use. A copy of the Arkansas PSC decision is attached hereto at WA Exhibit Nos. 18.1 and 18.2. The Arkansas formula calculates the Net Cost of a Bare Pole and Carrying Charges factors just as the TVA, APPA and FCC formulas do, except that Arkansas specifies that the return element is 8.0% for purposes of the carrying charge calculation. As with the other formulas, the significant difference between the rate calculations is how the Space Allocation Percentage is calculated.

For purposes of calculating the Space Allocation Percentage, Arkansas assumes an average pole height of 37.5 feet, one foot of space occupied by the cable company attacher, and three attaching entities. Like the APPA formula, Arkansas counts the 40 -inch communications worker safety zone ($\mathrm{a} / \mathrm{k} / \mathrm{a}$ safety space) as "unusable space" (a/k/a "common space" or "support space"). As with the APPA Formula, this results in 27.33 feet of "unusable space" (6 feet underground +18 feet ground clearance +3.33 feet safety space $=27.33$ feet $)$. Like APPA, the remaining 10.17 feet $(37.5-27.33=10.17)$ is counted as "usable space." Like APPA, the costs associated with the "usable space" (a/k/a "common space" or "support space") are allocated based on the
percentage of that space that is used by the attacher. Arkansas then allocates those usable and unusable space costs the way the FCC Telecom formula does, by allocating costs associated with one-third of the unusable ("common") space entirely to the pole owner, and then allocating the costs associated with the remaining two-thirds of unusable ("common") space among all attaching entities, including the pole owner.

Q. WHAT ARE THE SPACE FACTOR PERCENTAGES THAT THE ARKANSAS FORMULA GENERATES?

A. Under the Arkansas formula, the percentage of total annual pole costs that a cable company attacher must pay on a pole with three attaching entities (including the electric cooperative pole owner) is 18.9%.

This 18.9% figure is derived as follows. The Arkansas Rate presumes an average pole height of 37.5 feet, with 10.17 feet of "usable space," 27.33 feet of "unusable space" ($\mathrm{a} / \mathrm{k} / \mathrm{a}$ "common space" and "support space"), one foot occupied by the cable company, and three attaching entities. Accordingly, the usable space component is calculated as $(1.0 \div 10.17) \mathrm{X}$ $(10.17 \div 37.5)=2.7 \%$. The unusable space component is calculated as (27.33 $X 2 / 3) \div 37.5 \div 3=16.2 \%$. Adding the usable space and unusable space components together equals $18.9 \%(2.7 \%+16.2 \%=18.9 \%)$.

Q. DO YOU BELIEVE THE ARKANSAS FORMULA ALLOCATES

 ANNUAL POLE COSTS IN A FAIR AND REASONABLE WAY?A. No I do not. Like the FCC Telecom rate, the Arkansas formula allocates onethird of the costs associated with the unusable (a/k/a "common space" or
"support space") automatically to the pole owner, and then allocates the costs associated with the remaining two-thirds to all attaching entities including the pole owner. There is no justification for this automatic allocation of one-third to the pole owner. Instead, since all attaching entities need the base of the pole six feet underground for structural stability and all attaching entities need their attachments to have a minimum of 18 feet of clearance above ground, the costs associated with these 24 feet should be allocated evenly among all attaching entities. In order to avoid subsidizing the attachers at the expense of the pole owner, I advocate the "per capita" approach which divides the common space equitably to all parties. In addition, I disagree with the Arkansas PSC's allocation of costs associated with the 40-inch communications worker safety zone (a/k/a "safety space"). Since this space is required by the NESC to protect communications workers, the communications companies should bear the costs associated with that space, not the electric utility pole owner.

In contrast, the TVA formula more appropriately allocates 100% of the costs associated with unusable ("common") space on the pole equally among all attaching entities, including the pole owner, and more appropriately allocates costs associated with the 40 -inch communications worker safety zone ($\mathrm{a} / \mathrm{k} / \mathrm{a}$ "safety space") to the communications attachers.

D. FCC CABLE RATE

Q. WHY DOES THE FCC NOT REGULATE ATTACHMENTS TO ELECTRIC COOPERATIVE POLES?

A. When Congress passed the federal Pole Attachment Act, 47 U.S.C. § 224(a), it specifically excluded "any person who is cooperatively organized" from FCC pole attachment jurisdiction. Thus, the FCC's rate formulas do not apply to electric cooperatives like Blue Ridge.

Q. DID CONGRESS EXPLAIN WHY ELECTRIC COOPERATIVES

 WERE EXCLUDED?A. Yes. The legislative history of the 1978 Pole Attachment Act sets out several reasons why the U.S. Congress excluded electric cooperatives from federal pole attachment regulation. Congress recognized that the unique business models of electric cooperatives, combined with the fact that many of their member/owners also receive cable services, mean that cooperatives themselves are in the best position to set rates, terms and conditions for attachments to their pole. As explained in the Senate Commerce Committee report, Congress found: "[T]he pole rates charged by municipally owned and cooperative utilities are already subject to a decision making process based upon constituent needs and interests. ${ }^{11}$ Congress also noted that because many electric cooperative members also subscribed to cable television service, they already had an incentive to foster the development of cable service: "Cooperatively owned utilities, by and large, are located in rural areas where often over-the-air television service is poor. Thus, the customers of these utilities have an added incentive to foster the growth of cable television in

[^0]their areas. ${ }^{" 2}$ The same, of course, is true today for broadband and other advanced telecommunications services in rural America and in rural North Carolina. For these reasons, Congress left it to electric cooperatives to determine, among other things, the "equitable distribution of pole costs between utilities and cable television systems."3

Q. WHAT ABOUT THE COOPERATIVE BUSINESS MODEL MAKES THEM DIFFERENT FROM OTHER ELECTRIC UTILITIES?

A. Electric cooperatives were formed as a result of the Rural Electrification Act, which provided government funds for individuals and groups to form their own electric utilities to extend electric services in rural portions of the country where investor-owned utilities found it unprofitable to serve. Since the 1930s, cooperatives have been member-owned, democratically-governed utilities owned by and operated solely for the benefit of the people they serve. Most electric cooperatives nationwide, including Blue Ridge, are governed and guided by a set of internationally recognized cooperative principles that foster inclusiveness, community development and collective success, including the provision of affordable electric service in a responsible manner.

Electric cooperatives have no stockholders or unaffiliated or corporate investors. Blue Ridge is a non-profit corporation, owned and governed by its members. Corporate investors may be acquainted with investor-owned utilities only through a broker's recommendation or an annual earnings statement. That is not the case with electric cooperatives. Seats on

[^1]cooperative boards of directors are occupied by members of the cooperative who are elected within their local community by their fellow members. Because cooperatives were created and are sustained by the very people they were formed to help, they have a keen interest in consumer protection. In fact, the cooperative business model and its consumer protection benefits are so well-recognized that most states, including North Carolina, exempt electric co-ops from public service commission rate regulation.

Q. PLEASE EXPLAIN WHY YOU BELIEVE THE FCC CABLE RATE IS INAPPROPRIATE?

A. The FCC Cable rate allows the pole owner, through the rental rate, to recover only a small fraction of the annual costs to own and maintain the poles. Using the FCC's assumptions, cable company attachers pay only 7.4% of the annual costs of owning and operating the poles. As I explain below, this does not make any sense from cost recovery or benefits-received principles. The FCC presumes that the average pole height is 37.5 feet, there are 24 feet of "unusable space" (a/k/a "support space" or "common space") on the pole, and the remaining 13.5 feet of space on the pole is "usable space." The FCC Cable rate apportions the costs associated with the entire pole based on the percentage of usable space occupied by the cable company, which is presumed to be one foot. One foot divided by 13.5 feet is 7.4%. Having cable companies pay 7.4% of the annual costs associated with the "usable space" portion of the pole, although not truly fair, as I will explain elsewhere, bears at least a slight resemblance to being equitable. But
requiring cable companies to pay for only 7.4% of the annual costs associated with the common space ($\mathrm{a} / \mathrm{k} / \mathrm{a}$ "support space" or "unusable space") makes no sense at all. Cable companies have the same need, as does every other attacher, to have the pole buried six feet in the ground. Cable companies have the same need as every other attacher on the pole to have the pole extend 18 feet, or higher, above ground to achieve necessary ground clearances. Cable companies should therefore pay an equal share of the costs associated with the in-ground and ground-clearance portion of the pole. If there are three attaching entities on the pole, they should pay one-third (33.3\%) of the costs associated with this common space, not 7.4%. Said another way, the annual carrying charge factors apply to the entire pole - not just 1 foot out of 13.5 feet. The costs of maintenance, taxes, depreciation, administrative fees (such as insurance and record keeping), and the costs of capital apply to every foot of Blue Ridge's poles-not just 7.4% of the pole. In 2016, Blue Ridge's average annual cost for the 5 factors listed above was $\$ 1.75 /$ foot. The "per foot" cost should be allocated fully to a party using 100% of a specific area, and equally among all parties benefiting from the shared use of a specific area. The TVA Formula most appropriately accomplishes this goal. Any other method of allocating costs creates a subsidy for the party benefiting its free use of that foot of space.

The North Carolina Utilities Commission's Mission Statement (see WA Exhibit No. 19) requires that the NCUC "must regulate in a manner designed to implement the policy of the State of North Carolina to: provide fair
regulation of public utilities in the interest of the public; promote the inherent advantage of regulated utilities; promote adequate, reliable and economical utility service; ...provide just and reasonable rates and charges for public utility services and promote conservation of energy" ... among other things. Allowing or encouraging the installation of cable television facilities at a subsidized rate of 7.4% of the annual cost of ownership, instead of allowing a rate representative of a fair share of those annual costs, is counter to the NCUC's Mission Statement. Charter is not a regulated public utility under North Carolina Statutes, and it does not need subsidized attachment rates. Further, the 1935 North Carolina statute that enabled creation of the State's electric coops (see WA Exhibit No. 20, G.S. 117-10), provides that the State's coops are formed "...for the purpose of promoting and encouraging the fullest possible use of electric energy in the rural section of the State by making electric energy available to inhabitants of the State at the lowest cost consistent with sound economy and prudent management of the business of such corporations." A subsidized rental rate for pole attachments that fails to reflect the benefits derived, and the fully allocated costs of providing those benefits, would be counter to the legislation.

Q. GETTING BACK TO COSTS ASSOCIATED WITH THE SO-CALLED "USABLE SPACE" ON THE POLE, WHY DO YOU SAY THAT A 7.4\% ALLOCATION IS NOT FAIR FOR THAT SPACE?

A. Because the FCC includes the 40-inch "Communications Worker Safety Zone" (a/k/a "safety space") in its conclusion that there is 13.5 feet of "usable
space." As explained above, since this space exists on the pole solely to accommodate communications attachments, the communications attachers should share responsibility for the entire costs associated with that 40 inches of pole space. When there are three attaching entities on the pole (including the electric utility pole owner), the two communications attachers should pay 50% each for the costs associated with this 40 inches. That is what the TVA formula requires. The FCC Cable rate has the cable company paying for only 7.4% of the cost of the safety space, which from cost-causation and benefitsreceived standpoints is nonsensical.

Once that 40 inches of space is removed, what remains is 10.17 feet of "usable space" $(13.50-3.33=10.17)$. For the costs associated with this remaining 10.17 feet of space, the cable company attacher should pay $1 / 10.17$, which is 9.8%, not the 7.4% specified in the FCC Cable formula.

Q. HAVE YOU CALCULATED BLUE RIDGE'S 2017 ATTACHMENT RENTAL RATE USING THE FCC FORMULA?
 A. Yes, I have. Using the FCC formula, and the default presumptions, the FCC Cable rate would be $\$ 5.33 /$ attachment annually. (See WA Exhibit No. 2.5).
 Q. AND WHAT IS THE ANNUAL COST OF OWNERSHIP PER POLE FOR BLUE RIDGE?

A. Using TVA's prescribed ROI of 8.5%, and a 3-year average maintenance factor of 6.91%, Blue Ridge's 2016 annual costs of ownership were $\$ 64.52$ ($\$ 258.30$ net cost of a bare distribution pole multiplied by an annual charge
factor of 24.98%). The 2016 annual costs of ownership are reflected on the calculations of attachment rental at WA Exhibit No. 2.3.
Q. WHEN YOU COMPARE THE FCC CABLE METHOD RENTAL RATE PER POLE TO THE AVOIDED COSTS OF OWNERSHIP IDENTIFIED ABOVE, DOES THIS SEEM LIKE A FAIR SHARING OF COSTS OR DOES IT SOUND LIKE A SUBSIDY TO YOU?
A. The FCC Cable rate for Charter results in a subsidy instead of an equitable sharing of costs.
Q. ON AVERAGE, WHAT IS THE TYPICAL NUMBER OF DISTRIBUTION POLES PER MILE FOR Blue Ridge?
A. I divided the year end 2016 number of distribution poles $(108,330)$ by the miles of overhead distribution (5273.18) shown on Blue Ridge's latest Form 7, and the result is 20.54 pole/mile.
Q. USING THE FCC CABLE RATE AND REBUTTABLE DEFAULTS AS THE COST PER ATTACHMENT, WHAT ANNUAL COST WOULD CHARTER INCUR PER MILE FOR AN ATTACHMENT TO THE BLUE RIDGE'S POLES?
A. An annual rental rate of $\$ 5.33$ per attachment multiplied by 20.54 poles $/$ mile yields a "per mile" annual rental rate of $\$ 109.48$ for a single attachment.
Q. WHAT IS CHARTER'S AVOIDED COST BY INSTALLING ITS FACILITIES ON COOP POLES VERSUS INSTALLING EQUIVALENT FACILITIES UNDERGROUND?
A. Charter has confirmed that it budgets, for new underground construction (exclusive of wreck-outs, and regulatory approvals, easements, etc.), $\$ 45,109.40$ per mile, at current costs. Charter budgets, for new overhead construction, $\$ 26,432.37$ per mile. That's a savings of $\$ 18,677.03$ per mile, for which Charter would pay $\$ 109.48$ per year in rents. At the rental rates under the FCC Formula, it would take 170.6 years (\$18,677.03 savings divided by $\$ 109.48 / \mathrm{mile}$) of pole rental (without considering the time value of money) to equal the savings to Charter of just one mile of new aerial cable (instead of underground) on the electric coops' poles.

Q. WHY DID CONGRESS ADOPT THE FCC CABLE RATE?

A. The Federal Pole Attachment Act was enacted in 1978. At that time, cable television service was just beginning. At the time, it was known as "community antenna television" or "CATV" service. In order to promote a favorable legislative and regulatory environment to expand, CATV companies reported that telephone company pole owners and investor-owned electric utility ("IOU") pole owners had bargaining leverage over them and alleged that some were abusing that position to the detriment of the CATV industry. ${ }^{4}$ The 1978 Pole Attachment Act was Congress's response to those concerns. ${ }^{5}$ In the Pole Attachment Act, Congress established the FCC's Cable rate, and set it at an artificially low level for investor-owned utility poles and telephone company poles because, as Congress stated, a low pole attachment rate in

[^2]1978 was needed in order "to spur the growth of the cable industry, which in 1978 was in its infancy." ${ }^{\text {. }}$

Q. DO YOU BELIEVE THAT THE CABLE INDUSTRY IS STILL IN ITS INFANCY AND CONTINUES TO NEED ARTIFICIALLY LOW CABLE RATES TO GROW?

A. Certainly not. Charter, currently headquartered in Connecticut, had $16,205,000$ customer relationships at the end of 2016^{7}. It had $\$ 75,845,000,000$ of "Member's Equity", assets of $\$ 148,319,000,000$, reported revenue of $\$ 29,003,000,000$ for 2016 and its net income (a/k/a profits) in 2016 was reported as $\$ 1,457,000,000$.

Not only has Charter grown tremendously from its infancy in 1978, the rates that Charter charges subscribers for its services are higher now than ever. While the national average monthly bill for cable's expanded basic programming package in 1995 was only $\$ 22.35$ (See WA Exhibit No. 21, FCC 06-179 Report on Cable Industry Prices), Charter's average revenue per customer at the end of 2016 was $\$ 92.23$ per month (Charter's annual revenue/Charter's customer relationships).

The yearly rates that Blue Ridge is proposing are only a fraction of Charter's monthly revenue per customer. Charter reports that its average density in areas it serves that include Blue Ridge's territory is 53 homes per mile, with an average penetration of 45%, or 23.85 subscribers per mile ($23.85 \times 12 \times$

[^3]$\$ 92.23=\$ 26,396.23 /$ year $)$, the Blue Ridge proposed 2016 annual pole rental (under the TVA Formula) per mile represents only 2.07% (\$26.56 x $20.54=$ $\$ 545.54 / \$ 26,396.23$) of Charter's average subscriber revenue per mile on Blue Ridge's system.

These very small payments allow Charter, a company with $\$ 1.844$ billion in annual profits, to gain access to assembled corridors and fully-constructed and constantly maintained pole distribution systems.

It is inappropriate to allow huge communications companies like Charter to "piggy back" on electric utility poles, particularly electric cooperative poles, without paying a fair attachment rate that reflects the benefits they receive and the costs they save from being able to use someone else's distribution poles.

Q. DOES CHARTER HAVE ANY ALTERNATIVES OTHER THAN TO ATTACH TO BLUE RIDGE'S POLES?

A. Yes it does. Charter is considered a utility by the NCDOT and as such has all the options for providing service over the public rights of way to its subscribers as any other utility (NCDOT Utilities Accommodation Manual, Section I, (E)). There is no NCDOT prohibition to Charter owning jointly used poles, or in placing its facilities either buried or in underground conduit. Therefore, Charter can, as an alternative to attaching to coop poles, either install its own poles and share space with another utility or place its facilities below ground.

Telephone companies such as AT\&T-NC have realized the long term savings from underground plant and have designated buried facilities as first choice.
(See WA Exhibit No. 22, AT\&T Outside Plant Engineering Handbook Buried Plant). Although their installed first cost of buried facilities exceeds that of overhead facilities, AT\&T engineers recognize the avoided cost of either their own pole line construction or in the alternative, attachment rental payments to a joint use pole owner.

VI. POLE ATTACHMENT RATES DO NOT INCLUDE RECOVERY OF "BUT FOR" COSTS

Q. DO YOU BELIEVE THE ANNUAL POLE ATTACHMENT RENTAL RATE RECOVERS COSTS INCURRED BY THE COOPERATIVES TO ACCOMMODATE CHARTER'S REQUESTS TO ADD NEW FACILITIES?

A. No I don't. The annual pole attachment rental rate is the charge Charter pays to compensate the Cooperative for its portion of the annual pole ownership and maintenance costs that the Cooperative incurs to own and maintain its poles throughout the year. The annual rental rate should be set at a level that does not exceed the attachment rate generated by the pole attachment rental rate formula approved in 2016 by the TVA. The annual rental rate does not compensate the Cooperative for the costs the Cooperative incurs to evaluate Charter's attachment requests, perform any necessary make-ready rearrangement or transfer work to "make" the poles "ready" for Charter's attachments, to audit and inspect Charter's attachments to ensure Charter is complying with the permitting process and applicable safety rules, and to perform other activities that the Cooperative would not
have to do but for the presence of Charter's attachments. In addition to the annual rental rate, the Cooperative should be allowed to charge Charter separately for all of the additional costs the Cooperative incurs that it would not incur but for the presence of Charter's attachments, including the hiring of administrative personnel to oversee and manage Charter's requests and subsequent attachments.

Q. DOES THIS CONCLUDE YOUR TESTIMONY?

[^0]: ${ }^{1}$ S. Rep. No. 95-580, at 18 (1977), reprinted in 1978 U.S.C.C.A.N. 109, 126. (See WA Exhibit No. 23).

[^1]: ${ }^{2} I d$.
 ${ }^{3} I d$.

[^2]: ${ }_{5}^{4}$ S. Rep. No. 95-580, at 13 (1977), reprinted in 1978 U.S.C.C.A.N. 109, 121.
 ${ }^{5}$ The Pole Attachment Act was included as part of the Communications Act Amendments of 1978, P.L. No. 95-234, and was codified at 47 U.S.C. § 224.

[^3]: ${ }^{6}$ H.R. Rep. No. 104-204, at 91 (1995).
 ${ }^{7}$ Charter's year end 2016 Form 10-K

