1

1	PLACE: Dobbs	Building, Raleigh, North Carolina
2	DATE: Monda	y, January 28, 2019
3	TIME: 2:00	p.m 5:30 p.m.
4	DOCKET NO:	E-100, Sub 101
5		E-2, Sub 1159
6		E-7, Sub 1156
7	BEFORE: Chairm	an Edward S. Finley, Jr., Presiding
8	Commis	sioner ToNola D. Brown-Bland
9	Commis	sioner Jerry C. Dockham
10	Commis	sioner James G. Patterson
11	Commis	sioner Lyons Gray
12	Commis	sioner Daniel G. Clodfelter
13	Commis	sioner Charlotte A. Mitchell
14		
15		IN THE MATTER OF:
16	Petiti	on for Approval of Generator
17		Interconnection Standard
18		and
19	Joint Petit	tion of Duke Energy Carolinas, LLC,
20	and Di	ake Energy Progress, LLC, for
21	Approva	l of Competitive Procurement of
22		Renewable Energy Program
23		Volume 2
24		

Г

1 A P P E A R A N C E S: 2 FOR DUKE ENERGY CAROLINAS, LLC, AND 3 DUKE ENERGY PROGRESS, LLC: 4 Jack E. Jirak, Esq. 5 Associate General Counsel 6 Duke Energy Corporation 7 Post Office Box 1551/NCRH 20 8 Raleigh, North Carolina 27602 9 10 E. Brett Breitschwerdt, Esq. 11 McGuireWoods, LLP 12 434 Fayetteville Street, Suite 2600 13 Raleigh, North Carolina 27601 14 15 FOR VIRGINIA ELECTRIC AND POWER COMPANY, d/b/a 16 DOMINION ENERGY NORTH CAROLINA: 17 Andrea R. Kells, Esq. 18 McGuireWoods, LLP 19 434 Fayetteville Street, Suite 2600 20 Raleigh, North Carolina 27601 21 22 23 24

1	APPEARANCES Cont'd.:
2	FOR NORTH CAROLINA SUSTAINABLE ENERGY ASSOCIATION:
3	Peter H. Ledford, Esq.
4	General Counsel
5	Benjamin Smith, Esq.
6	Regulatory Counsel
7	4800 Six Forks Road, Suite 300
8	Raleigh, North Carolina 27609
9	
10	FOR INTERSTATE RENEWABLE ENERGY COUNCIL:
11	Laura Beaton, Esq.
12	Shute, Mihaly & Weinberger LLP
13	396 Hayes Street
14	San Francisco, California 94102
15	
16	Lauren Bowen, Esq.
17	Southern Environmental Law Center
18	601 W. Rosemary Street, Suite 220
19	Chapel Hill, North Carolina 27516
20	
21	
22	
23	
24	

NORTH CAROLINA UTILITIES COMMISSION

4

()
ž
ę
0

1 APPEARANCES Cont'd.: FOR NORTH CAROLINA CLEAN ENERGY BUSINESS ALLIANCE: 2 3 Karen M. Kemerait, Esq. 4 Fox Rothschild, LLP 5 434 Fayetteville Street, Suite 2800 6 Raleigh, North Carolina 27601 7 8 FOR NORTH CAROLINA PORK COUNCIL: 9 Kurt J. Olson, Esq. 10 The Law Office of Kurt J. Olson Post Office Box 10031 11 12 Raleigh, North Carolina 27605 13 14 FOR CYPRESS CREEK RENEWABLES: 15 Benjamin Snowden, Esq. 16 Kilpatrick Townsend & Stockton LLP 17 4208 Six Forks Road, Suite 1400 18 Raleigh, North Carolina 27609 19 20 21 22 23 24

1	APPEARANCES Cont'd.:
2	FOR THE USING AND CONSUMING PUBLIC ON BEHALF OF THE
3	STATE AND ITS CITIZENS IN THIS MATTER THAT AFFECTS THE
4	PUBLIC INTEREST:
5	Jennifer Harrod, Esq.
6	Special Deputy Attorney General
7	Teresa Townsend, Esq.
8	Special Deputy Attorney General
9	Department of Justice
10	114 West Edenton Street
11	Raleigh, North Carolina 27603
12	
13	FOR THE USING AND CONSUMING PUBLIC:
14	Tim R. Dodge, Esq.
15	Layla Cummings, Esq.
16	Public Staff - North Carolina Utilities Commission
17	4326 Mail Service Center
18	Raleigh, North Carolina 27699-4300
19	
20	
21	
22	
23	
24	

NORTH CAROLINA UTILITIES COMMISSION

Feb 13 2019 OFFICIAL COPY

TABLE OF CONTENTS EXAMINATIONS GARY R. FREEMAN, JOHN W. GAJDA and JEFFREY W. RIGGINS, as a panel: Direct Examination of Mr. Freeman by Mr. Jirak..... Mr. Gajda by Mr. Jirak..... Mr. Riggins by Mr. Breitschwerdt..... Cross Examination by Ms. Beaton..... Cross Examination by Mr. Ledford..... Cross Examination by Ms. Kemerait..... 401

NORTH CAROLINA UTILITIES COMMISSION

9 OFFICIAL COPY

Feb 13 2019

		-
1	EXHIBITS	
2	IDENTIFIED/ADMITTED	
3	Gajda Exhibit 1 97/	
4	Rebuttal Exhibits JWG 1-4 163/	
5	Rebuttal Exhibits JWR 1, 2, 3 and 5 $261/$	
6	Corrected Rebuttal Exhibit JWR-4 261/	
7	(Confidential pages filed under seal)	
8	NCSEA Duke Cross Exhibit 1	
9	NCSEA Duke Cross Exhibit 2 370/	
10	NCSEA Duke Cross Exhibit 3 379/	
11	NCSEA Duke Cross Exhibit 4 392/	
12	NCSEA Duke Cross Exhibit 5 393/	
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		

NORTH CAROLINA UTILITIES COMMISSION

1	PROCEEDINGS
2	CHAIRMAN FINLEY: Good afternoon, ladies and
3	gentlemen. Let's come to order and go on the record,
4	please. My name is Edward Finley and with me this
5	afternoon are Commissioners ToNola D. Brown-Bland,
6	James G. Patterson, Jerry C. Dockham, Lyons Gray,
7	Daniel G. Clodfelter, and Charlotte Mitchell.
8	I now call for hearing Docket Number E-100,
9	Sub 101, In the Matter of Petition for Approval of
10	Generator Interconnection Standards.
11	On May 15, 2015, in Docket Number E-100, Sub
12	101, the Commission issued an Order Approving the
13	Revised Interconnection Standard. In Ordering
14	Paragraph 3, the Commission instructed the Public
15	Staff of the North Carolina Utilities Commission to
16	convene a stakeholder process to report such
17	recommendations from the stakeholder group. The
18	Public Staff indicated to the Commission that
19	consensus on changes to the North Carolina
20	Interconnection Procedures could not be reached on all
21	issues.
22	On August 10, 2018, the Commission issued an
23	Order Scheduling a Hearing on all of the proposed
24	changes to the Interconnection Procedures; (2)

NORTH CAROLINA UTILITIES COMMISSION

9 OFFICIAL COPY

Feb 13 2019

1 requesting comments; and (3) extending Tranche 1 CPRE 2 RFP solicitation response deadline in Docket Numbers 3 E-100, Sub 101, E-2, Sub 1159 and E-7, Sub 1156, for 4 the purpose of addressing the interim modifications to 5 the Interconnection Standard necessary to accommodate 6 the evaluation and selection of proposals received in response to the Tranche 1 CPRE RFP solicitation. 7 CPRE 8 stands for Competitive Procurement of Renewable 9 Energy. 10 Oral Argument was held on September 24, 2018 11 on the interim modifications to the Interconnection 12 Standard necessary to implement the Tranche 1 CPRE RFP 13 solicitation. 14 Due to scheduling conflicts, the Commission issued an Order on August 30, 2018, Rescheduling the 15 16 Evidentiary Hearing for all of the proposed changes

17 from October 22, 2018, to this time and date, as well 18 as modifying corresponding filing deadlines.

19 On August -- on October 5, 2018, the 20 Commission issued an Order Approving Interim 21 Modifications to the North Carolina Interconnection 22 Procedures for Implementation of Tranche 1 of the CPRE 23 RFP.

24

On November 19, 2018, testimony was filed by

Feb 13 2019

1 Duke Energy Carolinas, Duke Energy Progress, Dominion 2 Energy North Carolina, the Interstate Renewable Energy 3 Council, the North Carolina Clean Business Alliance --Energy Business Alliance, the North Carolina 4 5 Sustainable Energy Association, the North Carolina Pork Council and the Public Staff. 6 7 On November 20, 2019, the North Carolina 8 Clean Energy Business Alliance filed the testimony of an additional witness. 9 10 On January 4, 2019, rebuttal testimony was 11 filed by most of the parties. 12 On January 4, 2019, IREC filed a Motion to 13 Bifurcate the Hearing or, in the alternative, a Motion 14 to Continue. Thereafter, on January 14, 2019, IREC 15 filed a subsequent Motion to Excuse Witness Lydic and, 16 if Witness Lydic was not excused to bifurcate the 17 hearing. I think that motion has pretty well been 18 mooted. 19 On January 8, 2019 (sic), both NCCEBA and 20 the Pork Council filed Motions to Excuse a Witness. 21 On January 23, 2019, the Commission issued 22 an Order granting all Motions to Excuse the three 23 Witnesses.

24

On January 25, 2019, DEC and DEP filed an

NORTH CAROLINA UTILITIES COMMISSION

1	Agreement and Stipulation of Partial Settlement
2	between those parties - Dominion Energy NC, the NC
3	Pork Council and the Public Staff.
4	On January 28, 2019, NCSEA filed a Motion
5	for Postponement of Evidentiary Hearing for a period
6	of one week to allow the parties to evaluate the
7	Agreement and Stipulation of Partial Settlement.
8	Also, on January 28, 2019, DEC and DEP filed a
9	Response in Opposition to NCSEA's Motion to Postpone
10	the Hearing.
11	In compliance with the State Ethics Act, I
12	remind all members of the Commission of their duty to
13	avoid conflicts of interest, and inquire whether any
14	member of the Commission has a known conflict of
15	interest with regard to any matter coming before the
16	Commission this morning this afternoon?
17	(No response)
18	There appear to be no conflicts, so we will
19	proceed so let the record reflect that, and we will
20	proceed to call on the parties to make their
21	appearances known beginning with Duke Energy
22	Progress/Duke Energy Carolinas.
23	MR. JIRAK: Good afternoon. Jack Jirak from
24	Duke Energy Progress/Duke Energy Carolinas.

1	MR. BREITSCHWERDT: Brett Breitschwerdt with
2	the Law Firm of McGuireWoods on behalf of Duke Energy
3	Carolinas/Duke Energy Progress.
4	MS. KELLS: Good afternoon, Mr. Chairman and
5	Commissioners. Andrea Kells with McGuireWoods
6	appearing on behalf of Dominion Energy North Carolina.
7	MS. KEMERAIT: Good afternoon. I'm Karen
8	Kemerait with the Law Firm of Fox Rothschild in
9	Raleigh. I'm here on behalf of the North Carolina
10	Clean Energy Business Alliance.
11	MR. LEDFORD: Mr. Chairman, Peter Ledford on
12	behalf of the North Carolina Sustainable Energy
13	Association. With me is my colleague Ben Smith.
14	MS. BOWEN: Mr. Chairman and Commissioners,
15	Lauren Bowen from the Southern Environmental Law
16	Center here on behalf of the Interstate Renewable
17	Energy Council.
18	MS. BEATON: Good afternoon, Commissioners.
19	Laura Beaton with the Law Firm of Shute, Mihaly $\&$
20	Weinberger and I'm here on behalf of the Interstate
21	Renewable Energy Council or IREC.
22	MS. HARROD: Mr. Chairman and Commissioners,
23	Jennifer Harrod, and with me also my colleague Teresa
24	Townsend from the Attorney General's Office. We

Feb 13 2019

1 represent the Using and Consuming Public as well as 2 the State and its Citizens in this matter of public 3 interest. MR. DODGE: Good afternoon, Commissioners. 4 5 I'm Tim Dodge with the Public Staff; also appearing 6 with me is Layla Cummings. We represent the Using and 7 Consuming Public. 8 MR. OLSON: Good afternoon. I'm Kurt Olson here representing the North Carolina Pork Council. 9 10 MR. SNOWDEN: Good afternoon. I'm Ben 11 Snowden with the Law Firm of Kilpatrick Townsend 12 representing Cypress Creek Renewables. 13 CHAIRMAN FINLEY: NCSEA, you have a pending 14 I'll hear from you. motion. 15 MR. LEDFORD: Yes, Mr. Chairman. Over the 16 weekend we filed a Motion to Postpone the Hearing for 17 a period of one week in response to the late-filed 18 Settlement that only involved a handful of the parties 19 to this proceeding. NCSEA has worked diligently to 20 get through the Settlement and everything that was --21 the redline of the Interconnection Agreement that was 22 attached to it, but owing to the Settlement occurring 23 at such a late hour it prejudices our clients to have 24 to move forward with the hearing at this time.

1 CHAIRMAN FINLEY: Elaborate on that for me, 2 How does it prejudice you? Inability to please. cross examine the witnesses? Are your witnesses 3 unprepared to respond? Help me out there, please. 4 5 MR. LEDFORD: Well, there's no opportunity 6 for us to respond to this other than through cross 7 examination. There's no opportunity to present extra 8 evidence, to present extra testimony, so we were 9 asking for an extended period of time to prepare for 10 cross examination. 11 CHAIRMAN FINLEY: Well, I will be more than 12 happy to let you have your witness respond live from 13 the stand if you would like to do that. 14 Let me hear from Duke. 15 MR. JIRAK: I'll just briefly respond and 16 say we don't see that there's been any equitable or 17 legal -- we see no reason to delay the case in this 18 instance. The stipulated modification simply 19 formalized what's already been apparent from hundreds 20 of pages of testimony and pleadings in this case and 21 that is that there's substantial alignment between Dominion, Public Staff and Duke, and for the benefit 22 23 of the Commission we sought to make that clear to you. 24 The very, very -- keep in mind there were

NORTH CAROLINA UTILITIES COMMISSION

14

OFFICIAL COPY

Feb 13 2019

1 hundreds of changes in the proposed modifications that 2 have been pending before this Commission for quite 3 some time. We took the step of formalizing the Agreement by agreeing to two changes that the Public 4 Staff had previously entered in the record. 5 We also implemented one change that had been requested by the 6 7 Pork Council and that was also reflected in their testimony. So there's nothing new substantively here 8 9 at all. It simply was a formalization of that 10 Agreement so that -- for your benefit and as directed 11 by the Commission we sought to formalize that, put it 12 in front of you to help clarify the issues in this 13 case.

We are more than willing to continue to engage in settlement discussions with other parties. In fact, the one other party that took the initiative to contact us, we have bent over backwards to engage with them, and we've committed to convene in a follow-up with them even after this proceeding to seek to achieve settlement with that party.

So, as you've directed in your prior Orders in this issue, settlement processes by definition can be a fluid process, and it does not require us and it's not always possible to engage every party in

NORTH CAROLINA UTILITIES COMMISSION

15

OFFICIAL COP

Feb 13 2019

Feb 13 2019

1 settlement discussions. In this case, we didn't have 2 the time to do that due to time constraints but, 3 again, we indicated to the party both in writing and in other context that we are open to discussions 4 5 wherever possible. So for those primary reasons we think it's 6 7 inappropriate to delay the hearing. In addition to 8 this sort of process and the travel arrangements people have made to be here, we just don't think 9 10 there's enough reason, any reasons really to justify 11 postponing the hearing. 12 CHAIRMAN FINLEY: Mr. Ledford, what is a new 13 topic, a new issue, other than something that parties 14 have talked about in their prefiled testimony but they just haven't agreed to or conceded on? What's new? 15 16 MR. LEDFORD: I don't believe there are any 17 new issues that are in the redline that have not been 18 presented in one way, shape or form under previous 19 testimony. 20 All right. Then here's CHAIRMAN FINLEY: 21 what we're going to do. We will not continue this 22 hearing. We will proceed. We've got everybody here 23 in place. And you are free to ask your witnesses 24 questions, if they have a disagreement they'd like to

NORTH CAROLINA UTILITIES COMMISSION

1 express with respect to the Stipulation. And if we 2 finish and you still believe that you have been 3 disadvantaged by proceeding this afternoon you are 4 welcome to be heard again, and we'll see if you need 5 additional time at that point, if that's okay.

6 MR. LEDFORD: Thank you, Mr. Chairman. 7 CHAIRMAN FINLEY: And I will say that the 8 Commission by and large does encourage settlements and 9 we have -- sometimes we have settlements after the 10 hearing even closes, and so I would encourage parties 11 to -- if you would all settle that would be fine with (Laughter) But, so please continue to talk and if 12 me. 13 somebody is disadvantaged by some settlement we'll try 14 to help you out.

15 Anything else? 16 (Counsel for all parties shake their heads no) 17 CHAIRMAN FINLEY: All right, Duke. 18 Thank you, Mr. Chairman. MR. JIRAK: At 19 this time Duke Energy Carolinas and Duke Energy 20 Progress would like to call the panel of Gary R. 21 Freeman, John W. Gajda and Jeffrey W. Riggins. 22 GARY R. FREEMAN, JOHN W. GAJDA 23 and JEFFREY W. RIGGINS, as a panel; 24 having been duly sworn,

NORTH CAROLINA UTILITIES COMMISSION

17

OFFICIAL COPY

Feb 13 2019

1		testified as follows:
2		MR. JIRAK: Thank you, Mr. Chairman. With
3	your	permission we would like to introduce each
4	witn	ess individually and each witness will then give a
5	summ	ary of their testimony on behalf of the
6		CHAIRMAN FINLEY: Very well.
7	DIRE	CT EXAMINATION BY MR. JIRAK:
8	Q	I'll begin with you, Mr. Freeman. Would you
9		please state your name and business address for
10		the record?
11	A	Gary R. Freeman. I reside at 410 South
12		Wilmington Street in Raleigh, North Carolina.
13	Q	Thank you. And by whom are you employed and in
14		what capacity?
15	A	Duke Energy Corporation and I'm the General
16		Manager of Distributed Energy Resource Compliance
17		Origination and Operations.
18	Q	And did you cause to be prefiled in this docket
19		on November 19, 2018, 34 pages of direct
20		testimony in question and answer format?
21	A	I did, yes.
22	Q	Do you have any changes or corrections to be made
23		to that direct testimony at this time?
24	A	No.

Г

NORTH CAROLINA UTILITIES COMMISSION

1	Q	If I were to ask you the same questions that
2		appear in your direct testimony today, would your
3		answers be the same?
4	A	Yes.
5	Q	And did you also cause to be prefiled in this
6		docket on January 8, 2019, 35 pages of rebuttal
7		testimony in question and answer format?
8	A	Yes, I did.
9	Q	Do you have any changes or corrections to be made
10		to that rebuttal testimony?
11	A	No.
12	Q	If I were to ask you the same questions that
13		appear in your rebuttal testimony, would your
14		answers be the same?
15	A	Yes.
16		MR. JIRAK: Mr. Chairman, at this time I
17	woul	d move that the prefiled direct and rebuttal
18	test	imonies of Mr. Gary Freeman be copied into the
19	reco	rd as if given orally today?
20		CHAIRMAN FINLEY: Mr. Freeman's direct
21	test	imony consisting of 34 pages and his rebuttal
22	test	imony consisting of 35 pages is copied into the
23	reco	rd as though given orally from the stand.
24		MR. JIRAK: Thank you.

1	
1	(WHEREUPON, the prefiled direct
2	testimony of GARY R. FREEMAN is
3	copied into the record as if given
4	orally from the stand.)
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	

NORTH CAROLINA UTILITIES COMMISSION

BEFORE THE NORTH CAROLINA UTILITIES COMMISSION

DOCKET NO. E-100, SUB 101

In the Matter of)	DIRECT TESTIMONY OF
Petition for Approval of Generator)	GARY R. FREEMAN
Interconnection Standard)	ON BEHALF OF DUKE ENERGY
)	CAROLINAS, LLC AND DUKE
)	ENERGY PROGRESS, LLC

OFFICIAL COPY

leb 19 2019

1

A. My name is Gary R. Freeman, and my business address is 410 South
Wilmington Street, Raleigh, North Carolina.

4 Q. WHAT IS YOUR POSITION WITH DUKE ENERGY 5 CORPORATION?

A. I am the General Manager of Distributed Energy Resources Compliance &
Origination for Duke Energy Corporation ("Duke Energy").

8 Q. PLEASE BRIEFLY SUMMARIZE YOUR EDUCATIONAL 9 BACKGROUND.

A. I received a Bachelor of Science degree in Mechanical Engineering from
 Clemson University and a Master of Business Administration degree from
 UNC-Chapel Hill.

13 Q. PLEASE DESCRIBE YOUR BUSINESS BACKGROUND AND 14 EXPERIENCE.

15 A. I have over 38 years of experience in the electric and gas utility industry. 16 In 1999, I joined Progress Energy Corporation, which later merged with 17 Duke Energy. I have worked in various management roles within the 18 Company, including overseeing the energy efficiency and demand response 19 programs and supervising the wholesale power trading/generation 20 optimization functions. Before joining what is now Duke Energy in 1999, 21 I spent 19 years with South Carolina Electric and Gas, where I held various 22 engineering and management roles in transmission, distribution, customer 23 service, wholesale power trading, and human resources.

Q. WHAT ARE YOUR RESPONSIBILITIES IN YOUR CURRENT POSITION?

3 A. In my current role, I oversee the power purchasing and generation 4 interconnection activities for renewable energy resources as well as 5 traditional energy supply resources. I also oversee the development and 6 execution of strategies and compliance plans related to the Renewable 7 Energy Portfolio Standard ("REPS") for Duke Energy Carolinas, LLC ("DEC"), Duke Energy Progress, LLC ("DEP" and, together with DEC, 8 9 "Duke" or the "Companies"), as well as renewable energy compliance for Duke Energy Ohio, Inc. 10

11 Q. HAVE YOU PREVIOUSLY TESTIFIED BEFORE THE NORTH 12 CAROLINA UTILITIES COMMISSION?

A. Yes. I most recently provided testimony in Docket E-100, Sub 148,
regarding certain aspects of the Companies' standard offer avoided cost
rates and tariffs under North Carolina's implementation of the Public Utility
Regulatory Policies Act ("PURPA"). I have also provided testimony in
Docket No. E-7, Sub 1074 on DEC's 2014 REPS compliance report and
application for approval of its annual REPS cost recovery rider.

19 Q. WHAT IS THE PURPOSE OF YOUR TESTIMONY?

A. The purpose of my testimony is to provide the Commission with an
 overview of the Companies' nation-leading efforts to interconnect utility scale solar projects as well as to interconnect smaller generating facilities at
 the request of our retail customers under the currently-approved North

1 Carolina Interconnection Procedures ("NC Procedures"). My testimony 2 will also describe the Companies' continued reasonable efforts to comply 3 with the timeframes in the NC Procedures, while balancing the processing 4 of the unparalleled volume of solar Interconnection Customers requesting 5 interconnection with the need to ensure that the surging number of 6 renewable generators requesting interconnection are safely and reliably 7 interconnected to the Companies' distribution and transmission system in a manner that does not adversely impact the Companies' retail and wholesale 8 9 electric service customers. I will also describe both how the interconnection 10 process becomes more challenging as the amount of interconnected 11 renewable generation increases and the fact that the current serial study 12 process will need to be reformed in order to more effectively address the 13 current and future interconnection queue.

14 I will also introduce the Companies' other witnesses, Jeffrey W. 15 Riggins and John W. Gajda. Witness Riggins and Gajda address the 16 Companies' participation in the 2017 Advanced Energy-led stakeholder 17 process and provide support for the Companies' more significant revisions 18 to the NC Procedures. These revisions include changes needed to ensure 19 that the Companies are adequately recovering from Interconnection 20 Customers the costs to manage the interconnection process and to ensure 21 that reliability and service quality of the grid is maintained.

1Q.PLEASE DESCRIBE THE COMPANIES' OVERALL APPROACH2TO THE INTERCONNECTION PROCESS.

3 A. In the 2015 proceeding to revise the NC Procedures, the Commission 4 recognized North Carolina's unique interconnection landscape and the 5 ongoing challenges that the Companies were facing to manage the 6 unparalleled volumes of utility-scale solar Interconnection Customers. 7 Since 2015, the Companies have invested significant resources in continuing to fulfill their regulatory responsibility to manage the processing 8 9 of new Interconnection Customers while continuing to meet their critically 10 important public service responsibilities under North Carolina's Public 11 Utilities Act to deliver safe and reliable electric service to our customers. 12 The Companies are continually balancing their dual responsibilities of 13 supporting the growing numbers of new generating facility Interconnection 14 Requests to interconnect to the distribution and transmission system, while 15 also ensuring that service to existing and future retail customers in North 16 Carolina is not degraded due to the operation of these new interconnected 17 generating facilities.

18 The Companies continue to make reasonable efforts to process all 19 Interconnection Customer generating facilities requesting interconnection 20 to the DEC and DEP distribution and transmission systems in North 21 Carolina. The challenge of meeting these dual responsibilities has grown significantly over the past few years as the number of utility-scale¹ "PURPA
 sell all" solar facilities under development in North Carolina and proposing
 to interconnect and sell power to the Companies has grown exponentially.

OVERALL 4 **Q**. PLEASE COMMENT THE **COMPANIES'** ON 5 THE **EFFORTS ADMINISTER** TO **INTERCONNECTION** 6 **PROCESS.**

A. I am proud of the Companies' efforts to support both our retail customers'
growing interest in installing generating facilities at their homes or
businesses and the hundreds of developer-sponsored utility-scale solar
facilities that have requested to interconnect to the Companies' systems in
North Carolina while also ensuring the continued safe and reliable delivery
of electric service to all of our retail and wholesale customers.

As Witness Riggins discusses in more detail, the Companies' have 13 14 invested in new technology and significantly increased the resources 15 dedicated to supporting the North Carolina interconnection process since 16 2015. These investments have been necessary to meet the challenges of 17 processing both customer-sited generating facilities, such as rooftop solar, 18 as well as the surging number of utility-scale Interconnection Requests 19 seeking to interconnect to DEC's and DEP's distribution and transmission 20 systems in North Carolina. As a result of these ongoing efforts, since the 21 Commission approved the NC Procedures in May 2015, the Companies

¹ The term "utility-scale" refers to generating facilities one megawatt ("MW") or greater.

have supported approximately 4,600 retail customer interconnections of
 small solar and other customer-site generating facilities up to 20 kW and
 entered into over 350 Interconnection Agreements with larger generating
 facilities above 20 kW during this timeframe.

5 Witness Gajda provides a technical perspective on the steps the 6 Companies have undertaken to support growing numbers of small 7 customer-sited and larger generating facility interconnections while maintaining safety, reliability, and power quality for the power system as 8 9 these growing numbers of independently owned and operated generating 10 facilities interconnect and operate in parallel with the Companies' system 11 as a whole. Mr. Gajda also explains how the Companies have proactively 12 implemented new policies, guidelines, and process improvements to ensure 13 that these projects are efficiently interconnected without adversely 14 impacting reliability on the grid for all customers.

Q. HAVE THE COMPANIES CONTINUED TO MAKE REASONABLE
EFFORTS TO ADMINISTER THE NC PROCEDURES SINCE THE
COMMISSION LAST REVIEWED THE INTERCONNECTION
PROCESS IN 2015?

A. Yes. The Commission recognized in the *May 2015 NCIP Order* that the
 Companies were making reasonable efforts to manage their interconnection
 queues even as the significant volume of new Interconnection Requests was
 causing DEP and DEC to fall short of the study timeframes for larger

Section 4 Interconnection Customers.² Section 6.1 of the NC Procedures
 recognizes that compliance with the mandated study timeframes may not be
 achievable, and, to that end, provides that the utility shall make "reasonable
 efforts" to meet the timeframes.

5 Due to continued surging utility-scale solar development in North 6 Carolina since 2015, the Companies have continued to be challenged to 7 meet the designated timeframes for completing System Impact Studies and Facilities Studies for larger interconnection customers under the NC 8 9 Procedures. I would note, however, that the Companies are more 10 consistently meeting the timeframes for studying and processing the less complex Section 2 and Section 3 Fast Track interconnection customers, 11 12 which are generally retail customers seeking to install small generating 13 facilities at their home or business. Overall, the Companies continue to 14 fully meet their obligations under the NC Procedures by making "reasonable efforts" to process and study all Interconnection Customers. 15

16 Q. HOW WOULD YOU CHARACTERIZE DUKE'S ACHIEVEMENT 17 IN INTERCONNECTING LARGE SOLAR GENERATING 18 FACILITIES?

A. The facts undeniably show that the Companies have continued their nationleading track record of interconnecting larger utility-scale solar projects.
Data from the U.S. Energy Information Administration ("EIA") tracking

² Order Approving Revised Interconnection Standard, Docket No. E-100, Sub 101 (May 15, 2015) ("May 2015 NCIP Order").

state-by-state growth in installed utility-scale solar shows North Carolina as
a state, and the Companies by themselves, as national leaders in
interconnecting utility-scale solar to the grid. No matter how the data is
sliced, the Companies have, by any measure, achieved remarkable success
at interconnecting utility-scale solar generating facilities.

6 Q. PLEASE PROVIDE SOME EXAMPLES.

7 Figure 1 presents EIA data through August 2018 (the most current A. 8 available) identifying the top 10 states for "all time" interconnection of 9 utility-scale solar projects sized between 2 MW and 20 MW. The EIA data 10 shows that North Carolina as a state, and even the Companies by 11 themselves, have interconnected more than twice the total amount of solar 12 projects in this size range than the next closest state of California. The 13 Companies' success is even more stark when compared to other leading 14 states. For instance, Texas has interconnected the tenth largest amount of 2 15 MW to 20 MW projects. And yet, DEC and DEP together have 16 interconnected 17 times more utility-scale solar PV projects in this size 17 range than Texas even though Texas has nearly 3 times the population of 18 North Carolina. Notably, no other neighboring southeastern States are in 19 the top ten states in this size range.

2 Q. WHAT MAKES NORTH CAROLINA'S SOLAR 3 INTERCONNECTION LANDSCAPE UNIQUE?

A number of factors including the state's REPS policy enacted in 2007, the 4 A. 5 state's 35% Renewable Energy Tax Credit in effect until 2015 as well as the state's implementation of PURPA, which granted 15-year contracts for 6 7 projects up to 5 MW, combined to foster a truly unparalleled marketplace 8 for the development of 5 MW solar generating facilities. Today, the 9 Companies have a combined 2,647 MW of solar generating facilities 10 already interconnected, including 1,672 MW of distribution-connected 11 solar, with hundreds of projects and thousands of MW more in the queue.

12

Q. HOW DOES THE NUMBER OF SOLAR INTERCONNECTIONS BETWEEN 4 MW AND 5 MW IN NORTH CAROLINA COMPARE TO THE REST OF THE NATION?

A. As shown in Figure 2 below, the amount of 4-5 MW solar generating
facilities interconnected in North Carolina simply dwarves all other states.
North Carolina has nearly 10 times more 4-5 MW solar projects
interconnected than California, the next closest state. Missouri is ranked
tenth nationally with respect to 4-5 MW projects. The Companies alone
have interconnected 65 times more 4-5 MW projects than Missouri. Once
again, no other southeastern states are even in the top ten in this size range.

Figure 2

Q. SINCE 2015, HAVE THE COMPANIES INTERCONNECTED MORE UTILITY-SCALE SOLAR PV GENERATING FACILITIES THAN ANY OTHER STATE IN THE COUNTRY?

A. Yes. As shown in Figure 3 below, over the period of 2015-2018, the
Companies have interconnected significantly more solar projects greater
than 2 MW than any other state. Every one of these projects has required
significant time to study, engineer, and construct the interconnection
facilities and upgrades necessary to interconnect the generating facility and
to enable energy delivery to the grid.

Figure 3

1 **O**. ARE THE SMALLER UTILITY-SCALE SOLAR PROJECTS 2 **CONNECTING COMPANIES' DISTRIBUTION** TO THE TO STUDY 3 NETWORK EASIER THAN THE LARGER, **TRANSMISSION-CONNECTED PROJECTS?** 4

5 No. While there are some limited differences in the study process, smaller Α. 6 utility-scale solar projects require the same in-depth technical review and 7 analysis as is required for larger utility-scale projects. Distribution-8 connected utility-scale solar interconnections have also created additional 9 complexities not previously seen for larger transmission-connected 10 generating facilities. As further discussed by Witness Gajda, the 11 Companies have invested significant resources since 2015 to proactively 12 evaluate whether pre-existing study methods and assumptions appropriately 13 recognized the potential power quality and reliability impacts of smaller 14 utility-scale solar projects interconnecting to the distribution system, 15 especially when located near a sensitive load customer. The significant and 16 unparalleled growth of utility-scale QF solar facilities interconnecting to the 17 Companies' distribution systems in North Carolina has required DEC and 18 DEP to continually reassess what constitutes "Good Utility Practice" and to 19 develop new technical standards applicable to these generating facility 20 interconnections in order to mitigate the potential for localized power 21 quality impacts and distribution system reliability risks.

Q. ARE YOU AWARE OF ANY OTHER STATE THAT HAS COMPARABLE LEVELS OF DISTRIBUTION-CONNECTED UTILITY-SCALE SOLAR PROJECTS?

A. No. As is reported by the EIA, the amount of utility-scale solar projects
connecting to the distribution system is not "normal" outside of North
Carolina and, therefore, the Companies are essentially operating in a unique
"living laboratory" of utility-scale solar deployment operating in parallel
with their general distribution systems.

9 Q. WHAT ARE THE PRIMARY ECONOMIC FACTORS NOW 10 DRIVING THE GROWTH OF SOLAR IN NORTH CAROLINA?

11 North Carolina has attracted the attention of developers from all over the A. 12 world seeking to develop solar generating facilities in the state. As 13 discussed above, the growth was first driven by a combination of factors, 14 including the PURPA standard offer framework that offered fixed contracts 15 to projects up to 5 MW. In order to minimize interconnection costs, these 16 smaller utility-scale projects sought interconnection at the general 17 distribution system level at an unprecedented and unparalleled level.

More recently, Session Law 2017-192 ("HB 589") shifted the state's renewable procurement strategies away from standard offer contracts and towards a competitive procurement process. In total, the legacy PURPA projects combined with the HB589 procurement directives will equate to approximately 7,000 MW of renewable generation that either has been or will be interconnected to the Companies' distribution system and transmission network. I would also highlight the HB 589 has created new
opportunities through the Commission-approved solar rebates program and
third-party leasing of small solar facilities for our retail customers to
promote interconnecting solar "behind-the-meter" at their homes or
businesses.

6 Q. AS SOLAR PENETRATION LEVELS INCREASE, ARE 7 INTERCONNECTIONS BECOMING MORE CHALLENGING?

8 Yes, interconnecting additional utility-scale solar generating facilities is A. 9 becoming increasingly difficult. Many areas across the Companies' 10 distribution systems, especially in DEP, are already heavily saturated with 11 utility-scale solar generating facilities. In such areas, the only functional 12 and feasible solution for interconnection of additional utility-scale projects 13 will involve either major infrastructure "Upgrades," such as additions to 14 local substations and distribution systems, and/or massive redesign of the 15 distribution system as a whole.

16 This is because there are simply functional limits to the amount of 17 generating capacity of any type, including solar, that can connect to the 18 current distribution system, short of changing the nature of the distribution 19 system itself. Therefore, the solutions to connect additional utility-scale 20 solar generating facilities to the Companies' distribution system are 21 increasingly complex and costly, generally involving a significant amount 22 of new distribution line construction over new rights-of-way, which often 23 can be difficult to procure within the required timeframes.

1	And as will be discussed in more detail later, the cumulative impact
2	of both transmission- and distribution-connected projects mostly located in
3	the eastern part of the state is overloading several critical transmission
4	facilities and is triggering the need to spend several hundred million dollars
5	on transmission network upgrades to continue to interconnect additional
6	solar generating facilities. In other words, interconnection studies are now
7	identifying that the cumulative impact of interconnecting the unparalleled
8	level of utility-scale solar to the distribution and transmission system is now
9	causing grid constraints to interconnect the next generating facility to
10	increasingly-large areas of the system. These grid constraints were not
11	observed at lower penetration levels, thus increasing the breadth and depth
12	of studies needed to ensure power quality remains acceptable.

Q. PLEASE DISCUSS FURTHER HOW THE CONSTRUCTION CHALLENGES OF INTERCONNECTION INCREASES AS SOLAR PENETRATION LEVELS INCREASE.

A. The increasing solar penetration levels not only give rise to more complex
study requirements, but also lead to more challenging construction projects.
The Company has successfully completed numerous such construction
projects, but the complexity of these undertakings illustrates the challenges
and time-consuming nature of interconnecting so many solar generating
facilities.
b 18 2019

Q. HOW DOES THE PRESENCE OF SUBSTANTIAL AMOUNTS OF
 UTILITY-SCALE SOLAR PROJECTS CONNECTED TO THE
 DISTRIBUTION SYSTEM IMPACT THE COMPANIES' ABILITY
 TO MODIFY THE DISTRIBUTION SYSTEM TO MEET
 GROWING LOAD AND ENSURE RELIABILITY?

A. The Companies actively manage and plan for load as they fulfill their
obligation to serve current and future retail customers throughout the state.
As load patterns change, the distribution system often must be altered over
time to serve this load, but utility-scale solar generating facilities
interconnected with the distribution system constrain the Companies'
technical options and may, in some cases, require more costly solutions.

12 Interconnection studies of solar generating facilities connected to 13 the distribution network, by their nature, study the facility on its native 14 radial circuit, and, once connected, the facility and "its substation" are now 15 "married" in a sense. The option to transfer some of the distribution circuit 16 to another source of feed (substation)—an option that was historically 17 routinely used to accommodate growing load-will be severely limited in 18 the case of circuits with interconnected utility-scale solar generation. 19 However, without the solar generating facility, that section of circuit can 20 easily be transferred to another feed.

Since solar generating facilities on distribution operate unscheduled
and their output has no specific relation in time to the local load, the section
of distribution circuit between the solar farm and its substation has

essentially become a transmission line, responsible for delivering the solar
generating facility's energy to the substation and transmission system. The
distribution system is becoming inundated with such sections, and
configuration changes to accommodate changes in load patterns in these
areas will, by definition, be more expensive than had the solar farm not been
there.

Q. IN ADDITION TO CONGESTION AT THE DISTRIBUTION LEVEL, ARE THE COMPANIES BEGINNING TO EXPERIENCE CONGESTION AT THE TRANSMISSION LEVEL?

10 A. Yes. As penetration levels have increased, areas of the Companies' 11 transmission networks have reached or are close to reaching the limits of 12 current transmission capacity availability and capability to interconnect 13 additional generating facilities and transmit the energy from these generators to the Companies' customer load centers that are far away. As 14 15 with the distribution system, the transmission network was initially 16 designed in an integrated and least cost manner to provide transmission 17 capability to deliver power from the Companies' generating facilities to 18 reliably serve load customers throughout DEC's and DEP's system. 19 Existing transmission assets have a finite amount of capacity and once the 20 transmission network capacity is fully consumed, network upgrades are 21 required to accommodate additional generating facilities.

1Q.DO THE GROWING AMOUNTS OF GENERATING CAPACITY2INTERCONNECTED TO THE COMPANIES' TRANSMISSION3AND DISTRIBUTION SYSTEM AFFECT THE AVAILABILITY OF4TRANSMISSION CAPACITY AND THE NEED TO UPGRADE THE5TRANSMISSION NETWORK?

A. Yes. It is important to recognize that both transmission and distribution
connected generating facilities have contributed to the transmission
congestion issues.

9 Q. PLEASE PROVIDE AN EXAMPLE OF A TRANSMISSION 10 NETWORK UPGRADE THAT HAS BEEN IDENTIFIED.

11 A. Through the interconnection study process, DEP has determined that 12 significant transmission network upgrades will be needed to interconnect 13 additional generation in the southeastern North Carolina area of DEP East. 14 These upgrades have been triggered by the cumulative amount of generation 15 located in southeastern North Carolina, where the need for the increased 16 generation to flow northwest toward the large load centers, such as Wake 17 County, has caused several transmission line segments to now reach their 18 power flow limits. This congested area in DEP East has over 100 in-service 19 or under construction solar generating facilities totaling 1,347 MW. This 20 includes 16 transmission-connected projects totaling 898 MW and 99 21 distribution-connected solar projects totaling 449 MW. Notably, there are 22 over 3,500 of MW of additional generating facilities in the queue that are 23 seeking to interconnect in this congested area.

1Q.WHAT ACTIONS IS DEP TAKING TO ADDRESS THIS2CONGESTION ISSUE?

A. As required by the NC Procedures and the Federal Energy Regulatory
Commission ("FERC") Joint Open Access Transmission Tariff ("OATT"),
the identified upgrades have been assigned to specific Interconnection
Customers. The total cost of the upgrades is approximately \$200M and,
assuming that identified Interconnection Customers commit to the projects
in the near term, the current projected completion date for the projects is the
end of 2022 (though this date is subject to change).

10 Q. PLEASE DESCRIBE THE WORK THAT IS REQUIRED.

A. The identified Network Upgrades to support interconnection of additional
solar resources in this particular area consist primarily of re-conductoring
transmission lines to increase capacity. Over 63 miles of transmission
reconductoring will be required:

- Cape Fear West End 230kV line (~26.6 miles) and 4.4 miles to uprate
- Erwin-Fayetteville East 230kV line (~23 miles)
- Erwin-Fayetteville 115kV line (~8.7 miles)
- Fayetteville Faye DuPont 115kV line (~3.2 miles)
- Rockingham West End 230kV West line (uprate ~8 miles of line)
- 20

1Q.PLEASE DESCRIBE WHY SUCH UPGRADES WILL TAKE2SEVERAL YEARS TO COMPLETE.

3 A. Reconductoring this amount of transmission line is an enormous 4 undertaking. Rebuilding a transmission line requires the line to be removed 5 from service. These transmission line segments are part of DEP's critical 6 transmission network, and, in order to maintain grid stability, can only be 7 taken out of service for approximately 12 weeks during the spring and fall 8 shoulder months when transmission flows are manageable. To expedite 9 completion, multiple line crews will potentially be involved in each of the 12-week seasonal (spring & fall) intervals. 10

11 Q. HOW MANY OTHER PROJECTS ARE DEPENDENT ON THESE 12 UPGRADES?

- A. Until the identified Network Upgrades are placed in service, the other projects in the congested area remain interdependent with these Upgrades and cannot be interconnected in a safe and reliable manner in accordance with Good Utility Practice. The need for these upgrades are impacting more than 500 MW of distribution projects and 3,000 MW of transmission projects, none of which can be interconnected until these upgrades are constructed.
- 20

Q. WHAT ARE THE COMPANIES' PLANS FOR SUCH IMPACTED PROJECTS UNTIL THE UPDGRADES CAN BE BUILT AND PLACED INTO SERVICE?

A. Under Section 1.8 of the NC Procedures, the impacted projects are deemed
interdependent. However, the Companies have met with a number of
developer stakeholder groups as well as the Public Staff to discuss next
steps and to receive feedback on the best plan to manage the projects located
in these congested areas. The Companies expect that such conversations
will continue.

10Q.ARE THERE OTHER MAJOR NETWORK UPGRADES THAT11WILL BE NEEDED TO CONTINUE TO INTERCONNECT12PROJECTS?

A. Yes, as the penetration levels of solar generating facilities continue to
 increase, there will be additional areas of congestion in both DEP and DEC
 service territory that will necessitate further transmission network upgrades.

16 Q. PLEASE DESCRIBE THE CONCEPT OF INTERDEPENDENCY.

A. In the context of the interconnection process, interdependency means that one or more interconnection requests are impacted or dependent on the decisions and study results of a project that entered the interconnection queue ahead of the interdependent projects. Under the NC Procedures, a project B is interdependent on a project A, and an "on hold" project is interdependent on both project A and project B. When solar penetration levels were more limited and there were fewer projects connected to the system, interdependency constraints were both less frequent and less
complex, where for example two projects on the same circuit were
interdependent to each other. As penetration levels increased,
interdependencies started to arise between two projects on adjacent circuits
or connected to the same substation. Now, with the high penetration levels,
especially in DEP, interdependency is occurring at the transmission network
level, which results in a much larger number of projects being impacted.

8 Q. HOW DOES INTERDEPENDENCY RESULT IN DELAYS IN THE 9 INTERCONNECTION OF SOLAR PROJECTS?

A. The interdependency concept in NC Procedures was designed to recognize
or identify the serial order in which interconnection studies are to be
completed. By designating projects as As, and Bs, and all other projects as
"on hold," the intent was to focus study times on the project As and Bs.

14 As the amounts of solar generation seeking to interconnect to the 15 same distribution circuit or substation has increased, more projects have 16 been deemed Project Cs and placed on hold in accordance with the NC 17 Procedures pending resolution of the Project A and Project B. Following 18 these interdependency provisions has necessarily caused delays in the 19 Section 4 study process for some Interconnection Customers, as numerous 20 utility-scale solar QF projects are continuing to submit requests to 21 interconnect on the same distribution circuits and behind the same 22 substations as both installed solar QFs and other projects in the queue. And 23 as discussed above, interdependency will have an even more widespread impact as interdependency has "extended up" to the transmission network
 level and the number of projects identified as interdependent on earlier
 projects has risen sharply.

4 Q. HOW ARE DISPUTES FURTHER CHALLENGING THE 5 COMPANIES' ABILITY TO PROCESS INTERCONNECTION 6 REQUESTS IN A TIMELY MANNER?

7 Once again, as available grid capacity has been consumed by earlier queued A. 8 projects, informal and formal disputes by developers challenging 9 distribution and network upgrade cost estimates, construction timeframes, 10 and other aspects of the study process have become more common. These 11 disputes in turn consume resources and have delayed the study of other 12 Witness Riggins provides additional information on the projects. 13 Companies' experience under the dispute resolution process and the 14 Companies' proposed changes to Section 6.2.

15 Q. PLEASE DESCRIBE THE COMPANIES EFFORTS TO IMPROVE 16 THE EFFICIENCY OF THE INTERCONNECTION PROCESS?

A. Duke has exerted extraordinary efforts to respond to this continued surge of
utility-scale solar growth and the increased complexity of North Carolina's
interconnection landscape. As further discussed by Witness Gajda, the
Companies have made continuous improvements to the study process and
sought to increase transparency for customers. Witness Riggins also
addresses how the Companies' Distributed Energy Technologies'
organization and other departments within Duke Energy have increased

project management, study engineering, construction, and technological
 resources assigned to support the interconnection process.

Q. DESPITE THE FACT THAT THE COMPANIES HAVE ACHIEVED AN INDUSTRY-LEADING NUMBER OF INTERCONNECTIONS, IS THE INTERCONNECTION QUEUE ANY SMALLER?

6 A. No. Despite the Companies' efforts, the interconnection queue continues 7 to grow. In January 2017, there was a combined 4,879 MW of solar 8 generation in the Companies' North Carolina queues and, as of September 9 2018, that figure has increased to 7,798 MW. In addition to these projects, 10 the South Carolina interconnection queue has grown significantly from 11 1,679 MW of solar generation in January 2017 to 6,518 MW as of 12 September 2018. This is important since the DEC and DEP systems 13 electrically do not recognize the state boundaries, and projects located in 14 either state have impacts on the grid in the other state.

15 The charts presented in Figures 4-5 below also illustrate the 16 continued growth in the Companies' queues for North Carolina and South 17 Carolina, respectively. Figure 4 also illustrates that the smaller utility-scale 18 interconnection requests have declined significantly (as would be expected 19 given the policy shift in North Carolina) while larger, transmission-20 connected interconnection requests have grown.

046

1

Figure 5

DIRECT TESTIMONY OF GARY R. FREEMAN DUKE ENERGY CAROLINAS, LLC DUKE ENERGY PROGRESS, LLC OFFICIAL COPY

On a total system basis between DEC and DEP and North Carolina and
 South Carolina, the queue has grown to over 14,000 MW of solar and also
 includes an additional 10,000 MW of non-renewable facilities.

4 Q. ARE THE COMPANIES MAINTAINING THE SAME LEVEL OF 5 COMPLETED INTERCONNECTIONS EACH YEAR FOR

6 UTILITY SCALE PROJECTS?

- A. Yes, at a high level DEC and DEP are maintaining the same level of
 completed interconnections in each year for utility-scale projects. Figure 6
 illustrates that in each year since 2015, DEC and DEP have achieved a
 generally consistent amount of interconnections, averaging approximatley
 600 MW per year.
- 12

15

<u>Figure 6</u>

14 To further put that into perspective, based on EIA data, New Jersey is the

ninth leading state in the nation all time in terms of interconnected solar

2		exceeds the total cumulative amount connected by New Jersey all time.
3	Q.	ARE THE COMPANIES EFFECTIVELY MANAGING THE
4		INTERCONNECTION PROCESS FOR SMALLER PROJECTS
5		SUCH AS NET METERING PROJECTS UNDER THE NC
6		PROCEDURES?
7	A.	Yes. As presented in Figure 7 below, the Companies have been much more
8		successful in complying with processing timeframes in the NC Procedures
9		for small Section 2 generating facilities, which are typically residential net
10		metering customers. Including North Carolina and South Carolina, growth
11		of these size facilities is increasing dramatically year over year. As shown
12		in Figure 7, most facilities are able to connect to the grid within 0-30 days
13		or within 1-3 months. Any delays in this process typically involve the
14		completion of installation and local inspections and the ability to quickly

projects greater than 2 MW. The Companies' 634 MW annual average

- 15 replace metering and establish billing.
- 16

<u>Figure 7</u>

NM Projects less than 20 kW Connected in NC by Operational Year

2 Q. WHY ARE THE COMPANIES SUPPORTING TARGETED 3 REVISIONS TO THE NC PROCEDURES AT THIS TIME?

Duke worked collaboratively with the Public Staff and other stakeholders 4 A. 5 during the 2017 Advanced Energy stakeholder process, and, in January 6 2018, proposed limited revisions to the NC Procedures designed to improve 7 the interconnection study process. The key issues being addressed in these 8 proposed changes to the NC Procedures are supported by Witnesses Gajda 9 and Riggins and include: Affected System coordination, expedited study 10 process changes to support HB 589, material modification definition, and 11 energy storage.

12

1Q.DO THE COMPANIES BELIEVE THAT FURTHER CHANGES2ARE STILL NEEDED TO ADDRESS THE CLOGGED QUEUE AND3THE SIGNIFICANT FUTURE DEVELOPMENT REQUIRED TO4MEET THE HB 589 PROCUREMENT OBLIGATIONS?

5 Yes. As stated above, the current proposed changes focused on small, but A. 6 needed changes to the interconnection process. However, the queue and 7 study complexities continue to increase with no end in sight. The Companies are requesting Commission approval of the current proposed 8 9 changes presented in the Redline to the NC Procedures sponsored by 10 Witness Gajda but also note that more comprehensive reform will be needed 11 in the near term to address the interconnection queue.

12 Q. IS THE CURRENT SERIAL STUDY PROCESS SUSTAINABLE?

13 No, the current serial study process is not sustainable as it would likely A. 14 require decades to serially study and potentially connect the 14,000 MW of 15 renewable generating facilities that are in the current North and South 16 Carolina DEP and DEC queues. The Companies believe that it is now 17 necessary to transition from a serial study process to a cluster study process, 18 which is a process used by an increasing number of regional transmission 19 organizations ("RTO") and utilities in other areas of the country to more 20 efficiently study and allocate the costs of transmission network upgrades. 21 To that end, the Companies are closely following a Public Service Company 22 of Colorado ("PSCO") stakeholder process designed to address PSCO's 23 clogged queue of approximately 23,000 MW on a 8,500 MW system. The

1 Companies are also reviewing a related process undertaken by the Public 2 Service Company of New Mexico ("PNM") that ultimately reduced PNM's 3 queue from 10,000 MW to 1,000 MW on a 2,500 MW system. Many RTOs 4 across the country are also continuing to refine and modify their 5 interconnection processes, and all of these entities have evolved to a cluster 6 study type of process for larger size projects.

7 Q. PLEASE EXPLAIN THE FUNDAMENTAL FLAWS OF THE 8 SERIAL STUDY PROCESS.

9 A. Generally, when the interconnection queue was small and no major
10 transmission network upgrades were being triggered, the serial study
11 process was workable. However, as larger transmission network upgrades
12 are now increasingly being triggered, the serial study process is untenable
13 and could result in further paralysis of the queue due to the large upgrade
14 costs being assigned to one project and developers being unable to achieve
15 funding of these particular network upgrades.

16 Q. WHAT SPECIFIC NEXT PLANS ARE THE COMPANIES
17 PLANNING TO TAKE TO SEEK TO TRANSITION TO A FULL
18 CLUSTER STUDY APPROACH?

A. The Companies hosted an initial stakeholder meeting in June to receive
feedback regarding transitioning to a cluster study approach. Stakeholders
seemed to agree that queue reform is needed and that a cluster study
approach may be more workable to process the hundreds of projects and
thousands of megawatts of generation in the Companies' queues. However,

i the de	evil is in the detail on now to transition from the current serial first
2 in/first	out" approach to a clustered study approach. Issues that will need
3 to be a	ddressed include: defining the clusters, study timing, cost allocation
4 and ea	rly funding commitments to remain in the study, and grandfathering.
5	In parallel with supporting the modifications to the NC Procedures
6 presen	ted to the Commission for approval now, the Companies are also
7 workir	ng on a queue reform proposal to share with the Public Staff and other
8 stakeh	olders to develop a more sustainable approach to studying projects,
9 assigni	ing upgrades and collecting the costs of those upgrades. The
10 Compa	anies anticipate requesting Commission approval of additional
11 revisio	ons to the NC Procedure to accomplish these changes, which changes
12 would	need to be aligned with FERC OATT.
13 Q. WHA	Г FACTS DETERMINE WHETHER A PARTICULAR
14 INTE	RCONNECTION REQUEST IS STATE JURISDICTIONAL
15 OR FI	ERC JURISDICTIONAL?

41- - 66-1

.1

A. Although I am not an attorney, I have been advised that the appropriate
jurisdiction is a matter of law. If a project is a QF that intends to sell all
output to Duke and will directly connect to Duke's system, then it must be
interconnected under the NC Procedures. If not, then it must be
interconnected under the FERC OATT (with one minor exception).

- 1Q.HOW MANY PROJECTS ARE CURRENTLY SEEKING TO2INTERCONNECT UNDER THE FERC-JURISDICTIONAL3PROCESS AS OPPOSED TO THE APPLICABLE STATE4PROCEDURES?
- A. In DEC, approximately one quarter of the currently pending Interconnection
 Requests are FERC-jurisdictional. In DEP, approximately one third of the
 currently pending Interconnection Requests are FERC-jurisdictional.
- 8 Q. WHAT ARE THE PRIMARY CHALLENGES OF 9 ADMINISTERING TWO DISTINCT INTERCONNECTION 10 PROCESSES?
- 11 While there is a single, unified queue for both state and FERC-jurisdictional A. 12 projects, there are some substantial differences between the FERC and state 13 processes. Most notably, under the FERC process, (1) the concept of 14 interdependency is not applicable (2) interconnection customers can 15 suspend the FERC interconnection agreements for up to three years; (3) full 16 prepayment of identified upgrades is not required; and (4) full repayment to 17 Interconnection Customer of amounts advanced for identified upgrades is 18 required.
- 19

1Q.HOW WILL THE SEPARATE FERC- AND STATE-2JURISDICTIONAL PROCESSES INFORM THE QUEUE REFORM3EFFORTS?

- 4 A. Any future queue reform efforts will need to ensure alignment between the
- 5 two processes, which may necessitate parallel approval efforts not only in
- 6 both North and South Carolina but also at FERC.
- 7 Q. DOES THIS CONCLUDE YOUR TESTIMONY?
- 8 A. Yes.
- 9

55

1	(WHEREUPON, the prefiled rebuttal
2	testimony of GARY R. FREEMAN is
3	copied into the record as if given
4	orally from the stand.)
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	

NORTH CAROLINA UTILITIES COMMISSION

BEFORE THE NORTH CAROLINA UTILITIES COMMISSION

DOCKET NO. E-100, SUB 101

In the Matter of)	REBUTTAL TESTIMONY OF
Petition for Approval of Generator)	GARY R. FREEMAN
Interconnection Standard)	ON BEHALF OF DUKE ENERGY
)	CAROLINAS, LLC AND DUKE
)	ENERGY PROGRESS, LLC

OFFICIAL COPY

1	Q.	PLEASE STATE YOUR NAME, TITLE AND BUSINESS ADDRESS.
2	A.	My name is Gary R. Freeman, and I am the General Manager of Distributed
3		Energy Resources Compliance & Origination for Duke Energy Corporation
4		("Duke Energy"). My business address is 410 South Wilmington Street,
5		Raleigh, North Carolina.
6	Q.	ON WHOSE BEHALF ARE YOU SUBMITTING THIS REBUTTAL
7		TESTIMONY?
8	A.	I am submitting this rebuttal testimony on behalf of Duke Energy Carolinas,
9		LLC ("DEC") and Duke Energy Progress, LLC ("DEP" and together with
10		DEC, the "Companies").
11	Q.	ARE YOU THE SAME GARY R. FREEMAN WHO FILED DIRECT
12		TESTIMONY IN THIS CASE?
13	A.	Yes.
14	Q.	WHAT IS THE PURPOSE OF YOUR REBUTTAL TESTIMONY?
15	A.	My rebuttal testimony provides a high-level response to certain issues raised
16		by Public Staff and other intervenor witnesses in direct testimony pre-filed
17		in this docket. Rebuttal testimony concurrently filed in this docket by the
18		Companies' witnesses John W. Gajda and Jeffrey R. Riggins will respond
19		in more detail to certain other issues and will support the Companies'
20		proposed modifications to the North Carolina Interconnection Procedures
21		("NC Procedures").
22		My rebuttal testimony first highlights the Companies and the Public
23		Staff's general alignment on a number of proposed modifications to the NC

Procedures, as well as the Public Staff's support of the Companies' approach to applying Good Utility Practice under the NC Procedures.

1

2

3 I then address criticisms lodged by certain parties in this docket and 4 in other forums regarding the amount of time that is often required for the 5 Companies to interconnect utility-scale solar generation projects. First and 6 foremost, these criticisms fail to take into account the extensive evidence 7 demonstrating Companies' the national leading successes in interconnecting distributed generation, as described extensively in my 8 9 Secondly, such criticisms simplistically assess an direct testimony. 10 incredibly complex undertaking—the study, engineering and construction 11 required to interconnect utility-scale distributed generation—based solely 12 on the amount of time particular projects have been in the queue, while 13 failing to recognize the many complex factors contributing to developers' 14 experienced "delays" in the interconnection process. I then explain that, in 15 many cases, the amount of time that projects remain in the queue is 16 primarily driven by factors outside the Companies' control, including the 17 interdependency provisions of the NC Procedures and developer actions.

18 The Companies have and will continue to exert significant efforts to 19 expedite the interconnection process and have invested substantial 20 resources in doing so, which resources have led directly to the Companies' 21 nation-leading interconnection efforts. And the Companies understand the 22 financial impact that long interconnection wait times can have on 23 Interconnection Customers. But those that view the long interconnection

1		wait times as simply a product of lack of effort or administrative efficiency		
2		on the part of the Companies simply do not understand the complexity of		
3		the interconnection process or the many factors influencing the		
4		interconnection process timeline outside the Companies' control.		
5		Finally, my testimony further describes the Companies' plans to		
6		move to full grouping studies and also responds to certain recommendations		
7		made by the Public Staff in its pre-filed direct testimony.		
8	Q.	WHAT ACTUAL CHANGES TO THE NC PROCEDURES HAVE		
9		THE COMPANIES PROPOSED IN THIS PROCEEDING?		
10	A.	The Companies' proposed changes to the NC Procedures are attached to the		
11		pre-filed rebuttal testimony of DEC/DEP witness Gajda. The proposed		
12		modifications are discussed in more detail by DEC/DEP witnesses Gajda		
13		and Riggins and are substantially similar to those modifications jointly filed		
14		by the Companies and Dominion Energy North Carolina ("DENC") in this		
15		docket on March 12, 2018. In addition, a handful of additional		
16		modifications have been identified in the interim period, as further		
17		addressed in these other witnesses' testimony.		
18	Q.	IN YOUR OPINION, IS THERE SUBSTANTIAL ALIGNMENT		
19		BETWEEN DUKE AND PUBLIC STAFF WITH RESPECT TO		
20		SUCH PROPOSED MODIFICATIONS?		
21	A.	Yes, the Companies have proposed a substantial amount of modifications		
22		to the NC Procedures. Public Staff and Duke are aligned on nearly all		
23		modifications, with a few exceptions and the Companies are committed to		

engage with Public Staff (as well as other intervenors) regarding potential
 resolution of the remaining outstanding issues.

3Q. PLEASE BRIEFLY ADDRESS THE PUBLIC STAFF'S4TESTIMONY REGARDING THE COMPANIES' EFFORTS TO5ADMINISTER THE INTERCONNECTION PROCESS AND THE6COMPANIES' APPLICATION OF GOOD UTILITY PRACTICE.

7 Public Staff Witness Lucas testifies that North Carolina's "unprecedented A. 8 growth of solar could only have been brought about by cooperation of the 9 Utilities" and he notes that, despite facing significant challenges, "the Utilities appear to have made good faith efforts to interconnect DG."¹ 10 11 Similar to my direct testimony, Public Staff witness Williamson highlights 12 that North Carolina is in a unique position nationally due to the amount of 13 utility-scale, grid-tied, intermittent, and non-dispatchable Qualified Facility 14 ("QF") generation on its distribution system, and increasingly on its 15 transmission system. As discussed further by DEC/DEP witness Gajda, 16 witness Williamson expresses the Public Staff's support for the manner in 17 which the Companies have administered the interconnection process and 18 applied "Good Utility Practice" to safely and reliably interconnect 19 additional generation to the Companies' systems.

20

¹ Public Staff Lucas Direct Testimony, at 32.

1Q.PLEASEREITERATETHECOMPANIES'POSITION2REGARDING ITS SUCCESS IN INTERCONNECTING PROJECTS.

A. As was discussed at length in my direct testimony, the Companies are a
national leader in North Carolina with respect to the interconnection of
distributed generation. By any measure, the Companies' efforts have been
remarkable and at the very forefront of the nation.

7 And the Companies have achieved this success while continuing to ensure that system safety, reliability and power quality is maintained for all 8 9 customers through the consistent implementation of non-discriminatory 10 technical standards that have been identified as being necessary in North 11 Carolina's "living laboratory" of utility-scale, distribution-connected solar 12 resources. In addition, the Companies have sought, where possible within 13 the existing construct, to allocate the costs arising from the interconnection 14 process to Interconnection Customers.

Public Staff witness Lucas acknowledged the track record of the Companies in observing that "[e]leven years ago, North Carolina had less than one megawatt of interconnected solar capacity but now has over 3,000 megawatts."² As noted above, witness Lucas highlights the Companies' "good faith efforts" to interconnect third-party generation projects and to support North Carolina's unprecedented solar growth. In 2018, Duke interconnected over 450 MW of solar PV, continuing its "good faith efforts"

 2 Id.

to interconnect third-party solar even as the increasing penetration has made
interconnection solutions more complex. Almost 400 MW of these projects
were completed in the last couple of months, requiring a huge commitment
from the Companies' employees needed to achieve such success under tight
timelines.

Q. A NUMBER OF PARTIES CRITICIZED THE LENGTH OF TIME THAT IT TAKES DUKE TO STUDY AND INTERCONNECT PROJECTS. PLEASE RESPOND TO SUCH CRITICISM.

A. The Companies' success at interconnecting projects speaks for itself.
However, it is important to also note that summarily asserting that the total
amount of time a project has been in the queue is evidence that the
Companies are somehow failing its obligations under the NC Procedures is
almost absurdly simplistic and ignores the myriad of factors that impact an
Interconnection Customer's study and processing priority and the amount
of time a project will remain in the queue.

16 Duke has previously discussed such factors and they include but are 17 not limited to the following: interdependency, delay in provision of 18 information from developers, developer-requested extensions, cure periods, 19 informal and formal disputes, developer requests for additional information, 20 and complex engineering and construction requirements. To assist the 21 Commission in understanding the complexity of the process, I will provide 22 a general description of the System Impact Study ("SIS") process for 23 distribution-connected projects. In doing so, I will also describe the fact

that a substantial portion of the time required to complete the SIS is outside
 of the control of the Company and, furthermore, that it is the actions of the
 developers themselves that, in many cases, contribute to a lengthy study
 process for projects, which, in turn, impacts other projects in the queue.

5 Q. WHAT IS THE SIS AND WHAT IS ITS SIGNIFICANCE?

6 A. Under the NC Procedures Section 4 full study process as further discussed 7 by DEC/DEP witness Gajda, the SIS is the initial modeling and engineering study designed to assess the impact of interconnecting the generating 8 9 facility with the Companies' distribution or transmission system. The SIS 10 process is detailed in Section 4.3 of the NC Procedures. The SIS process is 11 then followed by the more detailed Facilities Study evaluation, which 12 provides the Interconnection Customer a more detailed cost estimate prior 13 to the Companies undertaking initial construction planning and drafting and 14 delivering an Interconnection Agreement to the Interconnection Customer 15 under Section 5.

16 Q. ARE THERE ASPECTS OF THE SIS TIMELINE THAT ARE 17 OUTSIDE OF THE COMPANIES' CONTROL?

A. Yes. In fact, when considering a generic SIS study timeline, much of the
timeline is comprised of discrete steps where the Companies are required to
wait on developer action or response. In other words, the timeline for
completion of SIS is often more influenced by the actions of the developer
than by the actions of the Companies.

7		THE DISTRIBUTION SIS TIMELINE THAT ARE OUTSIDE OF
6	Q.	PLEASE PROVIDE SOME EXAMPLES OF THE PORTIONS OF
5		timeline that is outside of the Companies' control increases even further.
4		or informally challenges the Companies' conclusions, the portion of the SIS
3		When a developer requests extensions, is granted cure periods or formally
2		extensions, cure periods, and formal and informal developer challenges.
1		Furthermore, this assessment does not even consider the impact of

8 THE COMPANIES' CONTROL.

9 A. The SIS process for distribution projects is comprised of a number of
10 decisions or actions steps, and for each step, I have identified below the
11 portion of the timeline that is outside of the Companies' control and, for
12 purposes of this analysis, highlighted commonly requested extension
13 periods:

- 14
- [Chart on the following page]
- 16

8 2 2
2

Step	Developer Action	Time Added to SIS Process Timeline by Developer Action
Line Voltage Regulator("LVR") Review	• No developer action needed	N/A
Obtain Right of Way (if LVR impact is determined)	 Developer is required to select an LVR option and is given 15 business days. It is very common for developer to request one or more additional 15 business day extensions, leading to a total possible delay of 45 business days or more. In those cases where a developer elects 	+ 45 business days (or more)
	to pursue its own Right of Way, the developer is provided 30 business days. It is very common for a developer to request one or more extensions, leading to a total possible delay of 90 business days or more.	+ 90 business days (or more)
Mitigation Options	• Once the volt/var study is complete, mitigation options are provided and the developer is given 15 business days to select a mitigation option. It is very common for developers to request one more extensions, leading to a total possible delay of 45 business days or more.	+ 45 business days (or more)
	• Once a developer selects a mitigation option, it is also necessary for the developer to provide updated documents since the project now to be studied differs from what was reflected in the Interconnection Request. Developer is given 10 business days but it is very common for a developer to request one or more extensions, leading to a total possible delay of 30 business days or more	+ 30 business days (or more)
Transformer Inrush	• Developer is given 15 business days to select the type of inrush study	+15 business days (or more)

Step	Developer Action	Time Added to SIS Process Timeline by Developer Action
	• Developer is given 30 business days to provide transformer data. Often, corrections are needed and the developer is given 10 business days for each correct.	+ 30 business days (or more)
	• Developer is given 30 business days to select the inrush option.	+30 business days
Protection Study	• No developer action needed	N/A
SIS Report Preparation	• Often developers are required to correct missing documentation and are given 10 business days to do so, with 10 business days given where a correction is needed	+ 20 business days (or more)
<u>Total Time in</u>	<u>s SIS Process Timeline Outside of the</u> <u>Companies' Control</u>	 +305 business days (for projects with LVR) which equates to 438 calendar days +170 business days (for projects without LVR impact) which equates to 237 calendar days

Q. PLEASE SUMMARIZE THE DISTRIBUTION-CONNECTED SIS TIMELINE ABOVE.

A. As can be seen, the actions that are outside of the Companies' control for
projects with LVR impacts (including common extension periods) can total
as many as 305 business days, which is equivalent to approximately 445
calendar days. The actions that are outside of the Companies' control for
projects without LVR impacts (including common extension periods) can

total as many as 170 business days, which is equivalent to 245 calendar days.

1

2

3 These examples highlight how overly simplistic it is to assert that 4 the Companies are solely at fault for developers' business challenges 5 associated with delays in the interconnection process. In fact, in some cases, 6 the Companies may be meeting the SIS target timeline when waiting times 7 for Interconnection Customer decisions, for example, are excluded from the completion time requirements in. (See NC Procedures, Att. 7, ¶ 18) As 8 9 described above, the extensive time periods that relate to developer actions 10 can often constitute a majority of the SIS timeline for many projects.

11 Once again, the timeline dates specified above are generic and every 12 project will differ. There are developers that are more timely in providing 13 information than others and, in those cases, the portion of the timeline 14 within developer's control is reduced. But it is also true that there are 15 developers that are more egregious in requesting extensions, requiring cure 16 periods and challenging the Companies' technical conclusions. Other 17 developers may also have less technical expertise or understanding of the 18 Companies' requirements and therefore, require more guidance from the 19 Companies in providing appropriate documentation, etc.

Finally, as the Companies have previously described, the available capacity of the distribution and transmission system (capacity that was paid for by retail customers) is increasingly being consumed due to the high penetration levels of installed utility-scale solar across the Companies' systems, especially in DEP-East. As a result, it will become increasingly
 common for projects to require significant distribution or transmission
 system Upgrades to interconnect, the cost of which may render projects
 financially infeasible. DEC/DEP witness Gajda addresses this issue in
 greater detail in his rebuttal testimony.

6 The Companies' expectation (which has been borne out anecdotally 7 by recent experience) is that developers will more frequently seek to challenge the Companies' technical conclusions and delay decisions where 8 9 they perceive the available interconnection options may render their 10 development project uneconomic. Simply put, where a developer's only 11 viable option is withdrawal, many developers will exhaust every 12 conceivable avenue of challenge (whether expressly provided for under the 13 NC Procedures or not) before accepting withdrawal.

14 Q. HOW DOES THE ABOVE TIMELINE IMPACT THE 15 INTERCONNECTION QUEUE?

16 A. Given all of the factors discussed above that are outside of the Companies' 17 control, the timeline for completing a SIS for a distribution-connected 18 project can easily approach a year in duration or more. Given the 19 unparalleled volume of utility-scale solar generating facilities requesting to 20 interconnect to the Companies distribution systems and the practical impact 21 of the interdependency queuing process, uniquely long interconnection 22 processing times are unsurprising. To put it in simple terms, if there are 10 23 projects seeking to interconnect to the same substation, the 10th project will

not be studied until the Company has processed the first 8 projects. If the
 SIS process for a single project takes a year or more, the unavoidable reality
 is that the 10th project will likely remain un-studied in the queue for an
 extensive period of time.

Q. PLEASE DISCUSS THE INTERSECTION OF THIS SIS TIMELINE AND THE UNPARALLELED AMOUNT OF DISTRIBUTIONCONNECTED SOLAR FACILITIES IN NORTH CAROLINA.

A. Since 2011, over 1,100 utility-scale solar projects (greater than 1 MW) have
sought interconnection to the Companies' distribution system, of which
over 750 were between 4 and 5 MW. Of these 1,100 projects, about 400
have been connected, over 500 have either withdrawn or were canceled and
over 200 are currently in the interconnection process. This amount of
utility-scale distribution-connected projects is simply unparalleled in the
entire country.

15 In many cases, these projects sought to interconnect to the same substations and distribution feeders in certain rural areas of the state. This 16 17 results in many projects being designated as "interdependent" and therefore, 18 placed "on hold" until earlier-queued projects seeking to interconnect to the 19 same substation or distribution feeder complete the interconnection process. 20 As discussed above, when a later-queued project is placed on hold 21 behind two other earlier-queued Interconnection Customers due to 22 interdependency, such project cannot, under the terms of the NC 23 Procedures, proceed to SIS until the earlier-queued projects are processed.

However, given that the SIS timeline can take up to a year and often longer—a substantial portion of which is not in the Companies' control—it is unsurprising that many projects would remain on hold for extended periods of time.

5 This outcome is not due to any failure on the part of the Companies, 6 but, instead, has primarily resulted from the unprecedented amount of 7 utility-scale solar projects seeking to interconnect to the Companies' 8 distribution system. Short of eliminating significant portions of the 9 distribution study process (which would not be in accordance with Good 10 Utility Practice), there is simply no "silver bullet" solution to expediting the distribution study process, particularly where many such projects have 11 12 sought to interconnect to the same substations and feeders.

13 Q. PLEASE DISCUSS HOW THE SIS PROCESS HAS EVOLVED 14 OVER TIME.

A. As the SIS process has evolved over time, many practices have developed
that have lengthened the study process. These practices include mitigation
options, developer-requested extensions, cure periods, and informal
information requests and challenges.

19 Q. PLEASE DESCRIBE THE IMPACT THAT THE MITIGATION 20 OPTION PROCESS HAS ON THE SIS TIMELINE.

A. The mitigation option process is not contemplated by the NC Procedures,
but was introduced by the Companies in late 2016 as a concession to provide
alternative project size options for developers to select where the system

1 impact of the generating facility reflected in the Interconnection Request 2 was likely uneconomic due to the limited availability of distribution or 3 network capacity. Rather than simply studying an Interconnection Request 4 as submitted (which is all that is required under the NC Procedures), the 5 Companies conduct additional analysis to provide a preliminary cost 6 assessment of alternative project configurations. Providing such alternative 7 options necessitates additional studies and therefore lengthens the study process and delays the study of later-queued projects. As shown above, the 8 9 mitigation option evaluation and Interconnection Customer decision 10 making process has the potential to increase the SIS timeline by 75 business 11 days (approximately 109 calendar days), even without accounting for the 12 impact of formal and informal disputes and information requests.

The Companies do not necessarily oppose the mitigation option process (and, in fact, have committed to provide mitigation option to certain QF standard offer projects covered under the Nameplate Settlement, as filed with the Commission on February 2, 2018), but the unavoidable result is that each additional component or practice that is layered into the SIS process will necessarily lengthen the study period and impact other projects.

19 Q. PLEASE DESCRIBE THE IMPACT THAT DEVELOPER-

20 **REQUESTED EXTENSIONS HAVE ON THE SIS TIMELINE.**

A. As is described above, it is very common for developers to request and be
granted extensions in connection with LVR options, mitigation options,

transformer data provision and document correction. Such extensions
 prolongs the study period and can often impact other projects.

3 Q. PLEASE DISCUSS THE IMPACT THAT CURE PERIODS HAVE 4 ON THE STUDY PROCESS TIMELINE.

5 The Companies have historically informally provided Interconnection A. 6 Customers "cure periods" for missed deadlines in a number of 7 circumstances during the SIS process, even though not expressly required under the NC Procedures. For example, where an Interconnection 8 9 Customer fails to respond to a mitigation options communication within the 10 timeframe specified, the Companies' assigned account manager will send a follow up communication in writing to provide the Interconnection 11 12 Customer a cure opportunity before completing the SIS based upon the 13 originally-requested size of the generating facility. These cure periods 14 delay the interconnection process for projects and, in many cases, have an 15 adverse impact on later-queued projects.

In the interest of expediting the overall study process, the 16 17 Companies could seek to eliminate cure periods where not expressly 18 required under the terms of the NC Procedures. However, such a practice 19 would undoubtedly be met with strong opposition by Interconnection 20 Customer who would object to being withdrawn for failure to adhere to the 21 specified deadlines. Accordingly, the Companies' modifications to the NC 22 Procedures propose to memorialize a single 10 Business Day cure period 23 during both the Facilities Study and the System Impact study processes in
Feb (18 2019

the event that an Interconnection Customer fails to respond to a request of
 the Utility.

3 Q. PLEASE DISCUSS THE IMPACT OF INFORMATION REQUESTS 4 AND INFORMAL DISPUTES ON THE SIS TIMELINE?

5 In many cases, developers seek to engage in protracted dialogue and A. 6 informal discovery concerning the Companies' technical analysis or cost 7 estimates where the developers disagree with the Companies' conclusions. While the Companies are committed to making reasonable efforts to 8 9 provide information to developers concerning the Companies' study 10 methodologies and the particular factors impacting the results of 11 interconnection studies, the reality is that protracted engagement beyond 12 that which is contemplated in the NC Procedures diverts substantial 13 resources from the study efforts for other projects. In short, this type of 14 engagement inevitably delays the interconnection process.

15 Q. PLEASE DESCRIBE THE IMPACT OF NOTICES OF DISPUTE.

16 A. Similar to the extensions and cure periods discussed above, formal notices of dispute pursuant to the NC Procedures impacts other projects and siphon 17 18 resources away from the study process. The Companies are certainly not 19 arguing that the right to file notices of dispute should be eliminated but are 20 observing that such disputes will inevitably and unavoidably impact other 21 projects and are yet another factor outside of the Companies' control that 22 contribute to long queue periods. For instance, witness Riggins described 23 in his direct testimony a particular project that refused to select a mitigation 1option. That same Interconnection Customer also filed a notice of dispute,2which further extended the SIS process, and then was ultimately withdrawn3after failing to comply with the NC Procedures. In total, the actions of the4developer delayed the interconnection process at the SIS step for more than5a year from the point in time that the mitigation options were delivered until6the project was withdrawn.

Importantly, there were also several later-queued projects that were
interdependent on the project described above, and such projects remained
"on hold" throughout the entire year+ process described above. Those
interdependent projects were undoubtedly frustrated that they have
remained on hold for an extensive period of time. And yet, the reality is
that this year+ delay was completely outside of the Companies' control.

13Q.PLEASE DESCRIBE THE "CATCH-22" THE COMPANIES OFTEN14FIND THEMSELVES IN WITH RESPECT TO ENGAGEMENT

15 WITH DEVELOPERS IN THE INTERCONNECTION PROCESS.

16 A. When dissatisfied with the interconnection options made available by the 17 Companies in accordance with Good Utility Practice, many developers will 18 take every conceivable action to obtain a different outcome, which will 19 necessarily prolong the process. While the Companies certainly understand 20 the financial factors driving developers to take such actions, the reality is 21 that such strategies consume utility management and engineering resources 22 and invariably delay other projects seeking to complete the interconnection 23 process.

1 The "catch-22" arises because where the Companies seeks to require 2 particular developers to adhere to rigid timelines, it is often challenged by 3 the particular developer. But where the Company does not strictly enforce 4 rigid timelines, it impacts other developers who, in turn, complain about the 5 general delays in the interconnection process.

6 A good example of this "catch-22" is the mitigation option process 7 timeline. As described above, the mitigation option process prolongs the 8 SIS timeline. Moreover, in many cases, developers have refused to select 9 mitigation options in a timely manner. Therefore, the Companies have 10 sought to impose reasonable deadlines for developers to respond to 11 mitigation options. In one case, a particular developer filed a notice of 12 dispute challenging the Companies' ability to impose a reasonable deadline 13 on the Interconnection Customer's selection of a mitigation option. 14 Separately, that same developer also informally complained to DEP 15 regarding delays in studying another project owned by that developer but 16 such delay was driven largely by an earlier-queued project owned by a 17 separate developer that similarly refused to select a mitigation option within 18 the prescribed timeline. In other words, developers pursue strategies to 19 maximize opportunities for their projects but then complain when those 20 same strategies have an adverse impact on their own projects.

Q. DISCUSS THE CHALLENGES OF CONSIDERING ONE-OFF TECHNICAL SOLUTIONS

3 A. In many cases, developers have requested that the Companies consider 4 particular one-off, non-standard technical solutions in evaluating the system 5 impacts of their proposed generating facility Interconnection Request. As 6 discussed in greater detail by DEC/DEP witness Gajda, accommodating 7 utility-scale generating facilities with non-standard methods shifts cost and reliability risk to the Companies' retail load customers and can become 8 9 unsustainable and incompatible with the Companies' obligation to plan and 10 operate the system in a safe and reliable manner for all customers. In 11 general, engaging in "one-off" solutions is simply not a sustainable practice 12 in light of the volume of pending Interconnection Requests. For the reasons 13 I discus above, even engaging in the often-protracted discussions regarding 14 an Interconnection Customer's desire for the Companies to restudy a 15 custom non-standard solution to reduce the developer's Upgrade cost or to 16 increase the capacity that can interconnect to the Companies' system at a 17 given location can add additional significant extensions to the 18 interconnection process.

19 Q. PLEASE SUMMARIZE THE COMPANIES' COMMENTS ON THE 20 DISTRIBUTION STUDY PROCESS.

A. In summary, the distribution study process of utility-scale solar projects in
North Carolina is a complex undertaking and the timeline for such process
is significantly impacted by factors outside of the Companies' control.

1 As described in the testimony of DEC/DEP witness Riggins, the 2 Companies have exerted tremendous efforts to increase resources and 3 improve processes to expedite the study of projects and has achieved nation-4 leading successes. And the Companies are not asserting that no extensions 5 should be granted or cure periods allowed or informal exchanges of 6 information permitted. Nor are the Companies asserting that they have, in 7 every instance, processed every Interconnection Request in the most efficient way possible or that there are no instances in which administrative 8 9 inefficiencies have contributed to delayed study processes. But it is critical 10 that the Commission understand the extent to which current study delays 11 and long queue wait times are substantially impacted by factors outside of 12 the Companies' control. NCCEBA WITNESS NORQUAL SPECIFICALLY CRITICIZES 13 **Q**.

15 Q. NCCEBA WITNESS NORQUAL SPECIFICALLY CRITICIZES 14 THE DELAYS IN THE INTERCONNECTION PROCESS. PLEASE 15 RESPOND.

A. An examination of some data related to CCR's development activities and
the Companies' processing CCR Interconnection Requests provides a good
case study of both the dramatic successes of the Companies as well as the
complexities of the interconnection process.

Based on a combination of data provided by CCR and the Companies' records, the Companies have interconnected over 150 CCRand affiliate-developed projects totaling more than 1,250 MW since 2014. To put this into perspective, this means that the Companies have processed,

- studied, engineered, constructed, and completed more utility-scale solar
 generator interconnections for a single developer—CCR—over the last 5
 years *than has been interconnected in total for every other state in the country with the exception of California*. Below, I have updated Figure 3
 from my direct testimony to illustrate how the CCR projects interconnected
 in North Carolina compares to the top 10 utility-scale solar states in the
 country during the period 2014-2018.
- 8

Updated Figure 3

9 These facts undeniably demonstrate the Companies' significant good faith 10 efforts to support CCR's solar generator Interconnection Request 11 processing.

079

Q. DOES WITNESS NORQUAL ACKNOWLEDGE THE ASPECTS OF THE INTERCONNECTION PROCESS THAT ARE OUTSIDE OF THE CONTROL OF THE COMPANIES AS DESCRIBED ABOVE? A. No. CCR witness Norqual fails to acknowledge the many factors impacting the interconnection process that are outside of the Companies' control.

These factors have had a direct impact on the timeline for every CCR

7 Interconnection Request.

- 8 Q. EARLIER IN YOUR TESTIMONY YOU DISCUSSED THE 9 IMPACT OF INTERDEPENDENCY ON INTERCONNECTION 10 TIMELINES. CAN YOU SPECIFICALLY DESCRIBE A CCR 11 PROJECT THAT HAS EXPERIENCED INTERCONNECTION 12 DELAYS DUE TO INTERDEPENDENCY?
- 13 Yes, one CCR project in DEP has been designated interdependent and "on A. 14 hold" for approximately 1,450 days, or almost four years. However, the 15 reason for this significant time in queue is that the project sought 16 interconnection on DEP's Weatherspoon 230 kV substation behind 13 other 17 utility-scale solar projects already in the Companies' queue. DEP has 18 diligently sought to interconnect the earlier queued projects and as of today, 19 six of these earlier-queued solar projects totaling approximately 26 MW 20 have now been interconnected. But given the SIS study timeline described 21 above (not to mention the time required to complete FSA, execute an FSA and receive payment), it is no surprise that such project has remained in the 22 23 queue for an extended period. This "delay" does not reflect any

fundamental flaw in the Companies' interconnection process but instead is
 an inevitable product of the interdependency of projects all locating in the
 same area and on the same circuit or substation.

4 Q. WHY HAVE YOU FOCUSED ON THE SIS TIMELINE FOR 5 DISTRIBUTION-CONNECTED PROJECTS?

A. Distribution-connected projects constitute the vast majority of the utilityscale solar projects that have been interconnected (approximately 93%) and
the vast majority of the utility-scale solar projects that remain in the queue
(approximately 71%). Therefore, understanding the SIS timeline for
distribution-connected project is critical to assessing the factors driving the
current interconnection wait times.

12 Q. PLEASE COMMENT ON THE SIS TIMELINE FOR 13 TRANSMISSION-CONNECTED PROJECTS.

14 A. As the Companies have previously explained, the amount of distribution-15 connected solar in North Carolina is unparalleled and these penetration levels give rise to a wide range of technical considerations and costs in 16 17 connection with the interconnection. In contrast, there tends to be fewer 18 factors impacting transmission-connected generation and where 19 transmission network constraints arise, they tend to involve substantial 20 expense that result in voluntary withdrawal within the established timelines. 21 Nevertheless, there have been many instances in which developer actions 22 have delayed the study process for transmission-connected projects and,

Jeb 48 2019

once again, the Companies expect delays to increase as more substantial
 upgrades are triggered.

3 Q. ASIDE FROM THE SIS PROCESS, WHAT ARE THE OTHER 4 MAJOR COMPONENTS OF THE INTERCONNECTION 5 PROCESS?

A. The other major components of the interconnection process are the
Facilities Study including the field engineering design work, the
construction process, the inspection and commissioning process.

9 Q. PLEASE DESCRIBE HOW THOSE PROCESSES CAN ALSO BE 10 TIME-CONSUMING.

11 A. The Facilities Study includes any final modeling requirements, but most 12 importantly for distribution projects, includes the field engineering design 13 work and development of the construction work order and more detailed 14 cost estimates. So, for example an engineer might require several weeks to 15 confirm existing right of way easements, obtain property owner approval 16 for any pole line changes, obtain any new right of way, submit highway and 17 in many cases rail road encroachment permits in addition to normal design, 18 construction drawings, and work order estimates. For transmission projects 19 these functions can take many months.

The construction process can be very complex, particularly in the increasingly common scenarios where projects are triggering large distribution upgrades or transmission network upgrades. For example, distribution upgrade costs in many cases have exceeded \$1M and require a

1	half year or more to complete. Transmission network upgrade costs are now
2	being seen in the \$10-\$40M, and in one case will exceed \$100M. The
3	construction process can be delayed by challenges ranging from complex
4	line outage restrictions to more mundane weather conditions. For examples,
5	one recent distribution-connected project was delayed for months where a
6	pole line crossing a land-owner's property could not be accessed because of
7	rainy weather and the land-owner would not allow construction equipment
8	on their property until his land dried out.

9 Q. HOW WILL HB 589 IMPACT THE INTERCONNECTION 10 PROCESS.

A. HB 589 marked an important transition in the state's renewable
procurement strategies away from standard offer contracts that incented a
surging and unparalleled growth of 5 MW distribution-connected projects
and towards a competitive procurement process that is expected to result in
the selection of larger, transmission-connected projects.

16 In the long-term, from an interconnection process perspective, this 17 transition is expected to result in more efficient interconnection practices 18 and will tend to minimize upgrade costs by selecting projects that are 19 located in favorable grid locations.

In simple terms, it is much easier to study and interconnect a single
cost-effective 80 MW transmission-connected project identified through
CPRE than it would be to study and interconnect 16 distribution-connected
5 MW projects, each of which must be carefully studied to ensure

neighboring customers also interconnected to the same distribution circuits
 are not impacted by this large generator cycling on and off regularly.

3 Q. ARE THERE REMAINING CHALLENGES IN THE SHORT 4 TERM?

5 Undoubtedly, yes. That is because there are currently approximately 224 A. 6 projects greater than 1 MW seeking distribution interconnection that must 7 be studied to support their safe and reliable interconnection. In addition, as was described in my pre-filed direct testimony, the currently interconnected 8 9 generation has consumed substantial amounts of the available distribution 10 and transmission capacity and, as a result, projects currently seeking to 11 interconnect are increasingly triggering the need to make substantial 12 Upgrades, including the need for major transmission network upgrades. 13 These more significant Upgrades often require substantial engineering and 14 construction resources, further delaying interconnection. In my direct 15 testimony, I specifically identified a major transmission upgrade that has 16 already been triggered and will take 3-4 years to construct and will delay 17 the interconnection of numerous other projects located in that specific 18 geographic area.

19 Once again, the delays that projects may experience due to the 20 substantial construction projects required to further expand the Companies' 21 network are not a product of any administrative or processing inefficiencies 22 on the part of the Companies but instead are simply a result of the unparalleled growth of interconnected solar generation on the Companies'
 systems.

Given the amount of remaining distribution-connected projects that must complete the SIS timeline described above, combined with the growing congestion issues and associated construction challenges, there remain significant hurdles to the completion of the transition from North Carolina's legacy PURPA implementation to the new policy direction reflected in HB 589.

9 Q. WHAT IS A GROUPING STUDY?

10 A. A grouping study gathers multiple interconnection requests that are 11 submitted within a defined request window into a single group or cluster. 12 Unlike the current serial process, where interconnection requests are 13 generally studied in sequence based on the time the interconnection request 14 is submitted, a grouping study allows projects to be studied at the same time. 15 To be effective, the grouping study needs to allocate upgrade costs to all 16 projects that contribute to the need for the upgrade, and will require early 17 financial commitments to fund these upgrades. Grouping studies are 18 successfully being used in other parts of the country to manage high 19 volumes of interconnection requests.

20 Q. PLEASE DESCRIBE THE GROUPING STUDY THAT WAS 21 APPROVED FOR PURPOSES OF CPRE.

- 22 A. In the October 5, 2018 Order Approving Interim Modifications to North
 - Carolina Connection Procedures for Tranche 1 of CPRE RFP, the

1 Commission approved modifications to Section 4.3.4 of the NC Procedures, 2 amongst others, to facilitate a grouping study for the limited purposes of 3 implementing CPRE. In this case, grouping studies will be used to establish 4 a study "base line" for non-participating projects and then competitive 5 participating projects are grouped to form a study "change case" to assign 6 upgrade costs and further evaluate bids to determine the least total cost of a 7 portfolio of projects.

8 Q. WHY DOES THE COMPANY BELIEVE THAT GROUPING 9 STUDIES FOR THE ENTIRE INTERCONNECTION QUEUE 10 WOULD BE BENEFICIAL?

11 Grouping studies will make the interconnection process more efficient from A. 12 a transmission-level perspective and will allow costly transmission network 13 upgrades to be allocated to multiple projects rather than burdening 14 individual projects with the entire upgrade costs. Distribution-connected 15 projects would also be included in these grouping studies, where the studies would more quickly or efficiently determine their impact on the 16 17 transmission network. Network upgrade costs would also be allocated to 18 these projects if needed, but studies to determine distribution upgrade costs 19 most likely would remain in a sequential process, or limited/local grouping 20 studies.

3 A. Public Service Company of New Mexico, Midcontinent Independent 4 System Operator, Inc. ("MISO"), Southwest Power Pool, Inc. ("SPP") and 5 California Independent System Operator Corp. (CAISO") and other FERC 6 jurisdictional RTOs have implemented grouping studies. On November 19, 7 2019, Public Service Company of Colorado ("PSCO") filed a proposal to move from a "...first-come, first served model...to a first-ready, first-8 9 served model. PSCO proposed to move to grouping studies in response to 10 "[s]urges in the volume of new generation development" that were making 11 it difficult to process Interconnection Requests in a timely manner. PSCO 12 has a queue containing 23,000MW where their peak load is only 8,500MW. 13 In its 2008 Technical Conference Order regarding Interconnection Queuing 14 Practices, FERC suggested that grouping studies or first-ready, first-served 15 interconnection process could speed up queue processing.

Q. PLEASE DISCUSS THE COMPANIES' SPECIFIC PLANS TO
 MOVE TOWARDS A FULL GROUPING STUDY, INCLUDING
 TARGET DATES FOR ITS ACTIONS?

A. The Companies are committed to an extensive stakeholder engagement
process beginning in the first quarter of 2019 and are in the process of
developing a strawman proposal that will be used as a starting point for the
stakeholder process. The Companies envision an iterative process that
allows for multiple meetings with stakeholders with a goal to complete the

stakeholder process by late June 2019 which would result in redline changes
to the State and Federal interconnection procedures. The Companies would
then make a filing of the proposed changes in July 2019 to both the FERC
and the NCUC. This process will also need to include South Carolina
stakeholders and will likely include a filing with the South Carolina Public
Service Commission since the transmission network is agnostic to state
lines.

8 Q. IS THE GROUPING STUDY A PANACEA FOR THE CURRENT 9 INTERCONNECTION QUEUE?

10 A. No. As currently contemplated, the grouping study will only assess the 11 transmission impacts of both distribution- and transmission-connected 12 projects, and will not assess the distribution level impacts of distribution-13 connected projects. As discussed above, the current interconnection queue 14 still contains a backlog of proposed utility-scale distribution-connected 15 projects, and there is no "quick fix" for processing such projects. Each 16 project must undergo the distribution-level study process described above 17 to ensure a safe and reliable interconnection

However, assuming that the state policy reflected in HB 589 is
carried forward into the future, the Companies expectation is that the
majority of future procurement efforts will occur via competitive RFP
processes that will most likely encourage the development of larger,
transmission connected projects that can be more efficiently studied through
a grouping study process.

1 **O**. PUBLIC STAFF WITNESS LUCAS RECOMMENDS THE A "STAKEHOLDER DISCUSSION **COMPANIES INITIATE** 2 FOCUSED SOLELY ON REVISITING THE PROJECT A/B 3 PROCESS AND THE OPTIONAL GROUPING STUDY PROCESS 4 5 TO DETERMINE HOW THEY MIGHT BE USED TOGETHER TO 6 MORE EFFICIENTLY MANAGE THE LARGE NUMBER OF PROJECTS IN THE QUEUE." PLEASE RESPOND TO THE 7 8 **PUBLIC STAFF'S RECOMMENDATION.**

9 A. As discussed above, the Companies believe that a grouping study will be a
10 useful tool for expediting certain portions of the interconnection study
11 process. The Commission should allow the Companies to implement the
12 steps described above rather than adopting Public Staff's recommended
13 stakeholder and reporting requirements at this time.

14 **Q**. **PUBLIC** STAFF WITNESS LUCAS ALSO **IDENTIFIES** 15 "CONCERNS THAT RAISE SERIOUS QUESTIONS ABOUT THE FAIRNESS AND EQUITY REGARDING COST RESPONSIBILITY 16 17 FOR USERS OF THE GRID, WHETHER THEY ARE DGS 18 **INJECTING ENERGY** OR **CONSUMERS** EXTRACTING 19 ENERGY." PLEASE RESPOND TO THESE CONCERNS.

A. The Company shares these concerns and agrees that care should be taken to
assign costs to the "cost causer" and minimize the risk of cost shifting.
However, the Companies also recognize that there are challenges to
preventing all cost shifting and that it is nearly impossible to recover all

interconnection processing costs that vary over time through fixed fees
applied to a number of projects that can also vary over time. Also, postinterconnection, the Companies are seeing a growing number of customer
calls dealing with, for example, net metering billing questions and questions
about their solar facility performance for which there is no cost recovery
mechanism for these costs other than to include in retail base rates.

7 Q. PUBLIC STAFF WITNESS WILLIAMSON RECOMMENDS AN 8 INDEPENDENT REVIEW OF THE ENTIRE NORTH CAROLINA 9 INTERCONNECTION PROCESS. PLEASE RESPOND TO SUCH 10 RECOMMENDATION.

11 A. Public Staff witness Williamson is correct that the Companies remain 12 willing to consider an "EPRI or a similar third-party to assist in studying 13 and further developing North Carolina's Fast Track and other technical 14 interconnection screens." Witness Gajda provides additional explanation 15 on this proposal in his rebuttal testimony, recommending that the 16 Companies' Technical Standards Review Group would provide an appropriate forum for such discussions with EPRI or a similar third-party. 17 18 However, a third-party audit of the entire interconnection process would be 19 an undertaking on an entirely different scale and the Companies do not 20 believe such an enormous effort would be an appropriate or efficient use of 21 the Companies' resources at this time, particularly as the Companies direct 22 their efforts to implementation of a stakeholder process recommending a

- 1 transition to a full grouping study. Also, many of these same resources need
- 2 to remain focused on processing interconnection requests.

3 Q. DOES THIS CONCLUDE YOUR REBUTTAL TESTIMONY?

4 A. Yes.

1	BY M	IR. JIRAK:
2	Q	Mr. Freeman, do you have a summary of your
3		testimony?
4	A	I do.
5	Q	Would you please proceed with that?
6		(WHEREUPON, the summary of GARY R.
7		FREEMAN is copied into the record
8		as read from the witness stand.)
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		

Г

NORTH CAROLINA UTILITIES COMMISSION

092

Testimony Summary - Gary Freeman Docket No. E-100, Sub 101 January 28, 2019

Thank you, Mr. Chairman, Commissioners for allowing me to provide a summary of my testimony in this docket.

My direct testimony provides the commission with an overview of the companies' nationleading efforts to interconnect utility-scale and smaller generating facilities to the grid. Data from the United States Government's Energy Information Administration demonstrates the remarkable and national-leading interconnection success of Duke.

For instance, the Companies' have connected more utility-scale solar facilities to the general distribution system than any other state in the country—including even California. And this success is even more stark when compared to other states in the top ten. For instance, the Companies have interconnected more than twice the number of projects as the third-leading state—Massachusetts—and more than thirteen times the highest ranking state in the south east. What is even more compelling is that, since 2015, the Companies have connected the highest number of greater than 2 MW solar plants in the entire country—with 225 successful interconnections, compared to 184 in California—the second leading state—and 59 in Massachusetts—the third leading state. During this period Duke has connected nine times more projects than the tenth leading state—Texas.

And these comparisons I have just described are even more remarkable when you take into account the relative size of the respective states and other factors. California is four times the size of NC in terms of population with 3 large utilities, Texas has three times the amount of population and Massachusetts is served by 4 different IOUs. Viewed from a per-capita perspective, North Carolina's success is staggering.

Uth

Both in this proceeding and in other public forums, Duke is often criticized for delays in the interconnection process. But the results that I have described completely contradict such criticisms. And the Companies' successes continued in 2018. In my direct testimony, I had projected 400-500 additional MW to be connected in 2018. I can now confirm that the companies successfully connected 537MW in 2018. And such significant amounts of interconnection were achieved despite the significant headwinds resulting from the diversion of construction and support resources for weeks at a time to support the historic hurricane damage caused by Florence and Michael. The Companies' also connected over 2900 net metering projects in 2018 compared to just over 1100 projects in 2017.

All of this success is a result of the tremendous efforts of a large team of dedicated and talented Duke personnel involving technical experts, account managers, study teams, engineering and construction personnel and more. My colleague Jeff Riggins will describe in more detail the substantial increase in personnel that the Companies have implemented to achieve this success. I am extremely proud of Duke's efforts in this respect and particularly proud of the ways in which we have continued to balance our dual obligations of achieving safe interconnections while also continuing to ensure consistent, reliable and quality power service to all customers, as is detailed in the testimony of my colleague John Gajda. The state of North Carolina is a "living laboratory"

093

in that no other state has attempted to interconnect so much utility-scale solar projects to its distribution system. As the Companies have grappled with the long-term implications of this "first of its kind" issue, we have sought to implement reasonable, non-discriminatory policies to limit any adverse impacts on all of the Companies' customers and to ensure long-term sustainability.

Nevertheless, despite the Companies' successes, the interconnection queue remains high and now stands at over 13,000 of solar across NC and SC. We include SC in our queue numbers since the grid crosses state boundaries.

Furthermore, the amount of successfully interconnected solar generation is leading to congestion on the transmission system primarily caused by the large amount of solar generation proposing to connect in the SE portion of DEP and in the southern portion of DEC. As described in my testimony, as penetration levels increase, interconnecting additional generation located in remote areas of the grid and in increasing amounts in the same general area is becoming more challenging. As System Impact studies are now showing, there is a need to spend hundreds of millions of dollars to upgrade the transmission network to accommodate higher amounts of generation. The Companies are committed to working with solar developers to support these needed grid upgrades, but must do so within the guidelines and policies set forth by the state and the FERC.

In light of the continued growth in the interconnection queue, it has become clear that a more comprehensive change in the interconnection process is needed to address the queue, allocate increasing upgrade costs across many projects, and ensure that projects in the queue are truly ready to be connected to the grid. Duke is working to identify the needed changes and my testimony discussed some of the key next steps.

In my rebuttal testimony, I have also provided some additional background to help the Commission understand the complexity and challenges of the interconnection process. Many of these complexities and challenges contribute to long interconnection wait times and are outside of the control of Duke. Examples include growing interdependencies, awaiting decisions and information from projects, and the growing number of technical disputes challenging the companies Study conclusions. Therefore, general critiques of the interconnection queue wait times that fail to recognize the complexity of the process are misinformed at best and disingenuous at worst.

In this proceeding, the Companies are specifically seeking the Commission's approval of a number of modifications to the NC Procedures as are identified in the testimony of my colleague John Gajda. These changes should improve certain aspects of the study process and ensure that the Companies are, to the greatest extent possible, recovering its costs from the cost causers. As was reflected in our filing on Friday, the Public Staff, Dominion Energy North Carolina and Duke executed a stipulation that identified a full set of modifications that such parties support for adoption by the Commission. The stipulation also included certain specific modifications requested by the North Carolina Pork Council that are supported by the stipulating parties. To be clear, the stipulation simply formalizes for the benefit of the Commission what was already self-evident from the hundreds of pages of filings made in this proceeding—the fact that the Public Staff, DENC, and the Companies' were nearly fully aligned with respect to the modifications to the NC Procedures. In light of this stipulation and the record in this proceeding, we respectfully request the Commission's approval of the modifications identified in the stipulation.

In summary, Commissioners, I am proud of our nation leading success in interconnecting solar generation and I am confident that we will continue to tackle future challenges with the same level of determination and energy that has brought us this far. Duke is fully committed to the efficient study and processing of interconnection requests to its system while continuing to ensure that such interconnections do not adversely impact other customers and that future potential cost impacts of such interconnections are limited.

Commissioners, thank you for this opportunity to provide this summary.

1 Thank you, Mr. Chairman. MR. JIRAK: 2 DIRECT EXAMINATION BY MR. JIRAK: 3 Mr. Gajda, would you please state your full name 0 4 and business address for the record? 5 Α Yes. John W. Gajda. My business address is 3401 6 Hillsborough Street, Raleigh, North Carolina. 7 Mr. Gajda, by whom are you employed and in what Q 8 capacity? 9 Yes. I work in the System Operation Services А 10 Department of Duke Energy. 11 And did you cause to be prefiled in this docket Q 12 on November 19, 2018, 65 pages of direct 13 testimony in question and answer form along with 14 one exhibit? 15 Α Yes. 16 And do you have any changes or corrections that Q 17 need to be made to that direct testimony at this 18 time? Yes, I have one. Give me a moment. 19 Α 20 Yes. Q 21 Α The only change is stipulated in -- is located in 22 my direct testimony on page 8, lines 5 and 6. 23 And the text to be struck begins 2.2.1 and it

NORTH CAROLINA UTILITIES COMMISSION

says -- I'll just read the text to be stricken.

24

1		2.2.1 (clarifying when a Section 2 project will					
2		require Fast Track screening).					
3	Q	Thank you, Mr. Gajda. Aside from that					
4		correction, if I were to ask you the same					
5		questions that appear in your direct testimony					
6		today, subject to the correction you just					
7		described, would your answers be the same?					
8	A	Yes.					
9	Q	Mr. Gajda, did you also cause to be prefiled in					
10		this docket on January 8, 2019, 52 pages of					
11		rebuttal testimony in question and answer form,					
12		along with four exhibits?					
13	A	Yes.					
14	Q	Do you have any changes or corrections to make to					
15		that rebuttal testimony?					
16	A	No.					
17	Q	If I were to ask you the same questions that					
18		appear in your rebuttal testimony, would your					
19		answers be the same?					
20	A	Yes.					
21		MR. JIRAK: Mr. Chairman, at this time I					
22	woul	d move that the prefiled direct and rebuttal					
23	test	imonies of Mr. Gajda be copied into the record as					
24	if g	iven orally from the stand, and that his direct					

NORTH CAROLINA UTILITIES COMMISSION

Feb 13 2019

1	and rebuttal exhibits be marked for identification as
2	prefiled.
3	CHAIRMAN FINLEY: Mr. Gajda's direct
4	prefiled testimony of 65 pages is copied into the
5	record as though given orally from the stand, and his
6	one direct exhibit is marked for identification as
7	premarked in the filing. His rebuttal testimony of 52
8	pages is copied into the record as though given orally
9	from the stand, and his four rebuttal exhibits are
10	marked for identification as premarked in the filing.
11	MR. JIRAK: Thank you.
12	(WHEREUPON, Gajda Exhibit 1 is
13	marked for identification as
14	prefiled.)
15	(WHEREUPON, the prefiled direct
16	testimony of JOHN W. GAJDA as
17	corrected is copied into the
18	record as if given orally from the
19	stand.)
20	
21	
22	
23	
24	

NORTH CAROLINA UTILITIES COMMISSION

BEFORE THE NORTH CAROLINA UTILITIES COMMISSION

DOCKET NO. E-100, SUB 101

In the Matter of)	DIRECT TESTIMONY OF
Petition for Approval of Generator)	JOHN W. GAJDA
Interconnection Standard)	ON BEHALF OF DUKE ENERGY
)	CAROLINAS, LLC AND DUKE
)	ENERGY PROGRESS, LLC

OFFICIAL COPY

alor 13 2019

099

1 Q. PLEASE STATE YOUR NAME AND BUSINESS ADDRESS.

A. My name is John Gajda, and my business address is 3401 Hillsborough
Street, Raleigh, North Carolina.

4 Q. WHAT IS YOUR POSITION WITH DUKE ENERGY 5 CORPORATION?

A. I am on a Developmental Assignment for Duke Energy Corporation ("Duke
Energy"), which is a type of "Special Projects" designation, working in the
System Operations Services group.

9 Q. PLEASE BRIEFLY SUMMARIZE YOUR EDUCATIONAL 10 BACKGROUND.

11 I attained a Bachelor of Science degree in Electrical Engineering from the A. 12 University of Arkansas in 1990, and a Master of Science degree in Electrical 13 Engineering from North Carolina State University in 1994. From 2010 to 14 2014, I taught full or partial courses at North Carolina State University in 15 Power Systems Analysis, System Protection, and Smart Power Distribution 16 Systems, and since then offer occasional guest lectures in the Electrical and 17 Computer Engineering Department. I have been a licensed Professional 18 Engineer in North Carolina since 1996, and am also licensed in South 19 Carolina and Florida. I am also a Senior Member of the Institute of 20 Electrical and Electronics Engineers.

21 Q. PLEASE DESCRIBE YOUR ENGINEERING AND TECHNICAL 22 BACKGROUND AND EXPERIENCE.

1	A.	During the first eleven years of my career (1990-2001), I held several
2		positions: as oilfield automation engineer for Conoco Oil Company (2
3		years); medium voltage motor control specification engineer for Siemens (1
4		year); Electric Systems Engineer for North Carolina Electrical Membership
5		Cooperation ("NCEMC") (5 years), Project Manager/Engineer for
6		Electrical Engineering Consulting & Testing, P.C. (2 years), and Utilities
7		Engineer for the Public Staff of the North Carolina Utilities Commission (1
8		year). During my time at NCEMC, I was responsible for the design and
9		implementation of several distribution & sub-transmission system
10		protection and control projects related to the 15 MW Buxton Generating
11		Station and the 3 MW Ocracoke Generating Station.
12		Since 2001, I have been employed by Duke Energy (and predecessor
13		company Progress Energy), where I arrived as a mid-career entrant bringing
14		experience primarily in system protection and generator interconnection
15		and controls. I served in various roles in the Distribution Department from
16		2001 through 2013, where I have been increasingly responsible for
17		providing technical direction and consultation within the Distribution
18		Planning group, the Power Quality & Reliability group, and Distribution
19		Standards. Significant projects I have worked on include: (1) in 2003, I

designed and project managed the interconnection of a 3 MW landfill gas
Generating Facility to a 12 kV distribution circuit in Progress Energy
Florida (now Duke Energy Florida); (2) in 2005, I led a Progress Energywide training effort for field engineers focused on protective device

1	coordination and distribution system protection; (3) in 2006, I authored a
2	complete re-write of Progress Energy's Distribution Protective
3	Coordination Manual; (4) during the period 2006 through 2009, I performed
4	multiple interconnection studies, and completed project management and
5	distribution interconnection for a 4 MW hydroelectric facility, a 3 MW
6	landfill gas facility, and a 10 MW landfill gas facility to the Progress Energy
7	Carolinas system; (5) from the period 2003 through 2012, I served as the
8	primary technical resource to oversee all Progress Energy Carolinas'
9	distribution interconnection requests, whether small net-metered facilities
10	or multi-megawatt generators; (6) in 2008, I co-authored a paper titled
11	"Distributed Generation Intertie With Advanced Recloser Control," which
12	I presented at the 2008 Georgia Tech Relay Conference and which
13	additionally formed the basis for Progress Energy's standard
14	interconnection design; (7) in 2012, I performed an analysis of the planning
15	limits for the Progress Energy Carolinas' standard distribution circuit
16	design, and designed alternative construction methods to increase circuit
17	capacity by over 50%.

18 During 2013-2014, I served as Lead Engineer in the Protection & 19 Controls Engineering group within the Transmission department, where I 20 was responsible for engineer oversight and re-design of relay settings 21 philosophies for DEP's mobile substation fleet.

From 2014 through 2018, I served as Manager/Director of
Distributed Energy Resources ("DER") Technical Standards within the

1		Distribution Energy Resources department, where I was responsible for			
2		development and refinement of new technical standards related to			
3		interconnection and integration of DER into the Duke Energy Progress,			
4		LLC ("DEP") and Duke Energy Carolinas, LLC ("DEC" and, together with			
5		DEP, the "Companies" or the "Duke Utilities") systems in North Carolina			
6		and South Carolina. Since mid-July 2018, I have served in a technical			
7		consultation role within the System Operations Services department.			
8		During my time at Duke Energy, I have been an active member in			
9		the development of IEEE 1547.7-2013 (IEEE Guide for Conducting			
10		Distribution Impact Studies for Distributed Resource Interconnection), and			
11		of IEEE 1547-2018 (IEEE Standard for Interconnection and Interoperability			
12		of DER with Associated Electric Power Systems Interfaces).			
13		In 2018 I led the initiation of the Duke Energy DER Technical			
14		Standards Review Group ("TSRG"), designed as a forum for Duke Energy			
15		engineers and DER facility engineers to discuss Duke Energy technical			
16		policies surrounding interconnection, as well as technical and technology			
17		developments in DER interconnection. This group has now met three times			
18		for all-day sessions on the following dates: April 11, 2018; July 19, 2018;			
19		and on October 23-24, 2018.			
20	Q.	WHAT ARE YOUR RESPONSIBILITIES IN YOUR CURRENT			
21		POSITION?			
22	A.	. In my current role, I provide internal technical consultation related to FERC			
23		Order 845 compliance, and lead Duke Energy's involvement in the new			
	DIRECT TESTIMONY OF JOHN W. GAJDA Page 5				

1IEEE P2800 Standard for Interconnection and Interoperability of Inverter-2Based Resources Interconnecting with Associated Transmission Electric3Power Systems. I secondarily also remain an internal consultant on4technical matters related to generator interconnection to the transmission5and/or distribution system.

6 Q. HAVE YOU PREVIOUSLY TESTIFIED BEFORE THE NORTH 7 CAROLINA UTILITIES COMMISSION?

A. Yes, although only in my prior capacity as an engineer working in the
Electric Division of the Public Staff. As I recall I had brief testimonies on
three occasions: January 8, 2001, in Dockets E-43, Sub 2, and E-48, Sub 4;
May 7, 2001, in Docket E-2, Sub 780; and May 9, 2001, in Docket E-43,
Sub 2.

13 Q. WHAT IS THE PURPOSE OF YOUR TESTIMONY?

My testimony supports the Companies' proposed modifications to the 14 A. 15 currently-approved North Carolina Interconnection Procedures ("NC 16 Procedures"). I begin by providing a technical perspective on Duke Energy's interconnection efforts and challenges faced over the past few 17 18 years. I next discuss my and the Duke Energy team's participation in the 19 recent Advanced Energy ("AE")-led interconnection stakeholder process 20 that was held during the summer and fall of 2017 ("2017 Stakeholder 21 Process"). I also support the Companies' proposed limited modifications to 22 the currently-approved Section 3 Fast Track and Supplemental Review 23 process, and explain why the Companies do not support the major overhaul

1 to this Section advocated for by the Interstate Renewable Energy Council 2 ("IREC") and certain other parties during the recent AE-led stakeholder 3 process. Overall, the Companies see limited structural issues within the 4 technical evaluation portions of the NC Procedures, and do not believe that 5 extensive revisions are necessary at this time. Last, I discuss the 6 Companies' ongoing efforts to foster greater transparency and improved 7 technical understanding of the Companies' evolving interconnection 8 standards and technical requirements, including through the recent 9 formation of the Duke Energy-led TSRG.

10 Q. ARE YOU SPONSORING ANY EXHIBITS WITH YOUR DIRECT 11 TESTIMONY?

A. Yes, DEC/DEP Exhibit JWG-1 to my testimony is an updated version of
the "Joint Utilities Redline" of the NC Procedures previously filed on March
12, 2018, by the Companies as well as Dominion Energy North Carolina
("Dominion"). This updated NC Procedures Redline tracks changes to the
"current" NC Procedures, which includes the Interim Modifications to the
NC Procedures approved by the Commission in its October 5, 2018 order
filed in this docket.

19Q.ARETHECOMPANIESPROPOSINGANY"NEW"20MODIFICATIONS TO THE NC PROCEDURES OTHER THAN21THOSE INCLUDED IN THE MARCH 12, 2018 JOINT UTILITIES22REDLINE?

1	A.	Yes. The Companies' redline to the NC Procedures contains several
2		additional modifications to the NC Procedures that largely clarify existing
3		provisions. Specifically, these modifications are to NC Procedures Sections
4		1.8.3.2 (clarifying timing of scoping meetings for interdependent
5		Interconnection Customers), 2.2.1 (clarifying when a Section 2 project will
6		require Fast Track screening), 3.1 (allowing utility and Interconnection
7		Customer to mutually agree to Fast Track evaluation); 3.2 (clarifying that
8		interdependency applies to Section 3 Interconnection Requests), 3.4.1.3
9		(clarifying that a Facility Study may be required for projects approved in
10		Supplemental Review), 6.2 (establishing timeframes for concluding
11		informal dispute resolution process), and 6.5 (establishing post-
12		commissioning inspections). The Companies are also adding detail in the
13		Interconnection Request forms included in the NC Procedures as
14		Attachment 2 and Attachment 6 to allow Interconnection Customers to
15		designate whether the Generating Facility is either customer-owned or
16		leased from an electric generator lessor.

17 Q. PLEASE PROVIDE AN OVERVIEW OF YOUR DIRECT 18 TESTIMONY.

19	A.	I have divided my	Direct Testimony int	to the following sections:
----	----	-------------------	----------------------	----------------------------

Sect	ion	Page
I.	NORTH CAROLINA'S INTERCONNECTION LANDSCAPE AND THE 2017 STAKEHOLDER PROCESS	9
II.	OVERVIEW OF THE NORTH CAROLINA INTERCONNECTION	14

106

Section		Page
	STUDY PROCESS	
III.	FAST TRACK AND SUPPLEMENTAL REVIEW	19
IV.	MATERIAL MODIFICATION & NEW TECHNOLOGIES	37
v.	INSPECTION OF INTERCONNECTED GENERATING FACILITIES	41
VI.	GOOD UTILITY PRACTICE	45
VII.	PROMOTING TRANSPARENCY AND TECHNICAL UNDERSTANDING	53
VIII.	DER INTERCONNECTION AND THE FUTURE OF GRID OPERATIONS	58

1 SECTION I: NORTH CAROLINA'S INTERCONNECTION 2 LANDSCAPE AND THE 2017 STAKEHOLDER PROCESS

3 Q. **BEFORE TURNING** TO DUKE **ENERGY'S PROPOSED** 4 **MODIFICATIONS** TO THE NC **PROCEDURES**, PLEASE 5 PROVIDE THE **COMMISSION** YOUR **TECHNICAL** 6 PERSPECTIVE ON **NORTH CAROLINA'S** UNIQUE 7 INTERCONNECTION LANDSCAPE SINCE THE COMMISSION 8 LAST CONSIDERED REVISIONS TO THE NC PROCEDURES IN 9 THE SPRING OF 2015.

A. Witnesses Gary R. Freeman and Jeffrey R. Riggins provide a more general
 overview of North Carolina's unique interconnection landscape as well as
 Duke Energy's efforts to manage the interconnection process in response to
 the recent unparalleled development of utility-scale solar Generating
 Facilities proposing to interconnect to the Companies' distribution system
 and, increasingly, transmission system in North Carolina. My perspective

is more technical in nature and reflects the engineering philosophy the
 Companies have applied in implementing Duke Energy's technical
 standards related to interconnection of DER.

North Carolina continues to experience unparalleled growth in 4 5 utility-scale solar facilities seeking to interconnect to the Companies' 6 systems that exceeds the pace of growth in nearly every other state in the 7 country. Beginning before the May 2015 revisions to the NC Procedures, 8 independent power producers developing qualifying facility ("QF") multi-9 megawatt Generating Facilities began to enter the Companies' 10 interconnection queues in historic and unparalleled numbers. As of October 11 2018, there are 1,878 MW of distribution-connected DER operating in DEP 12 and DEC. Specifically, over 94% of this capacity (1,772 MW) is 13 represented by QF power-purchase type (non-net metered) Generating 14 Facilities greater than 1 MW in size. Most of these multi-megawatt DER 15 facilities are distribution-connected and 5 MW_{AC} in size. In DEP alone, as 16 of October 2018, there are over 290 Generating Facilities greater than 1 17 MW (totaling over 1300 MW), interconnected to the DEP distribution 18 system.

Nearly all of these QF generators are interconnecting to rural
distribution circuits and substations. At the circuit level, a single 5 MW
facility can consume anywhere between 25% to 70% of the capacity of a
distribution circuit. At the substation level, a growing number of rural
substations, especially in DEP, are hosting unprecedented levels of

unplanned QF solar. For example, DEP substations such as the Henderson
East 230 kV substation located in Vance County and the Fairmont 115 kV
substation located in Robeson County are now completely "stacked" with
utility-scale QF solar that has been interconnected over the past few years.
These substations are now at or quickly approaching their capability to
safely and reliably interconnect additional Generating Facilities.

7	Eiguro 1	Installad	Litility Scole	OF Solar or	Uandaraan	East 220 1-W	Substation
/	rigure i	: instaned	Utility-Scale	VF Solar on	i Henderson	East 250 KV	Substation

	Solar QF	Date	Aggregate
DEP Substation	Installed kW	Installed	Installed kW
Henderson East 230 kV	4975	8/12/2013	4975
Henderson East 230 kV	3000	3/19/2014	7975
Henderson East 230 kV	4990	12/12/2014	12965
Henderson East 230 kV	5000	5/14/2015	17965
Henderson East 230 kV	5000	8/20/2015	22965
Henderson East 230 kV	4998	1/5/2016	27963
Henderson East 230 kV	5000	11/22/2016	32963

8 Figure 2: Installed Utility-Scale QF Solar on Fairmont 115 kV Substation

	Solar QF	Date	Aggregate
DEP Substation	Installed kW	Installed	Installed kW
Fairmont 115 kV	3500	11/13/2012	3500
Fairmont 115 kV	4320	12/10/2013	7820
Fairmont 115 kV	5000	8/6/2014	12820
Fairmont 115 kV	4999	8/22/2015	17819
Fairmont 115 kV	4999	8/3/2016	22818
Fairmont 115 kV	4999	10/12/2017	27817
1	Even more significantly, each of these substations also has additional		
----	---		
2	utility-scale solar QFs in the DEP study queue requesting to interconnect.		
3	This unplanned and uncontrolled growth of new utility-scale QF Generating		
4	Facilities connected to the distribution system has resulted in a new power		
5	system phenomenon in North Carolina in which significant, variable, and		
6	intermittent reverse power flows are occurring on these and other circuits		
7	and substations across the DEP and DEC distribution systems. With solar		
8	Generating Facilities on distribution operating unscheduled and their output		
9	having no specific relation in time to the local load, the section of		
10	distribution circuit between the solar Generating Facility and its substation		
11	is increasingly operating similar to a transmission line, responsible for		
12	delivering the solar Generating Facility's energy to the substation and		
13	transmission system. This raises many questions about the future of utility		
14	distribution systems in North Carolina.		

15 Q. IS NORTH CAROLINA'S INTERCONNECTION LANDSCAPE 16 SIMILAR TO OTHER STATES'?

A. No, in my view, North Carolina's DER interconnection and distribution
system landscape is significantly more complex than other states. In
contrast to the Companies' experience, many utilities are just now starting
to encounter small increments of utility-scale distributed generation
(generally facilities above 1 MW_{AC}) being added to their distribution
systems.

1 When PURPA was initially enacted in the late 1970s, and 2 continuing until around 2010, interconnecting facilities of this large size-3 above 1 MW_{AC}—occurred rarely, with such projects being considered "special" and "unique" due to their large size. Today, these increasingly 4 5 large, mostly 5 MW, Generating Facilities have become the "norm" in 6 North Carolina, but not without difficulties. As I discuss later in my 7 testimony, interconnecting these vast quantities of large, uncontrolled power export QF Generating Facilities to the distribution system has 8 9 required new and evolving technical standards to mitigate the potential for 10 localized power quality impacts and distribution system reliability risks, and 11 to proactively manage potential future challenges in planning and operating 12 the distribution and transmission system.

Q. PLEASE BRIEFLY PROVIDE AN OVERVIEW OF DUKE ENERGY'S PARTICIPATION IN THE 2017 STAKEHOLDER PROCESS, AND HIGHLIGHT YOUR ROLE IN THE PROCESS.

16 Advanced Energy facilitated the 2017 stakeholder process to review and 17 discuss potential revisions to the NC Procedures. At the outset, AE organized four Working Groups, all of which the Companies actively 18 19 participated in, along with other parties such as the Public Staff, Dominion, 20 renewable energy developers, and numerous other stakeholders. These 21 Working Groups were organized into four functional groups: 22 (1) Interconnection Procedures, (2) New Technologies, (3) Studies & 23 Screens, and (4) Queue Management, Certification of Generating Facilities.

1		Specifically, I led and facilitated Working Group meetings for two of the
2		four working groups (Working Groups #3 and #4). In addition to AE's
3		Working Groups, the Companies attended and sometimes arranged general
4		stakeholder meetings over a period spanning more than six months. The
5		groups covered a number of issues at varying levels of depth, including: (1)
6		utility construction and design standards; (2) power quality monitoring and
7		communications equipment; (3) the Fast Track and Supplemental Review
8		process; (4) the potential reinsertion of an initial feasibility study into the
9		Section 4 study process; (5) enhancements to the scoping meeting process;
10		(6) interconnection study reporting; and, (7) optional cluster studies.
11	Q.	IN YOUR VIEW, WAS THE 2017 STAKEHOLDER PROCESS
12		BENEFICIAL?
13	A.	Yes. This process was beneficial in providing a platform for constructive
14		technical and policy discussions on necessary revisions to the NC
15		Procedures. The 2017 Stakeholder Process also facilitated full or partial-
16		consensus on a number of modifications to the NC Procedures.
17 18		SECTION II: OVERVIEW OF THE NORTH CAROLINA INTERCONNECTION STUDY PROCESS
19	Q.	PLEASE PROVIDE AN OVERVIEW OF THE NORTH CAROLINA
20		STUDY PROCESS FOR INTERCONNECTION PROJECTS, AND
21		HOW PROJECTS OF DIFFERENT SIZES ARE HANDLED

22 **DIFFERENTLY.**

1	A.	The nature of DER interconnections can vary greatly based on facility size.
2		The potential for system reliability or power quality impacts to the local
3		distribution system or to other customers from interconnecting a 5 kW
4		residential rooftop photovoltaic ("PV) installation will be inherently
5		different than a 50 kW commercial rooftop PV installation, which will differ
6		even further from that of a 5 MW solar Generating Facility.
7		Correspondingly, the need for and appropriate level of review of each of
8		these DER's resulting impacts on the distribution system differ greatly.
9		Accordingly, the NC Procedures are designed to allow the utility to expend
10		time and resources evaluating an Interconnection Request that are
11		appropriate given to the interconnection's likely impact to the distribution
12		system, which can and often does correlate directly to facility size. Through
13		the NC Procedures, the utility is to determine how to interconnect the
14		proposed Generating Facility while maintaining operational safety,
15		reliability, and power quality, for the power system in the area of
16		interconnection and the Companies' system as a whole. In order to make
17		this determination, the NC Procedures contains several study processes that
18		are, initially based on project size due to the reasons I mentioned earlier.

PLEASE DESCRIBE THE SECTION 2 STUDY PROCESS 19 Q. 20 CONTAINED IN THE NC PROCEDURES.

21 Section 2 of the NC Procedures provides an expedited process for A. Generating Facilities 20 kW or less, which are generally residential or small 22 commercial facilities. This process is specifically called the "Optional 20 23

1 kW Inverter Process for Certified Inverter-Based Generating Facilities No 2 Larger than 20 kW." Individually these installations often resemble the 3 installation of a large appliance, and typically do not require specialized 4 design by the utility to accommodate the interconnection. Therefore, this 5 study process generally allows these small projects to proceed to 6 interconnection relatively quickly.

7 Q. PLEASE EXPLAIN WHY THIS PROCESS IS LIMITED TO 8 CERTIFIED INVERTER-BASED TECHNOLOGIES.

9 The NC Procedures recognize that certified inverter-based technology can A. 10 be safely and reliably interconnected to the utility's system through a more 11 expedited process. To be certified, the inverters are equipped with some 12 industry-standard technical specifications such as Underwriters 13 Laboratories' UL1741, which provide some assurance to the utility industry 14 of proper grid interactive operation (like automatic shutdown when there is 15 a loss of utility source).

Q. HOW ARE IMPACTS TO THE DISTRIBUTION SYSTEM FOR PROJECTS STUDIED UNDER THE SECTION 2 STUDY PROCESS DETERMINED?

A. Individually, Section 2 facilities are expected in many cases to have little
impact to the distribution system, although when aggregated (*e.g.*, all
homeowners on one service transformer installing solar), there is the
potential for greater impact. The Companies undertake a technical
screening process to evaluate these facilities for potential impacts to the

distribution system. When a facility fails a technical screen and is
 determined to potentially impact the distribution system, the NC Procedures
 allows for these projects to be scrutinized further, under the Section 3 or
 Section 4 study process.

5 Q. YOU MENTIONED THE SECTION 3 STUDY PROCESS, CAN YOU 6 EXPAND ON THIS STUDY PROCESS FOR THESE SMALLER 7 SIZED FACILITIES?

8 Section 3 of the NC Procedures similarly provides for a more expedited A. 9 study process for slightly larger projects, specifically called the "Optional 10 Fast Track Process for Certified Generating Facilities." This process 11 recognizes that projects between 20 kW and 2 MW in size may, depending 12 upon their attributes, have few impacts to the surrounding utility system, 13 and therefore should have an opportunity to move to interconnection with 14 relative speed if lack of impact can be determined. However, if a facility 15 proceeding through this study process is determined to possibly have some 16 amount of impact, the Section 3.4 Supplemental Review process allows the 17 facility to be studied further. Importantly, however, the Supplemental Review process allows these smaller facilities' impacts to undergo slight 18 19 additional review without expending significant amounts of time in study, 20 thereby allowing these facilities, which potentially require only 21 interconnection facilities or minor modifications to the utility's system, to 22 proceed to interconnection quickly.

Q. PREVIOUSLY YOU ALSO MENTIONED THE SECTION 4 STUDY PROCESS. CAN YOU BRIEFLY ELABORATE ON THIS PROCESS AND ITS APPLICATION TO SMALLER FACILITIES AS WELL?

4 A. Yes. Section 4 of the NC Procedures recognizes that when a finding of no 5 significant impact cannot be well determined for "Section 2" or "Section 3" 6 projects, a conventional or "full" interconnection study should be performed 7 in order to determine potential system impacts and the need for system upgrades required to mitigate impacts identified through study. This type 8 9 of study relies on further modeling, somewhat similar to the type of 10 modeling a distribution planning engineer might do for a planning study, 11 short circuit modeling and protective coordination analysis, along with 12 voltage and thermal/loading modeling and analysis. I elaborate on this 13 process further below.

14 Q. WHAT SIZE GENERATING FACILITIES ARE STUDIED FOR 15 INTERCONNECTION UNDER THE SECTION 4 FULL STUDY 16 PROCESS?

A. This process is applicable to Generating Facilities that are greater than
2 MW in size and planning to sell their full output to the utility to which it
is interconnecting. However, facilities of any size that are not certified are
also studied under this process, as well as facilities of any size that are
certified but did not pass the Fast Track Process or the 20 kW Inverter
Process.

23

1		SECTION III: FAST	TRACK AN	D SUPPLEM	ENTAL	REVIE	W
2	Q.	PLEASE EXPLAIN F	URTHER HO	OW THE "FA	AST TR	АСК" А	ND
3		"SUPPLEMENTAL	REVIEW "	SECTIONS	OF	THE	NC
4		PROCEDURES ARE	DESIGNED	AND HOW	THEY	WORK	IN
5		PRACTICE.					

6 A. Section 3 of the NC Procedures provides the structure for studying certified 7 Generating Facilities greater than 20 kW up to 2 MW in size, known as the 8 "Fast Track" process, which can encompass anything from small 9 commercial rooftop solar to smaller ground-mounted utility-scale solar. 10 Facilities of this size may be expected to have potential impacts either 11 individually, or in aggregate with other Generating Facilities in a 12 concentrated area. The NC Procedures facilitate expedited study of Fast 13 Track eligible Interconnection Requests through evaluation of technical 14 screens (known as the "Fast Track screens") to determine whether or not 15 impacts of the proposed facility require further review. "Failure" of 16 technical screens is not a negative moniker; rather this is a "flag" to assure 17 that potential impacts to the system caused by the proposed facility are 18 either (1) further checked and confirmed to be *de minimis*, or (2) resolved 19 through some kind of engineering solution, such as a facility Upgrade to the 20 utility's system. When possible this additional review is completed within 21 the "Supplemental Review" process briefly discussed above, which again 22 simply provides time for the utility to directly evaluate potential system 23 impacts, beyond just indicative screening criteria. For example, under

Supplemental Review, the most important additional evaluation includes circuit modeling under a minimum load scenario to check for the possibility of overvoltage impacts. When additional review time appears necessary to expand review to something closer to a full "study," and the extent of such additional review is difficult to determine ahead of time, the project proceeds to the full Section 4 Study Process.

7 Q. PLEASE DISCUSS THE COMPANIES' PROPOSED 8 MODIFICATIONS TO THIS SECTION 3 PROCESS, AS DETAILED 9 IN THE NC PROCEDURES REDLINE.

10A.The Companies ultimately proposed very few changes to the Fast Track and11Supplemental Review Processes. The most significant change proposed by12the Companies is to offer Fast Track Interconnection Customers the option13to move directly to Supplemental Review without the need to request an14additional deposit after a customer options communication, if an15Interconnection Customer so selected ahead of time in the Interconnection16Request.

17 Q. PLEASE DESCRIBE THE SPECIFIC NC PROCEDURES
 18 SECTIONS AND MODIFICATIONS PROPOSED BY THE
 19 COMPANIES RELATING TO FAST TRACK.

- A. The Companies propose the following substantive changes to the NC
 Procedures Fast Track process:
- 22 Section 3.1: The Companies are proposing to allow a utility and 23 Interconnection Customer to mutually agree that an Interconnection

1 Request can be studied pursuant to the Section 3 process even if the 2 Interconnection Customer otherwise would not be eligible for Fast Track. 3 Section 3.1.1: In order to provide greater efficiency in the Fast Track and 4 Supplemental Review process, the Companies propose the addition of a 5 Section 3.1.1, to allow the Interconnection Customer the option to elect to 6 proceed directly to Supplemental Review. This new Section 3.1.3 benefits 7 Interconnection Customers by allowing them the option to proceed directly to Supplemental Review and avoid the natural delays involved when having 8 9 to transition from Fast Track to Supplemental Review. 10 **Section 3.2.1.4**: The Companies propose the deletion of a provision related 11 to synchronous and induction generators, since the Fast Track section is 12 generally restricted to inverter-based generation only. 13 Section 3.3: The Companies in this updated section clarify that when the 14 Fast Track process is insufficient and further evaluation is necessary, the 15 Companies will provide data and analyses underlying this conclusion *upon* 16 request by the Interconnection Customer. Based on the Companies' experience, the majority of Interconnection Customers have not previously 17 18 requested this information. Additionally, requiring this information to be 19 given to each Interconnection Customer, even when unneeded, can lead to 20 increased costs and the consumption of engineering resources that could 21 otherwise be spent processing additional Interconnection Requests. Thus, the Companies propose to provide the information outlined in Section 3.3 22

23 upon request by an Interconnection Customer.

1		Section 3.3.2: The Companies clarify that an Interconnection Customer
2		must accept the offer of Supplemental Review in writing. This update is
3		simply to assure clear documentation and communication between the
4		utility and the customer.
5		Section 3.4.1.2: The Companies propose to add language to this section
6		preventing the utility from preparing an unnecessary Interconnection
7		Agreement, in the event an Interconnection Customer is not agreeable to
8		making changes to their facility design to accommodate an interconnection.
9		Additionally, the Companies propose the below changes that are
10		more clerical nature as follows:
11		Section 3.1: The Companies propose deletion of a redundant phrase
12		referencing "inverters."
13		Section 3.2.2.4: The Companies propose to add language to this section to
14		make it consistent with Section 3.2.2.2.
15		Section 3.4: The Companies propose to change the timeline outlined in this
16		section from 15 to 10 Business Days, to correct an inconsistency between
17		Sections 3.3.2 and 3.4.
18	Q.	WHY HAVE THE COMPANIES PROPOSED TO ALLOW
19		INTERCONNECTION CUSTOMERS TO PRE-DESIGNATE
20		THEIR INTENT TO PROCEED DIRECTLY TO SUPPLEMENTAL
21		REVIEW?
22	A.	Currently under Fast Track, screen failure requires a pause in the process to
23		allow for a back-and-forth communication between the utility and

1 Interconnection Customer. This particular communication is required to 2 (1) inform the Interconnection Customer of the screen failure; (2) request 3 authorization to proceed the facility to additional study through Supplemental Review; and (3) request an additional deposit to continue the 4 5 evaluation under the Supplemental Review process. Under the Companies' 6 proposal, if an Interconnection Customer (after consultation with the 7 Companies or based on their own experience) believes they may fail the 8 Fast Track technical screens, they can simply go straight to Supplemental 9 Review without spending time under the Fast Track study process. This 10 modification would allow projects to be processed more quickly and to 11 more efficiently proceed to Supplemental Review if and when they fail one 12 or more Fast Track screens.

Q. DURING THE RECENT AE-LED STAKEHOLDER PROCESS, DID OTHER PARTIES RECOMMEND MORE SIGNIFICANT CHANGES TO THE FAST TRACK AND SUPPLEMENTAL REVIEW PROCESS?

A. Yes. IREC proposed significant changes to the Section 3 Fast Track and
Supplemental Review process, including: (1) expanding Fast Track
eligibility under NC Procedures Section 3.1; (2) modifying the 15% peak
load Fast Track screen in Section 3.2.1.2; and, (3) recommending an overall
redrafting of Supplemental Review Section 3.4, to replace the current
process with a number of additional supplemental screens.

3 A. During the AE-led stakeholder process, IREC proposed to increase the Fast 4 Track eligibility limit for ~ 25 kV and 34.5 kV class circuits (≥ 15 kV and 5 < 35 kV) from 2 MW to 3 MW, for locations within 2.5 miles of the 6 substation. This change provides no benefit to Interconnection Customers, 7 and the Companies therefore do not support the proposal. Specifically, no benefit is provided by this change because multi-MW facilities, whether 1 8 9 MW or above, generally require a system protection study be performed in 10 order to assure proper series overcurrent element coordination between all 11 distribution protection devices. However, as noted above, the Companies 12 support a minor change to Section 3.1 to allow an Interconnection Customer 13 and the utility to mutually agree to evaluate an Interconnection Request 14 through the Section 3 process even if the Interconnection Customer 15 otherwise would not qualify for Fast Track. The Companies believe this 16 flexibility is reasonable and allows DEC and DEP to assess potential unique 17 situations where larger or unique Generating Facility interconnections may 18 be appropriately studied through Fast Track.

19 Q. DID IREC PROPOSE ANY ADDITIONAL CHANGES TO THE

20 FAST TRACK ELIGIBILITY LIMITS?

A. Yes. IREC also proposed increasing the Fast Track eligibility limit for 5 kV
class circuits in any location on a circuit from 100 kW to 500 kW. For DEC,
DEP, and even Dominion, 5 kV class circuits (also known as 4160 volt

1	circuits) are of a legacy design and configuration, often dating back to the
2	early to mid-20 th century. This existing distribution infrastructure design is
3	still appropriate to reliably serve small areas of dense customer load, but
4	due to it being older, with the potential for designs and type of components
5	which work fine but are no longer used elsewhere, the Companies assert
6	that the potential risk for system impacts occurring to the system from larger
7	generator interconnections above 100 kW is significant. Furthermore, these
8	circuits are in the extreme minority in North Carolina – only about 6% of
9	Duke Energy's distribution circuits in North Carolina are 5 kV class (~195
10	out of a total of ~3,170 distribution circuits in North Carolina, mostly
11	located in urban districts). Therefore, due to the small number of circuits
12	involved, and increased possibility of reliability and operational risks
13	resulting from the proposal, the Companies believe that increasing Section
14	3.1 Fast Track eligibility to include Interconnection Requests between the
15	existing 100 kW limit and IREC's proposed 500 kW is inappropriate.
16	Additionally, the Companies note that IREC's increased Fast Track
17	eligibility proposals seemingly mirror the equivalent table in the FERC-
18	approved Small Generator Interconnection Procedures ("SGIP"). However,
19	the Companies assert that adherence to the SGIP is not "one size fits all"
20	and, in this case, is not in North Carolina's best interests; rather, a serious
21	and functional consideration of North Carolina's infrastructure and unique
22	circumstances should be considered in establishing the NC Procedures.

1Q.PLEASE EXPLAIN WHY THE COMPANIES DO NOT SUPPORT2IREC'S PROPOSALS TO MODIFY THE FAST TRACK SCREENS.3A.During the 2017 Stakeholder Process, IREC proposed a change to the 15%4peak load screen in Section 3.2.1.2. The Companies do not support IREC's5proposed changes to the 15% load screen because modifying application of6this screen as IREC suggests removes an extremely important "flagging

7 step" in the interconnection process. This "flagging step" is important as 8 DER penetration grows behind individual service transformers. This is 9 because in North Carolina, customer-sited residential and commercial rooftop solar is primarily "net-metered" in nature versus being designed 10 11 solely for "power export." As this customer-sited roof top solar continues 12 to grow, the risk of uncontrolled high voltage [defined as voltage in excess 13 of 105% of nominal value, as specified in NCUC Rule 8-17 (b) (1)] for other 14 retail load customers served off a common transformer will grow. Thus, 15 the 15% screen is a valuable "flagging step" in identifying the potential for 16 uncontrolled high voltage occurrences. Therefore, the 15% screen is 17 necessary to mitigate this problem before it occurs, rather than waiting for 18 negative consequences to result.

19 Q. DOES THE FACT THAT MANY FAST TRACK-ELIGIBLE 20 PROJECTS ARE NOT PASSING THE FAST TRACK SCREENS 21 SIGNIFY THAT THE FAST TRACK PROCESS IS NOT WORKING 22 EFFECTIVELY?

1 No, the fact that many Fast Track-eligible projects are not passing Fast A. 2 Track screens does not signify that the Fast Track process is not working 3 effectively. During the 2017 Stakeholder Process, the Companies shared 4 how the majority of Interconnection Requests proposing to interconnect to 5 the Duke Utilities under Fast Track initially fail the Fast Track screens, but 6 are then successfully evaluated for interconnection through Supplemental 7 IREC suggested these screen failures are evidence that the Review. 8 Companies are not applying the Fast Track screens appropriately. 9 However, similar logic would lead one to conclude that since the vast 10 majority of college students fail to attain a grade point average in excess of 11 3.75, university professors must be designing their tests to be too difficult. 12 WOULD AN INTERCONNECTION CUSTOMER THAT FAILS A **Q**. FAST 13 TRACK **SCREEN** BE **PROHIBITED** FROM 14 **INTERCONNECTING AS A RESULT?**

15 A. No. Just as many college students that obtain a grade point average below 16 3.75 still successfully navigate college and graduate, Interconnection 17 Customers that fail one or more section 3.2 Fast Track "Initial Review" 18 screens can similarly still proceed efficiently through Supplemental Review 19 or, if needed, the Section 4 full study process to support the interconnection. 20 Although the Companies do not dispute that a significant number of projects 21 "fail" the Section 3.2.1.2 screen, a screen failure is not a "bad grade," rather, 22 these screens are designed to be "flagging mechanisms" and simply 23 represent a step in the project's continued movement through the

1 interconnection process. Failure of a screen simply indicates to the utility's 2 engineers that closer scrutiny of the proposed generator interconnection is 3 needed to ensure the interconnection can be accomplished safely and 4 reliably, in accordance with the NC Procedures. A screen failure gives the 5 utility the opportunity to identify through Supplemental Review local 6 pockets of high solar penetration as they begin to occur, which is valuable 7 information for the utility as it continues to assess the increasing impacts of distributed generation. 8

9 In conclusion, the Fast Track screens should be viewed as an alert 10 mechanism for identifying any potential impacts from proposed 11 interconnections, which if undetected, can potentially create an unsafe 12 customer-sited generator interconnection and, potentially, future costs to 13 both the utility and its customers.

14 Q. PLEASE SUMMARIZE THE COMPANIES' POSITION ON IREC'S 15 PROPOSED REVISIONS RELATING TO THE FAST TRACK 16 SCREENS.

17 A. For the reasons discussed above, the Companies do not support 18 modifications to the 15% of peak load screen and the other Fast Track 19 screens. The Companies also do not support changes to the current 20 approach to sectionalizing a "line section" in applying the 15% screen, as 21 the current approach is reasonable and continues to represent Good Utility 22 Practice at this time to ensure safe and reliable interconnection of new 23 Generating Facilities under the Fast Track process. The Companies also

commit to continue to monitor evolving utility industry standards related to
 interconnecting small generators, in addition to monitoring actual
 performance on their systems and at customers' facilities, in order to better
 determine whether evolving the Fast Track screens under the NC
 Procedures may be warranted at any point in the future.

Q. LOOKING AHEAD, ARE THE COMPANIES CONTINUING TO 7 EVALUATE WAYS TO IMPROVE THE EFFICIENCY OF THE 8 FAST TRACK AND SUPPLEMENTAL REVIEW PROCESS?

9 Yes. A. The Companies recognize the importance of providing 10 Interconnection Customers an efficient Fast Track and Supplemental 11 Review process that is protective of system safety and reliability, while 12 additionally ensuring that power quality is maintained for all customers. The Companies are more than willing to discuss further ways to improve 13 14 the Fast Track process, and recommend doing so through the newly formed 15 and operating TSRG.

16 Q. TURNING TO SUPPLEMENTAL REVIEW, WHAT
 17 MODIFICATIONS HAVE THE COMPANIES PROPOSED TO THIS
 18 SECTION?

- A. The Companies propose only two minor changes to the SupplementalReview process:
- Section 3.4: The Companies propose to change the timeline in Section 3.4
 from 15 to 10 Business Days, to correct an inconsistency between Sections
- 23 3.3.2 and 3.4.

Section 3.4.1.2: The Companies propose to add language that prevents the
 Utility from unnecessarily preparing an Interconnection Agreement, in the
 event an Interconnection Customer is not agreeable to making changes to
 their facility design to accommodate an interconnection where the
 Companies determine that potentially costly interconnection facilities or
 Upgrades are required.

Q. PLEASE EXPLAIN WHY THE COMPANIES BELIEVE THAT NORTH CAROLINA'S SUPPLEMENTAL REVIEW PROCESS NEEDS ONLY LIMITED MODIFICATIONS AT THIS TIME.

10 A. The current Supplemental Review process provides valuable flexibility for both the Utility and the Interconnection Customer. Additionally, the 11 12 Companies have utilized the Supplemental Review process with much 13 success; when a project fails to pass one or more Fast Track screens, the 14 project most often proceeds to Supplemental Review where it is then 15 successfully evaluated. In some cases, Fast Track-eligible projects require 16 additional technical evaluation but do not need to undergo the Section 4 17 study process to ensure they can be safely and reliably interconnected. This 18 happens, for example, when the Companies evaluate a moderately-sized 19 commercial PV system greater than 20 kW in size, like a 50 kW sized 20 project. Although this project may not pass the 15% load screen, either at 21 the transformer zone or line section zone, and the screen failure may be 22 solely from its own capacity or caused in part by local aggregate PV close 23 by, the facility's location on or very near a circuit backbone with no

1	complicating factors (like voltage regulators) may keep its impact minimal
2	and not require the engineering labor involved in extensive circuit
3	modeling. In these cases the Supplemental Review process offers flexibility
4	for some small amount of "study" (e.g., further investigation in circuit
5	topology) that cannot occur through simple screen evaluations. However,
6	larger projects or locations with more complexity may be referred to the
7	Section 4 study process to assure that circuit impacts of interconnecting the
8	proposed Generating Facility are well-understood before proceeding to an
9	Interconnection Agreement.

10 Q. PLEASE EXPLAIN WHY THE COMPANIES SPECIFICALLY 11 REJECT THE ADDITION OF SCREENS TO THE 12 SUPPLEMENTAL REVIEW PROCESS.

13 A. The addition of standardized screens to the Supplemental Review process 14 implies that there is a complete and uniform understanding of every possible 15 future design of DER and how it might connect to the distribution system, 16 and, moreover, that distribution systems in North Carolina are 100% 17 equivalent to distribution systems elsewhere. Neither premise is correct. 18 Rather than adopting new screens within the Supplemental Review process, 19 the Companies would support a process of continual evaluation of the Fast 20 Track process screens, taking into account the specifics of the distribution 21 systems involved, along with industry developments. The Companies' 22 recently formed TSRG will provide a forum to evaluate whether a more

well-defined Supplemental Review process would create benefits over the
 current flexible Supplemental Review process that exists today.
 Q. PLEASE EXPLAIN DUKE ENERGY'S SPECIFIC CONCERNS

WITH ADOPTING IREC'S PROPOSED 100% MINIMUM LOAD SCREEN AS AN "EFFECTIVE" SUPPLEMENTAL REVIEW.

A. The Companies do not support "supplementing" the Fast Track 90% of
substation and circuit minimum load screen with IREC's suggestion for a
less stringent 100% of minimum load screen in Supplemental Review.

9 The 90% minimum load screen is designed to make the important 10 determination of whether a proposed Generating Facility may cause 11 "backfeed" or reverse flow to occur at the critical circuit and substation 12 zones. Backfeed occurs where, at any one instant in time, the load in a 13 particular distribution system zone is exceeded by interconnected generation operating in that same zone. While this issue has not been well-14 15 addressed in utility industry standards, it is a critical item and should not be 16 assumed to be permitted when passing all Fast Track screens. This is 17 because a known potential for backfeed raises additional technical issues 18 that must be addressed. For example, voltage regulator controls for 19 substation bus regulators and/or circuit exit voltage regulators must be of a 20 specific type and programmed a specific way in order to allow backfeed. 21 Once it is known that backfeed may occur, this issue must be addressed or 22 the utility risks creating improper voltage levels for retail load customers. 23 The use of 90% instead of 100% allows for some margin to account for the

normal and very real shifting of load patterns that occur across circuits and
 across substations. In addition, the 90% screen is a more practical analysis
 due to the metering equipment and associated data often available at critical
 circuit and substation zones that can be used for the analysis.

5 Q. ARE THERE ADDITIONAL REASONS IREC'S 100% MINIMUM 6 LOAD SUPPLEMENTAL REVIEW SCREEN SHOULD BE 7 REJECTED?

8 Yes. The Companies understand IREC's proposed 100% minimum load A. 9 Supplemental Review screen to apply to all line sections, similar to the 15% 10 peak load screen contained at Section 3.2.1.2. This approach is 11 inappropriate for several reasons. First, downstream zones will not always 12 be equipped with metering under DEP's and DEC's standard distribution 13 system design. Distribution planning models and their corresponding load 14 allocation algorithms have historically tended to focus on peak levels rather 15 than minimum load levels, making estimation of minimum load levels 16 inherently less accurate for downstream zones. Further, applying a 100% of minimum load screen would imply that minimum load levels will not 17 18 decrease. Load patterns inevitably shift around on distribution circuits, 19 making a minimum load screen at that level not appropriate for a Fast Track 20 screen. While the Companies do not support IREC's proposal with regard 21 to the 15% Fast Track screen, the Companies do commit to continue to 22 monitor industry standards, practices, and trends, as well as engage in 23 further dialogue about these issues through the now-operating TSRG.

Q. PLEASE EXPLAIN WHY DUKE ENERGY REJECTED IREC'S PROPOSED VOLTAGE AND POWER QUALITY AND SAFETY AND RELIABILITY SCREENS.

A. As the Companies asserted in an earlier answer, simply desiring to match
provisions in the FERC-approved SGIP is not sufficient justification for
change.

The Companies already consider and utilize the bulk of the items 7 specified in the voltage and power quality and safety and reliability screens 8 9 recommended by IREC, in different ways across the Fast Track, 10 Supplemental Review, and System Impact Study process, although not in 11 exactly the same way. For example, in the Supplemental Review process, 12 the minimum amount of modeling necessary is already performed to assure 13 that service to retail customers would not be adversely impacted due to the 14 proposed interconnection and will remain with proper service voltages per 15 the Commission's regulations, specifically NCUC Rule 8-17(b)(1). The 16 Companies' focus is on continuous improvement of interconnection 17 evaluations, performed accurately and expediently, to assure compliance 18 with NCUC rules and maintenance of reliability and power quality. These 19 additional proposed screens instead, act to over-prescribe to the utility how 20 to get to the end result.

Additionally, IREC's proposed screens are not necessary to effectively process Interconnection Requests, but, to the contrary, reduce flexibility and impose additional administrative burdens upon utilities administering the process, diverting resources that are better spent performing full studies and processing the queue. To administer the IRECsupported screens, the study engineer would have to specifically address and document each of these criteria, when in some cases some of these screens are not necessary to spend time on, and in other cases the subjectivity of some of the screens have high potential to cause more confusion for the study engineer and Interconnection Customer alike, with no associated value for the Interconnection Customer, the utility, or the utility's nearby retail customers. Rather, the Companies assert that they can and have effectively managed many Fast Track and Supplemental Review interconnection process and do not support these changes at this time.

1

2

3

4

5

6

7

8

9

10

11

12 The purpose of Supplemental Review is to avoid full System Impact 13 Study and increase efficiency in processing the queue where practical. In 14 my view, implementing these unnecessary screens would only further clog 15 the queue. Finally, the Commission has already declined to adopt this more 16 defined Supplemental Review Process advocated by IREC in 2015, based 17 on the reasoning that to do so would not support the goal of clearing the 18 queue.

Q. IN CONCLUSION, AND BASED UPON YOUR KNOWLEDGE OF
 DUKE ENERGY'S IMPLEMENTATION OF THE FAST TRACK
 PROCESS IN NORTH CAROLINA, IS THE CURRENTLY APPROVED SECTION 3 FAST TRACK AND SUPPLEMENTAL
 REVIEW PROCESS BEING SUCCESSFULLY AND

132

1 EFFECTIVELY IMPLEMENTED FOR THE BENEFIT OF THE 2 COMPANIES' CUSTOMERS?

A. Yes. The Companies believe that Interconnection Customers are most interested in safely and efficiently completing the installation of their DER project, and the Companies are interested in the same, with the additional interest of maintaining and continually enhancing a safe, reliable, and economic power system. The Companies have never had any interest, nor do they today, in not attempting to continually minimize the time it takes for DER facilities to interconnect to the system.

Premature changes to the Fast Track and Supplemental Review process would make sweeping assumptions about North Carolina's distribution systems and will increase the complexities of managing the interconnection process, which has the potential to slow down, rather than speed up, interconnection requests progressing in this process.

15 The Companies support maintaining flexibility in the current Fast 16 Track and Supplemental Review process so as to allow the Companies to 17 build on their increasing success with moving these projects through the 18 Section 3 interconnection process, and maintaining an open technical 19 dialogue within the TSRG to assure that North Carolina's approach to 20 processing smaller DER interconnections meets our customers' needs while 21 ensuring that North Carolina is not out of touch with developing technical 22 standards and industry trends.

SECTION IV: MATERIAL MODIFICATION & NEW <u>TECHNOLOGIES</u>

3 Q. PLEASE EXPLAIN THE MEANING OF THE TERM "MATERIAL 4 MODIFICATION" UNDER THE NC PROCEDURES.

1

2

A. Material Modification is defined in Section 1.5 of the existing NC
Procedures as "a modification to machine data or equipment configuration
or to the interconnection site of the Generating Facility that has a material
impact on the cost, timing or design of any Interconnection Facilities or
Upgrades." Additional guidance as to the "indicia" of what constitutes a
material modification are also provided in Section 1.5.1 of the NC
Procedures.

12 Q. WERE REVISIONS TO THE DEFINITION OF "MATERIAL 13 MODIFICATIONS" DISCUSSED DURING THE 2017 14 STAKEHOLDER PROCESS?

A. Yes. During Working Group 2 of the stakeholder process, developer
stakeholders expressed an interest in reviewing the Material Modification
definition to address concerns over equipment changes during the
Interconnection Request process as well as the use of energy storage
technology.

At least some consensus was reached on proposed changes to Section 1.5 of the NC Procedures. The Companies and Working Group 2 agreed on a restructuring of Section 1.5 to detail what may constitute a change as "material." The revisions now specify changes that are expressly

134

135

1 disallowed before a System Impact Study begins, versus including a greater 2 scope of changes that are disallowed after a System Impact Study begins. 3 **Q**. PLEASE EXPLAIN WHY THE COMPANIES' REVISIONS TO THE 4 **MATERIAL MODIFICATION STANDARD SHOULD** BE 5 ADOPTED. 6 A. The bulk of the Companies' proposed revisions to the material modification

A. The burk of the Companies proposed revisions to the material modification provisions reflect significant stakeholder consensus. The Companies note, however, that the importance of certain details, which may not have been consensus points, cannot be overstated and are key to effective implementation. This includes utilization of the System Impact Study agreement execution date as a decision point for certain modification considerations, and the importance of only allowing changes to the DC portion of a facility if all elements of the production profile are considered.

14 Specifically, the Companies propose in the NC Procedures Redline 15 in sections 1.5.1(a) and 1.51(b) to use the date of the "execution of the 16 System Impact Study agreement" as the determining point of fact on when 17 a study has or has not started. The date of agreement is a documented step 18 in the process and allows Utility and Interconnection Customer alike to be 19 clear on whether 1.5.1(a) and 1.5.1(b) are applicable.

While changes to the DC portion of a facility indeed do not impact several components of a System Impact Study, failure to account for the production profile of a facility could produce grossly incorrect study results. The production profile of a Generating Facility has become a more crucial 1 component going forward as independent generators seek more flexibility 2 on how the operate their facilities. For example, failing to account for 3 generation export at 6 AM or at 8 PM, which might occur where battery 4 storage has been added to a solar facility, would produce incorrect study 5 results since interconnection studies for solar facilities typically do not 6 account for operation at those times. Interconnection studies also typically 7 do not account for large loads (such as battery charging).

8 Q. PLEASE DESCRIBE THE COMPANIES' PROPOSED LANGUAGE 9 AROUND THE DEFINITION OF THE CAPACITY OF A 10 GENERATING FACILITY TO ACCOMMODATE NEW 11 TECHNOLOGIES.

A. Similar to the Material Modification provisions of the NC Procedures, the
Companies and other stakeholders were able to reach at least partial
consensus regarding modifications to the definition of Capacity of a
Generating Facility throughout the Stakeholder Process.

16 Specifically, the Companies support modifying the proposed 17 "capacity" of a Generating Facility for purposes of study from the current 18 standard of Maximum Physical Export Capability Requested. The 19 Companies agreed that for power flow (thermal and steady-state voltage) 20 studies, the capacity of the facility to be studied does not necessarily have 21 to be the maximum physical export capability of the equipment (i.e., the 22 "full nameplate") and may be limited by the Interconnection Customer to a 23 requested (lower) level of export service, where the export capability is

eb 18 2019

1 physically limited through technical means such as control systems or 2 settings. For short circuit studies, the capacity of the facility is more 3 generally connected to the full nameplate rating of the facility, regardless of 4 control systems, settings, and other programmable or configurable 5 equipment. Therefore, the Companies agreed with proposals made through 6 Working Group 2 to modify the definition of the Capacity of a Generating 7 Facility, as long as the System Impact Study Agreement provisions 6.1 and 8 6.2 were accepted to specify that short circuit analysis under section 6.1 9 considers the Nameplate Capacity of the Generating Facility, while the 10 thermal/voltage analysis considers the new definition of Maximum 11 Capacity of a Generating Facility.

12 Q. WHAT ISSUES WERE RAISED RELATED TO ENERGY 13 STORAGE TECHNOLOGY THROUGH THE WORKING GROUP 2 14 PROCESS?

15 The 2015 revisions to the NC Procedures already recognized that a A. 16 "Generating Facility" requesting interconnection to the Companies' 17 systems could include both a device "for the production ... of electricity" 18 "and/or storage for later injection of electricity." Because the NC 19 Procedures already recognize energy storage devices as eligible for 20 interconnection study and an Interconnection Agreement, the bulk of the 21 Working Group 2 discussion focused on when and how energy storage 22 devices may be added to an existing Interconnection Request without 23 triggering the material modification standard.

Q. WHAT WAS THE RESULT OF THE WORKING GROUP 2 IN RELATION TO ENERGY STORAGE TECHNOLOGIES AND REVISIONS TO THE NC PROCEDURES?

A. Through discussions in the Working Group 2 meetings, the Companies agreed to allowing the addition of equipment on the direct current ("DC")
portion of a facility, such as energy storage, without this necessarily being considered a Material Modification; however, this proposed exemption
from the Material Modification standard can only be functionally accommodated if key elements of the original Generating Facility remain unchanged, such as a facility's daily production profile.

11 The Companies are supportive of accommodating new technologies 12 such as storage. However, for any Interconnection Requests that have 13 already begun System Impact Study, the utility must have assurance that the 14 Companies' study assumptions related to the production profile of the 15 Generating Facility are not invalidated through modifications to the 16 generating facility. Importantly, the Companies' acceptance of battery storage additions to pre-existing IRs is conditioned upon proposed 17 18 modifications to the Interconnection Request form that require an Interconnection Customer to provide a detailed generation production 19 20 profile along with other related information to account for the newer 21 technologies as part of the study process. If an Interconnection Customer 22 elects to add battery storage to an already-submitted Interconnection 23 Request, any change to the production profile-shifting the output of the

Generating Facility earlier or later—would still constitute a Material
 Modification for any Interconnection Request that has begun System
 Impact Study.

The Companies' proposed changes within the Interconnection Request Form and the Material Modifications section 1.5 are designed to better accommodate energy storage technologies, while ensuring future safe and reliable interconnected operation of such facilities with the Companies' systems.

SECTION V: INSPECTION OF INTERCONNECTED GENERATING FACILITIES

11

9 10

12 Q. PLEASE DESCRIBE THE CHANGES THAT THE COMPANIES 13 ARE PROPOSING TO SECTION 6.5 OF THE NC PROCEDURES.

14 A. The Companies are proposing to modify Section 6.5 of the NC Procedures 15 to enable a more robust ongoing inspection procedure to ensure continued 16 safe and reliable operations of Generating Facilities interconnected with 17 DEP and DEC. While Section 6.5 of the current NC Procedures already 18 permits the Companies to inspect an interconnected Generating Facility as 19 a general matter, the new provisions expressly identify the right of the 20 Companies to inspect the medium voltage AC side of each interconnected 21 Generating Facility under certain identified circumstances, as discussed 22 further below.

1Q.WITH RESPECT TO SECTION 6.5.2, WHY HAVE THE2COMPANIES NOT PREVIOUSLY INSPECTED CERTAIN3GENERATING FACILITIES?

4 A. Beginning in 2016, the Companies began working with Advanced Energy 5 to establish a comprehensive inspection and commissioning program for all 6 new utility-scale solar Interconnection Customers prior to the utility 7 authorizing energization and officially certifying the Interconnection 8 Customer's "permission to operate" the Generating Facility. The 9 Companies established this more robust inspection and commissioning 10 process as a result of experienced power quality events that originated on 11 particular Interconnection Customers' medium voltage facilities located on 12 the Interconnection Customer's side of the point of interconnection with the 13 Companies' systems.

14 Prior to 2016, the Companies' inspection process did not include a 15 robust inspection of the medium voltage AC side of an interconnected 16 Generating Facility. As the Companies have gained more experience 17 through interconnection of hundreds of utility-scale solar projects, it has 18 become apparent that a rigorous inspection process is needed to ensure that 19 each Generating Facility's Interconnection Facilities have been constructed 20 consistent with the Companies' generally-applicable construction and 21 design standards. This process is designed to better ensure that 22 Interconnection Customers' Interconnection Facilities will operate in a safe

6 18 2019

PARALLEL

OPERATION?
A. As described in more detail in the newly proposed Section 6.5.3, it is
reasonable for the Companies to periodically inspect the medium voltage

AFTER

and reliable manner in compliance with terms of the Interconnection

UNDER WHAT CIRCUMSTANCES WOULD INSPECTION BE

COMMENCEMENT

OF

1

2

3

4

Q.

Agreement.

REOUIRED

8 AC side of each Generating Facility on a schedule that is similar to the 9 inspection cycles that are applied to the Companies' own distribution 10 facilities. In addition, and as is described in more detail in the newly 11 proposed Section 6.5.4, it is reasonable for the Companies to be able to 12 inspect the medium voltage AC side of each Generating Facility where 13 certain adverse system safety and/or reliability events occur. Specifically, 14 this section expressly provides DEC or DEP the right inspect the 15 Interconnection Customer's medium voltage facilities should the 16 Companies discover that the interconnected Generating Facility has the 17 potential to cause disruption or deterioration of service to retail electric 18 customers, to cause damage to the Utility's System or Affected Systems, or 19 is otherwise is imminently likely to endanger life or property or cause a 20 material adverse effect on the security of, or damage to the grid.

21 Q. WHY IS IT NECESSARY TO INCLUDE THESE PROVISIONS?

A. As stated above, these inspections are likely already permitted under the NC

23 Procedures. However, the changes are being proposed both to expressly

1		establish a process for potential ongoing inspection of Generating Facilities
2		operating in parallel with the Companies' grids as well as to ensure cost
3		recovery of the inspection costs. Currently, there is no express mechanism
4		under the NC Procedures by which the Companies can recover the costs of
5		inspections required after commencement of parallel operation. The
6		inspection costs will consist primarily of Advanced Energy's costs to
7		perform such inspections.
8		SECTION VI: GOOD UTILITY PRACTICE
9	Q.	CAN YOU PLEASE DISCUSS THE CONCEPT OF "GOOD
10		UTILITY PRACTICE" UNDER THE NC PROCEDURES?
11	A.	Good Utility Practice is defined in the NC Procedures as
12 13 14 15 16 17 18 19 20 21 22 23 24 25		"Any of the practices, methods and acts engaged in or approved by a significant portion of the electric industry during the relevant time period, or any of the practices, methods and acts which, in the exercise of reasonable judgment in light of the facts known at the time the decision was made, could have been expected to accomplish the desired result at a reasonable cost consistent with good business practices, reliability, safety and expedition. Good Utility Practice is not intended to be limited to the optimum practice, method, or act to the exclusion of all others, but rather to be acceptable practices, methods, or acts generally accepted in the region."
25		Good Utility Practice is a very important concept under the NC
26		Procedures, as the Companies are completely and solely responsible for the
27		safety, reliability, and power quality of the power system which they have
28		built and maintained over decades to cost-effectively serve customers'
29		electricity needs in North Carolina. In carrying out this responsibility,

1 related to interconnections or otherwise, the Companies must continually 2 evaluate what constitutes Good Utility Practice. The Companies do this in 3 a number of ways, including (in no particular order) through: involvement 4 in standards bodies like IEEE (Institute of Electrical and Electronics 5 Engineers) and NESC (National Electrical Safety Code), formal and informal sharing of technical information with other utilities, and careful 6 7 application of power system theory and responsible engineering practices 8 developed over time through its own engineering expertise.

9 Due to the Companies' accountability and responsibility for safety, 10 reliability, and power quality across the power system, the Companies 11 continuously and seriously consider what technical standards to put into 12 place, and why, how, and when to change these standards. The Companies 13 are fully committed to the long-term safety and reliability of the power 14 system and are proud of the role they play in being careful stewards of the 15 power system on behalf of the customers we serve.

16 Q. PLEASE EXPLAIN HOW THE COMPANIES HAVE APPLIED
17 "GOOD UTILITY PRACTICE" UNDER THE NC PROCEDURES
18 SINCE 2015.

A. The Companies have always applied the concept of Good Utility Practice
 in serving both retail customers and Interconnection Customers, even before
 the term was implemented under the NC Procedures in the context of
 interconnections. With the recent, significant uncontrolled growth of new
 generator interconnections and especially utility-scale solar on the

distribution system, the Companies began the process of considering what
provisions of then-applied Good Utility Practice might need to be altered,
since multi-MW DER interconnections were clearly starting to move from
a rare and unique occurrence to the current "living laboratory" of
unparalleled utility-scale generator interconnections that the Companies are
managing today.

7 Beginning in 2016, DEP and DEC applied significant distribution engineering resources to evaluate whether Good Utility Practice required 8 9 additional study criteria to be applied during System Impact Study to 10 evaluate the impact of utility-scale solar generators on electric system 11 safety, reliability, and power quality As described in the Companies' 12 September 2016, filing with the Commission¹, DEC and DEP have 13 increasingly began to experience power quality impacts and to recognize 14 potential operational reliability risks associated with the growing levels of 15 utility-scale solar generators interconnecting to the distribution system in 16 North Carolina. Specific to applying Good Utility Practice, I and other 17 engineers within the Companies were increasingly recognizing that 18 historically valid "steady state" engineering studies were inadequate to 19 properly predict power quality issues associated with utility-scale solar 20 projects connected to the distribution system and, as such, more robust and

¹ In the Matter of Generator Interconnection Standard, Tariffs and Contract Forms, Duke Energy Carolinas, LLC and Duke Energy Progress, LLC's Response to September 8, 2016 Order Requiring Response and Requesting Comments, Docket No. E-100, Sub 101 (filed Sept. 22, 2016).
1	dynamic models and standards were needed to properly study this growing
2	level of DER. Since that time, the Companies have established a number
3	of reasonable and technically justified policies and standards applicable to
4	studying all utility-scale Interconnection Requests, including both solar and
5	non-solar, and third-party and Duke Energy-owned Generating Facilities.

6 It is worth stating that any change to Good Utility Practice is not 7 taken lightly; rather, changes are weighed (like any engineering decision) 8 in terms of the benefits and advantages of changing Company practices, 9 versus the costs, impacts, and disadvantages that may also be incurred due 10 to the change by retail customers, interconnection customers, or the 11 Company. It is also worth mentioning that the vast majority of engineers 12 within Duke Energy at the Senior Engineer, Lead Engineer, or Principal 13 Engineer levels that are involved in these decisions are licensed professional 14 engineers with deep understanding of DEC's and DEP's systems.

15 Q. PLEASE PROVIDE AN EXAMPLE OF THE COMPANIES' 16 EVOLVING GOOD UTILITY PRACTICE.

A. Most recently, the DER Method of Service Guidelines, which took effect
October 1, 2017, illustrates the Companies' adaptation of Good Utility
Practice to the evolving interconnection landscape in North Carolina. The
Method of Service Guidelines provide guidance on methods of
interconnection for distributed energy resources, which allow for
sustainable methods of interconnection for all sizes of DER while

maintaining the Companies' ability to provide reliable retail electric service for current and future retail customers.

1

2

The Method of Service Guidelines provide guidance in several 3 areas: (1) selection of the appropriate method of interconnection and point 4 5 of interconnection on the utility system (transmission, substation, 6 distribution) based upon individual generator project size; (2) configuration 7 options for line design and construction on the distribution system to allow 8 for changes in future load patterns alongside interconnections; (3) 9 appropriate voltage regulation zones for interconnection on the distribution circuit backbone²; (4) sustainable and non-discriminatory practices for 10 11 construction of line extensions for DER; (5) appropriate methods for 12 screening and assessing the potential for power quality impacts to nearby retail customers³. 13

14Importantly, Interconnection Customers proposing new projects that15are now impacted by the Method of Service Guidelines are presented an16alternative point of interconnection or method of service during System17Impact Study, such as a direct-to-substation connection or a transmission-18level interconnection, that more appropriately reflects the ability of the19System to accommodate the Interconnection Customer's Generating20Facility.

² Also known as the "LVR" (Line Voltage Regulator) policy

³ Also known as the "CSR" (Circuit Stiffness Review) policy

1 **O**. PLEASE EXPLAIN WHY THE COMPANIES BELIEVE THAT 2 THEY HAVE APPROPRIATELY APPLIED GOOD UTILITY PRACTICE 3 AND NOT **TAKEN UNREASONABLE** OR UNJUSTIFIED "UNILATERAL" ACTION IN IMPLEMENTING 4 5 THE POLICIES YOU JUST DESCRIBED.

6 A. As an initial matter, due to the Companies' sole and complete accountability 7 and responsibility for the safety, reliability, and power quality of the grid, 8 any action the Companies take to maintain these expectations may always 9 be construed by some to be "unilateral" in nature. Nevertheless, the 10 Companies are sensitive to, and recognize when, continuing certain 11 practices begin to accommodate one type of customer at the expense of 12 another. As generator interconnections moved from an exception and 13 occasional project to an unparalleled quantity, this dynamic became 14 evident. Accommodating utility-scale projects with non-standard methods, 15 on a quantity basis, when a growing number of technical parameters may 16 not yet be well-understood, shifts cost and reliability risk to the Companies' 17 retail load customers and can become unsustainable and incompatible with 18 the Companies' obligation to plan and operate the power system in a safe 19 and reliable manner for all customers.

Based upon the recently-experienced surging growth of utility-scale
DER in North Carolina, the Companies began to assess how to ensure
electric service to existing retail load customers is not adversely impacted
by the surging growth of third party generator interconnections. Early

1	determinations, such as the need to standardize on unity power factor, were
2	among some of the technical "Good Utility Practice" standards that the
3	Companies adopted (after consultation with the Public Staff) going back to
4	the Fall of 2014. Technical complexities began to grow further, and when
5	in early 2016 the Companies experienced a handful of physical events that,
6	although small in number, represented technical factors that had not yet
7	been considered, the Companies began to also communicate to the solar
8	industry as well. Although the TSRG had not yet been established, the
9	Companies held a number of technical presentations with the solar industry
10	to discuss these growing concerns and the need to evolve Good Utility
11	Practice, as follows:

12

Figure 3: Duke Energy Technical Discussions with Solar Industry

Meeting	Issues Discussed
Date	
June 24,	Addressing construction quality deficiencies on
2016	installed solar plants and describing power
	quality events supporting circuit stiffness evaluation
Sept. 8,	Providing interconnection process update
2016	including focus on commissioning and
	inspections, and describing how CSR will be
	used as a screen requiring more "advanced
	study" analysis
Dec. 5,	Addressing line voltage regulator policy, DEP's
2016	Distribution System Demand Reduction policy
	and advanced study development update
April 7,	Addressing line voltage regulator policy
2017	applicable to utility-scale DER above 250 kW
	and discussing inverter functionality
Sept. 15,	Meeting with Public Staff, NCCEBA, and
2017	NCSEA to discuss Method of Service Guidelines
	to become effective October 1, 2017

Sont 25	Addressing Mathed of Compies planning
Sept. 25,	Addressing Method of Service planning
2017	guidelines, evolving "flicker criteria," and
	providing update on commissioning process

Q. PLEASE EXPLAIN HOW THE COMPANIES' PROPOSALS SUPPORT THE CONTINUATION OF "GOOD UTILITY PRACTICE."

4 A. The Companies' public service mission in assuring safety, reliability, and 5 power quality requires that it plan, manage, and operate the power system 6 on every time horizon, from electrical cycles out to decades in the future. 7 Recognizing this continuing responsibility to the Commission and citizens 8 we serve in North Carolina, the Companies have developed and adopted 9 sustainable policies and practices that seek to optimize the long-term cost 10 of electric service for all customers, including an assurance of safe and 11 reliable service for decades to come. In creating the Method of Service 12 Guidelines, the Companies proactively took action to explain and codify the 13 Good Utility Practices for DER interconnection in North Carolina. 14 Importantly, the Method of Service Guidelines present sustainable practices 15 that can continue into the future, thereby providing more predictability to 16 Interconnection Customers while also ensuring the Companies can carry out 17 their public service obligations to the Commission and our retail customers 18 in North Carolina.

19 Q. WILL THE COMPANIES CONTINUE TO EVALUATE AND 20 EVOLVE THEIR GOOD UTILITY PRACTICE?

149

A. Yes. As explained above, the Companies are committed to continuing to
refine Good Utility Practice and to ensure that adequate system safety,
power quality and reliability are maintained for all customers. The recent
formation of the TSRG further demonstrates the Companies' intentions to
promote transparency and increased technical understanding in managing
its interconnection queue and the reliability of the power system in North
Carolina.

8 SECTION VII: PROMOTING TRANSPARENCY AND 9 <u>TECHNICAL UNDERSTANDING</u>

10 Q. PLEASE DESCRIBE THE COMPANIES' ONGOING EFFORTS TO 11 INFORM INTERCONNECTION CUSTOMERS AND OTHER 12 STAKEHOLDERS REGARDING NEW TECHNICAL STANDARDS 13 AND REQUIREMENTS AS GOOD UTILITY PRACTICE 14 **EVOLVES OVER TIME.**

15 A. In an effort to improve transparency and reduce the potential for future 16 interconnection-related disputes, the Duke Utilities announced in February 17 2018 plans to form a North Carolina/South Carolina DER TSRG. Since 18 that announcement, the TSRG has met three times, per its intended quarterly 19 meeting frequency, on April 11, July 19, and October 23/24, 2018. The 20 TSRG is designed to provide a forum for open engineering-focused 21 dialogue and technical discussion among the Companies, the Regulatory 22 Staffs of both the North Carolina and South Carolinas utility commissions, 23 and the renewable energy industry. These discussions have and will continue to focus on new interconnection-related developments or planned
 revisions to the Companies' existing technical standards in North Carolina
 and/or South Carolina. The group's structure allows for the Companies and
 the renewable energy industry to each bring agenda items forward at each
 meeting.

6 The TSRG is additionally the intended forum to specifically address 7 new IEEE 1547 standards, discuss issues related to new technologies (such as energy storage and smart inverters), and provide a forum to share the 8 9 Companies' future consideration of enhanced technical requirements that 10 may be incorporated into the interconnection study process over time. The 11 Duke Utilities have also established a publicly-available webpage⁴ that will 12 maintain TSRG-related information and provide advanced notices of 13 regularly scheduled TSRG meetings.

14 Q. PLEASE EXPLAIN THE COMPANIES' CONCERNS WITH
15 STAKEHOLDER RECOMMENDATIONS THAT "CONSENSUS"
16 OR COMMISSION APPROVAL BE REQUIRED BEFORE THE
17 COMPANIES MAY ADOPT CHANGES TO INTERCONNECTION
18 STANDARDS AND POLICIES.

A. During the Stakeholder Process, the North Carolina Sustainable Energy
 Association ("NCSEA") recommended that the Commission require either
 consensus amongst the Companies and stakeholders or prior Commission

⁴ https://www.duke-energy.com/business/products/renewables/generate-your-own/tsrg

approval before any changes to the Companies' interconnection policies or technical standards take effect. This is a critically important issue for the Companies and this recommendation should be rejected.

1

2

3

4 The Duke Utilities' experience is that "consensus" is often very 5 difficult, if not impossible, to achieve. This is because the Companies and 6 solar developers perceive Good Utility Practice differently with regard to 7 the appropriate allocation of engineering and technical risk, as well as the proper assignment of costs to mitigate those risks, between the 8 9 Interconnection Customer Generating Facility owner and the Utilities and 10 existing and future retail customers. Therefore, the Companies 11 fundamentally disagree with NCSEA's contention that anyone other than 12 the Companies, under the Commission's oversight, should have final 13 decision-making power or "veto rights" over the determination of Good 14 Utility Practice and the implementation of a proposed technical standard.

Q. WHY WOULD THE COMPANIES BE CONCERNED ABOUT
 REQUIRING COMMISSION APPROVAL PRIOR TO CHANGES
 TO INTERCONNECTION STANDARDS AND POLICIES BEING
 PUT IN PLACE?

A. Requiring Commission approval in order to implement new technical
standards or requirements would be time consuming and impractical, since
the Companies would be forced to either suspend further interconnection
studies until Commission approval is obtained or proceed to study
additional Interconnection Requests under either an unapproved new

eb 13 2019

technical standard or an old standard that the Companies no longer support
 as consistent with Good Utility Practice.

Q. PLEASE EXPLAIN HOW THE FORMATION AND OPERATION OF A TSRG CAN HELP BUILD CONSENSUS AND REASONABLY ADDRESS STAKEHOLDER CONCERNS ABOUT TECHNICAL STANDARDS AND GOOD UTILITY PRACTICE.

7 During the stakeholder process, IREC highlighted the Massachusetts A. 8 Technical Standards Working Group as a model that the Commission 9 should consider in mandating a TSRG in North Carolina. Myself and other 10 members of the Companies' engineering team subsequently invested time 11 to contact National Grid to learn more about the Massachusetts Working 12 Group and to even travel to Massachusetts to attend the November 28, 2017 13 quarterly Working Group meeting. Since that meeting, and as stated earlier 14 in my testimony, the Companies went about establishing a TSRG, in 15 conjunction with NCSEA, the North Carolina Clean Energy Business Alliance, and the South Carolina Solar Business Alliance, with invitation 16 17 also extended to the North Carolina Public Staff and the South Carolina 18 Office of Regulatory Staff.

19 The structure of the TSRG allows for open communication and 20 dialogue but does not assume a requirement of consensus. This aligns with 21 the governing framework of the Massachusetts Technical Standards 22 Working Group. The Massachusetts Working Group bylaws clearly state 23 that "the Utilities have the final decision over which Technical Standards,

1	both common and Utility-specific, to employ for the purposes of
2	interconnecting DG facilities to their respective distribution systems and
3	ultimate control over any Utility-specific and common Technical Standards
4	Manuals they develop." ⁵ For the avoidance of doubt, the Duke Utilities'
5	TSRG Announcement ⁶ included similar language:
6	Since Duke Energy is solely accountable and responsible for
7	maintaining adequate customer reliability and power quality, Duke
8	Energy expects that attendees to the meeting understand that the
9	meeting is strictly a discussion forum and not a decision making
10	venue, and Duke Energy maintains the final decision over technical
11	standards employed for the purposes of DER interconnection to its
12	distribution and transmission system.
13	As discussed above, the Companies are responsible for and must
14	meet their regulatory obligations to maintain system safety, power quality
15	and reliability for the benefit of their customers. Other stakeholders,
16	including solar developers and their advocacy organizations, have no such
17	obligation. In making decisions regarding the implementation of future
18	technical standards and requirements, the Companies will continue to apply
19	Good Utility Practice based upon their unique knowledge of the grid,

⁵ MA Technical Standards Review Group Bylaws, page 1. Accessible at https://sites.google.com/site/massdgic/home/interconnection/technical-standards-review-group ⁶ Available at https://www.duke-energy.com/business/products/renewables/generate-yourown/tsrg

engineering and technical expertise, and collaboration with regional peer
utilities and industry forums. Importantly, the Commission will continue to
have oversight over any decisions the Companies make with regard to any
new technical standards or evolving Good Utility Practice, through its
general regulatory power and via the NC Procedures' defined dispute
resolution process.

7 SECTION VIII: DER INTERCONNECTION AND THE FUTURE 8 OF GRID OPERATIONS

BASED UPON YOUR EXPERIENCE ADMINISTERING THE 9 **Q**. 10 **GENERATOR INTERCONNECTION PROCESS SINCE 2015, CAN** 11 YOU PLEASE DESCRIBE THE GENERAL CHALLENGES DUKE 12 ENERGY SEES WHEN LOOKING AHEAD TO PLANNING AND 13 **OPERATING** THE DISTRIBUTION AND TRANSMISSION 14 SYSTEM IN THE UNIQUE DER LANDSCAPE SEEN IN NORTH 15 **CAROLINA TODAY?**

A. The system of generation, transmission, and distribution of electric power
 Duke Energy has in place today is planned in an integrated fashion to
 maximize reliability and minimize cost. This system is continuously
 monitored and planned over time horizons of years to decades, and is
 operated in time horizons from electrical cycles to more than a year, in order
 to continuously assure the reliable and economic delivery of electric power
 to the Companies' retail and wholesale customers. Changes to the system

like geographical load growth and load shifts are handled both in the
 planning and operating time windows.

3 The introduction of larger amounts of independent Generating 4 Facilities that are not a part of this integrated planning process do present a 5 serious and growing challenge to the Companies' current paradigms of 6 transmission and distribution system planning and operation. While not 7 necessarily the subject of this proceeding, it is important to highlight for the 8 Commission that interconnecting this unparalleled quantity of utility-scale 9 solar DER may require changes to the way the Companies plan and operate 10 the power system. New investments will undoubtedly be required to meet 11 these growing challenges and to strengthen and modernize the grid in order 12 to better accommodate additional DER both at our customers' homes and 13 businesses as well as on the Companies' distribution system and the bulk 14 electric system. Those issues will likely be addressed in other proceedings 15 before the Commission, and my testimony will simply highlight some of 16 the complexities that I foresee associated with planning and operating the 17 transmission and distribution system with these growing levels of 18 independently-operated DER.

19 Q. WHAT SPECIFIC CHALLENGES ARE THE COMPANIES 20 ENCOUNTERING RELATING TO TRANSMISSION SYSTEM 21 PLANNING?

A. Today's transmission planning process looks into the future at changes in
societal electric power demand and usage patterns (e.g., growth or shifts in

1	various metropolitan areas) and analyzes the state of the system in the
2	coming years. This analysis is done with a simulation that changes the
3	historical load levels at every substation on the system, in order to forecast
4	a future "system state." This analysis then reveals where the next "pinch
5	points" might be in the system (e.g., a transmission line reaching capacity),
6	and develops plans to relieve these future situations well before they occur.
7	Independent Generating Facilities can be somewhat characterized as
8	a new type of "load," rather than generation, in that they operate
9	independently without adequate correlation to typical load patterns. They
10	also cannot be adequately forecasted in the same ways forecasting is
11	accomplished for load, given that load typically exhibits small annual
12	changes in demand and usage in certain areas. These independent
13	Generating Facilities therefore become a second independent variable for
14	which the transmission planning process must account. Rather than
15	planning for summer and winter peaks, with a comprehensive annual
16	analysis for each, the process must now begin to account for additional
17	planning scenarios and operating contingencies, such as minimum load
18	scenarios, although the exact combinations of load and independent
19	generation may require even more scenarios. This all greatly increases the
20	complexity and cost of the transmission planning process.

Q. WHAT SPECIFIC CHALLENGES ARE THE COMPANIES ENCOUNTERING RELATING TO DISTRIBUTION SYSTEM PLANNING?

I	А.	The distribution planning process is similar to that of transmission planning
2		in terms of planning for changes in load, although the process is performed
3		for individual substations and individual distribution circuits. The
4		challenge of planning for two independent variables equally applies for
5		distribution planning. Further complexity is also introduced by the radial
6		nature of the distribution system; planning practices have been long-rooted
7		with an assumption of the presence of electrical loads and the absence of
8		electrical generation sources. This means that many valid assumptions have
9		been made in the past in modeling and analysis in lieu of having extensive
10		load profile data of local load and generation. Future modeling and analysis
11		will require more granular data from the distribution system (for which
12		telemetry devices may or may not yet exist), will be more complex, and will
13		take longer. Voltage drop can no longer be assumed; now, voltage rise due
14		to increasing levels of DER may be an equal or greater planning and
15		operational challenge.

16 Another challenge to future distribution planning is how to handle 17 what have traditionally been commonly-applied solutions for shifting 18 patterns between area load in the vicinity of one substation and another. A 19 planning study may reveal that two distribution feeders may need to 20 undergo reconfiguration, since a feeder may have reached capacity. The 21 reconfiguration solution could involve moving a normally open tie point 22 between two feeders, each fed from separate substations, so that the new 23 normally open tie is now closer to one substation and now further from the

1 other. This is commonly known as "load transfer," and is essentially a task 2 of "balancing load" between area substations, making efficient use of 3 existing capital assets as load growth patterns change over time. The 4 physical work involved to complete a load transfer is often as simple as 5 closing a normally open switch, opening a normally closed switch, and 6 updating models; sometimes a small amount of reconductoring may be 7 needed. However, if an existing solar Generating Facility on one of these 8 feeders is "moved" and, as a result, is now further from its substation than 9 it was before (now on the "longer" feeder), the planning study may show 10 that moving the DER pushes voltage too high on its new longer feeder. 11 Therefore, due to the DER, the load transfer cannot take place at all, and the 12 utility must consider alternative and more costly solutions to respond to the 13 load growth. The solution to the shifting load pattern could now be (1) 14 construction of miles of additional feeder, either on existing right-of-way 15 with multiple circuits (with reliability impacts) or (2) more extensive feeder 16 reconfigurations in the area assuming new right-of-way can be acquired, or 17 (3) new substation construction.

18 Q. ARE ANY OF THE ISSUES YOU MENTION ABOVE ALREADY 19 BEGINNING TO OCCUR, AND, IF SO, WHAT ARE THE FUTURE 20 IMPLICATIONS OF THESE ISSUES?

A. Yes. This problem is already occurring and will increase in frequency and
 order of magnitude, thereby increasing the cost to serve current and future
 customers.

Q. WHAT SPECIFIC CHALLENGES ARE THE COMPANIES ENCOUNTERING RELATING TO THE TRANSMISSION SYSTEM AND BALANCING AUTHORITY ("BA") OPERATIONS AS A WHOLE?

5 A. The challenges with transmission system and BA operations are multi-6 faceted, and in general will grow proportionally to the amount of 7 independent generating capacity, mostly solar, which interconnects to the 8 system.

9 Because these generating facilities are not part of the Companies' 10 integrated planning processes and, once installed, they inject unscheduled 11 and unconstrained energy into the system, BA resources must react to 12 provide balancing and ancillary services such as regulation and frequency 13 response. However, there are physical limitations to the BA's capability to 14 reliably operate and absorb such unscheduled and unconstrained energy 15 injections. This limit is known as the Security Constrained Unit 16 Commitment's LROL (Lowest Reliability Operating Level), which is a 17 level below which the BA cannot reduce operational output. This level must 18 be retained through the mid-day valley of the demand curve each day to 19 provide for: (i) frequency regulation; (ii) resource availability to meet the 20 evening peak demand; as well as (iii) resource availability to meet the next 21 morning's peak demand, which is generally higher than the previous 22 evening's peak demand. In combination, this situation results in 23 operationally excessive energy on the BA, caused by operationally

1 excessive installed capacity of independent Generating Facilities, both on 2 the transmission and the distribution system. Looking ahead, these 3 challenges and risks will be amplified, particularly on the DEP BA as the 4 quantity of uncontrolled solar QF installed capacity increases. Effective 5 management of these challenges will translate into costs along with 6 increasing curtailments and needs for other solutions to assure effective 7 system operation within NERC Reliability Standards, like NERC BAL-8 001-2 (Real Power Balancing Control Performance).

9 Q. WHAT CHALLENGES ARE THE COMPANIES ENCOUNTERING 10 RELATING TO THE COMPANIES' DISTRIBUTION SYSTEM 11 OPERATIONS?

12 Challenges are on the rise in distribution system operations as well. As an A. 13 example, the DEP Distribution Control Center and the associated Grid 14 Management organization are focused on outage management, switching 15 operations, and assuring effective availability and operation of the DSDR 16 (Distribution System Demand Response) system. As of October 2018, there are over 290 Generating Facilities greater than 1 MW in operation, totaling 17 18 over 1300 MW in capacity, on the DEP distribution system. Each of these 19 facilities has an owner and an operator, each of which has a desire or reason 20 to contact the DEP Distribution Control Center from time to time. 21 Coordination and communication with Generating Facility operators now consumes a significant amount of time within distribution system 22 23 operations. The complexities of feeder switching have grown immensely,

1 as the same issues with load transfers in Distribution Planning, mentioned 2 above, also make distribution field switching by Grid Management much 3 more complex than in the recent past, and this complexity is on the rise. 4 The issue here again is the loss of flexibility in operating the system. 5 Facilities can and are taken temporarily offline on a regular basis to allow 6 switching to successfully occur, but complexity is continuing to escalate. 7 Further effective management of the distribution system will translate into 8 costs that are not easily assignable; the solutions will be significant upgrade 9 work for the DMS (Distribution Management System) along with the 10 possibilities for increasing staffing to manage the growing complexity.

Q. PLEASE SUMMARIZE THE FUTURE IMPLICATIONS THAT, IN
 YOUR OPINION, WILL RESULT FROM NORTH CAROLINA'S
 UNIQUE INTERCONNECTION LANDSCAPE WITHOUT TAKING
 INTO ACCOUNT THE COMPANIES' AFOREMENTIONED
 CONCERNS.

A. Rapid changes of any type in any given environment (as we have seen with
interconnection of utility-scale solar in North Carolina), without
accompanying changes to planning paradigms to account for such changes
in the planning process, are always accompanied by sharply increased risk
profile to the effectiveness, as measured in reliability and cost, of the given
system.

22 Q. DOES THIS CONCLUDE YOUR TESTIMONY?

23 A. Yes.

DIRECT TESTIMONY OF JOHN W. GAJDA DUKE ENERGY CAROLINAS, LLC DUKE ENERGY PROGRESS, LLC

OFFICIAL COPY

Feb 13 2019

1	(WHEREUPON, Rebuttal Exhibits
2	JWG-1 through JWG-4 are marked for
3	identification as prefiled.)
4	(WHEREUPON, the prefiled rebuttal
5	testimony of JOHN W. GAJDA is
6	copied into the record as if given
7	orally from the stand.)
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	

NORTH CAROLINA UTILITIES COMMISSION

BEFORE THE NORTH CAROLINA UTILITIES COMMISSION

DOCKET NO. E-100, SUB 101

In the Matter of)	REBUTTAL TESTIMONY OF
Petition for Approval of Generator)	JOHN W. GAJDA
Interconnection Standard)	ON BEHALF OF DUKE ENERGY
)	CAROLINAS, LLC AND DUKE
)	ENERGY PROGRESS, LLC

OFFICIAL COPY

A. My name is John W. Gajda. My business address is 3401 Hillsborough
Street, Raleigh, North Carolina.

4 Q. BY WHOM ARE YOU EMPLOYED AND IN WHAT CAPACITY?

A. I am employed on a Developmental Assignment for Duke Energy
Corporation ("Duke Energy"), which is a type of "Special Projects"
designation, working in the System Operations group. I am submitting this
rebuttal testimony on behalf of Duke Energy Carolinas, LLC ("DEC") and
Duke Energy Progress, LLC ("DEP" and together with DEC, "the
Companies").

11 Q. HAVE YOU SUBMITTED TESTIMONY PREVIOUSLY IN THIS 12 PROCEEDING?

A. Yes. I submitted direct testimony in this proceeding on behalf of theCompanies on December 19, 2018.

15 Q. WHAT IS THE PURPOSE OF YOUR REBUTTAL TESTIMONY IN 16 THIS PROCEEDING?

A. The purpose of my rebuttal testimony is to address several issues raised in
the direct testimony of the Public Staff and certain other intervenors and to
provide support for the Companies' proposed revisions to the North
Carolina Interconnection Procedures ("NC Procedures"). Specifically, I
agree with Public Staff witness Williamson's position on Good Utility
Practice, and elaborate on how the Companies' application of Good Utility
Practice is in alignment with the Public Staff's expectations of the

165

1	Companies' and Dominion Energy North Carolina's ("DENC" and
2	collectively, the "Utilities") responsibility under the NC Procedures. I also
3	respond to the Public Staff's statement that utility flexibility is necessary to
4	most appropriately and efficiently implement Good Utility Practice over
5	time, and rebut the solar advocate intervenors' claims otherwise. Next, I
6	rebut North Carolina Sustainable Energy Association ("NCSEA") witness
7	Paul Brucke and Interstate Renewable Energy Council ("IREC") witness
8	Brian Lydic's proposal to require the Technical Standards Review Group to
9	be changed from a discussion-based forum to a formal proceeding. I then
10	rebut IREC witness Sarah Auck's proposals to significantly overhaul the
11	current Fast Track and Supplemental Review processes by explaining how
12	the current Section 2 and Section 3 processes are working effectively at this
13	time and are tailored to North Carolina's interconnection landscape.
14	I also respond to NCSEA witness Brucke and NCCEBA witness
15	Christopher Norqual's statements regarding the Companies' perspective

16 and definition of "material modification" as it relates to energy storage, and 17 also explain the Companies' position and acceptance of software controls 18 in determining the maximum output of a generating facility under the NC 19 Procedures Redline. Finally, I explain why the Companies do not support 20 Public Staff witness Williamson's proposal for an independent review of 21 the entire NC Procedures at this time, due to the current ongoing NC 22 Procedures review and the Companies' plans to focus on queue reform and 23 a transition to full grouping studies.

Q. ARE YOU INTRODUCING ANY EXHIBITS IN SUPPORT OF YOUR REBUTTAL TESTIMONY?

A. Yes. I am submitting four exhibits. JWG Rebuttal Exhibit 1 is the
Companies' updated redline of the NC Procedures. JWG Rebuttal Exhibit
2 is the Companies' Distributed Energy Resource Method of Service
Guidelines (the "MOS Guidelines"). JWG Rebuttal Exhibit 3 provides
detail on the Companies' publicly available "Carolinas TSRG Updates"
website. Last, I am submitting JWG Rebuttal Exhibit 4, which provides the
Commission certain data request responses referenced in my testimony.

10

Q. PLEASE DESCRIBE THE PUBLIC STAFF'S POSITION REGARDING GOOD UTILITY PRACTICE.

Good Utility Practice

I.

13 Public Staff witness Williamson states that it is the Utilities' responsibility A. 14 to maintain and operate the electric grid in a safe and reliable manner, and 15 emphasizes that Good Utility Practice must include flexibility for changes 16 over time. Expanding on the issue of flexibility, Public Staff witness 17 Williamson details how North Carolina's unique interconnection landscape 18 has "the potential to create operational challenges that must be managed in both the short- and long-term."¹ Based on this unique interconnection 19 20 landscape, Public Staff witness Williamson contends that short-term "fixes" 21 may be necessary prior to any formal NCIP revisions, and therefore "a

¹ Public Staff Williamson Direct Testimony, at 5.

degree of flexibility should be at the discretion of the Utilities" in applying
 Good Utility Practice.

In conclusion, Public Staff witness Williamson states that the Utilities are responsible for determining the practices, methods and acts necessary to meet the rules and standards established by the relevant regulatory bodies, and that the Utilities' application of this Good Utility Practice must retain some level of flexibility.

8 Q. DOES THE PUBLIC STAFF'S POSITION ON GOOD UTILITY 9 PRACTICE ALIGN WITH THE COMPANIES' POSITION?

10 A. Yes. Based on my reading of Public Staff witness Williamson's testimony, 11 the Public Staff is aligned with Companies' position on Good Utility 12 Practice. Public Staff witness Williamson explains that the Utilities are 13 responsible for determining the practices, methods, and acts necessary to 14 establish Good Utility Practice, consistent with rules and standards 15 established by this Commission and other regulatory agencies such as the Federal Energy Regulatory Commission ("FERC") and the North American 16 Electric Reliability Corporation ("NERC").² However, it is important to 17 18 distinguish that the relevant regulatory bodies mentioned by the Public Staff 19 as overseeing the Utilities do not directly establish Good Utility Practice; 20 rather, the Companies establish and maintain their engineering guidelines 21 and technical standards in such a way as to assure compliance with the rules

 2 Id.

and standards established by the Commission and other relevant regulatory bodies. As I discuss in my direct testimony, since the Companies are completely responsible for ensuring power quality and reliability, the Companies seek to maintain flexibility within the Good Utility Practice construct so as to continually optimize power quality, reliability, and economic considerations for its customers.³

Q. DO YOU AGREE WITH THE PUBLIC STAFF'S VIEW THAT THE
GOOD UTILITY PRACTICE STANDARD SHOULD BOTH
PROMOTE ALIGNMENT WITH PRACTICES OF THE OVERALL
UTILITY INDUSTRY WHILE ALSO ALLOWING FLEXIBILITY
FOR THE COMPANIES TO APPLY REASONABLE JUDGMENT
TO MEET NEW OR EMERGING CHALLENGES?

A. Yes. Public Staff witness Williamson states that the Utilities' application
of Good Utility Practice should be consistent with the practices, methods
and acts engaged in, or approved by, a significant portion of the electric
industry, while also recognizing the need for flexibility to exercise
reasonable judgement "to the extent the Utilities identify new or emerging
challenges or issues that may impact safety and reliability concerns."⁴

I agree with witness Williamson's statements. The Companies, like
most utilities, continuously assess the alignment of their practices and

³ DEC/DEP Gajda Direct Testimony, at 24.

⁴ Public Staff Williamson Direct Testimony, at 5.

experiences with those of their peers through many venues that facilitate shared practices and utility monitoring. For example, many of the Companies' engineers actively participate in committees within organizations such as the NESC (National Electrical Safety Code), IEEE (Institute of Electrical and Electronics Engineers), Southeastern Electric Exchange, and North American Transmission Forum, to name a few.

1

2

3

4

5

6

7 However, in order to carry out its mission of delivering safe, 8 reliable, and economic electricity to its customers, the Companies must also 9 be permitted to carry out, with confidence, independent technical design and 10 judgment activities within its own engineering workforce. To this end, the 11 Companies deliberately and consistently hire, for particular key positions, 12 only degreed engineers from ABET (Accreditation Board for Engineering 13 and Technology) accredited institutions. Furthermore, the Companies have 14 an established practice within the Transmission and Distribution 15 departments of requiring Professional Engineering licensure prior to 16 promotion to Senior Engineer, Lead Engineer, or Principal 17 Engineer. Specific to implementing Good Utility Practice within the 18 generator interconnection process, these rigorous standards for 19 advancement promote reasonable judgement and good business practices, 20 grounded in achieving the Companies' overall mission to provide safe, 21 reliable, and economic delivery of electricity.

170

II. <u>Application and Transparency of Good Utility Practice</u> Q. DOES THE PUBLIC STAFF SUPPORT THE COMPANIES' APPLICATION OF GOOD UTILITY PRACTICE AS REFLECTED IN THE MOS GUIDELINES?

A. Yes. As background, the MOS Guidelines were developed in order to
consider the impacts associated with the Companies' long term planning
obligations, so that the Companies could provide reasonable and nondiscriminatory access to their distribution systems, while also ensuring this
was done in a scalable and sustainable manner. I also discussed the MOS
Guidelines in some detail in my direct testimony.⁵

Public Staff witness Williamson states that the Public Staff supports the Companies' application of Good Utility Practice as reflected in the MOS Guidelines. He specifically states that "the MOS [Guidelines] are reasonable guidelines for the Duke Utilities to apply in meeting their obligation to provide safe, reliable electric service to the using and consuming public."⁶ For the Commission's reference, I have attached the Companies' MOS Guidelines as JWG Rebuttal Exhibit 2.

Q. DOES THE PUBLIC STAFF CHALLENGE ANY ASPECT OF THE COMPANIES' TECHNICAL STANDARDS AS INCONSISTENT

20 WITH GOOD UTILITY PRACTICE?

171

⁵ DEC/DEP Gajda Direct Testimony, at 49.

⁶ Public Staff Williamson Direct Testimony, at 15.

1 No. The Public Staff did not challenge any aspect of the Companies current A. 2 interconnection practices as being inconsistent with Good Utility Practice.⁷ DO ANY PARTIES DISAGREE WITH THE COMPANIES' 3 **Q**. **APPLICATION** 4 OF GOOD UTILITY PRACTICE AND 5 **RESULTING TECHNICAL STANDARDS?** 6 A. While the Public Staff generally supports the Companies' MOS Guidelines 7 and application of Good Utility Practice, witnesses testifying on behalf of 8 NCSEA, NCCEBA, and IREC—the solar industry advocates —generally 9 oppose the Companies' technical standards and requirements. These solar 10 industry advocates specifically contend that the Companies' MOS 11 Guidelines are "overly restrictive" and "not typical" of other utilities around 12 the country.⁸

BASED UPON YOUR EXPERIENCE, WAS IT EXPECTED THAT 13 **Q**. 14 THESE SOLAR INDUSTRY ADVOCATES MAY DISAGREE WITH 15 **COMPANIES'** APPLICATION THE OF GOOD UTILITY PRACTICE AND THE COMPANIES' DEVELOPMENT OF THE 16 17 **MOS GUIDELINES?**

18 A. Yes. The Companies understand that the concerns of a developer in any19 particular instance are generally focused on the specific generating facility

⁷ Public Staff Williamson Direct Testimony, at 15.

⁸ NCSEA Brucke Direct Testimony, at 11.

- for which they are seeking interconnection, and that developers do not carry
 the obligations of utility service to the using and consuming public.
- 3 In my direct testimony, I explained how the Companies' and these 4 solar advocates have differing views on the appropriate allocation of 5 engineering and technical risk, as well as the proper assignment of costs to 6 mitigate those risks, between the Interconnection Customer Generating Facility owner and the Utilities and existing and future retail customers.⁹ 7 8 Public Staff witness Lucas similarly describes the potential for divergence 9 between the interests of the using and consuming public versus interconnection developers.¹⁰ 10
- 11 This difference in perspective between the solar industry and the 12 Companies is analogous to the tension between a city or town imposing 13 setbacks, permitting and other zoning requirements on a homebuilder that 14 could physically locate 10 homes on a piece of property but is limited to 15 seven to avoid adversely impacting the surrounding community. While 16 more dense development may in some cases be physically feasible, the 17 short-term and longer-term risks and burdens of doing so-such as 18 increased water runoff and impacts to already-funded roads, schools and 19 other infrastructure paid for by the general citizenry—would be assigned to 20 existing neighbors and other citizens. This concern becomes even more

⁹ DEC/DEP Gajda Direct Testimony, at 55.

¹⁰ Public Staff Lucas Direct Testimony, at 6.

pronounced when a development boom occurs and the pace of development risks outpacing local zoning and planning. This is not to suggest that homebuilders or solar developers are "bad actors" in any way; however, their interests in developing and interconnecting the largest home development or solar project at the least cost may not align with the interests of the using and consuming public that has funded the infrastructure which they are seeking to use.

8 **Q**. DO YOU HAVE ANY OTHER COMMENTS THAT THE 9 COMMISSION SHOULD TAKE INTO CONSIDERATION WHEN EVALUATING THESE SOLAR ADVOCATES' CLAIMS THAT 10 **APPLICATION** 11 **COMPANIES'** THE OF GOOD UTILITY 12 PRACTICE IS ATYPICAL OR OVERLY RESTRICTIVE?

13 Yes. As the Companies have repeatedly stated, with no known challenges A. 14 to the contrary, we are in a "living laboratory" here in North Carolina, due 15 to the unparalleled penetration of uncontrolled utility-scale generation 16 resources both in operation and in the queue. Assertions that some of the 17 Companies' application of Good Utility Practice do not have parallels in 18 other states are not surprising, since no other states are experiencing the 19 penetration levels of these specific types of resources. Utilities which are 20 not undergoing anything like North Carolina's solar QF development boom, 21 or do not have aggressive renewable penetration mandates in place, may not 22 have begun to consider potential impacts to their system planning 23 obligations. It is for this precise reason that the NC Procedures specifically

- contemplate that a particular practice may constitute Good Utility Practice
 even where the practice is not widely applied in the industry.
- The Companies are dually responsible for planning and operating the distribution system while also managing the parallel operation of North Carolina's unique, and increasing, penetration of DER. Therefore, Good Utility Practice must absolutely carry with it considerations for scalability and sustainable practices, if the Companies are to continue to provide to the using and consuming public over the long term, "…reliable utility service at reasonable prices within the framework of state and federal law."¹¹

10 Q. DO YOU AGREE WITH THESE SOLAR ADVOCATE 11 INTERVENORS' THAT THE COMPANIES' APPLICATION OF 12 GOOD UTILITY PRACTICE, AND SPECIFICALLY THEIR DEVELOPMENT OF THE MOS GUIDELINES IS ATYPICAL OR 13 14 **OVERLY RESTRICTIVE?**

A. No. Even recognizing North Carolina's unique utility-scale solar
development experience, other utilities have established guidelines and
technical standards similar to the Companies' MOS Guidelines. NCSEA
witness Brucke states that "...Duke's Method of Service Guidelines are not
typical..."¹² The Companies note however, that both PEPCO (PEPCO
Holdings, which includes Atlantic City Electric in New Jersey, Delmarva

¹¹ Public Staff Lucas Direct Testimony, at 6.

¹² NCSEA Brucke Direct Testimony, at 11.

1		Power in Delaware, and Potomac Electric Power in Washington, D.C.) ¹³
2		and Arizona Public Service ¹⁴ have established guidelines like individual
3		and aggregate DER capacity limits for generators, that are similar to Section
4		2 of the Companies' MOS. Therefore, the Companies' application of Good
5		Utility Practice and its development of the MOS is not "atypical." Further,
6		while NCSEA witness Brucke argues that the Companies' limit of
7		aggregate DER on a substation as detailed in section 2.1.2 of the MOS is
8		"overly restrictive," PEPCO has a similar limit established which appears
9		to be more conservative than the Companies' limit. Additionally, Dominion
10		Energy North Carolina limits aggregate DER capacity connected to
11		substation transformers to a value similar to the Companies.
12	Q.	PLEASE EXPAND ON THE COMPANIES' APPLICATION OF
13		GOOD UTILITY PRACTICE AND THE MOS GUIDELINES BY
14		PROVIDING AN EXAMPLE OF HOW THE MOS GUIDELINES
15		HELP THE COMPANIES MAINTAIN THEIR LONG-TERM
16		PLANNING OBLIGATIONS TO PROVIDE RELIABLE AND COST
17		EFFECTIVE ELECTRIC SERVICE TO THEIR CUSTOMERS.
18	A.	Consider this example, which relates to the Companies' technical policy
19		related to Line Voltage Regulators ("LVRs"), as is detailed in section 3.2 of

https://www.pepco.com/MyAccount/MyService/Pages/MD/CriteriaSummary.aspx. ¹⁴ Arizona Public Service's guidelines are *available at* https://www.aps.com/library/solar%20renewables/InterconnectReq.pdf.

¹³ PEPCO's guidelines are available at

1 the MOS. The first sentence in section 3.2 states "...DEC and DEP have 2 identified that interconnection of uncontrolled utility-scale generation 3 resources with no dependable capacity, at locations beyond LVRs and in 4 high quantities across an entire system, is not consistent with Good Utility 5 Practice." In this policy, the Companies recognize that locating generating 6 facilities in the first zone of voltage regulation, closest to a substation, is 7 more scalable and sustainable than locating facilities further down circuits beyond LVRs. This is because current distribution voltage regulation 8 9 technology is largely designed for typical distribution loads, which are 10 characterized by voltage drop and by limited volatility of demand. In 11 contrast, multi-MW, distribution-connected independent generating 12 facilities are characterized by voltage rise and by, in most cases, significant 13 volatility of generation output-enough to cause adverse impacts to 14 customers and the regulation equipment itself. This is somewhat 15 manageable in the first zone of regulation, but the impacts of voltage rise 16 and generation output changes become significantly less manageable 17 beyond the first zone of regulation. No power system designer would ever think of a second zone of voltage regulation-many miles from the 18 19 substation—as a preferred place to site a generating facility. And, even if a 20 specific solution can be designed for a generating facility located beyond an 21 LVR, the solution is not representative of a scalable and sustainable 22 solution, due to the longer-term impacts to distribution planning that would 23 occur absent the MOS Guidelines and the resulting increased costs to retail

1	customers. In the paper "Maintaining Long Rural Feeders with Large
2	Interconnected Distributed Generation," ¹⁵ the author details how special
3	regulator settings were used to interconnect a 9 MW landfill gas generator
4	which was located beyond an LVR. This referenced project was actually
5	interconnected in DEP in approximately 2010. While the initial solution,
6	which involved complex analysis and special regulator settings, was
7	successful, changes in circuit loads only two years after the initial
8	interconnection caused the solution to become obsolete. A new study
9	performed to consider the new retail load indicated that the regulator
10	settings could not be adjusted to accommodate the 9 MW generator and the
11	new 2 MW load simultaneously. The solution was to construct a mile of 3
12	phase line to support interconnection of the new 2 MW load customer.
13	Importantly, the cost of this local distribution upgrade project was borne by
14	DEP's retail customers. Public Staff witness Lucas describes in his direct
15	testimony more background as to how and why this situation can occur. ¹⁶
16	NERC also published a report in February 2017, "Distributed
17	Energy Resources – Connection Modeling and Reliability Considerations,"
18	in which the authors discuss some of the challenges to long-term planning,
19	and specifically how the "T-D interface" is becoming more crucial. ¹⁷ The

¹⁵ Keary R. Dosier, *Maintaining Long Rural Feeders with Large Interconnected Distributed Generation*, 2014 IEEE Rural Electric Power Conference (REPC) (May 18-21, 2014), *available at* <u>https://ieeexplore.ieee.org/document/6842197</u>.

^u Public Staff Lucas Direct Testimony, at 45.

¹⁷ North American Electric Reliability Corporation, *Distribute Energy Resources – Connection, Modeling and Reliability Considerations* (Feb. 2017), *available at*

Companies' careful considerations of long-term planning, one of the main
 functions of an electric utility, led to the creation of the MOS.

Q. DOES YOUR EXAMPLE REBUT CONTENTIONS MADE BY THE SOLAR ADVOCATES STATING THAT THE COMPANIES' IMPLEMENTATION OF GOOD UTILITY PRACTICE TO DEVELOP THE MOS GUIDELINES WAS UNREASONABLE?

7 A. NCSEA witness Brucke contends that "Duke has indicated that Yes. 8 interconnection beyond a line voltage regulator is technically feasible if they reconfigure line voltage regulator settings."¹⁸ As an initial matter, the 9 10 Companies acknowledge that not only is it technically feasible for a specific generator interconnection to reconfigure the LVR settings, but also that the 11 12 Companies have, years prior to the development of the MOS Guidelines, 13 physically designed this type of interconnection solution for generator 14 interconnection customers several times. The Companies also acknowledge 15 that this practice has been utilized by other utilities in the past. However, 16 recognizing that the Companies now have an unparalleled number of utility-17 scale generating facilities interconnected to their distribution systems, the 18 Companies determined that this practice is not scalable nor sustainable in 19 high quantities across an entire system for a number of reasons. For 20 example, this practice limits the effective management of distribution

https://www.nerc.com/comm/Other/essntlrlbltysrvcstskfrcDL/Distributed_Energy_Resources_Rep ort.pdf. ¹⁸ NCSEA_Proofs Direct Testimony, et 7

¹⁸ NCSEA Brucke Direct Testimony, at 7.

circuit switching, increasing its complexity to a level not supported at high
 numbers by Duke Energy's Distribution Control Center and also not
 supported by the Distribution Management System currently in place.

4 Q. ARE THERE ANY ADDITIONAL EXAMPLES YOU CAN 5 PROVIDE THAT MAY REBUT CONTENTIONS MADE BY THE 6 SOLAR ADVOCATES THAT THE COMPANIES' DECISION TO 7 DEVELOP THE MOS GUIDELINES WAS UNREASONABLE?

8 Yes. To touch on one additional item as an example, NCSEA witness A. 9 Brucke states in his testimony that the Companies' prohibition of doublecircuiting "... is not reasonable," ¹⁹ as is detailed in section 3.2.4 of the MOS 10 11 Similar to the prior LVR example explained above, the Guidelines. 12 Companies determined in mid-2016 that allowing "partial double circuits" 13 to support utility-scale generator interconnection was not a scalable nor 14 sustainable practice, as it would lead to many scenarios where certain load 15 growth patterns could no longer be cost effectively served, thereby again 16 pushing undetermined future costs to retail customers.

17 These instances provide examples of how consideration of 18 scalability and sustainability can impact the application of Good Utility 19 Practice, and how individual generator Interconnection Customers and 20 third-party developers may not understand or appreciate the longer term 21 obligations the Companies have to maintain a highly reliable and cost-

¹⁹ NCSEA Brucke Direct Testimony, at 10.
effective system for the using and consuming public. Further, these
 examples illustrate the importance of the Companies' need for flexibility to
 implement Good Utility Practice over time, to efficiently and timely
 respond to changes in the Companies' power system and in the electric
 industry as a whole.

Q. HOW DO THE COMPANIES RESPOND TO STATEMENTS THAT THE DEC OR DEP HAVE DENIED INTERCONNECTION FOR SOME INTERCONNECTION REQUESTS?

9 A. To my knowledge, the Companies have never "denied interconnection outright" as suggested by Witness Brucke.²⁰ To do so would be inconsistent
11 with how the Companies have interpreted the interconnection-related
12 obligation arising under PURPA, as discussed in section 1 of the MOS
13 Guidelines. Of particular importance, the second paragraph of the MOS
14 Guidelines states:

DEC and DEP consider all necessary system upgrades to the general electrical system that are required in order to provide distributed energy resources (DER) reasonable and non-discriminatory access to the DEC and DEP distribution systems, the primary purpose of which is to serve existing and future retail customers. As firm retail electric providers, DEC and DEP seek to interconnect DER in a manner that allows each resource to operate within its contractual

²⁰ NCSEA Brucke Direct Testimony, at 6.

1	parameters without negatively impacting existing utility customers'
2	quality of service or cost of service. DEC and DEP are not, however,
3	obligated under the NCIP or SCGIP to make modifications that are,
4	or reasonably could be determined to be, detrimental to the
5	operation of its system or detrimental to DEC's and DEP's public
6	service obligations as regulated public utilities or retail electric
7	service providers." ²¹

8 Q. CAN YOU PROVIDE ANY EXAMPLES ILLUSTRATING WHY A 9 DISTRIBUTION SYSTEM INTERCONNECTION MAY BE 10 DETERMINED TECHNICALLY INFEASIBLE, AS OPPOSED TO 11 "DENIED" BY THE COMPANIES?

A. Yes. A common reason for infeasibility is that there are already one or more
five (5) MW generating facilities connected to the circuit or substation,
meaning the circuit or substation cannot support more power injection
(additional MWs).

16 The reason the circuit or substation cannot support additional MWs 17 of generation may be as simple as excessive voltage rise, or due to other 18 more complex factors. Because voltage rise is caused by the interaction of 19 local generation against the impedance of the entire utility system, a 20 common solution to this locational infeasibility could be to simply 21 reconductor the distribution conductor to a larger conductor. However, if

²¹ See Rebuttal Exhibit JWG-2, Section 1.

the distribution conductor is already the largest standard conductor size in use by the Companies, and no changes at the substation benefit the voltage issue, then the interconnection will be infeasible due to the specific interconnection location being "DER saturated." Notably, these DER saturated areas are becoming increasingly common in North Carolina's unique interconnection landscape due to the increasing levels of utilityscale solar penetration.

8 Q. CAN YOU PLEASE EXPAND ON YOUR EXAMPLE AND HOW 9 "DER SATURATION" CAN AFFECT THE FEASIBILITY OF A 10 PROPOSED INTERCONNECTION?

11 A. Yes. To expand on my example, under a scenario where significant DER 12 interconnects to the point of "saturation," the Companies must still 13 determine what other options may be available for the Interconnection Customer to connect. However, where the local distribution infrastructure 14 15 is saturated, there are no further upgrades available to be completed to allow 16 for an additional interconnection to existing distribution system 17 infrastructure. Therefore, the Companies may determine that construction 18 of a new distribution substation (sometimes called a "T/D substation" or a 19 "retail substation") is the only option functionally available for the 20 Interconnection Customer to interconnect in that specific location.

The Companies are fully aware of the substantial cost difference between distribution work (such as reconductoring) and construction of a new T/D substation. Reconductoring for a mile or two, when feasible, may

1 cost several hundred thousand dollars, while the cost of constructing a new 2 substation might exceed \$5 million. The Companies are further aware that 3 this very large cost difference may impact the project's financials, and thus 4 overall project feasibility. However, while the Companies have always 5 sought to identify the simplest and most reasonable interconnection 6 solution, at the least cost, consistent with Good Utility Practice, the 7 Companies' conclusions will not be altered simply because the outcome is 8 not financially viable for a particular Interconnection Customer.

9 **Q**. LOOKING TO YOUR EXAMPLE, ARE YOU STATING THAT 10 NCSEA WITNESS **BRUCKE'S** ASSERTION THAT THE 11 **COMPANIES'** ARE DENYING **INTERCONNECTION** 12 "OUTRIGHT" IS INSTEAD RELATED TO INTERCONNECTION **COSTS?** 13

14 A. Yes. The Companies asked NCSEA witness Brucke via a data request to 15 explain and support this allegation. NCSEA witness Brucke responded that DEC and DEP have always proposed mitigation options but that he "has 16 17 seen many instances where the mitigation options are financially 18 impractical. For example, if a project is not allowed to interconnect to a 19 distribution feeder as requested, Duke may propose that a new substation 20 be built, and the project connect to the transmission system, which generally would not be financially feasible for a typical 5 MW project."²² 21

²² See Rebuttal Exhibit JWG-4 NCSEA Response to Duke Data Request 2-18.

Feb (18 2019

1 Q. HOW DO YOU RESPOND?

2 The fact that there are no financially feasible interconnection options for a A. 3 particular project does not constitute "outright" denial of interconnection. Instead, in such cases, it is the unavoidable outcome of the Companies' 4 5 application of Good Utility Practice in a consistent and non-discriminatory 6 manner. It is the utility's responsibility under the NC Procedures to evaluate 7 the impacts of the proposed generating facility on the distribution and 8 transmission system and to identify any Upgrades required to implement a 9 safe and reliable interconnection (see Section 4.3.3 and Attachment 7 10 System Impact Study Agreement, Section 10, 12). As I highlight above, the 11 Companies' MOS Guidelines establish that the standard for reviewing a 12 proposed generator interconnection is to ensure that the Interconnection 13 Customer will be responsible for any Upgrades required to enable 14 interconnection and parallel operation of the generator "without negatively 15 impacting existing utility customers' quality of service or cost of service." As penetrations increase, more expensive Upgrades such as new T/D 16 17 substations will be required to interconnect additional generation to already-18 saturated circuits and substations in certain areas of the Companies' 19 systems. Nonetheless, the Companies commit to providing each 20 Interconnection Customer a technically feasible option for a safe and reliable interconnection at the lowest cost possible, consistent with Good
 Utility Practice.²³

3Q.PLEASEDESCRIBETHEPUBLICSTAFF'S4RECOMMENDATIONS FOR IMPROVING THE PROCESS OF5COMMUNICATING NEW CRITERIA MODIFICATIONS FROM6THE UTILTIY TO THE INTERCONNECTION CUSTOMERS.

A. Public Staff witness Williamson recommends that in the event of a new screen, study, technical standard, or major modification of technical methodology being developed by the Utilities in their application of the NC Procedures, that the Utilities should be required to: (1) file the new technical standard with the Commission in this docket for information purposes only,
(2) immediately post the information on the utility's website, and (3) present the topic for discussion at the next TSRG stakeholder meeting.²⁴

14 Public Staff witness Williamson's further recommends that the 15 Utilities should also inform the Commission of any potential queue impacts, 16 including impacts to (1) Interconnection Request processing time, (2) 17 project withdrawals, (3) and increased interconnection costs to be incurred by Applicants, if known.²⁵ While the Companies understand and agree with 18 19 the transparency objective underlying witness Williamson's

²⁵ Id.

²³ I note that Interconnection Requests for locations close to substations, and on circuits and substations which have not been "DER saturated," still generally allow very straightforward interconnections and are less impacted by the MOS Guidelines.

²⁴ Public Staff Williamson Direct Testimony, at 24.

recommendation and are always supportive of Interconnection Customers having as much information as reasonably possible, the Companies would be unable to meaningfully comply with these further recommendations.

1

2

3

4 More specifically, the Companies believe that anticipating and fully 5 addressing and identifying any possible "queue impacts" is infeasible in that 6 it would require the Companies' to use time and engineering resources in 7 making mere hypotheticals and projections concerning the business decisions of third party Interconnection Customers. This is because the 8 9 Companies will likely not have clear visibility into whether affected 10 project(s) will be more likely to withdraw from the queue due to a new 11 technical standard, and because it will be difficult to quantify if a 12 modification to a technical standard will cause "delays in Interconnection 13 Request processing time." Whether the new standard will result in 14 "increased costs" for most or all Interconnection Customers will also likely 15 be challenging to determine unless the new technical standard or 16 requirement uniformly specifies a particular "solution," such as installing a 17 particular piece of equipment, that will apply to all Interconnection 18 Customers uniformly. Thus, due to the many uncertainties identified above, 19 any projected potential queue impacts would be of little value (particular 20 relative to the amount of resources likely required to conduct the 21 assessment) and could even lead to greater frustration amongst 22 Interconnection Customers when such projections are determined not to be 23 accurate in general or with respect to particular projects.

Q. TO CLARIFY, DO THE COMPANIES' OTHERWISE AGREE TO IMPLEMENT THE PUBLIC STAFF'S RECOMMENDATIONS RELATING TO FILING SUCH REVISIONS?

A. Yes. The Companies' agree to 1) file any significant new screens, studies,
or major modification in their application of the NC Procedures with the
Commission in this docket for informational purposes only; 2) post
information on the utility's website regarding the new screen, study, or
modification to the NC Procedures; and 3) present the topic for discussion
at the next TSRG stakeholder meeting.

III. Technical Standards Review Group

10

11 Q. CAN YOU DISCUSS THE TSRG AND WHETHER THE 12 **COMPANIES ARE CONFIDENT THAT THIS STRUCTURE WILL** 13 PROVIDE GREATER TRANSPARENCY AND **PROMOTE** 14 **MUTUAL UNDERSTANDING BETWEEN THE COMPANIES AND** 15 **INTERCONNECTION CUSTOMERS?**

16 A. Yes. Since the TSRG's implementation in early 2018, there have been 17 several meetings held per its intended quarterly meeting frequency, with 18 discussion focused on new interconnection-related developments or 19 planned revisions to the Companies' existing technical standards. The 20 Companies believe the TSRG to be a success, as it has already fostered 21 increased communications and transparency between the Companies' and 22 its Interconnection Customers since the TSRG's inception. Additionally, 23 Public Staff witness Williamson expresses support for the TSRG, stating

"the TSRG stakeholder meetings should continue in their current format on
at least a quarterly basis for the foreseeable future."²⁶ Therefore, and as
stated above, the Companies and Public Staff both foresee the TSRG as a
key tool in communicating new or changing technical standards amongst
interested stakeholders.

Q. HOW DO THE COMPANIES' RESPOND TO CERTAIN SOLAR ADVOCATES' CLAIMS THAT THE TSRG HAS BEEN LESS THAN 8 SUCCESSFUL?

9 The Companies disagree that the TSRG has been anything less than A. 10 successful. Specifically, NCSEA witness Brucke claims that "no changes 11 to any Duke policy or standard have been implemented," since the TSRG was established.²⁷ This statement assumes that the TSRG is only successful 12 13 when it results in changes and the Companies do not agree with this 14 assertion. Furthermore, the TSRG is a new creation and therefore it is 15 unrealistic to expect that it will have resulted in significant changes in such 16 a short period of time. To quote the Public Staff, "the TSRG has been beneficial to participants even though it is still in its infancy."²⁸ 17

18 In comparison to the solar advocate interveners, the Public Staff, as 19 evidenced by the above statement, is encouraged by what they have 20 witnessed to-date through their active participation in the TSRG. If one

²⁶ Public Staff Williamson Direct Testimony, at 22.

²⁷ NCSEA Brucke Direct Testimony, at 13.

²⁸ Public Staff Williamson Direct Testimony, at 22.

10	0	HAVE THE COMPANIES IMPLEMENTED ANY PROCEDURES
9		introduction of utility-scale DER.
8		processes and procedures-many of which have existed long before the
7		TSRG members on the basis and reasons for current practices, systems,
6		these initial meetings has been appropriately spent on educating non-utility
5		discussed at the meetings. Further, much of the Companies' time during
4		can see the vast breadth and depth of technical issues being raised and
3		generate-your-own/tsrg and included in my Rebuttal Exhibit JWG-3, one
2		available at https://www.duke-energy.com/business/products/renewables/
1		reviews the detailed agendas and minutes, which are made publicly

10 Q. HAVE THE COMPANIES IMPLEMENTED ANY PROCEDURES 11 RELATED TO THE TSRG AND INCREASING TECHNICAL 12 OVERSIGHT AND UTILITY ACCOUNTABILITY AND CAN YOU 13 PROVIDE ANY EXAMPLES?

14 A. Yes. The Companies started keeping a detailed action item log and are 15 tracking and following up on discussion items brought to the Companies' 16 attention by interested stakeholders through the TSRG. For example, at the 17 April 2018 meeting, developers asked questions about Salesforce and Powerclerk, and the Companies responded by agreeing to put the issues on 18 19 the agenda for the July meeting. At the July meeting, the Companies 20 presented information on the status of Salesforce and Powerclerk, in 21 response to these stakeholders' requests. Similarly, at the July meeting, 22 there were many questions raised about voltage management and DSDR 23 and at the October meeting, the Companies provided a summary of how

nominal voltage and DSDR are related, and then posted information on the 2 TSRG website under the "meeting three" documents list concerning the 3 same. This action item log, and resulting follow-up communications, shows how the Companies' are taking the TSRG itself, and resulting 4 5 communications and discussion, seriously in increasing transparency and 6 coordination between the Companies and interested industry stakeholders. 7 **Q**. WERE THERE RECOMMENDATIONS MADE BY ANY 8 **INTERVENORS** RELATING TO THE TSRG'S **FUTURE** 9 **IMPLEMENTATION?** Yes. The Companies, the Public Staff, and IREC all support continued 10 A. 11 implementation of quarterly TSRG meetings. Additionally, IREC witness 12 Lydic recommends that in the future, all TSRG meetings "be publicly 13 noticed and its agenda and meeting minutes be filed in a docket or otherwise publicly posted."²⁹ The Companies note that the TSRG's meetings already 14 15 have been and continue to be posted publicly at https://www.duke-16 energy.com/business/products/renewables/generate-your-own/tsrg, with

- 17 agendas co-developed by the Companies and the interested stakeholders.
- 18 Minutes and presentations from each meeting are additionally posted to the
- 19 Companies' interconnection webpages.

1

20 Last, NCSEA and IREC recommend that the current form of the 21 TSRG change to allow for Commission oversight, and discuss a process by

²⁹ IREC Lydic Direct Testimony, at 23.

which consensus and/or Commission approval would be required for
 changes to interconnection technical standards.³⁰

Q. HOW DO THE COMPANIES' RESPOND TO IREC AND NCSEA'S RECOMMENDATION THAT THE TSRG BE SUBJECT TO COMMISSION OVERSIGHT?

6 A. The Companies' disagree with IREC and NCSEA that the TSRG should be 7 subject to Commission oversight. In response, I first note that both the 8 Companies and the Public Staff agree that "Duke Energy retains the right 9 to make the final decision on all technical standards or evolving [Good Utility Practice] revisions, subject to Commission review as part of its 10 11 general regulatory power and the dispute resolution process defined in the NCIP."³¹ This approach mirrors the Massachusetts TSRG, on which the 12 13 Companies' TSRG was based (and which was cited by IREC as a model). 14 The Massachusetts governing documents state that:

15 "The members of the TSRG understand and agree that the Utilities 16 have the final decision over which Technical Standards, both 17 common and Utility-specific, to employ for the purposes of 18 interconnecting DG facilities to their respective distribution systems

 ³⁰ IREC Lydic Direct Testimony, at 23; NCSEA Brucke Direct Testimony, at 13.
 ³¹ Public Staff Williamson Direct Testimony, at 23.

2	Technical Standards Manuals they develop." ³²
3	Thus, other, similar TSRGs do not require Commission oversight.
4	Further, although the Companies do not dispute the Commission's
5	regulatory powers, to allow Commission oversight of the TSRG would, in
6	essence, give stakeholders a unique ability to assert power over the
7	Companies' internal planning and operating standards. This, in turn, would
8	force the Companies to "re-optimize" power quality, reliability, and
9	economic considerations for retail customers "around" whatever technical
10	standards have been put in place for these solar QF developer stakeholders.
11	Stated another way, today the Companies are free to continually make
12	informed alterations and modifications to their utility system (i.e., provide
13	continual optimization), as long as the cost and quality of service continues
14	to be maintained or improved, given other uncontrolled external constraints.
15	If consensus and/or direct Commission approval were to be required for
16	changes to interconnection technical standards through the TSRG (not
17	including the NC Procedures), the TSRG stakeholders (interconnecting
18	solar QF developers) would be provided first right to alter the Companies'
19	internal practices, and at the cost of retail customers. Therefore, these
20	recommendations should be rejected.

and ultimate control over any Utility-specific and common

1

³² Massachusetts Technical Standards Review Group Final By Laws, *Technical Standards Review Group Guidelines*, at 1, <u>https://drive.google.com/file/d/0B836U49Yrh_QYW5vNGITR2xrMUk/view</u>.

man a

1		In conclusion, the Companies believe that the ISRG is a truly
2		valuable and necessary forum in today's emerging world of interconnecting
3		and operating in parallel with growing levels of distributed generation. The
4		Companies also believe that nothing in the current environment changes the
5		effective role of the Commission's long-held oversight and regulatory
6		authority over quality of service and cost of service, and that the Companies,
7		as do all utilities, continue to operate effectively in a mode of continual
8		internal optimization to meet the needs of their retail customers.
9		<u>IV. IEEE 1547</u>
10	Q.	CAN YOU PROVIDE THE COMPANIES' PERSPECTIVE ON IEEE
11		1547?
12	A.	Yes. IEEE 1547-2018 represented significant changes to the earlier 2003
13		version. The new 1547 Standard, titled "IEEE Standard for Interconnection
14		and Interoperability of Distributed Energy Resources with Associated
15		Electric Power Systems Interfaces," is not a procedural standard, although
16		it does provide "requirements relevant to the performance, operation,
17		testing, safety, and maintenance of the interconnection." As detailed by
18		Public Staff witness Williamson, "it is not a standard that the Utilities are
19		bound to follow but is a standard that provides guidance on incorporating
20		DER onto the grid." ³³

...

.

³³ Public Staff Williamson Direct Testimony, at 17.

1Q.CAN YOU PLEASE EXPAND ON THE STATEMENT MADE BY2THE PUBLIC STAFF IN REGARDS TO THE IEEE 1547 NOT3BEING A STANDARD THE UTILTIIES ARE BOUND TO4FOLLOW?

A. Yes. Public Staff witness Williamson's comment is a key point to keep in
mind when discussing the IEEE 1547 standard. IEEE 1547 contains the
phrase "DER shall..." about eighty-six (86) times, while the phrase "Area
EPS shall..." is never included.³⁴ The import of this DER-focused standard
is significant as it allows for utility-specific implementation of Good Utility
Practice and does not impose exact requirements, which the Companies' (or
any utility) must specifically implement from the IEEE 1547 standard.

12 However, to keep in line with new developments in the DER 13 industry and to recognize evolving Good Utility Practice, the Companies 14 are studying the new IEEE 1547 standard and working on determining if 15 and when some of the standard's provisions may be appropriate to adopt. 16 Therefore, if and when this becomes the case, the standard will be available 17 for the Companies to utilize in assuring that DER follow all standard 18 designs as called for in the IEE 1547. Until that time, the Companies agree with IREC³⁵ in that the TSRG is and will be an appropriate forum for 19

³⁴ Note that "Area EPS" refers to the Area Electric Power system, a term meant to refer to the utility.

³⁵ IREC witness Lydic argues that the TSRG is the appropriate forum for considering smart inverters and the IEEE 1547 standard. IREC Lydic Direct Testimony, at 31-32.

1		consideration and implementation of the IEEE 1547-2018 Standard, as its
2		use will require coordination with, and action by, North Carolina
3		interconnection developers. ³⁶
4		V. Fast Track and Supplemental Review
5	Q.	PLEASE SUMMARIZE IREC'S POSITIONS AS IT RELATES TO
6		FAST TRACK AND SUPPLMENTAL REVIEW.
7	A.	Throughout this proceeding, IREC has placed great emphasis on changing
8		the Fast Track and Supplemental Review process, and raised issues relating
9		to both processes.
10		Specifically, IREC took positions on:
11		• the Companies' definition of line section as it applies to Fast Track
12		screen 3.2.1.2;
13		• changing the Fast Track Eligibility for interconnections on 5 kV
14		circuits, in any location, from 100 kW to 500 kW;
15		• screening for projects 20 kW and less;
16		• Supplemental Review screens; and,
17		• screening criteria for penetration of net-metered DER on a substation
18		transformer.

³⁶ Notably, questions surrounding "smart inverters" are part and parcel of 1547-2018's scope, and will be taken up in a forum such as the TSRG.

Q. DO YOU AGREE WITH IREC THAT BOTH THE FAST TRACK AND SUPPLEMENTAL REVIEW PROCESSES NEED TO BE REVIEWED AND CHANGED?

A. No. The Companies have seen few issues with the overall Section 3 Fast
Track process, and move the majority of Fast Track projects through the
queue with relative ease, as compared to the more significant and timeconsuming technical and queue challenges related to multi-MW solar farms.
Therefore, the Companies believe that both the overall Section 3 Fast Track
and Supplemental Review processes are working efficiently at this time and
do not need a complete overhaul.

Q. CAN YOU EXPLAIN THE COMPANIES' APPROACH TO EVALUATION OF FAST TRACK SCREEN 3.2.1.2 AND WHY IT DIFFERS FROM IREC'S POSITION?

A. Yes. First, however, I would note that the Public Staff supports the
Companies' overall approach to the Fast Track screening process as a
whole, including its interpretation of the term "line section" as it evaluates
the Fast Track screening criteria.

As background to the Companies' application of Fast Track Screen 3.2.1.2, the Companies developed their interpretation of "line section" using the term "automatic sectionalizing device" as it is classically used in the utility industry. Specifically, the Companies interpret this to apply to a device which is capable of automatically sectionalizing (separating) a section of the distribution system, quickly and without local or remote

1	human intervention. The capability is typically necessary due to a fault, and
2	would include feeder circuit breakers, reclosers, sectionalizers, and fuses.
3	To clarify, there is nothing electrically different about one circuit zone
4	which consists of a transformer fuse, transformer, and several secondary
5	services, as compared with another circuit zone consisting of mile-long
6	fused tap line containing many service transformers and services. As Public
7	Staff witness Williamson stated in support of the Companies' application of
8	this section, "the Utilities are reasonable in using a conservative approach
9	that will results in a higher degree of grid safety and reliability." ³⁷
10	In contrast to the Companies' application of this screen, IREC states
11	that the Companies' approach to the 15% peak load screen, and
12	interpretation of "line section" as the zone defined by a service transformer
13	fuse, is too narrow. IREC therefore recommends that the definition of line
14	section include a larger section of the distribution circuit.
15	In support of their argument, IREC cites a paper titled, "Evaluation
16	of Alternatives to the FERC SGIP Screens for PV Interconnection Studies,"
17	to justifying its recommendation for a different definition of line section.
18	However, this paper states that "Automatic sectionalizing devices may
19	include feeder breakers, line automatic sectionalizing switches, and
20	possibly fuses as well." Therefore, this paper acknowledges that a fuse is

an automatic sectionalizing device, and therefore also supports the

21

³⁷ Public Staff Williamson Direct Testimony, at 13.

Companies' current definition and application of line section within NC
 Procedures section 3.2.1.2.

3 The Companies agree with Public Staff witness Williamson that a "...screen should not be arbitrarily adjusted on the sole premise of allowing 4 more projects to pass the screen and be interconnected."³⁸ The Companies 5 6 therefore contend that IREC's recommendations should be rejected, as Fast 7 Track section 3.2.1.2 and the current definition of "line section" as applied 8 by the Companies is reasonable and being applied in an efficient manner. 9 All of the above considered, the Companies do however agree with Public 10 Staff witness Williamson that it would be appropriate to address the 11 Companies' application of "line section" within the Section 3.2.12 technical 12 screen during a future meeting of the TSRG, though only so as to increase 13 transparency as to the Companies' interpretation of that term.

14Q.HOW DO THE COMPANIES RESPOND TO IREC'S POSITION15THAT THE FAST TRACK PROCESS IS NOT WORKING, NOTING

16 HIGH PERCENTAGE SCREEN FAILURE RATES?

A. Most of the screen "failures" are related to the 15% peak load screen,
discussed above. As noted in my direct testimony, during the 2017
Stakeholder Process, the Companies shared how the majority of
Interconnection Requests proposing to interconnect to the Companies'
systems under Fast Track initially fail the Fast Track screens, but are then

³⁸ Id.

I		successfully evaluated for interconnection through Supplemental Review.
2		Interconnection Customers processed through the Section 3 process are
3		passing Supplemental Review without the Companies identifying a need for
4		full Section 4 study at a rate of approximate 97 percent.
5		IREC suggested the initial Fast Track screen failures are evidence
6		that the Companies are not applying the Fast Track screens appropriately.
7		However, as I explain in direct testimony, similar logic would lead one to
8		conclude that since the vast majority of college students fail to attain a grade
9		point average in excess of 3.75, university professors must be designing
10		their tests to be too difficult. The Companies maintain that the focus should
11		be on the time for overall processing of Interconnection Requests of certain
12		sizes, regardless of the exact processing mechanism, while technical screens
13		and evaluations should be handled appropriately.
14	Q.	WHY DO THE COMPANIES NOT SUPPORT CHANGING FAST
15		TRACK ELIGIBILITY FOR INTERCONNECTIONS ON 5 KV
16		CLASS CIRCUITS, IN ANY LOCATION, FROM 100 KW TO 500
17		KW?
18	A.	I would first note that the Public Staff supports the Companies' position to
19		not change Fast Track Eligibility for interconnections on 5 kV class circuits
20		located anywhere on the circuit from 100 kW to 500 kW. Since existing
21		Section 3.1 Fast Track Eligibility Table already establishes an eligibility
22		value of 500 kW for sites within 2.5 miles of the substation, the Eligibility
23		value under question is primarily for facilities further than 2.5 miles from

the substation. The reason why the Companies do not support this change
in eligibility is primarily based upon physics, which explains why the
change is completely unnecessary. As background, most of the Companies'
4160 volt circuit backbones are less than 2.5 miles in length, making an
interconnection at a location further than 2.5 miles from the substation
exceedingly rare. Hence, the screen value goes mostly unused if eligibility
is increased.

As a comparison of distribution circuits: if one assumes 480 amperes 8 9 of current flow (approximate capacity for a distribution circuit), one would 10 calculate an equivalent voltage drop for a 23 kV feeder of 9 miles in length, 11 a 12 kV feeder 5 miles in length, and a 4.16 kV feeder 1.6 miles in length. 12 As a point of reference, the standard feeder design in DEP, designed in the 13 1960s, called for the optimum length of a 23 kV circuit to be 9 miles, and 14 the optimum length for a 12 kV circuit to be 5.5 miles, making the point 15 that these are typical feeder lengths even today. Therefore, one should 16 expect few 4.16 kV circuits to be in excess of 2.5 miles in length. In fact, a 17 query of DEC's 4.16 kV circuits across North Carolina and South Carolina 18 estimates 85% of the circuits to be less than 3 miles in length.

Furthermore, a closer inspection of the Fast Track Eligibility table in section 3.1 reveals that it clearly utilizes, as a primary component, the concept of stiffness ratio, and does so appropriately based on the description of stiffness ratio in IEEE 1547.7. Specifically, IEEE 1547.7 describes weak or insufficiently stiff locations on a power system indicative of "...a greater potential to affect system voltage, power quality, and system protection
 schemes," therefore providing the conceptual basis for deriving appropriate
 values in the Fast Track Eligibility Table.

4 As an example, if one were to construct a Fast Track Eligibility 5 Table strictly upon a single stiffness ratio value, and choose a ratio of 60 as 6 the criteria of Fast Track eligibility, the following table would result, based 7 on common parameters of the DEC and DEP systems:

Line Voltage	Interconnection at 3.0 electrical miles from substation	Interconnection at 0.5 miles from substation
4.16 kV	\leq 141 kW	$\leq 656 \text{ kW}$
12.5 kV	$\leq 0.87 \text{ MW}$	≤ 1.90 MW
24 kV	≤ 1.65 MW	$\leq 2.30 \text{ MW}$

8

9 Compare this to the actual Fast Track Eligibility table in section 3.1 of the

10 NC Procedures:

Line Voltage	Fast Track Eligibility Regardless of Location	Fast Track Eligibility on a Mainline and ≤ 2.5 Electrical Circuit Miles from Substation
< 5 kV	$\leq 100 \text{ kW}$	$\leq 500 \text{ kW}$
\geq 5 kV and < 15 kV	$\leq 1 \text{ MW}$	$\leq 2 \text{ MW}$
\geq 15 kV and < 35 kV	$\leq 2 \text{ MW}$	$\leq 2 \text{ MW}$

11

12 The similarities of the tables are striking. In comparing these tables, one

13 can see how Interconnection Requests for generating facilities well over 100

1	kW, up to 500 kW, in locations greater than 2.5 miles from the substation,
2	on 5 kV circuits, will not only be exceedingly rare, but when they occur,
3	have great potential for system reliability impacts that require upgrades and
4	which should be studied in the Section 4 study process.

5 Although IREC witness Auck believes that IREC's eligibility proposal is now a "...de facto national standard..."³⁹ and points to the state 6 of Ohio-where Duke Energy Ohio⁴⁰ operates-adopting a 500 kVA 7 8 threshold for this screen, the Companies assert that this change has virtually 9 no positive effect to the processing of interconnection requests, and will be 10 rarely, if ever used. Additionally, in the Companies' opinion, compliance 11 with a supposed "...de facto national standard..." is insufficient as a 12 singular justification when the engineering and physics behind the screen 13 involved do not offer support.

14 Q. WILL THE COMPANIES PLEASE CLARIFY THEIR PRACTICES

15 FOR SCREENING PROJECTS 20 KW AND LESS?

A. Yes. First, I would like to make a clarification concerning recent filings and
data requests made by the Companies which referenced the use of a
"Demand Table" in its evaluation of projects ≤ 20 kW. To be clear, the
Companies use this "Demand Table" to confirm compliance with the NEM
tariffs in DEC and DEP, not to evaluate interconnection impacts. The NEM

³⁹ IREC Auck Direct Testimony, at 19.

⁴⁰ The Companies note that to their knowledge, Duke Energy Ohio did not support this eligibility change before the Public Utilities Commission of Ohio.

1 tariffs in DEC and DEP require that the capacity of the generating facility 2 must not exceed the Customer's estimated maximum annual kilowatt 3 demand, and the "Demand Table" is composed of estimated kW demand levels based on attributes of the customer's home. The data in the "Demand 4 5 Table" is sourced from the Company's design information, which it uses to 6 size service transformers, secondary service cables, and other electrical 7 equipment. Therefore, the "Demand Table" is not specifically germane to the discussions around interconnection impact evaluation. 8

9 Turning to the actual screening of Interconnection Requests ≤ 20 10 kW in size, to-date the Companies validate that the Interconnection 11 Customer is utilizing equipment which is UL1741 listed for its <20 kW 12 project. Notably, having proper UL1741 equipment is the most important 13 safety and operational aspect for these sized interconnections. The 14 Companies have not, however, performed Section 3 Fast Track screening 15 for all 4,000+ Section 2 Interconnection Requests. Previously, the 16 Companies evaluated the Section 3 screens and concluded, in conjunction 17 with their knowledge and experience of small inverter-based facilities, that 18 no safety risks and little to no operational risks would occur if initial Section 19 3 Fast Track screening was not completed. Instead, the Companies' 20 evaluation concluded that application of the Section 3 screen to such small 21 projects would rather result in a laborious process with little to no benefit to 22 Interconnection Customers or to the protection of power quality and 23 reliability on the system.

3 A. The current Supplemental Review process provides valuable flexibility for 4 both the Utility and the Interconnection Customer. Additionally, the 5 Companies have utilized the Supplemental Review process with much success; when a project fails to pass one or more Fast Track screens, the 6 7 project most often proceeds to Supplemental Review where it is then 8 successfully evaluated. In many cases, Fast Track-eligible projects require 9 additional technical evaluation but do not need to undergo the Section 4 10 study process to ensure they can be safely and reliably interconnected. 11 However, larger projects or locations with more complexity may be referred 12 to the Section 4 study process to assure that circuit impacts of 13 interconnecting the proposed Generating Facility are well-understood 14 before proceeding to an Interconnection Agreement.

While IREC claims that the Companies' use of discretion "provides a ripe opportunity for the appearance of, or actual, discriminatory treatment of projects,"⁴¹ the Companies initially note IREC witness Auck's testimony that they are legally prohibited from exercising discriminatory treatment of projects, and second, even question why or to what end they would engage in such discriminatory treatment. From the Companies' perspective, there

⁴¹ IREC Auck Direct Testimony, at 17.

Jeb 48 2019

appears to be no obvious incentive to do so, and the Companies therefore
 reject IREC's unsupported contention.

Q. WHY DO THE COMPANIES NOT SUPPORT IREC'S PROPOSAL FOR THE IMPLEMENTATION OF ADDITIONAL SCREENS WITHIN THE SUPPLEMENTAL REVIEW PROCESS?

6 A. The Companies' do not support IREC's proposal for a set of three 7 prescriptive Supplemental Review screens in lieu of the current, more 8 flexible approach the Companies advocate to continue to implement. The 9 Companies first reject IREC's proposal because the addition of 10 standardized screens to the Supplemental Review process implies that there 11 is a complete and uniform understanding of every possible future design of 12 DER and how it might connect to the distribution system. Secondly, 13 IREC's proposal assumes that distribution systems in North Carolina are 14 100% equivalent to distribution systems elsewhere. Neither premise is 15 correct.

16Rather than adopting new screens within the Supplemental Review17process, the Companies instead would support further evaluation of the Fast18Track process screens, taking into account the specifics of the distribution19systems involved, as well as industry developments. The Companies'20recently formed TSRG can provide a forum to evaluate whether a more21well-defined Supplemental Review process would create benefits over the22current flexible Supplemental Review process that exists today.

1 Further, although IREC contends that these Supplemental Review 2 screens will increase efficiency—seemingly because customers know what 3 to expect and can assess earlier on whether their project would pass 4 screens-the Companies' evaluation of these proposed screens shows the 5 opposite conclusion; acceptance of these additional screens would in fact 6 decrease efficiency. As detailed in my direct testimony, a few of IREC's 7 proposed screens mirror the Companies' current Supplemental Review process, while others do not provide much value to Interconnection 8 9 Customers at all, meaning these screens would only further delay an 10 Interconnection Customer's processing through the queue.

11 Further, the Companies in their experience find that the relative 12 small cost of a Fast Track review and Supplemental Review, in comparison 13 to the cost of the project, incentivizes Interconnection Customers to 14 complete the study and interconnection process as swiftly as possible, in 15 order to be aware of the final outcome and any related costs of their 16 proposed project, prior to fully committing to construction and final 17 operation. Thus, the Companies' current study process, is developed 18 organically to only address the items which need to be studied for a safe and 19 reliable interconnection and nothing further. In conclusion, the 20 Supplemental Review process as it exists provides the Companies more 21 latitude to continually improve and optimize the evaluation process, a concept which comes natural to a utility in almost everything it does, and 22 23 provides benefit to all Interconnection Customers.

1 **O**. YOU PROVIDE ANY EXAMPLES OF HOW CAN THE 2 FLEXIBILTIY OF THE CURRENT SUPPLEMENTAL REVIEW PROCESS 3 HAS **IMPROVED** NORTH **CAROLINA'S INTERCONNECTION PROCESS?** 4

5 The Companies note how IREC witness Lydic questions the A. Yes. 6 Companies' use of a 10% screen in which the aggregate amount of net-7 metered DER on a substation is calculated to see if it is below 10% of the substation transformer capacity, within Supplemental Review. This is 8 9 actually a great example of the Companies' organically developing flexible 10 evaluation methods to move projects through the queue as swiftly as 11 possible, while also making sure certain impacts are not missed.

Specifically, this 10% screen was developed so that the Companies could flag growing penetration of net-metered DER on substations, and perform additional study if needed. It was created with the knowledge that conservatively, the minimum load experienced by most all transformer banks would be at least 10% of the bank's rating. This screen also has allowed most net-metered projects to move quickly through evaluation as this screen was satisfied.

19In using and developing flexible evaluation methods, the Companies20are utilizing internal engineering talent to identify what is needed21specifically on the Companies' systems, with the Companies assuming any22and all risk which may come with improper technical evaluations. In any23case, the Companies' more "personalized" evaluation is better than

208

1

2

evaluation through a set of screens handed down from elsewhere and not taking into account specifics of the Companies' systems.

- 3 Further, since the Companies are completely responsible for 4 reliability and power quality on their systems, the Companies are best able 5 to process interconnection requests with flexibility in its evaluation 6 processes. The risk of such processes being too lenient or liberal are taken 7 on by the Companies, while the risk of such processes being too conservative or restrictive are addressed by offering full transparency of its 8 9 methodologies and availability for discussion through the TSRG. Finally, 10 the reason to maintain these processes as flexible and not lock them down 11 is that this is a dynamic and changing area of study. Handling these issues 12 within the TSRG rather than specifically in a regulatory document is more 13 efficient for all stakeholders and presents no disadvantages for stakeholders.
- 14

VI. Material Modification

15 Q. PLEASE ADDRESS THE COMPANIES' POSITION ON
 16 MATERIAL MODIFICATIONS, ESPECIALLY WITH RESPECT
 17 TO ENERGY STORAGE.

A. NCSEA witness Brucke and NCCEBA witness Norqual both testify that an
Interconnection Customer should be able to add energy storage to an
Interconnection Request already in the queue. As background, during
Working Group #2 in the 2017 Stakeholder Process, language was agreed
upon which called for the ability to make changes to the DC system
configuration of a facility, without them being considered "indicia of a

1	material modification." In addition, the Interconnection Request form was
2	revised to call for hourly production profile information. Both of these
3	changes can be seen in the final markup of the NC Procedures as compiled
4	by Advanced Energy and filed with the Commission by the Public Staff in
5	August of 2017. As explained throughout the 2017 Stakeholder Process,
6	the Companies' concerns are with modeling accuracy and system impacts
7	of battery storage, and assuring that what is being studied actually matches
8	the reality of the generating facility's impact to the system, especially where
9	otherwise material changes are subsequently made to the facility design.
10	Despite this seemingly unassailable perspective, NCCEBA witness
11	Norqual questions the Companies' addition of a phrase in the NC
12	Procedures Redline, as filed with my direct testimony. Specifically, the
13	following section 1.5.2.5 reads as follows, with the additional text submitted
14	by the Companies underlined:
15	1.5.2.5 A change in the DC system configuration to include
16	additional equipment that does not impact the Maximum Generating
17	Capacity, daily production profile or the proposed AC configuration
18	of the Generating Facility including: DC optimizers, DC-DC
19	converters, DC charge controllers, static VAR compensators, power
20	plant controllers, and energy storage devices such that the output is
21	delivered during the same periods and with the same profile
22	considered during the System Impact Study.

1 The Companies realized after the conclusion of Working Group #2 that the 2 1.5.2.5 language likely left open for interpretation whether an 3 Interconnection Customer could generate at the originally requested full 4 output at any time between sunrise and sunset, the assumed operating hours 5 of a solar farm. The assessment of exactly what hours of the day, and to 6 what levels, of energy storage production might be a permissible 7 modification, without performing additional study, would be subjective at best. Without being able to perform proper studies to re-assess the impacts 8 9 of the modified generator + storage output, the Companies risk inadvertent 10 discriminatory treatment across Interconnection Customers. Study 11 complexity is growing, not diminishing, and an uncontrolled storage device 12 could be in a charge state, discharge state, or neutral state at any time. Any 13 study must be able to account for what will truly happen in reality.

14 Therefore, the Companies added the words "and with the same 15 profile" to the Advanced Energy redline simply out of an abundance of 16 caution. This was necessary because operation at full requested output early 17 or late in the day, for example, when studies have been assuming solar 18 output has been very low, cannot be supported by original study 19 assumptions. Although this should be well understood, the Companies 20 believe the clarifying language is necessary to ensure system safety and 21 reliability.

Additionally, I note that it is true that the NC Procedures allow for some changes to the DC configuration without concern for production

1		profile, such as DC/AC ratio increases. These DC/AC ratios are known to
2		impact early and late day ramping, a growing concern of its own, though
3		the Companies manage the concern through requirements or other
4		mitigation if system ramping becomes sufficiently impacted. However, the
5		addition of energy storage is not analogous to a DC/AC ratio increase. The
6		Companies expect modeling to become more complex in the future, and
7		without assurances the original profile can be maintained with the addition
8		of battery storage, the Companies must consider profile changes as
9		"material" when and where they do impact study assumptions.
10		VII. Software Controls
11	Q.	PLEASE ADDRESS THE COMPANIES' POSITION ON THE
11 12	Q.	PLEASE ADDRESS THE COMPANIES' POSITION ON THE REVISED NCIP SECTION 6.10.2, WITH RESPECT TO
11 12 13	Q.	PLEASE ADDRESS THE COMPANIES' POSITION ON THE REVISED NCIP SECTION 6.10.2, WITH RESPECT TO SOFTWARE CONTROLS.
11 12 13 14	Q. A.	PLEASE ADDRESS THE COMPANIES' POSITION ON THEREVISED NCIP SECTION 6.10.2, WITH RESPECT TOSOFTWARE CONTROLS.Yes. IREC witness Lydic, claims that the phrase "mutually agreed upon"
11 12 13 14	Q. A.	PLEASE ADDRESS THE COMPANIES' POSITION ON THEREVISED NCIP SECTION 6.10.2, WITH RESPECT TOSOFTWARE CONTROLS.Yes. IREC witness Lydic, claims that the phrase "mutually agreed upon"as included in Section 6.10.2, presents concern in that it could allow the
11 12 13 14 15 16	Q. A.	PLEASE ADDRESS THE COMPANIES' POSITION ON THEREVISED NCIP SECTION 6.10.2, WITH RESPECT TOSOFTWARE CONTROLS.Yes. IREC witness Lydic, claims that the phrase "mutually agreed upon"as included in Section 6.10.2, presents concern in that it could allow theUtilities to limit controls to only physical controls. Importantly, the
11 12 13 14 15 16	Q. A.	PLEASE ADDRESS THE COMPANIES' POSITION ON THEREVISED NCIP SECTION 6.10.2, WITH RESPECT TOSOFTWARE CONTROLS.Yes. IREC witness Lydic, claims that the phrase "mutually agreed upon"as included in Section 6.10.2, presents concern in that it could allow theUtilities to limit controls to only physical controls. Importantly, theCompanies already rely upon software-based controls, for example when
11 12 13 14 15 16 17	Q. A.	PLEASE ADDRESS THE COMPANIES' POSITION ON THE REVISED NCIP SECTION 6.10.2, WITH RESPECT TO SOFTWARE CONTROLS. Yes. IREC witness Lydic, claims that the phrase "mutually agreed upon" as included in Section 6.10.2, presents concern in that it could allow the Utilities to limit controls to only physical controls. Importantly, the Companies already rely upon software-based controls, for example when inverters in solar farms are programmed with appropriate "Pmax"
11 12 13 14 15 16 17 18	Q. A.	PLEASE ADDRESS THE COMPANIES' POSITION ON THE REVISED NCIP SECTION 6.10.2, WITH RESPECT TO SOFTWARE CONTROLS. Yes. IREC witness Lydic, claims that the phrase "mutually agreed upon" as included in Section 6.10.2, presents concern in that it could allow the Utilities to limit controls to only physical controls. Importantly, the Companies already rely upon software-based controls, for example when inverters in solar farms are programmed with appropriate "Pmax" (maximum real power output) settings to assure that the sum total of inverter
11 12 13 14 15 16 17 18 19 20	Q.	PLEASE ADDRESS THE COMPANIES' POSITION ON THE REVISED NCIP SECTION 6.10.2, WITH RESPECT TO SOFTWARE CONTROLS. Yes. IREC witness Lydic, claims that the phrase "mutually agreed upon" as included in Section 6.10.2, presents concern in that it could allow the Utilities to limit controls to only physical controls. Importantly, the Companies already rely upon software-based controls, for example when inverters in solar farms are programmed with appropriate "Pmax" (maximum real power output) settings to assure that the sum total of inverter output does not exceed the contract capacity. Conversely, solar farms

utilize power plant controllers (which are programmable devices and have

attributes of software-based controls) to control output as well. Therefore,

the phrase "mutually agreed upon" should not present problems for

REBUTTAL TESTIMONY OF JOHN W. GAJDA DUKE ENERGY CAROLINAS, LLC DUKE ENERGY PROGRESS, LLC

21

22

23

213

Interconnection Customers looking to use software controls to manage power export. However, the Companies note that proper output controls are extremely important as they control impacts to retail customers on distribution circuits, and on the transmission system for transmission interconnected generating facilities. Therefore, the Companies will continue to review and agree upon appropriate export controls proposed by Interconnection Customers.

8 VIII. Completion of an Independent Review of the NC Procedures

9 Q. WHAT IS THE COMPANIES' POSITION ON THE PUBLIC 10 STAFF'S RECOMMENDATION FOR AN INDEPENDENT 11 REVIEW OF THE NC PROCEDURES?

12 The Companies do not support a full independent review of the NC A. 13 Procedures. A full independent review would likely consume significant 14 time in 2019, and is broader than the Companies would support as 15 reasonable and beneficial based upon the recently-completed 2017 16 Stakeholder Process and the Commission's review of the NC Procedures 17 review that is already underway. As discussed in greater detail by 18 DEC/DEP witness Freeman, significant work will already be required in 19 2019 to transition the study process for larger generators from the current 20 serial process to a cluster study approach. Requiring the same Duke Energy 21 team to also coordinate a separate independent review of the full NC 22 Procedures in parallel (on top of their actual "day jobs" of administering the 23 interconnection process) would be nearly impossible and potentially delay

or impair the implementation of needed queue reforms. This is especially
 the case if the Public Staff is contemplating "significant stakeholder input"
 into the independent review process. At a minimum, the Companies would
 request that such a study be delayed until after the grouping study
 stakeholder process is concluded.

6 While the Public Staff appears to assert that independent review of the entire interconnection procedures is "common,"⁴² Public Staff only cites 7 to one analogous example, New York's independent review. The 8 9 Companies have reviewed the EPRI report on the New York 10 interconnection standards, and note that New York's review was part of that 11 state's overarching "Reforming the Energy Vision" process. Notably, New 12 York's then-existing interconnection standards only applied to generators 13 up to 2 MW, meaning New York's interconnection procedures and pre-14 existing landscape was in a much different place than North Carolina's 15 today. Additionally, although the Companies tried to find the cost of EPRI 16 completing its assessment and developing this 100+ page report for New 17 York, we have been unable to do so and also note that the cost of such a 18 review is a concern. The Companies are not aware of any other state having 19 undertaken a third-party review on such an enormous scale.

20 As I explain in my direct testimony, the Companies continue to 21 support a more narrowly-focused independent review or consultation with

⁴² Public Staff Williamson Direct Testimony, at 27.

8	0.	DOES THIS CONCLUDE YOUR REBUTTAL TESTIMONY?
7		should therefore be rejected or at least postponed by the Commission.
6		efforts to implement a full grouping study), would likely be costly, and
5		would impair the Companies' ability to perform other functions (including
4		stakeholder input would be unduly burdensome to implement at this time,
3		provided through the TSRG. However, a "full NC Procedures review" with
2		implemented through the TSRG, with industry participation and feedback
1		ERPI on the Fast Track and Supplemental Review process. ⁴³ This could be

9 A. Yes.

⁴³ DEC/DEP Gajda Direct Testimony, at 36.

216

1	BY M	IR. JIRAK:
2	Q	Mr. Gajda, do you have a summary of your
3		testimony?
4	A	I do.
5	Q	Would you please proceed at this time?
6	A	Yes.
7		(WHEREUPON, the summary of JOHN W.
8		GAJDA is copied into the record as
9		read from the witness stand.)
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		

NORTH CAROLINA UTILITIES COMMISSION
· - - 817

Testimony Summary - John W. Gajda Docket No. E-100, Sub 101 January 28, 2019

Chairman Finley, Commissioners, good afternoon. My name is John Gajda, and I work as a power systems engineer at Duke Energy. I am glad to be here today to help shed light on Duke Energy's recommended modifications to the North Carolina Interconnection Procedures as well as to provide my perspective more generally on the unique interconnection landscape in North Carolina.

I would like to begin by briefly highlighting a few aspects of my background that I believe give me a unique perspective in this proceeding. Twenty of my last 28 years in full time practice as an engineer have involved generator interconnection design work for distribution, subtransmission, and transmission interconnections. I started work at Duke Energy - then Progress Energy - in 2001, and since 2003 have continuously had some amount of responsibility for generator interconnections.

I currently serve as an internal consultant for Duke Energy for most all technical matters surrounding distribution and transmission interconnections. From 2014 until 2018 I served as Manager and then Director of the DER Technical Standards group in Duke Energy, where I led a group of engineers involved in providing technical leadership and guidance for interconnection study methods and procedures. During that time, as DER penetration rapidly increased, I led much of our establishment and refinement of necessary technical standards and policies to assure that interconnections could sustainably continue alongside our critical distribution & transmission planning processes.

My pre-filed direct and rebuttal testimonies provide technical perspective on Duke Energy's interconnection efforts and challenges faced over the past few years. Make no mistake, the pace of change has been breathtaking as I and many other personnel within Duke have worked tirelessly to establish sustainable interconnection practices-practices that have resulted in national-leading amounts of interconnections-while also ensuring reliable power for all customers, all within the so-called "living laboratory" that is North Carolina interconnection.

We often refer to North Carolina as a "living laboratory" because no other state has attempted to interconnect such a vast amount of utility scale generation to its distribution system. When I have explained to utility engineers at technical conferences what we have been experiencing in North Carolina, I have been consistently met with stunned amazement as I have described the pace, size, and quantity of the facilities we have been and continue to connect to the distribution system. Because of the unprecedented nature of the interconnections in North Carolina, it has been necessary to evolve and develop policies and procedures in the midst of this surging growth that not only ensure the sustainability of our interconnection practices in the short term but also ensure that what we do today does not inequitably constrain future distribution system flexibility and thereby increase costs to all customers. It is vital to understand that the distribution system-unlike the transmission system-was never designed to allow for the two way flow of power and there will remain challenges to the Companies in the future as it seeks to plan, operate and maintain a distribution system that now also provides transmission-like services.

Feb 13 2019

Nevertheless, it is essential that Duke have sustainable methods in place to still allow utility-scale generators on the distribution system in the future, when they do occur.

In my testimony, I discuss the participation of Duke Energy's team in the recent Advanced Energy ("AE")-led interconnection stakeholder process, held in late 2017, to consider changes needed to the Interconnection Procedures. I provide to the Commission Duke Energy's proposed modifications, and explain why Duke Energy does not support the idea of major overhaul to sections of current Fast Track and Supplemental Review process. I have personally been involved in performing multiple interconnection studies and I can confidently say that my and Duke's consistent focus has always been on results – for the interconnection customer and protection of the retail customer – rather than worrying so much about aligning parts of the interconnection standards with other states. As I look in my local perspective just here in DEP, I recall that in 2010, we had less than 20 MW of utility-scale DER, greater than 1 MW each, on the *distribution* system. Today I see over 1400 MW of this DER in just DEP, and am phenomenally proud of having accomplished something no other utility in the country – or the world – can quite lay claim to, and know that our approach of relying on results has been more than successful.

While I am not going to summarize every technical point in my testimony, I do want to highlight a few points for the Commission's benefit. Recall that the interconnection procedures are structured in a "staged" manner, to generally provide faster processing for smaller projects of lesser consequence, while also providing for more in-depth analysis for larger projects which may involve impacts and solutions to mitigate those impacts.

We have and continue to connect small, non-utility scale generators successfully with little fanfare and few complaints, and hence we do not support changes in the state's procedures for these types of interconnections. One intervenor wishes to see North Carolina conform to the requirements in some other states, in an effort to create a "national standard," but this is not necessary in order to efficiently serve interconnection customers and protect retail customers' reliability and power quality.

For larger projects, discussions took place during the stakeholder process to address the Procedures' "Material Modification" section. This section establishes the process when an interconnection customer elects to alter their design after the project has entered the queue, and sometimes after it has entered the study phase or even executed an interconnection agreement. These provisions allow for inconsequential changes to the project to be allowed. But where changes of consequence are made after a study is underway or completed, ones which would require a "re-study" for a project in order to determine impacts to its own project and later-queued projects, a determination of "Material Modification" moves the study of such changes to the end of the queue, thus preventing slowdown of the queue and any impacts to later-queued projects.

"Working Group #2," during the stakeholder process, worked out a number of consensus changes to this section. There have been comments from intervenors which lead Duke to believe that these parties wish to add energy storage to facilities already in the study process, or already interconnected, without requiring additional study. From an interconnection perspective, Duke's position is not that the addition of storage should not be permitted but rather that the addition of storage requires further study in order to ensure reliability and proper cost allocation. This is because a solar plus storage facility has the potential to operate in ways that are substantially different than a solar-only facility, therefore invalidating certain key assumptions the Companies makes when we study solar-only resources. With respect to the Companies' interconnection policies and methodologies, there has undoubtedly been differences of opinion at times between the solar development community and Duke. But the fact that there have been differences in opinion should be unsurprising given the different perspectives of the parties. We have appropriately focused our efforts on education in recent years, and in my testimony I have discussed Duke's efforts and progress in fostering transparency and improved technical understanding of the Companies' evolving interconnection standards and technical requirements, including through the recent formation in April 2018 of the Duke Energy-led Technical Standards Review Group, or TSRG, which provide additional opportunities for full and frank dialogue on various technical issues. In fact, Duke held the fourth Carolinas TSRG meeting just last week, on January 23.

In conclusion, as I have lived on the front lines of North Carolina's living laboratory, I am proud of the ways in which the Companies have achieved national-leading amounts of interconnections. Through this journey, the Companies have been identifying and implementing reasonable, non-discriminatory policies to assure we continue to meet our dual obligation of serving current and future retail customers, and of serving current and future generators on the distribution system.

Commissioners, this concludes my summary.

1		MR. BREITSCHWERDT: Thank you, Mr. Gajda.								
2	DIRECT EXAMINATION BY MR. BREITSCHWERDT:									
3	Q Good afternoon, Mr. Riggins. Would you please									
4	state your business your name and your									
5		business address for the record?								
6	A	My name is Jeffrey W. Riggins. My address is 400								
7		South Tryon Street in Charlotte.								
8	Q	And by whom are you employed and in what								
9		capacity?								
10	A	I work with Duke Energy. I'm the Director for								
11		Generator Interconnections and Standard Purchase								
12		Power Agreements.								
13	Q	And did you cause to be prefiled in this docket								
14		on November 19, 37 pages of direct testimony in								
15		question and answer form?								
16	А	Yes.								
17	Q	Do you have any changes or corrections to that								
18		direct testimony today?								
19	A	Yes. I have one correction.								
20	Q	Would you please inform the Commission of that								
21		correction at this time?								
22	A	Yes. On page 21, line 5 of my direct testimony I								
23		incorrectly identify the under-recovery of								
24		Category 1 fee related expenses for 2017. The								

Г

NORTH CAROLINA UTILITIES COMMISSION

1		figure one million six hundred and thirty five
2		thousand \$1,000,635 should be replaced with
3		\$871,674. The corrected figure is also reflected
4		in my rebuttal testimony in Exhibit JWR-3.
5	Q	Thank you, Mr. Riggins. And if I were to ask you
6		the same questions that appear in your direct
7		testimony subject to that correction today, would
8		your answers be the same?
9	A	Yes.
10	Q	And did you subsequently also cause to be
11		prefiled in this docket on January 8, 2019, 58
12		pages of rebuttal testimony in question and
13		answer form and five exhibits?
14	A	Yes.
15	Q	And was Rebuttal Exhibit JWR-4 subsequently
16		refiled on January 11th to redact certain
17		information as confidential?
18	A	Yes.
19	Q	And do you have any changes or corrections to
20		that rebuttal testimony?
21	A	I do not.
22	Q	And if I were to ask you the questions that
23		appear in your rebuttal testimony today, would
24		your answers be the same?

NORTH CAROLINA UTILITIES COMMISSION

A Yes.

1

2 Q Thank you.

MR. BREITSCHWERDT: Mr. Chairman, at this time I would move Mr. Riggins' prefiled direct and rebuttal testimony into the record and pre-mark his five rebuttal exhibits, including the confidential information that was refiled in his JWR Rebuttal Exhibit 4, pre-mark those for identification as prefiled.

10 CHAIRMAN FINLEY: Mr. Riggins' direct 11 prefiled testimony of November 19, 2018, of 37 pages, 12 as corrected, is copied into the record as though 13 given orally from the stand. And his rebuttal 14 testimony of January 8, 2019, of 58 pages is copied 15 into the record as though given orally from the stand. 16 And his five rebuttal exhibits are marked for 17 identification as premarked in the filing with 4 being 18 refiled with some confidential information noted in 19 it. 20 MR. BREITSCHWERDT: Thank you. 21 (WHEREUPON, the prefiled direct 22 testimony of JEFFREY W. RIGGINS as 23 corrected is copied into the 24 record as if given orally from the

NORTH CAROLINA UTILITIES COMMISSION

1	stand.)
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	

NORTH CAROLINA UTILITIES COMMISSION

BEFORE THE NORTH CAROLINA UTILITIES COMMISSION

DOCKET NO. E-100, SUB 101

In the Matter of)	DIRECT TESTIMONY OF
Petition for Approval of Generator)	JEFFREY W. RIGGINS
Interconnection Standard)	ON BEHALF OF DUKE ENERGY
)	CAROLINAS, LLC AND DUKE
)	ENERGY PROGRESS, LLC

OFFICIAL COPY

1 Q. PLEASE STATE YOUR NAME AND BUSINESS ADDRESS.

A. My name is Jeffrey W. Riggins, P.E. and my business address is 400 South
Tryon Street, Charlotte, NC 28202.

4 Q. WHAT IS YOUR POSITION WITH DUKE ENERGY 5 CORPORATION?

A. I am the Director of Standard Power Purchase Agreements ("PPAs") and
Generator Interconnections for Duke Energy Corporation ("Duke Energy").

8 Q. PLEASE BRIEFLY SUMMARIZE YOUR EDUCATIONAL 9 BACKGROUND.

A. I earned a Bachelor of Science in Electrical Engineering in 1988 from
 Clemson University and a Master of Business Administration in 2012 from
 Queens University of Charlotte.

13 Q. PLEASE DESCRIBE YOUR BUSINESS BACKGROUND AND 14 EXPERIENCE.

A. Throughout my 30-year career at Duke Energy, I have held multiple
positions with increasing responsibilities in distribution, transmission,
telecommunications, emergency preparedness, and now, distributed energy
technologies. I have experience in engineering, account management,
project management, and have held various departmental leadership roles
within Duke Energy.

21 Q. WHAT ARE YOUR RESPONSIBILITIES IN YOUR CURRENT 22 POSITION?

I A.	In August 2016, Duke Energy's Distributed Energy Technologies ("DET")
2	organization established my current role to provide targeted management of
3	Duke Energy Carolinas, LLC's ("DEC") and Duke Energy Progress, LLC's
4	("DEP" and together with DEC, the "Companies") administration of the
5	generator interconnection process in North Carolina and South Carolina. In
6	this role, I am responsible for the administration of the interconnection
7	process for both distributed generation and traditional generation resources
8	requesting to interconnect to the Companies' transmission and distribution
9	systems. This includes administering the "processing" and customer
10	coordination of generator interconnections under the North Carolina
11	Interconnection Procedures ("NC Procedures"), the South Carolina Public
12	Service Commission-approved South Carolina Generator Interconnection
13	Procedures, and the Federal Energy Regulatory Commission ("FERC")-
14	approved Large and Small Generator Interconnection Procedures. I am also
15	responsible for interconnection processing in other Duke Energy
16	jurisdictions in Florida, Ohio, Indiana, and Kentucky.
17	My team is specifically responsible for processing Interconnection
18	Requests, handling interconnection customer communications, and
19	coordinating with subject matter experts ("SMFs") from a number of

coordinating with subject matter experts ("SMEs") from a number of
organizations within Duke Energy to ensure a robust, thorough analysis of
potential impacts of interconnecting a proposed generating facility or
"project" to the DEC or DEP transmission/distribution grid. After the study
process is completed, my team is then responsible for execution of both

state and FERC jurisdictional Interconnection Agreements as well as
"Schedule PP" standard offer PPAs entered into under the Public Utilities
Regulatory Policies Act of 1978 ("PURPA"). Once a project has completed
the study process, executed an Interconnection Agreement and PPA, and is
interconnected to the grid, my team manages the Companies' ongoing
contractual relationships with the projects under the various agreements.

Q. HAVE YOU PREVIOUSLY TESTIFIED BEFORE THE NORTH 8 CAROLINA UTILITIES COMMISSION ("COMMISSION")?

9 A. No. I have not.

10 Q. WHAT IS THE PURPOSE OF YOUR TESTIMONY?

11 Α. The purpose of my testimony is to inform the Commission regarding the 12 Companies' ongoing efforts to administer the interconnection process under 13 the NC Procedures and to support the Companies' proposals to modify 14 certain provisions of the currently-approved NC Procedures. My testimony 15 first highlights the Companies' recent participation in the 2017 stakeholder 16 meetings on the NC Procedures as well as efforts since the Companies 17 formed the Distributed Energy Technologies organization in 2016 to add 18 additional dedicated resources to administer the interconnection process. I 19 also discuss a number of Duke Energy-supported proposed modifications to 20 the NC Procedures. These proposals include increasing certain deposits and 21 fees to more fully recover the Companies' interconnection-related costs; 22 modifying the current dispute resolution process; and recommending the 23 Commission adopt limited, targeted modifications to the interconnection

1		study process, including: (1) enhancing scoping meetings, (2) establishing
2		timeframes for decisions and responses from Interconnection Customers
3		during the study phases, (3) facilitating more expedited interconnection
4		studies for swine and poultry projects and standby generators that
5		momentarily parallel the electric grid.
6	Q.	HOW IS YOUR TESTIMONY ORGANIZED?
7	A.	My testimony is organized into the following sections:
8		I. 2017 Stakeholder Process and Efforts to Support Generator
9		Interconnection in North Carolina
10		II. Recovering Interconnection Related Costs
11		III. Interconnection Processing Proposals
12		IV. Dispute Resolution
13	Q.	ARE YOU SPONSORING ANY EXHIBITS WITH YOUR DIRECT
13 14	Q.	ARE YOU SPONSORING ANY EXHIBITS WITH YOUR DIRECT TESTIMONY?
13 14 15	Q. A.	ARE YOU SPONSORING ANY EXHIBITS WITH YOUR DIRECT TESTIMONY? No. I am not.
 13 14 15 16 17 18 	Q. A. I.	ARE YOU SPONSORING ANY EXHIBITS WITH YOUR DIRECT TESTIMONY? No. 1 am not. 2017 STAKEHOLDER PROCESS AND EFFORTS TO SUPPORT GENERATOR INTERCONNECTION IN NORTH CAROLINA
 13 14 15 16 17 18 19 	Q. A. I. Q.	ARE YOU SPONSORING ANY EXHIBITS WITH YOUR DIRECTTESTIMONY?No. I am not.2017 STAKEHOLDER PROCESS AND EFFORTS TO SUPPORT GENERATOR INTERCONNECTION IN NORTH CAROLINAPLEASE DESCRIBE THE COMPANIES' PARTICIPATION IN
 13 14 15 16 17 18 19 20 	Q. A. I. Q.	ARE YOU SPONSORING ANY EXHIBITS WITH YOUR DIRECT TESTIMONY? No. I am not. 2017 STAKEHOLDER PROCESS AND EFFORTS TO SUPPORT GENERATOR INTERCONNECTION IN NORTH CAROLINA PLEASE DESCRIBE THE COMPANIES' PARTICIPATION IN IN THE 2017 STAKEHOLDER PROCESS.
 13 14 15 16 17 18 19 20 21 	Q. A. I. Q.	ARE YOU SPONSORING ANY EXHIBITS WITH YOUR DIRECT TESTIMONY? No. I am not. 2017 STAKEHOLDER PROCESS AND EFFORTS TO SUPPORT GENERATOR INTERCONNECTION IN NORTH CAROLINA PLEASE DESCRIBE THE COMPANIES' PARTICIPATION IN THE 2017 STAKEHOLDER PROCESS. Pursuant to the Commission's May 15, 2015 Order Approving Revised
 13 14 15 16 17 18 19 20 21 22 	Q. A. I. Q. A.	ARE YOU SPONSORING ANY EXHIBITS WITH YOUR DIRECT TESTIMONY? No. I am not. 2017 STAKEHOLDER PROCESS AND EFFORTS TO SUPPORT GENERATOR INTERCONNECTION IN NORTH CAROLINA PLEASE DESCRIBE THE COMPANIES' PARTICIPATION IN THE 2017 STAKEHOLDER PROCESS. Pursuant to the Commission's May 15, 2015 Order Approving Revised Interconnection Standard, the Public Staff—North Carolina Utilities
 13 14 15 16 17 18 19 20 21 22 23 	Q. A. I. Q.	ARE YOU SPONSORING ANY EXHIBITS WITH YOUR DIRECT TESTIMONY? No. I am not. 2017 STAKEHOLDER PROCESS AND EFFORTS TO SUPPORT GENERATOR INTERCONNECTION IN NORTH CAROLINA PLEASE DESCRIBE THE COMPANIES' PARTICIPATION IN THE 2017 STAKEHOLDER PROCESS. Pursuant to the Commission's May 15, 2015 Order Approving Revised Interconnection Standard, the Public Staff—North Carolina Utilities Commission ("Public Staff") initiated, and Advanced Energy ("AE")
 13 14 15 16 17 18 19 20 21 22 23 24 	Q. A. I. Q.	ARE YOU SPONSORING ANY EXHIBITS WITH YOUR DIRECT TESTIMONY? No. I am not. 2017 STAKEHOLDER PROCESS AND EFFORTS TO SUPPORT GENERATOR INTERCONNECTION IN NORTH CAROLINA PLEASE DESCRIBE THE COMPANIES' PARTICIPATION IN THE 2017 STAKEHOLDER PROCESS. Pursuant to the Commission's May 15, 2015 Order Approving Revised Interconnection Standard, the Public Staff—North Carolina Utilities Commission ("Public Staff") initiated, and Advanced Energy ("AE") facilitated, the 2017 stakeholder process. The stakeholder process provided
 13 14 15 16 17 18 19 20 21 22 23 24 25 	Q. A. I. Q.	ARE YOU SPONSORING ANY EXHIBITS WITH YOUR DIRECT TESTIMONY? No. I am not. 2017 STAKEHOLDER PROCESS AND EFFORTS TO SUPPORT GENERATOR INTERCONNECTION IN NORTH CAROLINA PLEASE DESCRIBE THE COMPANIES' PARTICIPATION IN THE 2017 STAKEHOLDER PROCESS. Pursuant to the Commission's May 15, 2015 Order Approving Revised Interconnection Standard, the Public Staff—North Carolina Utilities Commission ("Public Staff") initiated, and Advanced Energy ("AE") facilitated, the 2017 stakeholder process. The stakeholder process provided a structured and open forum for the Companies, the Public Staff, Dominion

1	Energy North Carolina ("Dominion"), North Carolina Electric Membership
2	Corporation, numerous solar developers, and other stakeholders to share
3	their perspectives on the successes and ongoing challenges under the 2015
4	revisions to the NC Procedures, while working toward common ground on
5	proposed revisions to the NC Procedures. Throughout the summer and fall
6	of 2017, the Companies actively participated in these meetings and worked
7	in good faith with Interconnection Customers and other stakeholders to
8	identify reasonable and beneficial opportunities to improve the NC
9	Procedures.

10 As part of the 2017 stakeholder process, AE also convened four 11 Working Groups to support targeted discussions of interconnection-related 12 topics such as study process transparency, new technology issues, utility 13 construction and design standards, and conflict resolution. The Companies 14 actively participated in all four of the Working Groups, with Duke Energy 15 Witness John Gajda leading Working Groups three and four. Several other 16 Duke Energy representatives, including myself, actively participated and 17 contributed in both the broader stakeholder meetings and targeted Working 18 Group meetings representing our account management, financial, and study 19 teams.

20 Q. PLEASE HIGHLIGHT SOME OF THE ISSUES AND CONCERNS 21 THE COMPANIES RAISED DURING THE STAKEHOLDER 22 PROCESS.

1 During the stakeholder process, the Companies raised concerns about A. 2 interconnection fees and deposits; ongoing challenges managing the 3 unparalleled volume of utility-scale power export interconnection requests 4 (largely 5 MW_{AC} solar projects); the process and standard for determining 5 what constitutes a "Material Modification;" and the lack of adequate 6 provisions to establish clear timeframes for developer decisions or 7 responses during the study phases under the Section 4 study process. 8 Throughout the stakeholder process, the Companies listened and 9 collaborated with the Public Staff, solar developers, and other parties to 10 address these concerns and subsequently proposed changes to address a number of these concerns through a joint utilities redline of the NC 11 12 Procedures.

Q. PLEASE HIGHLIGHT SOME OF THE ISSUES AND CONCERNS RAISED BY DEVELOPERS DURING THE STAKEHOLDER PROCESS.

16 A. Developers recognized that the Companies continue to be challenged to 17 manage the volume of utility-scale interconnection requests and expressed 18 frustration about delays in the interconnection process. Developers also 19 raised a number of issues, including concerns about the Companies' new 20 and increasingly stringent technical standards and requirements, 21 transparency regarding project status, how the Companies process Fast 22 Track and Supplemental Review requests, and the definition of "Material 23 Modification."

1 In response to many of the concerns, the Companies proactively changed 2 some of their processes and continue to voluntarily make improvements to 3 support the interconnection process. For example, based on stakeholder 4 feedback, the Companies proactively began providing more detailed 5 System Impact Study reports to improve transparency. They also began 6 expanding (1) the level of detail in interdependency letters and mitigation 7 option notices, (2) the level of detail in pre-application reports to identify known constraints such as regulators and voltage issues, and (3) the scope 8 9 of Supplemental Review to allow projects requiring more minor 10 construction to install reclosers to be approved through Section 3 rather than 11 requiring a full system impact study under Section 4. Other ongoing process 12 improvements include integrating technology into the interconnection 13 administration process and implementing the use of reminders in Salesforce 14 to better track milestones.

Q. RECOGNIZING THAT INTERCONNECTION STAKEHOLDERS
 EXPRESSED FRUSTRATION ABOUT INTERCONNECTION
 REQUEST PROCESSING DELAYS, CAN YOU PLEASE BRIEFLY
 DESCRIBE THE COMPANIES' EXPERIENCE MANAGING THE
 INTERCONNECTION PROCESS?

A. Yes. As more generally discussed by Duke Energy Witness Gary R.
Freeman, the Companies are and always have been committed to making
reasonable efforts to process Interconnection Requests in accordance with
the NC Procedures. I am proud of the efforts the Companies have made to

1 support safe and reliable interconnections both for our customers under the 2 Section 2 and Section 3 study process, as well as for the hundreds of 3 developer-sponsored multi-megawatt solar facilities that have requested to 4 interconnect to the Companies' distribution and transmission system in 5 North Carolina. While the Companies have generally maintained 6 compliance with the timeframes for studying smaller retail customer-sited 7 generating facility interconnections under the Section 2 and Section 3 study process, the Companies recognize that DEC and DEP have been challenged 8 9 to complete certain steps of the Section 4 study process, especially the 10 Section 4.3 System Impact Study, within the timeframes contemplated by 11 the NC Procedures. Despite these challenges, the Companies have made, 12 and will continue to make, diligent and good faith efforts to efficiently and 13 fairly process all Interconnection Customers' Interconnection Requests 14 pursuant to the NC Procedures. The Companies' efforts are borne out by 15 the number of generator interconnections that have actually been 16 accomplished since the Commission approved the NC Procedures in May 17 2015. During this period, the Companies have supported approximately 18 4,600 retail customer interconnections of small solar and other customer-19 site generating facilities up to 20 kW and have also entered into over 350 20 Interconnection Agreements with larger generating facilities above 20 kW. 21 Q. PLEASE DESCRIBE THE **COMPANIES'** INCREASING 22 **RESOURCE COMMITMENTS TO THE NORTH CAROLINA** 23 **INTERCONNECTION PROCESS FROM 2015 TO 2018.**

1 A. The Companies have invested significant time and resources to respond to 2 the rapidly evolving interconnection process and to meet the growing 3 demands from Interconnection Customers, both large and small. Beginning 4 in 2016, Distributed Energy Technologies established additional leadership 5 positions and reorganized jurisdictional teams in DEC and DEP to provide 6 more focused administration of the interconnection process. The management team monitors the need for staffing based on expected 7 volumes and current backlog and adjusts resources as needed. 8

9 The Distributed Energy Technologies team—which manages 10 Interconnection Customers greater than 20kW—has grown to now consist 11 of separate DEC and DEP Managers, nine Account Managers, six Contract 12 Analysts, and four Customer Account Specialists. This team is fully 13 dedicated to coordinating the Section 3 "Fast Track and Supplemental 14 Review" and Section 4 "full study" interconnection process from start to 15 finish, including coordinating System Impact Studies and Facilities Studies. 16 In addition, this team is responsible for preparing and executing 17 Interconnection Agreements, tracking progression of projects through the 18 study process, collecting fees, milestone payments, and other deposits to 19 help a project progress through the queue, coordinating construction of 20 interconnection facilities and system upgrades, and generally engaging in 21 ongoing communications with Interconnection Customers.

22 Q. ON TOP OF EXPANDING AND REORGANIZING THE 23 DISTRIBUTED ENERGY TECHNOLOGIES TEAM, HAVE THE

1

2

3

4 A. Yes. The Companies have also established a separate retail customer-5 focused Renewables Service Center ("RSC") to support the needs of our 6 residential and commercial customers looking to install a generating facility 7 at their home or business. In addition to processing and managing Section 2 interconnection requests, the RSC also reviews and validates the 8 9 Interconnection Requests for all utility scale projects, both state and FERC-10 jurisdictional, and assigns a queue number when the Interconnection 11 Request is complete. The RSC is a dedicated interconnection customer 12 service organization focused on processing the already-significant and 13 increasing volume of Interconnection Requests received in North Carolina 14 and across Duke Energy's other jurisdictions.

15 Duke Energy has also recently formed a new distributed generation 16 ("DG") engineering organization dedicated to managing distribution-level 17 interconnection studies. Currently the DG team includes a team manager, 18 5 engineers, and plans to add 3 additional team members over the next few 19 months. This new internal DG team will supervise and coordinate with 20 other internal Duke Energy SMEs, as well as the approximately 40 21 dedicated contractor study engineers conducting System Impact Studies for 22 state jurisdictional distribution interconnection projects in North Carolina 23 and South Carolina.

- Q. CAN YOU PROVIDE DETAILS ON THE INTERCONNECTION RELATED RESOURCES THE COMPANIES HAVE ADDED SINCE
 2015 TO BETTER MANAGE THE GROWING VOLUMES OF
 INTERCONNECTION CUSTOMERS?
- A. Yes. As noted earlier, the Distributed Energy Technologies, RSC, new DG
 team, and study teams have significantly increased overall staffing to
 support generator interconnections over the past four years. Figure 1 details
 the increasing number of resources dedicated to supporting the
 interconnection process in the Carolinas from 2015 to today.
- 10

<u>Figure 1</u>

			1/1/2015	1/1/2017		9/1/2018	
1		5	AM	6	AM	9	AM
1	÷			4	Cust Acct Spec	4	Cust Acct Spec
1	Tec	1	Contract Analysts	6	Contract Analysts	6	Contract Analysts
	2g	1	Leadership	4	Leadership	6	Leadership
1	nei			3	Process (CW)	4	Process (emp)
1	it.	1	Tech Standards	3	Tech Standards	4	Tech Standards
1	Dis					4	Compliance/support
1				3	Negotiated PPA	3	Negotiated PPA
		8	Total Resources	29	Total Resources	40	Total Resources
	Study Resources	11	Dist. study engineers/support	31	Dist. study engineers/support	38	Dist. study engineers/support
		7	Trans. study (planners)	7	Trans. study (planners)	7	Trans. study (planners)
		18	Total Resources	38	Total Resources	45	Total Resources
Г							
	Renewable Service Center	11	Total Resources	20	Total Resources	25	Total Resources

Notably, as shown in Figure 1, Distributed Energy Technologies increased
its total number of employees and contractors from 8 at the beginning of
2015 to 40 as of November 1, 2018. Similarly, in the same period, the teams
responsible for interconnection studies has also increased from 18
employees to 45, and the RSC has gone from 11 employees to 25.

4 A. Duke Energy's Distributed Energy Technologies organization has also 5 made significant investments in software platforms and new technology to 6 improve efficiency and to enhance the Interconnection Customer's 7 experience in the interconnection process. For example, the Companies have invested in the SalesForce software application to track and manage 8 9 Interconnection Requests throughout the lifecycle of the interconnection 10 process. SalesForce is used by other departments within Duke Energy to 11 manage customer relationships and interactions, and DET has expanded its 12 use of the capabilities in SalesForce to standardize and automate certain 13 tasks and communications to support processing of interconnection 14 requests. For example, DET is now leveraging the Tasks platform in 15 SalesForce to create reminders of deliverables and milestones that will 16 position the Companies to more efficiently deliver proactive reminders and 17 to hold Interconnection Customers accountable for meeting their required 18 timeframes as defined in the NC Procedures.

In addition to improving and expanding the use of the SalesForce platform, the Companies are currently developing a Customer Portal to simplify the application process, provide increased transparency into the status of projects currently in the interconnection queue, and allow customers to make payments more efficiently. The Customer Portal will be

1 rolled out in phases, with the first phase targeting North Carolina and South 2 Carolina large (Section 3 and Section 4) distribution generator 3 interconnection projects. Testing and Interconnection Customers pilots will 4 be conducted in late 2018 with full rollout currently planned in early 2019. 5 IN YOUR VIEW, HAVE THE COMPANIES MADE REASONABLE Q. 6 **EFFORTS** TO **ADMINISTER** THE **INTERCONNECTION PROCESS SINCE 2015?** 7

8 Yes. The Companies are proud of the good faith improvements they have A. 9 made to increase the efficiency of the interconnection process for 10 Interconnection Customers while still ensuring a safe, reliable electrical system for all the Companies' customers. In addition to the resource 11 12 investments and reorganizations described above, the Companies now 13 assign Account Managers to be responsible for projects from the time an 14 Interconnection Request is deemed complete until a project is operational 15 and final true-ups are completed under the Interconnection Agreement. The 16 Companies also voluntarily publish bi-weekly updates to queue reports on 17 its renewables website. The Companies' Account Managers and Customer 18 Account Specialists also make good faith efforts to proactively contact 19 Interconnection Customers when a deadline for Interconnection Customer 20 action is approaching to ensure they are aware of the approaching deadline. 21 The Companies have also voluntarily offered "mitigation options" during 22 the System Impact Study phase in order to provide Interconnection 23 Customers with multiple feasible generator interconnection options,

including options to reduce the size of the project in order to meet the
 Companies' technical standards and/or to "mitigate" some or potentially all
 Upgrade costs to support the interconnection.

4 The Companies' implementation of medium voltage audits and anti-5 islanding tests are also examples of improvements to the interconnection 6 process because they ensure the new generators do not create unintended 7 power quality and reliability issues for existing customers due to poor construction quality. After first implementing the audit process in 2016, the 8 9 Companies also recognized the importance of completing the audits in a 10 timely manner and engaged AE to ensure there are adequate resources to 11 complete the audits.

12 The Companies have also made good faith efforts to be responsive to 13 Interconnection Customers' business goals. For example, because many 14 Interconnection Customers have goals to energize projects by the end of a 15 given calendar year, both AE and the Companies have worked extended 16 overtime hours during the year-end holiday season to accommodate as 17 many projects as reasonably possible. These are just some of the 18 Companies' ongoing good faith and reasonable efforts to support the 19 generator interconnection process in North Carolina.

II. <u>RECOVERING INTERCONNECTION-RELATED COSTS</u>
 Q. CAN YOU PROVIDE DETAILS ON THE TYPES OF COSTS THE
 COMPANIES INCUR TO ADMINISTER THE NORTH CAROLINA
 INTERCONNECTION PROCESS?

1 Yes. The Companies' expansion of the Distributed Energy Technologies A. 2 and study organizations and investments in new software and technology 3 designed to improve the interconnection process for the benefit of 4 Interconnection Customers has resulted in a significant increase in 5 interconnection-related costs. Most broadly, costs used to facilitate the 6 interconnection process consist of three categories: administrative, processing, and technology costs. The Distributed Energy Technologies, 7 RSC and distribution study organizations described in Figure 1 above are 8 9 all dedicated resources that would not be required but for the requirement 10 to process Interconnection Requests and accommodate customer- and third 11 party developer-sponsored distributed generation assets.

In addition to the cost of the front-line dedicated interconnection resources, the Companies also incur other indirect costs associated with managing the significant growth in Interconnection Requests that are more difficult to quantify. Indirect costs include Distributed Energy Technologies growing responsibility of supporting organizations such as Technical Standards, Business Process and Governance, Strategy & Policy, Planning and Forecasting, and Reporting and Analytics.

19I would also highlight a final type of indirect cost—"opportunity20costs"—associated with the level of resources committed to the21interconnection process. For example, while the labor cost of non-dedicated22resources such as transmission planners and construction teams is recovered23through direct charges or overhead allocations, those charges do not

recognize the impact of diverting the resources away from other high
 priority work that is necessary to provide safe and reliable service to our
 customers.

4	Q.	HAS THE CO	OMMISSIO	N PREVIO	USLY DIRECT	FED THE
5		COMPANIES	ТО	FULLY	RECOVER	THEIR
6		INTERCONNEC	TION-REL	ATED	COSTS	FROM
7		INTERCONNEC	TION CUS	TOMERS?		

8 Yes. The Commission has specifically directed the Companies to recover A. 9 all interconnection-related costs from Interconnection Customers to the 10 greatest extent possible. In DEC's 2016 Renewable Energy and Energy 11 Efficiency ("REPS") Rider proceeding, the Commission specifically 12 ordered DEC to fully utilize interconnection fees as a means of recovering 13 interconnection costs, rather than including interconnection-related 14 administrative and general costs in the REPS Rider, as was the Company's previous practice.¹ Subsequently, in DEP's 2017 REPS Rider case, the 15 Commission reiterated its position that, to the "greatest extent possible," 16 17 costs incurred to interconnect renewable energy generators should be 18 recovered from the developers or Interconnection Customers through interconnection charges.² As a result, the Companies are proposing to 19 20 increase certain fees and deposits and are allocating overhead costs to

¹ Order Approving REPS and REPS EMF Riders and REPS Compliance, Docket No. E-7, Sub 1106 (Aug. 16, 2016).

² Order Approving REPS and REPS EMF Riders and REPS Compliance, Docket No. E-2, Sub 1109 (Jan. 17, 2017).

projects pursuant to the Section 4 study agreements and Interconnection
 Agreement to cover indirect costs, such as Salesforce and labor for
 resources that are not charging to specific interconnection projects.

4 Q. HOW ARE THE COMPANIES TRACKING AND COMPLYING

5 WITH THE COMMISSION'S DIRECTION TO FULLY RECOVER

6 THEIR INTERCONNECTION-RELATED COSTS FROM 7 INTERCONNECTION CUSTOMERS?

8 On March 1, 2017, the Companies submitted their Interconnection Cost A. 9 Allocation Procedures Report to the Commission, detailing efforts to refine their approach to tracking and assigning interconnection-related costs.³ 10 11 Consistent with the framework identified in this Report, the Companies now 12 classify and track costs to determine needed interconnection fees by 13 assigning labor and interconnection-related costs based upon type of 14 activity performed to administer Interconnection Requests. The specific process outlined in the March 1, 2017 Interconnection Cost Allocation 15 16 *Procedures Report* has subsequently been slightly revised to better match 17 money received from Interconnection Customers. This revised process is 18 designed to more easily determine if both non-refundable fees and non-19 direct charged administrative costs allocated to studies and construction 20 projects are appropriate.

³ Interconnection Cost Allocation Procedures Report, Docket Nos. E-100, Sub 101; E-2, Sub 1109; and E-7 Sub 1131, at 2 (Mar. 1, 2017). In the DEP REPS Order, *supra* note 2, the Commission directed DEP to work with the Public Staff in making cost allocation refinements to interconnection-related costs and to submit a report on these efforts to the Commission no later than March 1, 2017. DEP REPS Order at Ordering Paragraph 4.

1Q.PLEASE ELABORATE ON THE COMPANIES' PROCEDURES TO2TRACK THESE INCREASED FEES, DEPOSITS, AND OVERHEAD3COSTS.

A. In compliance with the Commission's orders, the Companies have
implemented a more accurate way to specifically track costs—primarily
labor and technology costs—directly related to supporting interconnectionrelated activities. The Companies are tracking costs based on the type of
work completed to best match against cash received from Interconnection
Customers.

10 To do so, the Companies have developed three cost categories based 11 on the type of payment received from the Interconnection Customers. 12 These three cost categories, and the types of duties allocated to each, are 13 summarized as follows:

14 Category 1, "Fees-Recovered Work:" Costs for this type of work are 15 recovered via non-refundable fees; thus, charges in this category are 16 generally related to Section 2 and Section 3 Interconnection 17 Requests as well as Pre-Application processing expenses, and time 18 spent processing and filing change of control documentation. 19 Related technology costs to this type of processing are also included. 20 <u>Category 2, "Study-Recovered Work:</u>" Costs for this type of work 21 are recovered through study deposits; thus charges in this category 22 are related to Section 3 Supplemental Review and Section 4 study 23 processes and generally applies to larger sized projects.

1Specifically, costs in this category are related to processing of >22MW state-jurisdictional Interconnection Requests and <2 MW</td>3projects requiring Supplemental Review under Section 3, answering4questions and preparing agreements for Supplemental Reviews,5System Impact Study agreements, Facility Study Agreements,6tracking and filing correspondence, general account management,7processing oversight, and related technology costs.

Category 3, "Construction Cost-Recovered Work:" Costs for this 8 9 category relate to preparing Interconnection Agreements, answering 10 customer questions, following up with customers, managing internal 11 questions, tracking and filing correspondence, general account 12 management, account oversight, and related technology costs. In 13 general, the construction category includes all activities relating to 14 the processing of Interconnection Requests after the study period 15 has ended and up until a project is energized and connected.

Notably, none of the costs associated with regulatory support, legal
expenses, small customer meter charges, dispute follow-up costs,
Distributed Energy Technologies Account Management follow-up costs
after energization, and normal generator follow up activity in Distribution
or Transmission groups are included in these three categories or "buckets."

21 Q. PLEASE ELABORATE ON THE COMPANIES' REASONING TO

22 INCREASE INTERCONNECTION-RELATED FEES AND

23 SUPPLEMENTAL REVIEW DEPOSITS.

A. The Companies are proposing to increase the interconnection-related fees
and Supplemental Review deposits because the Companies are consistently
under-recovering the costs being incurred to support these transactions
under the NC Procedures. In 2017, the Companies experienced an underrecovery of \$1,000,635 for Category 1 types of costs and in 2018 the
Companies have experienced an under-recovery of \$741,529 through
October 31.

This ongoing under-recovery is due to the increasing volume of 8 9 Section 2 and Section 3 Interconnection Requests, coupled with the growing 10 complexity of the Supplemental Reviews completed under Section 3 of the 11 NC Procedures. In an effort to process more Section 3 Interconnection 12 Requests under Supplemental Review rather than requiring full System 13 Impact Study under Section 4, the Companies have expanded the scope of 14 Supplemental Review to include projects requiring recloser protection 15 devices. The increasing volumes of Interconnection Requests necessitate 16 the Companies spending increased amount of time and monies on the actual 17 processing of the Interconnection Requests and processing requested 18 changes of ownership/control of the generating facility. In addition to 19 increased interconnection-related labor expenses resulting from these 20 volumes, the Companies have also invested in technological improvements 21 to more efficiently manage and track the interconnection queue. To more 22 fully recover these costs, the Companies are increasing these fees to better 23 align with their increased costs.

1Q.YOU ALSO MENTION INCREASED OVERHEADS. CAN YOU2PLEASE ELABORATE ON THE INCREASED OVERHEADS THE3COMPANIES ARE EXPERIENCING IN PROCESSING THE4INTERCONNECTION QUEUE?

5 As mentioned previously, costs incurred to facilitate the Yes. A. 6 interconnection process consists of three broad categories: administrative, 7 processing, and technology costs. Overhead administrative costs include 8 costs for personnel within Distributed Energy Technologies that indirectly 9 support the interconnection process including accounting, technical 10 standards, data management and reporting. Processing overhead costs 11 include the RSC's costs to manage and process interconnection related 12 calls, applications, and payments for projects not covered by fees, 13 Distributed Energy Technologies' costs for work groups such as Account 14 Management and Customer Operations, and the Distribution Protection and 15 Control (aka Distributed Generation) costs incurred for responding to Supplemental Reviews and System Impact Studies. Technology costs 16 17 include Salesforce enhancement project costs not related to the projects 18 covered by fees.

19 Q. PLEASE PRESENT THE ADJUSTED FEES THAT THE 20 COMPANIES HAVE INCLUDED IN THE JOINT UTILITIES 21 REDLINE.

NCIP Section	Existing Fee/Deposit	Proposed Fee/Deposit	
Pre-Application Report:			
§ 1.3.1	\$300	\$500	
Fee			
Interconnection Request Application Form:			
Attachment 2	\$250	\$750	
Fast Track Process Fee	\$250		
$\geq 20 \ kW \ but \leq 100 \ kW$			
Interconnection Request Application Form:			
Attachment 2	\$500	\$1,000	
Fast Track Process Fee	\$200		
$>100 \ kW \ but \leq 2 \ MW$			
Interconnection Request Application Form for			
Interconnection:	¢50	\$500	
Attachment 2	\$20	\$200	
Transfer of Ownership/Control Fee			
Interconnection Request Application Form for			
Interconnection:			
Attachment 2	\$250	\$750	
Supplemental Review Deposit			
$> 20 \ kW \ but \leq 100 \ kW$			
Interconnection Request Application Form for			
Interconnection:			
Attachment 2	\$500	\$1,000	
Supplemental Review Deposit			
>100 kW but $\leq 2 MW$			
Interconnection Request Application Form for			
Interconnection of a Certified Inverter-Based			
Generating Facility No Larger than 20 kW:	\$100	\$200	
Attachment 6			
Processing Fee			

Q. HAVE THE COMPANIES ADJUSTED ANY ASPECTS OF THE
MODIFIED FEES FROM THOSE PREVIOUSLY SUPPORTED IN
THE COMPANIES' MARCH 12 REPLY COMMENTS FILED
WITH THE COMMISSION?

A. Yes. The Companies determined additional review of the initial fee
proposal was necessary in response to stakeholder comments and updated
forecasts of Interconnection Request volumes based of the recently
implemented HB 589 programs. After further review, the Companies have
determined that an adjustment to their prior proposal is appropriate to

1

A.

reduce the initial Section 2 fee from \$350 to \$200. This change is due to
the increasing volume of Section 2 Interconnection Requests that have been
experienced in 2018, as well as forecasted to continue into 2019 and
beyond. Figure 2 below presents the year-over-year growth in Section 2
Interconnection Requests received from 2015 to 2018 (10 months actual and
2 months projected) as well as the number of Interconnection Requests
forecasted for 2019.

Figure 2

Analysis of NC Interconnection Requests Received by IR Received Date

	2015	2016	2017	2018 ¹	2019 ²
<20 kW (Section 2.0 NCIP)	1,738	960	1,408	4,016	4,362
>20 kW -100 kW (Section 3.0 NCIP)	76	13	34	151	216
>100 kW -2,000 kW (Section 3.0 NCIP)	126	41	62	37	63
Total	1,940	1,014	1,504	4,204	4,641
Year Over Year %age Change		-47.7%	48.3%	179.5%	10.4%

¹ From DataMart reports through 10/31/18 with estimates for November and December 2018 based on October IRs Received

² Forecasted amounts based on best estimates of expected Interconnection Customer behaviors

9

8

10Q.ARE THE COMPANIES ADJUSTING ANY OTHER ASPECTS OF11THE FEE PROPOSAL INCLUDED IN THE MARCH 12 REPLY12COMMENTS?13A.No. All other Interconnection Customer processing and transactional fees

- 14 are the same as the fees proposed in the Joint Utilities Redline as filed
- 15 March 12, 2018.
- 16

III. SIGNIFICANT INTERCONNECTION PROCESSING PROPOSALS

1

2 Q. PLEASE IDENTIFY THE COMPANIES' PROPOSED
3 MODIFICATIONS TO THE NC PROCEDURES RELATING TO
4 PROCESSING OF INTERCONNECTION REQUESTS.

5 A. The Companies are proposing modifications to the NC Procedures related 6 to enhanced scoping meetings, decision milestones during the study 7 processes, expedited swine and poultry studies, expedited standby generator 8 studies, and improved dispute resolution.

9 Q. WHY ARE THE COMPANIES PROPOSING TO MODIFY THE NC 10 PROCEDURES TO PROVIDE "ENHANCED" SCOPING 11 MEETINGS?

12 A. Initially, the Companies recommended during the stakeholder process to re-13 establish an optional Feasibility Study to provide Interconnection 14 Customers greater insight on project viability prior to entering into a System 15 Impact Study Agreement. However, based on stakeholder concerns about 16 adding another study back to the process and potentially delaying System 17 Impact Study, the Companies agreed to offer an enhanced Scoping Meeting providing an initial "technical review" for all Section 4 distribution-level 18 19 Interconnection Customers that are not interdependent with more than one 20 Interconnection Requests. Specifically, this technical review would 21 function similarly to the optional Pre-Application report by informing a 22 developer of any readily available information related to the proposed Point 23 of Interconnection identified in the Interconnection Request, such as the likelihood of system constraints due to interconnection beyond the first zone
 of regulation or in areas where the project will face pre-existing voltage
 challenges or known transmission or distribution Upgrades.

4 To allow the Companies to provide Interconnection Customers with 5 this additional information, the Companies are proposing revisions to NC 6 Procedures Section 4.2 to extend the time between submission of an 7 Interconnection Request and the date required to hold the scoping meeting from 10 Business Days to 30 Business Days. Additional time is necessary 8 9 for the Companies to develop this additional information about the 10 feasibility of Interconnection Customers' projects in preparation for the 11 scoping meeting stage of the interconnection process. Ultimately, this 12 additional information will potentially help reduce the number of 13 speculative and likely non-viable projects occupying the Companies' 14 interconnection resources to perform complex studies only to later elect to 15 withdraw from the queue after receiving initial study results.

16 The Companies have also clarified Section 1.8.3.2 to provide 17 projects that are interdependent with two other lower queued 18 Interconnection Customers and designated as "on hold" the opportunity to 19 request a scoping meeting when it becomes a Project B prior to the date the 20 System Impact Study Agreement is due.

Q. WHY ARE THE COMPANIES PROPOSING TO ESTABLISH CLEAR DECISION AND RESPONSE TIMEFRAMES DURING THE STUDY PHASES?

A. Currently, the NC Procedures establish timeframes for utilities and
 Interconnection Customers to complete various steps in the interconnection
 process. For example, after a System Impact Study is completed and
 delivered to an Interconnection Customer with a Facilities Study
 Agreement, the Interconnection Customer must return a signed Facilities
 Study Agreement within 60 calendar days or the Customer's project will be
 deemed withdrawn.

These timeframes were established to ensure that earlier-queued 8 9 Interconnection Customers continue to progress through the study process 10 and do not unreasonably delay later-queued Interconnection Customers. 11 This aspect of the current NC Procedures works well as Interconnection 12 Customers move from one step of the interconnection process to the next, 13 but the Companies' experience has been that some Interconnection 14 Customers have refused to provide necessary information requested by the 15 Companies or make certain essential decisions and then challenged the 16 Companies' right to take further action due to lack of express timeframes in 17 the NC Procedures for such cases. For example, the System Impact Study 18 Agreement and Facilities Study Agreement each provide the Companies the 19 right to request additional information from Interconnection Customers to 20 complete the relevant study. However, the Companies have neither the 21 express authority under the NC Procedures or the relevant agreement to 22 require the Interconnection Customer to timely respond nor the right to

- withdraw an Interconnection Request if the customer refuses to respond to
 a request for information within a reasonable amount of time.
- This "gap" in the NC Procedures has resulted in significant clogs in the interconnection queue in those cases where the study processes cannot move forward without the requested information. In the absence of this revision, Interconnection Customers can indefinitely delay their study, and the studies of all subsequent and interdependent projects, by refusing to provide required information or make necessary decisions. An example of the delays that can arise due to this gap is discussed later in my testimony.

Q. HAVE THERE BEEN ANY SPECIFIC DEVELOPMENTS IN THE INTERCONNECTION PROCESS SINCE 2015 THAT HAVE MADE THESE ACTION-FORCING PROVISIONS NECESSARY?

13 Yes. These action-forcing provisions are especially important given the A. 14 Companies' decision to provide Interconnection Customers with 15 "mitigation options" following implementation of the new technical standards and policies addressed by Witness Gajda, including the Circuit 16 17 Stiffness Review, Line Voltage Regulators, and Method of Services 18 Guidelines. Our efforts to accommodate Interconnection Customers by 19 offering mitigation options within System Impact Study at different output 20 capacities as opposed to just studying projects at the full capacity requested 21 on the Interconnection Request inherently lengthens the study process. 22 Establishing a required timeframe for responding to mitigation options will

limit the extent of the increased study time due to the provision of mitigation
 options.

3 Q. ARE THE COMPANIES ALSO PROPOSING A REASONABLE 4 NOTICE AND CURE OPPORTUNITY FOR INTERCONNECTION 5 CUSTOMERS?

6 A. Yes. The Companies' proposal both establishes its right to request 7 additional information or customer action and also establishes reasonable timeframes for customers to respond to such requests. Under the proposed 8 9 language, if customers do not respond to a Utility's request for information 10 within the established reasonable timeframe, the Interconnection Customer 11 will receive a written notice of such failure with an opportunity to cure 12 within 10 Business Days. Only after the Interconnection Customer's failure 13 to cure within the specified cure period will DEC or DEP terminate the 14 applicable study agreement and deem the project withdrawn.

Q. PLEASE DISCUSS THE COMPANIES' PROPOSED CHANGES TO
 THE NC PROCEDURES AS THEY RELATE TO PROVIDING
 EXPEDITED SWINE AND POULTRY STUDIES.

A. Part VII of House Bill 589 amended N.C. Gen. Stat. § 62-133.8(i)(4) to
require an expedited review process for swine and poultry waste to energy
projects of two (2) MW or less. In light of this mandate, the Companies
worked with the Public Staff, Pork Council, North Carolina Poultry
Federation, and other interested parties to develop an expedited study
process that is similar to the special relief approved by the Commission in
6 18 2019

1 October 2016 in Docket No. E-100, Sub 101, for certain swine and poultry 2 Interconnection Requests in DEP's service territory. New Section 1.8.3.3 3 addresses how a small poultry or swine waste facility would be processed 4 by the Utilities to meet House Bill 589's expedited study requirements. 5 Notably, Section 1.8.3.3 allows these swine and poultry waste generators to 6 avoid delays due to large, earlier-queued interdependent projects that may 7 remain on hold for extended periods of time for reasons such as the lack of an action-forcing mechanism, as described above, to move the on hold 8 9 project through the study process.

10 Q. PLEASE DISCUSS WHY THE COMPANIES ARE ALSO 11 **PROPOSING MODIFICATIONS TO THE NC PROCEDURES TO** 12 **EXPEDITE** THE **STUDY** PROCESS FOR **STANDBY** 13 **GENERATORS** REQUESTING MOMENTARY PARALLEL 14 **OPERATION.**

15 Many standby generators operate without paralleling the utility system. A. 16 However, standby generators that interconnect to and have the capability to 17 momentarily operate in parallel with the Companies' systems—generally 18 for a period no longer than 20 seconds—are required to submit an 19 Interconnection Request and become an Interconnection Customer of the 20 Companies under Section 1.1.1 of NC Procedures. These momentary 21 parallel standby generators are typically installed by commercial and 22 industrial retail customers such as hospitals, technology companies, and 23 other entities who have sensitive loads and must avoid any potential interruption of electricity supply. The purpose of these generators is to improve reliability, not to sell energy to the Companies.

1

2

- 3 These momentary standby generator Interconnection Customers 4 only request to operate in parallel with the grid during the time their load is 5 transitioning back to the utility system after a test or outage. As a result, 6 these standby generator Interconnection Requests require more limited 7 study to ensure they comply with technical requirements and have proper protection and control equipment to allow for safe parallel operation of the 8 9 generator. Generally speaking, these generators do not undergo as robust 10 of a System Impact Study analysis as "full power export" Interconnection 11 Customers that sell their output to the Companies because standby 12 generators are designed and operated as zero export generation, are not 13 interdependent, and, accordingly, have no adverse effect on other 14 Interconnection Customers' queue position.
- 15 The Companies also receive very few Interconnection Requests for 16 standby generators (three in 2017 and nine to date in 2018). Due to the 17 relatively few requests for momentary standby generator interconnections 18 and the fact that these Interconnection Requests do not require a significant 19 amount of study time, evaluating them on an expedited basis apart from the 20 traditional queue is reasonable and will benefit the Companies' commercial 21 and industrial retail customers seeking to install this type of generator at 22 their facilities. The proposed addition of Section 1.8.3.4 achieves these 23 objectives.

1 IV. <u>DISPUTE RESOLUTION PROVISIONS</u> 2 Q 2 Q 3 SECTION 6.2 DISPUTE RESOLUTION PROCESS UNDER THE NC 4 PROCEDURES.

5 Section 6.2 of the NC Procedures establishes a multi-step process for A. 6 resolving disputes between Interconnection Customers and the Utilities 7 administering the interconnection process. The first step contemplates that the initiating party (normally the Interconnection Customer) must provide 8 9 the other party (normally the Utility) with written notice describing the 10 nature of the dispute. The responding party then has 10 business days to 11 respond, with the parties normally scheduling a conference call or meeting 12 to attempt to resolve the dispute. If the dispute has not been resolved within 13 10 business days, the NC Procedures provide that either party may contact 14 the Public Staff for assistance in informally resolving the dispute. If the 15 parties are still unable to informally resolve the dispute, either party may 16 file a formal complaint with the Commission.

17 The Companies' experience since the Commission last approved the 18 NC Procedures in 2015 is that the current dispute resolution process has 19 worked well in most cases and the vast majority of disputes have been 20 successfully resolved through the informal "first step" of the process 21 without involvement by the Public Staff or the Commission. However, the 22 number and complexity of Interconnection Customer-initiated disputes has 23 steadily increased since 2015, which has required the Companies as well as

1 the Public Staff to commit significantly more time and resources towards 2 resolving interconnection disputes. As discussed in more detail by Duke 3 Energy Witnesses Freeman and Gajda, the continued growth of generating 4 facilities interconnecting to the Companies' distribution systems have 5 increasingly required more significant, and costly, Upgrades to the Companies' systems and have begun to push the boundaries of the level of 6 7 generation that can be safely and reliably interconnected consistent with Good Utility Practice. As a result, Interconnection Customers are 8 9 increasingly being required to choose between "higher cost or reduced 10 capacity" which has resulted in an increasing number of disputes where the 11 Interconnection Customer and/or the Companies have ultimately requested 12 the Public Staff's assistance to informally resolve the dispute under the NC 13 Procedures. The Public Staff's involvement, technical understanding, and 14 perspective has always been very valuable in this process, and, in nearly all 15 instances, has enabled the Companies and Interconnection Customers to 16 successfully resolve the dispute. 17 Q BASED UPON RECENT EXPERIENCE OVER THE PAST FEW

YEARS, DO THE COMPANIES HAVE ANY SPECIFIC
CONCERNS WITH THE CURRENT DISPUTE RESOLUTION
PROCESS?

A. Yes. Similar to the delay concerns described above arising due to the lack
 of express timeframes for Interconnection Customers to provide requested
 information and make necessary decisions, the Companies are also

20	DELAY SCENARIO CREATED BY THE AMBIGUITY IN THE
19 Q	HOW HAVE THE COMPANIES PROPOSED TO ADDRESS THE
18	Section 6.2.
17	delay" scenario is certainly not the result intended by the Commission under
16	Customer regarding whether to proceed or withdraw. This "open-ended
15	Customers awaiting a decision by the dispute-initiating Interconnection
14	no recourse for the Companies or interdependent Interconnection
13	that an Interconnection Customer could remain in dispute in perpetuity with
12	when it has "abandoned the process," which leads to the absurd conclusion
11	asserted that it is solely up to the Interconnection Customer to determine
10	constitutes "abandonment of the process." However, developers have
9	to pursue the express remedies available within a reasonable timeframe
8	Interconnection Customer under Section 6.2, the failure of such customer
7	Companies' view has been that once a dispute has been initiated by an
6	process set out in this section or a final Commission order is entered." The
5	Number shall not be final until Interconnection Customer abandons the
4	Section 6.2 of the NC Procedures states that "any disputed loss of Queue
3	remedies for dispute resolution under Section 6.2. As currently drafted,
2	the obligation of the Interconnection Customer to pursue the express
1	concerned with the potential ambiguity of the NC Procedures as it relates to

21 **DISPUTE RESOLUTION SECTION?**

A. The Companies are proposing revisions to Section 6.2 of the NC Procedures
to establish clear timeframes for both parties to diligently pursue the dispute

resolution process. Similar to the timeframes discussed above, failure of
the initiating party to timely pursue the available express remedies will
result in withdrawal from the queue. These proposed changes are addressed
in the Companies' Redline to the NC Procedures sponsored by Duke Energy
Witness Gajda.

Q. CAN YOU PROVIDE AN EXAMPLE ILLUSTRATING THE NEED TO IMPOSE MORE EXPRESS TIMEFRAMES BOTH DURING THE STUDY PROCESS AND IN CONNECTION WITH THE DISPUTE RESOLUTION PROCESS?

A. One recent case illustrates the challenges the Companies are experiencing.
In this particular case, the Interconnection Customer took approximately
one year from the date on which the mitigation options were provided until
the Interconnection Customer elected to move forward with Facilities
Study.

15 During this one-year process, the Interconnection Customer 16 challenged the Companies' technical conclusions through numerous rounds 17 of questions. DEP personnel participated in several meetings and 18 conference calls to address the questions. The Interconnection Customer 19 refused to select a mitigation option for approximately six months and then 20 elected to file a notice of dispute under Section 6.2. DEP responded to the 21 notice of dispute and then, at the request of the Interconnection Customer, 22 participated in a meeting facilitated by the Public Staff. After meeting with 23 the Public Staff, the Interconnection Customer continued to challenge the

1 Companies' technical conclusions and continued to refuse to select a 2 mitigation option. After this extensive process proved unsuccessful to 3 resolve the dispute and because no express timeframes are specified for 4 responding to mitigation options or pursuing the dispute resolution process 5 under Section 6.2, DEP issued the System Impact Study to the 6 Interconnection Customer based on the full requested capacity in the 7 Interconnection Request of the proposed generating facility. At the very end of the 60-day allotted time period for executing the Facilities Study 8 9 Agreement, the Interconnection Customer sent additional questions but then 10 ultimately signed the Facilities Study Agreement.

11 In summary, due to the lack of express timeframes for responding 12 to mitigation options and pursuing the Section 6.2 dispute resolution 13 process, over 12 months passed from the date DEP provided mitigation 14 options to the Interconnection Customer until the project moved into 15 Facilities Study. During that year, substantial amounts of DEP resources 16 were dedicated to this process—resources that would otherwise have been 17 devoted to the study process for other projects. Even more significantly, 18 there are numerous interdependent Interconnection Customers subordinate 19 to this project on a particular substation and all such projects are required 20 under the NC Procedures to remain on hold while the dispute resolution 21 process continued. The Public Staff also committed significant time and 22 effort to assist in informally resolving the dispute. This example highlights 23 the need for the Company to be able to impose reasonable timeframes for

1	providing information and making necessary decisions and for eliminating
2	any ambiguity in Section 6.2 as it relates to the obligation of the initiating
3	party to pursue the available remedies.

4 Q. DOES THIS CONCLUDE YOUR TESTIMONY?

5 A. Yes.

1	(WHEREUPON, Rebuttal Exhibits
2	JWR-1, JWR-2, JWR-3, Corrected
3	Rebuttal Exhibit JWR-4 and
4	Rebuttal Exhibit JWR-5 are marked
5	for identification as prefiled.
6	Corrected Rebuttal Exhibit JWR-4,
7	pages 11 and 12, contain
8	confidential information, and is
9	filed under seal.)
10	(WHEREUPON, the prefiled rebuttal
11	testimony of JEFFREY W. RIGGINS is
12	copied into the record as if given
13	orally from the stand.)
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	

NORTH CAROLINA UTILITIES COMMISSION

261

BEFORE THE NORTH CAROLINA UTILITIES COMMISSION

DOCKET NO. E-100, SUB 101

In the Matter of)	REBUTTAL TESTIMONY OF
Petition for Approval of Generator)	JEFFREY W. RIGGINS
Interconnection Standard)	ON BEHALF OF DUKE ENERGY
)	CAROLINAS, LLC AND DUKE
)	ENERGY PROGRESS, LLC

OFFICIAL COPY

- 2 A. Jeffrey W. Riggins, P.E., Director of Standard Power Purchase Agreements
- 3 ("PPAs") and Generator Interconnections for Duke Energy Corporation
- 4 ("Duke Energy"). My business address is 400 South Tryon Street,
 5 Charlotte, NC 28202.

6 Q. ON WHOSE BEHALF ARE YOU SUBMITTING THIS REBUTTAL 7 TESTIMONY?

- 8 A. I am submitting this rebuttal testimony on behalf of Duke Energy Carolinas,
- 9 LLC ("DEC") and Duke Energy Progress, LLC ("DEP" and together with
 10 DEC, the "Companies").
- 11 Q. ARE YOU THE SAME JEFFREY W. RIGGINS WHO FILED
 12 DIRECT TESTIMONY IN THIS CASE?
- 13 A. Yes.

14 Q. WHAT IS THE PURPOSE OF YOUR REBUTTAL TESTIMONY?

15 A. The purpose of my rebuttal testimony is to respond to certain issues raised 16 by the Public Staff and intervenors in their respective direct testimony 17 pertaining to the North Carolina Interconnection Procedures ("NC 18 Procedures"). Specifically, I will address issues raised in the testimonies of 19 Public Staff witness Jay Lucas, Interstate Renewable Energy Council 20 ("IREC") witness Sara Auck, and North Carolina Clean Energy Business 21 Association ("NCCEBA") witness Christopher Norqual. My rebuttal 22 testimony responds to and largely supports the Public Staff's 23 recommendations regarding adding additional timeframes for utility and

1	Interconnection Customer action in certain sections of the NC Procedures,
2	while opposing IREC's advocacy for the Commission to impose a "timeline
3	enforcement mechanism" on the Companies and Virginia Electric and
4	Power Company, d/b/a Dominion Energy North Carolina ("DENC" and,
5	together with the Companies, the "Utilities"). I also explain why the
6	Companies support Public Staff's recommended additions to current queue
7	reporting as reasonable, but oppose much of IREC's queue reporting
8	proposals, which the Companies believe are unduly burdensome. I also
9	respond to the Public Staff's and IREC's comments on Hosting Capacity
10	Maps, and show that deploying a distribution system-focused HCM would
11	likely have limited benefits to most North Carolina small Section 2
12	generator Interconnection Customers and would also be prohibitively
13	expensive if the cost is fully assigned to Interconnection Customers, as
14	recommended by the Public Staff. I also provide additional support for the
15	Companies' proposed revisions to certain interconnection fee revisions
16	within the NC Procedures and further address the Companies' position on
17	the NC Procedures Section 6.2 dispute resolution process. I also address
18	the Companies' position regarding acceptability of surety bonds as
19	Financial Security for Interconnection Facilities. Finally, I briefly address
20	the Public Staff's and other parties' support for proposed modifications to
21	expedite processing of swine and poultry Interconnection Requests as well
22	as standby generator Interconnection Requests.

3 A. Yes. I am submitting five exhibits. Rebuttal Exhibit JWR-1 provides 4 DEC's and DEP's most current distribution queue status report as of 5 December 27, 2018, along with the FAQs and status definitions the 6 Companies have posted to the Companies' renewables website. Rebuttal 7 Exhibit JWR-2 provides an example of the free "Pre-Request Response" and "Pre-Application Report" the Companies provide to Interconnection 8 9 Customers. Rebuttal Exhibit JWR-3 provides support for the Companies' 10 revisions to the North Carolina interconnection fees. Rebuttal Exhibit 11 JWR-4 provides the Commission certain data request responses referenced 12 in my testimony. Last, I am submitting Rebuttal Exhibit JWR-5, which 13 provides a form surety bond determined acceptable by the Companies' 14 credit and risk management department. I am also co-sponsoring Rebuttal 15 Exhibit JWG-1, which is the Companies' updated redline of the North 16 Carolina Interconnection Procedures ("NC Procedures").

17 I. <u>Utility and Interconnection Customer Response Timeframe Requirements</u>

- 18
 Q.
 PLEASE
 ADDRESS
 THE
 PUBLIC
 STAFF'S

 19
 RECOMMENDATIONS
 RELATED
 TO
 UTILITY
 AND

 20
 INTERCONNECTION
 CUSTOMER
 RESPONSE
 TIMEFRAME
- 21 **REQUIREMENTS UNDER THE NC PROCEDURES.**
- A. The Public Staff recommends adding more clearly defined responsetimelines within four sections of the NC Procedures relating to activities

265

1		such as providing existing information through the Pre-Application
2		Reports, scheduling scoping meetings, and processing refunds where an
3		Interconnection Customer withdraws from the interconnection queue.
4		Specifically, Public Staff witness Lucas states that the Public Staff supports
5		incorporating the following timeframes into the NC Procedures:
6		• a 10 Business Day requirement in Section 1.3.3 for Utilities to provide
7		a pre-application report;
8		• a 10 Business Day requirement in Section 2.2.2 for Utilities to provide
9		reasons for failure of fast track screens;
10		• a 60 Business Day requirement in Section 6.3.3 for Utilities to settle up
11		interconnection study deposits; and,
12		• maintaining the 10 Business Day requirement to schedule a scoping
13		meeting in 4.2.1.
14	Q.	DO YOU AGREE WITH PUBLIC STAFF WITNESS LUCAS'
15		RECOMMENDATIONS REGARDING ESTABLISHING MORE
16		CLEAR TIMEFRAMES FOR TAKING ACTION?
17	A.	The Companies generally agree with the Public Staff and other parties that
18		setting clear and reasonably-achievable timeframes for action within the NC
19		Procedures promotes transparency and is appropriate for both Utilities and
20		Interconnection Customers to timely complete routine activities, such as
21		providing existing information, scheduling meetings, and making payments
22		or providing refunds. In processing Interconnection Requests, the

266

1 Companies make reasonable efforts as required by NC Procedures Section 2 6.1 to meet all timeframes; although, as discussed in my direct testimony 3 and the testimony of DEC/DEP witness Freeman, certain timeframes have 4 been challenging to meet due to the increasing complexity of processing 5 North Carolina's unparalleled volume of utility-scale solar Interconnection 6 Requests, as well as the fact that many aspects of the study process are outside of the Companies' control.¹ However, the Companies agree that 7 8 establishing reasonable timeframes is beneficial to the overall 9 administration of the interconnection process.

10 In Public Staff witness Lucas' specific response to 11 recommendations, the Companies agree with several of the proposed 12 modifications, but have determined that other proposals either conflict with 13 existing provisions of the NC Procedures or are not needed as the same 14 timeframe is already more clearly addressed in another Section of the NC 15 Procedures. For example, the Public Staff's proposed addition of "within 16 ten (10) business days" to Section 1.3.3 to set the timeframe by which the 17 utility must produce the Pre-Application Report is not needed as this same 18 10 Business Day timeframe is already more precisely addressed in Section 1.3.1. 19 Section 1.3.1 (as modified by the Companies' proposed NC 20 Procedures revisions) provides: "The Utility shall provide the Pre-21 Application data described in Section 1.3.2 to the Interconnection Customer

¹ DEC/DEP Riggins Direct Testimony, at 6-7; DEC/DEP Freeman Rebuttal Testimony, at 7-9.

within ten (10) Business Days of receipt of the completed request form and
payment of the \$500\$300 fee." The current Section 1.3.1 establishes
"receipt of a completed request form" as the starting point for tracking the
10 Business Day timeframe. In contrast, the Public Staff's proposed
addition to Section 1.3.3 does not include a clearly defined starting point
and may cause confusion to the extent that it could be read to conflict with
or modify the timeframe in Section 1.3.1.

The proposed addition of "within ten (10) business days" to Section 8 9 2.2.2 also conflicts with existing language of Section 2.2.1, which provides 10 the Utility 15 Business Days to complete the initial small generator 11 interconnection screening process. The vast majority of the Section 2 (20 12 kW or less inverter-based generating facilities) are residential or small 13 commercial net-energy metering ("NEM") program customers and very 14 rarely do the Companies determine that the Section 2 NEM generating 15 facilities cannot be interconnected. When such circumstances arise, the Companies would follow existing Sections 2.2.1 and 2.2.2 to advise the 16 17 Interconnection Customer within 15 Business Days of processing a 18 completed Section 2 Interconnection Request and to explain why the 19 proposed generating facility failed the initial Fast Track screening and must 20 proceed either to Section 3.4 Supplemental Review (see 2.2.2.1) or to the 21 full Section 4 Study Process (see 2.2.2.2).

1Q.DO THE COMPANIES SUPPORT THE PUBLIC STAFF'S2PROPOSED 60-BUSINESS DAY TIMEFRAME TO PROVIDE A3FINAL ACCOUNTING REPORT TO A WITHDRAWN4INTERCONNECTION REQUEST?

5 Yes. As Public Staff witness Lucas recognizes, the Companies often engage A. 6 consultants and independent contractors to support the interconnection 7 study process and significant time may be required for the Companies to 8 receive and process contractor invoices before settling up interconnection 9 deposits after any voluntary or deemed Interconnection Request withdrawal.² The Companies support the Public Staff's proposed 60 10 11 Business Day timeframe recommendation to settle interconnection deposits 12 pursuant to Section 6.3.3. Notably, 60 Business Days is shorter than the 90 13 Business Days originally proposed by the Utilities in the prior comment 14 proceeding. To the extent that additional time is required to complete the 15 final accounting for a specific Interconnection Customer (such as a large 16 and complex transmission-connected generator), the utility would adhere to 17 the requirements of Section 6.1 to provide the Interconnection Customer an 18 explanation of why the additional time is needed and the expected date by 19 which the utility can deliver the final accounting. To the extent that the 20 final accounting can be completed in less than 60 Business Days, such as 21 where the Interconnection Customer withdraws early in the interconnection

² Public Staff Lucas Direct Testimony, at 29-30.

process, the Companies will issue the final accounting more expeditiously
 as it becomes available.

The Companies also support retaining the existing 30 calendar days from the date of issuance of the final accounting report for either the utility to make any refund required by the final accounting or for the Interconnection Customer to make any supplemental payment for the study work completed if the Interconnection Customer's cost responsibility exceeds its previous aggregate deposit payments, as described in Section 6.3.3.

Q. PLEASE RESPOND TO THE PUBLIC STAFF'S RECOMMENDATION REGARDING THE TIMING OF SECTION 4.2.1 SCOPING MEETINGS.

13 Public Staff witness Lucas recommends retaining the pre-existing ten (10) A. 14 Business Day requirement in Section 4.2.1 to schedule a scoping meeting 15 with Interconnection Customers. The Companies agree to the Public Staff's 16 recommendation to retain the 10 Business Day requirement in Section 4.2.1, 17 but note that preparing a more detailed "technical review," as described in 18 my direct testimony will require additional time beyond 10 Business Days.³ 19 The Companies continue to believe this more robust scoping meeting could 20 benefit Interconnection Customers by providing more detailed information 21 regarding the feasibility of the proposed generator interconnection earlier in

³ DEC/DEP Riggins Direct Testimony, at 25-26.

...

I		the interconnection process. Providing more detailed information earlier
2		could also potentially help reduce the number of speculative and likely non-
3		viable projects occupying the Companies' interconnection resources to
4		perform complex studies only to later elect to withdraw from the queue after
5		receiving initial study results. The Companies also believe that this
6		enhanced scoping meeting approach can still be offered and scheduled, at
7		the Interconnection Customer's option, "as mutually agreed to by the
8		Parties" under Section 4.2.1. After filing direct testimony, the Public Staff
9		indicated their support for this optional approach where the Interconnection
10		Customer agrees to a delay in scheduling the scoping meeting to enable the
11		Companies to prepare for an enhanced technical review. ⁴
12		II. <u>Timeline Enforcement Mechanism</u>
13	Q.	DID INTERVENORS RAISE CONCERNS RELATED TO
14		CURRENT INTERCONNECTION PROCESSING TIMEFRAMES?
15	A.	Yes. NCCEBA witness Norqual argues that interconnection delays have
16		negatively impacted Cypress Creek Renewables' ("CCR") business. ⁵ IREC
17		witness Auck also raises concerns with delays in processing Interconnection
18		Requests. ⁶

. ..

-

• • 1 . .

.

.

.

⁴ Rebuttal Exhibit JWR-4, Public Staff's response to the Companies' Data Request 2-3.
⁵ NCCEBA Norqual Direct Testimony, at 5-8.
⁶ IREC Auck Direct Testimony, at 43-45.

272

Q. IREC RECOMMENDS THE COMMISSION ADOPT A TIMELINE ENFORCEMENT MECHANISM ("TEM") AS A SOLUTION TO REDUCE RECENTLY-EXPERIENCED DELAYS PROCESSING INTERCONNECTION REQUESTS. DO YOU AGREE WITH IREC'S PROPOSAL?

A. No. The Companies oppose adoption of a TEM and believe such a punitive
measure is not appropriate in light of the Companies' continuing good faith
and reasonable efforts to process North Carolina's unprecedented volume
of utility-scale solar generator Interconnection Requests as well as the
complexities of North Carolina's interconnection process, as discussed by
DEC/DEP witness Freeman.

12 First, as stated in my direct testimony, the Companies have made 13 significant investments in staffing, technology, and process improvements to address the delays identified by NCCEBA and IREC.⁷ Further, as 14 15 explained by DEC/DEP witness Freeman, the unprecedented and unparalleled number of utility-scale solar generators already interconnected 16 by DEC and DEP validates these reasonable and good faith efforts.⁸ I also 17 18 explain in my direct testimony the Companies' significant efforts to staff up 19 in order to more efficiently administer the interconnection process and to 20 conduct studies for projects that are ready to be studied, i.e. Project A or

⁷ DEC/DEP Riggins Direct Testimony, at 10-14.

⁸ DEC/DEP Freeman Direct Testimony, at 7-12.

Project B Interconnection Requests.⁹ Secondarily, as DEC/DEP witness
 Freeman discusses in his rebuttal testimony, IREC's recommendation is
 based on a flawed assumption that the Companies have complete control
 over the amount of time it takes to interconnect a project.

5 Q. DOES IREC'S PROPOSAL EVEN ATTEMPT TO TAKE INTO 6 ACCOUNT THE UNIQUE COMPLEXITIES OF THE NORTH 7 CAROLINA INTERCONNECTION LANDSCAPE OR RECOGNIZE 8 OTHER FACTORS OUTSIDE OF THE COMPANIES' CONTROL 9 THAT SUBSTANTIALLY LENGTHEN INTERCONNECTION 10 PROCESSING TIME PERIODS?

11 A. No. The TEM described by IREC witness Auck would simply "calculate[] 12 the total aggregate average time, in business days, that it has taken to 13 interconnect projects...starting from the date an application is received until 14 the date an interconnection service agreement is executed" and then 15 penalize the Companies if they fail to meet the target on an average basis in 16 a given year.

17 Such an approach absurdly assumes that the length of time from 18 Interconnection Request submission to Interconnection Agreement ("IA") 19 execution is completely within the Companies' control. That assumption is 20 baseless and demonstrates a profound lack of understanding of the 21 complexity of the interconnection process in North Carolina.

⁹ DEC/DEP Riggins Direct Testimony, at 8-10.

1 To the contrary, DEC/DEP witness Freeman extensively describes 2 in his rebuttal testimony the many factors affecting interconnection 3 timelines in North Carolina that are outside of the Companies' control. One 4 of the major factors leading to the long interconnection periods is the 5 concept of interdependency established in Section 1.8 of the NC 6 Procedures. Pursuant to this Commission-approved queueing process, the 7 Companies prioritize study of Interconnection Customers whose interconnection is not impacted by other earlier-queued Interconnection 8 9 Requests. Projects that are impacted by or "behind" two or more other 10 Interconnection Requests are designated as "on hold" until earlier queued 11 Interconnection Customers elect either to sign an IA and fund generator 12 interconnection System Upgrades or to withdraw (see 1.8.3).

In many instances, numerous projects have sought interconnection to the same distribution circuit or substation, resulting in numerous projects being placed "on hold" in accordance with the NC Procedures. Under IREC's simplistic TEM proposal, the Companies could be penalized for the delays experienced by such projects even though the Companies are actually adhering to the terms of the NC Procedures.

Witness Freeman also describes the many aspects of the System Impact Study process that are outside of the Companies' control. For instance, Interconnection Customers often request multiple extensions at various stages of the interconnection process and such extensions substantially lengthen the interconnection timeline not only for the specific project requesting the extension, but also for other projects interdependent
on such project. Under IREC's TEM proposal, all such extensions (along
with cure periods, formal and informal disputes, failures of developers to
provide correct information, delays in developer obtaining rights of way,
developer requests for information) would, unjustly, lead to penalties for
the Companies.

In fact, IREC's simplistic TEM proposal would actually create an
incentive for the Companies to refuse to grant extensions or cure periods or
allow even the slightest accommodation for Interconnection Customers.
Based on the Companies' experience, any such approach would be
untenable and would simply result in endless disputes with Interconnection
Customers.

13 Q. IS IREC'S RECOMMENDED TEM REASONABLE?

14 No. IREC's TEM proposal completely fails to take into account the 15 complexity of the interconnection process in North Carolina and will 16 accomplish absolutely nothing with respect to resolving the primary drivers 17 of the Companies' current interconnection processing challenges that 18 DEC/DEP witness Freeman discusses in greater detail. In light of the 19 Companies' good faith efforts and unparalleled success interconnecting 20 utility-scale solar projects, as well as the current complexities of the 21 interconnection process in North Carolina, imposition of a TEM would be 22 inappropriate, unjust, and unreasonable.

1	Further, the Companies question the appropriateness of IREC's
2	proposal to impose financial penalties through "positive and negative
3	earnings adjustment" for deviations from the timeframes set forth in the NC
4	Procedures. ¹⁰ While I am not an attorney, IREC's proposed earning
5	adjustment mechanism appears inconsistent with North Carolina's general
6	ratemaking framework under the Public Utilities Act under which the
7	Commission fixes the Companies' rates until the next general rate case.

8 Q. DOES THE PUBLIC STAFF SUPPORT ADOPTION OF A TEM IN 9 NORTH CAROLINA?

10 A. No. Public Staff witness Lucas makes clear that the Public Staff does not 11 support adoption of a TEM. Witness Lucas testifies that "the Utilities 12 appear to have made good faith efforts to interconnect DG" and that the 13 "unprecedented growth of solar could only have been brought about by 14 cooperation of the Utilities."¹¹

15 Q. DO OTHER STATES UTILIZE A TEM IN THEIR 16 INTERCONNECTION PROCESS?

A. Massachusetts and New York appear to be the only states to have adopted
a TEM, and establishment of these TEMs were required by enabling
legislation enacted in these States.¹²

¹⁰ IREC Auck Direct Testimony, at 44.

¹¹ Public Staff Lucas Direct Testimony, at 32.

¹² Rebuttal Exhibit JWR-4, IREC's response to the Companies' Data Request 1-20.

1III.Communication, Reporting, and Transparency2Q.IN YOUR DIRECT TESTIMONY, YOU EXPLAINED THE3COMPANIES' EFFORTS TO IMPROVE REPORTING AND4COMMUNICATION RELATED TO THE INTERCONNECTION5PROCESS. PLEASE SUMMARIZE THOSE EFFORTS.

6 A. The Companies have added additional resources and made significant 7 investments in new technology systems-primarily Salesforce-to better 8 track the status of each Interconnection Request throughout the 9 interconnection process. The Companies also voluntarily publish detailed 10 bi-weekly DEC and DEP distribution system "Queue Snapshot" reports on 11 its website identifying the interdependency status, operational or study 12 status, project capacity and fuel source, as well as distribution feeder and 13 substation name for each Interconnection Requests above 20 kW. This 14 information is available on the Companies' website at https://www.duke-

15 <u>energy.com/business/products/renewables/generate-your-</u>

16 <u>own/interconnection-queue</u>. My Rebuttal Exhibit JWR-1 provides DEP's
17 and DEC's most current distribution queue status report as of December 27,
18 2018, along with FAQs and status definitions that the Companies have
19 posted to the website.

20 To support more efficient customer communications and reporting, 21 the Companies are also currently expanding the use of features within 22 Salesforce to create reminders of the Companies' milestones and 23 developer's milestones so approaching deadlines can be proactively

2		Managers and Customer Account Specialists that are dedicated to managing
3		projects and addressing inquiries from Interconnection Customers to ensure
4		that the interconnection process moves as efficiently as reasonably possible.
5	Q.	HAVE THE COMPANIES MADE ANY CHANGES WITH
6		RESPECT TO PUBLISHING THEIR INTERCONNECTION
7		QUEUES SINCE THE COMMISSION LAST APPROVED THE NC
8		PROCEDURES IN 2015?
9	A.	Yes. In the Commission's May 2015 Order approving the current NC
10		Procedures, the Commission directed the Companies to file quarterly queue
11		status and queue performance reports with the Commission in Docket No.
12		E-100, Sub 101A. As noted above, and as commended by the Public Staff,
13		the Companies voluntarily publish an updated Queue Snapshot report twice
14		monthly (bi-weekly) to improve transparency into the interconnection study
15		process and to assist Interconnection Customers in keeping informed of the
16		status of their projects. Notably, the Companies' current voluntary queue
17		tracking and reporting seems to already provide more information than most
18		utilities in other states, as IREC was only able to identify a few states that
19		are required to or voluntarily provide interconnection queue reporting of
20		large generator interconnections. ¹³

monitored and addressed. The Companies have also added Account

1

¹³ Rebuttal Exhibit JWR-4, IREC's response the Companies' Data Request 1-18.

Feb 18 2019

1 Looking ahead, in early 2019, the Companies plan to further 2 enhance their published Queue Snapshot reports by providing additional 3 granularity on the progress of System Impact Studies, which have grown in complexity since the current NC Procedures were approved in 2015. For 4 example, the Companies recently began publishing Engineering 5 6 Administrative Designations ("EAD") in their queue reports. Identifying 7 the current EAD, such as "Voltage Flicker Mitigation Options" review, 8 helps to provide Interconnection Customers a better understanding of which 9 phases of the System Impacts Study process have been completed and the 10 phases that are still underway. Rebuttal Exhibit JWR-1 shows the 11 information currently provided in these queue reports.

12 PLEASE **SUMMARIZE** THE PUBLIC **STAFF'S Q**. 13 RECOMMENDATIONS WITH RESPECT TO **OUEUE** 14 REPORTING AND **COMMUNICATION BETWEEN** THE 15 **COMPANIES** AND **INTERCONNECTION CUSTOMERS** THROUGHOUT THE INTERCONNECTION PROCESS. 16

A. Public Staff witness Lucas recognizes the Companies' efforts to
communicate throughout the interconnection process and the significant
improvements in the availability of information being provided to
customers.¹⁴ Public Staff witness Lucas also recommends that the Utilities
evaluate and provide a detailed cost estimate of the cost of developing and

¹⁴ Public Staff Lucas Direct Testimony, at 18.

Feb (18 2019

operating an online portal to allow developers to track near real time status
 (within 2 Business Days of changes) of projects.

3 Q. DO YOU AGREE WITH THE PUBLIC STAFF'S 4 RECOMMENDATIONS?

Yes. The Companies are already developing an online Interconnection 5 A. 6 Customer portal, which will allow Interconnection Customers to 7 electronically submit Interconnection Requests and payments and will allow the Companies to share status information with Interconnection 8 9 Customers. This Customer portal will pull information in "real time" from 10 Salesforce and will be accessible to the Interconnection Customer upon 11 logging into its Customer portal page. The Companies commit to share with 12 the Public Staff the current plans for the online portal and to identify 13 additional features that need to be evaluated.

14 Q. PLEASE RESPOND TO THE PUBLIC STAFF'S 15 RECOMMENDATIONS WITH RESPECT TO THE ANNUAL 16 QUEUE REPORTING TO THE COMMISSION.

A. Public Staff witness Lucas recommends modification of the generator
interconnection reports filed with the Commission in Docket No. E-100,
Sub 113B from annually to quarterly, and also recommends the reports
include operational status and identify all FERC-jurisdictional projects.

21 Due to the significant increase in the number of generator 22 interconnections since the Commission established this reporting 23 requirement, the Companies are not opposed to increasing the frequency of

1		reporting this information to the Commission from annually to quarterly
2		and adding the operational status and FERC projects. The Companies
3		already file quarterly Queue Status and Interconnection Request
4		Performance Reports with the Commission in Docket No. E-100, Sub
5		101A, and the Companies are not opposed to making a quarterly filing
6		identifying interconnected generators as requested by the Public Staff. This
7		report will identify all projects above 20 kW requesting interconnection and
8		their operational status as is currently posted to the Companies' website in
9		the most recently published biweekly Queue Snapshot. For administrative
10		efficiency, the Companies recommend adding the Public Staff's requested
11		installed generator reporting information into the quarterly report filing
12		currently made in Docket No. E-100, Sub 101A and separately continuing
13		to file the small generator report annually in Docket No. E-100, Sub 113B.
14	Q.	PLEASE RESPOND TO IREC'S REQUEST FOR ADDITIONAL
15		INFORMATION TO BE INCLUDED IN QUARTERLY REPORTS.
16	A.	IREC witness Auck recommends the Utilities continue filing quarterly
17		performance reports, but advocates for adding significant additional
18		granularity and reporting requirements to the current information required
19		by the Commission. As noted, the Companies already file, and will
20		continue filing, Queue Status and Interconnection Request Performance
21		Reports with the Commission identifying the following intervals for all
22		Section 4 Interconnect Requests: (i) Queue Assignment to Issuance of
23		Interconnection Agreement; (ii) Interconnection Agreement Receipt to
	REBU	TTAL TESTIMONY OF IFFEREY W RIGGINS Page 20

Project Completion; (iii) Queue Assignment to Project Completion; and (iv)
 Projects interconnected by year.

3 While the Company supports continuing the current queue 4 performance reporting to show the Commission progress and trends in the 5 interconnection process, the administrative burdens and expense of 6 expanding the quarterly performance reporting to include the voluminous 7 and granular data in IREC witness Auck's Exhibit SBA-Direct-4 will 8 significantly outweigh any benefit to Interconnection Customers or the 9 overall interconnection process in North Carolina. In order to provide the 10 granular information requested by IREC, such as maximum, mean, and 11 median processing times for multiple steps in the study process as well as 12 project-by-project Fast Track and supplemental review statistics, the 13 Companies would need to dedicate additional engineering and 14 administrative resources focused on reporting and developing metrics 15 versus actually studying Interconnection Requests. This increase in reporting seems particularly unreasonable as it would add to the 16 17 Companies' already-under-recovered costs of administering the 18 interconnection process, which IREC is already challenging. Moreover, as 19 described above and by DEC/DEP witness Freeman, details such as the 20 maximum, mean, and median processing times would be inadequate 21 without adding dozens of other burdensome reporting requirements such as 22 tracking interdependencies and delays arising due to circumstances outside 23 the Companies' control.

2	for each project would require significant investment in the Companies'
3	financial systems. As required by the NC Procedures, the Companies
4	complete a financial review and provide a final accounting report after
5	invoices are processed and costs are available. For the small projects that
6	are the primary focus of IREC's testimony, costs should not be a concern
7	since most of the Companies' costs are covered by fees rather than deposits.
8 Q.	PLEASE RESPOND TO IREC'S REQUEST WITH RESPECT TO
9	MONTHLY DISTRIBUTION QUEUE REPORTING.
10 A.	IREC witness Auck also advocates that the Companies be required to
11	publish a detailed Distribution System Interconnection Queue report on
12	their websites "on at least a monthly basis" in a sortable spreadsheet
13	format. ¹⁵ IREC's Exhibit SBA-Direct-3 proposes that the distribution
14	queue report include 23 separate data fields.
15	As described above, DEC and DEP each already voluntarily publish
16	public Queue Snapshot reports on its website in a downloadable format and
17	update it twice a month; more frequently than IREC requests. Much of the
18	data recommended in witness Auck's Exhibit SBA-Direct-3 is included in
19	the existing queue report. Some of the information requested, however, is
20	currently included in individual notifications to Interconnection Customers
21	as milestones are achieved throughout the interconnection process and the

Additionally, the recommendation to provide real-time cost details

1

¹⁵ IREC Auck Direct Testimony, at Exhibit SBA-Direct-3.

1 Companies disagree with IREC's recommendation to publicly publish this 2 information. Specifically, detailed Interconnection Customer cost and the 3 dates that the IA and other agreements are executed would be inappropriate 4 to share publicly in a queue report.

Q. WHAT SPECIFIC CONCERNS WOULD THE COMPANIES HAVE WITH IMPLEMENTING IREC'S RECOMMENDATION?

7 A. Some of the data elements IREC witness Auck listed in Exhibit SBA-8 Direct-3 are already provided in the biweekly Queue Snapshot reports 9 voluntarily published on the Companies' website. The data currently 10 provided allows Interconnection Customers determine to the 11 interdependency status and operational status of their Interconnection 12 Request and to determine where their request is in queue relative to other 13 Interconnection Requests. However, much of the information in Exhibit 14 SBA-Direct-3, including the date, cost, and transformer data, is 15 appropriately communicated directly to each Interconnection Customer 16 through **Pre-Request** Responses, **Pre-Application** Reports, and 17 emails/reports as projects proceed through the interconnection process and 18 should not be published in the monthly queue reports. The Companies' 19 Salesforce application currently captures the effective dates of agreements 20 and the start and end dates of the various study and construction milestones, 21 but does not capture the date of notifications or whether projects pass/fail 22 screens. IREC's proposed reporting on notification dates and screen results 23 would require additional investments to enhance the Salesforce database

and significant manual effort to populate the fields after reviewing the email
 communications already provided to Interconnections Customers, adding
 additional costs to the interconnection process.

4 Further, IREC witness Auck seems to recommend that the 5 Companies should be required to include small <20 kW NEM projects in 6 its distribution system queue. The Companies already include Section 3 7 and Section 4 NEM projects in their Queue Snapshot reports as those 8 projects are required to proceed through Fast Track, Supplemental, or the 9 Section 4 Full Study process. The Companies do not, however, include the 10 thousands of Section 2 (<20kw) projects because those requests are 11 managed in the PowerClerk system and to date have not been subject to the 12 Fast Track screens based on the Companies' determination that the Section 13 2 projects can currently interconnect safely and reliably at lower levels of 14 penetration. These Section 2 NEM projects have historically been 15 processed very efficiently and the administrative burden and cost associated 16 with including them in queue reporting is unjustified.

17IV.Hosting Capacity Maps

18 Q. PLEASE ADDRESS THE PUBLIC STAFF'S AND INTERVENORS'

19 **POSITIONS REGARDING HOSTING CAPACITY MAPS.**

A. Public Staff witness Lucas states that a distribution level hosting capacity
 map ("HCM") would provide little benefit due to the shift towards larger,

1	transmission-connected projects in North Carolina. ¹⁶ Public Staff witness
2	Lucas' recommendation is to build on the grid location guidance provided
3	for CPRE tranche 1 to "provide basic information on the transmission
4	system and identify those areas that are at or near their hosting capacity." ¹⁷
5	Witness Lucas also recommends that the Companies provide the
6	Commission and the Public Staff a detailed estimate of the cost to develop
7	and maintain an HCM utilizing existing data and tools. The Public Staff also
8	notes that all costs associated with HCMs should be recovered from
9	distributed generation ("DG") developers through fees and charges.
10	I agree with the Public Staff that there has been a shift in Qualifying
11	Facilities ("QF") submitting Interconnection Requests in North Carolina
12	from distribution-connected to transmission-connected generating
13	facilities. During calendar year 2018, the Companies received 44 new
14	transmission-connected solar Interconnection Requests compared with just
15	16 distribution-connected solar Interconnection Requests greater than or
16	equal to one MW (excluding NEM) in North Carolina. The Companies also
17	annually receive Interconnection Requests for thousands of customer-sited
18	net metering projects but these projects cannot change their proposed
19	location in response to information provided through an HCM. Therefore,
20	it appears that there would be a limited audience for a distribution level
21	HCM in North Carolina.

¹⁶ Public Staff Lucas Direct Testimony, at 23.¹⁷ Public Staff Lucas Direct Testimony, at 23.

Also, I agree that it would be in the best interest of both the Companies and the DG developers for the Companies to continue to refine the transmission grid locational guidance required by CPRE. However, input from stakeholders and additional details from the Commission and the Public Staff on the scope of any proposed changes to the grid locational guidance will be needed before a detailed estimate of the costs for such work could be developed.

8 Q. WHAT IS THE COMPANIES' POSITION ON IREC'S 9 RECOMMENDATION THAT THE COMMISSION ORDER THE 10 UTILITIES TO DEVELOP HCMs?

11A.IREC witness Auck recommends that the Utilities be required to each12implement a hosting capacity analysis based on proposals developed by a13Commission-initiated working group. She testifies that the "ideal hosting14capacity maps would include detailed hosting capacity for each node, along15with substation, circuit and feeder information"¹⁸ suggesting that "[w]ithout16a hosting capacity map, customers have no information regarding the best17and worst locations for new DER."¹⁹

I do not agree with IREC witness Auck's assertion that an HCM is
the only way for customers to evaluate locations for new distributed energy
resources ("DER"). As required in the NC Procedures, the Companies offer
potential Interconnection Customers both a free "Pre-Request Response"

¹⁸ IREC Auck Direct Testimony, at 38.

¹⁹ IREC Auck Direct Testimony, at 35.

1 (1.2) and a more detailed "Pre-Application Report" (1.3) (examples of both 2 are provided as Rebuttal Exhibit JWR-2). In addition, the Companies 3 publicly post their respective interconnection queues through the biweekly 4 Queue Snapshot reports as well as transmission grid locational guidance to 5 inform developers of utility-scale DER regarding the number, proposed 6 size, and general location of constrained areas on the Companies' 7 transmission systems. Utilizing these existing resources, an Interconnection Customer can preliminarily determine the feasibility of a project before 8 9 submitting an Interconnection Request.

Q. PLEASE RESPOND TO IREC WITNESS AUCK'S ASSERTION THAT DEVELOPMENT OF HCMs WOULD CREATE NUMEROUS BENEFITS IN NORTH CAROLINA.

13 Witness Auck fails to quantify the "target audience" for HCMs in North A. 14 Carolina other than a reference to "smaller projects that connect to the 15 distribution system."²⁰ Since a majority (>99%) of these "smaller projects" 16 are customer-sited NEM generating facilities located on or adjacent to a 17 retail customer's home or business, this group of customers would not 18 materially benefit from utility investment in HCM to identify optimal 19 locations across the utility system for siting DER. Put another way, a retail 20 customer is not going to move its home or business a mile down the road if 21 an HCM identifies that its premises is located on a highly saturated feeder

²⁰ IREC Auck Direct Testimony, at 41.
of the grid. And, again, any potential Interconnection Customer can obtain
 such readily available information today through either a free Pre-Request
 Response or by purchasing a Pre-Application Report.

Further, as stated earlier, since North Carolina enacted House Bill 4 5 589 in 2017, the Companies have recently experienced a transition away 6 from development of distribution-connected QFs and towards larger 7 transmission-connected solar QFs developed to compete in the competitive 8 procurement program. Assuming this recent shift in development of utility-9 scale solar generation away from the Companies' distribution system continues, this also limits the audience that would benefit from an 10 11 investment in HCM in North Carolina.

12 Q. WHAT IS THE ESTIMATED COST OF IREC'S HCM PROPOSAL?

A. IREC does not maintain information on the costs to develop and maintain
hosting capacity maps and has provided no information on the projected
cost for the Companies to develop its proposal.²¹ Without this information
there is no way for IREC to determine if HCMs are a cost-effective solution
to providing grid locational guidance in North Carolina.

18 Q. WHAT INFORMATION DO THE COMPANIES HAVE

19**REGARDING THE COST TO DEVELOP AN HCM?**

- 20 A. Based upon public information the Company has obtained, Southern
- 21 California Edison projected in 2017 that it would cost between \$2-8 million

²¹ Rebuttal Exhibit JWR-4, IREC's Response to the Companies' Data Request 1-19.

1	upfront to develop and \$1-5 million a year to maintain an HCM for that
2	utility's 4,500 circuits. ²² Recognizing Public Staff witness Lucas' position
3	that it is appropriate to recover the costs of deploying an HCM from DG
4	developers through fees, deployment of HCM would require a significant
5	increase in fees to recover a cost of this scale spread across a limited
6	audience. The effort required to develop and maintain an HCM would also
7	compete with Supplemental Reviews and System Impact Studies for
8	engineers experienced in interconnection studies. Therefore, the
9	Companies continue to believe that the existing Pre-Request Response and
10	Pre-Application Report options provided for in the NC Procedures provide
11	Interconnection Customers reasonable access to "site specific" data. This
12	already-available information is also generally equivalent to the data that
13	IREC is proposing be publicized for the entire distribution system through
14	an HCM. Importantly, the Pre-Application Report approach also directly
15	recovers the cost from the DG developer who requested the report versus
16	socializing the cost amongst all Interconnection Customers. Further, based
17	on the significant drop in Interconnection Requests for distribution-
18	connected QFs, the Companies do not believe there is sufficient justification
19	to develop and maintain a detailed HCM for 3,900 distribution circuits

²² California Distribution Resources Plan (R.14-08-013) Integration Capacity Analysis Working Group – Final ICA WG Report, Page 18, Table 1, *available at* <u>https://drpwg.org/wpcontent/uploads/2016/07/ICA-WG-Final-Report.pdf.</u>

Feb (18 2019

291

across the Carolinas, nor is there sufficient justification to independently
 investigate the cost of doing so.

3 Q. IF THE COSTS OF AN HCM ARE RECOVERED FROM DG 4 DEVELOPERS AS THE PUBLIC STAFF RECOMMENDS, HOW 5 MUCH WILL INTERCONNECTION-RELATED FEES 6 INCREASE?

7 A. The Companies have not independently investigated the cost of developing 8 and maintaining an HCM at this time. However, the Companies have 9 performed some high level analysis based on the range of costs identified 10 by Southern California Edison discussed above: approximately \$2-8 million 11 to develop the HCM and then approximately \$1-5 million per year thereafter 12 to maintain the HCM. Using the Companies' estimated 5,022 forecasted 13 Interconnection Requests expected to be processed in 2019 (as shown in my 14 Rebuttal Exhibit JWR-3, column 3), it would cost \$398-1,593 per 15 Interconnection Request to develop the HCM and then \$199-\$996 per year 16 per Interconnection Request thereafter to maintain the HCM.

Notably, these costs would be spread across all Interconnection
Requests even though the vast majority of these requests are for NEM
projects that typically interconnect without issue and would not benefit from
an HCM.

1	Q.	WOULD IT BE FEASIBLE TO IMPOSE THE FULL COSTS OF
2		DEVELOPING AND MAINTAINING AN HCM ON
3		INTERCONNECTION CUSTOMERS?
4	A.	No. Such a large increase in fees is unworkable in practice and IREC was
5		unable to identify any state that has charged Interconnection Customers for
6		the development or maintenance of an HCM. ²³ Therefore, as a practical
7		matter, the costs of developing and maintaining an HCM would have to be
8		socialized and recovered in the Utilities' general rates.
9		V. <u>Interconnection Fees</u>
10	Q.	THE COMPANIES HAVE PROPOSED TO INCREASE CERTAIN
11		FEES CHARGED UNDER THE NC PROCEDURES. PLEASE
12		ADDRESS THE PUBLIC STAFF'S AND OTHER PARTIES'
13		POSITIONS ON THE COMPANIES' FEE PROPOSALS?
14	A.	Public Staff witness Lucas recognizes the Commission's prior direction that
15		DEC and DEP should not recover interconnection-related costs through the
16		REPS Rider and should take steps to track and more fully recover
17		interconnection-related costs through the interconnection process. ²⁴ Mr.
18		Lucas then states that the Public Staff has performed a limited review of the
19		Companies' proposed modified fees but "has not audited [the proposed]
20		interconnection fees and takes no position on them," except to reiterate the

²³ Rebuttal Exhibit JWR-4, IREC's Response to the Public Staff's Data Request 1-1(2).
 ²⁴ Public Staff Lucas Direct Testimony, at 42-43.

1	Public Staff's over-arching position that "costs to process interconnection
2	requests should be borne by the Interconnection Customers and not shifted
3	to retail customers." ²⁵
4	Dominion witness Nester supports the increased fees included in the
5	Joint Utilities Redline filed March 12, 2018. ²⁶
6	IREC witness Auck challenges all of the Companies' proposed fee
7	adjustments based upon IREC's general view that the Companies have been
8	"inefficient" in their efforts to process Interconnection Requests. Ms. Auck
9	suggests that the Companies' proposed fee increases are unreasonably large
10	and states that the Companies have not met their burden to justify the
11	requested fee increases. Witness Auck then compares the proposed fees to
12	interconnection fees charged in certain other jurisdictions, and specifically
13	takes issue with the Companies' increase in the "Change in Ownership"
14	processing fee from \$50 to \$500, arguing that such a change violates the
15	regulatory principle of gradualism and will cause "rate shock." ²⁷
16	No other party filed testimony on the reasonableness and
17	appropriateness of either the existing or proposed fees within the NC
18	Procedures.

19

²⁵ Public Staff Lucas Testimony, at 43-44.
²⁶ DENC Nester Direct Testimony, at 27.
²⁷ IREC Auck Direct Testimony, at 50-56.

- 1Q.BEFORE ADDRESSING IREC'S TESTIMONY OPPOSING THE2COMPANIES' PROPOSED FEE MODIFICATIONS, PLEASE3COMMENT ON THE PUBLIC STAFF'S POSITION THAT ALL4COSTS TO PROCESS INTERCONNECTION REQUESTS SHOULD5BE BORNE BY INTERCONNECTION CUSTOMERS.
- 6 A. The Public Staff recently raised concerns in DEP's and DEC's respective 7 2016 and 2017 REPS Rider proceedings that the surging volume of 8 generator interconnection requests is causing increased interconnection 9 administration, technology, and processing costs that, absent recovery from 10 Interconnection Customers, would be assigned to and recovered from retail 11 customers as part of the Companies' general cost of service. As described 12 in my direct testimony and highlighted by Public Staff witness Lucas, the 13 Commission previously directed the Companies to track and more fully 14 recover such interconnection-related costs from Interconnection Customers to the greatest extent possible.²⁸ Witness Lucas has also been clear in this 15 16 proceeding that "the costs to process interconnection requests should be 17 borne by the interconnection customers and not shifted to retail customers."29 18
- 19

 ²⁸ DEC/DEP Riggins Direct Testimony, at 18. Public Staff Lucas Direct Testimony, at 42-43.
 Order Approving REPS and REPS EMF Riders and REPS Compliance, at 19 Docket No. E-7, Sub 1106 (Aug. 16, 2016); Order Approving REPS and REPS EMF Riders and REPS Compliance, at 18 Docket No. E-2, Sub 1109 (Jan. 17, 2017).
 ²⁹ Public Staff Lucas Direct Testimony, at 44.

1	Q.	ARE THE COMPANIES' PROPOSED FEES DESIGNED TO MORE
2		FULLY RECOVER INTERCONNECTION-RELATED COSTS
3		FROM INTERCONNECTION CUSTOMERS, AS PREVIOUSLY
4		DIRECTED BY THE COMMISSION AND ADVOCATED FOR BY
5		THE PUBLIC STAFF?
6	A.	Yes. The proposed adjusted fees are designed to address the Companies'
7		under-recovery of interconnection-related costs and to more fully recover

8 these costs from Interconnection Customers in the future.

9 **Q**. PLEASE FURTHER DESCRIBE HOW THE **COMPANIES** 10 DETERMINED PROPOSED THAT THE INCREASE TO 11 INTERCONNECTION FEES IS NEEDED TO MORE FULLY 12 **RECOVER INTERCONNECTION COSTS INCURRED BY THE** COMPANIES THAT ARE RECOVERED THROUGH FEES. 13

14 A. As discussed in some detail in my direct testimony, the Companies have 15 followed the Commission's prior direction in DEP's and DEC's respective 2016 and 2017 REPS Rider proceedings to track the increasing direct and 16 17 indirect costs that the Companies are incurring to process Interconnection 18 Requests. In March 2017, the Companies submitted their Interconnection 19 Cost Allocation Procedures Report to the Commission, detailing the 20 procedure and "categorization" of costs that DEC and DEP planned to 21 follow for purposes of tracking and assigning interconnection-related costs.³⁰ As discussed in my direct testimony, the Companies categorize direct and indirect interconnection-related costs into three separate categories, with Category 1 capturing all "Fees Recovered Work."

1

2

3

Costs captured in Category 1 include the Companies' direct and 4 5 indirect administration, technology, and processing costs associated with 6 fee-recovered activities under the NC Procedures. More specifically, 7 Category 1 costs include Renewables Service Center employee and contractor labor expense along with allocations of Distributed Energy 8 9 Technologies employee labor supporting the Section 2 expedited processing 10 of certified inverter-based generators < 20 kW and Section 3 Fast Track 11 screening process for interconnection applications < 2 MW; processing and 12 administration for Pre-Requests and Pre-Applications; processing and 13 administration for Changes of Control; and related technology costs that 14 support these areas of work.

As I described in my direct testimony, the Companies experienced a significant under-recovery for Category 1 Fee-recoverable costs in both 2017 and in 2018 based upon the fees currently in place under the NC Procedures.³¹

³⁰ Interconnection Cost Allocation Procedures Report, Docket Nos. E-100, Sub 101; E-2, Sub 1109; and E-7, Sub 1131, at 2 (Mar. 1, 2017). In the DEP REPS Order, *supra* note 2, the Commission directed DEP to work with the Public Staff in making cost allocation refinements to interconnection-related costs and to submit a report on these efforts to the Commission no later than March 1, 2017. DEP REPS Order at Ordering Paragraph 4. ³¹ DEC/DEP Riggins Direct Testimony, at 21.

1Q.CAN YOU PROVIDE A DETAILED BREAKDOWN OF THE2COMPANIES' 2017 AND 2018 UNDER-RECOVERY AND HOW3THE PROPOSED FEES WILL ALLOW THE COMPANIES TO4MORE FULLY RECOVER CATEGORY 1 FEE-RELATED COSTS5IN 2019 AND FUTURE YEARS?

6 A. Yes. Columns 1 and 2 of Rebuttal Exhibit JWR-3 provide a breakdown of 7 the Companies' Category 1 expenses and revenues based upon experienced volumes of fee-recovered activities during 2017 and 2018, respectively. 8 9 Columns 1 and 2 then present the Companies' actually-experienced under-10 recovery of Category 1 costs under current fees as well as projected 11 experience if the proposed fees were in effect during each year. For 2018, 12 Column 2 presents a calendar year 2018 breakdown of the Companies' 13 Category 1 work, and shows that DEC and DEP have under-recovered 14 Category 1 expenses by approximately (\$584,000) in 2018 under the current 15 fees, while the under-recovery would have approximated (\$30,000) if the 16 Companies' proposed fees were in effect. The continuing under-recovery 17 even under the proposed fees is based upon actually-experienced 2018 18 volumes of Fee-related work.

Columns 3 and 4 then project Category 1 volumes, revenues and expenses for 2019 assuming that the Companies experience an additional 10% or 20% increase in Section 2 and Section 3 Interconnection Requests in 2019. Forecasting only a limited increase in Section 2 and Section 3 Interconnection Requests is reasonable for 2019 because the new 1 Interconnection Request volumes will largely be driven by the 2 Commission-approved solar rebate program, which is limited to 10,000 kW 3 of installed capacity annually. Absent the requested adjustment to the 4 Companies' interconnection processing and other fees, the Companies 5 project DEC and DEP to under-recover their Category 1 interconnection-6 related costs by over (\$550,000) in 2019.

Q. PLEASE RESPOND TO IREC'S ALLEGATION THAT THE
COMMISSION SHOULD REJECT THE COMPANIES' FEE
PROPOSAL ON GROUNDS THAT THE COMPANIES HAVE
PRESENTED INSUFFICIENT EVIDENCE TO SUPPORT THE
FEES.

12 I disagree. My direct testimony explains the Companies' procedure for A. 13 tracking interconnection costs and addresses that DEC and DEP 14 significantly under-recovered Category 1 fees-recovered work in both 2017 15 and 2018. My Rebuttal Exhibit JWR-3 shows in detail that DEC and DEP's 16 North Carolina Category 1 expenses exceeded the revenues generated by 17 fees received in 2018 to complete all fee-recovered work. IREC witness 18 Auck's own Exhibit SBA-Direct 9 (filing Duke's Responses to Public Staff 19 Data Request 8-2) also provides additional detail on the Companies' 20 procedure for tracking interconnection fees and experienced under-recovery 21 of Category 1 costs. While I appreciate IREC's persistent desire for more 22 robust activity-by-activity tracking and reporting of interconnection fees 23 and expenses, the Companies' cost-tracking methodology is reasonable and

enables DEC and DEP to determine whether the Companies are under recovering Category 1 fee-related expenses incurred during a given year.
 Based upon the experienced under-recovery of this category of costs, the
 Companies have then reasonably allocated these expenses amongst the
 categories of fees in the NC Procedures.

Q. ARE THE COMPANIES SEEKING TO PROFIT FROM THE PROPOSED FEES BY CHARGING FEES THAT EXCEED THEIR PROJECTED EXPENSES?

9 No. As recognized by Public Staff witness Lucas, the Companies have A. 10 "significantly increased their staffing and been required to develop 11 administrative, technical, and information technology processes to enable 12 third party renewable energy facilities to interconnect" and "[w]hile they 13 pass these costs on to the developers and customers, they do not profit from any of it."32 I agree. The Companies are not advocating for any return on 14 15 their fee-related expenses to support the interconnection process, but are simply seeking to recover their Category 1 interconnection-related costs. 16

Q. WOULD THE COMPANIES SUPPORT REPORTING ON ANNUALIZED VOLUMES AND FEE-RECOVERED EXPENSES IN FUTURE YEARS?

A. Yes. As my Rebuttal Exhibit JWR-3 shows, changes in volumes of
Section 2 and Section 3 interconnection requests can significantly impact

³² Public Staff Lucas Direct Testimony, at 8.

1		whether the Companies under-recover or fully recover Category 1 expenses
2		in a given year. Increases or decreases in expenses to support the
3		interconnection process can have a similar impact. To the extent the
4		Commission wants to more closely track year-over-year changes in
5		Section 2 and Section 3 interconnection request volumes, fee-related work,
6		and Category 1 expenses, the Companies could file an informational report
7		with the Commission on March 1 annually similar to my Rebuttal Exhibit
8		JWR-3. Alternatively, to the extent that the Commission plans to again
9		review the NC Procedures and interconnection process in 2-3 years, the
10		Companies could report to the Public Staff and other stakeholders at that
11		time whether actually-experienced changes in interconnection fee volumes
12		and expenses support future adjustments to fees charged under the NC
13		Procedures.
14	Q.	IN OPPOSING THE COMPANIES' ADJUSTED FEES, WITNESS
15		AUCK ALSO SUGGESTS THAT INTERCONNECTION
16		PROCESSING IN NORTH CAROLINA HAS BEEN SLOW AND
17		INEFFICIENT WHILE SUGGESTING THE PROPOSED FEES ARE
18		RELATIVELY HIGH COMPARED TO OTHER STATES. HOW DO
19		YOU RESPOND?
20	A.	I disagree with IREC witness Auck's assertion that the Companies'
21		interconnection processing has been unreasonably slow or inefficient.

22

23 processes, producing Pre-Application Request responses and other

Specific to the Section 2 small generator and Section 3 Fast Track study

1	activities where fees are used to recover the Companies' costs, the
2	Companies have generally been meeting the timeframes required in the NC
3	Procedures. IREC presents no evidence to the contrary. The Companies
4	have also been working diligently to ensure they are efficiently processing
5	the growing number of NEM Section 2 interconnection customer requests
6	received under the solar rebates program established in House Bill 589 and
7	recently approved by the Commission. DEC and DEP processed a
8	combined 4,354 of Section 2 Interconnection Requests in 2018, a significant
9	increase from the 1,406 Section 2 Interconnection Requests processed in
10	2017. This significant increase was primarily due to 2018 being the first
11	year that the solar rebates program enacted by House Bill 589 was open to
12	participation. Again, even as volumes have increased, DEC and DEP have
13	generally processed these small generator interconnection requests within
14	the timeframes provided for in the NC Procedures.
15	Moreover, while the Companies have been challenged in meeting
16	Section 4 study process timeframes for some large multi-megawatt solar
17	projects, DEC and DEP should not be penalized by being forced to under-
18	recover their Category 1 expenses including implementing the Section 2 and
19	Section 3 smaller generator interconnection processes. Public Staff witness
20	Lucas highlights the "cooperation of the Utilities" to support North

21 Carolina's unprecedented solar growth and the Companies are appropriately

seeking an adjustment to interconnection fees to more fully recover their
 costs.³³

Q. HOW DO YOU RESPOND TO WITNESS AUCK'S ARGUMENT THAT THE COMPANIES' PROPOSED FEES ARE RELATIVELY HIGH COMPARED TO OTHER STATES?

6 A. First, I would note that it is nearly impossible to develop accurate 7 comparisons of interconnection fees across states and per utility, due to 8 differing capacity ranges, carves-outs, limiters, and policy considerations 9 varying across each jurisdiction and utility, including whether some costs 10 are permitted to be recovered through base rates. While the Companies do 11 not dispute IREC's presentation in Table 4 showing relatively lower fees 12 under the approved Interconnection Procedures in Ohio, Illinois, and 13 Virginia compared to the fees proposed in North Carolina, fees charged 14 under other interconnection procedures seem to more closely align with the 15 Companies' proposed fees in North Carolina.

For example, the Companies' Pre-Application Report Fee is proposed to be \$500. In comparison, California's Pre-Application fees range from \$300 to \$1,325³⁴ while New York has approved a Pre-

³⁴ PG&E's Pre-Application Report Request is *available at* <u>https://www.pge.com/includes/docs/pdfs/b2b/interconnections/pre-app-request-guide.pdf</u>. *See also* PG&E Electric Rule No. 21, *Cal. P.U.C. Sheet No.* 40278-E (effective June 8, 2017), *available at* <u>https://www.pge.com/tariffs/tm2/pdf/ELEC_RULES_21.pdf</u>.

³³ Public Staff Lucas Testimony, at 32.

l	Application fee of \$750. ³⁵ Notably, the Pre-Application fee approved under
2	the South Carolina Generator Interconnection Procedures is the same \$500
3	the Companies propose to charge in North Carolina. ³⁶

4 As another example, Pennsylvania has approved interconnection 5 processing fees of \$250 plus \$1/kw for Generating Facilities greater than 6 10 kW, or \$350 plus \$2/kW depending on the complexity of the interconnection.³⁷ To translate, Pennsylvania's fees for Generating 7 8 Facilities less than 20 kW could be higher than the Companies' \$200 9 Application Processing fee proposal for less than 20 kW-sized facilities. 10 Additionally, the Companies' fee proposal for Generating Facilitates 20 kW 11 to 100 kW in size is comparable to New York's fee, which similarly charges \$750 for facilities falling within this size range.³⁸ For Generating Facilities 12 13 in the > 100kW to two MW range, the Companies' are proposing a \$1,000 14 Fast Track Application Processing Fee. This \$1,000 fee proposal is lower

 ³⁵ See New York State Standardized Interconnection Requirements and Application Process for New Distributed Generators and Energy Storage Systems 5 MW or Less Connected in Parallel with Utility Distribution Systems, at p. 9 (Oct. 2018), available at http://www3.dps.ny.gov/W/PSCWeb.nsf/96f0fec0b45a3c6485257688006a701a/dcf68efca391ad6 085257687006f396b/\$FILE/October%20SIR%20Appendix%20A%20-%20Final%2010-3-18.pdf.
 ³⁶ Order Adopting Interconnection Standard and Supplemental Provisions, SC PSC Docket No. 2015-362-E, Order No. 2016-191, Order Exhibit 1 at page 37, (April 26, 2016), available at https://dms.psc.sc.gov/Attachments/Order/11891e05-689d-4fe7-8816-c959480feb4e.
 ³⁷ See 52 PA. Pa. Code §75.38 through §75.40; see also PECO Net Metering/Interconnection Application Fees, available at

https://www.peco.com/SiteCollectionDocuments/summaryoffeesrev1.pdf .

³⁸ See supra at note 28.

than similar fees in Pennsylvania,³⁹ Minnesota,⁴⁰ Massachusetts,⁴¹ Utah,⁴² and New Jersey⁴³.

3 Furthermore, as noted above, it is also difficult, if not impossible, to correlate the fees charged by other utilities with a determination of whether 4 5 those fees actually allow the utility to fully recover its interconnection-6 related costs. IREC candidly noted this in response to the Public Staff, 7 explaining that the reports that the California utilities file with the California 8 Public Utilities Commission "may not provide a complete picture of all 9 potential costs incurred by the utilities associated with interconnection of NEM generators" and that "IREC is unaware of any state that has done a 10 detailed tracking of overall interconnection cost expenditures."⁴⁴ Utilities 11 12 that receive only a small number of interconnection requests also may not 13 have been required to make the significant investments in human and 14 technology resources required to support processing thousands of 15 interconnection requests a year. Numerous states also allow

1

2

⁴¹ See Standard Application Process, National Grid (2019), available at

https://www9.nationalgridus.com/Masselectric/home/energyeff/4_standard-application.asp. ⁴² See Utah Rule R746-312. Electrical Interconnection, *available at*

https://rules.utah.gov/publicat/code/r746/r746-312.htm; see also PacificCorp, Utah, Generation Interconnection Process (2019), available at http://www.pacificorp.com/tran/ts/gip/qf/utah.html. ⁴³ See Building You Solar Installation, PSE&G (Dec. 19, 2018), available at https://nj.pseg.com/saveenergyandmoney/solarandrenewableenergy/applicationprocess.

³⁹ See supra at note 30.

⁴⁰ Generation Interconnection Application Fee Form, Xcel Energy Minnesota, *available at <u>http://www.pacificorp.com/tran/ts/gip/qf/utah.html</u>; see also Minnesota Distributed Energy Resource Interconnection Process, Section 1.5 (issued Aug. 13, 2018), <i>available at https://www.edockets.state.mn.us/EFiling/edockets/searchDocuments.do?method=showPoup&doc umentId=%7BC0323565-0000-C93E-A016-03CA96FB9CAC%7D&documentTitle=20188-145752-03.*

⁴⁴ Rebuttal Exhibit JWR-4, IREC's Response to the Public Staff's Data Request 1, Topic 1.

1 interconnection-related costs to be subsidized through the utility's general 2 cost of service. For example, NEM applications up to 10 kW in Florida are processed for free.⁴⁵ Overall, it is difficult to make a true "apples to apples" 3 4 comparison when comparing states' interconnection fees. And given that 5 IREC was unable to identify with any specificity the amounts recovered 6 through base rates in other jurisdictions, IREC's proposed comparisons to 7 other jurisdictions should not be accepted as "apples to apples" in light of the North Carolina regulatory policy directive to seek to recover all 8 9 interconnection costs from Interconnection Customers.

Q. PLEASE COMMENT FURTHER ON IREC'S USE OF THE
 CALIFORNIA UTILITIES' INTERCONNECTION COSTS TO
 BENCHMARK THE COMPANIES' FEE PROPOSAL IN NORTH
 CAROLINA.

A. IREC witness Auck makes numerous benchmarking references to the three
California utilities, Pacific Gas and Electric Company ("PG&E"), Southern
California Edison Company ("SCE"), and San Diego Gas and Electric
Company ("SDG&E") and, specifically, to their annual interconnection costs
reports filed with the California Public Utilities Commission.⁴⁶

 ⁴⁵ See Interconnection Agreement for Customer-Owned Renewable Generation Tier 1 – 10 kW or Less, Florida Power & Light Company, First Revised Sheet No. 9.050 (effective Feb. 20, 2014), available at https://www.fpl.com/clean-energy/pdf/net-metering-tier1.pdf.
 ⁴⁶ IBEC Auch Direct Testimony, at 54 56 Exhibit SPA Direct 10.

⁴⁶ IREC Auck Direct Testimony, at 54-56, Exhibit SBA-Direct-10.

1	The Companies have reviewed the 2018 information-only annual
2	reports submitted to the California Public Utilities Commission detailing
3	annualized interconnection costs. ⁴⁷ Based upon this review, I would initially
4	note that the reported costs do not seem to include any recovery for
5	technology costs, but do include processing and administrative costs,
6	recovery for metering costs, as well as inspection and commissioning costs.
7	It is also notable that there seems to be a significant disparity between the
8	costs (or at least the subset of costs being reported) per application incurred
9	between the three utilities. SCE's costs approximated \$35 per application
10	processed, ⁴⁸ while PG&E's costs approximated \$72 per application ⁴⁹ and
11	SDG&E's costs approximated \$132 per application. ⁵⁰ Little meaningful
12	benchmarking can be ascertained from reviewing these costs, except to note
13	the significant disparity seems to correlate to differences in costs reported and

⁴⁷ See, Information-Only Advice Letter, Southern California Edison Company's Report on Net Energy Metering Interconnection Costs, Advice 3866-E, at Attachment A, Docket U 338-E (Sept. 19, 2018); Pacific Gas and Electric Company's Information-Only Submittal Regarding Net Energy Metering Costs, Advice Letter 5398-E, at Attachment A, Docket U 39 E (Oct. 4, 2018); San Diego Gas & Electric Company's Information Only Filing Regarding Net Energy Metering Costs, Advice Letter 3273-E, at Attachment A, Table 1, Docket U902-E (Sept. 19, 2018).
⁴⁸ Information-Only Advice Letter, Southern California Edison Company's Report on Net Energy Metering Interconnection Costs, Advice 3866-E, at Attachment A, Docket U 338-E (Sept. 19, 2018) (to calculate cost per application, the "Total Costs" of \$1,617,623 identified in Table 1 was divided by the total number of new applications, 46,819 identified below Table 1).
⁴⁹ Pacific Gas and Electric Company's Information-Only Submittal Regarding Net Energy Metering Costs, Advice Letter 5398-E, at Attachment A, Docket U 39 E (Oct. 4, 2018) (to calculate cost per application, the "Total," \$4,641,650, from Table 1 was divided by the "Total NEM Applications," 64,756, identified above Table 1).

⁵⁰ San Diego Gas & Electric Company's Information Only Filing Regarding Net Energy Metering Costs, Advice Letter 3273-E, at Attachment A, Table 1, Docket U902-E (Sept. 19, 2018) (to calculate cost per application, the "Total Processing and Administration Costs," \$3,158,628, was divided by the "# of New Applications." 23,929, taken both from Table 1).

1	differences in volumes of Interconnection Request applications processed by
2	each utility during the prior year.

3		It is also notable that although the California utilities' costs and
4		application volumes have change year-over-year since 2015, the application
5		fees charged to all NEM applications projects ≤ 1 MW have not. Current
6		application fees charged by PG&E, SCE and SDG&E are \$145, \$75 and
7		\$132, respectively. Interestingly, while PG&E reported costs of only \$72
8		per application, the fee charged is significantly higher at \$145 per
9		application. Despite this annual reporting, it is difficult to meaningfully
10		compare the fees charged by the California utilities to the Companies'
11		proposed fees because they cover different types of costs, cover net
12		metering projects only and cover only < 1 MW projects.
13	Q.	DO THE CALIFORNIA UTILITIES' HIGHER VOLUMES OF
14		INTERCONNECTION REQUESTS ALLOW FOR REDUCED
15		PROCESSING COSTS?
16	A.	Yes. Based upon my review of the California utilities 2018 reports, the
17		volumes of NEM projects ranged from 23,929 to 64,756. ⁵¹ Even after
18		significant growth compared to 2017 and prior years, North Carolina's 2018
19		volumes of < 2 MW projects was still significantly lower at 4,566. As IREC
20		witness Auck notes, these significantly higher volumes allow the
21		California utilities to "benefit from economies of scale." ⁵² This is

⁵¹ See supra note 47.
⁵² IREC Auck Direct Testimony, at 55.

1		important because a certain amount of "fixed cost" infrastructure and
2		resources are required to support processing thousands of interconnection
3		requests during a given period. Where the utility is processing greater
4		volumes of applications, these costs can be spread out and reduced for each
5		individual Interconnection Customer. Further, once the infrastructure costs
6		are recovered, I agree with IREC that efficiencies can reduce the ongoing
7		per application charge. Thus, the California utilities have experienced
8		significantly higher volumes of < 1 MW projects for many years and that
9		has allowed infrastructure and efficiencies to be built into its cost base over
10		time. The Companies are only now starting to make the infrastructure
11		investments to support the greater volumes of small NEM Interconnection
12		Requests and are only now making the fixed cost investments in Salesforce
13		and other infrastructure to support this process.
14	Q.	IREC SPECIFICALLY ARGUES THAT INCREASING THE
15		CHANGE OF CONTROL FEE FROM \$50 TO \$500 OR BY "1,000
16		PERCENT" IS UNREASONABLE. DO YOU AGREE?
17	A.	No. As background, a change of control occurs when an Interconnection
18		Customer transfers ownership of the Generating Facility or sells its
19		ownership interest in the legal entity owning the Generation Facility, thus

- 20 "changing control" of the existing legal entity that is the counter-party under21 the IA and responsible for operating the Generation Facility. Changes of
- 22 control therefore most often occur in the context of utility-scale developers
- 23 "flipping" projects to other developers.

1	The \$50 fee currently in place has never been sufficient to allow for
2	the recovery of the Companies' costs incurred to complete a change of
3	control, and the increase to \$500 more accurately allows the Companies' to
4	recover their costs. Specifically, based on analysis the Companies have
5	performed on the costs and time incurred to complete a change of control,
6	it takes on average six hours to complete all administrative process required
7	to document a change of control for a larger independent power producer.
8	Additionally, if there are legal complications with the change of control,
9	more time must and expense must be incurred. Thus, on average, the direct
10	administrative cost of processing each change of control are at least \$400.
11	Note also that this \$400 does not include technology costs in addition to
12	supervisory time or legal costs. As another comparison, a change of control
13	requested under a large QF generating facility power purchase agreement is
14	\$10,000, making \$500, by comparison, seem extremely reasonable for
15	processing a change of control for a standard IA.53 Therefore, the
16	Companies' proposed \$500 fee to process a change of control is reasonable
17	and consistent with the Commission's directive to recover costs to the
18	greatest extent possible from Interconnection Customers.

⁵³ See Duke Energy Carolinas, LLC's and Duke Energy Progress, LLC's Final *pro forma* CPRE Tranche 1 PPA, Docket Nos. E-2, Sub 1159 and E-7, Sub 1156, Attachment A at Section 24.6 (filed June 8, 2018) (approved by the NCUC's *Order Denying Joint Motion, Approving Pro Forma PPA, and Providing Other Relief*, Docket Nos. E-2, Sub 1159 and E-7, Sub 1156 on June 25, 2018).

1Q.IREC ALSO ARGUES THAT RATEMAKING PRINCIPLES OF2GRADUALISM SHOULD BE APPLIED TO REDUCE THE3PROPOSED FEES. DO YOU AGREE THAT THIS PRINCIPLE IS4APPLICABLE HERE?

5 A. No. From a layman's perspective, a principle of gradualism seems 6 inapplicable in this context because an Interconnection Customer only pays 7 an interconnection fee once. By comparison, retail customers who pay fixed 8 charges for service on an ongoing basis. Thus, because an interconnection-9 related fee is only charged to an Interconnection Customer once, the 10 principle of gradualism does not seem applicable.

11 Q. ARE THE COMPANIES PROPOSING TO MAKE ANY CHANGES

12 TO ITS CHANGE OF CONTROL FEE PROPOSAL AT THIS TIME?

13 Yes. In light of the fact that the change of control administration process is A. 14 more simplified for small Interconnection Customers, the Companies have 15 bifurcated the change of control fee to retain \$50 for the smallest 16 Interconnection Customers 20 kW or less that enter into the consolidated 17 Attachment 6 Application and IA report. The proposed \$500 fee will apply 18 to all Interconnection Customers above 20 kW that submit an Attachment 2 19 Interconnection Request Application Form and enter into the full 20 Attachment 9 Interconnection Agreement.

21 Q. HAVE THE COMPANIES ALSO CORRECTED THE PROPOSED 22 SECTION 2 PROCESSING FEE WITHIN ATTACHMENT 6?

1	A.	Yes. The Duke Energy Redline filed with the Companies' direct testimony
2		inadvertently did not modify the processing fee within Attachment 6 for
3		Section 2 Interconnection Customers (Certified Inverter-Based Generating
4		Facility No Larger than 20 kW) as supported on pages 23-24 of my direct
5		testimony. This processing fee has been updated in Attachment 6 of
6		Rebuttal Exhibit JWG-1 to accurately reflect the Companies' proposed fee
7		of \$200 as discussed in my direct testimony and further supported above.
8		VI. <u>Dispute Resolution</u>
9	Q.	THE COMPANIES HAVE PROPOSED SEVERAL
10		MODIFICATIONS TO THE DISPUTE RESOLUTION PROCESS
11		UNDER THE NC PROCEDURES. PLEASE ADDRESS THE
12		PUBLIC STAFF'S AND OTHER PARTIES' POSITIONS ON THE
13		COMPANIES' MODIFICATIONS?
14	A.	As discussed in my direct testimony and the rebuttal testimony of
15		DEC/DEP witness Freeman, the dispute resolution process contributes to
16		delays in the interconnection process. Such delays are exacerbated by the
17		ambiguity in the NC Procedures regarding the associated timelines.
18		Public Staff witness Lucas stated that the Public Staff should
19		continue to be involved in informal dispute resolution process, but that a
20		third-party dispute resolution service should be another option to resolve

1		disputes if mutually agreed by both parties. ⁵⁴ To that end, Public Staff
2		proposed certain modification to the Section 6.2 of the NC Procedures.
3		IREC witness Auck states that a new, "clearly defined" dispute
4		resolution process is needed in North Carolina and should include an
5		interconnection ombudsperson at the Commission who would help
6		facilitate dispute resolution. ⁵⁵
7		DENC witness Nester believes that the existing dispute resolution
8		process is sufficient and that IREC's proposal to add an ombudsperson is
9		supported by little evidence.
10	Q.	HOW DO THE COMPANIES RESPOND?
11	A.	As stated in my direct testimony, the Companies maintain that the Public
12		Staff's involvement, technical understanding, and perspective has been very
13		valuable during the dispute resolution process and has allowed the
14		Companies and Interconnection Customers to successfully resolve nearly
15		all disputes. ⁵⁶ Since submitting direct testimony, the Companies have

engaged in discussions with the Public Staff regarding witness Lucas'

proposal for the Companies and/or Interconnection Customers to be

permitted by mutual agreement to engage a "dispute resolution service" as

part of the informal dispute resolution process. The Companies are

concerned that this alternative process is undefined and could also

20

16

17

18

19

⁵⁴ Public Staff Lucas Direct, at 37-38.

⁵⁵ IREC Auck Direct Testimony, at 46.

⁵⁶ DEC/DEP Riggins Direct Testimony, at 33.

1		significantly extend the timeframes for informally resolving disputes,
2		thereby further delaying later-queued interconnection customers. The
3		Companies also believe the Public Staff has informally facilitated the role
4		of an "interconnection ombudsperson" in North Carolina, when needed, and
5		no further formalization of this role is needed or appropriate at this time.
6		The Companies plan to continue to discuss this issue with the Public Staff,
7		but, at this time, continue to support the proposed modifications to Section
8		6.2 that I sponsored in my direct testimony.
9		VII. <u>Surety Bonds</u>
10	Q.	HAVE THE COMPANIES PREVIOUSLY COMMITTED TO
11		ACCEPT SURETY BONDS FROM INTERCONNECTION
12		CUSTOMERS AS FINANCIAL SECURITY IN PARTICULAR
13		SITUATIONS?
14	A.	Yes. The Companies have previously committed to accept surety bonds
15		from Interconnection Customers that contain terms that are reasonably
16		acceptable to the Duke Energy credit and risk management ("Credit/Risk")
17		department in the following circumstances:
18		• As security pursuant to NC Procedures Section 4.3.9 in the case of
19		an executed state-jurisdictional Facilities Study Agreement with
20		identified Network Upgrades;
21		• In connection with Competitive Tier Proposals (<i>i.e.</i> , Proposals that
22		are determined by the Independent Administrator to move into Step

"Proposal Security." 2 Executed state-jurisdictional IA with identified Interconnection 3 Facilities but no Network Upgrades when the project is participating 4 5 in the CPRE evaluation process until such time as the outcome of the CPRE Tranche 1 RFP is determined. 6 7 Executed state-jurisdictional IA with identified Interconnection 8 Facilities and Network Upgrades that will not be completed for 3-5 9 years and project would not begin final design, procurement and scheduling of Interconnection Facilities construction for an 10 11 extended period of time after the IA was executed. 12 **O**. ARE THE COMPANIES WILLING TO ACCEPT SURETY BONDS 13 FOR INTERCONNECTION FACILITIES IN SCENARIOS OTHER 14 THAN THE SCENARIOS DESCRIBED ABOVE? 15 A. Yes, in those circumstances in which either DEP or DEC have previously 16 accepted security for Interconnection Facilities or any circumstance in 17 which there is a material lag between the execution of the IA and the date 18 on which the Companies begin to incur costs for the Interconnection 19 Facilities, the Companies are willing to accept surety bonds as security until

2 of the CPRE Evaluation Process) that are required to post

1

such time as the Companies begin to incur costs or would otherwise require
payment. For the avoidance of doubt, any surety bond must contain terms
that are acceptable to the Companies' Credit/Risk Department in their sole,
reasonable discretion.

- 4 A. The most crucial terms and conditions include, but are not limited to, the5 following:
- Must require payment to Duke in the event of the principal's failure
 to perform
- Payment must be made by the surety to Duke within a short period of
 time (*e.g.*, 10 days)
- Surety bond must be irrevocable by the Surety and noncancelable by
 the principal, or, alternatively, surety must be required to provide
 Duke prior notice of cancellation and Duke has right to demand
 payment if alternative security is not provided 30 days prior to
 cancellation
- Waiver of suretyship defenses
- 16 North Carolina governing law and forum

A form surety bond that was provided by the Companies in connection with the CPRE RFP and contains generally acceptable terms and condition is provided as Rebuttal Exhibit JWR-5. This particular form would need to be significantly updated for use in the interconnection context.

Q. WHILE THE COMPANIES ARE WILLING TO ACCEPT SURETY BONDS FOR INTERCONNECTION FACILITIES AS DESCRIBED

315

ABOVE, DO THE COMPANIES AGREE THAT SURETY BONDS ARE "WIDELY ACCEPTED" IN THE UTILITY INDUSTRY AS WAS ASSERTED BY WITNESS NORQUAL?

A. No. In response to a data request, NCCEBA was able to identify only one
other utility that has accepted a surety bond in the interconnection context.⁵⁷

6 Q. WHY DO YOU THINK THAT IS THE CASE?

7 A. While I am not an expert on credit issues, I have been advised by the Duke 8 Energy Credit/Risk department and Duke's internal legal team that surety 9 bonds generally contain terms and conditions that provide less security than 10 letter of credit. For instance, surety bonds generally contain more detailed 11 pre-conditions to the assertion and payment of a claim by the non-defaulting 12 party, which effectively provides less certainty that the Companies and its 13 customers will be protected in the event of default. In contrast, when the 14 Companies receive financial security in the form of letters of credit or cash 15 pre-payment, the Companies have more unfettered rights to draw on those 16 forms of security without the potential need for legal action to enforce its 17 rights. In addition, surety bonds are less standardized than letters of credit, 18 more complex and can have much greater variability of commercial terms, 19 which would, in turn, require more in-depth, case-by-case analysis to 20 confirm acceptability as well as, in some cases, further negotiation 21 concerning such terms.

⁵⁷ Rebuttal Exhibit JWR-4, NCCEBA's response to the Companies' Data Request 1-15.

Finally, the Duke Energy Credit/Risk department has advised me that the assertion that the Companies have the ability to prescribe the surety bond form is generally inconsistent with our previous experience. More specifically, the Companies historically have been unable to secure any material changes in bond form language in the few instances where we determined that we would consider acceptance.

- Q. WHY ARE THE COMPANIES NOW WILLING TO ACCEPT
 8 SURETY BONDS CONTAINING ACCEPTABLE TERMS AND
 9 CONDITIONS FOR INTERCONNECTION FACILITIES IN THE
 10 CIRCUMSTANCES DESCRIBED ABOVE?
- A. While surety bonds will generally provide less certainty and consume more
 of the Companies' resource for purposes of review and negotiation, the
 Companies in the interest of compromise and due to the fact that the
 financial risk to other customers is lessened in the case of Interconnection
 Facilities if the security arrangement is properly structured.

WITNESS NORQUAL ALSO STATES THAT "DUKE SHOULD 16 Q. 17 NOT BE PERMITTED TO RETAIN THE FUNDS...OF 18 INTERCONNECTION CUSTOMERS FOR INTERCONNECTION 19 FACILITIES IF THE INTERCONNECTION FACILITIES ARE 20 NOT CONSTRUCTED AND DUKE HAS NOT HAD TO INCUR 21 ANY COSTS." TO BE CLEAR, HAS DUKE EVER RETAINED **INTERCONNECTION** 22 **CUSTOMER FUNDS** WHERE

1 PARTICULAR INTERCONNECTION FACILITIES WERE 2 ULTIMATELY NOT CONSTRUCTED?

A. No. Further, NCCEBA and CCR were also subsequently unable to identify any instances that supported the statement that the Companies ever "retained" interconnection customer's funds where Interconnection Facilities were not constructed. Instead, the statement appears to have been intended to refer to those situations in which there was some period of time between payment for the Interconnection Facilities and commencement of construction.⁵⁸

VIII. Other Issues

10

Q. DID THE PUBLIC STAFF OR INTERVENOR TESTIMONY COMMENT ON ANY OTHER RECOMMENDATIONS MADE IN YOUR DIRECT TESTIMONY?

A. Yes, the Public Staff witness Lucas and North Carolina Pork Council
witness Maier both agreed with the Companies' proposed revisions to
Section 1.8.3.3 of the NC Procedures related to an expedited review process
for swine and poultry waste to energy projects of two MW or less.⁵⁹

Public Staff witness Lucas also supported the Companies' proposed
addition of Section 1.8.3.4 of the NC Procedures related to expediting the

 ⁵⁸ Rebuttal Exhibit JWR-4, NCCEBA's response to the Companies' Data Request 1-17.
 ⁵⁹ Public Staff Lucas Direct Testimony, at 50; North Carolina Pork Council Maier Direct Testimony, at 9-10.

4	0.	DOES THIS CONCLUDE YOUR REBUTTAL TESTIMONY?
3		No other parties commented on these two topics.
2		operation. ⁶⁰
1		study process for standby generators requesting momentary parallel

5 A. Yes.

⁶⁰ Public Staff Lucas Direct Testimony, at 19-20.

1	BY MI	R. BREITSCHWERDT:
2	Q	And, Mr. Riggins, did you prepare a summary of
3		your testimony for the Commission today?
4	A	I did.
5	Q	Would you please present it at this time?
6	A	Good afternoon, Commissioners. My name is Jeff
7		Riggins and I am the Director of Generator
8		Interconnections and Standard Purchase Power
9		Agreements for Duke Energy. I appreciate the
10		opportunity to share with this Commission the
11		efforts my team and others in the Distributed
12		Energy or DET organization have made to support
13		the interconnection process in North Carolina,
14		and to ensure that we are safely and reliably
15		integrating renewables and other distributed
16		generation into the Duke systems. My team is
17		100 percent dedicated to the interconnection
18		process and works on a daily basis
19		CHAIRMAN FINLEY: Speak up please, sir.
20	We'r	e having trouble hearing you in the back. Pull
21	that	mic up a little bit.
22		THE WITNESS: Would you like for me to start
23	agai	n?
24		COMMISSIONER GRAY: Please.

Г

NORTH CAROLINA UTILITIES COMMISSION

OFFICIAL COPY

Feb 13 2019

<pre>2 again. 3 (WHEREUPON, the summary of JEFFRI 4 W. RIGGINS is copied into the 5 record as read from the witness 6 stand.) 7 8 9 10 11 12 13</pre>	
<pre>3 (WHEREUPON, the summary of JEFFRI 4 W. RIGGINS is copied into the 5 record as read from the witness 6 stand.) 7 8 9 10 11 12 13</pre>	
W. RIGGINS is copied into the record as read from the witness stand.)	Y
5record as read from the witness6stand.)7	
6 stand.) 7 8 9 10 11 12 13	
7 8 9 9 10 11 11 12 13	
8 9 10 11 12 13	
9 10 11 12 13	
10 11 12 13	
11 12 13	
12 13	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	

NORTH CAROLINA UTILITIES COMMISSION

322

Feb 13 2019

Testimony Summary – Jeff Riggins Docket No. E-100, Sub 101 January 28, 2019

Good afternoon Commissioners. My name is Jeff Riggins and I am the Director of Generator Interconnections and Standard Purchase Power Agreements for Duke Energy. I appreciate the opportunity to share with this Commission the efforts my team and others in the Distributed Energy Technologies or "DET" organization have made to support the interconnection process in North Carolina and to ensure we are safely and reliably integrating renewables and other distributed generation into the Duke systems. My team is 100% dedicated to the interconnection process and works on a daily basis to improve our capabilities while also processing the unprecedented number of small and large interconnection requests that we have received.

Since I joined DET in 2016, Duke Energy has added significant engineering and administrative resources and enhanced the information technology tools that we use to monitor and track interconnection requests and communicate with customers. As I highlight in my direct testimony, Duke Energy has significantly expanded the DET and engineering teams that support the administration of the interconnection process for larger customer-sited generating facilities and for third-party developers. We also formed the Renewables Service Center to provide small customer-focused technical support and to more efficiently process the 1000s of small interconnection requests we receive from our customers each year. Today, we have over 100 individuals committed to supporting the generator interconnection process in the Carolinas.

I also actively participated in the 2017 AE-led stakeholder meetings in Raleigh and since that time I've been leading my team and collaborating with other Duke Energy teams to improve transparency and the interconnection customer experience. Our current focus is on improving interconnection customer communications and leveraging IT tools, such as the Salesforce platform that I discuss in my testimony, to track and manage interconnection requests and to enable both the Companies and our customers to better meet the timeframes established in the interconnection procedures. We are also developing a web-based customer portal which will be available in early 2019. This new customer portal will enable the Companies to more proactively communicate with our customers regarding their interconnection requests and to provide status updates in more real time. Many of the changes Duke has proposed in this proceeding are also intended to support these efforts and to make the interconnection process more transparent and efficient for our customers as well as third-party developers.

My testimony also specifically supports certain limited changes to the NC Procedure to improve the interconnection study process for Interconnection Customers. We recognize that customers want to progress through the study process as quickly as possible, so we proposed a change that allows customers eligible for Section 3 Fast Track Review to authorize a Supplemental Review in advance so we can eliminate the current processing delay associated with collecting the additional deposit required for Supplemental Review. To provide more information to customers earlier in the interconnection process, we are also proposing to provide an Enhanced Scoping Meeting to share more details about a proposed interconnection location prior to the customer proceeding to the full System Impact Study review. Finally, we proposed changes to expedite the study of swine and poultry waste projects to meet the directives of HB 589 and for standby

323

generator requests which are often proposed by sensitive commercial customers like hospitals and technology companies facilities for reliability reasons.

Through this proceeding, Duke Energy has also made a focused effort to more appropriately assign the cost of administering the interconnection process to interconnection customers. My testimony supports the Companies' proposal to adjust the fees charged for small generator studies and certain other work under the Interconnection Procedures to more fully recover the Companies' actually-incurred costs, including the costs of adding personnel and making technology investments to support the interconnection process. We have designed the fees to reasonably recover our fee-related costs in 2019 based upon anticipated volumes of new interconnection requests. Should actually-experienced volumes of interconnection fees to ensure they remain reasonable for our customers and fully recover the utility's cost of supporting the interconnection process.

In conclusion, I am proud of the commitment Duke Energy has made since 2015 to safely and reliably interconnect more utility scale distributed generation to the grid than any other utility in the country. I am even more proud of the work ethic and commitment I witness every day from the people in the Distributed Energy Technologies organization to support the interconnection process in North Carolina.

Thank you again for the opportunity to share my perspective on the interconnection process and our commitment to its success, and I look forward to answering your questions.

2

1	MR. JIRAK: Thank you, Mr. Riggins.
2	Mr. Chairman, that concludes the summaries,
3	and the witnesses are available for questions from the
4	Commission and other parties.
5	COMMISSIONER BEATTY: IREC, cross
6	examination?
7	MS. BEATON: Yes. Thank you, Mr. Chairman.
8	Can you hear me okay?
9	CHAIRMAN FINLEY: Yes.
10	MS. BEATON: Great. My name is Laura Beaton
11	and as I mentioned earlier I represent the Interstate
12	Renewable Energy Council or IREC. I'll start with
13	questions intended for Mr. Gajda.
14	CROSS EXAMINATION BY MS. BEATON:
15	Q So hi, good morning or good afternoon.
16	A (Mr. Gajda) Good afternoon.
17	Q Mr. Gajda, in your direct testimony on pages 45
18	through 46, you discuss the concept of Good
19	Utility Practice, and do you agree that Good
20	Utility Practice requires that Duke engage with
21	other utilities or standards bodies regarding
22	appropriate interconnection technical practices?
23	A Can you hear me okay? Great.
24	So I would agree that it is

NORTH CAROLINA UTILITIES COMMISSION
2019 OFFICIAL COPY

Feb 13 2019

1 important for, in general for Good Utility 2 Practice for Duke to engage with standards bodies 3 and these sorts of organizations when there are standards that exist. I can briefly give an 4 5 example of IEEE, National Electrical Safety Code 6 committees, Southeastern Electric Exchange, as 7 examples of committees and organizations that 8 Duke has been involved in for many decades. 9 Where those organizations have standards or 10 practices that apply, it not only makes sense 11 that Good Utility Practice states that those are the sorts of things that we should be looking 12 13 for. 14 In North Carolina, the challenge has been that the types of interconnections we've 15 16 been seeing have been so unprecedented that these 17 other organizations have often not had practices 18 to look towards and in that case Good Utility 19 Practice has to utilize our internal 20 understanding of the power system as we continue 21 to engage the industry. 22 And thank you. And you discussed there engaging Q 23 with standards bodies, would you say that Good 24 Utility Practice also would require Duke talking

326

OFFICIAL COPY

Feb 13 2019

1		to other utilities about the practices they use?
2	A	Yes, I would agree when possible. There are many
3		utilities in the United States, and I think it is
4		most effective for us to engage with those other
5		utilities as part of standards bodies, for
6		example, IEEE. It's I will admit it's
7		challenging to engage directly with many, many
8		other utilities when we're able to do that. When
9		we think that there are practices that may apply
10		we certainly attempt to do that.
11	Q	And does Duke regularly engage and consult
12		with other utilities and research bodies? You
13		were explaining to me that you think you should
14		and so now I'm asking do you engage with other
15		utilities and research bodies regarding your
16		interconnection practices?
17	A	My only challenge in answering your question
18		would be what not to be coy but what the
19		definition of "regularly" is. We I guess just
20		to further expand and I think to help the
21		question is we're in a normal habit of engaging
22		in these standards bodies such as IEEE and NESC
23		and such, when we see interconnection challenges
24		as we've seen in North Carolina then at that

1		point we have to attempt to look around and see
2		where does it make sense to contact other
3		utilities that may be experiencing similar
4		things, and we have done that. Again, tough to
5		define "regularly".
6	Q	Thank you. So now I have a few questions about
7		Fast Track and Supplemental Review for you. And
8		first to make sure we're on the same page here
9		for the next set of questions, I want to make
10		sure we're on the same page about the Fast Track
11		process. So my understanding is that the Fast
12		Track process in Section 3 of the North Carolina
13		Interconnection Procedures is the process by
14		which certain smaller eligible projects go
15		through a set of technical screens to determine
16		whether that project can be interconnected safely
17		and reliability without going through the full
18		Section 4 study process; is that correct?
19	A	I'd say that's a good general characterization.
20		Yes.
21	Q	Thank you. And when a project fails the Section
22		3 when the project fails a Section 3 Fast
23		Track screen, what generally happens to the
24		project?

NORTH CAROLINA UTILITIES COMMISSION

327

1	A	So that in general, while there is flexibility
2		in the Interconnection Standards to do several
3		things the most common thing if a screen has
4		failed is for the project to be referred to the
5		Supplemental Review process.
6	Q	And Supplemental Review is where a project
7		undergoes some additional review to see if it can
8		be interconnected safely and reliably without a
9		full Section 4 study, correct?
10	A	That would be a summary description, yes.
11	Q	Thank you. And if a project fails the Fast Track
12		process and must go on to Supplemental Review, if
13		the utility determines it should go on to
14		Supplemental Review, how much time does that add
15		to the process for the customer?
16	A	It's very hard to say. That's very project
17		specific. In many cases if a single screen is
18		failed in the Fast Track process it will move to
19		Supplemental Review and it again, very hard to
20		give you a number. It's very relatively project
21		specific.
22	Q	And trying to find some number we can point to,
23		would you say that under the procedures it may
24		take 35 to 45 days if the maximum time allowed

Г

NORTH CAROLINA UTILITIES COMMISSION

328

1		under the procedures is followed?
2	A	That would be the time under the procedures which
3		encompass a number of things. The actual
4		physical time to study the project under
5		Supplemental Review, assuming you had every bit
6		of information in front of you and an engineer
7		was completely engaged hour-by-hour, would
8		typically be significantly less than that.
9	Q	And you don't have any idea of what the average
10		time is for a project undergoing Supplemental
11		Review.
12	A	I don't specifically in front of me, no.
13	Q	Okay. So if a project fails Fast Track and must
14		go on to Supplemental Review does it cost the
15		customer more money?
16	A	Yes. The Supplemental Review process is designed
17		to capture the additional cost of the, the
18		additional time it expended; that's correct.
19	Q	And if fewer projects moved to Supplemental
20		Review, if more could appropriately pass Fast
21		Track, would Duke have more staff time and
22		resources available for study of other projects
23		or other aspects of the interconnection process?
24	A	Do you mind asking that question one more time?

1	Q	Let me try and ask it in a different way. If
2		Duke engineers weren't performing Supplemental
3		Review of projects that hypothetically didn't
4		need it, would those engineers have more time to
5		do other things?
6	A	That's a very difficult question to answer. The
7		way you ask it, the obvious answer perhaps you're
8		looking for is theoretically yes. I would say
9		that the premise of the question is a little
10		tough because it gets into whether or not there
11		is a need for that project to be looked at, which
12		is kind of the whole point of the part of the
13		Fast Track screens.
14	Q	And, currently, my understanding is that most
15		projects that go through the Fast Track process
16		with Duke fail the Fast Track process. Around
17		98 percent do not pass a Fast Track screen; is
18		that correct?
19	A	I believe that's correct.
20	Q	But my understanding is also that almost all of
21		these projects that fail Fast Track pass that
22		go on to Supplemental Review do pass Supplemental
23		Review; is that correct?
24	A	That is my understanding, yes.

1	Q	Great. And, Mr. Gajda, currently when a customer
2		goes on to Supplemental Review, do they know what
3		technical analysis Duke is going to perform as
4		part of the Supplemental Review process?
5	A	Do they know I'm sorry. Let me ask you a
6		question for clarification. Are you asking if
7		they know, prior to us entering Supplemental
8		Review, if they know what analyses we're going to
9		perform?
10	Q	Or what the menu of analyses is. Do they have
11		any idea of what analysis Duke will perform
12		during Supplemental Review?
13	A	Yeah. The current Supplemental Review process is
14		designed to be very flexible. Our general
15		assumption has been that customers are interested
16		in interconnection, they're not interested so
17		much in the technical analyses and so so,
18		therefore, we proceed through the Supplemental
19		Review certainly happy to describe anything the
20		customer may be curious about. But, in general,
21		somebody interconnecting 100 kilowatts on a roof
22		is probably not interested in some of the deep
23		electrical analyses. That's kind of our
24		assumption going in. The flexibility of the

Г

1		procedure allows us to perform really the minimum
2		amount of analyses necessary to assure that it
3		can be interconnected safely and reliably.
4	Q	So in some of the responses to IREC's data
5		requests and in your testimony, you described
6		some of the screens that might be applied in the
7		supplemental in Duke's current Supplemental
8		Review process; is that correct?
9	A	I believe that's correct, yes.
10	Q	And is there any way for a customer to also
11		access that information to get a preview of what
12		the technical analysis might be?
13	A	Again, not currently because of the nature of how
14		the Supplemental Review process is structured.
15		And again, our assumption is customers are
16		interested ultimately in interconnecting in a
17		reasonable period of time. So no there is not a
18		preset list and we believe that's a benefit
19		because we wouldn't want there to be a preset
20		list. We'd want to be able to perform the
21		minimum that's required.
22	Q	Understood. But have you considered that
23		projects might be better designed to avoid
24		impacts if interconnection customers could better

M9 OFFICIAL COPY

Feb 13 2019

1 understand the standards and screens that they 2 would need to meet to pass Supplemental Review, 3 even if they understand that not all of them may be applied, but the customers would have a 4 5 preview of what review would be applied? 6 That -- in all fairness and with respect that Α 7 sounds reasonable. I think we believe in actual 8 practice that we believe that that's not 9 necessarily the case. Because often times a 10 customer may not by aware of -- understandably 11 aware of the nature of the internals of the 12 utility system and whether or not there's a 13 particular type of voltage regulator in a certain 14 place or a certain size wire, but that wouldn't 15 necessarily in many cases provide a lot of life 16 for them. And furthermore, most Fast Track 17 interconnections, most are by customers who are 18 not selecting a site because they are already a 19 retail customer at a specific location. 20 Q And as we discussed and you confirmed, Duke has 21 provided a list of screens it may typically use 22 for Supplemental Review, has provided that as 23 part of this proceeding. Is Duke opposed to 24 making public that list that it currently uses so

334

1		interconnection customers could access it if they
2		wanted to?
3	A	Duke's not interested in keeping anything secret.
4		I think the only hesitation in providing that
5		would be that as soon as we provide that list
6		there is the possibility that it could change.
7		We would and this has already occurred. We
8		you know we find over time efficiencies and
9		certain things that at one time maybe we thought
10		needed studied and now they don't. And so as
11		soon as we provided something like that we
12		would there could be a chance that it would
13		change and I think that's a lot of work and a lot
14		of time and not necessarily a lot of customer
15		benefit.
16	Q	Thank you. So now I'm going to ask you some
17		questions about Duke's application of Screen
18		3.2.1.2, otherwise known as the 15 percent of
19		peak load Fast Track screen. And is it correct
20		that most projects that fail Fast Track in Duke's
21		territory do so because they fail that 15 percent
22		of peak load screen?
23	A	It's my understanding that that is. That's one
24		of the most common, yes.

1	Q	And is it your position that Duke's
2		interpretation of line section in its application
3		of the 15 percent of peak load screen is the only
4		way to maintain safety and reliability on Duke's
5		system?
6	A	We believe that our interpretation of line
7		section is consistent with the way line section
8		is described in terms of its definition. The
9		challenge with the screens is that the screens
10		themselves are the screens. We can't change the
11		screens. We can't come up with different screens
12		to insert in the Interconnections Standards.
13		They're already there so we operate with those
14		screens as they are. So to the degree that the
15		screen provides value in getting visibility down
16		at that area of the of how we interpret line
17		section. Yes. I mean, yes, we do believe that
18		that our interpretation of line section provides
19		a valuable flagging mechanism for potential
20		impacts.
21	Q	And do you believe there are other appropriate
22		or let's not use the word appropriate. Do you
23		believe that there are other possible
24		interpretations of line section than the one that

1

Duke currently uses?

2 Well, clearly through all of the testimony and Α 3 back and forth, there are other interpretations of line section, and this has been discussed 4 5 extensively in this proceeding. We're aware of 6 that. And Duke has maintained this because, I 7 think for probably two primary reasons, one is 8 electrically, and we had discussions within our 9 own engineering team talking about early on about 10 the fact that should line section be one thing, 11 should it be another, and the way that we 12 currently interpret it is meets with the exact 13 nature of the words involved. They talk about 14 protective devices. And so we stuck with a definition that in our understanding met with the 15 16 definition that was in the Standards. And we 17 also really remained with that definition because 18 the other interpretations of line section which go to subsections of circuit, subsections of 19 20 feeders, those -- there was really nothing 21 electrically different between that and the 22 various relatively smaller definition of line 23 section that we currently utilize. So because 24 there is nothing electrically different and our

understanding of the testimony of kind of back and forth between IREC and other parties we don't believe that that's actually been challenged, what we just see is that the interpretation is sometimes different. But, again, we have chosen to interpret it as we believe it's strictly defined and as we believe it's electrically consistent with physics. Okay. And, you know, as you've mentioned the record indicates that in other states other definitions of line section may be applied and it's -- in other states there's evidence in the record that it's still common for projects to pass the 15 percent of peak load screen. Have you or anyone else at Duke attempted to learn how other utilities may be applying the screen or the

17 definition of line section in light of these 18 distinctively different passage rates? 19 So I think this is an active area of interest for А 20 Duke, and I say this very honestly because this 21 came up -- because of the fact that the bulk of 22 our interconnection as we know have been more 23 utility scale and not so much net metering. 24 There's still a significant quantity but not so

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Q

1 much as perhaps in California, et cetera. This 2 has been a growing area of interest that I think 3 has really grown around our interconnection stakeholder process. We've described in 4 5 testimony that we are very interested in fresh 6 looks at these screens. Our understanding is 7 that this particular screen really goes all the 8 way back to California, Rule 21 in the 1990's. 9 Physics doesn't change our understanding of how 10 things work on the system, perhaps adapts and 11 improves. So we really support a fresh look at 12 the screen and I think that's become evident 13 during the stakeholder process. The timing of 14 everything and a lot of where our efforts have 15 been focused have not allowed us to really deeply 16 look and consider whether a different 17 interpretation makes sense, at least between 18 stakeholder process of today. 19 But you're saying that as of today, as of right Q 20 now, Duke is opening -- is open to reviewing its 21 application of the screen and seeking perhaps an 22 outside review?

A Well, I believe we stated this in testimony thatwe're interested in a review of the screens for

NORTH CAROLINA UTILITIES COMMISSION

338

OFFICIAL COPY

Feb 13 2019

OFFICIAL COPY

Feb 13 2019

1		the sake of North Carolina, and you know,
2		we're interpreting the screen as we see it
3		currently standing. We think that that is the
4		way it currently sits is a valuable
5		interpretation and that may very well continue to
6		be that. And I don't think that the stakeholder
7		process, the way it was structured, allowed for
8		an in-depth technical analysis of the screens. I
9		think there were various parties that came
10		forward, but it didn't allow for an in-depth
11		technical analysis and national comparisons and
12		these sorts of things. So we stand by the screen
13		as it's currently done today but certainly we're
14		always willing to learn what's happening in other
15		jurisdictions.
16	Q	And
17	A	(Mr. Freeman) Well, can I jump in?
18	Q	Absolutely.
19	A	You asked the question about have we had
20		conversations with other utilities or even
21		consultants on what other states are
22		experiencing. This isn't directly around Fast
23		Track screens. But I'd like to share that we've
24		had conversations with at least one consultant

1 who has been working with Hawaii. So Hawaii is 2 in a much similar state as Duke but in a 3 different way. Hawaii has connected up - gosh, I've lost track as to how many rooftop facilities 4 5 they've connected up - but probably three years 6 ago it was 70,000. I'm sure they're way in 7 excess over 100,000 now. And under the small, 8 kind of under 20kW, I'll call it not screen but 9 process, they've realized that they've connected 10 up a tremendous amount of rooftop facilities to 11 individual homes and they're now seeing even that 12 the aggregate amount of rooftop solar is causing 13 voltage issues even at the service transformer, 14 at the service line, and they're starting to see 15 that they've got to make -- they've got to --16 they're now doing, it's not full system impact 17 studies but it is a combination of study to 18 understand the impact of large amounts of 19 penetration at that level. So we are having 20 conversations with other utilities. And there's 21 an example where they're much -- very similar to 22 us in terms of they've got an extremely high 23 penetration, different because it it's rooftop, 24 where ours is mostly larger scale.

NORTH CAROLINA UTILITIES COMMISSION

340

Feb 13 2019

OFFICIAL COPY

1	Q	Thank you. Mr. Gajda, I think those are all the
2		questions I had specifically directed at you.
3		And now Mr. Riggins I'd like to
4		ask you some questions about transparency into
5		Duke's implementation of the interconnection
6		process. So my first question is does Duke track
7		its work as it processes applications through
8		each step of the procedures?
9	A	(Mr. Riggins) Yes.
10	Q	Great. And so in your rebuttal testimony at page
11		21 and, if you want to look the it, lines 5
12		through 15. I'll let you open it up.
13	A	Tell me which page.
14	Q	Page 21, lines 5 through 15.
15	A	Okay.
16	Q	And there you say it would be burdensome for Duke
17		to provide more detailed reporting on how it
18		meets different interconnection process timelines
19		than it does right now: is that correct?
20	ک	To the degree that it was spelled out in the
20	А	which it a in wown to stimony that is some at We
Ζ⊥		exhibits in your testimony, that is correct. We
22		thought it would be overly burdensome to provide
23		all of that level of detail.
24	Q	And is it true that Duke already tracks

1 completion of many of the milestones through the 2 interconnection process, even some of those that 3 were listed in IREC's requested reporting requirements? 4 5 Α Certainly we track a lot of the data points that 6 were listed. Others would require further 7 investment in our sales force application to be 8 able to track on that level of detail. We're 9 already publishing a queue report updated two times per month that provides the status of 10 11 projects. And to be honest some of the data that 12 we found in the exhibit we also thought would be 13 commercially sensitive and shouldn't be 14 published; things such as cost. So much of that 15 information that was listed is provided directly 16 to customers in the forms of emails and other 17 communications as we update individual projects 18 on their status. So we feel like there's a 19 certain information that should be provided in 20 that manner and other information that should be 21 provided much like we do today in our queue 22 reports. 23 MR. JIRAK: Mr. Riggins, just a reminder, if 24 you could you pull that mic a little closer to you --

NORTH CAROLINA UTILITIES COMMISSION

342

OFFICIAL COPY

Feb 13 2019

343

1	THE WITNESS: (Mr. Riggins) Okay.
2	MR. JIRAK: so the Commissioners can hear
3	you a little better.
4	CHAIRMAN FINLEY: Pull that black one
5	around, too, so you can talk into both of them.
6	THE WITNESS: (Mr. Riggins) Okay.
7	MR. JIRAK: Thank you.
8	COMMISSIONER GRAY: Thank you.
9	BY MS. BEATON:
10	Q And do you agree or disagree that providing more
11	detail on Duke's compliance with certain
12	milestones for projects under the procedures
13	would be informative to the Commission and other
14	stakeholders, other than the individual
15	interconnection customer that the project is
16	relative to, would be informative to the
17	Commission and other stakeholders on how the
18	process is going? How the whole procedures are
19	working.
20	A Certainly informative. There's certain
21	information that we already provide in the
22	performance reports that we provide to this
23	Commission and that should give some indication
24	as to how the process is working. There's also a

1		balance we believe in terms of how much effort
2		and time and money we want to spend on reporting.
3		And certainly that would detract away from the
4		resources we have focused on completing studies.
5		So we believe that we provide an adequate balance
6		on reporting and at the same time doing the work
7		that we're trying to be diligently completing.
8	Q	And in Duke's and if you don't have a copy I
9		can pass it to you but in Duke's response to
10		IREC's Data Request 1-4 do you have that or do
11		you need a copy? It's attached as Exhibit 8 to
12		Sara Baldwin Auck's direct testimony as well.
13	A	I have some of them but if you have it, it may be
14		more efficient.
15	Q	Yes, I have copies here. I'm going to provide
16		you with a copy. And this is already in the
17		record but for everyone's convenience it's
18		easier.
19		MR. BREITSCHWERDT: Thank you.
20	BY M	S. BEATON:
21	Q	So I'm going to ask you a question related to
22		Duke's response 1-4f. It's on the third page of
23		this little handout. And this is a list of all
24		the data points that the Duke Companies are

1		currently tracking as part of its interconnection
2		process. And my question is would it be so
3		burdensome to provide this information publicly
4		as part of the queue report since it's already
5		being tracked?
6	A	So in our response on Part F we identified that
7		a there are a number of data points that are
8		currently being tracked and we identified some
9		that are not.
10	Q	Correct. And I'm asking about the ones that are
11		currently being tracked that Duke already tracks.
12	A	Certainly to the degree that they're already
13		being tracked and that they're appropriate to be
14		publicly shared and posted, then I would think
15		that should be reasonable. But our biggest
16		concern again is the investment in additional
17		coding and sales force to track data points that
18		we're not tracking today. And then also to some
19		degree detracting away from the resources that we
20		have currently applying to completion of studies.
21	Q	Thank you. And now, regarding your testimony
22		about other states that have timeline enforcement
23		mechanisms in place like New York or
24		Massachusetts, do you believe utilities in other

OFFICIAL COPY

Feb 13 2019

346

1		states such as New York or Massachusetts face no
2		circumstances outside of their control when
3		complying with timelines such as customer delays?
4	A	Can you state the question again to be more
5		clear?
6	Q	Sure. Well, let me in now I'm going to
7		apologize. I don't remember if it was your
8		testimony or Mr. Freeman's testimony. In one of
9		your testimony you discussed outside forces that
10		cause delays such as interdependency or when you
11		throw the ball back into the customers court.
12		And do you believe that utilities in other states
13		that have timeline enforcement mechanisms don't
14		also encounter those same sorts of problems?
15	A	I'm not sure what they encounter in other states.
16	Q	Mr. Riggins, you note in your rebuttal testimony
17		at page 13, lines 1 through 12, that one of the
18		reasons that you think a timeline enforcement
19		mechanism would not work in North Carolina is
20		because the utilities here under the procedures
21		face having so many interdependent projects; is
22		that correct?
23	A	State the question again, please.
24	Q	Yes. You note in your testimony, page 13, lines

1		1 through 12, that one of the reasons that you
2		think a timeline enforcement mechanism would not
3		work in North Carolina is because of the number
4		of interdependent projects which extends the time
5		that it takes for a project to make it through
6		the process?
7	A	Yes.
8	Q	Is that correct?
9	A	Among other things.
10	Q	Yes. Yes, that's one, one reason. And do you
11		think it would be possible to simply create a
12		program that - a timeline enforcement program -
13		that stops the clock when a project is in a
14		waiting phase under interdependency?
15	A	I suppose it's possible but you would need to
16		also create a clock for all the other things
17		that delay projects as well, and certainly that
18		becomes administratively challenging with the
19		volume of projects that we're handling today.
20	Q	Thank you.
21		Now, Mr. Freeman, I have a few
22		questions for you. In your rebuttal testimony at
23		page 7, lines 16 through 20 - I'll let you get it
24		first - rebuttal page 7.

1	A	(Mr. Freeman) I'm there.
2	Q	Rebuttal testimony page 7, lines 16 through 20,
3		you list a number of factors that may extend a
4		project's time in the queue as we mentioned
5		earlier such as interdependency
6		and developer-requested extensions. Are you
7		familiar with all the factors you listed there?
8	A	Generally, yes.
9	Q	Thank you. And does Duke provide any sort of
10		public report on those factors you list in your
11		rebuttal testimony indicating that these delays
12		occur and how long and for how long?
13	A	I can't think where we'd provide a public report
14		on the delays. Well, specifically the time of
15		the delays, we've been I think fairly consistent
16		and clear that these are some of they types of
17		delays that we are experiencing that are beyond
18		the control of Duke.
19	Q	And do you
20	A	In fact, even in our proposed modifications we
21		are asking for at least to include some timelines
22		to potentially speed up the process of some or
23		at least speed up some of these delays that we're
24		experiencing.

1 And does Duke track those factors listed in your 0 2 rebuttal testimony? For example, does Duke note 3 when a project is paused after a developer requests an extension or files a dispute? 4 5 Α I'll have to ask Witness Riggins to expand on my 6 But as we continue to invest in sales answer. 7 force and tools -- I mean, we're trying to do a 8 better job of tracking details of the process. 9 But it's been kind of a long process to get to 10 the kind of detail that you're looking for. 11 (Mr. Riggins) We have looked at the capability Α within sales force to track tolling, I think is 12 13 the term that we would use. So during a time 14 period when the project is out of our control, 15 we're waiting on a response from someone, or 16 we're waiting on some additional information, or 17 decisions to be made, the project could be tolled 18 during that time. So there is some capability 19 within our sales force tool to do that. But I 20 would also note that with the volumes of projects 21 that we're managing today, it is difficult to 22 track every day and every activity. So there is 23 the capability and ultimately our goal would be 24 to better track that so that we can monitor and

1 to manage the projects more effectively, and the 2 timelines that are in the procedures. 3 Thank you. Q 4 Well, Mr. Chairman, I know I MS. BEATON: 5 asked for more time than this but I saw how much time 6 everyone asked for and I streamlined my questions. So 7 I have no further questions for the Duke panel. 8 CHAIRMAN FINLEY: We appreciate that very 9 much. NCSEA. 10 Thank you, Mr. Chairman. MR. LEDFORD: 11 CROSS EXAMINATION BY MR. LEDFORD: Mr. Freeman, I think I'm going to start were a 12 0 13 few questions for you just as soon as you're 14 ready. 15 I'm ready. А 16 On page 8 of your direct testimony, you point out Q 17 that Section 6.1 of the North Carolina 18 Interconnection Standard requires the utility to 19 make reasonable efforts to comply with the 20 timeframes of that with the standard. Are you 21 aware that Section 6.1 goes on to say that if the 22 utility cannot meet a deadline, it shall at its 23 earliest opportunity notify the interconnection 24 customer and explain the reason for the failure

NORTH CAROLINA UTILITIES COMMISSION

350

1		to meet the deadline, provide an estimated time
2		by which it will complete the applicable
3		procedure in the process?
4	A	Yes, I'm aware of that you know, that
5		communication, I'll call it a requirement. Yes.
6	Q	So how does Duke go about notifying an
7		interconnection customer about a delay?
8	A	Well, this has been a kind of evolving process
9		for us. We recognize that I guess early on in
10		the process I think what were you're getting
11		at is have we been diligent in notifying
12		customers every single time we're experiencing a
13		delay. I'm going to refer to Witness Riggins who
14		can probably answer the question in more detail.
15		But we are implementing a number of efficient or
16		improvements. We've had internal stakeholder
17		groups that are looking at how we can better
18		communicate with customers when we do not meet
19		those deadlines. So it's been an evolving, I'll
20		call it, process improvement process that we've
21		been going been pursuing, trying to get to
22		where we are communicating every single time with
23		every every time we meet or we miss a
24		particular deadline.

Г

19 OFFICIAL COPY

Feb 13 2019

1		I don't know if you want to add to
2		that? (Speaking to Mr. Riggins)
3	A	(Mr. Riggins) Yeah. I can expand on that. Last
4		year, around 2017, we had a customer experience
5		workshop that we conducted. I'm trying to talk
6		to them and you at the same time. So one of the
7		many things that we identified in that workshop
8		in our attempts to be more transparent, more
9		proactive; that's been one of the things that
10		we've really been focused on is in order to be
11		proactive you have to know when something is due
12		or know when a decision needs to be made. So one
13		of the other things we're doing within sales
14		force is we're creating tasks or reminders for
15		each project that tells us when something is
16		going to be due so that the appropriate account
17		manager or account specialist can take action on
18		that proactively and hold us accountable and also
19		hold our customers accountable for meeting those
20		deadlines.
21	Q	Thank you. And Section 6.1, in addition to
22		notifying of the delay, requires the utility to
23		explain the reason for the failure to meet the
24		deadline. How does Duke go about accomplishing

NORTH CAROLINA UTILITIES COMMISSION

352

1		that?
2	A	So the communications will be by email if there's
3		a communication that's sent out notifying the
4		customer of a delay. And included in that email
5		should be some explanation as to what is
6		generating the delay.
7	Q	And also pursuant to Section 6.1, does that email
8		include an estimate of when the applicable step
9		will be completed?
10	A	It will also include an estimate as to when we
11		think the step will be completed, and it's based
12		on our best reasonable guess at that point or
13		estimate at that point.
14	Q	And if the estimate is revised of when it will be
15		completed, do you provide further communications
16		to the interconnection customer?
17	A	If we establish a new timeline and we don't hit
18		that timeline, then again under reasonable
19		efforts we would communicate again what the new
20		deadline would be.
21	Q	Thank you. Switching a little bit to staffing,
22		Mr. Freeman, in your direct testimony you discuss
23		the decrease in distribution level
24		interconnection requests and an increase in

354

1		transmission level interconnection requests. And
2		then, Mr. Riggins, in your direct testimony you
3		include a chart of Duke's staffing levels for
4		interconnection. That's on page 12 of your
5		direct testimony. Would you agree that the
6		staffing levels for transmission level
7		interconnection requests have not changed since
8		2015?
9	A	(Mr. Freeman) Mr. Riggins can probably answer in
10		more detail than me. I would not agree with
11		that. We have added staffing to both the
12		distribution and transmission to manage both
13		transmission and distribution projects.
14	A	(Mr. Riggins) Yeah, I would expand on that to
15		say the transmission studies are conducted by our
16		transmission planning team. So wherein most of
17		the resources you see listed, those are dedicated
18		resources. And in the transmission instance you
19		see that I talk about FTEs, or full-time
20		equivalents. So over that period of time it's
21		our best estimate as to what was allocated. But
22		I'm confident that they have the resources in
23		place to study the projects that are presented to
24		them.

1	Q	So, Mr. Riggins, in Figure 1 of your direct
2		testimony on page 12, the third to the bottom
3		line, transmission study planners; would you
4		agree that it says 7 under January 1, 2015, 7
5		under January 1, 2017, and 7 under September 1,
6		2018?
7	A	I would agree.
8	Q	And you're also saying that the staffing level
9		has increased in that time?
10	A	I didn't say it increased. These are the
11		full-time equivalents that I believe have been
12		allocated to do studies, and we continue to
13		monitor the number of studies that we have, the
14		workload and adjust the number of planning
15		engineers actually conducting the studies at that
16		time. So this number was based on my interaction
17		with the planning team manager and trying to
18		estimate how many resources could be allocated to
19		those projects. As the volume increases,
20		certainly the number of those people working more
21		full-time on those studies increases.
22	A	(Mr. Freeman) Well, let me clarify when I said
23		that we have increased staffing, the Transmission
24		Planning Group does use external consultants, and

355

OFFICIAL COPY

Feb 13 2019

1as I understand they're using them on a m2regular basis. Also, that 7, I think rep	more
2 regular basis. Also, that 7, I think rep	
	presents
3 the transmission planners involved in thi	is.
4 Within our organization we've continued t	to add
5 staffing and some of that staffing is ded	dicated
6 more to the transmission interconnection	process
7 than to the distribution process. I just	t wanted
8 to clarify that I did not misrepresent wh	hen I
9 said that we have added increased staffin	ng. And
10 also when you get to construction staffin	ng, field
11 engineers that do work, I mean, the study	y process
12 does not take into account that at all.	But as
13 we're seeing an increase in the number of	f
14 transmission projects interconnecting whi	ich
15 you I would think you would recognize	that we
16 are seeing more and more transmission pro	ojects
17 connecting up and are actually operating,	, it's
18 taken a tremendous number of engineering	
19 resources, field engineer resources and	
20 construction resources to accommodate the	ose
21 projects.	
22 Q Thank you, Mr. Freeman. Sticking with yo	ou but
23 switching to your rebuttal testimony. Or	n page 15
24 of your rebuttal testimony you discuss ho	ow as the

System Impact Study process has evolved, Duke has introduced various practices such as mitigation options, developer-requested extensions, cure periods, and informal information requests and challenges. Can you point me towards where in the redline of the Interconnection Standard that was included in the Duke and Public Staff Settlement Agreement the mitigation options and cure periods are incorporated into the language? I'm sorry. I was trying to get to the page you

12 Q I'm sorry.

were referencing --

1

2

3

4

5

6

7

8

9

10

11

Α

13 -- and I was partly listening to your question Α 14 and partly searching for where you were going to 15 reference. So could you repeat your question? 16 Certainly. You discuss mitigation options and Q 17 cure periods in your rebuttal testimony. Are 18 those incorporated into the redline of the 19 Interconnection Standard that's attached to the 20 Duke/Public Staff Settlement Agreement? 21 I'm not as familiar with all of the redlines that Α 22 were included in the Interconnection Standards. 23 I'm going to -- I'll refer the question to either 24 Witness Gajda or Witness Riggins, but I believe

NORTH CAROLINA UTILITIES COMMISSION

OFFICIAL COPY

Feb 13 2019

1		we have asked for cure periods. I mean, we've
2		been trying informally to use cure periods that
3		when a particular project gets to a point where
4		we've asked for information, for example, and we
5		haven't gotten that information, we'll send kind
6		of one last request for that information and
7		we'll provide them with like, for example,
8		another 10 days to respond and cure before we
9		would either withdraw a project or whatever. So
10		I think the answer is yes we are trying to
11		formalize that process more than we have
12		historically.
13	A	(Mr. Riggins) I can speak to mitigation options a
14		bit. Clearly, they're not in the Interconnection
15		Procedures but they're part of the System Impact
16		Study process that's taking place and were put in
17		place I guess in response to some of
18		the policies, some of the work we did around
19		reliability and power quality, which is
20		Mr. Gajda's area of expertise. So it was an
21		effort to try to be accommodating and to find
22		options that would allow interconnection of
23		projects of certain sizes, hence the mitigation
24		options, as opposed to just studying them at the

1 size that was presented. In many cases the 2 answer would have been that if they were to connect they would have to go to a transmission 3 interconnection which would be much more costly. 4 5 So we implemented those in response in an attempt 6 to be more accommodating to the developers and to 7 the customers. 8 And to be clear NCSEA supports the mitigation Q 9 options and the cure period. But what recourse would an interconnection customer have if Duke 10 11 were to stop offering mitigation options and cure 12 periods given that they're not memorialized in 13 the redline. 14 (Mr. Freeman) I would think that would become Α 15 potentially kind of a question for our legal 16 support on what would be the appropriate process 17 to go through looking at mitigation options. 18 But -- I mean, we have been accommodating with 19 those. I mean, if you look around the country, 20 if you look at even the North Carolina Standards, 21 I mean they're -- your interconnection request is 22 studied. And the more we offer mitigation 23 options the more it does impact other projects 24 and it does kind of extend the process out. Ι

119 OFFICIAL COPY

Feb 13 2019

1 think at this point it's fair to say that at 2 least in the foreseeable future we do not have a 3 plan to not offer the mitigation options. And again, I think it's an attempt to try and 4 5 accommodate as many projects as we can. 6 Α (Mr. Riggins) I would also add, though, that I 7 think mitigation options and cure periods go 8 hand-in-hand. Right. So we want to continue to offer mitigation options but there has to be 9 10 an ability to put a deadline and to require a 11 project to make a decision so that we can process 12 through the queue. So I think it's important that we do both of those things. 13 14 Q Thank you. 15 MR. LEDFORD: Switching gears, Mr. Chairman, I'd like to pass out an exhibit. Mr. Chairman, I'd 16 17 ask that the exhibit be marked as NCSEA Duke Cross 18 Exhibit Number 1. 19 CHAIRMAN FINLEY: It shall be so marked. 20 (WHEREUPON, NCSEA Duke Cross 21 Exhibit 1 is marked for 22 identification.) 23 BY MR. LEDFORD: 24 Mr. Gajda, I believe these next questions are Ο
1		going to be directed towards you.
2	A	(Mr. Gajda) Very well.
3	Q	Duke introduced its Circuit Stiffness Review in
4		July of 2016; is that correct?
5	A	I believe that's correct.
6	Q	And duke applied the screen to all
7		interconnection customers in the queue who had
8		not yet signed an Interconnection Agreement; is
9		that correct?
10	A	That sounds correct.
11	Q	And, in essence, under the July 2016 version of
12		the Circuit Stiffness Review, if the stiffness at
13		the point of interconnection of a generating
14		facility was too low, the generating facility
15		needed to reduce its capacity in order to
16		interconnect; is that correct?
17	A	That would be a mitigation option.
18	Q	Were other options available?
19	A	Well yes, I mean we're required to study the
20		project at its level. So the implementation of
21		an evaluation of stiffness ratio was a screen by
22		which we realized that we had concerns for
23		stiffness ratios below that number which means
24		that then an advanced study, which we eventually

9 OFFICIAL COPY

Feb 13 2019

1		developed, needed to be formed in order to
2		advance the interconnection at that size.
3	Q	So prior to the creation of the advanced study
4		what happened if a stiffness factor was too low?
5	A	There was not an extensive period of time that
6		went from the establishment of that. As you're
7		probably well aware, there was a period of time
8		in which we had to decide what that advanced
9		study would be. We had we felt a sufficient
10		number of evidence from events that occurred on
11		the system to be concerned for low stiffness
12		interconnections and we knew that the System
13		Impact Study process and the studies that it
14		described would not necessarily sufficiently
15		capture all of the power quality reliability
16		impacts that would occur for low stiffness
17		interconnections so, therefore, we proceeded to
18		developed that.
19	Q	So that advanced study process that was
20		developed, that was a part of the November 2016
21		CSR revisions; is that correct?
22	A	That sounds correct.
23	Q	And so in your opinion was the July 2016 version
24		of Circuit Stiffness Review a Good Utility

1 Practice? 2 I'll state that I believe everything we've done А 3 with Circuit Stiffness Review was Good Utility Practice. It has evolved and so that's -- I know 4 5 you're referencing versions appropriately, and it 6 has evolved through the process. I would 7 reference it all as Good Utility Practice under 8 the circumstances that we've been experiencing. 9 And how has the CSR screen evolved since the Q November 2016 revision? 10 11 Α So it was a -- it began as I described just a 12 minute ago. And again our -- we recognized the 13 need to perform additional studies to properly 14 capture the impacts for low stiffness 15 interconnections so we set about doing that and 16 part of that was done in conjunction with the 17 industry, with the developer industry. We ended 18 up creating that advanced study and began to 19 implement that advanced study I -- if memory 20 serves in early 2017. I believe we began to 21 implement the advanced study and then as the 22 advanced study was performed for those low 23 stiffness interconnections we have proceeded 24 since then doing that advanced study when the

1 stiffness ratio was determined to be low. And, 2 if the advanced study were to flag that, there 3 will be a potential issue around, mostly around harmonics is what we're interested in, but then 4 5 we would proceed to discuss with the developer 6 ways to mitigate that issue. 7 The only further development that 8 I immediately recall with Circuit Stiffness is 9 that as we spent more time doing this advanced study, which to our knowledge was a type of study 10 11 that had not yet been done across the entire 12 utility industry because we were one of the first ones to discover some of the issues and concerns 13 14 that we were finding, we evolved that kind of I 15 would say one iteration further. And as we 16 discovered that even some interconnections that 17 were above this stiffness ratio of 25 could still 18 potentially be of impact. And so we realized 19 that really utility scale interconnections that 20 had significant amounts of transformation, 21 transformers at the site, would really -- needed 22 to be evaluated for the impact of harmonics and 23 rapid voltage change. And at that time since we 24 had gotten a lot of practice doing those types of

	studies, it was a logical next step to assure
	that we didn't just stay kind of with our
	blinders on and stay with this original
	implementation and then risk having par quality
	impacts where we might miss them. So then we
	ultimately proceeded to doing those evaluations
	for most facilities over a megawatt I believe.
Q	So how is the circuit stiffness ratio/Circuit
	Stiffness Review used today?
A	So we proceed to calculate Circuit Stiffness
	Review excuse me, circuit stiffness ratio
	and because we've been calculating it and we
	believe that from a really long-term perspective
	it's a basic power system credo, that installing
	generators at stiff areas of the grid is much
	better than installing them in weak areas of the
	grid. So we proceed to calculate the stiffness
	ratio today and but we do not use it as a
	trigger for advanced study instead we use the
	trigger that I mentioned a minute ago.
Q	Thank you. So just to be clear, it's your
	position that the July 2016 version of CSR, the
	November 2016 version of CSR, and the current
	version of CSR are all Good Utility Practice?
	Q A Q

1	A	That's correct.
2	Q	Okay. Thank you. Mr. Gajda, you talked about
3		power quality issues that prompted CSR.
4	A	Yes.
5	Q	Duke rolled after excuse me. After Duke
6		rolled out the July 2016 version of CSR, the
7		Company also entered into a Settlement Agreement
8		with a number of solar developers; is that
9		correct?
10	A	That's correct.
11	Q	And the Settlement was filed with the Commission
12		which prompted the Commission to issue an Order
13		requesting responses to questions; is that
14		correct?
15	A	That sounds correct.
16	Q	Are you familiar with Duke's September 22, 2016,
17		filing in response to those questions?
18	A	I believe yes, I believe I know which one
19		you're speaking of.
20	Q	Subject to check, would you agree that Duke's
21		filing discusses power quality impacts at a
22		Campbell Soup facility that Duke attributes to a
23		nearby solar facility?
24	A	Yes, it does.

Г

367

1	Q	And that nearby solar facility was owned by
2		Strata Solar?
3	A	That's my understanding, yes.
4	Q	And are you familiar with Strata Solar's filing
5		in response to those same Commission questions?
6	A	I'm not sure if I have immediate recollection on
7		that.
8	Q	Well, subject to check, would you agree that
9		Strata's comments noted that the Circuit
10		Stiffness Review would not have identified the
11		issue that led to the power quality impacts?
12	A	Subject I'm sorry. Repeat your question
13		again. Subject to check
14	Q	Would you
15		MR. JIRAK: If I could, if you'd like to
16	ques	tion the witness on a document with which he's not
17	fami	liar, I'd request that you provide a copy of the
18	docu	ment to him.
19		MR. LEDFORD: May I approach?
20		CHAIRMAN FINLEY: Sure.
21		MR. JIRAK: If possible, we would like to
22	see	a copy as well so we can get some context for the
23	ques	tions.
24		MR. LEDFORD: Mr. Chairman, this is all in

1	the record since the last revision. I only have my
2	own copy.
3	MR. BREITSCHWERDT: Can we at least see it
4	before the witness?
5	CHAIRMAN FINLEY: Go up and take a look and
6	ask him the question. Counsel, go take a look at the
7	paper that he's looking at. And, counsel, you ask the
8	question.
9	(WHEREUPON, Mr. Breitschwerdt
10	reviewed the document from the
11	witness stand.)
12	MR. BREITSCHWERDT: Mr. Chairman, let the
13	record reflect that these appear to be comments filed
14	by Strata Solar in the docket on September 22, 2016,
15	with some notes that Mr. Ledford has included, along
16	with some highlighting.
17	CHAIRMAN FINLEY: I think that's what he
18	identified. Let's get on with it.
19	BY MR. LEDFORD:
20	Q Would you agree that in those comments, and you
21	can look at the areas that I highlit, that Strata
22	Solar says the Circuit Stiffness Review would not
23	have identified these problems?
24	A I see that statement you highlighted here.

Г

1	Q	Thank you. Subject to check, would you also
2		agree that Duke's September 22, 2016 filing
3		discusses power quality impacts at a Fidelity
4		Bank that Duke had not resolved, but Duke had
5		acquired a nearby solar facility owned by O2 emc
6		to install power quality monitoring equipment?
7	A	Yes, I recall I recall we had a potential
8		report of a power quality issue and that and,
9		yes, that's correct. We ended up there wasn't
10		a resolution on that event.
11	Q	And much like Strata Solar would you, subject to
12		check, agree that O2 emc made a filing in
13		response to the Commission's questions as well?
14	A	Again, I don't track all filings so I'll have to
15		take your word for that.
16	Q	Well, subject to check, and it's also tabbed in
17		orange there, would you agree that O2 emc said
18		that the power quality issues at the bank existed
19		prior to the construction of the solar facility?
20	A	I see the statement.
21	Q	Thank you. Would you also agree that the Public
22		Staff's filing also in response to the same
23		Commission questions noted that the Public Staff
24		had not received any complaints related to power

369

1	quality?
2	A I'll take your word for that.
3	Q Thank you.
4	MR. LEDFORD: Mr. Chairman, at this time I
5	would like to pass out another exhibit.
6	CHAIRMAN FINLEY: Go right ahead. I'll tell
7	you what, let's take our afternoon break, Mr. Ledford,
8	while you're passing that out. We'll come back at
9	five minutes til 4:00, five minutes til 4:00. We're
10	going to go to 5:30 this afternoon. 3:55.
11	(Recess began at 3:40 p.m., until 3:55 p.m.)
12	CHAIRMAN FINLEY: Let's come back on the
13	record. Mr. Ledford.
14	MR. LEDFORD: Thank you, Mr. Chairman.
15	Mr. Chairman, during the break I passed out an
16	exhibit. I'd ask that it be marked as NCSEA Duke
17	Cross Exhibit 2.
18	CHAIRMAN FINLEY: It shall be so marked.
19	MR. LEDFORD: Thank you.
20	(WHEREUPON, NCSEA Duke Cross
21	Exhibit 2 is marked for
22	identification.)
23	BY MR. LEDFORD:
24	Q Mr. Gajda, on page 50 of your direct testimony

1		you state that Duke's excuse me, you state
2		that it is the Companies' sole and complete
3		accountability and responsibility for the safety,
4		reliability, and power quality of the grid. Is
5		that an accurate reading?
6		MR. JIRAK: It's line 6.
7	A	Thank you. Yes, I see it here. Yes, it is.
8	BY M	R. LEDFORD:
9	Q	All right. And turning to NCSEA Duke Cross
10		Exhibit 2, would you mind turning to page 12230?
1 1		
ΤΤ		I apologize for the weird humbering. But it's
12		towards the back, a few pages from the back.
13	А	I'm on that page.
14	Q	And could you read for us the first full
15		paragraph that begins with several commenters
16		expressed?
17	A	Several commenters expressed their concern that
18		some protection should be provided to qualifying
19		facilities from potential harassment by utilities
20		in the form of requiring unnecessary safety
21		equipment. As discussed above, the State
22		regulatory authorities with respect to electric
23		utilities over which they have ratemaking
24		authority and nonregulated electric utilities

1		have the responsibility and authority to ensure
2		that the interconnection requirements are
3		reasonable, and that associated costs are
4		legitimately incurred.
5	Q	Thank you. So in the case of the O2 emc Fidelity
6		Bank issue that we discussed right before the
7		break, the cause of those power quality concerns
8		have not been resolved, but the QF wasn't
9		required to install safety equipment; is that
10		correct?
11	A	The QF was required to install safety equipment
12		as I recall as an overall part of the Settlement
13		Agreement if I'm not incorrect.
14	Q	But that was a part of the filing as well, the
15		Duke filing, excuse me.
16	A	Yeah, there were many power quality events
17		listed. That was one of them but it was probably
18		a small one but, yes, it was in there, but it was
19		one of many.
20	Q	So can you please explain to me how the QF being
21		required to install safety equipment when the
22		cause of the power quality issue had not been
23		determined complies with FERC Order 69?
24	A	The events that occurred the O2 facility in

372

Feb 13 2019 OFFICIAL COPY

1 question I believe is a 20-megawatt facility. 2 And there was no question once we dug into the 3 Campbell Soup issue, which was also related to a 20-megawatt facility, that we really started to 4 5 question at a higher level appropriate size of 6 facilities and the range of potential impacts 7 they could have on a system. So really from a 8 more global perspective we realized that it was 9 just from a utility perspective common sense and 10 responsibility under our exercise of Good Utility 11 Practice that necessitated the -- a requirement 12 for power quality meters which, by the way a 13 number of other utilities require power quality 14 meters at interconnections. We really believe 15 that to be an extremely responsible requirement 16 for solar farms especially at that size. 17 Thank you. Let's stick with Good Utility Q 18 Practice for a minute. And is it fair to say 19 that in your direct testimony you state your 20 disagreement with NCSEA's discussion of 21 Commission oversight of Good Utility Practice? 22 I'll probably have to go right to that in order Α 23 to --24 Page 55 if it helps. Q

1	A	Page 55 of my direct testimony?
2	Q	Correct, starting on line 10.
3	A	Yes, I see the statement. Yes, I see a statement
4		that the can I read the single sentence?
5	Q	Yes.
6	A	Therefore, the Companies fundamentally disagree
7		with NCSEA's contention that anyone other than
8		the Companies, under the Commission's oversight,
9		should have final decision-making power or veto
10		rights over the determination of Good Utility
11		Practice and the implementation of a proposed
12		technical standard.
13	Q	And so in your opinion does the Commission have
14		the authority to quote, veto Duke's determination
15		of Good Utility Practice?
16	A	Yeah, I don't yes, I don't the Commission's
17		authority isn't under question, whether you call
18		it a veto or a determination, but the Commission
19		maintains authority here.
20	Q	I believe "veto rights" was the phrase you used
21		so I'm paraphrasing your words.
22	A	Okay, very well.
23	Q	According to NCSEA Duke Cross Exhibit 1 that was
24		passed out a little while ago, Duke has

2019 OFFICIAL COPY

Feb 13 2019

375

1 introduced nine new screens since May of 2015. 2 Could you please explain to me the oversight that 3 the Commission has had for each of these screens? 4 А Well, so I guess the way that I will attempt to 5 answer your question is that it's our 6 understanding that again the Commission has 7 oversight, general oversight under the utilities' cost of service and quality of service and the 8 9 Commission has established rules such as one that's -- one that I'm well familiar with is 10 11 R8-17 under voltage delivered to customers. The 12 Commission has established rules that are related 13 to either cost or quality of service. The 14 example I gave is quality of service, and so that the Commission's exercise of its authority has 15 16 often been around the customer's direct 17 experience. So when you ask about the 18 Commission's authority with respect to, I think 19 you mentioned nine different screens, these 20 are -- these nine different screens you mentioned 21 are essentially, what other term I can come up 22 with them, are engineering guidelines by which we 23 operate the system to assure -- operate and plan 24 the system to assure that our customers still see

1		that same voltage and whatever other direct
2		customer experience requirements the Commission
3		has put forth rules on.
4	Q	So not to I'm not disputing Duke's obligation
5		to maintain service quality but let's stick with
6		those screens. How does Duke share information
7		about those screens with potential
8		interconnection customers?
9	A	Yeah, so as we started seeing those large numbers
10		of interconnections, it's I believe been
11		well-established in testimony that we held a
12		number of stakeholder meetings to share that
13		information with the development community, and
14		that was the really the only effective way
15		that we knew at the time to do that and so we
16		proceeded to do that on a number of occasions.
17		More recently we were very interested in
18		establishing a Technical Standards Review Group,
19		and we believe that to be very likely the most
20		effective method for sharing those types of
21		that type of technical information and having
22		those types of technical discussions going
23		forward.
24	Q	Thank you for that explanation, but I've got a

377

1		couple of non-technical questions. Duke uses the
2		location of line voltage regulators as an
3		interconnection screen; is that correct?
4	A	Yes, that's an item within our Method of Service
5		Guidelines. Yes.
6	Q	And how does Duke share information about
7		the location of line voltage regulators with
8		interconnection customers?
9	A	Witness Riggins may or may not have immediate
10		recollection on this. That I believe there is
11		some information that is shared on that in a
12		pre-application report I believe.
13	A	(Mr. Riggins) Yeah, at a minimum the existing
14		line voltage regulators are detailed in those
15		reports and information we can provide. To some
16		degree some of the planned regulators might not
17		be defined because we don't know about them at
18		that time, so we're asked to provide in
19		pre-application the information that we know.
20		But certainly we share that information as early
21		as possible so that customers can make a good
22		decision based on that.
23	Q	So I want to keep with as early as possible if we
24		could. So per the redline that's attached to the

1		Settlement between Duke and the Public Staff, if
2		approved by the Commission the fee to obtain a
3		pre-application report would be \$500; is that
4		correct?
5	A	That's correct.
6	Q	And Duke does not make the location of line
7		voltage regulators available publicly, correct?
8	A	That's correct.
9	Q	And why is that?
10	A	I'm not sure it's meaningful information to the
11		general public. There's lots of information
12		about reclosures and regulators and other pieces
13		of equipment that's not published for the public
14		to see.
15	Q	Would you agree it's meaningful to a potential
16		interconnection customer if they had that
17		information before they had to pay \$500?
18	A	I suppose it's meaningful but I think a \$500
19		pre-application which is made available under
20		these interconnection procedures is a reasonable
21		amount of money to pay for the information, line
22		voltage regulators or otherwise, that might help
23		a customer make a good business decision about
24		whether it's a viable request.

OFFICIAL COPY

Feb 13 2019

1	A	(Mr. Gajda) If you'll permit me, I think overall
2		from providing this information prospectively
3		ahead of time Duke does have a significant number
4		of concerns about just putting mass data about
5		the grid, even the distribution grid, and making
6		it widely and publicly available. So I think
7		that's just another item to keep in mind.
8	Q	So are line voltage regulators protected by
9		fencing or any security measures?
10	A	(Mr. Riggins) Typically they're installed on a
11		pole or a couple of poles.
12	Q	And are they hidden from the public in any way?
13	A	They're not hidden.
14		MR. LEDFORD: Mr. Chairman, if I could.
15		(WHEREUPON, Mr. Ledford passed out
16		an exhibit.)
17		MR. LEDFORD: Mr. Chairman, I'd ask that
18	this	exhibit be marked as NCSEA Duke Cross Exhibit 3.
19		CHAIRMAN FINLEY: It shall be so marked.
20		(WHEREUPON, NCSEA Duke Cross
21		Exhibit 3 is marked for
22		identification.)
23	BY M	R. LEDFORD:
24	Q	Is this image in Exhibit 3 a line voltage

1		regulator?
2	A	(Mr. Riggins) Yes.
3	Q	And would subject to check, notably in the
4		left-hand corner, would you agree or accept that
5		this line voltage regulator is near the corner of
6		Wade Avenue and Dixie Trail here in Raleigh?
7	A	(Mr. Gajda) I'll agree that it is because I drive
8		past it every day.
9		(Laughter)
10	Q	That was actually one of my next questions
11		because I drive past it every day as well.
12		So an interconnection customer
13		could walk Duke's lines and find every single one
14		of these; is that fair?
15	A	(Mr. Riggins) That's correct.
16	Q	But that would be an extremely time consuming
17		activity, correct?
18	A	(Mr. Freeman) Define extreme time consuming
19		activity because I think I mean what we've
20		seen is all of these developers installing these
21		larger facilities are all sophisticated
22		developers and they've got engineers that can
23		identify these fairly rapidly. So I'm not sure
24		exactly what you mean by time consuming.

Г

1	Q	Wouldn't it be more rapidly wouldn't they be
2		able to identify them more rapidly if Duke made
3		the information publicly available?
4	A	Sure. But then you're asking Duke to spend time
5		and money to identify these locations as well,
6		and then there's a question about who and how
7		should those costs be recovered.
8	Q	Does Duke not have the information readily
9		available about the location of its assets on the
10		grid?
11	A	I would think it's fairly readily available
12		because we make it readily available in the
13		pre-application report.
14	A	(Mr. Riggins) Correct. So, again it goes back I
15		think to the debate of do you make all
16		information available to all people at some cost
17		that might be significant versus following the
18		processes that are in the Interconnection
19		Procedure today and are providing the information
20		to customers that have a need for it and have
21		them pay for that service.
22	Q	Okay. So we've discussed the various screens
23		that Duke has put into place since May 2015. I
24		want to switch gears to future new screens that

Г

1 might be coming. 2 Mr. Gajda, in your rebuttal 3 testimony on page 25, you state that the 4 Companies' agree to file any significant new 5 screens, studies, or major modification in their application of the procedures with the Commission 6 7 for informational purposes only. Is that an 8 accurate reading? 9 Α (Mr. Gajda) Yes, it is. 10 What makes a new screen significant? 0 11 Α Well, that's a great question. And it's kind of the crux of many things interconnection is what 12 13 we don't know yet is what we don't know yet. So 14 not to be coy but literally as we proceed forward and learn new things about how interconnections 15 continue to impact the grid we have no -- there's 16 17 really no reason or we're not incentivized to 18 create any new screens and so to the degree that 19 anything would be needed we would set about a 20 process that I believe we've described in 21 testimony or data requests to consider 22 modifications to Good Utility Practice and determine whether something else would be needed. 23 24 I really don't have a great solid answer to

NORTH CAROLINA UTILITIES COMMISSION

382

1		describe what's significant or insignificant.
2		There's really not a way to do that.
3	Q	Could you tell me
4	A	(Mr. Freeman) But I would
5	Q	Oh, sorry.
6	A	I would also suggest that what Mr. Gajda has said
7		earlier is that we're using the TSRG process to
8		discuss new screens and I would think that
9		through discussions there and feedback from
10		developers that may see that a particular new
11		screen or new policy would have a, I'll call it a
12		significant impact. That discussion would
13		probably drive what would be deemed as
14		significant.
15	Q	Let's stick with the TSRG for a minute.
16		Mr. Gajda, in your direct testimony on page 29,
17		you state that Duke is willing to discuss the
18		Fast Track process at the Technical Standards
19		Review Group or TSRG; is that correct?
20	A	(Mr. Gajda) Yes.
21	Q	And of the intervenors to this proceeding, who
22		has advocated the strongest for reforming the
23		Fast Track process?
24	А	That's a bit of a subjective question.

Г

1	Q	Would you agree that IREC has taken the lead on
2		that issue?
3	A	That's likely fair.
4	Q	And is IREC invited to participate in the TSRG?
5	A	Not no, not specifically and there's a reason
6		for that. It's because we structured the TSRG.
7		When we began its structure we looked out in the
8		industry to see how other TSRGs, if they were
9		named so, were structured. We specifically
10		visited the Massachusetts TSRG which there has
11		been mandated by the Commission, and I only say
12		that because there's four utilities at the table,
13		but as we went there we realized that there were
14		utilities at the table and there were individual
15		project developers, engineers at the table, and
16		so our conception of the TSRG from the beginning
17		was that it was a highly technical forum and it
18		should involve engineers and that were likely
19		developing projects for their consultants. And
20		our we went to NCSEA, NCCEBA and South
21		Carolina Solar Business Alliance with the intent
22		of trying to seek out those appropriate parties.
23		And so this is just really a reminder for
24		everybody what we did there but so I

NORTH CAROLINA UTILITIES COMMISSION

384

1		understand your question and your point but
2		ultimately that was what we did because we
3		believed that the who's sitting down at the
4		table and physically designing projects is who
5		needed to be at the TSRG.
6	Q	So in your direct testimony you state that the
7		Companies established the TSRG in conjunction
8		with NCSEA. How did NCSEA assist in establishing
9		the TSRG?
10	A	Again, we went to NCSEA, NCCEBA and South
11		Carolina Solar Business Alliance to really seek
12		input on membership and who should be at the
13		table. Because of the solar development
14		community or for that matter any distributed
15		generation entity because there's not any one
16		single representative, it wasn't like we were
17		going to another utility. In this case, we had
18		to really kind cast a wide net. And as advocacy
19		organizations we thought that it was fair to go
20		to NCSEA and the two others mentioned to seek
21		that and that's why we proceeded in that manner.
22	Q	So you just said that, and I'm paraphrasing here,
23		that you came to NCSEA seeking guidance on who
24		could have a seat at the table. What was NCSEA's

1		role in selecting the organizations that
2		participated in the TSRG, or that participate in
З		the TSRG?
4	A	Well, as I recall, subject to check - since I get
5		to say that now - as I recall, I believe that we
6		essentially requested, we had a concept for how
7		the TSRG would be laid out and with, I believe we
8		called it, three kind of primary members and six
9		sort of secondary members with the intent that
10		the primary members would be involved in agenda
11		development in conjunction with Duke. And as I
12		recall, we went to the organizations essentially
13		just seeking membership. There may be a portion
14		of this that I'm not recalling properly and, if
15		so I apologize, but that's my recollection.
16	Q	So is it fair to say that NCSEA simply agreed to
17		attend the TSRGs as opposed to developed it in
18		conjunction with Duke?
19	A	Yes. I mean to be quite honest, yeah, Duke knew
20		that a TSRG process would be valuable. We had
21		been asked by several external parties if we were
22		considering something like that, so we went about
23		to create it and in that process, that's correct,
24		we approached NCSEA and the two other

1		organizations for membership.
2	Q	Thank you.
3		Mr. Riggins, switching to your
4		rebuttal testimony, on page 19 you state that the
5		Companies commit to share with the Public Staff
6		the current plans for the online portal and to
7		identify additional features that need to be
8		evaluated; is that correct?
9	A	(Mr. Riggins) That's correct, yes.
10	Q	Why would the Company only share this information
11		with the Public Staff?
12	A	(Mr. Riggins) I'm not sure I'm following the
13		question. Who else are you suggesting they would
14		share it with?
15	Q	Would the Company be willing to share it with
16		other stakeholders such as intervenors to the
17		current proceeding?
18	A	Certainly. I think we actually have reached out
19		to a number of stakeholders and developers to get
20		input. And particularly around the customer
21		portal there's been engagement already with those
22		parties to try to make sure we're designing
23		something that would be applicable and be of
24		value.

1	Q	Would the Company be willing to file their plans
2		with the Commission?
3	А	I think if asked to do that there would be no
4		reason why we wouldn't file it.
5	Q	Thank you.
6		Mr. Gajda, returning to you for a
7		few more.
8	А	(Mr. Gajda) Yes, sir.
9	Q	I want to talk about material modification for
10		just a little bit.
11	А	Okay.
12	Q	In your direct testimony you discuss
13		Duke's proposal to use the date of the execution
14		of a System Impact Study Agreement as the
15		determining point of fact for when a study has
16		been start for when a study has or has not
17		started; is that correct?
18	A	That sounds right.
19	Q	And that same language is incorporated into the
20		redline of the Interconnection Standard that was
21		attached to the Duke/Public Staff Settlement
22		Agreement; is that correct?
23	A	I believe that's correct.
24	Q	But the execution of an SIS Agreement does not

Г

1		necessarily mean that Duke can immediately be in
2		the study; is that correct?
3	A	Perhaps and it's the only reasonable external
4		checkpoint which clearly defines between Duke and
5		an external party when, essentially when we will
6		begin the study.
7	Q	What's the average time between the execution of
8		an SIS Agreement and the actual start of study by
9		the utility?
10	A	I don't have that piece of information.
11	A	(Mr. Riggins) I can weigh in. I don't have a
12		specific number of days but I can tell you that
13		we do start the study pretty soon after the
14		study the System Impact Study Agreement is
15		signed because now we intentionally provide that
16		Agreement to the customer when we're prepared to
17		start the study. So in delivering the Agreement
18		that indicates that we're now prepared, that
19		customer is now a Project A or a B, and it's
20		ready for study. So the start of the study
21		should be very coincident with when that
22		Agreement is signed and returned.
23	Q	Thank you. Do you have any idea of how many
24		interconnection customers currently in the queue

1		have executed an SIS Agreement but Duke has not
2		yet started the study?
3	A	I don't know that number specifically.
4	Q	Thank you. Switching gears a little bit to how
5		Duke plans.
6		Mr. Freeman, in both your direct
7		testimony and your rebuttal testimony you discuss
8		about \$200 million in transmission network
9		upgrades that are necessary to interconnect
10		additional generations additional generation
11		in portions of eastern North Carolina; is that
12		correct?
13	A	(Mr. Freeman) That is correct.
14	Q	And in your direct testimony discuss that heavy
15		saturation of Duke's distribution system with
16		solar may require a massive redesign of Duke's
17		distribution system; is that correct?
18	A	That is correct, yes.
19	Q	Are you familiar with Exhibit PB-2 which was
20		attached to NCSEA Witness Brucke's initial
21		testimony?
22	А	No, I'm not.
23	Q	Subject to check, would you agree that it is a
24		PowerPoint presentation that explains Duke's Grid

1		Improvement Plan that was distributed by Duke in
2		November?
3	A	Okay, subject to check.
4	Q	Are you aware whether this massive redesign of
5		the distribution system appears in Duke's Grid
6		Improvement Plan?
7	A	Subject to check, because I'm not specifically
8		referencing your document. But, no, I don't
9		think that is part of the Grid Improvement Plan.
10	Q	Thank you. And the transmission upgrades in
11		eastern North Carolina, are they a part of the
12		Grid Improvement Plan?
13	А	No, they are not. Those are triggered
14		specifically by interconnection requests and the
15		studies that were done to interconnect those
16		facilities. So those upgrades are tied directly
17		to interconnection requests and
18		interconnection or interconnecting generators.
19	Q	Thank you. And, Mr. Freeman, or any of you, are
20		you familiar with the North Carolina Transmission
21		Planning Collaborative?
22	А	Generally I think we're all familiar with it,
23		yes.
24	Q	Are you familiar with the Collaborative's most

392

1 recent report? 2 I am not, no. Α 3 А (Mr. Riggins) No. 4 MR. LEDFORD: Mr. Chairman, may I pass 5 out an exhibit? 6 CHAIRMAN FINLEY: Yes. 7 MR. LEDFORD: Mr. Chairman, I'd ask that 8 this exhibit be marked NCSEA Duke Cross Exhibit 4. 9 CHAIRMAN FINLEY: The report shall be marked 10 as Number 4. 11 MR. LEDFORD: Thank you. 12 (WHEREUPON, NCSEA Duke Cross 13 Exhibit 4 is marked for 14 identification.) 15 BY MR. LEDFORD: 16 Mr. Freeman, are you aware of where any of the Q 17 reconductoring projects that you discuss appear 18 in the Collaborative's report? 19 (Mr. Freeman) I am not aware, no. Α 20 And recognizing that I just dropped a 100ish page Q 21 document in front of you, subject to check, would 22 you agree with me that they do not appear 23 anywhere in there? 24 Sure I'll agree with you. А Yes.

1	Q	Thank you. Mr. Freeman, in your direct testimony
2		and your rebuttal testimony you extensively
3		discuss the concept of cluster studies, just
4		specifically stating that the Company now
5		believes it's time excuse me, the Companies
6		believe that it is now necessary to transition
7		from a serial study process to a cluster study
8		process; is that correct?
9	А	That is correct.
10	Q	Did NCSEA raise the issue of cluster studies at
11		the beginning of the 2017 stakeholder process?
12	А	I don't recall.
13		MR. LEDFORD: Mr. Chairman.
14		(WHEREUPON, Mr. Ledford passed out
15		an exhibit.)
16		CHAIRMAN FINLEY: We'll mark this exhibit
17	Numb	er 5.
18		MR. LEDFORD: Thank you, Mr. Chairman.
19		(WHEREUPON, NCSEA Duke Cross
20		Exhibit 5 is marked for
21		identification.)
22	BY M	R. LEDFORD:
23	Q	Mr. Freeman, would you agree this is a list of
24		issues that NCSEA presented at the initial

1		stakeholder group meeting on May 25, 2017?
2	A	I don't believe I was at that meeting but it
3		looks like this is I mean I'll take your word
4		for it that this is what you prepared and for
5		discussion at that meeting.
6	Q	Mr. Gajda or Mr. Riggins, were either of you at
7		that meeting? It has been awhile; I can't
8		recall.
9	A	(Mr. Riggins) I attended several, but I don't
10		know about this one specifically.
11	A	(Mr. Gajda) Likewise.
12	Q	Subject to check, would you agree that Advanced
13		Energy did a pretty good job of distributing
14		materials that were handed out at meetings to
15		participants whether they were in physical
16		participation or not?
17	A	(Mr. Freeman) I'll let my peers answer that
18		question because I only attended maybe one of
19		those particular stakeholder meetings.
20	А	(Mr. Riggins) Can you restate the question?
21	Q	Did Advance Energy I'll retract the question.
22		Looking slightly more than half
23		way down the page, would you agree that under the
24		bullet point Are structural changes to the

Г

NORTH CAROLINA UTILITIES COMMISSION

394

1 interconnection queue necessary? NCSEA posited 2 the question, should cluster studies be adopted? 3 (Mr. Freeman) What I read you're correct. Α 4 Q Thank you. But at that time Duke did not support 5 discussing cluster studies during the stakeholder 6 process; is that correct? 7 I -- again, I only attended one meeting so I Α 8 don't know what kind of discussions took place during those stakeholder discussions. But I 9 10 think the intent of that particular stakeholder 11 group was driven by the 2015 Interconnection 12 Order where two years later we were being asked 13 to look at any particular changes to the 14 Interconnection Procedures as they were written 15 at that point. So I think at that point in time 16 we were looking at kind of minor modifications 17 that needed to be -- that needed to take place 18 based on the two years of history that we had 19 since we revised the Interconnection Standards in 20 2015. 21 Thinking back to the 2014 proceeding, weren't Q 22 cluster studies raised at that time? 23 Α Yes, they were. Yes.

NORTH CAROLINA UTILITIES COMMISSION

So it would be logical for NCSEA to raise them

24

Q

again in the stakeholder meeting that followed 2 the 2015 Order? 3 Yeah. I would grant that that would be logical, А yes. But during the 2014 discussions -- you 4 5 know, the discussions around cluster studies we 6 just didn't feel like that it was appropriate at 7 that time to initiate cluster studies, and we 8 felt like at that point in time that the 9 sequential study process was adequate. In fact, 10 at that point in time we had I think either zero 11 or almost no transmission projects in the queue 12 and at that time we weren't experiencing any kind 13 of transmission congestion. And I think even in 14 at least one of our testimonies we described that 15 looking at the distribution system as a radial 16 system that cluster studies really are not that 17 appropriate for distribution but yet they are 18 more appropriate for transmission in the transmission network. 19 20 Q But that conversation was never had during the 21 2017 stakeholder process, correct? 22 I can't answer that. Α 23 Q Okay. Why should stakeholders believe that the 24 Per paragraph three of the outcome -- excuse me.

1

NORTH CAROLINA UTILITIES COMMISSION

396
Feb 13 2019

1		Settlement between Duke and the Public Staff,
2		Duke is now committing to a new stakeholder
3		process to discuss cluster studies, correct?
4	A	That is correct.
5	Q	So why should stakeholders believe that the
6		outcome of a new stakeholder process would be any
7		different than the outcome of the 2017 one?
8	A	Well again, I think since twenty the 2014-2015
9		timeframe with the amount of projects that are in
10		the queue I think our thinking has changed and we
11		feel like it is appropriate. In fact, when we
12		looked around the country now, a number of
13		utilities and RTOs that are experiencing the same
14		heavy penetration that we're experiencing have
15		all either moved towards cluster studies or are
16		in the process of moving towards them. So, for
17		example, I think we identified in our testimony
18		that Public Service Company of Colorado is in the
19		middle of potentially converting from sequential
20		study process to cluster studies. In fact, they
21		filed with FERC and we're hoping to see what kind
22		of results you know, whether FERC approves
23		their cluster study change or not. So, for
24		example, PSCO or Public Service of Colorado, they

1		have as I recall 23,000 megawatts of projects in
2		their interconnection queue and they're only an
3		8500 megawatt system. So I think most utilities
4		are starting to see that you know, what we've
5		historically done around sequential study process
6		is just not sustainable and that we need to
7		really look at a fundamental change in how we're
8		studying projects.
9	Q	Mr. Gajda, in your direct testimony on page 7,
10		beginning on line 3, you state that Overall, the
11		Companies see limited structural issues within
12		the technical evaluation portions of the North
13		Carolina Procedures, and do not believe that
14		extensive revisions are necessary at this time.
15		How does that statement does that statement
16		contradict what Witness Freeman has testified in
17		his direct and rebuttal testimony?
18	A	(Mr. Gajda) No, it does not. As Witness Freeman
19		stated, when we approached the 2017 stakeholder
20		process it was really in response to the
21		Commission Order to do so. And so I believe for
22		the most part Duke approached that relatively
23		open minded with the idea of there are several
24		stakeholders in this process and let's sit down

8

OFFICIAL COPY

Feb 13 2019

1		and see what minimum number of changes may
2		produce value in the Interconnection Standards
3		knowing what we know today. I believe Witness
4		Freeman's statements around the need for cluster
5		studies really developed sometime after this
6		process began.
7	Q	Thank you. Switching gears, Mr. Gajda, on page
8		63 of your direct testimony you discuss physical
9		limitations to balancing area's capability to
10		absorb energy injections. Would a larger
11		balancing area make this better?
12	A	That's a very complicated question. Not
13		necessarily; could, could not. But that's a very
14		complicated question.
15	Q	We're lucky I don't have any follow-ups on that.
16		(Laughter)
17	Q	Just one question about dispute resolution. In
18		the Settlement redline Section 6.2.4, it states
19		that by mutual agreement the utility and the
20		interconnection customer may seek the assistance
21		of a dispute resolution service. When would it
22		be in the utility's best interest to engage an
23		outside mediator or dispute resolution service?

1		best interest?
2	Q	Or when would the utility agree to that?
3	A	I think that we stated that we would support
4		engaging a third party, but we also strongly
5		believe that the Public Staff has served in that
6		role and we've been able to resolve most of the
7		disputes that have been brought forward in an
8		efficient manner. We still believe that to
9		educate a third party on all of the issues is
10		going to be difficult, time consuming, distract
11		people that are otherwise working on
12		interconnection projects to bring them up to
13		speed. So when would we support it? I suppose
14		if we got to a volume that made it such that the
15		Public Staff couldn't handle the volume we would
16		certainly support that. But our position today
17		is that we would prefer to continue to work as we
18		have and effectively addressing disputes
19		efficiently.
20	A	(Mr. Freeman) And I'll suggest that I mean,
21		this is another example of kind of moving into a
22		living lab. I mean, we've committed at the
23		developer's request. Or even the Public Staff
24		suggested this that I think we're all going to

NORTH CAROLINA UTILITIES COMMISSION

400

1	learn what's kind of what's the appropriate
2	trigger for moving to a third party, mediator, or
3	whatever you want to call it so I think that's
4	yet to be determined. But I think that we've
5	the Companies' have made a commitment that we're
6	willing to engage that third party when it's
7	appropriate.
8	MR. LEDFORD: Thank you. I have no further
9	questions.
10	CHAIRMAN FINLEY: NCCEBA.
11	MS. KEMERAIT: I have questions for
12	Mr. Riggins and Mr. Gajda but I don't believe I'm
13	going to have any questions for Mr. Freeman.
14	Mr. Riggins, I'll begin with you.
15	CROSS EXAMINATION BY MS. KEMERAIT:
16	Q I've got a number of questions about payment for
17	interconnection facilities and I'd like to begin
18	by asking you to provide some information about
19	the differences between what upgrades are and
20	what interconnection facilities are. And to
21	begin with, are you familiar with the definitions
22	that are contained in the Glossary of Terms of
23	the North Carolina Interconnection Procedures?
24	A (Mr. Riggins) Yes.

1	Q	So in order to save a little bit of time what I
2		would propose I would do is I will just read you
3		the definition and then you can state whether
4		that is your understanding that that is, in fact,
5		the correct definition contained in the Glossary
6		of Terms.
7		And the definition of "Upgrades"
8		as stated in the Interconnection Procedures is
9		the required additions and modifications to the
10		Utility's system at or beyond the Point of Inter-
11		excuse me, at or beyond the Point of
12		Interconnection. And Upgrades may be network
13		upgrades or distribution upgrades. And it also
14		states that Upgrades do not include
15		Interconnection Facilities. Is that your
16		understanding of the definition of Upgrades?
17	A	That's correct.
18	Q	And so is it would you agree that upgrades are
19		considered to be those types of improvements to a
20		utility's system that allow the interconnection
21		facility to deliver output to the system in a
22		safe and reliable manner?
23	A	I believe upgrades are those facilities
24		those upgrades that we do to the system that are

1		not dedicated and on the specific property for
2		the interconnection, but to make sure that that
3		interconnection doesn't negatively benefit other
4		customers negatively impact other customers.
5	Q	And so in contrast to that is interconnection
6		facilities that would be dedicated to a specific
7		interconnection customer and on that
8		interconnection customer's property; is that
9		correct?
10	A	That's generally correct.
11	Q	Okay. And the definition - and I'll read this as
12		well - for "Interconnection Facilities" contained
13		in the Glossary of Terms states that,
14		Collectively, the Utility's Interconnection
15		Facilities and the Interconnection Customer's
16		Interconnection Facilities. Collectively,
17		Interconnection Facilities include all facilities
18		and equipment between the Generating Facility and
19		the Point of Interconnection, including any
20		modification, additions or upgrades that are
21		necessary to physically and electrically
22		interconnect the Generating Facility to the
23		Utility's system. The Interconnection Facilities
24		are sole use facilities and do not include

Feb 13 2019

1 Upgrades. Would you agree that that's the definition for Interconnection Facilities? 2 3 А Yes. 4 And the definition for Interconnection Facilities Q talks about sole use facilities. And could you 5 6 describe what is meant by "sole use facilities"? 7 Α Essentially a sole use facility is a facility 8 that doesn't benefit other customers. So it's 9 there -- if not for that interconnection customer 10 that facility would not be there. 11 So, in other words, it would be specific to the Q 12 interconnection customer that is seeking to 13 interconnect? 14 That's correct. Α And would any other interconnection customer be 15 Q dependent upon another interconnection customers' 16 17 interconnection facilities if the interconnection 18 facility was not constructed or installed? 19 А They should not. 20 And so if a --Q 21 Α (Mr. Freeman) Can I clarify that answer? I want 22 to suggest, maybe I'm hearing the question wrong, 23 but what I'm hearing you saying is that if that 24 interconnection facility was not constructed. Ι

NORTH CAROLINA UTILITIES COMMISSION

404

OFFICIAL COPY

Feb 13 2019

1		think the only reason it would not be constructed
2		would be because the interconnection facility
3		either withdrew or canceled their project. Yet,
4		I would suggest that in the sequential process
5		that we use there are interconnection facilities
6		that are behind that facility that potentially
7		are impacted by that facility not being built.
8		And again, I'm assuming that it's not going to
9		if it's not built it's because the facility is
10		canceled. So I think there is a direct
11		relationship to other projects.
12	Q	And, Mr. Freeman, can you describe if the so
13		if the interconnection request is withdrawn
14		before construction of the interconnection
15		facility has begun - any type of construction, or
16		installation, or any work done on the
17		interconnection facility - in what way would
18		interconnection customers that would be farther
19		back in the queue be in any way prejudiced?
20	А	I think this relates to you know that
21		particular facility has, I'll call it consumed or
22		consumed what I call grid capacity, so that
23		does impact other facilities that are further
24		down in the queue.

1	Q	And what do you mean by grid capacity?
2	A	Well, there's a when I think about grid
3		capacity I think about you know, there's only
4		a certain amount of capacity on the existing grid
5		to accommodate a particular generator, so that's
6		what I mean by grid capacity. And if we need to
7		upgrade the capacity it's I mean, that's
8		generally what an upgrade does is it increases
9		that grid capacity.
10	Q	And so the but the interconnection facility
11		though would in no way if it's not constructed
12		though it is not going to take up any of the grid
13		capacity, correct?
14	A	Well, it maybe to your point it doesn't
15		negatively impact that next project but it
16		potentially does because if that particular
17		project did not trigger upgrades and then the
18		next project behind it did trigger upgrades, one
19		project not being constructed potentially changes
20		the solution, if you will, for the next project
21		or vice versa. That particular project in
22		another example may have triggered network
23		upgrades or upgrades and then those upgrades
24		would be passed onto the next project. That's

1		what I mean.
2	Q	That's really a question about responsibility for
3		network upgrades, correct?
4	A	Yes. I mean, it's when I say grid capacity I
5		mean that project moving forward or not moving
6		forward does have an impact on future projects
7		both positively or negatively.
8	Q	Well, I don't want to belabor the point, but not
9		moving forward, the failure to construct an
10		interconnection facilities is not going to affect
11		whether network upgrades are assigned to an
12		interconnection customer that's further back in
13		the queue, that would be based upon an
14		interconnection customer withdrawing its
15		interconnection request and not moving forward?
16	A	(Mr. Riggins) I think it's a question of
17		specific interconnection facilities. Those
18		should be distinct and shouldn't have a negative
19		impact. Certainly a withdrawal can impact a
20		later queued project from a capacity standpoint
21		and upgrade, but the facilities installed at the
22		property should not have a negative impact.
23	Q	Thank you, Mr. Riggins. And now I'd like to move
24		on from that line of questioning to about payment

1		for interconnection facilities. And,
2		Mr. Riggins, that is addressed is it your
3		understanding that that is addressed in Article 6
4		of the Interconnection Agreement and then also
5		the milestones that would be included in
6		Appendix 4 of the Interconnection Agreement?
7	A	Yes.
8	Q	And currently Section 6.1.1 of the
9		Interconnection Agreement requires that the
10		interconnection customer is responsible for
11		paying 100 percent of the required
12		interconnection facilities and then other charges
13		as required in Appendix 2; is that correct?
14	A	That's correct.
15	Q	And those payments are required to be provided by
16		the interconnection customer pursuant to the
17		milestones that are specified in Appendix 4; is
18		that correct?
19	A	We typically include the payment as a milestone
20		in Appendix 4, but it is a prepayment of those
21		interconnection facilities' charges.
22	Q	And for the prepayment of the interconnection
23		charges, and again that was going to be some
24		other questions that involve considered to be

1		prepayment by the interconnection customer,
2		correct?
3	A	It's a little bit complex, as John said on the
4		other question. So I'll
5	Q	And I'll come up to those questions and I do
6		realize it's a little bit different in DEP and
7		DEC territory.
8	A	So can I just clarify that interconnection
9		facilities are generally paid for under the extra
10		facilities methodology which is part of our
11		service regulations and they do differ from DEC
12		and DEP. And some cases in DEP there's a
13		contributory plan that would require the
14		prepayment of that up-front amount. In DEC, the
15		extra facilities, typically customers choose the
16		monthly payment, so those payments do not start
17		until the facility is built and billing begins.
18		So, at most, there would be a deposit to be sure
19		that we get to that point so that that monthly
20		fee would begin.
21	Q	And it's my understanding that in both DEC and
22		DEP that for transmission projects
23		interconnection facilities for transmission
24		projects that both DEC and DEP require up-front

1		payments; is that correct?
2	A	Again, in DEP if a customer chooses the
3		contributory plan to pay for their
4		interconnection facilities, they would prepay the
5		cost of that interconnection facility and an
6		ongoing monthly fee. In DEC, unless a customer
7		chooses a prepayment option which most do not,
8		they begin to pay a monthly fee at the time the
9		billing starts which is when the project is
10		constructed. So for transmission, because the
11		magnitude of those projects is typically higher,
12		we will require a deposit for that as allowed in
13		the Procedures to require reasonable security.
14	Q	And for those prepayments upon COD, are any of
15		those prepayments reimbursed to the
16		interconnection customer?
17	A	So we wouldn't have a prepayment at COD, that
18		would be at the end of the project.
19	Q	Right.
20	A	So to the extent that a prepayment is required at
21		the beginning of the project, if that project is
22		terminated then essentially that amount less cost
23		incurred would be refunded.
24	Q	Thank you.

410

1	A	For interconnection facilities.
2	Q	Yes, correct. And I'll clarify that what I'm
3		all of my questions are related to
4		interconnection facilities and not network
5		upgrades.
6	A	Okay.
7	Q	And going back to my question about the payment
8		and the milestones that would be provided in
9		Appendix 4. If there is a prepayment, what does
10		the what does Duke require for the number of
11		days after an Interconnection Agreement is
12		executed when that prepayment must be made? Is
13		it 60 days after execution of the Interconnection
14		Agreement?
15	A	It's different between North and South Carolina
16		so I'll have to look through the procedures to be
17		sure I get the right number of days, but it is a
18		specific timeframe by which the interconnection
19		customer has to pay the fees.
20	Q	Okay. And if the interconnection customer does
21		not provide the payment that is required under
22		the milestones in the Interconnection Agreement,
23		what can occur? Can Duke can terminate the
24		Interconnection Agreement; is that correct?

1	A	Yeah, according to the North Carolina
2		Interconnection Procedures that's what we're
3		required to do.
4	Q	Correct. And so I'm going to move on to some
5		questions about the timeframe generally that it
6		takes to construct interconnection facilities.
7		And does it take different, generally different
8		periods of time in DEC and DEP territory to
9		construct interconnection facilities for
10		transmission interconnections?
11	A	Not significantly different, no.
12	Q	And what is the general amount of time that it
13		takes to construct those interconnection
14		facilities for transmission interconnections?
15	A	Typically about 24 months.
16	Q	And for transmission interconnections the
17		construction of the interconnection facilities
18		can be delayed due to network upgrades that might
19		also have to be constructed; is that correct?
20	A	That's possible.
21	Q	And is it possible based upon some filings that
22		Duke had made back in the earlier phase of the
23		interconnection docket, Duke had stated that it
24		could take sometimes three to five years for the

Feb 13 2019

network upgrades to be completed so that the 2 interconnection facilities would be delayed for 3 three to five years; is that correct? 4 Α If an interconnection customer is dependent on an 5 upgrade assigned to another customer they should 6 not get to an Interconnection Agreement and be 7 forced to make that payment. If they're -- they 8 may have received an interim study, but I don't 9 believe they should have an Interconnection Agreement and be required to make that payment. 10 11 For the interconnection facilities? Q 12 Correct. In particular, we've looked at some of Α 13 these projects that are going to have to wait for 14 an upgrade. It might take three to four years. 15 We know that the costs that we would put into the 16 Interconnection Agreement today would be somewhat 17 stale in four years when we are ready to build 18 those facilities so we'll intentionally want to 19 delay that process and enter into an IA at the 20 time that's more appropriate. 21 So in this case, the IA would be delayed is your Q 22 testimony? 23 Α That's correct. We would not deliver the

1

24

NORTH CAROLINA UTILITIES COMMISSION

Interconnection Agreement. We should not deliver

413

1		the Interconnection Agreement to the customer
2		until we're prepared to build those facilities.
3	Q	And then for interconnection facilities for
4		interconnection to the distribution system is the
5		time to construct those facilities different in
6		DEC and DEP territory or is it substantially the
7		same?
8	А	The time to build the interconnection facilities
9		should be very similar.
10	Q	And what would that be in for both DEC and DEP
11		territory?
12	А	I don't know an exact number but my best estimate
13		would be you're talking a period of months, not
14		24 months, but we're talking about availability
15		of crews and the ability to get the work
16		scheduled, and if there are no upgrades that are
17		required it's a fairly quick process just to
18		build the interconnection facilities themselves.
19	Q	And for upgrades you mean network upgrades?
20	A	No, I'm speaking of distribution system upgrades
21		such as reconductoring, that sort of work that
22		can take longer periods of time.
23	Q	And those distribution system upgrades could take
24		12 to 15 months; is that a good estimate about

1		the timeframe that it might take?
2	A	It depends on the degree of work that's required.
3	Q	And, generally, how long what would be the
4		outermost time that it would take to perform
5		those distribution system upgrades?
6	A	Fifteen months might be an estimate of worst case
7		scenario. If there's substation upgrades that
8		have to be done as well as distribution line
9		upgrades, then certainly those can take a little
10		longer.
11	Q	And will the construction of the distribution
12		interconnection facilities, will that be will
13		that construction wait until the distribution
14		system upgrades has been completed?
15	А	I don't think that's a fair statement. We would
16		try to align the work on the interconnection
17		facility with when the project is built and when
18		the upgrades are done. But I don't know that
19		it's absolutely scheduled that way to always
20		occur after the upgrade is done.
21	Q	If it takes place around the same amount of time
22		it could be, as you mentioned, about a 15-month
23		waiting period before completion of the
24		interconnection facilities. Is that a fair

1 statement? 2 I think that's a reasonable estimate of an Α 3 outlier. If a project requires substation upgrades - additional equipment to be installed 4 in the substation, significant reconductoring 5 work of the distribution facility - then it can 6 7 take some time. 8 And can you describe what the general cost for Q 9 both transmission connected interconnection facilities and distribution connected 10 11 interconnection facilities is? 12 I'd say order of magnitude distribution Α 13 facilities are probably eighty to a hundred 14 thousand dollars; transmission interconnection 15 facilities to three to five million. 16 And, Mr. Riggins, are you -- well, I should say I Q 17 assume you're aware that NCCEBA and a number of 18 interconnection customers have been raising the 19 issue about concerns about having to make 20 payments, prepayments for interconnection 21 facilities well in advance of when the funds are 22 needed by Duke, and then also about the request 23 that a surety bond be permitted as an acceptable 24 form of financial security by Duke. I assume

1		you're familiar with those requests?
2	A	I am.
3	Q	And currently what type of financial security
4		does Duke allow for interconnection facilities?
5	A	I don't know the specifics on that. Anything
6		other than cash, of course, would be presented to
7		our credit and risk department to assess that to
8		make a determination if it's acceptable or not.
9	Q	And does Duke allow a cash collateralized letter
10		of credit as financial security currently?
11	A	I can't answer that.
12	Q	But currently Duke does not allow a surety bond
13		as an acceptable form of financial security?
14	A	I think we've already agreed in certain
15		circumstances where the need for network upgrades
16		are going to be over an extended period of time
17		that we would consider surety bonds in those
18		particular instances.
19	Q	And so I think that one of the concerns for
20		NCCEBA and the interconnection customers is when
21		they provide prepayment or the cash
22		collateralized letter of credit after the
23		Interconnection Agreement has been executed that
24		there could be a significant period of time in

Feb 13 2019

1		which the money is being held by Duke and they're
2		not able to earn any interest on it and it's been
3		provided to Duke. Is that has that concern
4		been expressed to you?
5	A	Certainly we've heard that concern. But I would
6		also point out that there's not necessarily a
7		long delay in when a project starts. So when
8		Duke gets paid there is additional design work,
9		there's procurement work, sometimes there's the
10		commitment to resources that has to be made in
11		advance. So I would say that when the
12		Interconnection Agreement is signed and we
13		receive that payment we go to work on all of
14		those activities. It just sometimes can take a
15		period of months before the end result is
16		reached.
17	Q	And those costs for the interconnection
18		facilities, you mentioned design work, and then I
19		assume also the construction and installation
20		work. What are some of the other major
21		components of the cost for the interconnection
22		facilities in addition to those three?
23	A	Well, I think those are the major components -
24		design, engineering, procurement, and then

1		constructing the facilities.
2	Q	And with the design portion of the cost, would
3		that be considered to be the least amount of the
4		cost for the interconnection facilities?
5	A	I think that's safe.
6	Q	And is it fair to state that sometimes Duke
7		begins the design portion of the interconnection
8		facilities and then there could be some
9		substantial delay before any further work for
10		the, for example, the construction or
11		installation of the interconnection facilities
12		has begun?
13	A	I don't know of specific instances where that's
14		happened, but I can think of an example where
15		design work might begin. And then one of the
16		other things I didn't mention which is not
17		necessarily a cost item, but sometimes we have to
18		secure additional rights-of-way or easement in
19		order to build the upgrades that might be
20		necessary or to extend a line to a project. So
21		it might make there may be certain situations
22		where that work is going on and there might be
23		some delay in some of the construction.
24	Q	Thank you. And then, Mr. Riggins, in your

Feb 13 2019

rebuttal testimony duke has stated through you that Duke will allow surety bonds as an acceptable form of financial security when there is what's been described as a material lag between the execution of the Interconnection Agreement and the date when Duke begins spending money on interconnection facilities. Is that a correct statement?

9 A That's correct.

1

2

3

4

5

6

7

8

10 Q And can you describe what a "material lag" means? 11 A I think in that statement what we're envisioning 12 is this upgrade that we're all faced right now, 13 so probably a three to five-year time period 14 would be considered significant.

15 Q So it would be -- it would not be a time period 16 that would be less than three to five years to 17 constitute a material lag to your understanding? 18 A To my understanding.

19 Q Okay. And finally, Mr. Riggins, when it can be 20 many months to several years after the prepayment 21 is required before the interconnection facility 22 construction begins, is there a reason that the 23 interconnection customer needs to post cash or 24 financial security 60 days after the

1		Interconnection Agreement is executed when Duke
2		does not begin spending money for a significant
3		period of time afterwards?
4	A	Well, first and foremost I think it's required
5		under the Procedures. And then secondly, again I
6		mentioned in DEC where the interconnection
7		facilities typically are paid for as a monthly
8		fee at the end of the project when it's
9		constructed, so I don't think you have the issue
10		there. And, in DEP, again if they choose the
11		contributory plan under extra facilities there is
12		an upfront prepayment that's required. There's
13		also the option of the noncontributory plan which
14		looks more like DEC. It's a higher monthly fee
15		but it would not require an upfront payment of
16		those fees.
17	Q	And there could be a scenario that would be
18		possible in which so Duke is not going to
19		begin spending money on interconnection
20		facilities until it has payment from the
21		interconnection customer; is that correct?
22	А	That's correct.
23	Q	So there could be a scenario that would be a fair
24		situation in which for those prepayments Duke

1		could invoice the interconnection customer in
2		advance of when it begins, when it needs to begin
3		spending any money on the interconnection
4		facilities, and then would provide a specific
5		period of time - 30 days, 60 days - in which that
6		100 percent payment would be required to be made.
7		That could be a possibility as well?
8	A	I don't think that's a possibility under the
9		procedures as they exist today because it
10		requires payment to be made in the timeframe you
11		mentioned.
12	Q	And are you aware through your counsel that that
13		is a request that NCCEBA is currently making of
14		Duke at this point to try to see if we can work
15		out that issue after the hearing?
16	A	It's my understanding there's been conversation.
17		MS. KEMERAIT: Thank you. I have no further
18	ques	tions.
19		CHAIRMAN FINLEY: Attorney General.
20		MS. KEMERAIT: And I have a few questions
21	for 1	Mr. Gajda as well.
22		CHAIRMAN FINLEY: All right. Excuse me.
23	Just	wishful thinking.
24		(Laughter)

1	BY M	IS. KEMERAIT:
2	Q	And, Mr. Gajda, I have questions for you about
3		energy storage and the implications of energy
4		storage for material modification. And similar
5		to the question that I asked of Mr. Riggins, are
6		you aware that this is an issue that's of great
7		interest to NCCEBA, and NCSEA, and IREC, and a
8		number of the interconnection customers?
9	A	(Mr. Gajda) In general, yes.
10	Q	So my questions are going to focus about
11		specifically whether the addition of DC coupled
12		energy storage would constitute a material
13		modification as defined under the North Carolina
14		Interconnection Procedures. And so my questions
15		are going to be about DC coupled energy storage
16		and not AC coupled energy storage. So you can
17		just assume that I'm talking about DC.
18	А	Okay.
19	Q	And to your knowledge has energy storage been
20		added to any of the solar facilities in Duke's
21		North Carolina systems to date?
22	A	I'm not aware of any energy storage being added
23		to any facilities. I can think of a Duke R&D
24		facility which has some energy storage but I

1		can't think of I'm not personally aware of any
2		third-party solar facilities at which storage has
3		been added.
4	Q	And for energy storage in North Carolina, is it
5		just one facility that currently utilizes energy
6		storage to your knowledge?
7	A	To my knowledge.
8	Q	And are you aware that there is, as I mentioned,
9		a considerable amount of interest in North
10		Carolina and then I would also say across the
11		country about energy storage being added or
12		developed to solar PV facilities?
13	А	Certainly.
14	Q	And will there be any benefits to Duke's system
15		if energy storage is added to solar facilities?
16	A	That's up for question. That would be that's
17		undetermined from my perspective within the
18		aspect of what we're talking about here with the
19		Interconnection Standards. I'm not thinking
20		about benefits or lack of benefits to Duke
21		because the Interconnection Standards really just
22		look to study the impact to the system and power
23		quality and reliability for customers. So they
24		don't really the Interconnection Standards

425

1		don't directly go to quote, unquote, benefits for
2		Duke. And that's kind of a, probably a very wide
3		characterization so.
4	Q	And I would agree with you that the
5		Interconnection Standards are to address the
6		process. But would you agree that energy storage
7		though could address the intermittency of
8		distributed solar power, for example, to provide
9		power when the sun is not shining?
10	A	I mean, I'll say that a storage facility - for
11		example, Duke operates a pump storage facility -
12		has some sort of potential. Although, currently
13		right now we operate that facility as part of
14		Duke's generating fleet and so it's there's a
15		very well understood mechanism by which that's
16		operated. And so I think I think it would
17		be it's well understood because we have a
18		Duke has a pump storage facility. I think it's
19		relatively well understood how another energy
20		storage facility owned by Duke and operated in a
21		similar manner might operate. Outside of that I
22		can't really speculate.
23	Q	And so I next want to move on to what the effect
24		of a material modification is. And as background

Г

Feb 13 2019

1		for this issue can you explain what happens if a
2		change to an interconnection request is deemed to
3		be a material modification?
4	A	Yes. So there really are several factors here so
5		part of it is timing. So whether the request, as
6		I stated in my summary statement, the a
7		request for material modification is a request to
8		change something about the interconnection
9		request, and that could happen before the study
10		has begun and it could happen also after the
11		study has begun. There's also a separate
12		provision for a change being requested after an
13		Interconnection Agreement has been executed or if
14		the facility is actually in service. When a
15		customer asks to make a change to the design, for
16		example, during the study process the material
17		modification provisions in the Interconnection
18		Standards really just allow for the utility to
19		make a determination, is this change material,
20		hence the term, and I believe the Standards go to
21		a change in the electrical output
22		characteristics. So at the end of the day the
23		utility is trying to determine. And is this an
24		inconsequential change and then, therefore, allow

NORTH CAROLINA UTILITIES COMMISSION

426

Feb 13 2019 OFFICIAL COPY

study, it will not impact later queue customers, or any power quality reliability, et cetera. If there is a change in output characteristics, that must be factored into a study. And this change happens -- then now it becomes very key as to whether this change happens before or after the study has begun. Because if a change -- if this change is requested before the study has begun well then the study, of course, can account for it. If the change happens after the study has begun, then at that point a change in output characteristics, the only way that could be properly accounted for would be a restudy, which is not really an official term here because a

10 well then the study, of course, can account for 11 it. If the change happens after the study has 12 begun, then at that point a change in output 13 characteristics, the only way that could be 14 properly accounted for would be a restudy, which 15 is not really an official term here because a 16 restudy would imply that the study would now be 17 perhaps repeated and it would take more time in 18 the queue and then other customers --19 interconnection customers in the queue would be 20 impacted. So in that sort of scenario, a change 21 is considered material because it has all of 22 those impacts and, hence, is asked to -- or is 23 required to really then move to the end of the 24 queue so those impacts don't occur.

it to proceed because it will not impact the

1

2

3

4

5

6

7

8

9

1	Q	Right. So that so to give a short answer that
2		would mean in that situation you'd have to submit
3		a new interconnection request, go to the back of
4		the queue, and then the study process would begin
5		again?
6	A	That's correct.
7	Q	And on average how long does it take to complete
8		the study process after an interconnection
9		request has been submitted?
10	A	That, I don't know I can specifically answer
11		that. It highly varies between distribution and
12		transmission interconnections. I know that. And
13		even not accounting for that I don't think I have
14		that information in front of me.
15	Q	Mr. Riggins, do you have the information for
16		distribution and transmission about the length of
17		time it takes currently to complete the study
18		process?
19	A	(Mr. Riggins) So generally an entire System
20		Impact Study from start to finish with all of the
21		components that would have to be looked at is
22		probably going to be in the order of 100 days or
23		something; assuming no tolling and we're not
24		waiting for the customer for information, that

9 OFFICIAL COPY

Feb 13 2019

1		sort of thing. I think in the sense of a
2		material modification there's parts of the study
3		that would have to be re-done. There's probably
4		some parts of the study that would not have to be
5		re-done. So I would expect that the time period
6		would be shorter than a typical System Impact
7		Study that has to go through all of the phases.
8	Q	Thank you. That was one of the questions I was
9		going to ask about the shortening of the process.
10		But 100 days for the initial System Impact Study
11		to be completed, but how long generally is it
12		taking for interconnection customers for the
13		System Impact Study to be begun after the
14		interconnection request has been submitted? How
15		long are interconnection customers waiting for
16		the System Impact Study to begin?
17	A	So, clearly it depends on whether that customer
18		is a Project A or a Project B or they're
19		interdependent. So if they are a Project A and
20		they receive a System Impact Study agreement,
21		then the study should begin very quickly. If
22		they're interdependent they might wait for a long
23		period of time. As we point out in testimony,
24		all of the delays that we've been concerned about

Г

NORTH CAROLINA UTILITIES COMMISSION

429

Feb 13 2019

1 establishing timelines for affect those later 2 queued projects. So there are examples where 3 customers are interdependent and there would be a long period of time between an interconnection 4 5 request and the start of study. 6 And by a long period of time I assume you mean it Q 7 could be three or more years; is that fair to 8 state? 9 Yeah, if that's how long it takes to clear the A А 10 and the B project. And if you happen to be 11 number 13 on a particular substation it may be 10 12 years in a serial process. 13 And, Mr. Gajda, you participated -- I'll return Q 14 my questions back to you. You participated in a 15 working group, Working Group Number 2 of the stakeholder process; is that right? 16 17 Α (Mr. Gajda) That's correct. 18 Okay. And the Working Group Number 2 proposed Q language for a new Section 1.5.2.5; is that 19 20 correct? 21 That's correct. Α 22 And that particular section pertains to the Q 23 addition of new equipment to a project and 24 whether it would constitute a material

NORTH CAROLINA UTILITIES COMMISSION

430

1		modification. That may be an over-simplification
2		but is that generally correct?
3	A	Yes.
4	Q	And that section, that 1.5.2.5 addresses the
5		material modifications for a DC coupled energy
6		storage; is that right?
7	A	That's one of the pieces in that section, yes.
8	Q	So going forward, just for clarification I'm of
9		going to be focusing on the energy storage
10		portion of that particular section. And I'll
11		begin with Duke and the stakeholders did reach
12		some agreement about what would constitute a
13		material modification during that stakeholder
14		process; is that your recollection?
15	A	We reached a very good general consensus, yes.
16	Q	And would part of the general consensus be that
17		an increase in the maximum generating capacity of
18		a generating facility constitute a material
19		modification?
20	A	I think so. If you're referring to that part of
21		the standards that we looked at editing that
22		talked about the maximum generating capacity, I
23		recall that specific edit and, yes, we agreement
24		on that.

1	Q	Yeah, I was referring to Section 1.5.1.6, and I
2		believe that Duke and the stakeholders were in
3		agreement with that provision?
4	A	I believe that's correct.
5	Q	And then Duke and the stakeholders had also
6		reached agreement that the addition of energy
7		storage on the AC side of the facility would
8		constitute a material modification; is that your
9		recollection?
10	A	That sounds correct.
11	Q	But there was a very significant fundamental
12		disagreement between Duke and the stakeholders
13		about whether energy storage would be added, so
14		if that would be added to the DC side of a system
15		would constitute a material modification; is that
16		your recollection as well?
17	A	Yes.
18	Q	And what did Duke propose in that regard that was
19		objected to by the stakeholders?
20	A	Duke looked at an additional clause which and
21		I believe it was 1.5.2.5 which described a change
22		in the DC system configuration. And I believe it
23		was that Duke realized that additional language
24		which was called around the profile,
1		production profile of the facility was going to
----	---	---
2		be key. We can talk more about it but I think
3		that's the piece that you're asking about.
4	Q	Yes, that is. And can you describe what the
5		production profile means?
6	A	Yes. So various generating facilities generate
7		at different times of the day. But really prior
8		to solar most types of interconnections that Duke
9		would consider, I'll just pick on say a
10		hydroelectric landfill gas, we can generally
11		assume that those facilities would operate any
12		time of the day or night. A solar facility was,
13		as we started to study solar, clearly recognized
14		that it would not be generating at say 3:00 a.m.
15		So the basic profile, these sort of normal
16		distribution, or sine wave, whatever you want to
17		call it, the solar production curve is accounted
18		for when we do the study. And we did that early
19		on because we knew that it really didn't make
20		sense for anyone to study what a solar facility
21		might do at three o'clock in the morning
22		especially if that was going to trigger upgrades.
23		So when we think of what a solar facility does
24		across the span of a sunny day we call that the

Г

434

1 production profile.

2	Q	And, Mr. Gajda, the stakeholders did not agree
3		with Duke. They believed that energy storage
4		should not have to be delivered during the very
5		same production profile in order to not be deemed
6		a material modification; is that your
7		recollection?

8 A It sounds generally correct.

9 And in the current study process, does Duke Q 10 always study a specific production profile? 11 Α Very complicated question but not as bad as the 12 one before. So we -- again, we do account for 13 the production profile. When you say do we 14 account for a very specific profile, that kind of 15 implies that do we account for every specific 16 minute of the day; do we study say every, all 24 17 hours of the day, and these sorts of things. 18 That goes to the question of what do we study and 19 how do we study. Do we specifically perform a 20 thermal voltage profile study, 24 of them, say 21 for example for the hour of the day? No, we 22 determined that would be unnecessary at this 23 time. It could be necessary at some point in the 24 The industry has discussed the concept future.

of an 8760 Study which refers to the number of hours in a year as being something that's a potential for the future. So we need to remember that that could be a need in the future. It's not right now. So, again, to stick with your question, we account for the fact that a solar facility generates a maximum output, and generally in the middle of the day, and we account for the fact that it's not generating at night, and then we make a number of decisions around our study cases in order to account for that.

1

2

3

4

5

6

7

8

9

10

11

12

13 Q And what is the specific period that is evaluated 14 during the System Impact Study? I think you've 15 described it as the daylight hours; is that 16 right?

17 So that depends. Our distribution studies have Α 18 evolved to look at the 9:00 a.m. to 5:00 p.m. as 19 a reasonable period of time to capture not only 20 what solar is doing during that time but then 21 what our system load is. So clearly we know that 22 on whatever perfect sunny day might occur that 23 the output at noon is going to be different than 24 the output at 9:00 a.m. But when you do an

NORTH CAROLINA UTILITIES COMMISSION

435

OFFICIAL COPY

Feb 13 2019

Feb 13 2019

1		interconnection study there's two significant
2		components. It's the output of the facility
3		itself studied against the output or, excuse me,
4		not the output, studied against the
5		characteristics of the power system at a specific
6		time or a range of time. So I'm just right now
7		just talking about a distribution study but they
8		generally consider a 9:00 a.m. to 5:00 p.m.
9		period when they go back and look for a
10		historical time when we're looking at say peak
11		load and minimum loads to study against.
12	Q	And does Duke evaluate the full output during
13		that nine to five period for distribution?
14	A	We evaluate we do not assume that the facility
15		is operating at full output during that entire
16		time. We go back during that period of time and
17		we look to see what the peak system load was
18		during that time, and we go back and also look
19		for a minimum load occurring during that time,
20		and then we align that with the maximum output of
21		the solar facility, knowing that whatever that
22		system case of say peak load is could occur any
23		time during that period of time. And we
24		essentially went back and found where that was

NORTH CAROLINA UTILITIES COMMISSION

436

1		and knew that that was a reasonable point to
2		study against. I hope that answers your
3		question. I'm just trying to capture it
4		accurately.
5	Q	Thank you. And during for the thermal voltage
6		study, does Duke study every hour during that
7		nine to five period for distribution?
8	A	So again, we do not run a specific terminal
9		voltage study for every hour like say we don't do
10		a nine, ten, eleven, twelve, et cetera. Again,
11		we go and look back for a peak load study and a
12		minimum load study. And right now at least
13		that those are the two, essentially what we
14		call boundary conditions, that we capture for
15		generation on distribution. We turn around and
16		we have to do two more studies which look at peak
17		and minimum load when the generation is not
18		online. And those are the four general studies
19		that capture all possible operating conditions on
20		the circuit.
21	Q	And when Duke is performing its study, does it
22		consider does it evaluate any times outside of
23		the daylight hours that you mentioned from nine
24		to five; for example, a winter peak loading time

1		
1		of say 8:00 a.m. or a summer peak time of 6:00
2		p.m. Does Duke evaluate 8:00 a.m. or 6:00 p.m.
3		during the System Impact Study?
4	A	For a distribution study, no, I don't believe so.
5		We, again, for a distribution study of solar we
6		specifically go ahead and look at that period,
7		that nine to five period that we mentioned a
8		minute ago.
9	Q	What about for transmission?
10	A	So transmission is a bit more complex. And with
11		transmission there's actually slightly different
12		practices in DEP and DEC. And I don't know how
13		deep you want to go, but it's done slightly
14		differently because transmission modeling is a
15		different animal. I mean, to attempt to very
16		quickly describe it, although we have provided I
17		believe in a data request, in DEP right now we
18		evaluate the output of the facility against I
19		believe it is 90 percent of the system peak. And
20		our transmission planning engineers determined
21		some time ago that that was a that captured
22		properly what that needed to capture. In DEC
23		it's very similar, and I apologize I can't
24		immediately quote it, it's very similar to that,

438

1		but I know we have provided it in data requests.
2	Q	Thank you. And even if Duke did consider a
3		had been considering a specific and detailed
4		production profile based upon certain hours, that
5		production profile could change based upon
6		equipment that might be used or substituted at
7		the site, the location, the weather, that type
8		of those types of changes. So the production
9		profile is not can be it's not a static
10		type of consideration, it can be more fluid; is
11		that correct?
12	A	That highly depends upon the facility. As you're
13		aware, we suggested in the recommended in our
14		redline that the production profile of the
15		facility be submitted, and an hourly production
16		profile. And our feeling was that could be for a
17		number of reasons, energy storage being one of
18		the them; that especially since energy storage
19		can charge and be a load at some times, not just
20		a generator, that capturing production profile.
21		The worst case scenario production profile is
22		valuable.
23		You bring up a valid point in that
24		that also then comes along with a requirement for

Feb 13 2019

1		the interconnection customer to follow whatever
2		it is it has filed in there. I mean, it goes
3		without saying Duke, as an operator of the
4		system, has a concern that the facility whether
5		or not it will hold to what it said it will do.
6		So I think this is part of the learning that
7		we're doing on how do we evaluate energy storage.
8	Q	Mr. Gajda, in regard to that comment, the
9		interconnection customer can and the utility can
10		require that limiting controls can be installed
11		to ensure that the output that the energy storage
12		delivers is as stated by the interconnection
13		customer; is that your understanding?
14	A	Yes, that's correct. And, in fact, we currently
15		allow that at a number of distribution sites.
16	Q	And for so now I'm going to ask you to
17		consider that a situation in which, if the energy
18		storage is added to the DC side of the facility,
19		and if the energy storage does not increase the
20		maximum generating capacity, and the output from
21		energy storage is added only during the same
22		periods that were studied during the System
23		Impact Study as you mentioned the example would
24		be from nine to five; do you believe that the

Feb 13 2019 OFFICIAL COPY

441

1
1

study results would change?

2 I think, with all due respect, the number of Α 3 conditions that you laid out in your question it illustrates why we can't just add that storage 4 5 and say that everything's going to be okay. Ι think -- I think -- you know, the question at 6 7 stake is not whether Duke is okay with storage 8 being added to a facility. The question is 9 whether or not it's responsible from a power 10 quality and reliability perspective to allow it 11 to happen without a study. So again, with all 12 due respect, the number of conditions that you 13 put in front of that I think is our concern. Ιt 14 has to be studied as it actually is. The fact 15 that it's DC coupled really just removes some of 16 the short circuit, and other things that I know 17 you didn't want to talk about, but the fact that 18 it's DC coupled just removes those from the study 19 process. But it doesn't change the fact that the 20 output of the facility can do different things 21 during the time of day and if that's not captured 22 during in the study then we're not capturing the 23 proper operation of the facility. 24 Well --Q

1	A	(Mr. Freeman) I just want to add something to
2		that to maybe simplify it a little bit. I mean,
3		I've seen with at least one of our solar
4		developers that has a couple of battery devices
5		that they operate and those batteries can go from
6		instantaneous off to almost instantaneous on.
7		So, I mean, it's a spike like that and then it
8		goes across and comes back down. So even inside
9		the day where even solar, the intermittency of
10		solar, it generally doesn't instantaneously go on
11		and come back off. The batteries introduce a
12		whole other complexity to Mr. Gajda's point
13		around I mean instantaneous, I'm talking
14		within cycles on/off, and that has huge
15		implications on ramping. It has huge
16		implications on the equipment that's on the
17		distribution circuit, if you're looking at
18		distribution, connected storage, with the ability
19		to manage voltage at back at the substation,
20		so it does add a significant amount of complexity
21		that does need to be studied in more detail.
22		CHAIRMAN FINLEY: But you've got a
23	ther	e's a solar project with batteries; is that right?
24		THE WITNESS: (Mr. Freeman) Well, even with

Г

1	batteries
2	CHAIRMAN FINLEY: But do you have a solar
3	facility on your system with batteries that other
4	than the R&D project that was mentioned?
5	THE WITNESS: But even even a solar
6	facility with batteries, depending on how it's
7	operated, you can see that instantaneous
8	on/instantaneous off meaning off meaning going from
9	charge to discharge. So it does create a very
10	different potentially production profile than
11	CHAIRMAN FINLEY: My question is I
12	thought you said do you have a project on DEC or
13	DEP, a solar project that has batteries connected to
14	it?
15	THE WITNESS: We do at one of our pilot
16	sites where we're
17	CHAIRMAN FINLEY: The R&D project?
18	THE WITNESS: Correct. Correct. The one I
19	was witnessing was one it was a separate project.
20	It's a smaller project that's on one of our at
21	one interconnected to one of our wholesale
22	customers.
23	BY MS. KEMERAIT:
24	Q And, Mr. Gajda, I'm going to move along hopefully

Feb 13 2019

1 pretty quickly about the studies that are 2 performed during the System Impact Study. So to 3 have this move along quickly I'm going to provide a statement and if it's not correct please 4 correct what I'm stating. But for the studies 5 6 performed during the System Impact Study from the 7 data request that Duke provided, it's my 8 understanding that the studies are the Stability 9 Analysis, the Short Circuit Study, the Protection 10 Study, and the Thermal Voltage Study, and then 11 the Rapid Voltage Change and Flicker Analysis; is 12 that correct? 13 That sounds correct. Α 14 Q And when DC coupled energy is added to a 15 facility, the only study of the ones that I just 16 mentioned that could potentially change would be 17 the Thermal and Voltage Study; is that correct? 18 I believe -- in the data request or testimony I А 19 believe we said that it could be Thermal or 20 Voltage, Thermal/Voltage, or a Stability Study I 21 believe. Either one could be impacted. 22 But the Short Circuit Study or the Protection Q 23 Study would not be impacted, correct? 24 Α That would be our expectation.

1	Q	And so if Duke were to consider or to evaluate
2		whether the addition of energy storage could be
3		safely interconnected you would not have to
4		repeat the Short Circuit Study or the Protection
5		Study?
6	A	Correct. We would not expect to.
7	Q	And in regard to the Thermal Voltage Study and
8		potentially the Stability Analysis, although, my
9		recollection was is that Duke only referred to
10		the Thermal Voltage Study as a study result that
11		could potentially change, but based upon your
12		testimony, we'll talk about Stability Analysis
13		and the Thermal Voltage Study results. If Duke
14		were to consider whether the addition of energy
15		storage that would be provided during the time of
16		the study period or right outside the time of the
17		study period, you would not have to as
18		Mr. Riggins mentioned perform those studies all
19		over again; is that correct?
20	A	(Mr. Gajda) I'm sorry. I was flipping to the
21		section that you were talking about, so could you
22		just repeat that?
23	Q	If Duke were to consider whether the addition of
24		energy storage let's say, for example, at the

Feb 13 2019

1		6:00 time to help with peak loading would change
2		the study results, you would not have to perform
3		the Thermal Voltage Study or the Stability
4		Analysis all over again; is that correct?
5	A	Well, no, I believe there's a high probability we
6		would have to potentially do that. I mean,
7		again, you're referencing it operating at 6:00
8		for say peak time, but that's our peak may or
9		may not always be at exactly 6:00, so this is
10		where kind of the complication ensues on
11		assumptions about when it would operate. We have
12		to we have to know when it's going to operate
13		and how it's going to operate. And the Stability
14		Analysis takes into account the flows on the
15		system and so that's why it has a relation to the
16		thermal voltage so that's why either of those
17		could be impacted, because you are you're
18		operating the facility in a different manner than
19		what the study potentially originally called for.
20	Q	Mr. Riggins, did you state earlier though that
21	~	the studies could be performed in a more
22		expedited manner and would take considerably less
23		time? Was that your testimony earlier?
24	Δ	(Mr. Biggins) So my testimony was really more
<u>، م</u>	* 7	(III. REGISTIO, SO MY COOLIMONY WAS ICALLY MOLE

Feb 13 2019

1		reflective of some of the components in the
2		System Impact Study. So when I was saying that
3		I'm thinking about the LVR, line voltage
4		regulator, if there was one of those then you go
5		into sometimes protected time periods where
6		you're looking for right-of-way and looking for
7		ways to build to a point above that device. My
8		assumption was that an existing facility you
9		know, if we're just talking about adding storage,
10		that we don't have to go back and do that, and
11		certainly that would be more efficient than
12		having to do the whole System Impact Study. I
13		was not referring to the particular components
14		that Mr. Gajda is referring to.
15	Q	Okay. And, Mr. Gajda, approximately how long
16		does it take to perform the Power Flow Analysis
17		and the Stability Analysis?
18	A	(Mr. Gajda) Well, on the so we're kind of
19		back I think to the transmission side and it
20		takes several several weeks perhaps of
21		uninterrupted time is what a Thermal Voltage
22		Analysis would take. Stability analyses can
23		highly vary and they're vary labor intensive so I
24		can't give you a good quote on stability

1	analyses.	
2	Q Thank you very much.	
3	MS. KEMERAIT: That's all the questions I	
4	have.	
5	CHAIRMAN FINLEY: Okay. Let's come back	
6	tomorrow at 9:30.	
7	(WHEREUPON, the proceedings were adjourned, and will	
8	resume tomorrow at 9:30 a.m.)	
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		

CERTIFICATE I, KIM T. MITCHELL, DO HEREBY CERTIFY that the Proceedings in the above-captioned matter were taken before me, that I did report in stenographic shorthand the Proceedings set forth herein, and the foregoing pages are a true and correct transcription to the best of my ability. Kim T. Mitchell Kim T. Mitchell Court Reporter

NORTH CAROLINA UTILITIES COMMISSION