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Executive Summary 

Guidehouse Inc. (Guidehouse) conducted an impact evaluation to estimate demand response 
(DR) impacts from events occurring in the 2020/2021 season, using participant and non-
participant advanced metering infrastructure (AMI) interval data. Guidehouse also performed a 
separate evaluation in 2020 to estimate energy impacts contributed by participants that received 
the thermostat between January 2018 and February 2019, using monthly energy consumption 
data, included in Appendix B  

The EnergyWise® Business (“EnergyWise Business”) program in the Duke Energy Progress 
(DEP) and Duke Energy Carolinas (DEC) territories, provides small and medium business 
customers that consume an average of at least 1,000 kWh per month and have one or more 
central air conditioning or heat pump units at their facility, with an opportunity to earn bill credits 
by allowing DEP and DEC to periodically cycle their HVAC equipment during conservation 
periods (i.e. curtailment or DR events). 
 
In the summer, participating devices may be controlled by DEP and DEC from May through 
September for up to four hours per event. Events occur on non-holiday weekdays, and in 2021 
occurred between 4pm and 7pm. During the curtailment events, the HVAC compressors are 
typically cycled in 30-minute intervals for the duration of the event. Participants may opt out of 
up to two events per season. Additional opt-outs may result in the forfeiture of the annual bill 
credit. Participants who have electric heat pumps with electric resistance auxiliary heat strips 
can also participate in the winter DR season for an additional $25 bill credit. For the winter 
2020/2021 season, events occurred in the morning from 6:30am to 8:30am, around the peak 
demand hour of 7-8am. 
 
Participants may elect to have curtailment dispatched via thermostat or switch. Participants 
equipped with the thermostat (the majority) can access the EnergyWise Business portal using a 
smartphone, tablet, or computer. The portal allows users to monitor and modify their facility 
HVAC runtimes, change the temperature setpoints, and program customized cooling and 
heating schedules. The purpose of the portal is to facilitate the adoption of energy efficiency 
behaviors by participants, specifically the practice of adjusting HVAC setpoints to reduce space 
heating and cooling energy consumption. The portal includes tips to help participants optimize 
energy use, including tutorials and preset features for energy efficiency, away times, and 
vacations.  

Over the course of the 2020/2021 DR season, the program had more than 9,000 participants 
(accounts), in four distinct groups, defined by season (winter or summer) and combinations of 
selected control strategy (30%, 50%, or 75% cycling) and control device type (thermostat or 
switch). DEP and DEC called ten DR events, five in winter and five in summer. On average, 
there were 528 participants (accounts) in winter events and 8,927 in summer events. 

Table 1 and Table 2 show average per participant impacts for each of the ten events, by energy 
provider, for the winter and summer seasons respectively. These estimated impacts correspond 
to actually-observed curtailment events – the “ex-post” impacts. In addition to showing per 
participant impacts, the table also lists event temperatures, relative precision, and total number 
of participating accounts. 
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Table 1. Average Per Participant Demand Response Event Impacts, Winter  

Event Date 
Energy 

Provider 

Avg. Event 
Temperature 

(°F) 

Impact Per 
Participant 

(kW) 

Relative Precision 
+/-% 

(90% Confidence) 

Participants 
(Accounts) 

1/11/2021 DEC 33.7 0.88 26.4% 445 

1/29/2021 DEC 24.8 1.10 26.4% 448 

2/2/2021 DEC 32.7 0.88 26.4% 448 

2/4/2021 DEC 25.8 1.07 26.4% 449 

3/8/2021 DEC 31.4 0.96 26.4% 463 
      

Average DEC 29.7 0.98 26.4% 451 
      

1/11/2021 DEP 33.7 0.88 26.4% 77 

1/29/2021 DEP 24.8 1.10 26.4% 77 

2/2/2021 DEP 32.7 0.88 26.4% 77 

2/4/2021 DEP 25.8 1.07 26.4% 77 

3/8/2021 DEP 31.4 0.96 26.4% 77 
      

Average DEP 29.7 0.98 26.4% 77 
Source: Guidehouse analysis. Values subject to rounding. 

 
Table 2. Average Per Participant Demand Response Event Impacts, Summer 

Event Date 
Energy 

Provider 

Avg. Event 
Temperature 

(°F) 

Impact Per 
Participant 

(kW) 

Relative Precision 
+/-% 

(90% Confidence) 

Participants 
(Accounts) 

5/26/2021 DEC 87.6 1.03 4.9% 6,937 

7/28/2021 DEC 89.1 1.10 4.7% 6,281 

7/30/2021 DEC 91.4 1.16 4.7% 6,258 

8/12/2021 DEC 86.7 1.06 4.7% 6,155 

8/24/2021 DEC 91.3 1.18 4.7% 6,137 
      

Average DEC 89.2 1.11 4.7% 6,354 
      

5/26/2021 DEP 87.6 1.11 4.4% 2,970 

7/28/2021 DEP 89.1 1.21 4.3% 2,520 

7/30/2021 DEP 91.4 1.27 4.3% 2,502 

8/12/2021 DEP 86.7 1.17 4.3% 2,444 

8/24/2021 DEP 91.3 1.30 4.3% 2,432 
      

Average DEP 89.2 1.21 4.3% 2,574 
Source: Guidehouse analysis. Values subject to rounding. 

The estimated total program impacts for each energy provider and event season are shown in 
Table 3. Average total event impacts are calculated by multiplying the per-participant impacts by 
the average number of participants across all events, per energy provider and season. Since 
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Guidehouse used a pooled regression model with DEC and DEP consumption data, impacts are 
identical by cycling strategy and device type. Therefore, impacts for the winter season are 
identical for the two energy providers because only one participant group exists in winter 
(thermostat, complete curtailment). For summer events, results differ by energy provider as a 
result of differing distributions of customers among cycling strategies and device types. The 
number of participants in each event varies due to new enrollments, withdrawals, and opt-outs.  

Table 3. Aggregate Demand Response Event Impacts by Energy Provider 

Event 
Season 

Energy 
Provider 

Avg. Event 
Temperature 

(°F) 

Impact Per 
Participant 

(kW) 

Relative Precision 
+/-% 

(90% Confidence) 

Avg # 
Participants 

Total 
Program 
Impact 
(MW) 

Winter 
DEC 29.7 0.98 26.4% 451 0.4 

DEP 29.7 0.98 26.4% 77 0.1 

Summer 
DEC 89.2 1.11 4.7% 6,354 7.0 

DEP 89.2 1.21 4.3% 2,574 3.1 
Source: Guidehouse analysis. Values subject to rounding. 

The estimated per device program impacts by technology type, cycling strategy, and event 
season (winter/summer) are shown in Table 4. Estimated impacts are identical for the two 
energy providers because this analysis uses a regression model applied to pooled DEC and 
DEP consumption data. 

Table 4. Average Per Device Demand Response Event Impacts by Technology Type and 
Cycling Strategy 

Event 
Season 

Energy 
Provider 

Technology 
Type 

Cycling 
Strategy 

Impact Per 
Device (kW) 

Relative 
Precision +/-% 

(90% 
Confidence) 

Avg # 
Devices 

Winter 
DEC Thermostat - 0.59 26% 1.66 

DEP Thermostat - 0.59 26% 1.66 
       

Summer 

DEC 

Thermostat 

30% 0.49 7% 1.74 

50% 0.92 7% 1.77 

75% 1.06 8% 2.29 

Switch 

30% 0.34 45% 1.61 

50% 0.55 31% 1.99 

75% 0.35 96% 2.05 

DEP 

Thermostat 

30% 0.49 7% 1.74 

50% 0.92 7% 1.77 

75% 1.06 8% 2.29 

Switch 

30% 0.34 45% 1.61 

50% 0.55 31% 1.99 

75% 0.35 96% 2.05 
Source: Guidehouse analysis. Values subject to rounding. 
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This report also includes projections of the program’s demand response capability under a 
variety of different temperatures, assuming no change in the composition of the program 
participants (e.g., no change in the proportion that subscribe to 30% cycling, that use switches, 
etc.) 

Evaluation Methods 

Guidehouse’s evaluation approach for this report focuses on demand impacts.  

Demand Response Impact Evaluation Approach 

Guidehouse estimated demand reduction and snapback impacts using a lagged dependent 
variable regression analysis applied to interval consumption, weather (dry-bulb temperatures), 
and program tracking data. To maximize the number of participants in each group of device type 
and cycling strategy, Guidehouse analyzed DEP and DEC customers together.  

Guidehouse used a matched comparison group (MCG) to estimate savings. In this approach, 
non-event days with similar temperatures to the event days are selected. Consumption data on 
non-event days are used for selecting a comparison group of non-participants that are similar to 
participants. The underlying assumption is that consumption of similar non-participants informs 
the baseline demand of participants on event days. 

Guidehouse calculated program impacts by multiplying estimated per participant impacts by the 
average number of participants across all events in a season. Impacts per device were 
calculated by dividing the per participant results by the average number of devices at each 
participant site. Similarly, impacts per energy provider were calculated by multiplying estimated 
per participant impacts by the average number of participants per energy provider across 
events.  

Based upon the regression estimated relationships between DR impacts and outdoor 
temperature from which the above impacts were developed, Guidehouse estimated an ex-ante 
forecast of event impacts. Ex-ante estimates are Guidehouse’s projection of how much DR the 
program could offer under a range of different possible temperatures at different cycling levels, 
for the different technologies and event day types. This forecast of capability provides an 
estimate of a given DR program’s value as a system resource and how much of a demand 
reduction the program may be counted on to deliver in future system peak conditions.  

Findings and Recommendations 

The principal EM&V findings and recommendations regarding the estimated demand impacts 
are as follows: 

• On average, the program delivered approximately 0.5 MW of load curtailment 
during winter events, and approximately 10.1 MW of load curtailment during 
summer events. For DEC, this amounts to 0.4 MW of estimated load curtailment in 
winter and 7 MW of estimated load curtailment from in summer. Estimated load 
curtailment for DEP is approximately 0.1 MW in winter and 3.1 MW in summer. The 
program-level impacts for each event vary depending on the number of participants, the 
temperature, and other factors. 
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• On average, the program delivered nearly 1 kW of demand response per 
participant during winter events, and over 1.1 kW of demand response per 
participant during summer events. For DEC, this amounts to 0.6 kW of demand 
response per device in both winter and summer. Estimated curtailment per device for 
DEP is approximately 0.6 kW per device in winter and 0.7 kW per device in summer.  

• The results of the ex-post evaluation informed the development of ex-ante forecast of 
program capability across a range of temperatures at different cycling levels, which can 
be used for calculating benefits for cost-effectiveness tests. For summer events at an 
assumed temperature of 95°F, ex-ante impacts are estimated to be 0.8 kW per 
thermostat device and 0.5 kW per switch device. During winter events at an assumed 
temperature of 20°F, thermostats are estimated to deliver 0.7 kW of curtailment per 
device.  

• Thermostats deliver greater relative impacts for events in both seasons compared 
to load control switches. While no switch impacts were measured for winter 
events, thermostat impacts are materially higher than switch impacts during 
summer events. On average across cycling strategies, thermostats delivered demand 
reductions during summer events of 13% of total facility baseline load, and switches 8%. 
During winter events, thermostats deliver demand reductions of approximately 14% of 
total facility baseline load. According to Duke program staff, this may be because 
participants with switches tend to have smaller HVAC equipment. 

• Participants that have selected the 75% cycling strategy deliver the highest per 
participant impacts for summer events. During summer events, 75% cycling strategy 
participants deliver an average impact equivalent to 27% of their estimated facility 
baseline demand. In contrast, 30% and 50% cycling strategy participants delivered an 
average impact of approximately 9% and 19% of their baseline demand, respectively. 

Based on the impact findings above, Guidehouse recommends that Duke Energy consider the 
following recommendations:  

• Consider using future process evaluations to better understand differences in 
businesses that enroll in each cycling strategy. Consistent with expectations, 
Guidehouse estimated significantly greater savings for participants enrolled in the 75% 
cycling strategy during demand response events than for the 30% and 50% cycling 
strategies. Because of the high impact being delivered, Duke Energy may want to further 
explore characteristics of this group of participants to better target similar businesses in 
the future, through participant surveys or interviews. 

• Continuing to evaluate the program on an annual basis, particularly if enrollment 
changes in any material way. The total number of enrolled participants is over 9,000, 
and the energy use at commercial facilities is generally more heterogeneous than at 
residential facilities. This means that the average participant (and aggregate program) 
impacts and capability could change materially as a result of relatively modest changes 
in the absolute number of participants enrolled, or if the distribution of participants across 
cycling strategies shifts. Duke Energy should carefully consider this when using the 
capability estimates provided above for any planning exercises. 
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1. Introduction 

The EnergyWise® Business (“EnergyWise Business”) program in the Duke Energy Progress 
(DEP) and Duke Energy Carolinas (DEC) territories, provides small and medium business 
customers that consume an average of at least 1,000 kWh per month and have one or more 
central air conditioning or heat pump units at their facility, with an opportunity to earn bill credits 
by allowing DEP and DEC to periodically cycle their HVAC equipment during conservation 
periods (i.e. curtailment or demand response events). 
 
Upon enrollment, eligible participants select to receive either: (1) a “smart” Wi-Fi communicating 
thermostat1 capable of remote set-point adjustment, (2) or a switch device, to allow DEP and 
DEC to cycle the participant’s HVAC during DR events. The switch device may be either Wi-Fi 
connected or cellular. Participants may select one of three options for participating: 

• 30% Cycling - Participants receive an annual bill credit of $50 per device controlled for 

the summer season. 

• 50% Cycling - Participants receive an annual bill credit of $85 per device controlled for 

the summer season. 

• 75% Cycling - Participants receive an annual bill credit of $135 per device controlled for 

the summer season. 

 
In the summer, participating devices may be controlled by DEP and DEC from May through 
September, for up to four hours per event. Events occur on non-holiday weekdays and in 2022, 
occurred between 4pm and 7pm. During the curtailment events, the HVAC compressors are 
cycled in 30-minute intervals for the duration of the event. Participants may opt out of up to two 
events per season. Additional opt-outs may result in the forfeiture of the annual bill credit. 
Participants with electric heat pumps or electric resistance heating can also participate in the 
winter DR season for an additional $25 bill credit. For the winter season, events occurred in the 
morning from 6:30am to 8:30am, around the peak demand hour of 7 to 8am. 
 
Participants with the thermostat can access the EnergyWise Business portal using a 
smartphone, tablet, or computer. The portal allows users to monitor and modify their facility 
HVAC runtimes, change the temperature setpoints, and program customized cooling and 
heating schedules. The purpose of the portal is to facilitate the adoption of energy efficiency 
behaviors by participants, specifically the practice of adjusting HVAC setpoints to reduce space 
heating and cooling energy consumption. The portal includes tips to help participants optimize 
energy use, including tutorials and preset features for energy efficiency, away times, and 
vacations.  

1.1 Objectives of the Evaluation 

The key objectives for the impact analysis of this evaluation, as identified in Guidehouse Inc.’s 
(Guidehouse) evaluation plan, include: 

• Demand Response Impacts: estimate the demand response impacts for events called by 
the program during 2020/2021 DR season and provide estimates of curtailment capability 

1 Note that this is not an “adaptive” thermostat. 
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for a range of temperatures (with emphasis on impacts coincident with DEC/DEP seasonal 
system peaks).  

• Energy Efficiency Impacts: estimate the annual energy efficiency impacts for participants 
who have a thermostat and enrolled in the program between January 2018 and February 
2019 (included in this report as Appendix B). 

1.2 Reported Program Participation 

1.2.1 Demand Response Enrollment  

Enrollment for the demand response program extended from 2016 into 2021, as participants are 
eligible to enroll at any time, upon installation of a thermostat or switch device. Over 9,000 
accounts participated in at least one event in the 2020/2021 season. Of these, close to 550 
accounts also opted into the winter event season. Most participants enrolled in the 30% cycling 
strategy with the smart thermostat control technology. All winter participants and 94% of 
summer participants have the smart thermostat. The distribution of the average number of 
participants included in the analysis by energy provider, technology type, and cycling strategy is 
summarized in Table 1-1. 

Table 1-1. Distribution of Participants by Cycling Strategy and Technology 

Event Season 
Energy 

Provider 
Device Type 

Cycling 
Strategy 

Participants 
(Accounts) 

Winter 
DEC Thermostat - 463 

DEP Thermostat - 77 

Summer 

DEC 

Thermostat 30% Cycling 5,232 

Thermostat 50% Cycling 928 

Thermostat 75% Cycling 601 

DEP 

Thermostat 30% Cycling 248 

Thermostat 50% Cycling 92 

Thermostat 75% Cycling 72 

DEC 

Switch 30% Cycling 1,898 

Switch 50% Cycling 653 

Switch 75% Cycling 280 

DEP 

Switch 30% Cycling 130 

Switch 50% Cycling 40 

Switch 75% Cycling 27 

  Source: Guidehouse analysis of Duke Energy data 

Figure 1-1 shows the geographic distribution of participants. Most installations occurred around 
cities including Charlotte and Raleigh, although participation was achieved throughout the 
service territories. 
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Figure 1-1. Geographic Distribution of Participants 

 
Source: Guidehouse Analysis of Duke Energy data 
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2. Evaluation Methods 

2.1 Demand Response Impact Methodology 

Guidehouse estimated demand reduction and snapback impacts using a lagged dependent 
variable regression analysis applied to interval consumption, weather (dry-bulb temperatures), 
and program tracking data. To maximize the amount of participants in each group of device type 
and cycling strategy, Guidehouse analyzed DEP and DEC customers together.  

Guidehouse used a matched comparison group (MCG) to estimate savings. In this approach, 
non-event days with similar temperatures to the event days are selected. Consumption data on 
non-event days are used for selecting a comparison group of non-participants that are similar to 
participants. The underlying assumption is that consumption of similar non-participants informs 
the baseline demand of participants on event days. 

Guidehouse estimated both ex-post and ex-ante impacts. Ex-post impacts are the average 
impacts of observed (historical) events. Ex-ante impacts are projections of the program’s 
capability at a range of different temperatures. This forecast of capability provides the truest 
estimate of a given DR program’s value as a system resource because it provides DEC and 
DEP staff with an understanding of how much of a demand reduction the program may be 
counted on to deliver in future system peak conditions. 

2.1.1 Participant, Event, and Weather Data 

For the demand response evaluation, Guidehouse used the following data provided by Duke 
Energy: 

• AMI consumption (kWh) data in 30 minute intervals, for DEC and DEP participants and 
non-participants 

• A list of participants, including enrollment dates, technology, cycling strategy, and 
changes over the season 

• Event reports for all 2020/2021 events, including cycling strategy, and event times 

• Opt-out reports for each event, indicating which customers did not participate in each 
event 

• Program disenrollment data for all participants 

In total, Duke Energy called ten events, including five events in winter and five events in 
summer. Listed in Table 2-1, all events were on weekdays and included the hour coincident with 
the seasonal system peaks for the DEP and DEC territories (7 – 8 AM in winter, 4 – 5 PM in 
summer). 
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Table 2-1. 2020/2021 Events and Average Temperatures  

Event Date Season Start End Average Event Temperature (°F) 

1/11/2021 Winter 6:30 AM 8:30 AM 33.7 

1/29/2021 Winter 6:30 AM 8:30 AM 24.8 

2/2/2021 Winter 6:30 AM 8:30 AM 32.7 

2/4/2021 Winter 6:30 AM 8:30 AM 25.8 

3/8/2021 Winter 6:30 AM 8:30 AM 31.4 

5/26/2021 Summer 4:30 PM 6:30 PM 87.6 

7/28/2021 Summer 4:00 PM 6:00 PM 89.1 

7/30/2021 Summer 4:00 PM 6:00 PM 91.4 

8/12/2021 Summer 4:00 PM 6:00 PM 86.7 

8/24/2021 Summer 4:00 PM 6:00 PM 91.3 
Source: NOAA 

Guidehouse collected hourly dry-bulb temperature data for the period of November 2020 
through September 2021 from eight weather stations across the Carolinas and developed a 
weighted average hourly time series for the analysis based on the number of participants 
closest to each station, per season. This time series was then used in subsequent matching and 
modeling to estimate demand response event impacts. The stations and corresponding weights 
are listed in Table 2-2.  

Table 2-2. Weather Stations and Weighting Used for Demand Response Analysis 

Weather Station 
Weight 

(Winter Events) 

Weight 

(Summer Events) 

Charlotte Douglas International Airport 32% 25% 

Raleigh-Durham International Airport 7% 22% 

Piedmont Triad International Airport 26% 17% 

Spartanburg Downtown Memorial Airport 15% 15% 

Hickory Regional Airport 11% 6% 

Asheville Regional Airport 3% 6% 

Fayetteville Regional Airport 2% 5% 

Wilmington International Airport 2% 4% 
Source: Guidehouse analysis of Duke Energy data and NOAA data  

For winter events, daily minimum temperatures were similar for all event days, between 24°F 
and 32°F. Daily peak temperatures for summer event days ranged from 90°F to 93°F. As 
illustrated in Figure 2-1 and Figure 2-2, events took place on days with some of the most 
extreme temperatures of the season. 
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Figure 2-1. Daily Minimum Temperatures for the 2021 Winter Demand Response Season 

 
Source: Guidehouse analysis and NOAA data 

 
Figure 2-2. Daily Peak Temperatures for the 2021 Summer Demand Response Season 

 
Source: Guidehouse analysis and NOAA data 

For DR Impacts, Guidehouse used a single model combining both DEP and DEC participants. 
This method was used to maximize the number of participants – and therefore confidence and 
precision of estimates – for certain groups with few participants (e.g. those with a switch in the 
75% cycling strategy). Table 2-3 lists the number of participants who participated in at least one 
event for each event type, technology, and cycling strategy. Most participants were in the 
thermostat, 30% cycling group. A small number of participants switched cycling strategies or 
withdrew from the program, and participants may have opted-out of as many as two events 
during the season without penalty. The most opt-outs occurred on August 12, specifically 123 
out of 8,193 thermostat participants and 1 out of 583 switch participants.  
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Table 2-3. Participants by Event Season, Technology, and Cycling Strategy 

Season Technology Cycling Strategy 
Participants* 
(Accounts) 

Winter Thermostat - 540 

Summer 

Switch 

30% 378 

50% 132 

75% 99 

Thermostat 

30% 7,130 

50% 1,581 

75% 881 
  Source: Guidehouse analysis of Duke Energy data 

* The number of participants that participated in at least one event for a given event type, 
technology, and cycling strategy. Participation varies between events due to different enrollment 
dates, opt-outs, drop-outs, deactivations, or changes in cycling strategy and/or technology. Forty-
seven participants had a mix of both thermostats and switches and were excluded from the 
analysis as impacts could not be distinguished between the different technologies.  

 

Guidehouse reviewed the data to ensure its completeness, identifying any gaps or potential 
outlier data, and addressing any issues accordingly. After review of the AMI data provided by 
Duke Energy, Guidehouse found that interval data was not available for all customers on all 
days. Table 2-4 lists the number of participants that were found to be missing some data (e.g. 
one or more days in the season) for each technology, cycling strategy, and event type. 
Generally, these participants were missing data for one event, and so were still included in 
Guidehouse’s analysis for all other events. Across all groups, 707 customers lacked AMI data 
throughout the entire period of analysis; however, around 80% of these 707 accounts 
deactivated after the first event, so are only missing data for a single day of analysis. 

Table 2-4. Participants with Some Missing Some Interval Data 

Event 
Season 

Technology 
Cycling 
Strategy 

Participant Accounts with 
Missing Usage Data 

% of 
Accounts 

Winter Thermostat - 10 2% 

Summer 

Thermostat 

30% 709 10% 

50% 64 4% 

75% 37 4% 

Switch  

30% 37 10% 

50% 11 8% 

75% 15 15% 
Source: Guidehouse analysis of Duke Energy data 

The vast majority of missing data is attributed to a lack of AMI data. Participants also may have 
been missing data on specific event days and/or the corresponding matched non-event day. 
Missing data could occur for different reasons, for example: a participant may not have an AMI 
meter installed (i.e., missing data for the entire season); or if database or meter read errors 
occurred for some days. Customers that were missing data were not included when estimating 
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average per participant impacts; however, Guidehouse included these participants when scaling 
per participants impacts by total participation in each event to calculate aggregate per 
participant impacts. This method assumes that those participants with AMI data (the majority) 
are representative of those without.  

2.1.2 Selecting a Matched Control Group 

Selecting an appropriate matched control group for participants in the program involves two 
steps: (1) selecting matched non-event days; and (2) selecting a non-participant match for each 
participant based on a comparison of participant and non-participant demand patterns on the 
matched non-event days. 

Guidehouse first selected a matched non-event day for each event day. This process involves 
finding the non-holiday, non-event weekday in the DR season that most closely matches the 24 
hour temperature profile of each event day. Guidehouse calculated the Euclidean distance in 
temperature for all 24 hours between each event day and all potential non-event day 
candidates. Guidehouse then selected the top three non-event days associated with the lowest 
values. Matches are selected with replacement, meaning that a given non-event day could be 
matched to multiple event days. Under the circumstance that a customer is missing data for the 
best match for a given event day, the next best match day was used.  

Table 2-5 lists the top matched non-event date selected for each 2021 event date. Figure 2-3 
shows an example for the event occurring on August 24, 2021, which was matched to August 
30, 2021. The similarity in weather profile across all 24 hours suggests that the demand of 
participants would be similar between both days in absence of a DR event. Therefore, the 
selected non-event day serves two purposes: (1) serving as a predictor of demand on event 
days; and (2) providing an “event-like” non-event day with which to select appropriate non-
participants that are most like participants. 

Table 2-5. Top Matched Non-Event Date for Each 2021 Demand Response Event Date 

Event Season Event Date Top Matched Non-Event Date  

Winter 

1/11/2021 12/15/2020 

1/29/2021 12/8/2020 

2/2/2021 1/28/2021 

2/4/2021 2/8/2021 

3/8/2021 2/23/2021 

Summer 

5/26/2021 5/27/2021* 

7/28/2021 8/30/2021 

7/30/2021 7/29/2021 

8/12/2021 8/10/2021 

8/24/2021 8/30/2021 
   Source: Guidehouse analysis and NOAA data 

* For the event on May 26, 2021, match days were limited to other days in May to 
ensure a more representative match was selected. Although the most similar 
weather to this event day occurred in later months, behavioral changes occur in 
usage patterns from early to late summer. As a result, selecting another day in 
May more accurately controls for unobserved factors that may impact demand. 
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Figure 2-3. Hourly Temperatures for Event (2021-08-24) and Matched Non-Event (2021-08-
30) 

 

Source: Guidehouse analysis of Duke Energy data 

After identifying matched non-event dates, Guidehouse identified a non-participant match for 
each program participant. Selecting a match for a given participant means finding the non-
participant whose usage across all selected non-event days is most like the participants usage. 
For each participant, the process includes the following steps: 

1. Calculate the average 24-hour usage profile across all matched non-event days. 

2. Calculate the average 24-hour usage profile for each non-participant across all matched 
non-event days. 

3. Calculate the Euclidean distance2 between the participant usage profile and each non-
participant usage profile. 

4. Select the non-participant associated with the lowest value (i.e., the one whose profile is 
most similar to the participant being matched). 

Matches are selected with replacement, meaning that a non-participant may be matched to 
multiple participants. 

2 Euclidean distance is calculated by taking the square root of the sum of squared differences between the two 
vectors (participant and non-participant demand over 24 hours). 
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Figure 2-4 shows a comparison in average usage profiles between all participants and their 
selected matches for all winter and summer selected non-event days. Overall, the matches and 
participants showed similar usage profiles in both event seasons. For example, for summer  
events, the participants and matches have very similar profiles over all hours. The matching 
process does not (and is not expected to) deliver an exact match between participant and 
control group demand on non-event days – some deviations between average participant and 
control demand patterns are inevitable. For example, for winter events, participants show 
consistent, slightly lower usage between hours ending 10 and 18.  

Figure 2-4. Average Demand for Participants and Matched Controls by Event Season 

 

Source: Guidehouse analysis of Duke Energy data 

The process of matching is not expected to produce perfect controls, but instead to find the 
closest non-participants possible. Small businesses tend to exhibit heterogenous usage 
patterns, meaning that very few customers will have an exact match among the non-participant 
population. To account for any remaining differences between participants and their matched 
controls, Guidehouse employed a lagged dependent variable model in the regression analysis 
described in Section 2.1.3. This method relies on the assumption that any differences between 
participants and matched controls on non-event days is consistent with the differences that 
would be expected on event days, precisely the reason why the most weather-similar non-event 
days are selected for matching.  

2.1.3 Estimating Ex-Post and Ex-Ante DR Impacts 

Guidehouse estimated 7 sets of ex-post impacts: one set for winter and one set for each 
summer event combination of technology (thermostat and switch); and cycling strategy (30%, 
50%, and 75%). Guidehouse aggregated these granular impacts to present impacts by event 
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season, by technology, and by cycling strategy3. To maximize the sample size, Guidehouse 
used a pooled regression model combining both DEC and DEP data. As a result, at the per 
participant level by technology and cycling strategy, impacts are identical for the two energy 
providers. To estimate impacts, Guidehouse used a lagged dependent variable model, that 
estimates customer load on a per participant basis as a function of the event hours, snapback in 
post-event hours, lagged non-event day usage, temperature, humidity, and hourly fixed effects. 
Only event day data is included in the regression model, although matched non-event day data 
informs the baseline through the lagged usage variable.  

Lagged non-event day usage refers to including directly in the regression equation usage for 
each customer (participants and non-participants) and event day from the corresponding 
matched non-event day. For example, for a given customer in half-hour-ending 13 on the first 
event day, then this variable would take the value of that same customer’s consumption in half-
hour-ending 13 of the corresponding non-event day used for matching purposes. 

Guidehouse used six different temperature variables in the current analysis, dependent upon 
the event season impacts being estimated. For winter events, the following weather variables 
were used: 

• Heating degree hours, base 65°F (HDH65) – accounts for the contemporaneous 
temperature during each interval (i.e. half hour) of an event; 

• 3-hour exponential moving average of HDH65 – accounts for short-term temperature 
history and mitigates the effect of rapid temperature variations, such as storms; 

• 72-hour cold buildup term – accounts for long-term temperature history, and 
incorporates the effect of consistently low temperatures, such as a cold spell, that 
increase heating demand. 

For summer events, the following weather variables were used: 

• Cooling degree hours, base 65°F (CDH65) – accounts for the contemporaneous 
temperature during each interval (i.e. half hour) of an event; 

• 3-hour exponential moving average of CDH65 – accounts for short-term temperature 
history and mitigates the effect of rapid temperature variations, such as storms; 

• 72-hour heat buildup term – accounts for long-term temperature history, and 
incorporates the effect of consistently high temperatures, such as a heat wave, that 
increase cooling demand. 

Formal model specifications with additional input variable detail may be found in Appendix A. 

All estimates of uncertainty presented in this report are derived from standard errors that have 
been clustered at the individual participant level. Since the current analysis includes estimating 
impacts relative to baseline usage on matched non-event days, the DR impacts can be 
considered as incremental relative to any demand savings realized through consistent shifts in 

3 Cycling strategy is not relevant for winter analysis, as all customers are controlled in the same way. 
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participant behavior (e.g., changes in programmed setpoints) associated with the installation of 
the technology. 

For winter events, Guidehouse estimated ex-ante impacts for the temperature range of 20°F to 
40°F based on the range of observed minimum temperatures on event days which were 
between 24°F and 32°F. For summer events, Guidehouse estimated ex-ante impacts for the 
temperature range of 85°F to 95°F based on the range of observed peak temperatures on event 
days which were between 90°F and 93°F. The ex-ante estimates leverage this temperature 
range and the impact parameter estimates from the ex-post impact regression analysis for hour 
ending 8 and hour ending 17, for winter and summer events, respectively. Finally, the ex-ante 
estimate for a given temperature X assumes that temperature has remained constant for at 
least the previous 3 hours. This assumption is a construction of the regression model that uses 
the 3-hour exponential moving average of CDH65 or HDH65 which mitigates sudden changes in 
temperature. 

 Ex-ante estimates will be highly sensitive to the range of event temperatures and the 
characteristics of participant, so should be considered prudently. The range of event day 
temperatures for this evaluation was relatively narrow, particularly for summer events. There 
were also several technology and cycling strategy groups (e.g. switches in all cycling groups) 
where the number of enrolled participants was small with fewer than 150 participants. These 
small sample sizes mean that there is higher uncertainty in these impact estimates. Finally, 
impacts could be altered by future enrollment. A considerable portion of participants were 
medium-size customers with peak demand greater than 30 kW. Since most customers have 
peak demand around 10 kW, these larger customers can influence results. Enrollment of 
additional large customers could also generate different impacts. 
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3. Impact Findings 

This chapter provides a detailed summary of the impact findings, and is divided into five 
sections: 

• Demand Response Events – Ex Post Impacts. This section provides the estimated 
impacts of A/C curtailment during the ten demand response events observed in 2020/2021. 

• Forecast Curtailment Capability – Ex-Ante Impacts. This section provides the estimated 
DR capability of load curtailment across a variety of different temperatures. 

• Net to Gross. This section describes the assumptions informing the net-to-gross ratio 
applied in this evaluation. 

3.1 Demand Response Events – Ex Post Impacts 

The ex-post impacts are the estimated impacts for the actual events that were called during the 
2020/2021 winter and summer DR seasons. This section is divided into 2 sub-sections. 

1. Winter Event Impacts. Provides a summary of the estimated impacts for winter events. 

2. Summer Event Impacts. Provides a summary of the estimated impacts for summer 
events overall, as well by the two types of control technology (thermostat and switch) 
and three cycling strategies (30%, 50%, and 75%) 

3.1.1 Winter Event Impacts 

During the 2020/2021 winter DR season, five events were called. Because all participants 
enrolled with the same load control technology (thermostat) and same cycling strategy (i.e. 
complete curtailment of auxiliary electric resistance heat), impacts do not require summarization 
by technology type or cycling strategy.  

Figure 3-1 illustrates the average hourly load and average participant in winter. In this figure, 
average observed demand is represented by the dark blue solid line. The dashed green line 
represents the regression-estimated baseline. A clear reduction in load occurs during event 
hours, as represented by the light gray shading. 
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Figure 3-1. Event Day Load Profiles – Winter 

 
Source: Guidehouse analysis of Duke Energy data 

In addition to the depth and shape of the DR impact, the snapback is noteworthy. “Snapback” is 
the term typically applied in demand response evaluation to the increase in loads observed in 
the period immediately following a curtailment event. 

As visible in Figure 3-1, observable snapback occurs following winter events. In electric heat 
pump or electric resistance heating curtailment programs, this effect is driven by the indoor 
temperature falling below the thermostat setpoint during the event, leading to increased heating 
demand when the event is over.  

Figure 3-2 shows the average DR impact per participant by event. In addition to showing the 
average impact per participant on each date, this plot shows the 90% confidence interval, 
represented by the whiskers straddling to top of each column.  
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Figure 3-2. Average Impact Per Participant Per Event - Winter 

 

Source: Guidehouse analysis of Duke Energy data 

Per participant and aggregate impacts are presented in Table 3-1 and Table 3-2. These impacts 
are identical for the two energy providers for winter events, because there is only one 
technology and control strategy, and the regression model includes both energy providers, 
described in Section 2.1.3. In addition to the per-participant impacts and the aggregate program 
impact for each event, these tables also show relative precision, as well as the average impact 
across events. Total program impacts reflect the larger number of DEC participants than DEP 
participants, who deliver average load curtailment of 0.4 MW and 0.1 MW per event, 
respectively.   

Table 3-1. Impact by Event – Per Participant and in Aggregate, DEC 

Event Date 
Avg. Event 

Temperature (°F) 
Impact Per 

Participant (kW) 

Relative 
Precision +/-% 

(90% 
Confidence) 

Participants 
(Accounts) 

Total Program 
Impact (MW) 

1/11/2021 33.7 0.88 26.4% 445 0.39 

1/29/2021 24.8 1.10 26.4% 448 0.49 

2/2/2021 32.7 0.88 26.4% 448 0.39 

2/4/2021 25.8 1.07 26.4% 449 0.48 

3/8/2021 31.4 0.96 26.4% 463 0.44 
      

Average 29.7 0.98 26.4% 451 0.44 
 Source: Guidehouse analysis of Duke Energy data 
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Table 3-2. Impact by Event – Per Participant and in Aggregate, DEP 

Event Date 
Avg. Event 

Temperature (°F) 
Impact Per 

Participant (kW) 

Relative 
Precision +/-% 

(90% 
Confidence) 

Participants 
(Accounts) 

Total Program 
Impact (MW) 

1/11/2021 33.7 0.88 26.4% 77 0.07 

1/29/2021 24.8 1.10 26.4% 77 0.08 

2/2/2021 32.7 0.88 26.4% 77 0.07 

2/4/2021 25.8 1.07 26.4% 77 0.08 

3/8/2021 31.4 0.96 26.4% 77 0.07 
      

Average 29.7 0.98 26.4% 77 0.08 
Source: Guidehouse analysis of Duke Energy data 

Impacts are also presented on a per device basis in Table 3-3, below. Per device impacts are 
computed as estimated impact divided by the average number of devices per participant. The 
average number of devices, in this case thermostats, per participant was 1.66. The maximum 
number of devices observed for any participant in the winter season was 23.  

Table 3-3. Impact by Energy Provider Per Device 

Event 
Season 

Energy 
Provider 

Impact Per 
Participant (kW) 

Relative Precision 
+/-% 

(90% Confidence)* 

Impact Per 
Device (kW) 

Avg. # 
Devices 

Winter 
DEC 0.98 26% 0.59 1.66 

DEP 0.98 26% 0.59 1.66 

 Source: Guidehouse Analysis of Duke Energy data 
* Relative precision applies to impact per participant. 

3.1.2 Summer Event Impacts 

Guidehouse estimated summer event impacts for each combination of device type (thermostat 
or switch) and cycling strategy (30%, 50%, or 75%), using a pooled regression model including 
both DEP and DEC participants. The results are therefore identical across energy providers at 
the participant, device type and cycling strategy level. 

Figure 3-3 illustrates the average hourly load and average participant in summer. In this figure, 
average observed demand is represented by the dark blue solid line. The dashed green line 
represents the regression-estimated baseline. A clear reduction in load occurs during event 
hours, as represented by the light gray shading. 
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Figure 3-3. Event Day Load Profiles – Summer 

 
Source: Guidehouse analysis of Duke Energy data 

 
In addition to the depth and shape of the DR impact, the snapback, or lack thereof is noteworthy 
here. In air-conditioning curtailment programs, this effect is driven by the increased indoor 
temperature rising above the thermostat setpoint requiring the compressor to run more than it 
usually would when the event is over. 

As may be seen in the plot above, almost no snapback occurs following summer events. This is 
a commonly observed phenomenon in A/C direct load control programs for small and medium 
businesses4 and is typically because curtailment events tend to end as most businesses start to 
close for the day. In addition, summer event temperatures were relatively low compared to past 
evaluation years, which may have prevented indoor temperature from rising as far above the 
thermostat or switch setpoint during events as it would have given higher outdoor temperatures. 

Figure 3-4, below, plots the average DR impact per participant by event and energy supplier. In 
addition to showing the average impact per participant on each date, this plot shows the 90% 
confidence interval, represented by the whiskers straddling to top of each column. Impacts differ 
slightly for the two energy providers, due to differing distributions of participants across cycling 
strategies and device types. 

4 See for example 

Navigant, prepared for Southern California Edison, 2014 Load Impact Evaluation of Southern California Edison’s 
Residential and Commercial Summer Discount Plan (SDP) Programs, March 2015 
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Figure 3-4. Average Impact Per Participant Per Event - Summer 

 

Source: Guidehouse analysis of Duke Energy data 

The impacts presented above are also presented below in tabular form in Table 3-4 and Table 
3-5. In addition to the per-participant impacts and relative precision, these tables show the 
aggregate program impact for each event, as well as the average impact across events. On 
average, impacts per participant are slightly lower for DEC than DEP, which is attributed to the 
higher proportion of participants at lower cycling levels (30% cycling and 50% cycling). Total 
program impacts however, are more than twice as high on average for DEC than DEP, due to 
higher enrollment numbers for DEC. 

Table 3-4. Impact by Event – Per Participant and in Aggregate, DEC 

Event Date 
Avg. Event 

Temperature 
(°F) 

Impact Per 
Participant 

(kW) 

Relative Precision 
+/-% 

(90% Confidence) 

Participants 
(Accounts) 

Total Program Impact 
(MW) 

5/26/2021 87.6 1.03 4.9% 6,937 7.14 

7/28/2021 89.1 1.10 4.7% 6,281 6.93 

7/30/2021 91.4 1.16 4.7% 6,258 7.28 

8/12/2021 86.7 1.06 4.7% 6,155 6.55 

8/24/2021 91.3 1.18 4.7% 6,137 7.23 
     

Average 89.2 1.11 4.7% 6,354 7.03 
Source: Guidehouse analysis of Duke Energy data 
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Table 3-5. Impact by Event – Per Participant and in Aggregate, DEP 

Event Date 
Avg. Event 

Temperature 
(°F) 

Impact Per 
Participant 

(kW) 

Relative Precision +/-
% 

(90% Confidence) 

Participants 
(Accounts) 

Total Program 
Impact (MW) 

5/26/2021 87.6 1.11 4.4% 2,970 3.29 

7/28/2021 89.1 1.21 4.3% 2,520 3.04 

7/30/2021 91.4 1.27 4.3% 2,502 3.19 

8/12/2021 86.7 1.17 4.3% 2,444 2.86 

8/24/2021 91.3 1.30 4.3% 2,432 3.15 
     

Average 89.2 1.21 4.3% 2,574 3.11 
Source: Guidehouse analysis of Duke Energy data 

3.1.2.1 Ex-Post Impacts by Technology Type 

Participants enrolling in the EnergyWise for Business program for the summer season may 
select one of two control technologies: a load switch or a smart thermostat. Only customers with 
a password-protected wireless network may select the thermostat. Overall, far more participants 
are controlled by thermostat than by switch. As shown in Section 1.2.1, almost 95% of 
participants in the estimation data set are controlled by thermostat, rather than load switch.  
 
This difference in sample sizes is evident when comparing average load plots of participants, 
split by device type, during summer events, as shown in Figure 3-5. Specifically, the average 
demand of the thermostat group is relatively smooth compared with the switch group, reflecting 
the difference in number of participants (over 8,000 participants have thermostats vs 
approximately 600 have switches). 
 
Businesses with load switches tend to have a load profile that extends slightly later into the 
evening than those with thermostats. This is a possible reason why snapback is more apparent 
for businesses equipped with switches than it is for businesses equipped with thermostats. Even 
so, snapback for both technologies is relatively low in magnitude.  
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Figure 3-5. Event Day Load Profiles – Summer Events by Technology Type 

 
Source: Guidehouse analysis of Duke Energy data 

The smaller size of the switch sample compared to the thermostat sample for summer events is 
equally evident in the relative precision of the estimated impacts by technology type as shown in 
Table 3-6. In addition to presenting the average impact per participant, this table shows the 
average temperature per event type, the average number of participants that did not opt out of 
the event, and the aggregate program impact. Differences in per participant impacts across the 
two energy providers are attributed to the proportion of participants in each cycling strategy 
group per device type, per energy provider. 

Table 3-6. Impact by Technology Type – Per Participant and in Aggregate 

Energy 
Provider 

Technology 
Type 

Impact Per 
Participant 

(kW) 

Relative Precision +/-% 
(90% Confidence) 

Avg. 
Participants 
(Accounts) 

Total Program 
Impact (MW) 

DEC 
Thermostat 1.13 5% 5,958 6.75 

Switch 0.71 29% 396 0.28 

DEP 
Thermostat 1.25 4% 2,383 2.98 

Switch 0.69 29% 190 0.13 
Source: Guidehouse analysis of Duke Energy data 

The standard error of an estimated impact – the statistic which delivers the relative precision, or 
confidence interval, around an impact – is a direct function of the number of observations 
available. The fewer the observations, the less certain the estimated impact and the wider the 
confidence interval.  

Average impact per switch is lower than that of thermostats for summer events. There is a 
statistically significant difference between the switch and thermostat impacts for summer events 
(the confidence interval of the switch impact does not overlap with that of the thermostat). 
Moreover, the average DR impact of switches during summer events is an 8% reduction of the 
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total facility estimated baseline, whereas the average impact of the thermostats is a 13% 
reduction. On average, participants enrolled with a switch device have lower baseline demand 
than participants enrolled with thermostats. This may result in reduced potential for demand 
savings, particularly if indoor temperatures did not rise far above the switch setpoint during 
some events. Feedback from Duke program staff indicates that participants with switches tend 
to have smaller HVAC units. 

3.1.2.2 Ex-Post Impacts by Cycling Strategy  

Impacts by cycling strategy show that the more aggressive the cycling strategy, the greater the 
impact. For summer events, differences in impacts do not appear to be linear in cycling strategy: 
the estimated impact from 75% cycling participants is more than 2.5 times the estimated impact 
from 30% cycling participants (see Table 3-7, below). This differential in impacts is also not 
related to baseline demand – in fact, as is evident from Figure 3-6 below, the participants that 
select the 75% cycling strategy (plot on far right) have, on average, the lowest daily peak 
demand of the three groups. 

Figure 3-6. Event Day Load Profiles – Summer Events by Cycling Strategy 

 
Source: Guidehouse analysis of Duke Energy data 

There are a variety of possible explanations for why the impact is relatively larger for the most 
aggressive cycling strategy. The smaller baseline load overall suggests this group contains 
smaller businesses where A/C is likely a much higher proportion of their overall load, so 
aggressive curtailment leads a larger relative impact. It may seem counterintuitive that a 
business for which A/C is so important would select the most aggressive curtailment strategy. 
One possibility is that these are small businesses looking for opportunities to reduce costs and 
so are attracted by the larger incentive offered for the more aggressive cycling strategy, but that 
are using relatively inefficient cooling equipment. Entrepreneurs with smaller businesses may 
not realize the potential bill savings achievable through improved A/C efficiency or may lack the 
access to capital to make the required replacement investment. In either case, Guidehouse 

Fields Exhibit E 
30 of 47



would recommend that Duke Energy consider targeting these participants with marketing for 
other program opportunities.  

These impacts (along with the count of the average number of participants that did not opt out, 
and the overall system impact, in MW) are shown in tabular format in Table 3-7 below. The 
estimated impacts for summer events are much more precise than those in the winter season, 
primarily due to a larger sample size and larger magnitude impacts. The estimated impacts for 
the 75% cycling strategy participants are only incrementally less precise than for the 30% and 
50% participants in the summer season, despite being the smallest of the three groups. This 
suggests a greater consistency in impacts for these customers and implicitly suggests that a 
much higher proportion of these customers’ loads is A/C (compared to the 30% and 50% cycling 
participants). Per participant impacts are nearly identical for the two energy suppliers, due to 
similar proportions of participants using each device type. 

Table 3-7. Impact by Cycling Strategy – Per Participant and in Aggregate 

Energy 
Provider 

Cycling 
Strategy 

Impact Per 
Participant 

(kW) 

Relative Precision +/-% 
(90% Confidence) 

Avg.  
Participants 
(Accounts) 

Total Program 
Impact (MW) 

DEC 

30% 0.84 7% 4,690 3.95 

50% 1.59 7% 1,004 1.60 

75% 2.24 8% 660 1.48 

DEP 

30% 0.83 7% 1,591 1.33 

50% 1.61 7% 679 1.09 

75% 2.27 8% 303 0.69 
Source: Guidehouse analysis of Duke Energy data 

3.1.2.3 Ex-Post Impacts by Technology Type and Cycling Strategy – Per Device  

Most participants in the 2020/2021 demand response season had 2 load control devices, but 
the number of devices per participant ranged from 1 to 40. Estimated impacts from switches are 
lower, consistent with results per participant. This is evident in Table 3-8, which presents 
estimated impact per device for each event season, technology type, and cycling strategy. The 
average number of devices per participant in each group is also included. By construction of the 
regression model, estimated impacts are the same for both energy providers. 
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Table 3-8. Impact by Energy Provider, Cycling Strategy, and Technology Type 

Energy 
Provider 

Device Type 
Cycling 
Strategy 

Impact Per 
Participant (kW) 

Relative 
Precision +/- % 

(90% 
Confidence)* 

Impact Per 
Device (kW) 

Avg.  
Devices 

DEC 

Thermostat 

30% 0.86 7% 0.49 1.74 

50% 1.64 7% 0.92 1.77 

75% 2.43 8% 1.06 2.29 

Switch 

30% 0.55 45% 0.34 1.61 

50% 1.10 31% 0.55 1.99 

75% 0.72 96% 0.35 2.05 

DEP 

Thermostat 

30% 0.86 7% 0.49 1.74 

50% 1.64 7% 0.92 1.77 

75% 2.43 8% 1.06 2.29 

Switch 

30% 0.55 45% 0.34 1.61 

50% 1.10 31% 0.55 1.99 

75% 0.72 96% 0.35 2.05 

Source: Guidehouse Analysis of Duke Energy data 
* Relative precision applies to impact per participant. 

Interestingly, for participants with thermostats during summer events, estimated impacts per 
device increase as cycling strategy increases, despite that the average number of devices for 
participants with a higher cycling strategy is also greater. One potential explanation is that 
participants with a greater number of devices have a larger baseline load and can therefore 
deliver a deeper impact. While this may be true for some participants, baseline load for the 75% 
cycling strategy group is, on average, the lowest of the three cycling strategies, which suggests 
that businesses selecting into this cycling strategy may be of a smaller size. Because of the high 
impact being delivered, Duke Energy may want to further explore characteristics of this group of 
participants to better target similar businesses in the future. 

Compared with a previous evaluation (2017) of the EnergyWise Business program, the current 
estimated per device impacts are lower on average by 35%. This result may be due to several 
reasons: 

• The maximum temperature during 2021 events was on average 5°F cooler than during 
2017 events; therefore, baseline demand on event days would be expected to be lower, 
contributing to lower demand impacts. Section 3.2.2 describes this phenomenon, 
showing the ex-ante relationship between outdoor temperature and estimated impacts. 
As temperatures become more extreme, estimated event impacts increase.  

• The program has added many new participants, changing the composition of 
participants involved. These new participants may have different patterns of usage, 
leading to different baseline demand and different event impacts. 

• Since the onset of the COVID-19 pandemic in 2020, many businesses have experienced 
changes in capacity and operations, with corresponding changes in energy usage 
patterns (e.g., lower demand for HVAC consumption associated with fewer operating 
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hours). Consequently, baseline demand and associated curtailment would be expected 
to be lower. Guidehouse has recently observed similar results in evaluations of demand 
response programs in other jurisdictions, where the small and medium business sector 
exhibited substantially reduced demand as a result of the pandemic. 

• The previous evaluation used a different set of methods, primarily estimating a 
percentage reduction in run time using device telemetry data, and subsequently 
estimating a reduction in energy based on assumed equipment sizes and full load 
demand. Assumptions around the conversion of runtime to energy impacts add 
uncertainty to estimated impacts.  Whole-premise AMI consumption data was available 
for businesses in the current study, so Guidehouse did not have to make any such 
assumptions. 

3.2 Forecast Curtailment Capability – Ex-Ante Impacts 

This section provides the estimated EnergyWise for Business DR capability, or ex-ante impacts. 
These estimates are Guidehouse’s projection of how much DR the program could offer under a 
range of different possible temperatures at different cycling levels, for the different technologies 
and event day types. This estimate of capability is based on the regression-estimated 
relationships between DR impacts and outdoor temperature from which the ex-post impacts 
were also developed. 

It is this forecast of capability that provides the truest estimate of a given DR program’s value as 
a system resource because it provides DEC and DEP staff with an understanding of how much 
of a demand reduction the program may be counted on to deliver in future system peak 
conditions. This is also why it is the forecast DR capability that should be used to calculate the 
benefits for any cost-benefit ratio test (e.g., total resource cost test, or TRC). 

Forecast program capability per participant is projected by applying a series of temperature 
values to the estimated model parameters. Guidehouse’s projected capability assumes that the 
temperature at which the capability is estimated lasts the entire length of the event and is the 
same as the temperature in the 3 hours leading up to the event. This assumption is required 
due to the manner in which impacts are estimated. Because buildings have thermal mass, a 
sudden swing in outdoor temperature does not immediately provoke a concomitant swing in 
cooling load—it takes time for the building’s indoor temperature to rise above the setpoint 
temperature because of that outdoor temperature swing. This is reflected in Guidehouse’s 
estimation approach (see Appendix A for more details), where impacts are modeled as a 
function of a 3-hour exponential moving average of cooling or heating degree quarter-hours 
(outdoor temperature), dependent on event season. Therefore, projecting capability requires an 
assumption of what the temperature is in the 3 hours leading up to the event.  

This section is divided into two sub-sections: 

1. Ex-Ante Impacts for Winter Events. 

2. Ex-Ante Impacts for Summer Events.  

Ex-ante impacts are presented graphically in each of these sub-sections. Numerical values 
underlying these charts may be found in the Excel Appendix provided separately. Specific tab 
references for finding these values are provided in the sub-sections below. 
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Guidehouse would note that the observant event temperatures cover a relatively narrow band, 
especially for summer events. A high proportion of the range of ex-ante values occur outside of 
the temperature range inside which events were observed in 2021. Caution should therefore be 
used in working with impacts estimated outside the range of observed temperatures in the 
winter and summer of 2021 used to estimate the model parameters. 

3.2.1 Ex-Ante Impacts for Winter Events 

Ex-ante impacts for winter events were estimated using temperatures from 20°F to 40°F. 
Temperatures below this range are unusual and occurred on only one day throughout the event 
season. Total estimated impact ranges from 360 kW to 650 kW and increases steadily as 
temperatures become more extreme (decrease). Per participant, estimated impacts range from 
roughly 0.7 kW to over 1.2 kW. This is illustrated in Figure 3-7 which shows the per participant 
curtailment capability per event. This plot shows the ex-ante relationship between outdoor 
temperature and estimated impacts for winter events (blue line). Ex-post impacts (and the 
corresponding average event temperature) are identified by blue dots. The whiskers 
surrounding the ex-post impacts represent the 90% confidence interval. Since Guidehouse 
employed a pooled regression model, impacts are identical across energy providers by device 
type and cycling strategy. In the winter, there is only one device type and cycling strategy, so 
estimated ex-post and ex-ante impacts are identical for the two energy providers. 

Figure 3-7. Ex-Ante Impacts, Winter Events – Per Participant 

 

Source: Guidehouse analysis of Duke Energy data 

Figure 3-8 shows ex-ante impacts on a per device basis. Per device, estimated impacts range 
from approximately 0.4 kW to 0.75 kW. Ex-post impacts (and the corresponding average event 
temperature) are identified by blue dots. The whiskers surrounding the ex-post impacts 
represent the 90% confidence interval.  
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Figure 3-8. Ex-Ante Impacts, Winter Events – Per Device 

 

The kW values associated with ex-ante estimates above may be found in the Excel spreadsheet 
Appendix in the tab “03a Ex-Ante by Event Type”. As noted above, care should be taken when 
using ex-ante values that are outside the range of historically observed temperature values. If 
the true relationship between temperature and demand response impacts does not remain 
linear as temperatures increase or decrease, the ex-ante value may not accurately reflect the 
impact that could be expected at higher and lower temperatures than represented by actual 
events. 

3.2.2 Ex-Ante Impacts for Summer Events 

Ex-ante impacts for summer events were estimated using temperatures from 85°F to 95°F. 
Total estimated impact ranges from 8,000 kW to over 12,000 kW and increases as temperature 
rises. Per participant, estimated impacts range from approximately 0.9 kW to almost 1.5 kW. 
This can be seen in Figure 3-9 which shows the per participant curtailment capability per event. 
This plot shows the ex-ante relationship between outdoor temperature and estimated impacts 
for summer events for each energy provider (straight lines). Ex-post impacts (and the 
corresponding average event temperature) are identified by dots. The whiskers surrounding the 
ex-post impacts represent the 90% confidence interval. As noted in Section 3.1.2, estimated per 
participant impacts are slightly higher for DEP than DEC, due to a larger proportion of 
participants enrolled in the 50% and 75% cycling strategies. 
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Figure 3-9. Ex-Ante Impacts, Summer Events – Per Participant  

 
Source: Guidehouse analysis of Duke Energy data 

3.2.2.1 Ex-Ante Impacts by Technology Type  

As noted in Section 3.1.2.1, the point-estimate for the DR impact from thermostats is higher 
than that of switches and this difference is statistically significant (for summer events). This 
difference may reflect the fact that participants with switches tend to have smaller HVAC units, 
rather than an effect of the difference in device type itself. The difference in projected impacts is 
evident in Figure 3-10. In this plot, the actual (ex-post) impact/event temperature pairs for 
summer events are represented by the markers and the 90% confidence interval is captured by 
the whiskers. The bright green and light blue markers and lines identify the average impacts for 
thermostats for DEP and DEC, respectively. The orange and dark blue markers and lines 
identify the average impacts for switches for DEP and DEC, respectively. 
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Figure 3-10. Ex-Ante Impacts, Summer Events, by Technology Type – Per Participant 

 
Source: Guidehouse analysis of Duke Energy data 

The kW values associated with ex-ante estimates above may be found in the Excel spreadsheet 
Appendix in the tab “01b Ex-Ante by Device, Splr”. 

As noted previously, actual events were only observed over a relatively narrow band of 
temperatures, and caution must be applied in extrapolating curtailment capability too far beyond 
that window. The true relationship at those unobserved temperatures may differ from that 
estimated in the band of temperatures observed. Additional caution should be used in applying 
the estimated results for switches. With fewer participants equipped with switches, the average 
(and aggregate) impacts of this group will be very sensitive to changes in the composition of 
that group over time. Additional enrollment or program withdrawals of even a small number of 
participants may meaningfully alter this average relationship. 

3.2.2.2 Ex-Ante Impacts by Cycling Strategy  

The same patterns noted in the ex-post analysis are present in the ex-ante estimate of 
curtailment capability. Participants in the 75% cycling strategy deliver far more summer event 
DR per participant than either of the two other cycling strategies. These participants also deliver 
DR that is a far higher proportion of their baseline consumption compared to the other cycling 
strategies, indicating that DR impacts (either absolute or as a proportion of baseline) are not 
linear in the cycling strategy selected. 

Current program incentives to some degree reflect this (the incentive for 75% cycling is $135, 
whereas the incentive for 30% cycling is only $50). Still, given the relationship apparent in, 
Figure 3-11, below, and the proportion of participants enrolled for the summer season, Duke 
Energy may consider whether it may be appropriate to further adjust the offered incentive to 
reflect the relative benefit delivered by each of the different cycling strategies. 
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In Figure 3-11, 75% cycling impacts are represented by the light green and dark blue line and 
markers, 50% cycling by the darker green and yellow line and markers, and 30% cycling by the 
light blue and orange line and markers. 

Figure 3-11. Ex-Ante Impacts, Summer Events, by Cycling Strategy – Per Participant 

 

Source: Guidehouse analysis of Duke Energy data 

Due to similar proportions of participants per device type, per participant impacts by cycling 
strategy are nearly identical for the two energy providers. Duke Energy may wish to consider 
undertaking some additional cross-sectional analysis of the characteristics of the 75% cycling 
strategy participants to focus future recruitment efforts to capture higher value (higher DR 
potential) customers. 

The kW values associated with ex-ante estimates above may be found in the Excel spreadsheet 
Appendix in the tab “02b Ex-Ante by Cyc, Splr”. Note that care should be taken when using ex-
ante values that are outside the range of historically observed temperature values. 

3.2.2.3 Ex-Ante Impacts by Technology Type and Cycling Strategy  

Since this analysis implements a pooled regression model, estimated ex-post and ex-ante 
impacts for the two energy providers are identical at the technology type and cycling strategy 
level. Unlike the results in Sections 3.2.2.1 and 3.2.2.2, estimated impacts at this level are not 
dependent on the distribution of participants across technology types and cycling strategies. 

Figure 3-12 illustrates estimated impacts per device for two technology types and three cycling 
strategies during summer events. Ex-post impacts are represented by the dots, with the 
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surrounding whiskers representing the 90% confidence interval. The straight lines denote ex-
ante impacts. 

Figure 3-12. Ex-Ante Impacts for Summer Events, by Technology Type and Cycling 
Strategy – Per Device 

 
Source: Guidehouse analysis of Duke Energy data 

Consistent with patterns observed in the ex-post analysis, thermostats in the 75% cycling 
strategy group deliver the highest estimated impacts, ranging from approximately 1.95 kW to 2.9 
kW per participant. Notably, these impacts are significantly larger than all other technology and 
cycling strategy groups (the 90% confidence intervals do not overlap). Moreover, estimated 
impacts from switch devices are lower than the estimated impacts for thermostats at the same 
cycling strategy. Even at the 75% cycling strategy level, estimated impacts from switches are 
not significantly different from the impacts delivered by the thermostat, 30% cycling group. 
Given these results, Duke Energy should continue to install thermostat devices as the default 
technology type, except in the case that incompatibility issues exist.  

The kW values associated with ex-ante estimates above may be found in the Excel spreadsheet 
Appendix in the tab “04b Ex-Ante by Cyc, Dev per Dev”. Note that care should be taken when 
using ex-ante values that are outside the range of historically observed temperature values. 

3.3 Net to Gross 

Evaluations of demand-side management programs typically estimate both net and gross 
savings, and often present a net-to-gross (NTG) ratio based on the evaluated percentage of 
energy reductions that may be ascribed either to free ridership (which decreases the NTG ratio) 
or to program spillover (which increases the NTG ratio). 
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Free ridership is typically defined as the percentage of savings that would have occurred absent 
the presence of the program. Spillover is typically defined as incremental savings actions 
undertaken by a program’s participants not directly incented by the program. 

All savings presented in this report should be considered net.  

3.3.1 Demand Response Impacts 

In this analysis, demand reductions are estimated in contrast to an implied estimated baseline, 
the average level of behavior implied by the estimated parameter values of the regression used.  
Because this captures expected participant behavior absent an event, Guidehouse can state 
that the free ridership is 0. Absent the EnergyWise for Business program, none of the observed 
demand reductions would have taken place, as the events themselves would not have taken 
place. It is possible that there may have been some spillover resulting from the program (from 
participants becoming more aware of their sites’ consumption profiles, for example). However, it 
is likely impossible to estimate such an effect in a sufficiently robust manner and the 
assessment of such impacts is beyond the scope of this report. 

Since spillover cannot be robustly estimated and because free ridership must, by program 
design, be considered 0, Guidehouse considers the program to have a NTG ratio of 1. 
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4. Findings and Recommendations 

The principal EM&V findings regarding the estimated demand impacts are as follows: 

• On average, the program delivered approximately 0.5 MW of load curtailment 
during winter events, and approximately 10.1 MW of load curtailment during 
summer events. For DEC, this amounts to 0.4 MW of estimated load curtailment in 
winter and 7 MW of estimated load curtailment from in summer. Estimated load 
curtailment for DEP is approximately 0.1 MW in winter and 3.1 MW in summer, 
consistent with enrollment numbers. The program-level impacts for each event vary 
depending on the number of participants, the temperature, and other factors. 

• On average, the program delivered nearly 1 kW of demand response per 
participant during winter events, and over 1.1 kW of demand response per 
participant during summer events. For DEC, this amounts to 0.6 kW of demand 
response per device in both winter and summer.  Estimated curtailment per device for 
DEP is approximately 0.6 kW per device in winter and 0.7 kW per device in summer. 

• The results of the ex-post evaluation informed the development of ex-ante forecast of 
program capability across a range of temperatures at different cycling levels, which can 
be used for calculating benefits for cost-effectiveness tests. For summer events at an 
assumed temperature of 95°F, ex-ante impacts are estimated to be 0.8 kW per 
thermostat device and 0.5 kW per switch device. During winter events at an assumed 
temperature of 20°F, thermostats are estimated to deliver 0.7 kW of curtailment per 
device. 

• Thermostats deliver greater relative impacts for events in both seasons compared 
to load control switches. While no switch impacts were measured for winter 
events, thermostat impacts are materially higher than switch impacts during 
summer events. On average across cycling strategies, thermostats delivered demand 
reductions during summer events of 13% of total facility baseline load, and switches 8%. 
During winter events, thermostats deliver demand reductions of approximately 14% of 
total facility baseline load. According to Duke program staff, this may be because 
participants with switches tend to have smaller HVAC equipment. 

• Participants that have selected the 75% cycling strategy deliver the highest per 
participant impacts for summer events. During summer events, 75% cycling strategy 
participants deliver an average impact equivalent to 27% of their estimated facility 
baseline demand. In contrast, 30% and 50% cycling strategy participants delivered an 
average impact of approximately 9% and 19% of their baseline demand, respectively. 

Based on the impact findings above, Guidehouse recommends that Duke Energy consider the 
following recommendations:  

• Consider using future process evaluations to better understand differences in 
businesses that enroll in each cycling strategy. Consistent with expectations, 
Guidehouse estimated significantly greater savings for participants enrolled in the 75% 
cycling strategy during demand response events than for the 30% and 50% cycling 
strategies. Because of the high impact being delivered, Duke Energy may want to further 
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explore characteristics of this group of participants to better target similar businesses in 
the future, through participant surveys or interviews. 

• Continuing to evaluate the program on an annual basis, particularly if enrollment 
changes in any material way. The total number of enrolled participants is over 9,000, 
and the energy use at commercial facilities is generally more heterogeneous than at 
residential facilities. This means that the average participant (and aggregate program) 
impacts and capability could change materially as a result of relatively modest changes 
in the absolute number of participants enrolled, or if the distribution of participants across 
cycling strategies shifts. Duke Energy should carefully consider this when using the 
capability estimates provided above for any planning exercises. 
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5. Summary Form 

 
Date: 2022-03-11 

Region: DEC and DEP 

Evaluation Period 
EE: 2019 – 2020 
DR: 2020 - 2021 

DR Event Impact per Participant (kW) 

Average across cycling 
strategies and 
technology types. 

Winter, DEC: 0.98 kW 
Winter, DEP: 0.98 kW 
Summer, DEC: 1.11 kW 
Summer, DEP: 1.21 kW 

DR Event  Impact per Device (kW) 

Average across cycling 
strategies and 
technology types. 

Winter, DEC: 0.6 kW 
Winter, DEP: 0.6 kW 
Summer, DEC: 0.6 kW 
Summer, DEP: 0.7 kW 

DR Event Program Impact (MW) 

Average across cycling 
strategies and 
technology types. 

Winter, DEC: 0.4 MW 
Winter, DEP: 0.1 MW 
Summer, DEC: 7 MW 
Summer, DEP: 3.1 MW 

Net-to-Gross Ratio 1 

 
EnergyWise Business 
2019-2021 
Completed EMV Fact Sheet 

 
Description of Program 

EnergyWise Business is a commercial HVAC load 
control program that targets small and medium 
businesses. At the time of enrollment participants are 
provided either with a thermostat or a load switch, with 
most customers having a thermostat. Participants must 
have a password-protected wireless network in order to 
qualify for a thermostat. 
 
Participants may elect to be controlled using one of 
three cycling strategies: 30%, 50%, or 75%. Incentive 
for participation increases commensurate with the 
increased aggressiveness of the cycling strategy 
selected.   
 
Five events took place in each season, winter and 
summer. On average, there were over 500 participants 
in winter events and almost 9,000 participants in 
summer events. Most participants enrolled with the 
thermostat technology and 30% cycling strategy.   
 
 

Impact Evaluation Methods 

Guidehouse estimated DR impacts using a lagged dependent variable regression 
model that compares average participant demand on event days to that of a carefully 
selected control group. Control customers are selected by comparing the demand 
patterns of a large pool of non-participants to each participant and selecting the non-
participant with the most similar non-event day demand patterns. The non-event days 
used for this comparison were selected based on a comparison of hourly temperature 
values, such that the non-event day used to select controls were subject to 
temperatures as similar as possible to those observed on event days. 
 
Impacts were estimated separately by event season (winter and summer) using a 
pooled regression model with DEC and DEP data. Impacts were estimated as a 
function of the three-hour exponential moving average of heating degree hours in 
winter and cooling degree hours in summer. This allows Guidehouse to both estimate 
the impact of observed historical events (ex-post impacts) as well as project an 
estimate of program capability under a range of different temperatures (ex-ante 
impacts). 
 

Impact Evaluation Details 

• On average, the program delivered approximately 0.5 MW of load 
curtailment during winter events, and approximately 10.1 MW of load 
curtailment during summer events.   

• On average, the program delivered nearly 1 kW of demand response 
per participant during winter events, and over 1.1 kW of demand 
response per participant during summer events. For DEC, this amounts 
to 0.6 kW of demand response per device in both winter and summer.  
Estimated curtailment per device for DEP is approximately 0.6 kW per device 
in winter and 0.7 kW per device in summer. 

• Thermostats deliver greater relative impacts for summer events 
compared to load control switches. On average, thermostats delivered 
demand reductions during summer events of 13% of total facility baseline 
load, and switches 8%. During winter events, thermostats deliver demand 
reductions of approximately 14% of total facility baseline load. 

• Participants that have selected the 75% cycling strategy deliver the 
highest per participant impacts for summer events. During summer 
events, 75% cycling strategy participants deliver an average impact 
equivalent to 27% of their estimated facility baseline demand. In contrast, 
30% and 50% cycling strategy participants delivered an average impact of 
approximately 9% and 19% of their baseline demand, respectively. 
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Appendix A. Demand Response Regression Model 
Specification 

This appendix provides additional technical details regarding the model specification used by 
Guidehouse to estimate impacts for each combination of event season (winter and summer); 
technology (thermostat and switch); and cycling strategy (30%, 50%, and 75%). 

Equation A-1 shows the lagged dependent variable model regression equation. This model 
estimates customer load on a per participant basis as a function of the event hours, snapback in 
post-event hours, lagged non-event day usage, temperature, humidity, and hourly fixed effects. 
Only event day data is included in the regression model, although matched non-event day data 
informs the baseline through the lagged usage (prekW) variable. 

This equation was estimated separately for each event season. Altogether two different 
estimation sets were used. 

Equation A-1. Lagged Dependent Variable Regression Model 

 

𝒚𝒊,𝒅,𝒕,𝒆𝒔 = ∑ 𝜷𝟏,𝒉𝒉𝒉𝒐𝒖𝒓𝒉,𝒕

𝑯=𝟒𝟖

𝒉=𝟏

+ ∑ 𝜷𝟐,𝒉𝒉𝒉𝒐𝒖𝒓𝒉,𝒕𝒑𝒓𝒆𝒌𝑾𝒊,𝒕,𝒆

𝑯=𝟒𝟖

𝒉=𝟏

 

+ ∑ 𝜷𝟑,𝒉𝒉𝒉𝒐𝒖𝒓𝒉,𝒕𝑬𝑴𝑨𝟑𝒅𝒉𝒕

𝑯=𝟒𝟖

𝒉=𝟏

+ ∑ 𝜷𝟒,𝒉𝒉𝒉𝒐𝒖𝒓𝒉,𝒕𝑵𝑩𝑼𝒕

𝑯=𝟒𝟖

𝒉=𝟏

 

+∑∑∑𝜸𝟏,𝒅,𝒌,𝒄𝑫𝒊,𝒅,𝒕𝑲𝒊,𝒌,𝒕𝑪𝒊,𝒄,𝒕𝑬𝑴𝑨𝟑𝒅𝒉𝒕

𝑪

𝒄=𝟏

𝑲

𝒌

𝑫

𝒅

+∑∑∑𝜸𝟐,𝒆,𝒔𝑫𝒊,𝒅,𝒕𝑲𝒊,𝒌,𝒕𝑺𝑩𝒊,𝒔,𝒕

𝑺

𝒔=𝟏

𝑲

𝒌

𝑫

𝒅

 

Where: 
 

i  = Customer. 

t  =  Half-hour ending. 

,i ty  = Demand for customer i during half-hour-ending t. 

,h thhour  = A set of 48 dummy variables, each equal to one when t is the h-th half-hour of 

the day and zero otherwise. This is a time-wise fixed effect. 

, ,i t eprekW  = Customer i’s half-hourly consumption in half-hour t of the matched non-event day 

for event day e. For example, if hour t is half-hour-ending 13 on the first event 
day, then this variable would take the value of that same customer’s consumption 
in half-hour-ending 13 of the corresponding non-event day used for matching 
purposes.  

𝐸𝑀𝐴3𝑑ℎ𝑡 = An exponential moving average of heating degree hours (base 65°F) for winter 
events and cooling degree hours (base 65°F) for summer events observed in the 
six-hour period leading up to, and including, hour t 

𝑁𝐵𝑈𝑡 = is the normalized cold build up term (winter events) or heat buildup term (for 
summer events) during hour ending i. This variable captures the effect of heat or 
cold build up in previous hours on the current hours demand. This is a 72-hour 
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geometrically decaying average of heating degree half-hours in winter and 
cooling degree hours in summer. It is calculated in the following manner 

 

𝐶𝐵𝑈𝑡 =
 ∑ (0.96)𝑡72

1  ∗(𝐻𝐷𝐻65𝑡 ℎ𝑎𝑙𝑓ℎ𝑜𝑢𝑟𝑠 𝑝𝑟𝑖𝑜𝑟)

1,000
 or 𝐻𝐵𝑈𝑡 =

 ∑ (0.96)𝑡72
1  ∗(𝐶𝐷𝐻65𝑡 ℎ𝑎𝑙𝑓ℎ𝑜𝑢𝑟𝑠 𝑝𝑟𝑖𝑜𝑟)

1,000
 

 

, ,i d tD  = A set of dummy variables that capture the technology of each customer (i.e., 

thermostat, switch, or no device). Since some customers may have changed 
devices mid-season, the variables capture a customer’s device on the day 
containing hour t.  

, ,i k tK  = A set of three dummy variables that capture the economic cycling strategy for 

each customer (i.e., 30%, 50%, 75%). These values also capture the 
corresponding Emergency cycling strategy for each customer on those event 
days. Since some customers may have changed cycling strategy mid-season, 
the variables capture a customer’s cycling strategy on the day containing hour t.  

, ,i c tC  = A set of C dummy variables, capturing the impacts of event curtailment. Each 

variable is equal to one when customer i is a DR participant and hour t is the c-th 
curtailment hour of the event, and zero otherwise.  

, ,i s tSB  = A set of S dummy variable, capturing the impacts of snapback. Equivalent to the 

, ,i c tC  except that they apply to the hours following the event, rather than during 

the event. Guidehouse applied these variables to all hours following the end of 
the curtailment event up to midnight of the event day. 

,   = Parameter estimates. These values are the estimated relationship between 

demand and the variable for which the beta represents. 
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Appendix B. Energy Efficiency Impact Evaluation Interim 
Report 

DEP-DEC EnergyWise 

Business EMV Interim EE Report 2021-02-05.pdf 
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