Virginia Electric and Power Company, d/b/a Dominion Energy North Carolina Application of Dominion Energy North Carolina for Adjustment of Rates and Charges Applicable to Electric Service in North Carolina E-22, Sub 562 and E-22, Sub 566

Post-Hearing Exhibit 6

REVISED CLOSURE PLAN UPPER (EAST) POND CHESTERFIELD POWER STATION CHESTERFIELD COUNTY, VIRGINIA

Submitted To:

Virginia Electric and Power Company (Dominion) Glen Allen, Virginia

Project 96-410-37

September 2003

GAI Consultants, Inc.

September 3, 2003

Project 96-410-37

570 Beatty Road Monroeville, PA 15146-130 Phone: 412/856-6400 FAX 412/856-4970

Mr. Michael B. Lott, P.E. **Dominion Generation** Fossil & Hydro Technical Services Innsbrook technical Center 5000 Dominion Boulevard Glen Allen, Virginia 23060-6711

> Response to VDEQ Comments Revised Closure Plan - Upper (East) Pond Chesterfield Power Station Chesterfield County, Virginia

Dear Mr. Lott:

GAI Consultants, Inc. (GAI) is pleased to offer the following responses to questions or comments that have been presented by the Virginia Department of Environmental Quality (VDEQ) on the revised closure plan (May 2003) submitted to them on June 5, 2003. The questions or comments will be presented first in this letter, followed by our response.

Questions/Comments from Ray Jenkins directed to Ron Birckhead of Dominion:

1. At the bottom of page 2 in the Closure Plan a statement is made concerning post-closure care for 5 years. The discussion continues on page 3 to reference ground water monitoring. On page 13, item A.11., ground water monitoring is also mentioned in the context of the VPDES permit requirements. I recall that we talked about this before and all understand that ground water monitoring will be governed by the VPDES permit. That is, monitoring is not tied to a post-closure time period. Would it help to clarify the discussion on pages 2 and 3?

Our understanding is that all monitoring, groundwater or surface water will be governed by the VPDES permit and not by the closure plan. The intent was to simply reference the VPDES permit in the closure plan. A statement was added to the closure plan to indicate that groundwater and surface water monitoring is governed by the VPDES permit and not by the closure plan. See pages 2 and 3 of the Closure Plan.

Dominion Energy North Carolina

MrkeMichael Bb Eatt, P.E.

Project 96-410-37

September 3, 2003

 Item A.11 on page 13 of the Closure Plan refers to both ground water and surface water monitoring. In context, I understand the meaning of surface water monitoring to actually be a reference to effluent monitoring at Outfall 005. The VPDES permit can be modified as necessary.

The intent was to refer to the monitoring requirements at Outfall 005. See page 12 of the Closure Plan.

Questions/Comments from John Godfrey:

 Closure Plan (CP), page 1: The addition of the flue gas emission control waste material to the wastes disposed of at this facility is acceptable, provided the material can be demonstrated to be non-hazardous. The flue gas emission control material is considered to be a coal combustion by-product (CCB) in the Virginia Solid Waste Management Regulations (VSWMR, 9 VAC 20-80), so the ability to reclaim the material from the disposal area is not affected.

We believe the material will test to be non-hazardous. Material testing will be performed and the results submitted when the material is available. No further action is required.

2. CP, page 6: As you noted, the use of the word "(E)lsewhere..." in the discussion of ash placement is ambiguous. It would clarify the matter to state, "Elsewhere within the disposal pond..."

Revision made for clarification. See page 5 of the Closure Plan.

CP, page 6: As we had previously noted, the revised moisture-density windows for the placement of the CCB is acceptable.

No response necessary.

4. CP, page 7: The criteria for the vegetative cover that it should be a "...low maintenance species that does not require mowing..." is understandable, but the species must also have a root mass that is sufficiently dense to minimize soil erosion. High growing grasses can result in the loss of the lower, denser growth of grass, which can lead to rather sparse vegetation that does not hold the soil. It is recommended that mowing be conducted on a limited basis (2-3 times per year) to provide an effective vegetative cover, at least during the first couple of growing cycles. The maintenance measures discussed seem adequate. The seeding blend discussed on page A-2 is an example of a mixture that may be effective and require minimal mowing since the Fescue does not grow exceptionally tall and the Bermuda does provide a root structure.

GAI concurs with the VDEQ comment on mowing as it relates to plant growth and root structure. A statement was added to indicate that mowing will be

Dominion Energy North Carolina

MreMichael Butott, P.E.

Project 96-410-37

September 3, 2003

conducted on a limited (2 to 3 times per year) basis. See page 7 of the Closure Plan.

 CP, page 11: The groundwater monitoring requirements for industrial waste landfill that is provided in 9 VAC 20-80-300 of VSWMR may be a good resource in the development of the groundwater monitoring program.

The referenced regulations will be consulted for guidance when appropriate for any changes in the groundwater monitoring system. Since the FGD material is a different material, the groundwater monitoring program will be evaluated to determine if changes are needed prior to placement of the material in the upper pond. No further action is required.

6. CP, page 16: Some more discussion is needed to explain the term "exhibiting erosion." It is suggested that a maximum allowable size of rill be defined.

We have changed this section to have channel erosion repair begin when a 4-inch deep rill occurs. See page 14 of the Closure Plan.

7. CP, page 17: In the discussion of post-closure maintenance activities, more specific guidance should be provided to enable plant personnel to determine when the stormwater features must be cleaned.

This section has been revised to indicate that sediment removal will begin once the accumulated sediments reach a depth equating to 25 percent of the hydraulic capacity. See page 15 of the Closure Plan.

8. CP, page A-1: Is the cover soil to be placed over the compacted surface of the CCB, or is the surface to be scarified prior to placement of the soil?

The cover soil can be placed on the compacted CCB surfaces. See page A-1 of the Closure Plan.

9. CP, Page C-1: The inspection frequencies are good.

No response necessary.

10. CQA Plan, Table II-4, page II-8: The testing frequencies are adequate. CQA Plan, page III-2: The instruction is that the geotextile be kept under tension during installation. Would it be reasonable to recommend that the material be deployed down the slope?

No response necessary to testing frequency comment. 'Deploying' a geotextile downslope would help to ensure that the material is under tension, but may not be appropriate for all installations. For greater flexibility in material placement, we suggest that the requirement that it be 'kept under tension during installation' remain as written. No further action is required.

Dominion Energy North Carolina
Mikel Nichael Sho Lott, P.E.
Project 96-410-37
September 3, 2003

We believe that these responses adequately address the VDEQ questions and comments. As you requested, we have revised the Closure Plan in accordance with our responses above. Changes were not necessary to the Phasing Plan or the Construction Quality Assurance Plan.

As always, please do not hesitate to call me if you have any questions.

Sincerely,

GAI Consultants, Inc.

Timothy M. Kyper, P.E. Engineering Manager

TNK:CLN/cwi 9641037-ltr-cln/cwi132

Enclosures

VIRGINIA ELECTRIC AND POWER COMPANY (DOMINION)
GLEN ALLEN, VIRGINIA

REVISED
CLOSURE PLAN
UPPER (EAST) POND
CHESTERFIELD POWER STATION
CHESTERFIELD COUNTY, VIRGINIA

GAI CONSULTANTS, INC. 570 BEATTY ROAD MONROEVILLE, PENNSYLVANIA 15146

PROJECT 96-410-37

SEPTEMBER 2003

TABLE OF CONTENTS

	<u>Pa</u>	ge
TABLE OF C	ONTENTS	i
LIST OF FIGI	URES	ii
LIST OF APP	PENDICES	ii
LIST OF DRA	AWINGS	ii
CLOSURE PI	LAN - UPPER (EAST) POND	1
II.	Introduction, Background of Site, and Closure Summary	1 1 2 3 3
FIGURES		
APPENDICE	S	
DRAWINGS		

LIST OF FIGURES

Number		Title	· · · · · · · · · · · · · · · · · · ·
1	Site Location Map		¥
2	Frost Depth Data		
3	Closure Schedule		

LIST OF APPENDICES

<u>Appendix</u>	Title
Α	Surface Preparation, Fertilization, Seeding, and Mulching Requirements
В	Calculations
С	Schedule and Checklist for Facility Inspections

LIST OF DRAWINGS

Drawing	Rev.	Sheet No.	Title	_
V-96-410-F13	1	1 of 3	Title and Index Sheet	
V-96-410-F14	1	2 of 3	Closure Plan - Final Topography	
V-96-410-F15	2	3 of 3	Closure Plan - Sections and Details	

CLOSURE PLAN - UPPER (EAST) POND CHESTERFIELD POWER STATION CHESTERFIELD COUNTY, VIRGINIA

Introduction, Background of Site, and Closure Summary

A. Introduction

This Closure Plan for the Upper (East) Pond at the Chesterfield Power Station describes the closure of the existing, permitted facility, Permit No. VA004146. The location of the site is shown on Figure 1.

Included as a part of this Closure Plan is the description of the final cover, which will consist of 12 inches of soil material capable of supporting vegetation. Design calculations for the final closure are included in the appendices.

B. <u>Background of Site</u>

The Upper (East) Pond is an unlined, diked disposal site that was constructed in 1983 for long-term disposal of fly ash, bottom ash, and coal mill rejects, containing small amounts of pyrites. These materials are commonly referred to as coal combustion by-products (CCBs) and now include other types of materials, such as, but not limited to, flue gas emission control waste material. Historically, material was transferred from the lower west pond to the Upper (East) Pond about every three (3) years. Following a material transfer in July 1996, however, the Upper (East) Pond was reaching capacity and Virginia Electric and Power Company (Dominion), as part of their permit requirements under VA004146, prepared and submitted a Closure Plan for the facility. Dominion proposed to effect the closure of the

Upper (East) Pond by the continued placement of CCBs within the pond. The Closure Plan was reviewed and approved by the Commonwealth of Virginia. By submission of this revised Closure Plan, and other revised associated documents, Dominion proposes to continue the closure of the Upper (East) Pond by placement of CCBs on the interior of the dikes, but under different criteria.

C. Closure Summary

Closure of the site will occur simultaneously with the continued placement of CCBs, which will occur generally from east to west. Surface runoff will be handled with benches, lined or paved slope drains, surface swales, and perimeter collection channels. As final CCB surfaces are obtained, a 12-inch-thick final soil cover will be placed, then fertilized, seeded, and mulched. The final top surface will drain toward surface swales at a minimum two (2) percent slope. The surface swales will outlet into the slope drains around the site.

After CCB placement has been completed and the entire site has been stabilized with vegetation, post-closure care will commence. Post-closure care of the facility will continue for a period of five (5) years. Post-closure care will consist of regular site inspections, and routine site maintenance. Following post-closure, the temporary sediment pond will be filled in and flow from the two (2) perimeter collection channels will be combined into one culvert and discharged through the dike near the southeastern side of the pond. Detailed information pertaining to the site

closure and post-closure is presented in the following sections. Ground water and surface water monitoring will continue per the VPDES Permit.

11. Closure Plan

A. Closure Activities

1.

Closure Plan Time Frame. As final CCB surfaces are obtained during CCB placement, final closure will be performed. Based on the current CCB production of 300,000 cubic yards per year, final closure is expected sometime near the year 2028. However, additional environmental controls, e.g. flue gas emission control scrubbers, may be added to the Chesterfield Station around 2008 to 2010 and the final close year would be expected to change. If added, the amount of CCBs will increase and is estimated to be an additional 120,000 cubic yards per year. This would bring the annual production to 420,000 cubic yards. The flue gas emission control waste material would be co-mingled in the upper pond with the other materials removed from the lower pond, and, if all material goes to the upper pond, the final closure would be expected sometime near the year 2023. However, implementation of CCB utilization options could extend the site's useful life to a later date. For example, the flue gas emission control waste material may be used in the production of wallboard. Also, ash that has been placed at the site has been removed for other beneficial purposes. This practice is anticipated to continue.

If the site were to be closed before the final depicted configuration is achieved, the final cover and drainage channels would still be constructed as described in this plan and as shown on the Drawings. The only difference would be that the final top surface would be at a lower elevation and would have a slightly larger surface area. A minimum two (2) percent slope would also be maintained for surface drainage.

- Closure Performance Standard. Post-Closure maintenance will be minimized by implementation of the following features, which are more fully described in subsequent sections of this plan:
 - Final grading/surface water drainage channel system providing positive drainage away from the site
 - Erosion-resistant channel linings
 - Vegetated cover soil
 - Regularly scheduled facility inspections

The site will be covered with a vegetated soil cover to reduce the potential for erosion and infiltration. The closure materials are CCBs, hence no waste decomposition products are expected.

 CCB Placement. As the CCBs are placed, the working surface shall be graded in a manner to drain toward the lined slope drains. Grading shall be performed such that ponding of water is minimized on the surface.

Around the perimeter of the pond, and for a distance of at least 50 feet inward from the final surface, the CCBs shall be placed and graded in lifts not exceeding one foot. Each lift shall be compacted at optimum moisture, within a tolerance of plus four (4) percent or minus six (6) percent of optimum, to a minimum density of not less than 95 percent of Standard Proctor maximum dry density. This may require additional compactive effort to achieve. Elsewhere within the upper pond, material shall be placed and compacted at optimum moisture, within a tolerance of plus or minus eight (8) percent of optimum, to achieve a minimum density of not less than 92 percent of Standard Proctor maximum dry density. Surcharging techniques, such as storing the CCB material in stockpiles at least 15 feet high may be used to achieve the compaction and moisture requirements.

Fugitive dust shall be controlled at the site as required. A water truck and/or other methods will be available to spray the haul roads and active surfaces to control fugitive dust.

4. Final cover soil is to be carefully placed above the CCB surface. Soil used for cover will have physical and chemical characteristics conducive to the establishment of vegetation and be free of wood fragments, rocks over three (3) inches in size, and other debris. Placement of the soil will be monitored at all times. The soil material shall be acquired locally from nearby sites, such as on-site (Dominion property), the Chesterfield County Proctor Creek Wastewater

5.

Treatment Plant, or the Shoosmith property. When on embankment slopes, the soil shall be placed from the bottom of the slope up to the top, and shall be placed in one 12-inch thick lift. The 12-inch thick lift shall be compacted with a minimum of two passes of the track area of the dozer used to place the soil. Tracking of the soil shall be up and down the slope, not transverse.

The proposed final cover vegetation will be a low maintenance species that does not require mowing. It will be chosen for it's demonstrated adaptability to growth in a wide range of soils. The seed mixture will include perennial cool-season grasses (e.g., Perennial Ryegrass or Tall Fescue) and a nitrogen-fixing perennial legume (e.g., Sericea Lespedeza). A complete description of the cover vegetation and fertilizing, seeding and mulching requirements are provided in Appendix A.

Maintenance Needs. The cover system is designed to function effectively with minimum maintenance needs. The top surface will be graded to provide positive drainage and to minimize ponding; embankment side-slopes will be graded at 3 horizontal to 1 vertical (3H:1V), with 20-foot-wide benches placed every 25 vertical feet maximum, which will minimize erosion. The vegetative cover specified will be monitored closely after major storm events, particularly in the establishment year and will be reseeded and mulched as necessary. The vegetation species will be chosen so as

to require mowing on a limited basis (2 to 3 times per year), and not to require maintenance fertilizer. Nutrient cycling and biological nitrogen fixation (by the perennial legume) will maintain and build fertility levels. Large woody plants will be cut down and the stumps treated as necessary.

6. Surface Drainage and Erosion. A surface water drainage system has been designed to provide run-off control at the facility. run-on control is necessary since the pond does not receive any runoff from off-site. Benches located at the site have been designed to collect and convey surface runoff from the 3H:1V slopes to the slope drains and perimeter collection channels. The perimeter channels convey the flows to the temporary sediment pond located at the eastern end of the site. All channels are designed to accommodate the 25-year, 24-hour storm. The benches were designed at a slope of one (1) to three (3) percent, the slope drains were designed at a maximum slope of 33 percent and a minimum slope of five (5) percent, and the perimeter collection channels were designed at a grade of 0.4 percent. The benches and perimeter channels will be fertilized, seeded, and mulched the same way as the final cover on the rest of the site. The slope drains will be lined with concrete, concrete-like material, or paved with an Engineer-approved lining. The haul roads shall be constructed as shown on the Drawings. Bituminous-coated corrugated metal

pipe culverts will be used to convey the 25-year, 24-hour storm flows underneath the haul roads and ultimately underneath the closed temporary sediment pond, where shown on the Drawings. The layout and details of the channels are also shown on the Drawings. Hydrology and hydraulic calculations are provided in Appendix B.

Soil material that may erode during construction will be intercepted and channeled to the on-site sediment pond. Eroded areas will be repaired. Calculations have been performed to estimate erosion rates for the post-closure period (see Appendix B). The estimated rate of cover erosion was calculated by using the Universal Soil Loss Equation. The maximum estimated erosion rate was calculated to be 1.7 tons per acre per year for the final vegetated surface. The estimated erosion rate is less than the accepted maximum soil loss rates, which usually range from 2 to 5 tons per acre per year.

7. Stability and Settlement. Stability of the CCB placement areas was demonstrated by calculations performed for the design. These calculations are included in Appendix B. Based upon research performed, it was established that Chesterfield County has a seismic coefficient of 0.075 which indicates that the Upper Pond site is not susceptible to significant damages due to earthquake activity. This coefficient was taken into consideration in the stability analyses.

Stability of the site was analyzed for three (3) cases. The first case is for 1998 conditions, the second case is for CCB placement to elevation 80, and the third case is for CCB placement to elevation 130. Given the variability of subsurface soil profiles, geometry, and conditions around the perimeter of the pond, nine (9) sections were assessed. The factors of safety against a circular failure are summarized in Table 2 (Sheet 4 of the stability calculations, Appendix B).

The factors of safety for most of the cases under seismic conditions analyzed were above 1.5. Exceptions were found in the unstable areas at the eastern end of the site that are referred to as the North and South dikes (Sections H-H and I-I, respectively, Table 3, Sheet 4 of the stability calculations). Many of the factors of safety in these areas were below 1.5. Note that these factors of safety are conservative since they take into account the seismic coefficient and a higher than expected phreatic line through the dike. However, due to these lower factors of safety at the eastern end of the site, closure will involve terminating CCB placement for these areas at the same elevation as the top of the dike. Note that the factor of safety does not decrease for the additional CCB placement behind the dike. These areas and the dike will be monitored for movement. Maintenance action will be taken if and when needed. Most of the factors of safety for the second and third case (CCB placement to elevation 80 and

elevation 130, respectively) were above 1.4. These results represent reasonably dry (i.e., not saturated) conditions for the CCB, conditions that are expected. Higher water elevations (that is, saturated CCB and/or dikes) could lead to lower factors of safety.

Since the site closure will be performed over a time span on the order of 20 to 30 years, much of the anticipated settlement will occur during construction. Given that the CCB material is expected to have a density of at least 92 percent of Standard Proctor maximum dry density, 95 percent around the pond perimeter, and placed in an unsaturated condition, post-construction settlement of the material should be relatively small. The calculations provided in Appendix B indicate that a maximum surface settlement of 1.1 feet can be expected, assuming a final nominal maximum surface elevation of 130 feet above mean sea level (MSL).

Stability and site life calculations were performed using anticipated material properties (unit weight, strength parameters, etc.) based upon GAI Consultants, Inc.'s (GAI's) experience with similar materials and laboratory testing as presented in the calculations. The materials should be monitored and tested in the future, especially if the flue gas emission control scrubbers are installed, and additional engineering analyses should be performed to confirm the parameters utilized at this point in time.

- 8. Freeze/Thaw Effects. The depth of maximum frost penetration is expected to be less than 24 inches (see Figure 2). Freeze/thaw effects are not expected to be detrimental. Any minor sloughing of cover soil will be repaired.
- 9. Schedule for Closure. Many factors will dictate the actual schedule for closure. The major factors include the CCB generation rate, with or without the addition of scrubbers to the station, and possible beneficial use applications. It is anticipated that the site will be closed in two phases. Using a CCB placement rate of 300,000 cubic yards per year, (i.e., without scrubbers), Phase I, consisting of 4 cells, will be completed in about 2016. Phase II, consisting of 3 additional cells on top of Phase I, will take another 12 years for completion. Accordingly, an anticipated closure date for the site could be the year 2028. If scrubbers are added in 2008 and 2010, the placement of CCBs is expected to increase to 420,000 cubic yards per year. Under this scenario, Phase I would be completed in 2014 and Phase II would require nine additional years and be completed in 2023.

A possible closure schedule for the site is shown on Figure 3.

10. Security and Posting. Signs will be posted at the locking gates at all facility access points and unauthorized entrance is prohibited. Vehicle access to the site will be controlled by bar gates secured with lock and key. Vehicle access adjacent to the gate will be denied by physical barriers (surface water channels, post barricades, or severe slopes).

Monitoring. Both ground water monitoring and surface water monitoring will continue throughout the closure period and will be performed in accordance with the terms and conditions of the Virginia Pollution Discharge Elimination System (VPDES) permit. Surface water monitoring will occur at the outlet of the temporary sediment pond, currently Outfall 005. The ground water and surface water monitoring requirements of the VPDES permit will be modified prior to the introduction of flue gas emission control waste material.

B. Post-Closure Activities

- Security. Vehicle access to the site will be controlled by bar gates
 secured with lock and key. Vehicle access adjacent to the gate will be
 denied by physical barriers (surface water channels, post barricades
 or severe slopes). No CCB material will remain exposed upon
 completion of closure. Access to the closed site will not pose a health
 hazard.
- 2. Ground Water Monitoring System Maintenance. Maintenance of the ground water monitoring system will consist of repairing any damaged materials (e.g., protective casing) as needed, as observed during regular inspection (see Item II.B.3, below) or during sampling (see Item II.B.4, below). If any irreparable damage occurs, the appropriate part or parts of the system will be replaced in kind.

Since the facility will accept CCBs, no gas generation should occur, hence no gas collecting/venting facilities will be installed.

The perimeter collection channels will continue to convey surface runoff and will be cleaned as required to keep them free-flowing.

- 3. Inspection Plan. Inspection during the post-closure care period will be performed for the items noted below. The frequency of inspection is detailed in Appendix C, Table C-1. Inspections are scheduled frequently enough so that any potential damage that might occur between inspections will be detected and repairs can be performed before significant harm can occur. Appendix C provides a checklist for facility inspections.
 - Security Control Devices. The serviceability of the locking gates will be inspected during regular inspections.
 - CCB Placement The entire CCB placement area, including top surface and side-slopes, will be inspected for slides, settlement, and displacement, and cover condition (see below).
 - Existing Upper (East) Pond Dike The dike surrounding the placement areas will be inspected for slides, displacement, seepage and erosion.
 - Cover The final cover will be inspected for erosion and for the condition of the vegetated cover, i.e., gaps in vegetation or presence of undesirable trees or brush.
 - Surface Drainage System The surface drainage system,
 including benches, slope drains, haul road drainage channels,

surface swales, perimeter collection channels, and culverts, will be inspected for erosion, integrity of channel lining, ponding, and accumulated sediment.

- Ground Water Monitoring System The ground water monitoring system will be inspected for the general integrity of the wells, well casings and protective casings.
- 4. Monitoring Plan.
 - Ground water monitoring will continue during the post-closure period in accordance with the terms and conditions of the VPDES permit.
 - In addition, water from the temporary sediment pond will also be sampled in accordance with the VPDES permit. Sampling will continue until the sediment pond is closed.
- Maintenance Plan. Maintenance during the post-closure care period will be performed as discussed below, based upon the facility inspections described above and in the checklist in Appendix C.
 - Security Control Devices. Any portions of the locking gates
 which might be damaged will be repaired or replaced.
 - Erosion Damage Repair. Any areas exhibiting 4-inch rill
 erosion will be repaired by replacing and compacting the
 material in kind to design grade/specifications, and reseeding
 the area to the specifications. Application of additional
 fertilizer, selective herbicides, rodent control measures, etc. will

be implemented as necessary. Follow-up monitoring of the repaired area will be conducted to ascertain the integrity of the repair.

- Settlement, Sliding, or Displacement. Any areas at the closed site exhibiting evidence of settlement, sliding, or displacement will be examined to determine the cause of the movement. These areas will be backfilled with additional CCBs or soil material as needed to maintain positive drainage and the integrity of the closed site. Any backfilling will be performed in accordance with the site/closure specifications, including seeding. If the condition reoccurs or persists, or if the severity of the condition initially is judged to warrant it, a detailed investigation of the cause will be performed, and remedial action will be undertaken.
- Surface Water Drainage System. The channel linings are designed to withstand anticipated flow velocities. Maintenance of the surface water drainage system will consist of removing sediment and/or undesirable vegetation from the channels and culverts once accumulated sediments reach a depth equating to 25 percent of the hydraulic capacity. Eroded areas will be repaired by backfilling and reseeding according to the specifications. Damage to culverts will be repaired; structure replacement will be performed if needed.

- Ground Water Monitoring Wells. Any damaged portions of the monitoring wells and/or their protective casings will be replaced in kind. The protective casings are steel casings with locking covers to minimize tampering or damage due to vandalism.
- 6. Training. Company personnel responsible for post-closure monitoring, inspection, and maintenance will be under the direct supervision of the company's engineering staff during performance of these duties.
- 7. Sediment Pond Closure. Following post-closure monitoring, the temporary sediment pond will be closed. This will be accomplished by constructing drainage modifications and by placing fill material. Flow from the two (2) perimeter collection channels will be combined into one (1) culvert, which will discharge through the dike in the vicinity of the existing riser structure and 24-inch diameter discharge pipe (see Drawing V-96-410-F14). The concrete riser will be demolished and removed from the pond, along with the 24-inch diameter discharge The larger replacement pipe that combines the two (2) pipe. perimeter collection channels will be the only surface drainage discharge point from the site. The pond will be filled in stages with either CCB or soil, or a combination thereof, in such a manner so that the water quality of the discharges from the site are maintained. As the pond fill reaches elevation 40, a final soil cover will be placed and

the surface will be limed, fertilized, seeded, and mulched according to Appendix A.

9641037rev-cp.cba/cwi132

OFFICIAL COP

Oct 23 2019

FIGURES

Approximate frost-depth contours for the United States, based on a survey by the author of a selected group of cities.

AVERAGE DEPTH OF FROST PENETRATION (IN.) BOURCE: U.S. DEPT, OF COMMERCE WEATHER BUREAU

FIGURE 2 FROST DEPTH DATA

From: Foundation Analysis and Design, 4th Ed., J.E. Bowles, p. 305, and Architectural Graphic Standards, 8th Ed., J. R. Hoke, Jr.

Virginia Power - Chesterfield Closure Closure Schedule CRB 8/22/97

Rev. MRL 2/10/98

Rev. GJA 4/24/03 Chkd: MRL 5/15/03

CLOSURE SCHEDULE

Cell	Volume	Volume	Life Expectancy	Closure Year
	(Ac-ft)	(yd³)	(yr)	
			*	*
1	625.55	1,009,298	3.4	2001
2	827.05	1,334,417	4.4	2005
3	979.18	1,579,874	4.8	2010
4	911.24	1,470,253	3.5	2014
Subtotal (Phase I)	3,343.02	5,393,842	16.1	2014
5	655.90	1,058,278	2.5	2016
6	774.79	1,250,092	3	2019
7	754.23	1,216,930	2.9	2022
Subtotal (Phase II)	2,184.93	3,525,299	8.4	2022
Pond Area **	151.20	243,956	0.6	2023
Total		9,163,097	25.1	2023

- * based on 300,000 cubic yards placement per year starting in 1998. In year 2008, Scrubber 1 is assumed to be operating and will increase the production by approximately 60,000 cubic yards. In year 2010, Scrubber 2 is assumed to be operating and will increase the production an additional 60,000 cubic yards per year. At this point, the total production will be approximately 420,000 cubic yards per year.
- ** based on the temporary sediment pond filled in with CCB's

FIGURE 3

ct 23 2019

APPENDIX A

SURFACE PREPARATION, FERTILIZATION, SEEDING, AND MULCHING REQUIREMENTS

APPENDIX A

SURFACE PREPARATION, FERTILIZATION, SEEDING, AND MULCHING REQUIREMENTS

- A. The establishment of vegetation on exposed areas of the CCB surface is necessary to control erosion. Establishment of permanent vegetation requires a growth medium both physically and chemically capable of supporting plant growth and the proper selection and planting of compatible grass and legume species. The major operations involved in vegetation shall include excavation, redistribution, and conditioning of topsoil, and the seedbed preparation, liming, fertilizing, seeding, mulching, and maintenance required for the establishment of a suitable stand of vegetation.
- B. A one (1) foot thick cover soil will be placed on the compacted CCB surface to provide a final growth medium for the vegetation. The cover soil may be the same soil as was placed as temporary cover as long as vegetation can be properly established and maintained. The cover soil is required over all CCB surfaces at the site.

Following initial placement and compaction, the finished soil surface shall be thoroughly loosened to a depth of between six (6) and nine (9) inches by discing, harrowing, or other methods. All soil irregularities shall be satisfactorily corrected before liming, fertilizing, seeding, or mulching.

- C. Cover will be obtained from one of the borrow areas listed in this plan.
- D. An adequate number of samples of the borrow material shall be obtained for analysis. The analyses shall be performed by a qualified soil testing laboratory.

E.

The analyses results will provide fertilizer formulation as well as the application rates for the lime and fertilizer.

- Based upon the characteristics of the material as determined by the tests performed to establish lime and fertilizer application rates, a species composition of a seeding formula(s), a corresponding application rate(s), a time schedule for seeding and a method of application will be prepared. The seeding formula shall include cool season grass(es) and a nitrogen-fixing legume to ensure against nitrogen depletion. As an alternate method, one (1) of the seeding mixtures recommended in the 1992 Virginia Erosion and Sediment Control Handbook may be used for the final cover soil vegetation. The recommended seeding mixture is the "Low Maintenance Slope Seeding Mixture for Coastal Plain Areas". This seeding mixture is found in Table 3.32-E of the Virginia Erosion and Sediment Control Handbook, Standard and Specification 3.32, "Permanent Seeding". This seeding mixture consists of Kentucky 31 Tall Fescue, Common Bermuda Grass, Red Top Grass, a seasonal nurse crop, and Sericea Lespedeza. The seeding rates and application requirements shall be as specified in Standard and Specification 3.32.
- F. Soil will be placed only when in a moderately dry condition in order to minimize clodding and compaction which can result from multiple passes with construction equipment. Soil used for cover will have physical and chemical characteristics conducive to the establishment of vegetation and be free of wood fragments, rocks over three (3) inches in size, and other debris. Cover soil placement will be inspected periodically to assure that the proper depth and soil densities are achieved. The surface will be left in a rough or furrowed manner along slope

contours to minimize erosion and maximize available soil moisture during the interim period between soil covering and seeding operations. Final grading of the soil covered areas will be accomplished to assure free drainage with no depressions or drainage courses.

- G. Liming, fertilizing, mulching and permanent seeding will be performed to the extent possible between the dates of March 1 and June 15 or between August 15 and October 15. If cover soil is placed during times other than the above-specified periods, temporary seeding shall be performed according to the 1992 Virginia Erosion and Sediment Control Handbook. No seeding shall be done when the ground is frozen, excessively wet, or otherwise untillable, or when prohibited by Dominion due to excessive wind.
- H. Completed slopes shall be seeded and mulched within 15 days of final grading. It is the intent of the specifications that the duration of exposure of the construction slopes to the elements be as short as possible to minimize the potential for erosion and subsequent water pollution.
- I. Prior to seeding, a seedbed shall be prepared on all slope and top surfaces in such a manner as to enhance seed germination, optimize plant root penetration, increase infiltration, minimize soil erosion, and optimize available water within the rooting zone. Seedbed preparation shall be accomplished by discing, harrowing, or using other suitable methods over the area in order to loosen the upper six (6) inches of cover. Fertilizer and other soil amendments may be incorporated into the soil during this operation.

K.

J. Mulching material shall be free from mature seedbearing stalks or roots of prohibited or noxious weeds. Mulches for seeded areas shall be one or a combination of the following: hay, straw, or wood cellulose. Hay and straw mulching shall be well cured to less than 20 percent moisture content by weight and shall contain no stems of tobacco, soybeans, or other coarse or woody materials.

Hay shall consist of timothy hay, mixed clover and timothy hay, or other Dominion-approved native or forage grasses. Straw mulching shall be either wheat or oats straw. Wood cellulose shall consist of specially prepared wood cellulose fibers containing no growth or germination inhibiting factors and shall be dyed green, unless otherwise specified. Wood cellulose fiber shall be furnished air dry in packages not exceeding 100 pounds gross, with net weight indicated on the package.

Mulching shall be placed within 24 hours after seeding and shall be placed over all seeded areas. Mulching shall be placed uniformly in a continuous blanket at a minimum rate of 3,100 pounds per 1,000 square yards. The depth or rate of application may be increased based upon the materials, season, soil conditions and method of application. A mechanical blower may be used to apply mulch material, provided the machine has been specifically designed and approved for this purpose. Machines which cut mulch into short pieces will not be permitted. Mulching shall be anchored by the use of twine, stakes, wire staples, paper or plastic nets, or by other methods approved by Dominion. Wood cellulose fiber, when specified, shall be applied hydraulically and may be incorporated as an integral part of the slurry after

- the seed and soil supplements have been thoroughly mixed. It shall be applied uniformly at the rate of 320 pounds per 1,000 square yards.
- L. Where seeded areas have become damaged by erosion or additional construction operations, the affected areas shall be promptly regraded, limed, fertilized, and reseeded as originally specified. If the seeding and soil supplement work on a slope has been satisfactorily completed, and erosion, slide, or slip occurs which requires redressing, excavation, or the establishment of a new slope, the seeding and soil supplement operations shall be performed again.
- M. Areas that have not established a satisfactory vegetative cover at the end of one (1) growing season shall be reseeded, limed, fertilized, and mulched as originally specified.

APPENDIX B

CALCULATIONS

SUBJECT	Viccinia	Power	_	Chesterfield	Closure	
---------	----------	-------	---	--------------	---------	--

SHEET NO. ____ __OF__

DATE _

HYDROLOGY AND HYDRAULIC CALCULATIONS

- UNIVERSAL SOIL LOSS EQUATION CALCULATIONS
- STABILITY ANALYSIS CALCULATIONS
- SETTLEMENT CALCULATIONS

Dominion Energy North Carolina Docket No. E-22, Sub 562

SUBJECT _____

DATE _____

(D. BY _____ DATE ____

PROJ. NO.

SHEET NO. _____ OF ____

Post-Hearing Exhibit 6
Page 41 of 1846

Engineers • Geologists • Planners Environmental Specialists

Oct 23 20

HYDROLOGY AND HYDRAULIC CALCULATIONS

Virginia

PROJ. NO.

96-410-33 70 SHEET NO.

Closure

A REV. MRL 10/22/97

SUBJECT

HYDROLOGY AND HYDRAULIC CALCULATIONS

OF CONTENTS ABLE

L.		SHEET NO.
	OBJECTIVE	2
	METHODOLOGY	, 3
6	REFERENCES	4
The second secon	RAINFALL AMOUNTS	5-6
202	CURVE NUMBERS	7
7	TIME OF CONCENTRATION DATA	8-9
لسا	HYDROLDCY INPUT DATA	a ()
	BENCHES	10-11
	SLOPE DRAINS	12-16
	PERIMETER COLLECTION CHANNELY	17-21
- Contraction of the Contraction	Sueface swales	22-24
F-1	HAUL ROAD DRAINAGE CHANNELS	25 - 27
, , , , , , , , , , , , , , , , , , ,	CULVERTS	28 - 30
Participa	FINAL CLOSURE CULVERT	31 - 33
o de la companya de l	TEMPORARY SEDIMENT POND	34 - 38
(mus.)	DATA SUMMARY	39
h-manage and a second	TR-ZO RUN, CHANNELS	40-43
	CHANNEL SCHEMATIC	44
[]	CHANNEL DESIGN	45
- Communication	WEST CULVERT CALCULATION	46-40
§) EAST CULVERT CALCULATION	49-51
and the second	FINAL CLOSURE CULVERT CALCULATION	51A-51D
v 2004 0270 VE	A	

MRL

DATE 23 SEP97

96-410-33 PROJ. NO. 70

IA SHEET NO.

CONTINUED - --TABLE OF LONTENTS

w
Š
5
t

	SHEET NO.					
TEMPORARY SEDIMENT ROND	2					
DESIGN REQUIREMENTS	52					
Stace - Storage	53 - 55					
STORAGE REQUIREMENTS	56					
RITER AYORAUMCS	57-64					
STAGE - DISCHARGE-STORAGE TABLE	65					
TR-20 RUN, SEDIMENT POND	66-69					
DEWATERING CALCULATION	70					

Engineers • Geologists • Planners **Environmental Specialists**

Post-Hearing Exhibit 6

DATE 23 SEP 97 A Rev. MRL 10/21/97

Virginia Power - Chesterfield Closure

HYDROLDGY AND HYDRAULICE CALCULATIONS

Calculate peak discharges for the site closure. Objective: Calculate the discharges after the site is closed and stabilized with regetation, and also for when the maximum peak discharges occur during the phased closure. The peak discharges will be used to size -...

- benches
- slope drains
- perimeter collection channels
- sufface swales
- haul road drainage channels
- culverts
- Final closure culvert

The peak discharges will also be used to check the adequacy of the temporary sediment pond.

The temporary rediment pond, and all channels and culverts will be sized to handle the 25-year 24-hour storm.

Docket No. E-22, Sub 562 Closure Virginia Power - Chesterfield 96-410-33 MRC PROJ. NO. 3 70

SHEET NO.

Engineers • Geologists • Planners **Environmental Specialists**

Methodology:

Dominion Energy North Carolina

Peak discharges will be calculated using the USDA SES computer program TR-20, "Computer Program for Project Formulation - Hydrology".
The USDA SES publication TR-55 "Urban III doubles for Small Weterful? Hydrology For Small Wetersheds, will be used hydrologiz parameters such as runoff time-of-concentration. curve number and Channel flow depths and velocities computer program " Penn calculated using the State Urban Hydrology Model

Y MRL DATE 9/11/9

DATE 23 SEP97

PROJ. NO. 96-40-33

Closure

SHEET NO. 4

REFERENCES

- O Virginia Erosion and Sediment Control Handbook, 3rd Edition, 1992, Virginia Department of Conservation and Recreation, Division of Soil and Water Conservation
- 2) United States Department of Agriculture, Soil Conservation Service, Computer Program TR-20: Computer Program for Project Formulation Hydrology, September 1983
- (3) United States Department of Agriculture, Soil Conservation Service, TR-55: Urban Hydrology for Small Watersheds, June 1986
- 4) Pennsylvania State University, Computer Program PSUHM: Penn State Urban Hydrology Model, Nov. 1987

Oct 23 2019

96-410-33 MRL DATE 23 SEP97

CONSULTANTS, INC

Engineers • Geologists • Planners **Environmental Specialists**

RAINFALL DEPTHS FOR SELECTED DESIGN STORMS

Source: USDA-SCS and U.S. Weather Bureau

Ref: 1 Plate 5-19

Source: USDA-SCS and U.S. Weather Bureau

Ref: (1) Plate 5-20

K	
R	
ö	

SUBJECT Virginia Power - Chesterfield Closure

BY MPL DATE 9/11/97

DATE _ 235= P97

PROJ. NO. 96-410-33

CONSULTANT

Engineers • Geologists • Planners Environmental Specialists

CURVE NUMBERS

SHEET NO. _

Vegetated final soil cover (good condition) — 74° Temporary regetation on CCB (fair condition) — 79° Temporary regetation on CCB (poor condition) — 85° ©

Coal combustion by-product (CCB) — 85° ©

Gravel haul roads — 89° ©

Temporary rediment pond pool — 100

- © Ref. 3), Table 2-2a, Open space, Good Condition (Grass cover > 75%)

 3) Ref. 3), Table 2-2a, Open space, Good Condition (Grass cover > 75%)

 3) Ref. 3), Table 2-2a, Open space, Fair Condition (Grass cover 50% to 75%)
- an = 79 for hydrologic soil group C

 (3) Ref (3), Table 2-28, Open space, Past Condition (Grass cover < 50%)

 CN = 86 for hydrologic soil group C Use 85 to match bare CCB
- (a) Permeability test results of CCB show values from 3×10-4 cm/sec to

 1.5 × 10-4 cm/sec. These are typical of type A and B soils.

 Use CN = B5 (typical permeable ash CN and close to newly graded soil cn, HSGB)

 (b) Ref (3), Table 2-2a, Gravel road, CN = 89 for hydrologic soil group C

J		
) BY	MRL
1		~ . ~

96-410-33 PROJ. NO.

ChesterFreld

 n^1

0.011

0.06

0.17

0.10

0.15

0.24

0.41

0.13

0.03 * 0.05

CHKD. BY KHP

70 SHEET NO.

CCB (no vegetation)

- CCB W/ poor regetation - CCB W/ Fair regetation - final cover w/ good regetation

Table 3-1.-Roughness coefficients (Manning's n) for sheet flow

Smooth surfaces (concrete,	asphalt, gravel, or
bare soil)	
Fallow (no residue)	

Surface description

Cultivated soils:

Residue cover ≤20% Residue cover >20%

Grass: Short grass prairie Dense grasses².....

Bermudagrass..... Range (natural)

Light underbrush..... Dense underbrush

¹The n values are a composite of information compiled by Engman ²Includes species such as weeping lovegrass, bluegrass, buffalo

grass, blue grama grass, and native grass mixtures. When selecting n, consider cover to a height of about 0.1 ft. This is the only part of the plant cover that will obstruct sheet flow.

* Rough Surface (bare soil, ash, etc.; graded but not smooth like a road)

		Domii Docke SUBJECT	nion Er et No.	nergy N E-22, S	orth Caroli ub 562 o Po	na wer -	- Ch	e stei	tre.		C	losu	ire					Post	-Heari Paç	ng Exhib	it 6 184		COPY
<u>.</u>	;	BY	M	RL	DATE	9/11	97		PRO	DJ. NC	D	76 -	410	-3	33					CON	SULT	ANTS	-
Principle Comments		CHKD, BY	v RI			23 SE						9						Envi	neers ronme	Geolental Spe	ogists ecialist	s	
		*				LLO Ference										-L<	WC			l	REF	3	O
				.50					,	777			-		110								<u>0</u>
					-												1			*			Oct 23 2019
harmonio and and a second																						ě	Ö
			TC.	.20	-								7								# % #		•
														1							\$	*	
Name and American)		ft/ft	.10																		ę	
		***	ope, f	.06																			
* Automorphism of the state of			S	.04																	143		
WY CARREST AND A STATE OF THE S			Watercourse			747		1															
			Wa	.02	-																		
							Par for																¥.
				.01	-											·						20.	
Vertical and the second	20												+										*
Paramatan de la constitución de	,)		•	005										#					- Constant Const				
de la company de				•	1		2 Ave	rag	• e v	4 elo	cit	6 y, t		sec	1	0			20				

Post-Hearing Exhibit 6

Closure

Typical bench length is less than 1000'. However, some benches may be as long as 1200'. Check the capacity of a 1200' long bench.

A Typical bench geometry

AREA = (70'+ 20') x 1200' = 117,600 62 2.7 acres

0.00422 mi,2

Dominion Energy North Carolina			aring Exh ibit 6 age 53 o f 184
Docket Np. E-22, Sub 562 SUBJECT Virginia Power - Chesterti	reld Closure		
BY MPL DATE 9/11/97 PROJ.	NO. 96-410-33	C	ONSULTANTS, INC.
CHKD. BY RHP DATE 23 SEP97 SHEET	11 70	Engineers • C	Geologists • Planners Specialists
TIME OF	CONCEN	TRATIO	J
Reference: U	ISDA SCS TR-55		
	÷.		600111
Circle one: Present (Developed)	BENCHES		· · ·
Circle one: (T _c) T _t through subarea			
NOTES: Space for as many as two segmen worksheet.	ts per flow type can	be used for each	6
Include a map, schematic, or de-	scription of flow se	egments.	· ·
* *			
	Vegetated		
AREA	Final Cover	CCB	* * * *
	7		
Sheet flow (Applicable to T _c only) Segment ID			
1. Surface description (table 3-1)	Grass	CCB	-
 Manning's roughness coeff., n (table 3-1) 	0.24	0.03	
3. Flow length, L (total L ≤ 300 ft) ft	82	82	
4. Two-yr 24-hr rainfall, P ₂ in	3.5	3,5	
5. Land slope, s ft/ft	0.33	0.33	
6. $T_t = \frac{0.007 (nL)^{0.8}}{\frac{0.5}{2} 0.5 s^{0.4}}$ Compute T_t hr	0.06 +	+ 10,0	+
Shallow concentrated flow Segment ID			
7. Surface description (paved or unpaved)	N°		
8. Flow length, L ft			
9. Watercourse slope, s ft/ft			
10. Average velocity, V (figure 3-1) ft/s			· ·
11. $T_c = \frac{L}{3600 \text{ V}}$ Compute T_c hr	+	+	+
Channel flow Segment ID			
15. Channel slope, s ft/ft	0.01	0.01	
16. Manning's roughness coeff., n	0.04	0.03	
17. Estimate v Ec/s	2.0	2.5	
18. Flow length, L ft	1200	1200	
19. $T_t = \frac{L}{3600 \text{ V}}$ Compute T_t hr	0.17 +	0.13 +	+
20. Watershed or subarea Tc or Tt		0.11	
(add T _t in steps 6, 11, and 19) hr	0.23	0.14	
	CN=74	CN = 85	

Post-Hearing Exhibit 6

P97

PROJ. NO.

SHEET NO. 12

96-410-33

SLOPE DRAINS

There are 6 slope drains proposed for the site. Calculate the maximum peak discharge that would occur to any of the 6 slope drains. Design all six slope drains to handle this peak discharge.

Cell 1 active (see worksheet 96-40-33-MEL1)

All of the active area is conservatively assumed to discharge to the slope drain on the south side.

Cell 5 active (see work sheet 96-410-33-MRLZ)

During the initial construction of cell 5, max/mum discharge to a slope drain should occur. A conservatively large area has been directed to the slope drain on the south side.

The greater of the two peak discharges for the two cases described above will be used to design all if the slope drains.

Oct 23 2019

Doo	ninion Energy North Ca ket No. E-22, Sub 562						ring Exhibit 6 age 55 of 🌃	
		ower - Chustert		· ·	_			
		9/11/97 PF			_	c	ONSULTANTS	, INC
CHKD, BY	<u> RH₽</u> DATE ≥	23 SEP 92 St	HEET NOOF.	70		Engineers • Environmenta	Geologists • Pland I Specialists	ners
	Runo	FF CURVE	NUMBER	An	ID 1	RUNOFI	=	
	:ts	resent Developed	Slope D				tive) 3-MRL1	
	1. Runoft cur	ve number (CN)	Référence : USD	4 505	TR-5	,	51 - 152 - 15 - 15 - 15 - 15 - 15 - 15 -	
	Soil name and	Cover des	0.00	CN	1/	Area	Product of	
	hydrologic group (appendix A)	(cover type, tr hydrologic c percent imp unconnected/conne area ra	ondition; ervious; cted impervious	2-2	Fig. 2-4	acres	CN x area	
	(appendix A)			F .	E4 E4			
		Coal combustr		85		15.2		
)			•					
*			3					
			. d					
			181				10 28	
w #								
3	1/ Use only o	one CN source per 1:	ine.	Total	s = .	15.2		
	CN (weighted)	= total product = -	=;	Use C	N = [85		
	¥		K					

	Oominion Energy North Carolina Docket No. E-22, Sub 562	4	Post-Hearing Ex <u>hibit</u> 6 Page 56
SUBJECT	Virginia Power - Chesterti	eld Closure No. 96-410-33	CONSULTANTS, INC.
BY CHKD. BY_		NO. 14 OF 70	Engineers • Geologists • Planners Environmental Specialists
		CONCENTR	ATION
Ci	rcle one: Present Developed Ircle one: Tc Tt through subarea	inockshut	(Cell 1 active) 96-410-33-MRL1
NC	OTES: Space for as many as two segment worksheet. Include a map, schematic, or des		·
A	REA	dell 1	
1. Surf	ow (Applicable to T _c only) Segment ID face description (table 3-1)	A-B CCB	
) 3. Flor	ning's roughness coeff., n (table 3-1) w length, L (total L < 300 ft) ft -yr 24-hr rainfall, P ₂ in	3.5 O.O.I	
6. T _t	and slope, s	0.06+ B-c]+
7. Sur	rface description (paved or unpaved)	unpared .	
10. Ave	tercourse slope, s	0.01]+
Barrie .	flow Segment ID annel slope, s ft/ft nning's roughness coeff., n		
17. 18. F1	V ft/s ow length, L ft		
1. 1			
Noneman			

		cket No. E-22, Sub 562	olina				ge 57 of 184	
			ower - Chesterfield 9/12/97 PROJ. NO.					s 22
	CHKD. BY		CONSULTANTS, I Geologists • Planner tal Specialists					
		Runo	OFF CURVE NO	IMBER A	ND 1	RUNOFF	=	
		Circle one: Pr	resent Developed	Slape Or	ain (Cell 5	active)	
		1. Runoff curv	S TR-59		1	3		
		Soil name and hydrologic	Cover description		CN 1/	Area	Product of CN x area	,
		group (appendix A)	(cover type, treatment hydrologic condition percent impervious unconnected/connected in area ratio)	on; Z	Fig. 2-3 Fig. 2-4	acres	CN x area	
The second secon			Coal combustion by	y-product or		15.9	35 .5	
)		Vegetated timal soil	tion) 74		4.2	310.B	
					<u>.</u>			
	*							
		1/ Use only o	one CN source per line.	Tota	als =	20.1	1662.3	
		Santa 1/4 (Santa)	$= \frac{\text{total product}}{\text{total area}} = \frac{1662.3}{20.1}$		CN = [83	1 3	
			12					

Post-Hearing Exhibit 6

Environmental Specialists

<u>2</u> Engineers · Geologists · Planners

Virginia Rower - Chesterfreld Closure

MEL

96-410-33 PROJ. NO. SHEET NO. -

PERIMETER COLLECTION CHANNELS

There are a perimeter collectron channels proposed for the site. One is on 'the north side and the other' is on the south side. Both channels will be designed to handle the maximum peak discharge that is expected to occur throughout the life of the site. The maximum discharge should occur in the southern channel, so this is the channel that will be analyzed.

Cell 5 active (see worksheet 96-410-33-MPL 2)

A constructively large area of cell 5 was analyzed as if discharging to the southern slope drain. Large portions of cells 2 through 4 are shown to drain to the southern collection channel. Cells 2 through 4 are considered to only have "fair" grass since it is only a temporary cover.

Site closed (see worksheet 96-410-33-MRL3)

The entire site is regetated with good grass. This case was analyzed to show the peck discharge reduction for the closed site.

SUBJECT _	MRL DATE - RHP DATE - RUNO Circle one: Pr	Ower - Chestertield Closure 9/12/97 PROJ. NO. 96-410-	A Collect	ND Hon C(ell	F Ci	Engineers • Co Environmental	=
	Soil name	Cover description	Sheet	96. CN 1/	- 41	0-33-M Area	Product of
7	hydrologic group (appendix A)	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Xacres □mi² □%	CN x area
120		Coal combustion by-product (no regetation)	85			15.9	1351.5
)		Vegetated final soil cover (good condition)	74			4.2	310:8
2		Temporary regetation on CCB (Fair condition)	79			46.0	3634
300							
					0 40		
* *					- 450		
	1/ Use only o	one CN source per line.	Tota	l ls =		66.1	5296.3

CN (weighted) = $\frac{\text{total product}}{\text{total area}} = \frac{5296.3}{66.1} = \frac{60.1}{3}$ Use CN = 80

SUBJECT Virginia Power - Chefferfic	eld Closure	
BY MRL DATE 9/12/97 PROJ.	NO. 96-410-3	CONSULTANTS, INC.
	NO. 19 OF	
TIME OF	CONCER	JTRATION
Reference: (ISDA SCS TR-55	5 1 + B 1 É
and the second of the second o	· lembora	y Sediment Pond &
Circle one: Present Developed	· Perimeter	collection channel
Circle one: Tc Tthrough subarea		(cell 5 active)
NOTES: Space for as many as two segmen worksheet.		shut 96-40-33-MEL 2 can be used for each
Include a map, schematic, or de	scription of flow	segments.
Check for longest to -		
		Cells 2-4
AREA	Cell 5	Cells 2-4
Sheet flow (Applicable to T _c only) Segment ID	A-B	A-B
1. Surface description (table 3-1)	CCB	Felf Grass
2. Manning's roughness coeff., n (table 3-1)	0.03	0.15
) 3. Flow length, L (total L ≤ 300 ft) ft	100	100
4. Two-yr 24-hr rainfall, P ₂	3,5	3.5
5. Land slope, s ft/ft	0.01	0.02
6. $T_{t} = \frac{0.007 \text{ (nL)}^{0.8}}{P_{t}^{0.5} \text{ s}^{0.4}}$ Compute T_{t} hr	0.06 +	0.16+
Shallow concentrated flow Segment ID	B-C	8-2
7. Surface description (paved or unpaved)	unpared	imparch
8. Flow length, L fc	750	500
9. Watercourse slope, s ft/ft	0.01	0.01
10. Average velocity, V (figure 3-1) ft/s	1.6	1.6
11. $T_c = \frac{L}{3600 \text{ V}}$ Compute T_c hr	0.13 +	+ + + Po.0
Channel flow Segment ID	C-D D-E	C-0 D-E
15. Channel slope, s ft/ft	0.33 0.004	0.01 0.004
16. Manning's roughness coeff., n	0.015 0.04	0.04 0.04
17. Estimate v fc/s	35 4	3 4
18. Flow length, L ft	180 3300	720 1400
19. $T_t = \frac{L}{3600 \text{ V}}$ Compute T_t hr	+ 0.23	+ 0.40 +
20. Watershed or subarea Tc or Tc	10.10	10
) (add T _c in steps 6, 11, and 19) hr	0.42	0.42
W. Comments of the comments of		

Use to= 0.42

	Dominion Energy North Docket No. E-22, Sub 56		ř	9		earing Exhibit 6 Page 62 5148 4
SUBJECT	Vilginia MRL DATE	Power - Chesterfield	Closure 96-40-3			DNSULTANT
у ——— СНКО, ВУ	Ou o		20 OF 70			Geologists • Pla
	Runa	OFF CURVE NU	MBER.	AND	RUNOFE	=
	Circle one: Pr	cesent Developed	Perimeter	(51)	thon Che e closed	innel)
	1. Runoff cur	ve number (CN) Referen	Nce : USDA	SCS TR-5	96-410-	
,	Soil name	Cover description		CN 1/	Area	Product
A	hydrologic group	(cover type, treatment, hydrologic condition percent impervious; unconnected/connected imp	;	2-3	I I III I	CN x area
	(appendix A)	area ratio)	£	Fig.		
		Vegetated final soil a		1	70	٠,
)						
			-			
٠					-	
		one CN source per line.	То	tals =	70	
	CN (weighted)	total product = = = = = = = = = = = = = = = = = = =	us;	e CN =	74,	

0:52

20. Watershed or subarea Tc or Tr

(add T in steps 6, 11, and 19) hr

Dominion Energy North Carolina Docket No. E-22, Sub 562

Power - Chesterfield Closure Virginia

MRL DATE __ CHKD. BY RHP PATE 23 SEP97

96-410-33 PROJ. NO. SHEET NO. .

1 Rev. MRL 10/21/97

Engineers • Geologists • Planners **Environmental Specialists**

SURFACE SWALES

surface swales will be constructed on top surfaces to channel discharge to the slope drains. surfacer will be sleped a minimum of 2 percent to the surface swales. Surface swaler will be slaped From \$1.0 % to \$2.0 %.

> (Worksheet 96-410-33-MPL 2) 12% wih. 1

A surface swale on a CCB area with temporary regetation (fair condition) was analyzed. The Fair condition regetation yields a maximum peak discharge when compared against a good condition regetation on the final cover.

	Doc	ninion Energy North Car ket No. E-22, Sub 562							ing Exhibit 6 ge 65 of 1	
_			9/12/97 PROJ. NO. 9 23 SEP 97 SHEET NO. 2	Closure 6-410-			· .		NSULTANTS	6, 1
	CHKD, BY	RHP DATE _	23 SEP97 SHEET NO. 3	3of_	70			Engineers • G Environmental	ieologists • Plani Specialists	ner
P. Samuel Calendar		Runo	FF CURVE NUN	IBER	A	ND	F	UNOFF	= 	
		Circle one: Pr	resent Developed	Surfac	e	Swa	ale.	5 .	33-MRL2	
		1. Runoff curv	ve number (CN) Reference	V	, -				. 22 WE2 -	
mail of the against and the ag		Soil name and hydrologic group	Cover description (cover type, treatment, a hydrologic condition; percent impervious;	nd /	2-2	7 N 2 N 2 N 2 N 2 N 2 N 2 N 2 N 2 N 2 N	2-4	Area	Product of CN x area	
]		(appendix A)	unconnected/connected imper area ratio)		Table	Fig.	Fig.			
			Temporary rejetation on (Fair Condition	(CB	79			700'×800'		
)										
	7									Š
)					1					
}										
]	9									
j	8-									
		1/ Use only o	one CN source per line.	ž.	Tota	ls =	17-1 	12.9		
		CN (weighted)	total product	;	Use	CN =		79		

Dominion Energy North Carolina Docket No. E-22, Sub 562

Power - chesterfield closure Vicginia

MRL

96-410-33 PROJ. NO. 25 SHEET NO.

HAUL ROAD DRAINAGE CHANNELS

Haul road drainage channels are proposed to be installed along the inside of the haul roads. The watershed to there channels is relatively small.

(Worksheet 96-410-33-MRL3)

	ninion Energy North Car ket No. E-22, Sub 562	olina		Post-Heal Pa	ring Exhibit 6 ige 68 of 184
	7	wer - TheActive ld (600			
CHKD, BY	RHP DATE_	23 SEP 97 SHEET NO. 26	OF_70		
·	Runo	FF CURVE NUMBER	e AND	RUNOFF	=
	94D 33 5323- 21 70				
	1. Runoff curv	ve number (CN) Reference : U	SDA SCS TR	-22	2
9	and	Cover description	CN 1/	Area	The state of the s
· 8		hydrologic condition; percent impervious;		1 LILL	CN x area
	(appendix A)		Tal	F L	
		Gravel haul road	89	1.1	97.9
)		Regetated final soil cover (good condition)	74	0.7	51.€
1120					
549					
*		•			
	1/ Use only o	one CN source per line.	Totals =	1.8	149.7
	CN (weighted)	total product = 149.7 = 83.2	-; Use CN =	83,	2

Power - Chesterfield Closure

MRL

DATE _23 SEP 99

96-410-33 PROJ. NO. .

20 SHEET NO.

ULVERTS

There are two culrert locations in the north perimeter collectron channel. They are located at the NW and NE corners and are needed for the haul The west side culvert will be sized to handle the 25-year 24-hour storm from Its watershed. (see worksheet 96-410-33-MRL3). The <u>east side</u> culverts) will be sized to handle the peak discharge from the north perimeter collectron channel.

Υ	MPL DATE	wer - Chesterfield Clasure 9/12/97 PROJ. NO. 96-416 23 SEP 97 SHEET NO. 29 O	- 33 - 70	Engineers • Environment	CONSULTANT Geologists • Pla al Specialists
	Circle one: Pr	esent Developed West	side C Jorksheet	ulvert. 96-410-33	
	Soil name and hydrologic group (appendix A)	Cover description (cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2 Pig. 2-3	7 acres	Product of CN x area
	(dppend2x n)	Gravel hand road	89	1.1	97.9
		Vegetated final soil cover (appel condition)	74	0.7+1.7	177:6
				·	
	•		-		

CN (weighted) = $\frac{\text{total product}}{\text{total area}} = \frac{275.5}{3.5} = \frac{76.7}{3.5}$; Use CN = $\frac{79}{3.5}$

0.12

(add T in steps 6, 11, and 19) hr

Post-Hearing Exhibit 6

9/12/97

CHKD. BY RHP DATE 23 SEP 97

A Rev. MRL 10/21/97

FINAL CLOSURE CULVERT

31

PROJ. NO.

SHEET NO.

Closure

Upon final closure and stabilization of the site, the temporary ordinant pond will be filled in and the two perimeter collection channels will be discharged into the "final closure culrent" which will discharge through the south embankment.

(see worksheet 96-410-33-MRL3)

Dock	inion Energy North Ca tet No. E-22, Sub 562		_				Post-Heari Paç	ng Exhibit 6 ge 74 of 1841
		Power - Chestert		==				
		9 12 97 PROJ. NO. 23 SEP 97 SHEET NO.	96-410-3 32 OF	70	_			ONSULTANTS ieologists • Planr Specialists
	Rung	OFF CURVE N	UMBER	Α	ND			170
	Circle one: Pr	resent Developed	Final	Class	ure	w t	Channel 96-410	33-MPC3
ng .	1. Runoff curv	ve number (CN) Refe	Prence : USDA				1/50	
	Soil name and	Cover descripti	on	(_{CN} <u>1</u> /		Area	Product of
	hydrologic group	(cover type, treatment hydrologic condition percent impervious unconnected/connected	lon; us;	Table 2-2	Fig. 2-3		acres	CN x area
	(appendix A)	Gravel haul roads	-	89	Ē	E.	2-2	195.8
2		Vegetated final soil (good condity	cover on)	74			115-22	8347.2
	15							
8								
	1/ Use only o	one CN source per line.		Tota	1s =		115	8543
		$= \frac{\text{total product}}{\text{total area}} = \frac{6543}{115}$	= 74.3;	Use			75	

-	L	MRC.	DATE 9/1	2/97	PROLIN	9	6-410	- 33	3			SULTAN	NTS, INC.
÷ (CHKD.	BY RHP	DATE 23	1		NO 3		70		Engineers Environme			Planners .
r.	7.77				~~	~		1 -	A	100	i.	- ;	
	1		<u> </u>	<u>E(</u>)+		NCE	<u> </u>	IKP	1110	ンク	<u>-</u>	
				Referen	ce: U	SDA SCS	TR-55 Final	71		7/001	nol	اغ	
			- - - - - - - - - - 			- A P	rimeter	01-	His	Line	chan	no!	
		Circle one		77		16				100	Crian	/ CE (
	. !	Circle one	T _c	through sub	area		Moc	kshe	closed 96	-410-3	3- W	el3	. /
İ	F !	NOTES: Sp	ace for as	many as two	segment	s per f	low type	can	be used	for ea	ch .		
1				, schematic,	or des	criptio	n of flow	seg	ments.				
	·- į.						***		** •	t			
7					١			Γ			1 [1
		AREA -				*	40.0				-		:-
				e e ge Ne		1 0					 		
	Shee	t flow (Applica) Segmen	nt ID	A-B Good					 - -		
]	1.	Surface descri	ption (table 3	-I)	•	Glass					 -		
	2.	Manning's roug	hness coeff.,	n (table 3-1) .	•	0.24					4 - 1		
اً)3.	Flow length, L	(total L < 30	0 ft)	. ft	IPO					1		
i	4.	Two-yr 24-hr r	ainfall, P ₂		. in	3.5					4		
		Land slope, s			. ft/ft	0.02							L
-J	6.	$T_{t} = \frac{0.007 \text{ (nI)}}{P_{2}^{0.5} \text{ s}^{0}}$	0.4	Compute T _t	. hr	0.23	f			-] [+
		low concentrate		. Segme	nt ID	B-C] [] [· · · · · · · · · · · · · · · · · · ·	
				or unpaved)	(♦)	umpared							
٦ i	8.	Flow length, I			. ft	40][
					. ft/ft	0.33] [
\neg $ $	10.	Average veloc	ity, V (figure	3-1)	. ft/s	9.3	<u> </u>			L	4		1,
<u></u>	11.	$T_c = \frac{L}{3600 \text{ V}}$		Compute T _t	. hr	-	+	J		+	ل ل		+
r 1	Char	nnel flow		Segme	ent ID	c-0	0-E] :	E-F			*	
	15.	Channel slope	, s		2	0.01	0.33		0.004				
				n		0.04	0.015		0.04				
business of the second	17.			nate v		2	35		4				
ال	18.	Flow length,			. ft	440	340		3300	<u> </u>		347	
	19.	$T_{t} = \frac{L}{3600 \text{ V}}$		Compute T _t	. hr	0.06	+	+	0.23	+			+
	20.	Watershed or	subarea T _C or	T _E				7	· · ·		7		
.])	(add T	t in steps 6,	11, and 19)	hr		52			.,			

23 SEP97

96-410-33

SHEET NO.

TEMPORARY SEDIMENT POND

Two phares of construction will be analyzed to determine the peak discharge to the temporary rediment pond. The pond will be designed to handle the largest peak discharge from the site.

Cell 1 active

(worksheet 96-40-33-MPL1)

Cell 1 is active and cells 2 through 4 are corred with poor condition regetation.

Cell 5 active

(worksheet 96-410-33-MRL2)

Cell 5 is active, some final cover areas are covered with good condition regetation, and the temporary cover areas are covered with fair condition regetation. Note that some of the final cover areas are "labeled" as fair condition regetation. This just adds conservation into the calculations.

Dom Doc	ninion Energy North Car ket No, E-22, Sub 562	rolina						ing Exhibit 6 ge 77 of 184	
SUBJECT _	Virginia l	ower - Chestertie							
CHKD BY	PHD DATE	23 SF/ 97 SHEET	NO. 35 OF	70				ONSULTANTS ieologists • Plar	****
CHRD. B1	DAIE _	SHEET	NO OF_				Environmental		111613
	Runa	OFF CURVE	NUMBER	Α	ND	F	CUNOFF	<u> </u>	
	Circle one: P	resent Developed	Temporan	3 6	edm	rent	Bad	· ·	V.
	1 Punoff cur	ve number (CN) R	reterence : USDA));
12.	1. Rander car	ve namoer (on)	Morkey	iet '	96-	410	-33-MEL	.1	,
	Soil name	Cover descrip	ption		CN 1/		Area	Product of	
	hydrologic group (appendix A)	(cover type, treatment of the condition of the condition of the connected	ition; ious; d impervious	Table 2-2	Fig. 2-3	Fig. 2-4	Macres □mi ² □%	CN x area	
		Coal Combustion (no regeto	Mon)	85			15.2		
		Temporary regetation	on on ccB andition)	85			52.6+47.2 99.8		
:*:									
								-	
									1
				44					
		. /							
	1/ Use only of	one CN source per line.		Tota	ls =		115		
	CN (weighted)	= total product total area	_ =	Use	CN =	[85		
	4								

Dominion Energy North Carolina Docket No. E-22, Sub 562	Post-Hearing Exhibit 6 Page 78 o
SUBJECT Virginia Power - Chesterfield Closure	
BY MPL DATE 9/11/97 PROJ. NO. 96-6 CHKD. BY RHP DATE 2355097 SHEET NO. 34	
TIME OF CON	
	oprany Sediment Pond
NOTES: Space for as many as two segments per flowerksheet.	(cell 1 active) Worksheet 96-410-33-Mec 1 ow type can be used for each
Include a map, schematic, or description	of flow segments.
Check for longest ti	
AREA Cell	1 Cells 2-4
Sheet flow (Applicable to T _c only) Segment ID A-B 1. Surface description (table 3-1)	A - B
2. Manning's roughness coeff., n (table 3-1) 0.03	Door regetation
) 3. Flow length, L (total L < 300 ft) ft 100	100
4. Two-yr 24-hr rainfall, P, in 3.5	3.5
5. Land slope, s	0.21 + +
Shallow concentrated flow Segment ID B-C	B-c
7. Surface description (paved or unpaved) Unfarta	unpered
8. Flow length, L ft 860	640
9. Watercourse slope, s ft/ft D.D	0.002
10. Average velocity, V (figure 3-1) ft/s	
11. $T_c = \frac{L}{3600 \text{ V}}$ Compute T_c hr 0.15 +	0.18 +
Channel flow Segment ID C-D	9-C
15. Channel slope, s ft/ft 0.33 C	0.002
16. Manning's roughness coeff., n	
17. Estimate v ft/s 35	5 4
	3450 1950
19. $T_c = \frac{L}{3600 \text{ V}}$ Compute T_c hr	0.19 0.14+
20. Watershed or subarea T _c or T _t	KO 0.53
) (add T _E in steps 6, 11, and 19) hr	•
	C Use to= 0.53

	ninion Energy North Ca ket No. E-22, Sub 562						ge 79 of
SUBJECT _		ower - Chesterfield Closu					
		9/12/97 PROJ. NO. 96-40 2355097 SHEET NO. 37 OF					ONSULTANTS, Geologists • Planne Specialists
OWE							
	KUNO	OFF CURVE NUMBER	<u> A</u>	ND	}	RUNOFF	-
	Circle one: Pi	resent Developed Tempol	any	Sedi	mer	nt Pond	
	1 P56	(CV) CF (1))	((ell	5 act	Ne)
	I. Kunoit curv	ve number (CN) Reference : USB	Morles	heet	96	- 410 - 33	-MPL2
	Soil name	Cover description		ON 1/		Area	Product of
	hydrologic group	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious	2-2	2-3	2-4	T 1117	CN x area
8	(appendix A)	area ratio)	Table	Fig.	Fig.	ш <i>%</i>	
		(no regetation)	85	(4) (4)	В	15.9+4.1	1700
)		Vegetated final soil coner (good condition)	74			4.2	310.6
1.00		Temporary regetation on CCB (Fair condition)	79			75.9	5996.1
		Vegetated final soil corer (good condition)	74			10.2	754.8
		Temporary rediment pond pool	100			4.7	470
I.S.							
	1/ Use only o	one CN source per line.	Tota	ls =	288	115	9231.7
	CN (weighted)	$= \frac{\text{total product}}{\text{total area}} = \frac{9231.7}{115} = \frac{60.3}{};$	Use	CN =		81	

9/13/97 MRL DATE 23 SEP 97

Dominion Energy North Carolina

96-410-33 PROJ. NO. 39 SHEET NO.

A Rev. MRL 10/21/97

Hydrologic and Hydrauliz input parameters

			Summary		
		CHANNEL	AREA (mi.2)	_CN_	Te (hrs.)
		Bench (CCB) Bench (Vegetated final cover)	0.0042	85 74	0.14 0.23
)	Slope Drains (Cell 1 active) Slope Drains (Cell 5 active) East side culvert &	0.0238 0.0314	8 5 83	0.21
	J	Perimeter Collection Channels (Cell 5 active) (Site Closed)	0.1033 0.1094	80 74	0.42
- Lancassan		Surface Swale	0.0202	79	0.32
ic .		Haul road drainage channel	0.0028	83	0.02
Vijapadessaaade		West side culrect	0.0055	79	0.12
and the state of t		Final Closure Culvert (5He closed)	0.1797	75	0.52
The state of the s)	Temporary Sediment Pond * (Cell 1 author) * (Cell 5 active)	0.1797 0.1797	85 81	0.53 0.42
The state of the s	*	* Information to be us	red for reservoir row	mg	

	*****	*******80-	80 LIST C	F INPUT DATA	FOR TR-20	HYDROLO	GY*******	*****
	00				0104		WOD! OTO	
	JOB TR-20	COCTUTA DO	JED- CHEC	TERFIELD CLOS			NOPLOTS CLOSURE.INP	
		PEAK DISCHA			SURE 90-410	-33	CLOSURE.INP	
		O1	KUE CALCO	LATIONS			AF.	DPOND
	3 STRUCT	01		26.0	0.0	0.0		DI OND
	8			27.0	0.01	5.0	A STATE OF THE STA	
	8	1		27.2	1.1	6.0	A STATE OF THE STA	
	8	THE STATE OF THE S		27.4	3.1	7.0		
	8	The state of the s		27.6	5.8	8.0		
	8	4	Wi.	27.8	879	9.0		
	8		No.	28.0	12.4	10.0		
	8		-	28.5	24.0	12.5		
	8		4	294.0	35.1	15.0		
	8 .			29.5	48.0	17.5		
	8		A STATE OF THE PARTY OF THE PAR	29.9	61.0	19.5		
	8		No.	30.0	61.1	20.0		
	8	A STATE OF THE PARTY OF THE PAR		32.0	64.0	31.0		
	8	San		34.0	67.0	42.0		
	8			36.0	70.0	53.5		
	8			38.0	73.0	65		
	8			40.0	76.0	79.0		
,	9 ENDTBL							
	3 STRUCT	02					100	DPOND
	8			26.0	0.0	0.0	Total Control	
)	8			27.0	0.01	5.0	A STATE OF THE STA	
	8	A. S. C.	940	27.2	1.1	6.0		
	8	Ag to	No.	27.4 27.6	3.1 5.8	8.0		
	8 .		The state of the s	27.8	8.9	9.0		
	8		100	28.0	2.4	10.0		
	8			28.5	24.0	12.5		
	8			29 0	35.1	15.0		
	8			20.5	48.0	17.5		
	8			29.9	61.0	19.5		
	8 .			30.0	6761	20.0		
	8			32.0	64.0	31.0	ĺ	in
	8			34.0	67.0	42.0		
	8			36.0	70.0	53.5		
	8	*		38.0	73.0	65.5		
	8			40.0	76.0	79.0		
	9 ENDTBL						•	
	6 RUNOFF 1	001	1	0.0042	85.0	0.140	1 BM	ICHCCB
	6 RUNOFF 1	001	1	0.0042	74.0	0.230		ICHGRSS
	6 RUNOFF. 1	002	1	0.0238	85.0	0.210		CELL1
	6 RUNOFF 1		1	0.0314	83.0	0.190		CELL5
	6 RUNOFF 1	003	1	0.1033	80.0	0.420	1 PC	CELL5
0	1							
					20			

74.0

79.0

0.520 1

0.320 1

PC CLSED

SR SWALE

0.1094

0.0202

6 RUNOFF 1 003

6 RUNOFF 1 004

	Child	hinion Ene	ergy Norti	Rearding 7						Post-Hearing	Exhibit 641/-	10	
	6 RUNOFF	ket Ng. E	-22, Sµb	⁵⁶² 0.0028	83.0	0.020 1		HR CHAN		Page	83 of 184	10000	<u></u>
	6 RUNOFF	1 005	1	0.0055	79.0	0.120 1	Į.	WEST CUL		•			<u> </u>
	6 RUNOFF	1 006	1	0.1797	75.0	0.520 1	ŀ	FC CHAN					8
-	6 RUNOTT	1 006		94797	85 , 8	0.530-1		PNDGELLI	-				Q
)	6 RESVOR	2	4	27.0	01.0	0.420.1		POND1 PNDCELL5					4
1	-6-RHNOFF		4 2	9-1797 27-0		1	1	POND 1	•				Ü
	*6 RESVOR		-					rongi					Ī
	7 LIST												<u></u>
	7 INCREM	6		0.0500									
	7 COMPUT		02	0.0	6.2	1.0 2	2 2 01	01 25-YR					
	ENDCMP	1						=					
	ENDJOB	2											
	1******	*****	*****	******END OF	80-80 151**	*****	*****	*****					Oct 23 2019
	1			LIID OI	00 00 210.			38					2
	•				140								67
									•		19		N
											J0B 1	р	A 9
	TR20 XEQ				IA POWER; CHE		CLOSURE	96-410-33	CLOSURE.INP		206 1	P	AGE
	KEA	PC 09/83	(.2)	PEAK D	ISCHARGE CALC	ULATIONS						20.0	
				55							RECORD	10	
	EXECUTIVE	CONTROL	OPERATI	ION LIST				· ·			KECOKD	10	
	LISTING O	F CURREN	T DATA										
						3.0							
)								*	**				
,	3					0707405				*			
	3 STRUCT	STRUCT	NO.	ELEVATION	DISCHARGE	STORAGE							
	3 31KUL1	1											
	8			26.00	.00	.00							
	8			27.00	.01	5.00							
	8			27.20	1.10	6.00							
	8			27.40	3.10	7.00							
	8			27.60	5.80	8.00							
	8			27.80	8.90	9.00			-				
	8			28.00	12.40	10.00							
	8			28.50 29.00	24.00 35.10	12.50 15.00							
S.	8			29.50	48.00	17.50							
	8			29.90	61.00	19.50							
	8			30.00	61.10	20.00							
	8			32.00	64.00	31.00					9		
	8			34.00	67.00	42.00		W.		18	- 7		2
	8			36.00	70.00	53.50		9.					
	8			38.00	73.00	65.50							
	8 O ENDIDI			40.00	76.00	79.00							
	9 ENDTBL												
		STRUCT	NO.	ELEVATION	DISCHARGE	STORAGE		•					
١ ،	3 STRUCT	2											
1	Total Control of Control								5				
	8			26.00	.00	.00							
	8			27.00	.01	5.00							
ŀ	8			27.20	1.10	6.00							

		bominion E	hergy North	Carolina 2	i i				8		Post-Hearing		42/70	
<u>L</u> j	9.00	PELEVINO	E-22, Sub 56	27.10	27.10	27.11	27.11	27.12	27.12	27.12	27.13 Page 8	27.13	,	
Company Company	9.50	ELEV	27.14	27.14	27.15	27.16	27.16	27.17	27.17	27.18	27.18	27.19	, 5)
£?	7.00	ELEV	27.20	27.20	27.21	27.22	27.22	27.23	27.24	27.25	27.25	27.26		<u>.</u>
	10.50	ELEV	27.27	27.28	27.29	27.30	27.31	27.32	27,33	27.34	27.36	27.37	1 N N N N N N N N N N N N N N N N N N N	2
<u></u>	11.00	. ELEV	27.38	27.40	27.42	27.43	27.45	27,47	27.49	27.51	27.53	27.55	Č	5
	11.50	ELEV	27.57	27.60	27.63	27.66	27.71	27.77	27.85	27.95	28.08	28.26		
	12.00	ELEV	28.47	28.73	29.03	29.35	29.65	29.92	30.14	30.32	30.46	30.57		
	12.50	ELEV	30,65	30.72	30.77	30.81	30.84	30.86	30.88	30.89	30.90	30.90	5	
-	13.00	ELEV	30.90	30.90	30.89	30.88	30.88	30.86	30.85	30.84	30.82	30.80	0~+ 23 2040	3
<i>F</i> 7	13.50	ELEV	30.79	30.77	30.75	30.73	30.71	30.68	30.66	30.64	30.61	30.59	į	
, manual	14.00	ELEV	30.56	30.54	30.51	30.49	30.46	30.43	30.40	30.38	30.35	30.32		
	14.50	ELEV	30.29	30.26	30.23	30.20	30.17	30.14	30.11	30.08	30.04	30.01		
1														
Constitution of the same		09-14-97 16			WER; CHEST		LOSURE 96-4	10-33	CLOSURE.	INP		JOB 1	PASS 2 PAGE 12	
	KEV	PC 09/83(.2)		EAK DISCHA	RGE CALCUL	ATTONS							PAGE 12	
-)							*	100			*:		
E	XECUTIVE	CONTROL OPE	RATION ENDO		PUTATIONS	COMPLETED	FOR PASS	1				RECORD I	D	
And the second s			*								÷			
E	XECUTIVE	CONTROL OPE	RATION ENDJ	08								RECORD I	D ·	
[ě										
l T	R20 XEQ	09-14-97 16	5:45 V	IRGINIA PO	WER; CHEST	ERFIELD C1	LOSURE 96-	410-33	CLOSURE.	INP		JOB 1	SUMMARY	
5 }	REV	PC 09/83(.2)	P	EAK DISCHA	RGE CALCUL	ATIONS						31	PAGE 13	
		3												
	SUMMARY T			ER THE PEA	K DISCHARG	E TIME AND	RATE (CF	s) VALUES	INDICATES		RMED P HYDROGRAPH			
	SECTION/	STANDARD		RAIN AN	TEC MAIN	PI	RECIPITATI	ON	T.		PEAK DISC	HARGE		
	TRUCTURE	CONTROL OPERATION		TABLE MO	IST TIME ND INCREM	BEGIN	AMOUNT I		RUNOFF	ELEVATION	TIME	RATE	RATE	
	J		(SQ MÍ)		(HR)	(HR)	(IN)	(HR)	(IN)	(FT)	(HR)	(CFS)	(CSM)	
										121				

ALTERNATE

1 STORM 1

+		101	100							Control of the Contro
XSECTION	1	RUNOFF	.00	2	2	.05	.0	6.20	24.00	3.63 Bench (CCB) 11.99 (15.61) 3716.0
KSECTION	1	RUNOFF	.00	2	2	.05	.0	6.20	24.00	2.58 Bench (vegetated) 12.05 (10.89) 2593.4
KSECTION	2	RUNOFF	.02	2	2	.05	.0	6.20	24.00	3.62 Slope Drain 12.03 * (-81.56-) 3427.1
X JON	2	RUNOFF	.03	2	2	.05	.0	6.20	24.00	3.42 Slope Drain 12.02 (105.53) 3360.8
SECTION	3	RUNOFF	.10	2	2	.05	.0	6.20	24.00	3.10 Aprimeter channel 12.15 (238.80) × 2311.7
XSECTION	3	RUNOFF	.11	2	2	.05	.0	6.20	24.00	2.54 Parineter channel 12.21 (189.71) 1734.1
YSECTION	4	RUNOFF	.02	2	2	.05	.0	6.20	24.00	3.02 Surface Swale 12.09 (51.99) 2573.6
SECTION	5	RUNOFF	.00	2	2	.05	.0	6.20	24.00	3.40 Hawl road chan. 11.98 (11.75) 4196.0
XSECTION	5	RUNOFF	.01	2	2	.05	.0	6.20	24.00	3.05 West culvert 11.99 (18.60) 3381.9
XSECTION	6	RUNOFF	.18	2	2	.05	.0	6.20	24.00	2.63 Final (losur chan.12.21 321.06) 1786.6
SECTION	6	RUNOFF	18	-2-	2	.05	0	6:20	24:00	- 3.57 - 12.21 407.57 2268.1 9
-STRUCTURE	1	RESVOR	-18	2		.05	0	6.20	- 24.00	-1.67 31.36 13.15 63.08 351.0
SECTION	-6-	RUNOFF	18	2	- 2	.05	.0	6.20	24.00	3,19 12.15 425.50 2367.8
TRUCTURE	-2	RESVOR	18	2		.05	0	6.20	24.00	<u> 1.62 30.90 12.95* 62.41* 347.3.</u>

TR20 XEQ 09-14-97 16:45

VIRGINIA POWER; CHESTERFIELD CLOSURE 96-410-33

CLOSIDE THO

JOB 1 SUMMARY PAGE 14

REV PC 09/83(.2) PEAK DISCHARGE CALCULATIONS

UMMARY TABLE 3 - DISCHARGE (CFS) AT XSECTIONS AND STRUCTURES FOR ALL STORMS AND ALTERNATES

XSECTION/		DRAINAGE AREA (SQ MI)	STORM NUMBERS
STRUCTURE	2	.18	
	_		
ALTERNATE O STRUCTURE	1	.18	62.41
ALTERNATE		1 .	63.08
0 XSECTION	1	.00	
D XSECTION	2	.03	10.89
ALTERNATE 0 XSECTION	3	1 .11	105.53
ALTERNATE ALTERNATE	4	1 .02	189.71
ALTERNATE (SECTION	5	1 .01	51.99
+	773.		10.70
ALTERNATE		1	18.60
ERNATE		1	425.50

* Use the maximum discharge of 105.5 CFS to design the slope drain.

** Use perimeter channel discharge to size east cultert:

				62	K)	-1					ä	Post-l	Hearing Ex Page 87	chibit 6 of	
	SUBJECT .	Vir	giria	Pow	er - '	Chest	ufreld	Cla	sure			П			
	DV	MRC	DAT	- 9	115/9	7	PRO I NO	96	-410	- 33	()	ر لك	CONSI	JLTANT	S, IN
· ·	CHKD. BY	RHF	DAT	E 23	1			10	OF	70					nners
CHKO. BY RHP DATE 23 SEP 97 SHEET NO. 45 OF 70 Engineers • Geologists • Planners Environmental Specialists CHANNEL DESIGN CHANNEL DESIGN DESIGN INFORMATION FOR DEAWINGS Channel Q Stope Slopes Width N of Flow Velocity Primeter (FE) (FE) (FE) (FE) CHANNEL DESIGN DESIGN INFORMATION FOR DEAWINGS Channel Q Stope Slopes Width N Design Desi															
Docket No. E-22 SUB-582															
2.			-			1									
Docket No. E22, Sub-502															
Duckey No. F22 Sub 962															
		· · · · · · · · · · · · · · · · · · ·					ĻŢ.						 	<u> </u>	
		·			<u> </u>	<u> </u>	<u> </u>					·i	<u> </u>		
		<u>:</u> -				4	7 1	-#-	1						
	i i i i i i i i i i i i i i i i i i i				: : ! : : ! .		_ 	+						- :	>
	· • • • • • • • • • • • • • • • • • • •	i					-€b-		Can Pot	F (A)	<u>. </u>		, , , , , , , , , , , , , , , , , , ,		
	1		i	·		T to	~			~	DESIGN	INFOR	MATION	FOR DEA	MINC
,	Channel					1 1 1			**************************************		Design	Design	Design		Mar. 24
				9.5	1					F			(fos)		Plants
)	Bench-			20:19 3:1		0.03		-		0.7.			-	Grass	
	Bench -	10.9	Tamakiman be												• •
	Slape		0,05		2	Febriction 0-015	1.27	18.3	7.7	3.6	1.27	2.0	36.6	Fabration	
DOCKIN NO. E22, Sub 562 SUBJECT Virginia Rower - Chafterell Clasure Bev MRL Date 15 97 PROLINO. 94 - 410 - 33 CONSULTANTS, INC CHROLE & Consultants. INC CONSULTANTS. INC CONSULTANTS. INC CONSULTANTS. INC CONSULTANTS. INC CONSULTANTS. INC CONSUL															
Docker No. E22 Sub-562 SUBJECT Virginia Rower - Chapterfell Clasure By MRL Date 9 5 97 PROLING. 946-410-33 Engineers exclosulates Planners Environmental Specialists Planners Environm															
	Channel Total	238.8	0.004	2.5	 	0.04	4.47		26.1	2.0	14.5	5.0	4.1	G1035	Type
	closed	A		2.5			1.01	3.8		0.4	} -			i	
	swale	34.0	0.01	110		0.04	1.35	2.9	27.2	0.6	1.35	1.5	2.9	1 "	
		11.8	0.10	2	0	0.04	0.94	6-6	4.2	1.7	0.94	1.5	6.6	Pipes	
DUSSIAN INC. 2019 12 ST PROUND. QU - 410 - 33 CONSULTANTS, INC. BY MPL DATE 23 5F0 97 PROUND. 45 OF TO Engineers of Goodgails & Planners Environmental Specialists Planners Environmental Specialists Planners Environmental Specialists CHANNEL DESIGN DESIGN November 100 CHANNEL DESIGN No															
Dutation No. 222, Sub-582 Subsect Virginia Power - Chasture Closure Closure Chasture Closure Chasture Closure Chasture Closure Chasture Closure Chasture Chasture Closure Chasture C															
		440 - 941 C 44		4,								- i			
				3 14-									1		
)				-										~ .	
e .	Ø + Fm	in Sha	+ 42			14	•				1	· .			
		3100			g # # ##		**************************************	· ·	. (0 2	* 1 to 1				y 1	*
							.*								1
								· s 10 9		**	ore an even				
															A THE REST OF THE REST

PROJECT: WEST CULVE	ERT				STAT	ION :						CULV	/ERT	DESI	GN F	ORM	V 1-0
					SHEE	т	OF					DESIG	NER/	DATE:		/_	
										*		REVIS	EWER/	DATE	:	/_	
HYDROLOGICAL DA	TA	٠			EL'n	d: 	(f1) -	7		ROA	D WAY	ELEVA	ATION :		(f1))	
DRAINAGE AREA: STR	EAM SLO	DPE:					-1		TEL			(!!) So: -	T. CLEAN		TH-	
***		7.72					HV	'i ———,	4_	51					. \	1	
			-,			39.3	<u> </u>	12	FALL	Z DAIG	NAL ST	REAM BE	D			TW	
DESIGN FLOWS/TAI R.I. (YEARS) FLOW(cfs)		(f1)			٤٢١		(f1) 1				~ 6 . 6	FALL 71		7	39 0	
25 ur. 18.6	~ I										S	۔ ٥ ۔	004 00'	α	L	EL : 39.0	(ft)
(see shut 43)	-										L	. 7	2'				
	TOTAL	FLOW		1		ui	ADWAT	ER CAL	CLH AT	ONE				~ -			
CULVERT DESCRIPTION: MATERIAL - SHAPE - SIZE - ENTRANCE	FLOW	PER		INLET	CONTRO		AUMAI	EN CAL			ONTROL			YATER ATTON	ET	2011	CHTC
MATERIAL - SHAFE - SIZE - CITTAINCE	Q (cfs)	Q/N	HW ₁ /D	HW _{1.}	FALL (3)	EL hi	T W (5)	d _c	dc+D	h _o (6)	k _e	. Н (7)	EL ho	CONTROL HEADWATER ELEVATION	OUTLET	СОММ	ENIS
30" \$ cmp, projecting	10.6	18.6	0.95	2.4	_	41.7	1-5	1.45	2-0	2.0	0,9	19.0	41.9	41.9		< 42'	o.K.
24" \$ CMP, projecting	18.6	18.6	1-5	3.0	-	42.3	1.5	1.55	1.8	1.8	0.9	2.7	43,5	43.5		7421	Not O.K.
	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -																
TECHNICAL FOOTNOTES:			(4) EL _{bi}	= HW _i +	EL; (INVE	RT OF		(6) h _o =	TW or	(d _c +D	/2)(W)	HCHEVE	R IS GRE	ATER)	AMILE STATE OF THE		
(I) USE Q/NB FOR BOX CULVERTS			INLE	T CONT	TROL SE	CTION)		(7) H=	+ ke+	(29 n ²)	L) / R 1.3	$3 \sqrt{2}$	2g				
(2) HW 1 /D = HW /D OR HW 1/D FROM DESIGN	CHARTS				N DOWN			(8) ELhe	EL.	+ H + h _o							
(3) FALL = HW _i - (EL _{hd} - EL _{s1}); FALL IS ZERO FOR CULVERTS ON GRADE				NNEL.	FLOW D	EPTH IN			٠.								
SUBSCRIPT DEFINITIONS :	COL	MMEN.	rs / DI	scuss	ION:											SELECTED	<u>::</u>
. APPROXIMATE		, 1			,		-	Ь					SIZE				
Nd. DESIGN HEADWATER Ni. HEADWATER IN INLET CONTROL No. HEADWATER IN OUTLET CONTROL		U	se	30"4	ø ch	np, f	loje	My					-				
i. INLET CONTROL SECTION o. OUTLET sf. STREAMBED AT CULVERT FACE				,		, ,	10 ma = 200	,								n_	
tw. TAILWATER	1												ENTRA	NCE:_			

CHKD. BY SUBJECT BHB MAC DATE DATE 23 Buer 15 26035 --hesterfield SHEET NO. PROJ. NO. 5 4 410 Closure 유 S 0

Engineers • Geologists • Planners

Post-Hearing Exhibit 6
Page 88 of 184 TANTS,

Oct 23 2019

### Application of the control of th		Dominion Energ Docket No. E-22	2, Sub 562		- c	hesterfie				Post-	Hearing Ex Page 90		
1000 1000 1000 1000 1000 1000 1000 100							40				Geologi	ists • Plan	
BONGEN OF NUILCE ROLES JAN 1983 ANALY OF NUILCE ROLES JAN 198	4	1000 1800 1600 1500	-120 -108 -96	5	SUBMERGED OUTL	ET CULVERT FLOWI	NG FULL	6					
BUIEN OF PUBLIC MARCH MAI 1983 HEAD FOR STANDARD C. M. PIPE CULVERTS FLOWING FULL 1 2 3 4 4 5 5 6 6 70 80 90 100 BUIEN OF PUBLIC MARCH MAI 1983 HEAD FOR STANDARD C. M. PIPE CULVERTS FLOWING FULL 1 2 3 5 6 CANNOT EXCEED TOP OF PIPE 1 3 5 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		(Q) IN CFS	- 66 - 60 - 54 - 48			209	1	= E 3			0		,
HEAD FOR STANDARD C. M. PIPE CULVERTS FLOWING FULL n=0.024 Construction of the content of the) - 3	40 Q.35 30	(G) - 36 - 33 30 27 - 24	;	EXAMPL		400	8 - 10	The second secon	3			,
HEAD FOR STANDARD C. M. PIPE CULVERTS FLOWING FULL n=0.024		- 5 - 4 - 3					3.5	L 20		CANNOT FX	COFED TOP O	IF OIPF	
HEAD FOR STANDARD C. M. PIPE CULVERTS FLOWING FULL n = 0.024 DISCHARGE-0-CFS		BUREAU OF PUBLIC	ROADS JAN. 196	3	٥	D'DIA.	20 30		50 60	70		90 10	
DISCHARGE-Q-CFS		STA C. M. PII	ANDARD PE CULV	ERTS	. 1	+	9'		7	8 8	→		7
)	, n :	:0.024	,L		6' -5' 4' DIA.		DISCHA	500 600	700			CHART 4

PROJECT: EAST CULVE	et		10.10		STAT	ION :_						CULV	ERT	DESIG	N FO	ORM
(4)					SHEE	т	OF				ĺ	DESIG	NER/	DATE: .		/
												REVIE	WER /	DATE:		
HYDROLOGICAL DA	TA				ELL	ı: .	(f1)	~7		ROA	DWAY	ELEVA	TION :		(f))
£ □ METHOO:	_000 - 100				nc	0.0			9				and the			
DRAINAGE AREA: STR	EAM SLO	PE:		H			-1		-						-	
Q CHANNEL SHAPE:							HW	i .	/-EL	sf:		(11) s _o :_		-\.	н
ROUTING: OTH	ER!									ORIG	NAL ST	REAM BE				TW
DESIGN FLOWS/TAIL					F1 -	27.9	(41)	1 4	FALL			MEAM BE	0	-		I W
R.I. (YEARS) FLOW(cfs)	***************************************	{ft}		1							S	≈ S _o - F	ALL/L		1	EL : 27.3 (m)
25 W. 238.8	≈4.	5	10									0	04	G		EL ₀ : 41.5 (ft)
<u></u>	10										L	· 10	00	7.00		
	T			Щ				FD 011	01 1 1 7	10110	33	V		-	- 11	r
CULVERT DESCRIPTION:	TOTAL FLOW	FLOW PER		NLET	CONTRO		ADWAI	ER CAL		TLET C	OUTDO			OL ATER TION	ET CITY	29
MATERIAL - SHAPE - SIZE - ENTRANCE		BARREL Q/N	HW1/0		FALL	ELhi	TW	d _c	d _C +D	ho	k _e	н	EL ho	CONTROL HEADWATER ELEVATION	OUTLE	COMMENTS
-36"\$ cmps, projecting	238,8	(1)	6.2	10.1	(3)	46.5	(5)	3,0	3.0	4.5	0.9	(7) ≈ 26	(8) 57.B		0 >	
	1							-							-	
40" 4 cmp, projectry	238.6	738.8		22.4		50.3		4.0	4.0	4,5	0.9	≈ 26	57.6			
60" 4 cmp. projectly	238.8	238.8	5.5	11.0	— .	38.9	4.5	4.3	4.7	4.7	0.9	8.8	40.8(40.8)	4
72" of cmp, projectly	238-8	238_B	1.24	7.4	_	35.3	4.5	4.2	5.1	5.1	0.9	3.8	36.2	36.2		
40" of CMP, projecting.	150	150	2.68	10.7	-	38.6	4.5	3.6	3.8	4.5	9-0	11.0	42.8	42.6		
ECHNICAL FOOTNOTES: 60" (MP	150	120	(4) ELN	6.2 HW;+ 1	L; (INVE	34-1 RT OF	4.5	(6) ha	4.2 TW or	4-5	/2)(W)	3-55 HICHEVE	35.4 R IS GRE	35.4 MER! 4)	⋖
) USE Q/NB FOR BOX CULVERTS				T CONT								3] v2/				
2) HW 1/D + HW /D OR HW 1/D FROM DESIGN	CHARTS			ASED ON				(8) ELh	F ELo	+ H + h _o						
3) FALL = HW ₁ - (EL _{hd} - EL _{st}); FALL IS ZERO FOR CULVERTS ON GRADE				TROL OR NNEL.	FLOW D	EPTH IN ·			8.			Å				
UBSCRIPT DEFINITIONS :	col	MMENT	rs / DI:	cuss	ON:								CULVE	RT BA	RRELS	SELECTED :
APPROXIMATE CULVERT FACE	60	11 \$ P	ipe.	BCC	mp,	galva: #71=#1	nizec	٤	pere	d in	vert	,	SIZE:			
d. DESIGN HEADWATER i. HEADWATER IN INLET CONTROL	1	1 20 D	. ,		> ' %	# 7	6.50	L.F	mat	ericl	onh	,	SHAPE	:	- indexes	· · · · · · · · · · · · · · · · · · ·
o. HEADWATER IN OUTLET CONTROL INLET CONTROL SECTION OUTLET	l '	ل عو			,	= k 14	45 /	L.F.	inst	alle			MATER	HAL:		n
1. STREAMBED AT CULVERT FACE	ı				,	åL }				_		1		NCE:		

Closure 9 Engineers • Geologists • Environmental Specialists TANTS, INC

CHAOPFICIAL COPY

CHKD. BY

PHP MRC

DATE DATE

23

£6 035

SHEET NO.

5 5

410-

SUBJECT

Virginia

Durch

Chesterield

THAN THE MORTHERN CHANNEL (WHICH IS THE LOCATION OF THE EAST CULVERT) THROUGHOUT CLOSURE. AS SHOWN ABOVE, THE EAST CULVERT CAN HANDLE THIS DISCHARGE AT AN ELEU. OF 40-8, WHICH IS LEST THAN 42! HOWEVER, FOR FINAL CLOSURE, THE PEAK DISCHARGE WOULD BE CLOTER TO 150 OCT 23720 TO THEEN

Post-Hearing Exhibit 6
Page 91 of 184

SUBJECT	MRL RIFP	nia fa			80J. NO	losure 86-410- 50 OF				COI ers • Ge		ANTS, IN	
			2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10,0 - 8,00 - 5,00 - 4,00 - 2,00 - 1,00 - 800	000 p. 00	2.1			- 6. - 5. - 4.	(2) 6. - 5. - 4. - 3.	(3)		
)		R OF CUL FERT (D) IM INCHES	- 84 m - 72 - 54 - 48	DISCHARGE (D) N OF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ENAMORE		DEPTH IN DIAMETERS (HW /D)	- 1.5 - 1.0 9	- 1.5 - 1.0	- 1.5 - 1.0		
*		ST	36 - 33 - 30 - 27 - 24 - 21	10 8 6 5 4 3	(3) To use so horizontal use stroig	Headwa Miterer to si Project ale (2) or (3) p Bily to scale (1) the inclined line scales, or reve	d to conform lope ting project), then	HEADWATER	8	8 7 6	9		8
·)			- 15 . - 12	1.0		*	HEADW. C. M. WITH	AT E	E CU	LVEF	RTS		

		Dominion Ene Docket No. E-	-22. Sub 56	2					*	Po	st-Hearing Page	Exhibit 6		
110	SUBJECT		ia Po	wer	- Ch	esterfre 1d								00 P
	BY	MRL Y Pro	DATE _	9/16/1 22 SEA	7.7	PROJ. NO SHEET N	5. 96-	410-33 _of_7	<u> </u>	Engineer	CONS s • Geolo	-	ITS, INC.	- 🛂
	CHAD. B	F2000	. DATE _			SHELLIN	0	0r	radio		nental Spe		•	OFFIC
		[2500		_	<u> </u>	/=-\		4	1		: •			
A CALLEGE CONTRACTOR OF THE CALLEGE CONTRACT		1000	·	LINE	HW SUBMERGED	Stope So OUTLET CULVERT F	ho	5			de de	Œ		
		-600 -500 -400	108			own not submerged, co		8		:#: :#:				2000
		300	-84			0,40		- 10 E	Ì		, 980 1			oct 23
	,	200	72 66			(3, 1) / (SO ENGLICIA	2 - 2 - 2	4					V
A second	æ.	(0) IN CF	INCHES 48			200	1	N (H)		1,			*	
		HARGE 00 00	N 42		\Rightarrow	20	2 1 /500	3H 5	×		·			
		0:35 -30	30 25	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	EX.	AMPLE	300]	H • 7.5	-	9		(*)		
met and a second); ^f	20	27				1004	10			ž		*?	
a supplementation of		-10	-18				800 73	-500	ŗ					
Negradechy		- 8 - 6 - 5	-15		3			-20						
		- 4	_12		2									įį.
patrametro d				,		25	3.0, 3.5'	4.0		CANNOT	EXCÉED TOP	OF PIPE		
· ·						1.0 bia.			-			$\exists \exists$		D
		BUREAU OF PUBL	IC ROADS JAN.	1963		0 10	20 30	DISCH	ARGE-Q-CF		80	90	100	
		<i>20</i> 0		1									7	
acamore de	*	ST	AD FOR	D .	FEET					8 8 -	→		- EET	
proceedings		C. M. P FLO	IPE CUL WING FU = 0.024	VERTS	DEPTH-deFEET		8' 9'		7	C CANNOT E	XCEED TOP	OF PIPE	- P	
)			×	CRITICAL DE	5 6 6 A DI	7'						CAL DEF	して子をし
		CHART	(e	\bigcirc	CRITI	0 100	200 30	O 400 DISCH	500 60 ARGE-Q-CI	00 700 FS	800	900	SRITI 000	ン エ

PROJECT: Chesterfield clos	ure				STAT	10N:_						CULV	ERT	DESIG	3N F	ORM	
					SHEE.	т	OF		-		,			DATE:			٧ <u>٠ </u>
HYDROLOGICAL DA	TA_	All Aud			Fl.	:	((1) -			ROA	DWAY	ELEVA	TION :		((1)	Ý,
р́ □ метнов:					hd			/	•			*****					
💆 🗆 DRAINAGE AREA: 🗆 STR	EAM SLO	PE:					7	1	1=						-7-	T-	
CHANNEL SHAPE:	20			71			ни	4	/ EL	51		1276) s _o :_		_ _,	, H	
ROUTING: OTH	ER:							17		∠ORIO	INAL ST	REAM BE	D		_].	TW	ľ
DESIGN FLOWS/TAIL	WATER				ELI.		(f)	17	FALL		*			-			
R.I. (YEARS) FLOW(cfs)	Use 5	200				27.3	Nort	h find th fin	el ela	re sure	· \$	≈ S ₀ - F	ALL/L	0056	L	EL,:	((1)
South 240	use 5					23.0	Comb	ind fi	al cla	PSULE.	۶	370	100	0054			3.0 North 6.0 South
combined 321	Assume	2'				(7)	185.5.4			*	7	190	10.0.	042	,		5.0 combine
CULVERT DESCRIPTION:	TOTAL	FLOW					ADWAT	ER CAL						TER	_ <u>}</u>		
MATERIAL - SHAPE - SIZE - ENTRANCE	Q	BARREL Q/N	HW _i /D	-	FALL	ELhi	TW		dc+ D	h _o	k.	н	EL ho	CONTROL HEADWATER ELEVATION	OUTLET	CC	MMENTS
	(cfs)	(1)	(2)		(3)	(4)	(5)	d _c	2	(6)	n e	(7)	(8)		VE VE	0 K	: 46
North: 601 \$ CMP projecting	150	150	1,26	6.3	-	33.6	5	3.5	4.3	5	0.9	10.5	38.5	38.5		O.K.	control
south: 60 \$ cmp, projecting	240	240	2.32	11.6	-	39.6	5	4.4	4.7	5	0.9	ماآ	47	47			high N.G.
combined: 60" of CMP, "Headwall"	321	321	2-88	14.4	-	37.4	2	4.9	5.0	5	0.25	ا فا	36	37.4	1	o.K.	inlet
combined: 72 of CMP, "Headwall"	321	321	.53	9.2	~	32.2	2	4.9	5.5	5.5	0.75	6.1	26.6	32.7		6.K.	inled control
South: 7.2" & cmp projecting	240	240	1.28	7.7	-	35.7	5	4.4	5.2	5.2	0.9	6-6	37.B	37.8		O.K.	central
TECHNICAL FOOTNOTES:	2015	-	(4) EL'hi	HWi+ E	L _i (INVE	RT OF		(6) h _o =	TW or	(d _c +0	/2)(W)	(ICHEVE	R IS GREA	ATER)			
(1) USE Q/NB FOR BOX CULVERTS	8.9		INLE	T CONT	ROL SEC	(NOITS		(7) H=	 + k _e + (29 n ²	L) / R ^{L3}	3] v2/	2g				
(2) HW / /D . HW /D OR HW / /D FROM DESIGN	CHARTS	24	(5) TW B					(8) ELho	ELo	H+h _c	i						
(3) FALL = HW; - (ELhd-ELst); FALL IS ZERO FOR CULVERTS ON GRADE				NNEL.	FLOW DE	EPTH IN			5							(F.2), (r	
SUBSCRIPT DEFINITIONS :	CON	MENT	S / DIS	CUSSI	ON:			1- 1	1	70 1	1		CULVE	RT BA	RREL	SELEC	TED:
1. GULVERT FACE hd. DESIGN HEADWATER	Sin	a th	ع م	uth	clasu	re pipe	neli	33 10	308	12	ρ,	1	SIZE				
hi. HEADWATER IN INLET CONTROL ho. HEADWATER IN OUTLET CONTROL	m	2/ce -	the	Combi	rad.	clasin	c bib	e 12	- 4	als	ر				70.00		
i. INLET CONTROL SECTION O. OUTLET st. STREAMBED AT CULVERT FACE				16 4	Pipe	does	VO!	redu	× 1	PLA	a			HAL:			η
IW. TAILWATER	60	" \$ P	pe.										ENTRA	NCE:			

CHKD. BY SUBJECT MRL Virginia DATE DATE Buch 0 97 Chestertield SHEET NO. PROJ. NO. Closure Ŋ 96-410-Ø OF 70 33

Post-Hearing Exhib LTANTS, INC. LCOPY

Sts • Planners

OFFICIAL

OFFICIAL

	ocket No. E-	22, Sub 56 ^	Power - Che	AerFreld Closure	Page 96 of
SUBJECT _					
ВҮ	MRL	DATE	10/22/97	PROJ. NO. 96-410-33	CONSULTANTS
CHKD, BY		DATE		SHEET NO. 51 C OF 70	Engineers • Geologists • Plann Environmental Specialists
					Combined - A efficient entrance
		π ^e			How is already in
	en e e e pont	: <u></u>	180	10,000 8,000 EXAMPLE	(11) - Nort
	8.		156	6,000 D=36 inches (3.0 fest)	-6. (2) Sou
			144	- 5,000 Q=66 ef= - 4,000 HW * HW	- 5 6. (3)
	4		- 132 - 32	- 3,000 (feet)	5. 6.
			_120 [©]	(1) 1.8 5.4 - 2,000 (2) 2.1 6.3	- 4 5. - 4 5.
			- 108 F	(3) 2.2 6.6	3. [-4.
4			URAL ORAL	1,000	-3.
		Î	84 99 99 STRUCTURA	800	
	1		- 84 G	- 600 - 500	_ 2,
			72	400	2. 2.
		INCHES		300	MH) 1.5
		N.	50	200 ETAMPLE	H) S ₂ - 1.5 - 1.5
		(Q)	- 54 G	Charles	ERS - 1.5
	9	RT (DIANE
		CULVERT	- 48 dd	60	Ζ .
×		P. C.	F 42	50	# L 1.0 L 1.0
		ER		30 HW SALE ENTRANCE	
		DIAMETER	- 36 - 33	D SCALE TYPE	e. – TER
6		**	- 30	(1) Headwall (2) Mitered to conform	HEADWATER 8 - 8 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -
		 	*.	to slope	<u> </u>
	21	STANDARD	- 27	F 10 (3) Projecting	77
tu n ete no		STANG	- 24	- 6	7
	***	ï	- 21	To use scale (2) or (3) project horizontally to scale (1), then	6 _ 6
: ····································			46.	use straight inclined line through 3 D and Q scales, or reverse as	6 6
		-	- 18	illustrated,	
				F	
			- 15	£ 1,0	555
		<u> </u>	L 12	HEADW	ATER DEPTH FOR
					PIPE CULVERTS
			OF PUBLIC ROADS JAN. 19	sa WITH	INLET CONTROL

	Dominion Energy North Carolina Docket No. E-22, Sub 562 SUBJECT Virginia Cower - Chesterfield Closure BY DATE 9/13/97 PROJ. NO. 96-410-33 CHKD. BY DATE 23 SEP 97 SHEET NO. 52 OF 70 Engineers • Geologists • Planners Environmental Specialists
	TEMPORARY SEDIMENT POND: DESIGN REQUIREMENT The temporary sediment pond will be designed based on the requirements of the Virginia Frosson and Jediment Control Handbase (Reference (B)).
The second secon	There requirements are summarized below: -Total storage volume required equals 134 yd. per acre of drainage area. Of this volume, 67 yd. 2/acre is tor "wet" storage (i.e. a permanent pool), and 67 yd. 2/acre is for dry storage (i.e. the water is temporarily stored so that it takes at least 6-hours to drawdown this "dry" pool.
	- clean-out of the fond is to occur when the "wet" pool is 1/2 Full of stediment.
The state of the s	- The pond shell be able to hardle the expected peak runoff from a 25-year 24-hour storm. Since there is no emergency spillway, the principal spillway must be able to handle the 25-year storm with a minimum 2 feet tree board between the design storm high water and the top of the pond (i.e. elevation 41).

Therefore, maximum design storm elevation = 39.

	Dominion Energy North Carolina Docket No. E-22, Sub 562 SUBJECT Vilginia Power - Chesterfield Closure BY MPL DATE 9/13/97 PROJ. NO. 96-410-33 CHKD. BY PAP DATE 23 SEV92 SHEET NO. 53 OF 70 Engineers • Geologists Environmental Specialis TEMPORARY SEDIMENT BND	TANTS, INC.
	41 5,8%. 26 X	oct 23 2019
	PROPOSED TEMPORARY SEDIMENT POND 26 X	41
The second secon	EXISTING RISER STRUCTURE AND OUTLET CONDUIT	
Transferred Control Co	26 X 41	//Ke

ICIAL COP

ct 23 201

<u></u>	
2	
R	
털	

PROJ. NO. 96-40-33 56 OF 70 CHKD, BY RITP DATE 23 SEP97

Engineers • Geologists • Planners **Environmental Specialists**

STORAGE REQUIREMENTS CHECK

Maximum drainage area to pond = 115 acres.

Analyze "net" storage:

67 yd3/acre x 115 acres = 7705 yd3

From the stage storage curre --- Pand bottom = elev. 26 Top of "wet "Storage = elev. 27

Storage = 5 Ac. - E. = 8067 yds

8067 yd.3 > 7705 yd3 : O.K.

Analyze dry storage:

67 yd3/acre x 115 acres = 7705 yd3 = 4.8 Ac-FE

Total storage = 5 ac-Fe. + 4.8 ac.- Fe. = 9.8 ac-Fe (elev. 27.9)

Analyze to see if the 4.8 ac. - Re of "dry" storage takes longer than 6 hours to dewater. (see sheet 70)

Calculate the stage discharge cure of the riser/conduit to make this analysis.

PROJECT:					STAT	ION:						CULV	ERT	DESI	GN F	MAC
						τ						DESIG	NER/	DATE:		/
					TELEVIS AND		W. 47.01					REVIE	WER/	DATE :		/
HYDROLOGICAL DAT	<u>[A</u>				ĔL.	d:	(f i) -	7	100	RO	DWAY	ELEVA	TION :		(f1	
ø □ METHOD:					111	ent.		/	¥				7			
DRAINAGE AREA: STRE	EAM SLO	PE:		li .			7	7	1	OHIL					7	т- і
CHANNEL SHAPE:							НУ	v _i .	/ EL	-sf:		(11) s _o :_		- \ <u>.</u>	TH
ROUTING: OTHE	R:			1			_	7		ZORIO	INAL S	REAM BE	D.] =	тw
DESIGN FLOWS/TAIL	WATER				EL,	12.0	(ft	,) ~	FALL					-		
R.I. (YEARS) FLOW(cfs)	TW	(11)									S	≈ S ₀ -1	ALL/L	a .	L	EL: 7-64 (m)
<u></u>				l							S	- 21	01/0			0
						ii.					ι	0" 41	6.			
CULVERT DESCRIPTION:	TOTAL	FLOW		· · · · · · · · · · · · · · · · · · ·		HE	ADWAT	ER CAL	CULAT	IONS				S N	· >-	
MATERIAL - SHAPE - SIZE - ENTRANCE	FLOW	PER BARREL		-	CONTRO	· · · · · · · · · · · · · · · · · · ·				TLET (CONTROL		,	CONTROL HEADWATER ELEVATION	OUTLET VELÒCITY	COMMENTS
	Q (c1 s)	Q/N (I)	(2)	HWi	FALL (3)	EL hi	T W (5)	d _c	d _C +D	h ₀	k _e	H (7)	EL ho	CON	OUT	
24" & RCP, rounded edge headwall	10	10	.82	1.64	-	13.6	_	1.1	1.6	1.6	0.2	0,54	9-8	13.6		
" '	20	20	1.3	2.6	-	14.6	_	1.6	1.B	1.0	0.2	2.2	11.6	14.6		
. ",	40	40	3.0	6.0	_	18.0	<u> </u>	2.0	2.0	2.0	0.2	8.5	10.1	10.1		
et .	60	60	6.0	12.0	-	24,0	-	2.0	2.0	2.0	0.2	19.5	29-1	29-1		
ú ·	75	75					_	2.0	2.0	20	0.2	300	39.6	39.6		
TECHNICAL FOOTNOTES:			(4) EL _{hi}	* HWi+ E	L _i (INVE	RT OF		(6) h o	TW or	(dc+0	/2)(W	HICHEVE	R IS GREA	ATER)		
(I) USE Q/NB FOR BOX CULVERTS		e.	INLE	T CONT	ROL SE	CTION)		(7) H=	1+ ke+	(29 n2	L) / R ^{1.3}	3] v ² /	29			
(2) HW; /D + HW /D OR HW; /D FROM DESIGN C	HARTS			ASED ON				(8) ELh	o= ELo	+ H + h	i					
(3) FALL = HW; - (ELhd- ELsf); FALL IS ZERO FOR CULVERTS ON GRADE				NNEL.	FLOW D	EPTH IN	Cares					25				
SUBSCRIPT DEFINITIONS :	COI	MEN.	rs / DIS	cussi	ON:						2014		CULVE	RT BA	RRELS	BELECTED :
G. APPROXIMATE I. CULVERT FACE		- Colonial		A. A. G. San	•								SIZE			
hd. DESIGN HEADWATER hi. HEADWATER IN INLET CONTROL													SHAPE	:		
he. HEADWATER IN OUTLET CONTROL i. INLET CONTROL SECTION			•									İ	MATER	IAL:	-	n
O. OUTLET SI. STREAMBED AT CULVERT FACE IW. TAILWATER													ENTRA	NCE:		
			1900								0.7777	70.7	Dr.	4 1000	-3///	

CHKD. BY PHP SUBJECT MPC DATE 23 SEP 92 DATE 60 mgs 13997 SHEET NO .. PROJ. NO. 96-410-59 losure 우 W 9

BY

Engineers • Geologists • Planners Environmental Specialists CONSULTANTS, INCA Geologists • Planners
ental Specialists

F

Post-Hearing Exhibit 6
Page 105 of 184

RISER CONDVIT

Coefficient k.

MRL

DATE 23

Type of Structure and Design of Entrance

SHEET NO.

TABLE 12 - ENTRANCE LOSS COEFFICIENTS Outlet Control, Full or Partly Full

type of collected and best in all end and			
N. C.			
Pipe, Concrete			0.7
Mitered to conform to fill slope	٠		0.7
*End-Section conforming to fill slope	•		0.5
Projecting from fill, sq. cut end			0.5
Headwall or headwall and wingwalls			100 100
Square-edge			0.5
— → Rounded (radius = 1/12D)			0.2
Socket end of pipe (groove-end)			0.2
Socket end of pipe (groove-end)			0.2
Beveled edges, 33.7° or 45° bevels			0.2
Side-or slope-tapered inlet			0.2
Pipe, or Pipe-Arch, Corrugated Metal			
Projecting from fill (no headwall)			0.9
Mitered to conform to fill slope, paved or unpaved slope	•		0.7
· Headwall or headwall and wingwalls square-edge	•		0.5
*End-Section conforming to fill slope		•	0.5
Beveled edges, 33.7° or 45° bevels	•		0.2
Side-or slope-tapered inlet	•	•	0.2
Side-or Stope-capered lifet	•	*0	0.2
Box, Reinforced Concrete			
Dox, Reinforced Concrete			
Wingwalls parallel (extension of sides)			0.7
Square-edged at crown			0.7
Wingwalls at 10° to 25° or 30° to 75° to barrel			
Square-edged at crown			0.5
Headwall parallel to embankment (no wingwalls)			10:27 17240
Square-edged on 3 edges			0.5
Rounded on 3 edges to radius of 1/12 barrel			
dimension, or beveled edges on 3 sides			0.2
Wingwalls at 30° to 75° to barrel			
Crown edge rounded to radius of 1/12 barrel			
dimension, or beveled top edge			0.2
Side-or slope-tapered inlet			0.2
the same of the sa			

*Note: "End Section conforming to fill slope," made of either metal or concrete, are the sections commonly available from manufacturers. From limited hydraulic tests they are equivalent in operation to a headwall in both <u>inlet</u> and <u>outlet</u> control. Some end sections, incorporating a <u>closed</u> taper in their design have a superior hydraulic performance. These latter sections can be designed using the information given for the

beveled inlet.

Dominion Energy North Carolina Docket No. E-22, Sub 562

MRL

SUBJECT Virginia Power - Chesterfield Closure

97

PROJ. NO. 96 - 410 - 33

Post-Hearing Exhibit 6
Page 107 o
CONSULTANTS, INC.

Engineers • Geologists • Planners Environmental Specialists

CHART - 180 10,000 ((2) -168 EXAMPLE (3)8,000 - 156 0+42 Inches (3.5 feet) 6,000 Q=120 cfs 5,000 144 5. 6. 4,000 5. 132 3,000 5. (1) 2.5 8.8 120 (2) 2.1 2,000 (3) 2.2 108 3. 3. "O in feet 96 3. 1,000 800 84 600 2. 500 ê - 2. 400 (HW INCHES 300 1.5 1.5 DIAMETERS CFS 60 200 z 1.5 Z 6 - 54 ô. CULVERT DISCHARGE 48 Z DEPTH 69 1.0 1.0 42 OF. ENTRANCE 1.0 40 TYPE DIAMETER .9 36 30 (1) Sauare edge with headwall Groove and with (2) 20 30 Groove end projecting - 8 - 6 To use scale (2) or (3) project 5 horizontally to scale (1), then 21 use straight inclined line through 4 D and Q scales, or reverse as illustrated. 3 - 18 2 - 15 - .5

> HEADWATER SCALES 283 REVISED MAY 1964

HEADWATER DEPTH FOR CONCRETE PIPE CULVERTS WITH INLET CONTROL

BUREAU OF PUBLIC ROADS JAN. 1963

Closure Power - Chesterfield Virginia

MRL

DATE 23 SEP97

PROJ. NO. 43 SHEET NO.

96-410-33

Calculate the stage discharge of the opening into the order. The opening is formed by the stop planks and is a broad crested weir that can be represented by the equation $Q = 3.1 LH^{3/2}$, where $L=4^{1}$

 $Q = 3.1(4) H^{3/2} = 12.4 H^{3/2}$

H (Feet)	Q (CFS)	Elev. (Feet)
φ 0.2	'0 . -	27
	3.1	27.2
0.4		27.4
0.6	5.8	27.6
0.8	8.9	27.8
1.0	12.4	28
2	35.1	29
3	64.4	30
3 4 5	99.2	31
	138.6	32
ما	182.2	33
7	229.7	34
8	280.6	35
٩	334.8	36
lo	392.1	37
11	452.4	38
15	515.5	39

The second secon		SUBJECT _	tet No. E-22,		,	rfield Cl	osure 96-410-	33	Post-Hearing Exhibit 6 Page 110 of CONSULTANTS, INC
	}			DATE		PROJ. NO SHEET NO	64 OF_	70	Engineers • Geologists • Planners Environmental Specialists
		ų.		STA	GE	DISCHA	ARGE	CUR	
					S 4 Table Higher Commission Commi	-		1	
		54-7	49	, .					Oct 23 2019
Treference of Tr			3e - 37 - 36 -				_		
Language of the same of the sa			35 - 34 -	1				/	
)		33 - 32 - 31 .			ı		l	STOP PLANK WEIR FLOW
		et)	30 - 29 -				1		
The state of the s		٧	28 - 27 - 26 -				Sol Sautes	j	
		Elevetion	25 - 24 -	All the second of the second o			Con Les		
the state of the s	æl		23 - 22 - 21 -	ŕ		12/2	ZAN SUNET	4	
and a second			20 - 19 - 18 -	,			/**		
-			17 -			1			
)		15 - 14 - 13 ·	,,,	//	/			
***************************************	,		12>	0 10	20 30	40 Q (C)	50 Go FS)	70 60	20 20

9/14/97 MRL

Dominion Energy North Carolina

DATE 23 SEP 97

96-410-33 PROJ. NO.

70 SHEET NO. .

STAGE - DISCHARGE - STORAGE TAB TEMPORARY SEDIMENT BND TABLE

ELEV. (feet)	DISCHARGE (CFS)	STORAGE (AC-FE)
27.0		5
27.2	1.1	6
27.4	3.1	7
27.6	5.0	в
27.B	9.9	9
36. ▷	12.4	10
28.5	24	12.5
23.0	35.1	15
29.5	48	17.5
29.9	61	19.5
30.0	61.1	20
32.0	64.	31
34.0	67.	42
36,0	70	53.5
3€.△	73.	65.5
40.0	76	79

			LIST OF INFO.			
JO	B TR-20	III.		\$	UMMARY	NOPLOTS
TI	TLE 111	VIRGINIA POWE	R; CHESTERFIELD	CLOSURE 96-4	10-33	CLOSURE.INP
TI	TLE	PEAK DISCHARG	E CALCULATIONS			
3	STRUCT	01				SEDPOND
8			26.0	0.0	0.0	
8			27.0	0.01	5.0	
8			27.2	1.1	6.0	
8		367	27.4	3.1	7.0	1
8			27.6	5.8	8.0	
8			27.8	8.9	9.0	,
8			28.0	12.4	10.0	
8			28.5	24.0	12.5	
8			29.0	35.1	15.0	
8	*		29.5	48.0	17.5	
8			29.9	61.0	19.5	
8			30.0	61.1	20.0	į.
8			32.0	64.0	31.0	
8			34.0	67.0	42.0)
8			36.0	70.0	53.5	
8			38.0	73.0	65.5	
8		100	40.0	76.0	79.0	
9	ENDTBL					
3	STRUCT	02				SEDPOND
8		*	26.0	0.0	0.0	
8		12	27.0	0.01	5.0	İ
8			27.2	1.1	6.0	
8			27.4	3.1	7.0	ļ
8	340		27.6	5.8	8.0	
8			27.8	8.9	9.0	
8			28.0	12.4	10.0	
8			28.5	24.0	12.5	£ 5
8			29.0	35.1	15.0)
8			29.5	48.0	17.5	
8			29.9	61.0	19.5	
8			30.0	61.1	20.0	
8			32.0	64.0	31.0	
8			34.0	67.0	42.0	
8			36.0	70.0	53.5	
8			38.0	73.0	65.5	
8		10 20	40.0	76.0	79.0	2
9	ENDTBL					
	RUNOFF		9:0042		0-140-	
-6	RUNOFF	U = (4)	00042	7/4-0	0.230	
-6	RUNOFF	A 8.500 A	0-0238	85-0	0.210	
-6	RUNOFF	1-002	0.034	83.0 80.0	0:190 0:420	1 SD CELL5 1 PC GELL5

75						
	-007		0-4-0-0-4	77.6—0	1-0-5-0-4	
O KUNUTT I	003		0.1034	74.0	0.520	A CE OF DEPT
- CDUIGET A	-00/	1	0.0202	70.0	0.320.1	SR SWALE
-G-Monton-I	-004					

	9.00		<i>ロ外り</i> nergy North (E-22, Sylb 56	Carolina	EP97 27.10	27.11	27.11	27.12	27.12	27.12	Post-Hearing		68/	70
[-]	9.50	ELEV	27.14	27.14	27.15	27.16	27.16	27.17	27.17	27.18	27.18	27.19		COPY
	10,00	ELEV	27.20	27.20	27.21	27.22	27.22	27.23	27.24	27.25	27.25	27.26		
	10.50	ELEV	27.27	27.28	27.29	27.30	27.31	27.32	27.33	27.34	27.36	27.37		
	11.00	- ELEV	27.38	27.40	27.42	27.43	27.45	27.47	27.49	27.51	27.53	27.55		6
	11.50	ELEV	27.57	27.60	27.63	27.66	27.71	27.77	27.85	27.95	28.08	28.26		
	12.00	ELEV	28.47	28.73	29.03	29.35	29.65	29.92	30.14	30.32	30.46	30.57		
	12.50	ELEV	30.65	30.72	30.77	30.81	30.84	30.86	30.88	30.89	30.90	30.90		2019
	13.00	ELEV	30.90	30.90	30.89	30.88	30.88	30.86	30.85	30.84	30.82	30.80		2
	13.50	ELEV	30.79	30.77	30.75	30.73	30.71	30.68	30.66	30.64	30.61	30.59		Oct 23
	14.00	ELEV	30.56	30.54	30.51	30.49	30.46	30.43	30.40	30.38	30.35	30.32	*	
	14.50	ELEV	30.29	30.26	30.23	30.20	30.17	30.14	30.11	30.08	30.04	30.01	. ≢0	
IJ														
		-14-97 16:4 : 09/83(.2)		RGINIA POW			OSURE 96-4	10-33	CLOSURE.	NP	×	JOB 1	PASS 2 PAGE 12	
	ì	**	- Sec.				R	P.				4		
L	,								÷			840		
[]	KECUTIVE C	ONTROL OPERA	ATION ENDCM		PUTATIONS (COMPLETED	FOR PASS	1				RECORD ID		
lane of Orland			2								*			
	XECUTIVE C	ONTROL OPERA	ATION ENDJO	В			*					RECORD ID		
		-14-97 16:4 : 09/83(.2)		RGINIA POW			OSURE 96-4	10-33	CLOSURE.I	NP		J08 1	SUMMARY	\$
Challenger		07,03(.2)	, , ,	AR DISSIAN	or order	110110			6	21				
S)	JMMARY TAE		CONTRACTOR OF THE CONTRACTOR AS	R THE PEAK	DISCHARGE	E TIME AND	RATE (CFS) VALUES	INDICATES		MED HYDROGRAPH			
1	ECTION/ TRUCTURE	STANDARD	DRAINAGE	RAIN ANT	EC MAIN	PR	ECIPITATIO	N 	RUNOFF		PEAK DISC	HARGE		
)	OPERATION	AREA (SQ MÍ)		INCREM	BEGIN (HR)	AMOUNT D	URATION (HR)		ELEVATION (FT)	TIME (HR)	RATE (CFS)	RATE (CSM)	
									4					

ALTERNATE

1 STORM

Dominio	n Energy No No. E-22, Su			,					Post-H F	learing Exhibit 6	1/70
SECTION 1 RUNOFE	00	2	2	05		6-20-	24-00	3-63	11.00	15-61	3716-6
(SECTION - 1 RUNOFF		- 2	_2	-:05		6.20	24.00	2.5 8	12:05	10.89	2593.4
SECTION 2 RUNGER				-05	0	6.20	24-00	3-62	12.03	81.56	3427.1
FON 2 RUNOFF	- 03			-05-	0	6.20	24.00	3:42	12.02	105.53	3360.8
LON 3 RUNOFF	10	. 2	2	.05		6,20	24.00	3.10	12:15	238.80	2311.7
						0.20	27100	50	,	255.00	201111
SECTION 3 RUNGER	1.1	2	2	. 05		6.20	24-00	2.5/	12-21	180 71	1734.1
SECTION 4 RUNOFF		2		05	.0	6-20-	24.00	3.02	12.09	51.99	2573.0
SECTION 5 RUNOFF	00-		-2	05	.0	6-20	24.00	3.02	14.98	11.75	-4196-0
	TIMES		2	.05		6-20	24.00	3.45	11.70	18.60	3381.0
SECTION 5 RUNOFF				•	.0			61 (81)		NAME OF STREET	Color Pers
SECTION—6—RUNOFF				-05	.0	6,20	24:00	2.63	12:21	321:06	1786.7
	40		•	0.5	•		54.00	7 27	40.04	107 57	22/0
SECTION 6 RUNOFF		. 2	2	.05	.0	6.20	24.00	3.57	12.21	407.57	2268.1
TRUCTURE 1 RESVOR		2	2	.05	.0	6.20	24.00	1.67	31.36 13.15	63.08	351.0
SECTION 6 RUNOFF		2	2	.05	.0	6.20	24.00	3.19	12.15	425.50	2367.
TRUCTURE 2 RESVOR	.18	2	2	.05	.0	6.20	24.00	1.62	30.90 \12.95	62.41*	347.
R20 XEQ 09-14-97 1 REV PC 09/83(.2		VIRGINIA F	and the second			LOSURE 96	-410-33	CLOSURE.I	NP)	J08 1	SUMMAR PAGE
SECTION/ DI TRUCTURE) (SCHARGE (CI RAINAGE AREA SQ MI)	FS) AT XSEC STORM NUM 1				FOR ALL	STORMS AND	O ALTERNATES			er.
SECTION/ DETRUCTURE) (RAINAGE AREA SQ MI)	STORM NUM 1	MBERS			FOR ALL	STORMS AND	ALTERNATES			¥
SECTION/ DI TRUCTURE) (STRUCTURE 2 ALTERNATE 1	RAINAGE AREA SQ MI)	STORM NUM	MBERS			FOR ALL	STORMS AND	O ALTERNATES		*.	
SECTION/ DI TRUCTURE) (STRUCTURE 2 ALTERNATE 1	RAINAGE AREA SQ MI)	STORM NUM 1	MBERS			FOR ALL	STORMS AND	O ALTERNATES			
SECTION/ DI TRUCTURE) (STRUCTURE 2 ALTERNATE 1 STRUCTURE 1	RAINAGE AREA SQ MI)	STORM NUM 1 62.41	MBERS			FOR ALL	STORMS AND	O ALTERNATES			
SECTION/ DEFINITION OF TRUCTURE 2 STRUCTURE 2 ALTERNATE 1 STRUCTURE 1	RAINAGE AREA SQ MI) .18	STORM NUM 1	MBERS			FOR ALL	STORMS AND	O ALTERNATES			
SECTION/ DETRUCTURE 2 ALTERNATE 1 STRUCTURE 1 ALTERNATE 1	RAINAGE AREA SQ MI)	STORM NUM 1 62.41	MBERS			FOR ALL	STORMS AND	O ALTERNATES			
SECTION/ DIFFERENCE 2 STRUCTURE 2 ALTERNATE 1 STRUCTURE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1	RAINAGE AREA SQ MI) .18	STORM NUM 1 62.41	MBERS			FOR ALL					
SECTION/ DEFINITION OF TRUCTURE 2 ALTERNATE 1 STRUCTURE 1 ALTERNATE 1	RAINAGE AREA SQ MI) .18	STORM NUM 1 62.41	MBERS			FOR ALL	E	levations	From 25-ur.	24-hr.	
SECTION/ DI TRUCTURE (STRUCTURE 2 ALTERNATE 1 STRUCTURE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1	RAINAGE AREA SQ MI) .18	STORM NUM 1 62.41	MBERS			FOR ALL	E	levations	From 25-ur.	24-hr.	
SECTION/ DITURE STRUCTURE 2 ALTERNATE 1 STRUCTURE 1 ALTERNATE 1 XSECTION 1 ALTERNATE 1 XSECTION 2	RAINAGE AREA SQ MI) .18 .18	STORM NUM 1 62.41	MBERS			FOR ALL	E	levations torm are	From 25-yr. less than 3	24-hr. 19' (sce	
SECTION/ DI TRUCTURE (STRUCTURE 2 ALTERNATE 1 STRUCTURE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1	RAINAGE AREA SQ MI) .18 .18	STORM NUM 1 62.41	MBERS			FOR ALL	E	levations	From 25-yr. less than 3	24-hr. 39' (sce	
SECTION/ DITRUCTURE) (STRUCTURE 2 ALTERNATE 1 STRUCTURE 1 ALTERNATE 1 XSECTION 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1	RAINAGE AREA SQ MI) .18 .18	STORM NUM 1 62.41 63.08	MBERS			FOR ALL	E	levations torm are theat 52	from 25-yr. less than 3	14 (sce	
SECTION/ DITRUCTURE) (STRUCTURE 2 ALTERNATE 1 STRUCTURE 1 ALTERNATE 1 XSECTION 1 ALTERNATE 1 XSECTION 2 ALTERNATE 1 ALTERNATE 1	AREA SQ MI) .18 .18 .00	STORM NUM 1 62.41 63.08	MBERS			FOR ALL	E	levations torm are theat 52	from 25-yr. less than 3	14 (sce	1
SECTION/ DIFFERENCE PRODUCTURE 2 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1	AREA SQ MI) .18 .18 .00	STORM NUM 1 62.41 63.08	MBERS 1 8			FOR ALL	E	levations torm are theat 52	from 25-yr. less than 3	14 (sce	
SECTION/ DIFFERENCE DESTRUCTURE 2 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1	AREA SQ MI) .18 .18 .00	62.41 63.08 10.89	MBERS 1 8			FOR ALL	E	levations torm are theat 52	from 25-yr. less than 3	14 (sce	
SECTION/ DI TRUCTURE (STRUCTURE 2 ALTERNATE 1 STRUCTURE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1	.18 .18 .00 .03 .11	62.41 63.08 10.89	MBERS 1 8			FOR ALL	The A	levations torm are that 52	from 25-yr. less than 3	14 (sce	1
SECTION/ DIFFERENCE PROPERTY OF THE PROPERTY O	.18 .18 .00 .03 .11	570RM NUM 1 62.41 63.08 10.89 105.53	MBERS 1 8 9			FOR ALL	The A	levations torm are that 52	From 25-yr. less than 3	14 (sce	↑
SECTION/ DITRUCTURE STRUCTURE 2 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1 ALTERNATE 1	.18 .00 .03 .11 .02	62.41 63.08 10.89	MBERS 1 8 9			FOR ALL	The A	levations torm are theat 52	from 25-yr. less than 3	14 (sce	√ †
SECTION/ DITRUCTURE STRUCTURE 2 ALTERNATE 1 ALTERNATE 1 XSECTION 1 ALTERNATE 1 XSECTION 2 ALTERNATE 1 XSECTION 3 ALTERNATE 1 XSECTION 4	.18 .18 .00 .03 .11	570RM NUM 1 62.41 63.08 10.89 105.53	MBERS 1 8 9			FOR ALL	The A	levations torm are that 52	from 25-yr. less than 3	14 (sce	1
SECTION/ DITRUCTURE STRUCTURE 2 ALTERNATE 1 STRUCTURE 1 ALTERNATE 1 XSECTION 1 ALTERNATE 1 XSECTION 2 ALTERNATE 1 XSECTION 3 ALTERNATE 1 XSECTION 4	.18 .00 .03 .11 .02	51.99	MBERS 1 8 9			FOR ALL	The A	levations torm are that 52	from 25-yr. less than 3	14 (sce	1
SECTION/ DITRUCTURE STRUCTURE 2 ALTERNATE 1 ALTERNATE 1 XSECTION 1 ALTERNATE 1 XSECTION 2 ALTERNATE 1 XSECTION 3 ALTERNATE 1 XSECTION 4 ALTERNATE 1 XSECTION 4	.18 .18 .00 .03 .11 .02 .01	570RM NUM 1 62.41 63.08 10.89 105.53	MBERS 1 8 9			FOR ALL	The A	levations torm are that 52	from 25-yr. less than 3	14 (sce	, t
TRUCTURE STRUCTURE 2 ALTERNATE 1 STRUCTURE 1 ALTERNATE 1 XSECTION 1 ALTERNATE 1 XSECTION 3 ALTERNATE 1 XSECTION 4 ALTERNATE 1 XSECTION 4	.18 .00 .03 .11 .02	51.99	MBERS 1 8 9			FOR ALL	The A	levations torm are that 52	from 25-yr. less than 3	14 (sce	,1
SECTION/ DITRUCTURE STRUCTURE 2 ALTERNATE 1 STRUCTURE 1 ALTERNATE 1 XSECTION 1 ALTERNATE 1 XSECTION 2 ALTERNATE 1 XSECTION 3 ALTERNATE 1 XSECTION 4	.18 .18 .00 .03 .11 .02 .01	51.99	MBERS 1 8 9 3			FOR ALL	The A	levations torm are that 52	from 25-yr. less than 3	14 (sce	1

MAIN - UNEXPECTED RECORD FOUND (IGNORED) >>>

D OF 1 JOBS IN THIS RUN

Docket No. E-22, Sub 562 Power - Chesterfield

Dominion Energy North Carolina

96-410-33 PROJ. NO. 70

Closure

CALCULATE DEWATERING TIME

"Ony" storage requirements are 67 yd,3/acre (see sheet 52)

67 yd3/acre x 115 acres = 7705 yd3 (see shut 56)

7705 yd,3 = 4.8 ac- 1 = 5 ac- 1

5 ac-ft. above the permanent pool (elev. 27) results in a pond elevation of approximately 28 (see sheet 55)

Calculate the dewaterry time from elev. 28 to elev. 27.

	Elev. (FE)	Storage volume (fi.3)	· A storage Volumes	Q (CF5)	(CFS)	Pewaterny Time (hrs.)	Accum. Dewatery Times
	28	217,000	-	12.4			
	27.B		43,560	8.9	10.7	1.13	1.13
		174, 240	43,560		7.4	1.64	2.77
	27.6	130,600	43,560	5.8	4.5	2.69	5.46
The state of the s	27.4	87,120	43.560	3.1		5.76	
	27.2	43,560	,	1.(2.1		11.22
	27-0	0	43, 5000	0	0,6	20.17	31.39

Dewatering time = 31.4 hrs., which is > 6 hrs. . O.K.

* Information from sheet 65 (5 ac. Fe. of permanent pool below elev. 27 not included)

Dominion Energy North Carolina Docket No. E-22, Sub 562

 Post-Hearing Exhibit 6
Page 117 of 184

Engineers • Geologists • Planners Environmental Specialists

UNIVERSAL SOIL LOSS

EQUATION CALCULATIONS

xet 23 2019

SUBJECT Virginia Power - Chesterfield Clasure

USLE

BY MRL DATE 9/4/97 PROJ. NO. 96-410-33

CHKD. BY RHP DATE 23SEP92 SHEET NO. 1 OF 8

UNIVERSAL SOIL LOSS EQUATION

Estimate the rate of soil erosion that would take place on the stabilized final cover of the ash fill rite. The locations analyzed will be the longest and steepest slepes for the entire site.

Universal son Loss Equation (USLE). The soil loss equation is ---

A = RKLSCP

where: A = Soil loss in tons of soil per acre per year

R = Rainfall and runoff factor

K = soil erodibility factor

L= Slope - length Factor

S = Slope - steepness tactor

c = cover and management factor

P = Support practice Factor

Agricultural Handbook # 537, "Predicting Rainfall Erossion Losses, A Guide to Conservation Planning" published by the United States Department of Agriculture, was used to determine the factors required for use in the USLE. The Chesterfield County Soil Survey, published by the USDA National Resource Conservation Service, was used to assist in determining the K Factor.

Post-Hearing Exhibit 6

Page 119 of 1

CONSULTANTS, INC

Engineers • Geologists • Planners **Environmental Specialists**

Power - chesterfield Closure SUBJECT VIIghia USLE 96-410-33 MRL PROJ. NO. . 2 CHKD. BY RHPDATE 23.55097 SHEET NO.

AVERACE ANNUAL VALUES RAINFALL OF THE EROSIAN INDEX

R= 220

Frostre Forces of runoff from spring thaw, snowmelt, or irrigation, are not included, and are considered insignificant.

Post-Hearing Exhibit 6

K - SOIL ERODIBILITY FACTOR

The 12" thick final soil cover shall be obtained from the surrounding area(s). The soil from these areas generally consist of clayey or loany subsoils (see next page).

TABLE 5. APPROXIMATE VALUES OF FACTOR K FOR USDA TEXTURAL CLASSES 11

USDA TEXTU				
		c matter co		
Texture class	0.5%	2%	. 4%	
	K	K	K	
Send	0.05	0.03	0.02	
Fine sand	.16	.14	.10	
Very fine sand	:42	. 36	.28	
Loamy sand	.12	.10	.08	
Loamy fine sand	.24	.20	.16	
Loamy very fine sand	. 44	.38	.30	
Sendy loam	.27	. 24	.19	
Fine sandy losm	.35	.30	. 24	
Very fine sandy loam	.47	.41	.33	2
Loam	.38	. 34	. 29	Kay = 0.34
Silt losm	.48	.42	•33.	3—
Silt	. 60	.52	.42	/
Sandy clay loam	.27	.25	.21	(
Clay loam	.28	.25	.21	Kang. = 0.25
Silty clay loam	. 37	.32	.26	
Sandy clay	.14	.13	.12	1
Silty clay	.25	.23	.19	17 1
Clay		0.13-0.29		Kay = 0.21

kaug. = 0.27

USE K=0.3

The values shown are estimated averages of broad ranges of specific-soil values. When a texture is near the borderline of two texture classes, use the average of the two K values.

PEFERENCE: USEPA "Evaluating Cover Systems"

ct 23 2019

10/21/97

A Rev. MRL

SUBJECT Virginia Power - ChesterField Closure

USLE

BY MRL DATE 9 1D 97 PROJ. NO. 96-410-33

CHKD. BY PHP DATE 12 FP97 SHEET NO. 5 OF 8

Engineers • Geologists • Planners Environmental Specialists

LS FACTOR

The length and strepness tactor are considered as a single topographic factor, LS. Benches will be used with the final closure to limit the length of flow. Maximum vertical spacing between benches shall be 25 feet as shown below.

From the above bench geometry, the maximum flow length is 82!

The maximum slope = 1/3 = 33.3%

Use the chart on the following page to determine the LS Factor.

Also, look at the final top surface.

Maximum flow length = 600'

Corresponding slope = 2 %

Ls = 8.7

on 3H: IV slopes

LS = 0.34

on 2% top slope

Oct 23 2019

r----

()

Post-Hearing Exhibit 6 tower - Chasterfield

96-410-33 PROJ. NO.

Engineers • Geologists • Planners **Environmental Specialists**

C - COVER AND MANAGEMENT

After final vegetative stabilization of the site, the suitace will be covered with grasses and/or low growing legumes. 95+ % of the ground will be covered with plants or vegetative litter.

The "c" value is estimated to be c = 0.003.

TABLE 10.—Factor C for permanent pasture, range, and · idle land1

Vegetative can	C	over th	at co	ntacts	the so	il surfa	ce		
Type and	Percent		Percent ground cover						
height ²	cover ³	Type*	0	20	40	60	80	95+	
No appreciable	->	G	0.45	0.20	0.10	0.042	0.013	0.003	
canopy		W	.45	.24	.15	.091	.043	.011	
Tall weeds or	25	G	.36	.17	.09	.038	.013	.003	
short brush with average		W	.36	.20	.13	.083	.041	.011	
drop fall heigh	50	G	.26	.13	.07	.035	.012	.003	
of 20 in		W	.26	.16	.11	.076	.039	.011	
¥	75	G	.17	.10	.06	.032	.011	.003	
		W	.17	.12	.09	.068	.038	.011	

The listed C values assume that the vegetation and mulch are randomly distributed over the entire area.

²Canopy height is measured as the average fall height of water drops falling from the canopy to the ground. Canopy effect is inversely proportional to drop fall height and is negligible if fall height exceeds 33 ft.

^a Portion of total-area surface that would be hidden from view by canopy in a vertical projection (a bird's-eye view).

G: cover at surface is grass, grasslike plants, decaying compacted duff, or litter at least 2 in deep.

W: cover at surface is mostly broadleaf herbaceous plants (as weeds with little lateral-root network near the surface) or undecayed residues or both.

SUPPORT PRACTICE FACTOR

No associated conservation support practices proposed.

SUBJECT Virginia Power - Chesterfield Closure

USCE

BY MRL DATE 9 10 97 PROJ. NO. 96-410-33

CHIED BY RHP DATE 23 SEPORT SHEET NO. B OF B

CONSULTANTS, INC

Page 124 of 1848

Post-Hearing Exhibit 6

Engineers • Geologists • Planners Environmental Specialists

CALCULATE EROSION RATES

A = RK(LS)CP

A Rev. MRL 10/21/97

FOR 3H:1V: A = (220)(0.3)(B.7)(0.003)(1.0) = 1.7 fons/acre/year

1 FOR 29.0 : A = (220)(0.3)(0.34)(0.003)(1.0) = 0.1 fons/acre/year

TOP SLOPE: A = (220)(0.3)(0.34)(0.003)(1.0) = 0.1 fons/acre/year

Soil loss tolerances range from 2 to 5 tons/acre/year. Therefore, the estimated 1.7 tons/acre/year is acceptable.

* Reference: Agricultural Handbook # 537, "Predicting Rainfall Erosion Losses, A Guide to Conservation Planning", USDA, page 3, paragraph 2.

Dominion Energy North Carolina Docket No. E-22, Sub 562

DATE

CHKD. BY _

SUBJECT Virginia Power - Chesterfreld Closure

BY _____ DATE ____ PROJ. NO. ____

SHEET NO.

Post-Hearing Exhibit 6
Page 125 of 1842
CONSULTANTS, INC.

Engineers • Geologists • Planners Environmental Specialists

STABILITY ANALYSIS CALCULATIONS

Dominion Energy North Carol Docket No. E-22, Sub 562 SUBJECT CHESTI	ina ERFIELD POWER STATION CLOSURE PLAN
	IA POWER
BY NCBA	DATE <u>08 Apr 2003</u> PROJ. NO. <u>1996-410-37</u>
CHKD BY KILL	DATE (-1/-63 SHEET NO 1 DE V

Engineers • Geologists • Planners Environmental Specialists

OBJECTIVE:

Evaluate the slope stability of the Chesterfield Upper Pond (Figure 1). The slope stability analyses will be conducted for three cases:

- 1998 conditions
- II. Proposed Phase I pond levels at approximately El. 80 ft.
- III. Proposed Phase II pond levels at approximately El. 130 ft.

METHODOLOGY:

Slope stability will be evaluated for both static and seismic conditions. Stability will be evaluated using limit equilibrium methodology using Bishop's method (ordinary and Janbu) via SLOPE/W analyses.

REFERENCES:

- Project 02131106.01, Geotechnical Engineering Services, Ash Moisture Criteria Evaluation, Chesterfield Power Station, Dominion Generation, Chesterfield County, Virginia, dated May 5, 2003. Prepared by Schnabel Engineering Associates, Inc. (Copy included in Appendix B2).
- Project 02131106.01, Response to VDEQ Comments of January 21, 2003, Ash Shear Strength Evaluation, Chesterfield Power Station, Dominion Generation, Chesterfield County, Virginia, dated February 13, 2003. Prepared by Schnabel Engineering Associates, Inc. (Copy included in Appendix B2).
- 3. Project 02131106.01, Geotechnical Engineering Services, Ash Shear Strength Evaluation, Chesterfield Power Station, Dominion Generation, Chesterfield County, Virginia, dated December 13, 2002. Prepared by Schnabel Engineering Associates, Inc. (Copy included in Appendix B2).
- Geotechnical Engineering Study, Long Term Ash Storage Pond Dike, Chesterfield County, Virginia, dated April 22, 1996. Prepared by Schnabel Engineering Associates, Inc.
- 5. Final report, Virginia Power Chesterfield Inactive Pond, dated April 14, 1997. Prepared by GAI.

VIR	GI	N	IA	POW	/FR
V 11 1	-		1 11		V 1 \

BY NCBA

DATE 08 Apr 2003 PROJ. NO. 1996-410-37

CHKD. BY KLL

Engineers • Geologists • Planners **Environmental Specialists**

- Geotechnical Engineering and Groundwater Hydrology Services, Ash Disposal Pond. Chesterfield Power Station, dated 12/20/82. Prepared by Schnabel Engineering Associates, Inc.
- 7. Conceptual Closure Plan, Phase I, Upper (East) Ash Pond, Chesterfield Power Station. Drawing No. 96-410-F3, Sheet 1 of 2.
- 8. Conceptual Closure Plan, Phase II, Upper (East) Ash Pond, Chesterfield Power Station, Drawing No. 96-410-F4, Sheet 2 of 2.
- 9. Sections and Details, Upper (East) Ash Pond, Chesterfield Power Station, Drawing No. 96-410-F4, Sheet 2 of 2.
- 10. SEA Project 963321, Slope Inclinometer Readings, Henricus Park Road, Chesterfield County, Virginia, May 21, 1997.
- 11. SEA Project 963321, Slope Inclinometer Readings, Henricus Park Road, Chesterfield County, Virginia, July 22, 1997.
- 12. U.S. Army Corps of Engineers publication ER 1110-2-1806, "Engineering and Design Earthquake Design and Evaluation for Civil Works Projects", dated 31 July 1995.

ASSUMPTIONS:

- 1) Steady state conditions in the pond.
- 2) Properties of the ash in the pond are homogeneous.
- 3) Water levels of the ash placement area are located at or below an elevation of approximately 27 feet above MSL.
- 4) Ash will be added to the existing placement area using dry disposal methods and is assumed not to increase water levels in the placement area.
- Pseudo static analysis, seismic coefficient used = 0.075. 5)
- 6) For sections with a toe berm, the phreatic surface came down to the top of the berm:

Dominion Energy North Carolina
Docket No. E-22, Sub 562
SUBJECT CHESTERFIELD PO

SUBJECT CHESTERFIELD POWER STATION CLOSURE PLAN

VIRGINIA POWER

BY NCBA

DATE 08 Apr 2003 PROJ. NO. 1996-410-37

CHKD. BY KLL

DATE _____ 5-15-03 SHEET NO. 3 OF 8

Page 128 of 184

CONSULTANTS

Post-Hearing Exhibit 6

Engineers • Geologists • Planners Environmental Specialists

ANALYSIS:

Data on the subsurface geology and general subsurface stratigraphy are obtained from references 4 and 6.

Soil strength parameters are based on testing done by Schnabel (references 4 and 6); the ash strength parameters are based on strength laboratory testing (references 3 and 5). The soil parameters used for stability are presented in Table 1.

TABLE 1 - Soil Parameters Used in Slope Stability Analyses

Soil description	γ _τ (pcf)	φ=φ' (degrees)	c=c' (psf)
Embankment fill/ dike fill	125	32	0
Road fill	110	27	0
Alluvium	100	23	0
Silty Sand	130	35	0
Clayey silt	110	30	0
Loose sand	110	30	0
Clay	110	27	0
Silty/clayey sand	140	40	0
Sandy clay/clayey sand	135	35	0
Marsh soil	95	9	40
Ash	92	30	0

The stability of nine sections was analyzed. The sections were A-A through I-I. Three cases were considered for each section (refer to pp. 1 of these calculations). Refer to Figure 1 of these calculations for the approximate location of the sections.

Section A-A

Figure 1 shows the location of section A-A. Figure 2 shows a graphical layout of section A-A in SLOPE/W.

Docket No. E-22, Sub 562 SUBJECT CHESTERFIELD POWER STATION CLOSURE PLAN

VIRGINIA POWER

BY NCBA

DATE <u>08 Apr 2003</u> PROJ. NO. <u>1996-410-37</u>

CHKD. BY KLL

DATE 5-15-03 SHEET NO. 4 OF 2

CONSULTANTS

Engineers • Geologists • Planners Environmental Specialists

Results

The results obtained for sections A-A through I-I are shown in Tables 2, 3 and 4. The SLOPE/W runs for sections A-A and I-I are presented in Appendix C1.

TABLE 2 - Summary of Dike Minimum Safety Factors Sections A-A through G-G (seismic coefficient = 0.075)

Section	Case I	Case II	Case III
A-A ⁽¹⁾	1.61	1.61	1.61
В-В	1.21	1.17	1.17
C-C	1.50	1.58	1.60
D-D	1.45	1.41	1.40
E-E	2.01	1.42	1.49
F-F	1.64	1.65	1.54
G-G (Ash only)	1.66	1.64	1.75

⁽¹⁾ Plots included in Appendix B1

TABLE 3 - Summary of Dike Minimum Safety Factors Sections H-H and I-I (seismic coefficient = 0.075)

Section		El. 26 at El. 32	Ash at El. 32 Water at El. 32	
	Road	Dike	Road	Dike
H-H	0.90	1.41	0.90	1.41
I-1 ⁽¹⁾	0.54	1.50	0.62	1.50

⁽¹⁾ Plots included in Appendix B1

Docket No. E-22, Sub 562 SUBJECT CHESTERFIELD POWER STATION CLOSURE PLAN

VIRGINIA POWER

BY NCBA

DATE 08 Apr 2003 PROJ. NO. 1996-410-37

CHKD. BY KU

DATE 5-15-03 SHEET NO. 5 OF 8

CONSULTANTS

Engineers • Geologists • Planners Environmental Specialists

TABLE 4 - Summary of Minimum Factors of Safety for Section A-A (Case III)

Plot No. (1)	Modified parameter	Minimum F.S.	Occurrence of failure	Comments	
1	None	0.91	At toe of dike	Phreatic surface to El. 27. Localized failure.	
2	Seismic coefficient = 0	1.20	At toe of dike	Phreatic surface to El. 27. Stable.	
3	C = 850	0.91	At toe of dike	Same as plot no. 1.	
4	Phreatic surface @ El. 38 to toe of dike	1.21	At toe of dike and through alluvium	S.F. > 1.5 for seismic coefficient = 0.	
5	Phreatic surface @ El. 38 to toe of dike. Seismic coefficient = 0	1.69	At toe of dike and through alluvium		
6	None	1.63	Along bench surface		
7	None	1.84	Circular failure along pile	S.F. > 1.8 under seismic conditions.	
8	γ _{ash} = 103 pcf (vs. 92 pcf)	1.82	Circular failure along pile	S.F. > 1.8 under seismic conditions.	

⁽¹⁾ Plots included in Appendix B1

CONCLUSIONS AND RECOMMENDATIONS:

- The ash placement area should be stable for cases I, II, and III at the assumed water levels with the parameters defined and used.
- The dike should be stable for cases I, II and III at the assumed water levels. Maintenance may be required to fix local instabilities at the toe of the dike.
- North and South dike instability areas (sections H-H and I-I at the eastern end of the pond) may experience continued instability at present conditions. If these conditions are not mitigated, these instabilities will likely be present for the proposed closure phases. It is recommended placement of material be terminated at the same elevation as the top of the dike.

 VIRGINIA POWER

 BY NCBA
 DATE 08 Apr 2003 PROJ. NO. 1996-410-37

 CHKD. BY KC
 DATE 5-15-03 SHEET NO. 6 OF 8

Docket No. E-22, Sub 562 SUBJECT CHESTERFIELD POWER STATION CLOSURE PLAN

Dominion Energy North Carolina

Engineers • Geologists • Planners Environmental Specialists

- The ash should be placed and compacted as follows. Ash should be placed in lifts not exceeding one foot. Around the perimeter of the dike, and for a minimum distance of 50 feet from the final surface, each lift should be compacted at optimum moisture within a tolerance of plus or minus four (4) percent and to a density of at least 95 percent of Standard Proctor maximum dry density. A lower dry percent of optimum moisture, six (6) percent, may be achieved with a higher compaction effort (reference 1). Everywhere else, each lift should be compacted at optimum moisture within a tolerance of plus six (6) percent or minus eight (8) percent optimum and to a density of at least 92 percent of Standard Proctor maximum dry density. A lower dry percent of optimum moisture, eight (8) percent, may be achieved with a higher compaction effort (reference 1).
- Future consolidated undrained (CU) tests are recommended to determine the strength parameters for the short-term, undrained loading conditions.
- Future test on FGD material and co-mingled FGD and ash materials are recommended to confirm the parameters used herein.

FIGURE 2 - SECTION A-A

Dominion Energy North Carolina

Docket No. E-22, Sub 562

SUBJECT CHESTERFIELD POWER STATION CLOSURE PLAN

VIRGINIA POWER

BY NCBA

DATE <u>08 Apr 2003</u> PROJ. NO. <u>1996-410-37</u>

CHKD. BY KCC

DATE 5-15-03 SHEET NO. 7 OF 8

Post-Hearing Exhibit 6
Page 134 of 184
CONSULTANTS

Engineers • Geologists • Planners Environmental Specialists

APPENDIX B1 SLOPE/W OUTPUT RESULTS

150

100

50

-50

-100

0.00

0.05

Elevation (FT)

Chesterfield Stability Analysis Section A-A - Case I 16 April 2003 File Name 96410A1B.slz Analysis Method Bishop (with Ordinary & Janbu) Seismic Coefficient 0.075

1.606

0.20

0.25

0.30

0.10

0.15

0.40 0.45 0.50 0.55 0.60 0.65 0.35 Horizontal Distance (FT) (x Oct 23 2019

0.70

0.75

0.80

0.85

Bedrock

OFFICIAL COPY

0.95

0.90

1.00

Chesterfield Stability Analysis Section I-I, South Dike 16 April 2003 File Name 96410II-road 2.slz Analysis Method Bishop (with Ordinary & Janbu) Seismic Coefficient 0.075

Soil 1 Water

Soil Model No Strength Unit Weight 62.4

300

350

400

Horizontal Distance (FT)

450

500

Elevation (FT)

-100

0

50

100

150

200

250

550

600

650

700

750

Plot No.1

Plot No. Z

Dominion Energy North Carolina

Docket No. E-22, Sub 562
SUBJECT_CHESTERFIELD POWER STATION CLOSURE PLAN

VIRGINIA POWER

BY NCBA DATE 08 Apr 2003 PROJ. NO. 1996-410-37

CHKD. BY /CCL

DATE <u>5-15-03</u> SHEET NO. 8 OF 8

Post-Hearing Exhibit 6
Page 150 of 184
CONSULTANTS

Engineers • Geologists • Planners Environmental Specialists

APPENDIX B2 REFERENCES 1, 2, AND 3

One West Cary Street Richmond, VA 23220-5809

Phone (804) 649-7035 Fax (804) 783-8023 www.schnabel-eng.com

December 13, 2002

Mr. Mr. Mike Lott
Dominion Generation
F & H Technical Services
Innsbrook Technical Center
Glen Allen, Virginia 23060

Subject:

Project 02131106.01, Geotechnical Engineering Services, Ash

Shear Strength Evaluation, Chesterfield Power Station, Dominion

Generation, Chesterfield County, Virginia

Dear Mr. Lott:

We have completed our evaluation of the shear strength of the ash currently being placed as fill at the Upper Ash Pond at the Chesterfield Power Station as requested. Our services have been provided according to our existing agreement.

Introduction

The ash is being excavated from the Lower Ash Pond, stacked for a short time next to the Lower Ash Pond to drain, and then trucked to the Upper Ash Pond for final storage. By the time the ash reaches the Upper Ash Pond, it is too wet to achieve the required compaction without further drying. Drying the ash at this time of year has been very difficult because of high precipitation and cool temperatures.

The Revised Closure Plan, Upper (East) Ash Pond, Chesterfield Power Station, Chesterfield County, Virginia dated March 1998 (Closure Plan) requires the ash be compacted to at least 95% of the maximum Standard Proctor dry density, at optimum moisture content with a tolerance of +/- 2%. You have requested that we evaluate whether the compaction requirement can be reduced below 95% without a reduction in the factors of safety for slope stability.

We reviewed the slope stability analyses in the Closure Plan to obtain the shear strength and unit weight used in the slope stability analyses. The original soil parameters used for the ash in the analyses included an angle of internal friction (ϕ) of 30° and a moist unit weight of 93 pcf. According to data in the Closure Plan, these parameters were assumed in the design (i.e. they were not based on actual soil laboratory test results).

We suggested a battery of soil laboratory tests to evaluate the shear strength (angle of internal friction (ϕ)) at compaction levels less than currently required by the Closure Plan. This report is a summary of the testing we performed in our laboratory, and our recommendations with regard to compaction of the ash.

Soil Laboratory Testing

We tested two samples in our laboratory that appeared to be representative of the ash at the Chesterfield facility. We performed Standard Proctor (per ASTM D-698), Atterberg Limits, Gradation, and Direct Shear tests. The Direct Shear tests were performed to measure the shear strength of the ash at various relative compaction values.

Sample No. 3 was a mixture of flyash and bottom ash classified as sandy silt (ML) per ASTM D-2487. This material had a maximum dry density of 87.7 pcf at an optimum moisture content of 21.2 %. The corresponding moist density at optimum moisture content was 106.3 pcf. Sample No. 4 was predominantly flyash and classified as sandy silt (ML) per ASTM D-2487. This sample had much less coarse sand size material (bottom ash), and had a lower maximum dry density of 68.1 pcf (as expected for the finer-grained material) at an optimum moisture content of 36.0%. The corresponding moist unit weight of this material at optimum moisture content was 92.6 pcf.

We performed consolidated-drained direct shear tests on both samples. Both samples were initially compacted to about 92% of the maximum Standard Proctor dry density at a moisture content of about 8% above the optimum moisture content. Sample No. 3 exhibited an angle of internal friction (φ) of 32° and Sample No. 4 exhibited an angle of internal friction (φ) of 39°. Prior to consolidation, the average moist unit weight of Sample No. 3 was 104.9 pcf and the average moist unit weight of Sample No. 4 was 90.4 pcf.

We then compacted Sample No. 3 to about 88% of the of the maximum Standard Proctor dry density at a moisture content of 12% above the optimum moisture content. This direct shear test

resulted in an angle of internal friction (ϕ) of 32°. Prior to consolidation, the average moist unit weight of this material was 102.9 pcf.

The angle of internal friction (\$\phi\$) for Sample No. 3 at 88% and 92% relative compaction was 32° for both compaction levels. We believe this occurred because the samples showed significant consolidation under the normal stress imposed during the test resulting in higher relative compaction prior to shearing, especially at the higher normal stresses used in the tests.

The direct shear tests indicated the unit weight (and corresponding relative compaction) of the samples increased after application of the normal stress. The normal stress is similar to a surcharge pressure on the material. For the samples compacted to 92% relative compaction, the increase in relative compaction varied from an average of 0.6% at a normal stress of 4 psi (576 psf) to an average of 3.8% at 20 psi (2,880 psf). These normal stresses are equivalent to a surcharge of about 6 ft and 30 ft of ash, respectively.

Analysis and Recommendations

The slope stability calculations in the Closure Plan used a design angle of internal friction (ϕ) for the ash of 30° and a moist unit weight of 93 pcf. The Closure Plan also indicates the ash should be compacted to at least 95% relative compaction at the optimum moisture content +/- 2%.

Our soil laboratory tests for samples compacted to 92% of the maximum Standard Proctor dry density indicate an angle of internal friction (ϕ) of 32 to 39° with a moist soil unit weight of 90.4 to 104.9 pcf. These angle of internal friction (ϕ) values exceed the values used in the stability analyses in the Closure Plan, which means the ash is actually stronger than anticipated in the original analyses. The soil unit weights are slightly above and slightly below the unit weights those used in the Closure Plan slope stability analyses, which means the average unit weights are about the same as the original unit weights. Accordingly, slope stability analyses using the higher angle of internal friction (ϕ) values and similar unit weights will result in factors of safety higher than those from the original analyses.

We believe the compaction specification can be changed to 92% of the Standard Proctor compaction at optimum moisture content +/-8% while maintaining ash angles of internal friction (φ) equal to or greater than those used in the Closure Plan stability analyses. We recommend amending the Closure Plan to reflect these recommendations.

Our test results also indicate the wet ash will consolidate under the weight of an ash surcharge. During the winter of 2003, we recommend temporarily storing the ash in the Upper Ash Pond area in stockpiles at least 15 ft high. The weight of the upper portion of the ash pile (the surcharge) will cause an increase in unit weight (and thus relative compaction) of the lower portion of the pile.

We recommend evaluating the relative compaction of the lower portion of the pile by digging test pits and performing field density (compaction) tests. If the density of the ash meets the compaction requirements of the amended Closure Plan (i.e. 92% relative compaction), we believe the ash can be left in place to become part of the ash fill. Where compaction does not meet the required values, the ash should be excavated, spread out to dry, and then recompacted to achieve the required relative compaction. We recommend the Closure Plan also be amended to allow compaction by surcharging where confirmed with field density testing or other geotechnical methods such as in-situ Dilatometer or Cone Penetrometer tests.

We anticipate all of upper parts of the temporary stockpiles (the surcharge) and some or all of the lower parts of the stockpiles will require drying and recompaction. We recommend this work be done during the drier, warmer months from later spring to early fall of each year.

We have endeavored to complete the services identified herein in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality and under similar conditions as this project. No other representation, express or implied, is included or intended, and no warranty or guarantee is included or intended in this report, or any other instrument of service.

We appreciate the opportunity to be of continued service for this project. Please call us if you have any questions or if we can be of any other service.

Very truly yours, SCHNABEL ENGINEERING ASSOCIATES, INC.

Edward G. Duckor

Edward G. Drahos, P.E. Principal

4-480

James J. Seli, P.E. Principal

EGD:JJS:vw

Attachments:

- 1. Summary of Soil Laboratory Tests (1)
- 2. Gradation Curves (1)
- 3. Moisture-Density Relation (Standard Proctor per ASTM D-698) (2)
- 4. Consolidated Drained Direct Shear (ASTM D-3080) (3)
- c: Mike Pantele (by email)

 Bennie Tomlinson (by email)

 Jack Shahan (by email)

Contract 02131106.01

SUMMARY OF SOIL LABORATORY TESTS

·						
SAMPLENO	3	4				
DEPTH	-	-				ver a series of the series of
SAMPLE TYPE	BULK	BULK				
STRATUM						
SAMPLE DESCRIPTION	FLY ASH (ML), BLACK	FLY ASH (ML), BLACK				
NATURAL MOISTURE CONTENT (%)		61.8				
NATURAL WET DENSITY (pcf)		_				
EIQUID EIMIT PEASTIC LIMIT PEASTICITY INDEX	사 사 사	NP NP NP	•			
GRADATION DATA (% FINER THAN SIEVE) NO.4 NO.40 NO.200	100.0 100.0	100.0 100.0				
NO. 40 NO. 200 MOISTURE DENSITY	83.9 54.6	95.8 51.5				- TW THE SHARE THE PERSON
RELATION DATA (ASTM D- 698) MAXIMUM DRY DENSITY						
(pcr)	87.7	68.1				
OPTIMUM MOISTURE CONTENT (%)	21.2	36.0				
CBR TEST DATA (VTM-8)						
BEFORE SOAK CBR	-	-	2			
AFTER SOAK CBR	••	-				
% SWELL	-		,	y		
COMPACTED SAMPLE ORYDENSITY (pcf)	-	-				
COMPACTED SAMPLE VOISTURE CONTENT (%)	-	-				
REMARKS	SEE GRADATION, MOISTURE DENSITY RELATIONSHIP, AND DIRECT SHEAR CURVES	SEE GRADATION, MOISTURE DENSITY RELATIONSHIP, AND DIRECT SHEAR CURVES		⁽³¹⁾ ;;		
NOTES 1. Soil tests i	in accordance with applicable A	STM, AASHTO and VTM Stand			242 242 242 242 242 242 242 242 242 242	

3	-	FLY ASH, BLACK	ML	NP	NP	Schnabel Schnabel Engineering Associates, Inc.
		THE RESIDENCE OF THE PROPERTY		151.050	741	GRADATION CURVES
1 4	-	FLY ASH, BLACK	ML	NP	NP	Project: Dominion Ash Pond, Chesterfield County, Virginia
	1.4		111	K/V-E	-	Contract No. 02131 106.01

Sample Description:

% Passing 3/4" Sieve:

FLY ASH, BLACK

Classification: ML

Sample Number: 3

Sample Depth (Ft.):
Sample Source: Assumed Specific Gravity: 2.10

Liquid Limit (LL): NP

ON-SITE Plasticity Index (PI): NP

Max. Dry Density (pcf): 111111111111187.7

Opt. Moist Content (%): 21,2

Schnabel Engineering Associates, Inc.

MOISTURE-DENSITY RELATION

Specification: ASTM-D698 Method: A
Project:

Project:
Dominion Ash Pond, Chesterfiel
County, Virginia

Project No.: 02131106.01

11.1

:1::

Sample Description:

FLY ASH, BLACK

Classification: M			
Sample Number: 4			
Sample Depth (Ft.):		5,00	
Sample Source:	Assumed Specific Gravity:	1.95	S
	Liquid Limit (LL):	NP	I
ON-SITE	Plasticity Index (PI):	NP	
% Passing 3/4" Sieve: 1111 100	.0 Max. Dry Density (pcf):	68.1	
% Passing #200 Sieve: 51.	5 Opt. Moist. Content (%):	36.0	I

Schnabel

Schnabel Engineering Associates, Inc.

MOISTURE-DENSITY RELATION

	Specification:	ASTM D-698	Method: A
	Project:	Dominion Ash	Pond, Chesterfiel
	i., li	Count	y, Virginia
-			

Consolidated Drained Direct Shear (ASTM D3080)

Maximum Nominal Shear Stress vs. Effective Normal Stress

Effective Normal Stress (psi)

Depth: NA SEA Contract: 02131106.01 Sample No.: No. 3 (88% y_{dmax} OMC+12%) Sample Description: Fly Ash (ML) - black

Reviewed By: CJS

Date: 12/2/02

Specific Gravity: 2.10 (Assumed) ... LL: ---- PI: NP 11 %<200: 54.6 Specimen Type: Remolded

Dominion Chesterfield Power Station
Upper Ash Pond, Phase I Chesterfield County, Virginia

Consolidated Drained Direct Shear (ASTM D3080)

Sample No.: No. 3 (92% \gamma_{dmax} OMC+8%) Depth: NA SEA Contract: 02131106.01 Date: 11/19/02

Sample Description: Fly Ash (ML) - black Reviewed By: CJS

Specimen Type: Remolded Specific Gravity: 2.10 (Assumed) LL: - PI: NP %<200: 54.6

Dominion Chesterfield Power Station
Upper Ash Pond, Phase I
Chesterfield County, Virginia

Consolidated Drained Direct Shear (ASTM D3080)

Sample No.: No. 4 (92%7 omar OMC+8%) Depth: NA SEA Contract: 02131106.01 Date: 11/19/02

Sample Description: Fly Ash (ML) - black Reviewed By: CJS

Specimen Type: Remolded Specific Gravity: 1.95 (Assumed) LL: -!! PI: NP ||%<200: | 51.5.

Dominion Chesterfield Power Station
Upper Ash Pond, Phase I
Chesterfield County, Virginia

Post-Hearing Exhibit 6
Page 163 of 184
One West Cary Street
Richmond, VA 23220-5809

Phone (804) 649-7035 Fax (804) 783-8023 www.schnabel-eng.com

February 13, 2003

Mr. Mike Lott
Dominion Generation
F & H Technical Services
Innsbrook Technical Center
Glen Allen, Virginia 23060

Subject:

Project 02131106.01, Response to VDEQ Comments of January

21, 2003, Ash Shear Strength Evaluation, Chesterfield Power Station, Dominion Generation, Chesterfield County, Virginia

Dear Mr. Lott:

We have reviewed the comments by Mr. John Godfrey of the Virginia Department of Environmental Quality (VDEQ) in his email to Mr. Ray Jenkins (VDEQ) dated January 21, 2003. The following is our response to Mr. Godfrey's comments as requested.

With regard to the soil shear strength in relation to the moisture content, Mr. Godfrey is correct that an increase in moisture content will typically result in lower shear strength. This relationship is readily apparent with highly plastic clay soils, but much less so with non-plastic sands. The increase in moisture content of up to about 8% above the optimum moisture content did not have a significant deleterious effect on the shear strength of the ash primarily because of the composition of the ash. The ash is essentially a non-plastic mixture of hollow glass spheres with about 45% to 50% sand size or larger. Accordingly, based on our experience the ash behaves more like a sand than a clay and the higher moisture content has a much smaller effect on the shear strength.

We agree with Mr. Godfrey that the surcharging and testing should be implemented. We will then be able to evaluate the feasibility of increasing the density of the ash fill by surcharging.

The project Construction Quality Assurance Plan (1998) requires four field density tests per acre per lift of common soil fill, but is silent on the frequency of testing for the ash. We are currently performing field density testing of the ash (for moisture content and density) on an as needed basis. We have been present on site three or four days a week when the ash is being placed and compacted, and about twice a month when the ash is being stockpiled.

We recommend the same frequency of testing for the ash as for the common soil fill (i.e. four tests per acre per lift) or as recommended by the Engineer. We will continue to make these tests on a periodic basis as the ash fill is being placed and compacted. We will also perform direct shear tests on the ash (to confirm the design angle of internal friction, ϕ) twice a year or as recommended by the Engineer.

We have endeavored to complete the services identified herein in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality and under similar conditions as this project. No other representation, express or implied, is included or intended, and no warranty or guarantee is included or intended in this report, or any other instrument of service.

We appreciate the opportunity to be of continued service for this project. Please call me if you have any questions or if we can be of any other service.

Very truly yours, SCHNABEL ENGINEERING ASSOCIATES, INC.

Edward G. Dushor

Edward G. Drahos, P.E. Principal

EGD:vw

c: Mike Pantele (by email)

Bennie Tomlinson (by email)

Jack Shahan (by email)

Schnabel Engineering South, LLC

One West Cary Street Richmond, VA 23220

Phone (804) 649-7035 Fax (804) 783-8023 www.schnabel-eng.com

May 5, 2003

Mr. Mr. Mike Lott Dominion Generation F & H Technical Services Innsbrook Technical Center Glen Allen, Virginia 23060

Subject:

Project 02131106.01, Geotechnical Engineering Services, Ash

Moisture Criteria Evaluation, Chesterfield Power Station, Dominion Generation, Chesterfield County, Virginia

Dear Mr. Lott:

We have completed our evaluation of the moisture criteria of the ash currently being placed as fill at the Upper Ash Pond at the Chesterfield Power Station as requested. Our services have been provided according to our existing agreement.

INTRODUCTION

In our previous report titled, Geotechnical Engineering Services, Ash Shear Strength Evaluation, Chesterfield Power Station, dated December 13, 2002, we recommended amending the compaction and moisture content criteria specified in the Closure Plan. We believe the compaction specification can be changed to 92% of the Standard Proctor compaction at optimum moisture content ±8% while maintaining ash angles of internal friction (φ) equal to or greater than those used in the Closure Plan stability analyses. GAI has agreed to the above referenced criteria for placing and compacting ash that is at least 50 feet away from the perimeter drainage channels. In the outer 50 feet, GAI recommended that the current moisture content (±2% of optimum moisture content) and compaction (95% of the maximum dry density per ASTM D-698) specifications be followed.

In the outer 50 feet adjacent to the perimeter drainage channels, we recommend that the moisture content criteria be revised to allow ash to be placed and compacted between 4% above and 6% below its optimum moisture content while maintaining the compaction criteria of 95% of the maximum dry density per ASTM D-698. To demonstrate the feasibility of achieving these results in the field, we have performed a Modified Proctor Test (ASTM D-1557) on Sample 5. A Standard Proctor Test (ASTM D-698) was previously performed on Sample 5 and reported in Report No. 2.

SOIL LABORATORY TESTING

The maximum dry densities and optimum moistures for the Standard and Modified Proctor Tests for Sample 5 are 71.8 pcf at 32.3% moisture and 78.9 pcf at 25.8% moisture, respectively. With Modified Proctor compaction effort, the ash is compacted to about 110% of its Standard Proctor maximum dry density at a moisture content that is about 6.5% below the Standard Proctor optimum moisture. Likewise, when the ash sample is at 26.3% moisture content (i.e. 6% below the Standard Proctor optimum moisture), a dry density of 78.6 pcf is achieved when Modified Proctor compaction effort is applied to the ash sample (i.e. 109% of the Standard Proctor maximum dry density).

It should also be noted that the ash has a dry density of 69.3 pcf at 36.3% moisture on the Standard Proctor Moisture-Density Relation. This correlates to compaction to 97% of the Standard Proctor maximum dry density at 4% above the Standard Proctor optimum moisture content. The test results for the Standard and Modified Proctor Tests for Sample 5 are included as Attachment 1.

CONCLUSIONS

The Standard Proctor and Modified Proctor Tests were both performed on the same ash sample, Sample 5. The difference between these two tests is that greater compaction effort is applied to the sample during the Modified Proctor Test than in the Standard Proctor Test. As a result, higher dry densities are obtained during the Modified Proctor Test than in the Standard Proctor Test.

Based on the Modified and Standard Proctor Tests performed on Sample 5, compaction equal to or greater than 95% of the maximum Standard Proctor dry density per ASTM D-698 can be achieved on the ash at moisture contents that are up to 6% below the Standard Proctor optimum moisture content as long as sufficient compaction effort is applied to the ash. Also, compaction equal to or greater than 95% of the maximum Standard Proctor dry density per ASTM D-698 can

be achieved on the ash at the site at a moisture content of 4% above the Standard Proctor optimum moisture content.

It should be noted that in order to achieve 95% of the maximum dry density per ASTM D-698 at 6% below optimum moisture content, greater compaction effort might be required by the contractor. Greater compaction effort would involve placing and compacting ash in thinner lifts, making additional passes over each lift with the compaction equipment, and/or using heavier compaction equipment. Alternatively, if the ash is dry, it could be moistened to achieve the required Standard Proctor compaction.

We have endeavored to complete the services identified herein in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality and under similar conditions as this project. No other representation, express or implied, is included or intended, and no warranty or guarantee is included or intended in this report, or any other instrument of service.

We appreciate the opportunity to be of continued service for this project. Please call us if you have any questions or if we can be of any other service.

Very truly yours, Schnabel Engineering South, LLC

Theron R. Fluker, E.I.T.

Senior Staff Engineer

Edward G. Drahos, P.E.

Principal

TRF:EGD vav

Attachments:

1. Moisture-Density Relation (ASTM D-698 and ASTM D-1557) (2)

c: Mike Pantele (by email)

Bennie Tomlinson (by email)

Jack Shahan (by email)

Sample Description:

Classification:

FLY ASH, BLACK

ML Sample Number: 5 Sample Depth (Ft.): Sample Source: Assumed Specific Gravity: 1.93 Liquid Limit (LL): NP ON-SITE Plasticity Index (PI): NP % Passing 3/4" Sieve: Max. Dry Density (pcf): 71.8 % Passing #200 Sieve: 32.3 67.1 Opt. Moist. Content (%):

MOISTURE-DENSITY RELATION							
 Specification:	ASTM D-698	Method: A					
Project:		on Ash Pond, County, Virginia					
Project No :	02131106.01						

80 S=100% 79 78 77 DRY DENSITY (pcf) 76 75 74 73 72 71 21 22 23 24 25 26 27 30 31 28 29

MOISTURE CONTENT (%)

Sample Description:

FLY ASH, BLACK

Classification: ML 5 Sample Number: Sample Depth (Ft.): Sample Source: Assumed Specific Gravity: 1.95 Liquid Limit (LL): NP ON-SITE NP Plasticity Index (PI): % Passing 3/4" Sieve: 78.9 Max. Dry Density (pcf): 25.8 % Passing #200 Sieve: 67.1 Opt. Moist. Content (%):

MOISTURE-DENSITY RELATION

ASTM D-1557 Specification: Method: A Project: Dominion Ash Pond, Chesterfield County, Virginia 02131106.01 Project No.:

Post-Hearing Exhibited Planners

CONSULTANTS, INC.

Engineers • Geologists • Planners
Environmental Specialists

Dominion Energy North Carolina
Docket No. E-22, Sub 563
SUBJECT VILGINIA POWER - Chesterfield Closure

BY _____ DATE ____ PROJ. NO. _____
CHKD. BY ____ DATE ____ SHEET NO. ____ OF ____

oct 23 2019

SETTLEMENT CALCULATIONS

SUBJECT Wain	ia 7	ower 1	Chesters	ield	
A.	sh D'	9 lerogei	and Set	tlement	
BY NOBA	DATE	9/24/97	PROJ. NO.	96-410-	33
CHKD. BY KCC	DATE	10/28/37	SHEET NO.	OF	```

Problem:

Refer to Conceptual Closure Plans for Phase I + II.

It is proposed to raise the top of the ash
placement area to El 80 from current elevations
that vary from "El 32 to "El 45 for Phase I.

For Phase II, the top of the ash placement area would be at El 130.

Side slopes proposed are 3H: IV. with benches every 25' in elevation.

Purpose:

To calculate the effect on settlement from the additional ash placement.

References:

- Pond Ash. Laboratory Testing done by GAI.

 April 14, 1997 (Copy ettached)
- 2) Holtz, Robert D. & Kovacs, William D. "An Introduction to Geotechnical Engineering". Prentice-Hall Civil Engineering & Engineering Mechanics Series. Englewood Cliffs, N.J. 1981

SUBJECT VEPCO Chesterfield Ash Disposal PROJ. NO. 96-410-33 DATE 10/28/97 SHEET NO. _

Engineers • Geologists • Planners **Environmental Specialists**

- Geotechnical Engineering Study, Long Term Ash Pond Dike, Chesterfield County, Vivginia Prepared by Schnabel Engineering Associates, Inc.
- Prepared by Schnabel Engineering Associates, Inc.
 April 22, 1996

 Laboratory testing performed by Golder Associates, Inc.
 Appendix B, one-dimensional consolidation (ASTM DZ435)

 dated XIClas (Non-th-1) dated 8/5/97 (Copy attached)

Settlement - Phase I

Vertical stress due to ut of embankment is approx.

is appro ν.

f = 4800 psf

= 2.4 +sf

say 2.5 tsf = Δσ 80 - 32 = 48' of ash @ N = 100 pcf = 4800 psf

From Ref. 1, Use eo=1.00. From results plutted from esmolidation test report @ location CF#1 the average recompression index, Cor, to ~ 2.5 tsf is 0.016. (say 0.02)

From ref. 3, sec 1.2 erea of pond graded at El. 2.5 ... thickness of existing layer ~43' at highest elevation

The initial effective stress at the midpt. of the ash layer is:

> Tro = (100 pcf) (21.5ft) - (62.4pcf) (21.5ft) 0 = 808.4 psf or 0.404 tsf say 0.41 tsf

Assume soil is normally consolidated. (N-C.)

From ref. 2, pp. 317, eq (8-11), settlement of N.C. soils

Post-Hearing Exhibit 6

where

Ccr = recompression index Ho = initial thickness of ash layer e = initial void ratio Ovo = initial effective stress (@ wickle of layer) AT = additional stren applied by add. ash

$$\int_{cr} = 0.0z \left(\frac{43'}{1+1} \right) \log \frac{0.41 + 2.5}{0.41}$$

Ser = 0.37 yt. on 4.4 inches

SUBJECT VEPCO Chesterfield Ash Disposal Hond Settlement BY NOBA DATE 9/25/97 PROJ. NO. 96-410-33 CHKD. BY KCC DATE 10/28/97 SHEET NO. 5 OF

Page 175 of 184 CONSULTANTS, INC

Post-Hearing Exhibit 6

Engineers • Geologists • Planners **Environmental Specialists**

Settlement - Phase II

Vertical stress due to weight of embankment is approx. 130 - 32 = 98' of ash @ 1=100 pcf = 9800 psf say 5.0 $tsf = \Delta \sigma_v$ Ccr = 0.02

:
$$S_{cr} = 0.02 \left(\frac{98'}{2}\right) \log \frac{0.41 + 5.0}{0.41}$$

Sci = 1.10 et on 13 inches

Con clusions:

The existing ash layer will settle 4.4 inches due to the first phase embankment loading & up to a total of 13 inches due to second phase embanhment loading.

Differential settlements should be gradual.

SAMPLE ID SAMPLE TYPE SAMPLE DEPTH COAL ASII Bulk

LL PL PI Gs 2.25 Dry Unit Weight (pcf) Wet Unit Weight (pcf) Moisture Content Void Ratio Degree of Saturation

Initial	Final	
75.2	78.0	
94.7	106.6	
26.0%	36.6%	
0.8677	0.8000	
67.4%	103.0%	

DESCRIPTION Coal Ash USCS

VIRGINIA / CHESTERFIELD COAL ASH TESTING / VA 977-8032

TECH PWM DATE 8/5/97 CHECK REVIEW

Ž
R
Ħ

Dominion Energy North Docket No. F-22, Sub					Post-Hearing Exhibit 6 Page 178 of
SUBJECT Virginia USLE	Power - C	hesterfield	Closure		
MRL	ATE 9 10 97	PROJ. NO.	16-410-3	3	CONSULTANTS
	ATE 23 5 F P C 7	SHEET NO.	OF	8	Engineers • Geologists • Plann Environmental Specialists
₩					
	Ŋ				
		P	45		
ω /	į 1				NT OF AGRICULTURE RVATION SERVICE
			VIRGINIA		STITUTE AND STATE UNIVERSITY
122 77:30			C.T.		SOIL MAP
9 RICHMOND CITY	i I		CH.	ESTERFIELD	COUNTY, VIRGINIA
8 10 (6)				Scale 1 0	: 1:253,440 1 2 3 4 Miles
-37°30	77 70 70				Languit and Languit
		25			SOCIATIONS
100/200	- SITE	š (Fluvaquents-H		PLAINS AND TERRACES Deep, poorly drained and very poorly
10 D 12	LOCATIO	N ·	drained soils substratum; a)	that are frequently flood ong drainageways and s	: Deep, poorly drained and very poorly ed and that have a sandy, loamy, or clayey treams
10 165	13/10	•	2 drained, and s	omewhat goorly drained	Deep, well drained, moderately well soils that have a dominantly toamy or
10	534	a	clayey subseit	⊭ ill-Turbeville associatio	on: Deep, well drained soils that have a
10 Centralia	CO 77°20'	Wyt /	dominantly cla		subsoil; on high terraces SIC BASIN MATERIAL
CHESTORFIELD 14	1 2 2 2 2 2 2 2	(Turkay)	4 Creedmoor-May	yodan association; Dee a a dominantly clayey su	p, well drained and moderately well drained ubsoil; on uplands
Chester 13	Island 10	listand)			p, well drained and moderately well drained gravelly clayey subsoil; on uplands
Br Ashton	Bernduda Hundred	711 COUNTY	Cecil-Appling		IEDMONT PLATEAU I drained soils that have a dominantly
15 ?	95) 15/3	-37°20′	clayey subsoil	; on uplands	
7 / ~ []	13		7 drained soils t uplands	hat have a dominantly c	eep, well drained and somewhat poorly layey subsoil or that have a fragipan; on
July 12 11	/HOPEWELL 10 CIT	Y	8 drained, and p	am-Colfax association: corly drained soils that n; on uplands and upland	Deep, well drained, somewhat poorly have a dominantly clayey subsoil or that d flats
10 15	PRINCE GEORGE COUNTY	-	9 Appling-Grover drained soils t ipan; on upland	-Colfax association: D hat have a dominantly c is and upland flats	eep, well drained and somewhat poorly layey or loamy subsoil or that have a frag-
Patrick 11sc	COUNTY	» ••• أ	10 Faceville-Grito	nev-Kempsville associal	COASTAL PLAIN tion: Deep, well drained soils that have a
	VER (95)	•	dominantly cla	yey or loamy subsoit; or	n uplands
ATTOX COUNTY PETH	ERSBURG	. • [11 drained soils t lands and upla	hat have a fragipan or th	nat have a loamy or clayey subsoil; on up-
. I	659		12 Tetotum-Bourn dominantly load	e association: Deep, m my subsoil or that have	oderately well drained soils that have a a fragipan; on uplands
	***	• [13 Gritney-Atlee-I	Lenoir association; Des poorly drained soils that	ep, we'll drained, moderately well drained, t have a <u>clayey or loamy subsoil;</u> on uplands
	69	• [14 Lucy-Orangebu	rg-Rumford association:	Deep, well drained and somewhat exces- antly loamy subsoil; on uplands
		Ī	Ochrents and I	Idults-Vanctuse associa	tion; Deep, excessively drained, well oils that have a sandy, loamy, clayey, or

Compiled 197

Reference: USDA Soil Survey of Chesterfield County, Virginia, July 1978

APPENDIX C

SCHEDULE AND CHEKLIST FOR FACILITY INSPECTIONS

APPENDIX C

SCHEDULE AND CHECKLIST FOR FACILITY INSPECTIONS

Table C-1 GENERAL INSPECTION SCHEDULE

ltem	Possible Deficiency	Inspection Frequency ⁽¹⁾
CCB Placement Areas ⁽²⁾	M/Q	
Vegetated Cover ⁽²⁾	Brush, trees, gaps in cover, erosion	M/Q
Existing Perimeter Dike ⁽²⁾	Slides, sloughs, scarps, displacements, seepage, erosion	Q
Surface Water Drainage System ⁽²⁾	Accumulated sediment, ponding, erosion	M/Q
Monitoring Wells	Misc. damage	Q.
Locking Site Gate	Misc. damage	M/Q

Notes:

- (1) M/Q monthly for first 12 months, quarterly thereafter; Q quarterly.
- Additionally, the integrity of the CCB placement area, cover, vegetation, existing perimeter dike, and surface water drainage system will be inspected after the spring thaw, after any rainfall exceeding two inches or any major rainfall event resulting in localized flooding.

SITE INSPECTION CHECKLIST UPPER (EAST) CLOSURE CHESTERFIELD POWER STATION

Market of States Too		
Date of Inspection:	. ,,,,,	<u>s</u>
Temperature:	E	я
Weather Conditions on Date of Inspection	n:	
General Weather Conditions During Prev		
a a		
Persons Present at Inspection:	er or or or or or or or or or or or or or	
Name	Title/Position	Representing
		-
	a particular of	
	0 0000000000000000000000000000000000000	
	The second secon	-
		- Interest t
10 W 10		
General Comments:		

ost-Hearing Exhibit o Page 182 of 184

		ACTION REQUIRED			
AREA INSPECTED	CONDITION	Yes	No	OBSERVATIONS/LOCATION (Note on Attached Site Plan)	
	Wet Areas, Seepage				
OOD DI ACEMENT	Surface Cracking				
CCB PLACEMENT	Slide, Slough, Scarp				
AREAS AND EXISTING	Sinkhole, Animal Burrow				
PERIMETER DIKE	Erosion		a a		
PERMIETER DIRE	Unusual Movement				
	Vegetation Control				
TANK MARKATAN MARKATA	Surface Cracking				
	Sinkhole, Animal Burrow				
VEGETATED	Low Areas(s)		*		
COVER	Ruts and/or Puddles				
	Vegetation Condition				
	(Trees, brush, gaps)				
ADDITIONAL COMMI	ENTS:				

Post-Hearing Exhibit 6 Page 183 of 184

lame of Inspector:	S	Site:		Inspection Date:
		ACTION REQUIRED		
AREA INSPECTED	CONDITION	Yes	No	OBSERVATIONS/LOCATION (Note on Attached Site Plan)
LOCKING GATE	Miscellaneous Damage			
SURFACE WATER DRAINAGE SYSTEM	Drainage Channels			
	- Accumulated Sediment			
	- Erosion			
	- Vegetation/Riprap/Lining Condition			
	- Ponding			
	Culverts			
	- Accumulated Sediment			
	- Structural Integrity			
	- Inlet Condition			
	- Outlet Condition			
MONITORING WELLS	Miscellaneous Damage (e.g, damaged casing, cover, lock, etc.)			
ADDITIONAL CON	MENTS:	E \$ 4470000 A	* ***	
	-		γ.,	×

